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Asian chemical outflow to the Pacific in spring: 
Origins, pathways, and budgets 

Isabelle Bey, • Daniel J. Jacob, Jennifer. A. Logan, and Robert M. Yantosca 
Division of Engineering and Applied Sciences, and Department of Earth and Planetary Sciences, 
Harvard University, Massachusetts 

Abstract. We analyze the Asian outflow of CO, ozone, and nitrogen oxides (NOz) 
to the Pacific in spring by using the GEOS-CHEM global three-dimensional model of 
tropospheric chemistry and simulating the Pacific Exploratory Mission-West (PEM-West 
B) aircraft mission in February-March 1994. The GEOS-CHEM model uses assimilated 
meteorological fields from the NASA Goddard Earth Observing System (GEOS). It 
reproduces relatively well the main features of tropospheric ozone, CO, and reactive 
nitrogen species observed in PEM-West B, including latitudinal and vertical gradients of 
the Asian pollution outflow over the western Pacific although simulated concentrations 
of CO tend to be too low (possibly because biogenic sources are underestimated). We 
use CO as a long-lived tracer to diagnose the processes contributing to the outflow. The 
highest concentrations in the outflow are in the boundary layer (0-2 km), but the strongest 
outflow fluxes are in the lower free troposphere (2-5 km) and reflect episodic lifting of 
pollution over central and eastern China ahead of eastward moving cold fronts. This frontal 
lifting, followed by westerly transport in the lower free troposphere, is the principal process 
responsible for export of both anthropogenic and biomass burning pollution from Asia. 
Anthropogenic emissions from Europe and biomass burning emissions from Africa make 
also major contributions to the Asian outflow over the western Pacific; European sources 
dominate in the lower troposphere north of 40øN, while African sources are important in 
the upper troposphere at low latitudes. For the period of PEM-West B (February-March) we 
estimate that fossil fuel combustion and biomass burning make comparable contributions 
to the budgets of CO, ozone, and NOz in the Asian outflow. We find that 13% of N()z 
emitted in Asia is exported as NOz or PAN, a smaller fraction than for the United States 
because of higher aerosol concentrations that promote heterogeneous conversion of NOz 
to HNO3. Production and export of ozone from Asia in spring is much greater than from 
the United States because of the higher photochemical activity. 

1. Introduction 

Rapid industrialization of eastern Asia is expected to 
have important implications for global atmospheric chem- 
istry over the next decades [Berntsen et al., 1996] and 
also perhaps for surface air pollution over North America 
[Berntsen et al., 1999; Jaffe et al., 1999; Jacob et al., 
1999]. Akimoto and Narita [ 1994] reported a 65% increase 
of nitrogen oxides (NOx) emissions in eastern Asia between 
1975 and 1987, and van Aardenne et al. [1999] predict an 
increase of almost five fold in NOx emissions from 1990 to 
2020. By contrast, little change and even decrease can be 
expected for NO x emissions in North America or western 
Europe due to emission controls [Environmental Protection 
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Agency (EPA), 1996], making Asia the more important 
anthropogenic emitter over the next 20 years. There is 
thus a need to better understand the chemical processing of 
emissions over Asia and the mechanisms for export of this 
pollution to the global atmosphere. 

In this paper, we use a global three-dimensional (3-D) 
model of tropospheric chemistry driven by assimilated me- 
teorological observations [Be), et al., this issue] to examine 
Asian outflow over the western Pacific through simulations 
of the Pacific Exploratory Mission (PEM) West B aircraft 
mission in February-March 1994 [Hoell et al., 1997]. The 
PEM-West B mission used a DC-8 aircraft operating out of 
Hong Kong, Japan, and Guam to survey the western Pacific 
atmosphere up to 12 km altitude (Figure 1). The mission 
was flown in late winter-early spring, the season of strongest 
Asian outflow to the Pacific [Merrill, 1989; Balkanski et al., 
1992]. 

Data from PEM-West B showed that the chemical outflow 
from Asia is a complex mixture. Koike et al. [1997] 
poimed out the diversity of NO• origins: in addition to fossil 
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Figure 1. Flight tracks of the PEM-West B mission (February-March 1994). Flights number are indicated. 

fuel sources, there was evidence of significant contributions 
from aircraft exhaust and lightning. The hydrocarbon and 
halocarbon data of Blake et al. [1997] identified various 
chemical signatures in the Asian outflow, including fossil 
fuel combustion and biomass burning. Liu et al. [1999] and 
Chan et al. [2000] found that biomass burning taking place 
in Southeast Asia could explain enhancements of ozone 
concentrations in spring over Hong Kong. Talbot et al. 
[ 1997] examined correlations between various hydrocarbon, 
halocarbon, nitrogen oxides and ozone concentrations from 
PEM-West B and found aged air masses with an industrial 
signature which could have been advected from Europe or 
the Middle East. Moreover, the presence of high aerosol 
concentrations in the Asian outflow, including sulfate and 
nitrate aerosols as well as mineral aerosols [Chen et al., 
1997], further complicates the composition of the outflow 
and its evolution [Zhang and Carmichael, 1999]. 

Previous analyses of the Asian outflow have focused on 
quantifying the impact of anthropogenic Asian emissions on 
global tropospheric composition [Berntsen et al., 1996] and 
on the composition of air masses reaching North America 
[Jacob et al., 1999; Berntsen et al., 1999; Iqenger et 
al., 2000]. More interest needs to be given to the Asian 
outflow in terms of quantification of the flux exported and 
the mechanisms involved in the export. Using a regional 
model, Carmichael et al. [1998] found that stratospheric 
intrusions as well as Asian outflow contribute significantly 
to ozone concentrations in surface air over Japan. ¾ienger et 
al. [2000] showed that convergence over Asia makes a major 
contribution to the Asian outflow over the western Pacific. In 

the present study, we focus on quantifying the Asian export 
of CO, NO• and ozone, which are of particular interest 
for driving global atmospheric chemistry. Our simulation 
uses the GEOS-CHEM global 3-D model of tropospheric 
chemistry with assimilated meteorological observations for 
1994, and our evaluation of model results focuses on PEM-- 

West B observations. We identify the major pathways and 
meteorological drivers for export of Asian pollution, esti- 

mate the role of chemical processing over the continent, and 
quantify the contributions from various sources including 
biomass burning and intercontinental transport to the Asian 
outflow over the western Pacific. 

2. Model Description 

The GEOS-CHEM model is a global model of tro- 
pospheric chemistry driven by assimilated meteorological 
observations from the Goddard Earth Observing System 
(GEOS) of the NASA Data Assimilation Office (DAO). A 
full description of the model is given by Bey et al. [this 
issue]. For the present work, we use meteorological fields 
for 1993 and 1994 (GEOS-1) which are provided with 
horizontal resolution of 2 ø latitude by 2.5 ø longitude and 20 
sigma levels in the vertical, from the surface up to 10 hPa. 
For some of the work presented here, we regrid the GEOS 
data to a horizontal resolution of 4 ø latitude by 5 ø longitude 
which saves a factor of 8 in computation time. 

The model includes 80 chemical species and carries 
24 tracers to describe tropospheric O3-NOx-hydrocarbons 
chemistry. Emissions include anthropogenic activities, 
biomass burning, sources from the biosphere, and lightning. 
Anthropogenic emissions are distributed on the basis of 
inventories for 1985 and are scaled to 1994 levels on the 

basis of energy use statistics [Bey et al., this issue]. Biomass 
burning emissions are from a climatological inventory with a 
monthly temporal resolution [Wang et al., 1998]. Lightning 
emission of NOx occurs in conjunction with deep convective 
events in the GEOS data following the parameterizations 
of Price and Rind [1992] and Pickering et al. [1998]. 
Advection is computed with a flux-form semi-Lagrangian 
method described by Lin and Rood [1996]. Moist convec- 
tion is computed using the GEOS convective, entrainment, 
and detrainment mass fluxes as described by Allen et al. 
[1996a, 1996b]. Full vertical mixing is assumed up to the 
GEOS-diagnosed mixing depth. 

A global evaluation of the model is presented by Bey 
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Figure 2. Model grid (2 ø x 2.5 ø) and geopolitical source regions used for model analysis. 

et al. [this issue], using meteorological fields for 1994. 
This evaluation includes compari.•ons with climatological 
and 1994 ozonesonde data, long-term and 1994 observations 
of CO at surface sites, aircraft observations of NO, PAN, 

HNO3, hydrocarbons and acetone, and the atmospheric 
lifetime of methylchloroform as a proxy of the global mean 
OH concentrations. The global evaluation shows that the 
main features of ozone concentrations in the troposphere are 
well captured by the model; diagnosed problems include a 
low seasonal amplitude in the middle troposphere at northern 
midlatitudes. Modeled nitrogen species (NO, PAN, and 
HNO3) are usually within a factor 2 of observed values 
although the model overestimates HNO3. The lifetime of 
methylchloroform against oxidation by tropospheric OH is 
5.1 years in our model, as compared to a best estimate of 
5.5 years by Spivakovsky et al. [2000]. Simulated CO 
concentrations are in general too low (by 5 to 20 ppb in 
most of the cases). As discussed by Bey et al. [2001], 
it is not clear whether this underestimate reflects excessive 

OH concentrations in the model or an undercounting of CO 
sources from oxidation of biogenic hydrocarbons. 

We present here a more focused evaluation of the model 
with observations from PEM-West B, sampling the model 
along the aircraft flight tracks and for the specific flight day. 
We use for that purpose a version of the model including 
full O3-NOx-hydrocarbons chemistry and 4 ø x 5 ø horizontal 
resolution. The simulation is conducted from June 1993 to 

March 1994, starting from climatological values as initial 
conditions. The 7-month initialization from June 1993 

to January 1994 effectively removes the effect of initial 
conditions, and results from February-March 1994 are used 
to compare with the observations. 

We also present in this paper a CO simulation with the 
original 2øx2.5 ø horizontal resolution to better resolve the 
structure in the Asian outflow and to diagnose any failures of 
the coarser resolution in representing major features of trans- 
port. This CO-only simulation uses eight tagged CO tracers 
to resolve source regions contributing to Asian outflow: four 

tracers for fuel combustion including fossil fuel and wood 
(North America, Europe, Asia, and rest of the world) and 
four tracers for biomass burning (South America, Africa, 
Asia, and rest of the world). The corresponding domains 
are given in Figure 2. Loss of CO by reaction with OH and 
production of CO from oxidation of isoprene and methane 
by OH (using molar yields of 1.25 and 1, respectively) are 
calculated using OH monthly mean fields generated with the 
standard simulation described previously. The source of CO 
due to oxidation of hydrocarbons other than methane and 
isoprene is relatively small and is ignored. By summing the 
concentrations of all CO tracers we reproduce closely the 
CO concentrations obtained in the standard full-chemistry 
simulation. 

3. Comparison With Observations 
from the PEM-West B Mission 

In comparing the model results with the PEM-West B 
aircraft observations, we sample the model along the flight 
tracks and for the specific flight days. We use 24-hour aver- 
age model results for the flight days; considering the 4 c' x5 ø 
spatial resolution of the model and the 6-hour temporal res- 
olution of the GEOS meteorological data, any finer temporal 
detail in comparing model results to observations would be 
illusory. Additional evaluation of model results with time 
series of meteorological variables and CO concentrations 
measured at a Taiwan site during PEM-West B [Liu et al., 
1997] is presented in section 4 in the context of analysis of 
frontal passages. 

The comparison between model results and the PEM- 
West B observations results is carried out in two ways. Fig- 
ure 3 compares the latitudinal and longitudinal distributions 
of selected species (03, CO, C2H6, NO, PAN, HNO3) in 
the PEM-West B observations and in the model in order to 

show the capability of the model over the whole region of 
interest. Observations were averaged over 5 ø latitude bands 
for the lower troposphere (below 6 km) (Figure 3a) and 
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Figure 3. Comparison of PEM-West B aircraft observations (triangles) with model concentrations (solid 
circles) as function of latitude in the (a) lower troposphere (0-6 km) and (b) upper troposphere (6-12 km). 
Observed concentrations include data from all flights and have been averaged over 5 ø latitude bands; 
model results are averaged over 5 ø latitude bands and over longitude bins corresponding to those of 
observations for the days of the flights. (c) Comparison of PEM-West B aircraft observations (triangles) 
with model concentrations (solid circles) as function of longitude in the lower troposphere (0-6 km) north 
of 25øN of latitude. Sampling of observed and modeled values is done in the same way as described in 
Figures 3a and 3b. The number of individual observations used in obtaining mean values for each bin is 
indicated in insets in the plot. 

the upper troposphere (6-12 km) (Figure 3b). Longitudinal 
variation is shown for the lower troposphere for latitudes 
higher than 25øN (Figure 3c) where the continental outflow 
is maximum [Blake et al., 1997; Talbot et al., 1997]. There is 
little longitudinal variation in the upper troposphere, so those 
results are not shown. We also compared vertical profiles 
collected during each flight with daily mean values sampled 
in the model for the corresponding day and location of the 
flight. Two examples are given in Figure 4 which shows 
vertical profiles of modeled and observed concentrations of 
selected species (03, CO, C2H6, NO, PAN, HNO3) for flight 
17 (which took place over the Sea of Japan in the region 
impacted by continental outflow) and for flight 7 (which took 
place between the equator and 25øN) (see Figure 1). 

Observed concentrations of CO and ethane increase with 

latitude at all altitudes (Figures 3a and 3b) and decline 
slightly from west to east (Figure 3c) due to dilution of 
the Asian outflow. The enhancements of CO and ethane 

are strongest in the lower troposphere north of 25øN, where 
Asian outflow is most active [Blake et al., 1997; Talbot et al., 

1997]. The model underestimates CO and ethane levels but 

it reproduces well the latitudinal and longitudinal gradients, 
including the enhancement due to continental outflow. The 
large underestimate of ethane in the lower troposphere north 
of 30øN suggests an underestimate of high-latitude sources 
from natural gas exploitation. The general underestimate of 
CO in our model has been discussed in section 2, but could 
also reflect here a regional underestimate of CO sources 
from biomass burning and wood fuel as discussed in section 
4.2. The model reproduces well the coarse vertical structure 
of CO, for example the strong increase observed below 6 km 
during flight 17 (Figure 4a). It cannot capture fine layers 
of the extremely high CO levels (up to 300 ppb) observed 
during that flight, if only because of insufficient vertical and 
horizontal resolution. 

Relatively high NO concentrations are observed in the 
Asian continental outflow at 15ø-40øN. Some anomalously 
high NO concentrations are observed at 20øN and south of 
the equator in the upper troposphere. Koike et al. [1997] 
attributed the high levels around 25øN to fresh aircraft 
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Figure 4. Comparison of model results with PEM-West B aircraft observations on (a) flight 17 and (b) 
flight 7 (see flight tracks in Figure 1). Triangle are observations. Grey lines are model results for the 
different grid squares sampled along the flight track. The model values are 24-hour averages (daytime 
averages for NO) for the days of the flights. 

exhaust from the air traffic corridor between Japan and 
Southeast Asia. Levels as high as 900 ppt were observed in 
the southern tropics during PEM-West B and appear related 
to lightning activity [Kawakarni et al., 1997; Crawford et 
al., 1997]. The model reproduces the general increase of 
NO with latitude (Figures 3a and 3b) but overestimates NO 
levels in the lower troposphere especially north of 35øN 

(Figures 3a and 3c). Observations north of 35øN are for the 
narrow corridor between Japan and China (Figure 1) which 
is not geographically resolved in the model because of the 4 ø 
by 5 ø horizontal resolution. The model underestimates NO 
in the southern tropics, indicating a possible underestimate 
of lightning NO x emissions in the model for that region. 
Simulated vertical profiles of NO for these latitudes show 
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Figure 5. Monthly mean GEOS sea level pressures (hPa) for February and March 1994 and corresponding 
wind vectors at 250 m above the surface. 

an increase of NO concentrations up to 100 ppt in the upper 
troposphere but never reach the highest observed values. 
The observed PAN mixing ratios show strong gradients with 
latitude and longitude similar to CO and hydrocarbons that 
are well captured by the model. HNO3 concentrations are 
greatly overestimated, especially north of 25øN in the lower 
troposphere (Figures 3a and 3c). A possible explanation 
is partioning of nitrate into the aerosols which the model 
does not resolve. This effect could be especially important 
in Asian outflow because of high concentrations of alkaline 
soil dust aerosol [Chen et al., 1997; Zhang and Carmichael, 
1999]. 

The model reproduces well the observed ozone mixing 
ratios with the exception of an overestimate of 10-15 ppb in 
the lower troposphere north of 25øN. This could reflect a too 
strong stratospheric input in that season in our model [Bey et 
al., this issue]. Another possibility is heterogeneous reaction 
of ozone on dust, which we do not account for: Zhang 
and Catmichael [1999] and Dentenet et al. [1996] have 
proposed that heterogeneous reaction of ozone on dust could 

provide an important ozone sink in Asian continental plumes 
(10 to 40%) but there is so far no identified mechanism or 
experimental evidence for this reaction. 

4. Pathways for the Export 
of Pollution From Asia 

4.1. Meteorological Setting in February-March 

Early spring in Asia corresponds to the period of transition 
between the winter and summer monsoons. During winter 
the major meteorological features are the Siberian High over 
Mongolia/Siberia and the Aleutian Low over the Pacific 
Ocean (Figure 5). The Siberian High produces in the mean a 
strong northerly flow in the boundary layer along the Pacific 
rim (Figure 5). When the flow reaches Southeast Asia, it 
meets a marine tropical air mass from the Pacific carded by 
the northeastern trade winds [Watts, 1969]. The meteoro- 
logical situation over eastern China in winter-early spring is 
also characterized by the frequent passages of strong cold 
fronts which move southward across northern China and 
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Figure 6. Carbon monoxide emissions in Asia in February-March 1994 from (a) anthropogenic activities 
(fossil and wood fuels) and (b) biomass burning. 

Korea. Cold fronts in East Asia are known to be stronger 
than in other parts of the word (in term of wind speed and 
variation in surface temperature and pressure) because of the 
presence of the Tibetan Plateau which limits the southward 
movement of the polar air and thus leads to the formation 

of the very strong high pressure system over Siberia [Yihui 
et al., 1994]. By March the Siberian High weakens, while 
the Pacific high-pressure system is building up (Figure 5). 
As a result, the strength of the winter monsoon winds and 
the frequency of occurrence of the cold south moving surges 
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Figure 7. (a) Horizontal flux of Asian CO in the troposphere (1000-150 hPa column). (b) Horizontal 
flux of Asian CO in the boundary layer (surface-3 km column). (c) Same as Figure 7b but only for 
anthropogenic Asian CO. (d) same as Figure 7b but only for biomass burning Asian CO. The fluxes are 
averages for February-March 1994. "Asian CO" refers to CO emitted within our Asia region (Figure 2). 
Anthropogenic and biomass burning contributions are separated using tagged tracers. 
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decrease, while incursions of warmer and tropical air from 
the south become more frequent. The warming leads to 
more frequent development of convective thunderstorms, 
especially in Southeast Asia [Nieuwolt, 1977]. Figure 5 
shows the presence of a convergence zone over central China 
where air masses from the north, driven by monsoon winds, 
encounter oceanic air masses coming from the south. As 
expected, the convergence zone becomes more apparent as 
the winter monsoon weakens and the regime of summer 
monsoon slowly starts to establish. As will be discussed 
later, this convergence zone plays an important role in the 
springtime export of pollution from the Asian continent. In 
contrast to the lower troposphere, winds in the free tropo- 
sphere (not shown here) show little variability during the 
winter-spring transition. Strong westerlies are the prevailing 
meteorological pattern at altitudes above 4 km and latitudes 
above 20øN. 

4.2. Export Pathways for Carbon Monoxide 

Figures 6a and 6b show the distribution of CO emissions 
in Asia in February-March from anthropogenic activities and 
biomass burning, respectively. Anthropogenic emissions 
include fuel combustion (fossil and wood), industrial ac- 
tivities, plus minor sources from other industrial activities 
such as steel manufacturing. Biomass burning emissions 

include sources from forest wildfires, deforestation, savanna 

burning, slash-and-bum agriculture, and agricultural waste 
burning. Anthropogenic emissions are largest in northeast- 
em China. Spring is the dry season in Asia, and there 
is extensive biomass burning in Southeast Asia and India, 
mainly due to burning of agricultural waste (rice straw) and 
deforestation [Nguyen et al., 1994]. Our yearly inventories 
for CO emissions in Asia (for the geopolitical region shown 
Figure 2) include 113 Tg CO yr -• from fossil fuel combus- 
tion, 59 Tg CO yr - 1 from woodfuel burning, and 61 Tg CO 
yr -• from biomass burning (concentrated in the 4-month 
period from January to April). Recent inventories suggest 
a higher CO source in Asia from biofuel combustion and 
biomass burning (165 Tg CO yr - • [Galanter et al., 2000; R. 
M. Yevich and J. A. Logan, personal communication, 2000]) 
than we used in our model (120 Tg CO yr -•), and this 
could contribute to the CO model underestimate discussed 

in section 2. During February-March, Asian CO emissions 
from anthropogenic activities and biomass burning are of 
comparable magnitude (28 Tg CO) in our model. 

Mean horizontal fluxes of Asian CO integrated over the 
tropospheric column (1000-150 hPa) and over the boundary 
layer (lowest 3.0 km) are shown in Figures 7a and 7b, re- 
spectively. These fluxes were calculated from the tagged CO 
tracer simulation (section 2) for CO emitted in Asia (Figure 
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Figure 8, (a) Vertical flux of Asian CO at the top of the boundary layer (3 km). Positive fluxes are 
upward. (b) Zonal flux of Asian CO at 140øE. Positive fluxes are eastward. (c) Same as Figure 8b but 
only for anthropogenic Asian CO. (d) Same as Figure 8b but only for biomass burning Asian CO. Fluxes 
are averages for February-March 1994. 
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Figure 9. Time series of meteorological variables and CO concentrations for a site on the southern tip of 
Taiwan operated by Liu et al. [ 1997] in February-March 1994. (a) GEOS sea level surface pressure (solid 
line, left axis) and surface temperature (dashed line, fight axis). (b) Observed CO concentrations (solid 
line) and corresponding model results (dashed line) obtained with the 2øx 2.5 ø horizontal resolution 
version of the model. (c) Eastward fluxes of Asian CO (10 -9 moles cm -2 s-l) through a wall located at 
140øE between 20 ø and 40øN. Vertical lines mark the passage of cold fronts at the site as reported by Liu 
et al. [ 1997]. 

2) from anthropogenic activities and biomass burning. The 
main export pathway for Asian pollution is to the Pacific in 
the westerly flow north of 25øN. Figure 5 shows northerly 
surface winds along the coast of China that reach southern 
latitudes but the winds shift to westerly above 1 km altitude. 
Maps of horizontal CO fluxes at individual levels indicate 
that little mass is carded in the northerly surface flow, as is 
apparent from Figure 7b, and part of this flow is eventually 
recirculated over the continent by anticyclonic circulation 
over Southeast Asia. Figure 7 shows strong southwesterly 
CO fluxes over China from 20øN to 30øN which result from 

the colocation of high emissions with the convergence zone 

described previously (Section 4.1). This convergence results 
in an upward flux of CO (see Figure 8) which lifts the 
pollution above the boundary layer into the free troposphere 
where it is caught by the strong westerlies. We thus find 
that the strongest export flux of Asian CO to the western 
Pacific is at 4 km altitude (Figure 8b) even though the highest 
concentrations along the Pacific rim are found below 2 km 
altitude (Figure 4a). 

We investigated separately the contributions of anthro- 
pogenic and biomass burning sources to the export of Asian 
CO to the western Pacific. Biomass bur 'ng CO, mainly 
emitted in Southeast Asia, is transported toward the conver- 
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gence zone where it is uplifted into the free troposphere and 
then carded by the westefiies. Little biomass burning CO is 
exported over the ocean in the boundary layer (Figure 8d). In 
contrast, CO from fossil fuel combustion, which is emitted 
at more northerly latitudes, shows substantial export in the 
boundary layer by the monsoon winds, especially at latitudes 
higher than 35øN. Even for fossil fuel CO, however, most of 
the export is in the lower free troposphere (Figure 8c). In 
our model, during February-March, deep convective events 
are largely restricted to Southeast Asia, and thus mainly 
contribute to export of biomass burning CO. Large-scale 
convergence rather than convection is the principal driver for 
ventilation of Asian pollution from the boundary layer to the 
free troposphere in our model during February-March. 

Our discussion so far has focused on monthly mean 
concentrations and fluxes. Examination of daily fields shows 
that the export of CO from the Asian continent is in fact 
episodic. The episodic export of pollution can be illustrated 
by ground-based observations during PEM-West B by Liu 
et al. [1997], who conducted continuous measurements of 
CO and ozone at the southern tip of Taiwan (22øN, 122øE). 
Their measurements are shown in Figure 9, together with 
GEOS meteorological data for temperature and pressure 
at the site and corresponding model results for CO. As 
discussed in section 4.1, the synoptic weather pattern in 
Asia in late winter-early spring is dominated by the passage 
of cold fronts, each cold front being followed by strong 
outbreaks of cold air masses. At the passage of each front, 
Liu et al. [1997] observed a shift of wind direction from 
north-northeasterly to south-southwesterly, bringing marine 
tropical air with low CO to the site. After the passage 
of the front, they observed a sharp increase of CO due to 
transport from the Asian continent. Frontal passages in 
the GEOS meteorological data, as diagnosed from pressure 
drops followed by temperature drops (Figure 9a), match the 
dates identified by Liu et al. [1997] i.e., February 6-7, 11- 
12, 14-15, i 9-20, 23-24, and March 7-8, 12-13, 19-20, 22- 
23. The model reproduces well most of the events of high 
CO concentrations observed at the site, as shown in Figure 

10 major events can be identified in our model simulation 
(Figure 9c). Our analysis is consistent with that of Yienger 
et al. [2000], who proposed that an important mechanism 
for the export of pollution from Asia is the development of 
low-pressure baroclinic systems over Asia. 

5. Contribution of Intercontinental 

Transport to Asian Outflow 
The chemical outflow from the Asian continent to the 

western Pacific includes contributions from other continents 

besides Asia. Figure 11 shows the total column concentra- 
tions of each tagged CO tracer for February-March 1994, 
and Table 1 summarizes their contributions to the total 

CO burden in the Northern Hemisphere and to the Asian 
outflow (defined as the flux through a wall located at 140øE 
between 20 ø and 50øN). We discuss here the contributions 
of different geopolitical source regions as those originating 
from direct CO emissions only. 

The largest single contribution to the CO burden in 
the Northern Hemisphere is the background source from 
methane oxidation. Next in importance are anthropogenic 
emissions in Europe and Asia, and biomass burning in 
Africa, which are all three of similar magnitude even though 
the African biomass burning source (255 Tg CO yr -•) is 
greater than the anthropogenic Asian source (172 Tg CO 
yr -1) or European source (141 Tg CO yr-•). Because 
African CO is emitted in the tropics, its lifetime against 
oxidation by OH (39 days) is shorter than that of Asian or 
European CO (66 and 86 days, respectively, Table 1). We 
see from Table 1 that the Asian outflow includes major con- 
tributions from anthropogenic emissions in Asia (21%) as 
well as Europe (15%) and from biomass burning emissions 
in Asia (12%) as well as Africa (11%). European CO makes 
a relatively large contribution because of its accumulation 
at high latitudes in winter [Staudt et al., 2001]. Biomass 
burning in northern Africa occurs from November to March 
with a peak from December to February (as shown by the 
advanced very high resolution radiometer (AVHRR) fire 

9b. In our model the passage of a cold front results most counts), thus it contributes significantly to the Asian outflow 
of the time in an increase of the CO vertical flux out of the 
boundary layer (due to lifting of warm air ahead of the cold 
front) followed by an increase in the eastward flux of CO to 
the western Pacific due to rapid transport by westerly winds 
in the free troposphere (Figure 9c). 

Our successful simulation of the frontal events and asso- 

ciated CO changes seen in the Liu et al. [ 1997] observations 
confirms that frontal activity is a major pathway for export 

in February-March. 
Pollution sources from different continents have distinct 

latitudinal signatures in their contributions to Asian outflow, 
as illustrated in Figure 12. In this figure each component 
has been sampled in the model as described in section 3, 
i.e. along the PEM-West B flight tracks, and thus the total 
CO versus latitude shown in Figure 12 is similar to the one 
shown in Figure 3. In the lower troposphere, anthropogenic 

of Asian pollution to the Pacific Ocean. An example of CO dominates over biomass burning CO, while both cate- 
this mechanism is shown in Figure 10 for the February 10- gories are important in the upper troposphere. We find that 
15 time period. On February 10 and 13 we find in the Asian biomass burning contributes significantly to the total 
model a strong increase of the CO vertical flux out of the CO observed in the Asian outflow, especially south of 25øN 
boundary layer, due to the passage of two successive cold and in the lower troposphere. This result is supported by ob- 
fronts traveling through China (note from Figure 9a that servations of hydrocarbons and halocarbons from PEM West 
these fronts are observed at Taiwan 1 day later). This leads B. Blake et al. [1997] reported that polluted air masses 
to export of CO from China and formation of an Asian sampled below 6 km presented a strong signature from fossil 
pollution plume in the midtroposphere over the Pacific, as fuel combustion north of 25øN while thoses encountered 
seen in Figure 10b. During the PEM-West B period, about south of 25øN were more characteristic of biomass burning 
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Figure 10. (a) Time series of CO vertical flux (moles cm -2 S --1 ) through the 3 km surface in the model. 
Shaded areas represent upward vertical CO fluxes. (b) Time series of CO concentrations (ppb) at 4.5 
km altitude. Values are 24-hour average model results for individual days over the February 10-15, 1994 
period. 

sources. Note also that our definition of anthropogenic 
emissions includes woodfuel combustion, which accounts 
for about one third of anthropogenic emissions of CO in 
Asia. Such a source would have a biomass burning chemical 
signature in the observations. In the upper troposphere 
south of 25øN we find that African biomass burning is the 

single most important contributor to Asian outflow of CO. 
The contribution from European sources to Asian outflow 
increases strongly with latitude and dominates over Asian 
sources north of 40øN. This result reflects in large part the 
wintertime accumulation of European CO in the Arctic as 
noted previously. 
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Figure 11. Carbon monoxide columns (10 -•7 molecules cm -2) contributed by anthropogenic emissions 
from Asia and Europe, and biomass burning in Asia and Africa. Geopolitical source regions are given in 
Figure 2. Values are average model results for February-March 1994. 

Table 1. Contributions From Different Source Regions to Asian Outflow of CO 

Sources Northern Hemisphere Burden Lifetime Asian Outflow Flux 

Total CO 2241 (389) 231 (100%) 56 45.2 (100%) 
Anthropogenic emissions 
North America 95 (15.4) 21 (9%) 75 4.0 (9%) 
Europe 141 (22.8) 30 (13%) 86 6.7 (15%) 
Asia 172 (27.8) 30 (13%) 66 9.4 (21%) 
Other 113 (18.3) 10 (4.5%) 56 1.9 (4%) 

Biomass burning emissions 
South America 123 (22.8) 8 (3.5%) 56 0.9 (2%) 
Africa 255 (55.4) 28 (12%) 39 4.9 (11%) 
Asia 61 (29.7) 15 (6.5%) 50 5.3 (12%) 
Other 82 (7.8) 5 (2.0%) 72 0.8 (2%) 

Chemical production 1170 (189) 84 (36.5%) 55 11.3 (25%) 

Geopolitical source regions are as given in Figure 2. Sources of CO are annual means for 1994 in Tg CO yr-z. (Values 
for February-March are given in parentheses in units of Tg CO.) Northern Hemispheric burdens of CO contributed by 
individual sources are model averages for February-March 1994 and are given in Tg CO. Lifetime in February-March 
1994 for CO originating from each source is given in days. The Asian outflow flux is defined as the eastward flux 

9 2 1 o o o (10- moles cm- s- ) integrated for the tropospheric column through a wall located at 140 E between 20 and 50 N; 
values are model averages for February-March 1994. "Chemical production" refers to the source of CO from methane 
oxidation (945 Tg CO yr- •) and isoprene oxidation (225 Tg CO yr- z). The small source of CO from oxidation of other 
hydrocarbons is not included in this budget. 
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Figure 12. CO concentrations (ppb) as function of latitude for the lower troposphere (0-6 km) and the 
upper troposphere (6-12 km) contributed by emissions in different geopolitical source regions (Figure 2). 
Values are model results sampled along the PEM-West B flight tracks. The total CO concentration is thus 
similar to those shown in Figures 3a and 3b. 

6. Export of NOv and Ozone From Asia 
We isolate the contribution of Asian emissions to the 

budgets of total reactive nitrogen oxides (NOv) and ozone 
in the Asian boundary layer for the PEM-West B period 
by subtracting the background terms (given by a simulation 
with no Asian emissions) from the terms obtained in our 

standard simulation. We refer to the resulting budgets as 
those of "Asian" NO v and ozone. Although this method 
is only approximate because tropospheric chemistry is not 
linear, it allows us to isolate the fate of NO x and other 
compounds emitted over Asia. The budget of ozone is 
actually computed for the extended odd oxygen family Ox 
= 03 + NO2 +2xNO3 + 3xN205 + HNO4 + HNO3 + 
peroxyacylnitrates to account for rapid chemical cycling 
within the species in that family. Considering that 03 
accounts for more than 95% of O•, the budget of 03 and 
O• can be considered equivalent. 

6.1. Export of NO v From Asia 

Table 2 summarizes budgets for individual NO v species 
in the Asian boundary layer in February-March 1994. We 

examined the budgets of NO v from fossil fuel combustion 
and biomass burning separately. The emission rate of NO• 
within the geographical domain is 1.15 Gmol d- • from 
fossil fuel combustion and 0.81 Gmol d -• from biomass 

burning. Because of the short lifetime of NO• (0.4 days), 
only a small fraction of the NO x emitted is exported out- 
side of the boundary layer, 4% and 6.5% from fossil fuel 
combustion and biomass burning, respectively. Most of the 
NO• is converted to HNO3 and PANs within the boundary 
layer. Other organic nitrates represent only a small fraction 
( • 3%) of total NO v. About 70% of the NO v emitted in 
Asia is lost within the domain by deposition of HNO3. The 
net export flux of NO v from the boundary layer to the free 
troposphere is 0.37 Gmol d -• (20% of the NO• emitted) 
and is mainly to the western Pacific, as discussed previously 
for CO. The major component of exported NO v is PANs 
(45%) with NO• and HNO3 contributing each about 25- 
30%. PANs are mainly composed of PAN with only 10% 
contributed by higher peroxyacylnitrates. Because HNO3 
is quickly removed by wet and dry deposition, it cannot 
represent a significant source of NO• even after export to 
the free troposphere. If we do not consider HNO3 in the 
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Table 2. Budget for Asian NO v in the Boundary Layer Over Asia 

Species Concentration Lifetime Emissions P-L Deposition Export 

NOr 0.41 0.41 1.15 (0.81) -1.02 (-0.68) 0.05 (0.05) 0.04 (0.05) 
PANs 0.40 0.40 - 0.11 (0.10) 0.02 (0.02) 0.09 (0.07) 
HNOa 0.73 1.2 - 0.85 (0.53) 0.75 (0.48) 0.06 (0.05) 
Alkylnitrates 0.05 - 0.04 (0.05) 0.002(0.001) 0.01 (0.004) 
Total 1.96 0.0 1.37 0.37 

Mean model values for February-March 1994 in the Asian boundary layer defined as the region in Figure 2 and for a vertical column 
extending to 3 km altitude. Concentrations are given in ppb, lifetime is given in days, and other quantities are given in Gmol d-•. PANs 
includes PAN and other peroxyacylnitrates. The budget terms are determined by substracting from the standard simulation the background 
NO v fluxes obtained with a simulation for which fossil fuel or biomass burning emissions are zeroed within Asia. P-L denotes the net 
chemical production (production minus loss) in the Asian boundary layer. Emissions, net chemical production, deposition, and export are 
contributed by fossil fuel combustion (first number) and biomass burning (second number in parentheses). 

NO v exported, the remaining flux is 0.26 Gmol d -• (1.4 combustion and biomass burning emissions both lead to a 
Tg N yr-1), which represents 13% of the NO•: emitted, similar ozone production of •9.5 Gmol d -t. Thirty-four 
with similar contributions from fossil fuel combustion and percent of the Os produced is chemically destroyed within 
biomass burning. 

Our results can be compared to the export of PANs+NO•: 
out of the U.S. boundary layer in spring as calculated by 
Liang et al. [1998] with an earlier version of the Harvard 
global 3-D model of tropospheric chemistry. With an 
emission rate of NO•: within the U.S. of 1.34 Gmol d -• 
the United States export of PANs+NO•: (0.27 Gmol d- •) 
represented 20% of the emissions in that study. We find 

the Asian boundary layer, and 21% is lost by deposition. 
We calculated the ozone production efficiency (OPE) in 
the standard model simulation using the definition given by 
Liu et al. [1987], i.e., the gross number of Os molecules 
produced per NO•: molecule oxidized. We find an average 
value of 12.5 mol/mol for the boundary layer over Asia as 
compared to 3.0 and 9.0 for the boundary layer over the 
United States in winter and spring, respectively [Liang et 

that faster loss of NOx by heterogeneous hydrolysis of al., 1998]. We attribute the high OPE of Asian emissions 
N205 on aerosols is responsible for the lower exported 
fraction of NO•: emissions out of the Asian boundary layer. 
Sulfate aerosol concentrations used in our model [Chin et 
al., 1996] are much higher over Asia than over the United 
States, reflecting the difference in SO2 emissions. The mean 
PAN/NO•: concentration ratio of 1.7 in the Asian outflow 
in our model is higher than that calculated by Liang et al. 
[1998] (1.25) but similar to observations obtained during 
the North Atlantic Regional Experiment (NARE) campaign 
which flew in spring 1996 along the east coast of North 
America (D. D. Parrish, personal communication, 2000). 

6.2. Export of Ozone From Asia 

in our simulation to the lower latitudes; biomass burning in 
Southeast Asia may be particularly important in that regard. 

A total of 9.6 Gmol d -• of ozone is exported from the 
Asian boundary layer to the free troposphere. Using Oa/CO 
correlations over Asia and Japan, Mauzerall et al. [2000] 
estimated a yearly averaged export of ozone from China and 
Japan of 3.3 Gmol d -•. A comparison with our study is 
difficult because we do not consider the same period nor the 
same region. Liang et al. [ 1998] calculated a direct export of 
ozone from the U.S. boundary layer of 4 Gmol d- • during 
spring. The export from the Asian continent appears to be 
substantially larger. 

Table 3 shows the budget of ozone in the boundary 
layer over Asia due solely to Asian emissions of precursors 
(hydrocarbons, CO, NO•:). Background Oa is subtracted 
following the procedure previously described. Fossil fuel 

7. Summary and Conclusion 

We used a global 3-D model of tropospheric chemistry 
driven by assimilated meteorology (GEOS-CHEM model) 

Table 3. Budget for Asian Ozone in the Boundary Layer Over Asia 

Production Loss Deposition Export 

Anthropogenic ozone 9.6 3.0 2.2 4.0 
Biomass burning ozone 9.3 3.4 2.0 3.9 
Total 18.9 6.4 4.2 7.9 

Mean model values (Gmol d -•) for February-March 1994 in the Asian boundary layer defined as the region in Figure 2 and for a 
vertical column extending to 3 km altitude. The budgets are for the extended odd oxygen family defined as Oa + NO2 +2xNOa + 
3xN9. O5+ HNO4 + HNOa + peroxyacylnitrates. Contribution from Asian sources are determined by substracting from the standard 
simulation the background budget terms obtained with a simulation for which anthropogenic or biomass burning sources are zeroed over 
Asia. 
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to examine the Asian outflow of ozone, CO, and NOy 
species over the western Pacific by simulation of observa- 
tions from the PEM-West B aircraft mission in February- 
March 1994. Considerable biomass burning takes place in 
the northern tropics during that time of year, and we find 
that emissions of CO and NO x from biomass burning in 
Asia are of comparable magnitude to the regional anthro- 
pogenic source. Comparisons of model results to the PEM- 
West B observations for 03, CO, hydrocarbons, NOx, and 
PAN show that the model reproduces well the latitudinal 
and vertical distribution of the Asian outflow, with highest 
concentrations below 6 km altitude and north of 25øN. 

We find in the model that fast boundary layer outflow 
from Asia to the western Pacific is largely restricted to high 
latitudes (north of 35øN) where the westerly flow extends 
to the surface. The GEOS monthly mean meteorological 
fields show the presence of a low-level convergence region 
over central and eastern China which appears to reflect the 
episodic lifting of warm air ahead of cold fronts advected 
eastward from central Asia. The frontal lifting plays a 
critical role for outflow of Asian pollution in the model, as 
the polluted air brought from the surface to the lower free 
troposphere over China is then caught in the strong westerly 
flow. Analysis of model results shows that the strongest 
Asian outflow over the western Pacific is associated with 

the passage of these cold fronts. Although the PEM-West 
B observations (and the model results) show the highest 
outflow concentrations over the western Pacific to be in the 

boundary layer (0-2 km), the maximum outflow fluxes are 
in fact in the lower free troposphere (2-5 km). Large-scale 
convergence over central China is of particular importance 
for driving the outflow of biomass burning pollution emitted 
in Southeast Asia. Convective activity over Asia during 
February-March is largely confined to the tropics, and makes 
some contribution to the export of biomass burning pollu- 
tion, but is not as important as large-scale convergence. 

The contribution of intercontinental transport of pollution 
to the Asian outflow over the western Pacific was examined 

in the model by tagging CO emitted from different source 
regions. We find that both anthropogenic sources in Europe 
and biomass burning in Africa make major contributions 
to the Asian outflow, with distinct geographical signatures. 
European pollution dominates the Asian outflow in the lower 
troposphere at high latitudes, while African pollution is 
important in the upper troposphere at all latitudes. 

A budget analysis for the fate of NO x emissions in 
East Asia during February-March 1994 indicates that 5% is 
exported out of the Asian boundary layer as NOx and 8% 
as PAN. In comparison, it has been estimated previously 
that 20% of NO x emitted in the United States in spring 
is exported as NOx or PAN. The lower export efficiency 
for Asian emissions reflects higher aerosol concentrations 
that promote heterogeneous conversion of NOx to HNO3 by 
hydrolysis of N20,5. We find that production of 03 over East 
Asia and its export to the global atmosphere are much higher 
than for the United States because of the lower latitude of the 

Asian sources. 

The observations from the PEM-West B mission have 

been of considerable value as an initial test of our simu- 

lation of Asian outflow to the Pacific. This mission was 

exploratory, however, and it does not provide the data nec- 
essary for identifying the source regions contributing to the 
outflow or for establishing the outflow mechanisms. Further 
work is needed to test several of the hypotheses presented 
in the present paper regarding the springtime Asian outflow, 
notably that (1) lifting of pollution ahead of cold fronts is 
a major mechanism for export of pollution from China and 
Southeast Asia to the western Pacific; (2) biomass burning 
and fossil fuel combustion make contributions of compa- 
rable magnitude to the export of Asian CO, NOy species, 
and 03; and (3) intercontinental transport of anthropogenic 
pollution from Europe and biomass burning pollution in 
Africa make major contributions to the Asian outflow with 
distinct geographical signatures. The Transport and Chemi- 
cal Evolution Over the Pacific (TRACE-P) aircraft mission, 
to be conducted by NASA in the spring of 2001, should 
allow significant progress in testing these hypotheses by 
sampling plumes of Asian outflow over a wide range of 
conditions. 
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