
Vocabulary, Syntax, and Narrative
development in typically developing

children and children with early
unilateral brain injury: Early parental
talk about the there-and-then matters

The Harvard community has made this
article openly available.  Please share  how
this access benefits you. Your story matters

Citation Demir,O.E., Meredith Lee Rowe, Gabriella Heller, Susan Goldin-
Meadow, and Susan C. Levine. 2015. Vocabulary, syntax, and
narrative development in typically developing children and children
with early unilateral brain injury: Early parental talk about the there-
and-then matters. Developmental Psychology 51, no. 2:161-175

Published Version doi:10.1037/a0038476

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25427924

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/154864833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Vocabulary,%20Syntax,%20and%20Narrative%20development%20in%20typically%20developing%20children%20and%20children%20with%20early%20unilateral%20brain%20injury:%20Early%20parental%20talk%20about%20the%20there-and-then%20matters&community=1/3345927&collection=1/3345928&owningCollection1/3345928&harvardAuthors=6b1943d987f73b9298c74bb2593e4150&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25427924
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP


Vocabulary, syntax, and narrative development in typically 
developing children and children with early unilateral brain 
injury: Early parental talk about the there-and-then matters

Özlem Ece Demir1, Meredith L. Rowe2, Gabriella Heller1, Susan Goldin-Meadow1, and 
Susan C. Levine1

1Department of Psychology, The University of Chicago

2Harvard University, Graduate School of Education

Abstract

This study examines the role of a particular kind of linguistic input––talk about the past and 

future, pretend, and explanations, that is, talk that is decontextualized––in the development of 

vocabulary, syntax, and narrative skill in typically developing (TD) children and children with 

pre- or perinatal brain injury (BI). Decontextualized talk has been shown to be particularly 

effective in predicting children’s language skills, but it is not clear why. We first explored the 

nature of parent decontextualized talk and found it to be linguistically richer than contextualized 

talk in parents of both TD and BI children. We then found, again for both groups, that parent 

decontextualized talk at child age 30 months was a significant predictor of child vocabulary, 

syntax, and narrative performance at kindergarten, above and beyond the child’s own early 

language skills, parent contextualized talk and demographic factors. Decontextualized talk played 

a larger role in predicting kindergarten syntax and narrative outcomes for children with lower 

syntax and narrative skill at 30 months, and also a larger role in predicting kindergarten narrative 

outcomes for children with BI than for TD children. The difference between the two groups 

stemmed primarily from the fact that children with BI had lower narrative (but not vocabulary or 

syntax) scores than TD children. When the two groups were matched in terms of narrative skill at 

kindergarten, the impact that decontextualized talk had on narrative skill did not differ for children 

with BI and for TD children. Decontextualized talk is thus a strong predictor of later language skill 

for all children, but may be particularly potent for children at the lower-end of the distribution for 

language skill. The findings also suggest that variability in the language development of children 

with BI is influenced not only by the biological characteristics of their lesions, but also by the 

language input they receive.
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When children arrive at school, they are expected to converse in “academic language,” the 

language used in schooling situations to make an argument, to comprehend a text, to give a 

presentation, to integrate information across multiple passages, etc. (Schleppegrell, 2004; 

Snow, 2010). Academic language is dense, abstract, and decontextualized and, as such, is 

distinct from the conversational informal language that young children are typically exposed 

to in their daily lives. Other types of linguistic input must then help prepare children for the 

challenges of academic language. We suggest that parental decontextualized talk is just this 

type of input.

Here we ask whether children’s early home environments vary in the opportunities they 

provide for children to hear decontextualized language and, if so, whether variation in 

parental decontextualized language input predicts children’s vocabulary, syntax, or narrative 

skills at school entry, even when controlling for parental contextualized language input, 

demographic factors, and child preschool language skill. Further, we examine parent 

decontextualized language input in the early home environments not only of typically 

developing children, but also of children who experienced early unilateral brain injury and 

are thus likely to be delayed in their acquisition of later developed, complex linguistic skills 

(Demir, Levine, & Goldin-Meadow, 2010; Reilly et al., 1998, 2004; Reilly, Wasserman, & 

Appelbaum, 2013). By comparing children who experienced brain injury to typically-

developing children, we can address the theoretical goal of determining whether input 

effects differ as a function of biological characteristics of the learner, as well as the practical 

goal of determining whether similar types of input are useful for both groups (e.g. Rowe, 

Levine, Fischer, & Goldin-Meadow, 2009).

Parental decontextualized language input—Although children’s earliest 

conversations with parents tend to be limited to topics in the here-and-now (i.e., the talk is 

contextualized), parents, at times, engage in conversations with their children that are about 

the there-and-then––about invisible entities and abstract ideas (i.e., the talk is 

decontextualized) (Snow, 1991). Decontextualized language is typically seen in parents’ 

conversations about the past and future, pretend play, and explanations, and parents tend to 

increase this kind of language over the early childhood period (Rowe, 2012). Parent use of 

decontextualized language, while limited, predicts typically developing children’s language 

skills. For example, Rowe (2012) found that, controlling for input quantity, parent use of 

decontextualized language when children were 3.5 years predicted child vocabulary 

comprehension one year later (see also Beals, 2001; Katz, 2001). Parent decontextualized 

language also predicts child narrative development (Beals, 2001; Haden, Haine & Fivush, 

1997; Fivush, 1991; Peterson & McCabe, 1994; Reese, Levya, Sparks, & Grolnick, 2010; 

Tabors, Roach & Snow, 2001). For example, Tabors, Roach and Snow (2001) found that the 

decontextualized talk low-income parents use with their 3- to 5-year-old children predicted 

child narrative production skill at kindergarten, controlling for family income and parent 

education. However, various questions regarding the nature of the relation between early 

parental decontextualized language and later language outcomes remain unanswered. First, 

does decontextualized input differ from other kinds of parental input in terms of its linguistic 

properties? Second, does the contribution of decontextualized language to later outcomes 

hold when considering possible confounds, such as parent contextualized talk, demographic 
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factors, and child preschool language skill? Third, does decontextualized language input 

play a similar or different role in predicting later outcomes for children with perinatal brain 

injury, compared to typically developing children?

There are a variety of reasons why exposure to decontextualized talk might enhance 

children’s oral language skills. Westby (1991) placed language use on a continuum from 

contextualized to decontextualized, where the two ends differ functionally and structurally. 

Functionally, contextualized language is used to regulate social interactions, whereas 

decontextualized language is used to convey information removed from the immediate 

context and is thus conceptually more challenging. Structurally, decontextualized language 

requires use of more elaborate vocabulary and more precise syntactic marking of the 

temporal and causal nature of events (Curenton & Justice, 2004). Thus, with respect to 

vocabulary development, decontextualized language might provide children with relatively 

elaborate vocabulary, which could promote the development of academic vocabulary. 

Moreover, decontextualized language might challenge children to use the linguistic context, 

rather than the physical world, to figure out the meanings of previously unknown words, a 

skill that is likely to be useful in the later stages of vocabulary development, which often 

depend on comprehending written text (Sternberg, 1987). With respect to syntactic 

development, decontextualized language, which tends to be structurally sophisticated 

(Curenton & Justice, 2004; Westby, 1991), might expose children to a greater variety of 

complex syntactic forms. With respect to narrative development, decontextualized 

conversations about the past and the future in narrative talk, about cause-and-effect relations 

in explanations, and about fictional worlds in pretend play might expose children to the 

linguistic and macro-structures that are important components of full-fledged narratives 

(e.g., connectors and anaphoric pronouns, Curenton & Justice, 2004; Peterson & McCabe, 

1992; Uccelli, Pan, & Snow, 2005; Westby, 1991). Although decontextualized talk has the 

potential to promote child language development, it is not yet known whether parent 

decontextualized input does, in fact, provide children with linguistically complex language. 

One goal of our study is to fill this gap.

Another question that remains unanswered concerns the role of children’s own language 

skills in parents’ production of decontextualized language. Environmental effects on child 

development are increasingly being interpreted according to transactional and dynamic 

systems views, which acknowledge the mutual relations between the two interlocutors 

(Lewis & Mayes, 2012; Sameroff, 2010; van Geert, 2011). Given the complexity of 

decontextualized language, children with more advanced language skills might make it 

possible for their parents to talk beyond the “here-and-now” more often and in greater depth 

than children with less advanced language skills. Previous studies showed that parents 

continuously adapt their language to the language level of the child they are talking to, and 

modify their interactions as the child develops (Soderstrom, 2007; van Dijk et al., 2013). 

Thus, it is important to explore the role that the child’s own language development plays in 

eliciting early parent decontextualized input, and whether early parental decontextualized 

input predicts later child language outcomes above and beyond the child’s own early 

language skills, the second goal of our study.
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Parental language input in children with early brain injury—Children with pre- or 

perinatal unilateral brain injury (BI) have remarkable plasticity for the aspects of language 

that are learned early in development, even when their lesions impinge on classical language 

areas (Bates & Dick, 2002; Feldman, 2005; Stiles, Reilly, Paul, & Moses, 2005; Woods & 

Teuber, 1978). Although children with BI develop alternative neural organizations for 

language in the brain (e.g., Beharelle, Dick, Josse, Solodkin, Huttenlocher, Levine, & Small, 

2010), after an initial delay in getting language off the ground, children with BI tend to 

perform within the low-normal to normal range on measures assessing basic lexical and 

syntactic skills (e.g., Bates et al. 1997; Eisele & Aram, 1995; Feldman, Holland, Kemp, & 

Janosky, 1992; Rowe et al., 2009; Sauer, Levine, & Goldin-Meadow, 2010; Thal et al., 

1991, Vargha-Khadem, Isaacs, & Muter, 1994). But recent studies indicate that there are 

important limits to this plasticity in that children with BI, as a group, tend to fall behind their 

peers on complex language tasks, such as narrative production (e.g. Demir et al., 2010; 

Levine et al., in press; Reilly et al, 1998, 2004). Moreover, there are large individual 

differences within children with BI––some children with BI perform within the normal 

range on all aspects of language; others experience delays in their language milestones (e.g., 

Sauer et al., 2010; Demir, Fisher, Goldin-Meadow, & Levine, 2014).

Most studies examining the variation in language skill found in children with BI have 

searched for the origins of this variation in the biological characteristics of the child’s 

lesions, for example, lesion size, lesion location, lesion type (periventricular, cerebral 

infarct), and lesion laterality (e.g. Bates et al., 2001; Dall’Oglio, Bates, Volterra, Di Capua, 

& Pezzini, 1994; Feldman et al., 1992; Levine, Kraus, Alexander, Suriyakham, & 

Huttenlocher, 2005; Reilly et al., 1998; Stiles, Reilly, Levine, Nass, & Trauner, 2012; 

Vargha-Khadem, Isaacs, & Muter, 1994). Environmental factors, such as parent language 

input, have received much less attention, although these factors have long been regarded as 

important (Chelune & Edwards, 1981; Seidel, Chadwick & Rutter, 1975; Thomas & Chess, 

1975). The studies that have examined environmental factors have largely focused on global 

indices of input (e.g., socioeconomic status, stability of the home environment and parental 

attitudes) and global indices of child outcomes (e.g., IQ, behavioral and psychiatric 

problems) (e.g., Thomas & Chess, 1975; Seidel, Chadwick & Rutter, 1975). One exception 

is a study by Rowe, Levine, Fisher and Goldin-Meadow (2009), which examined the impact 

of vocabulary diversity and syntactic complexity in parent talk on the growth of vocabulary 

diversity and syntactic complexity in children with BI, in addition to examining the role of 

lesions characteristics. Controlling for parental SES and characteristics of children’s lesions, 

Rowe et al. (2009) found that the diversity of parent vocabulary predicted growth in child 

vocabulary for children with BI and a control group of TD children. However, the syntactic 

complexity of parent input behaved differently––it played a larger role in predicting later 

child syntax in children with BI than in the typically-developing group. The third goal of our 

study is to build on these findings and explore the effect of decontextualized parent talk on 

subsequent child vocabulary, syntax, and narratives in both children with BI and TD 

children. One possibility is that complex language input, in the form of decontextualized 

language, might play the same role in children with and without BI, supporting the view that 

language learning mechanisms are robust in the face of early injury. Alternatively, this input 

might play a less important role than it does in TD children, possibly because the lesion 
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limits the child’s ability to profit from the rich input provided. Finally, environmental input 

may play a more important role in supporting language development following BI, 

suggesting that input can help compensate for the deleterious effects of brain injury.

The current study—In the current study, we build on prior research by addressing three 

questions: (1) Is parent decontextualized language linguistically richer than contextualized 

language input, providing a possible mechanism for the (positive) impact that 

decontextualized input appears to have on child language development? (2) Does early 

parent decontextualized talk predict child vocabulary, syntax, and narrative performance at 

kindergarten, controlling for parent contextualized talk, demographic factors, and child 

preschool language skill? (3) Does parent decontextualized language input early in 

development play a differential role in predicting subsequent vocabulary, syntax, and 

narrative skill at kindergarten in children with BI, compared to TD children.

We focus on vocabulary and syntax skills because they represent areas of language 

development in which children with BI typically perform within the normal range by 

kindergarten; we include narrative skills because they represent an area of language 

development in which some children with BI experience difficulty relative to TD children. 

We focus on parent decontextualized talk at child age 30 months, a time period when 

children are first exposed to decontextualized topics by their parents. Previous literature 

shows that, at earlier ages, decontextualized language input is rare and is not a predictor of 

children’s later language outcomes (Rowe, 2012). At later ages, children start producing 

decontextualized talk themselves, which may encourage parents to increase the amount of 

decontextualized talk they address to their children (Sachs, 1983; Uccelli, Pan, & Snow, 

2005).

Method

Participants

Forty-nine typically developing children (22 girls) and their parents participated in the study. 

Children and parents were drawn from a larger sample participating in a longitudinal study 

of children’s language development in the greater Chicago area (see Goldin-Meadow, 

Levine, Hedges, Huttenlocher, Raudenbush & Small, 2014). The original sample of children 

and their families was recruited from the Chicago area via mailings in specific zip codes and 

via an advertisement in a free parent magazine. Families were interviewed and the sample 

was selected based on a stratified design to represent the socioeconomic diversity of the 

Chicago area. Children were 14 months at the time of their first visit, and were visited in 

their homes every four months after that point. To be included in the current analysis, the 

dyad needed to have the relevant home visit at 30 months and at least one child kindergarten 

outcome measure. The children interacted at home with their primary caregiver, the mother 

for 48 children and the father for one child. Thirty children were White, nine children were 

African-American, six were Hispanic, and four were of mixed race. All children were being 

raised as monolingual English speakers. None of the children in our sample was early 

preterm (i.e., born prior to 34 weeks gestation). The average income for the sample was 
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$59,322 (SD = 3,294). The average years of education for the primary caregiver was 16 (SD 

= 2) years, corresponding to a Bachelor’s degree.

Nineteen children with BI (14 girls) and their parents were recruited by contacting pediatric 

neurologists in the greater Chicago area and by establishing relationships with parent 

support groups in the area (Childhood Stroke and Hemiplegia Connections of Illinois, 

CSHC; Pediatric Stroke Network, PSN; and Children’s Hemiplegia and Stroke Association, 

CHASA). Every family that was interested was included in the study, as long as the child 

had a unilateral pre- or perinatal brain injury and was a monolingual English-speaker. 

Fourteen of the children had their first visit within the first year of life, and five within the 

second year. The children interacted at home with their primary caregiver(s), the mother for 

13 children with BI, mother and father for five children, and grandmother for one child. 

Eighteen children were White, and one was of mixed-race. The average income for families 

of children with BI was $81,447 (SD = 2,072), and was significantly higher than the average 

income for families of the TD children, t(51.9) = −3.41, p < .01.1 The average number of 

years of education for the primary caregiver was 15.7 (SD = 2.2), and was not significantly 

different from the average number of years of education for parents of TD children, t(65) = 

0.64, p > .10. For the two samples taken together, parent education and income were 

combined in a composite score of SES. The composite was generated using Principal 

Components Analysis (PCA). The first principal component weighted education and income 

positively and equally, and accounted for 81% of the original variance.

Coding brain lesion characteristics in the children with BI

Lesion information came from clinical MRI films or medical reports provided by families. 

In addition, five children were scanned using a 3-tesla GM Scanner at the University of 

Chicago when they were five years of age or older (i.e., when scans could be obtained 

without sedation). All scans were evaluated by a pediatric neurologist and a neurologist who 

coded lesions according to location, size and type. The specific lesion characteristics 

considered in our analysis were lesion laterality (left, right), lesion type (periventricular, 

cerebrovascular infarct), and lesion size (small/medium, large).

Cerebrovascular infarcts (CV) were infarcts that impinged on middle cerebral artery 

territory, and tended to affect the inferior frontal, parietal and/or superior temporal regions. 

Periventricular lesions (PV) primarily involved subcortical white matter tracts, the thalamus, 

basal ganglia and/or the medial temporal lobe. All children with PV lesions showed 

evidence of subcortical injury, enlarged ventricles or reductions in the white matter tract 

(especially the internal capsule), as noted in Table 1. Small (S) lesions affected only one 

lobe, or minimally affected subcortical regions. Medium (M) lesions extended into more 

than one lobe or subcortical region. Large (L) lesions affected three or four lobes and were 

typically cerebrovascular infarcts; these lesions affected multiple cortical areas and often 

involved the thalamus and subcortical regions. Children with small and medium lesions 

were categorized into a single group, as preliminary analyses indicated that the two groups 

did not differ from each other on various language measures.

1The results reported below did not change when we used a sub-sample of TD children matched to children with BI in terms of 
income.
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Lesion characteristics for each participant are reported in Table 1, including whether the 

child had experienced recurrent seizures (treated with anticonvulsant medications), or not 

(no seizures or a single febrile seizure during the first year of life). There was no significant 

association between lesion laterality and type, X2 (1, n = 19) = 0.54, p > 0.10, or lesion 

laterality and size, X2 (1, n = 19) = 2.85, p > 0.10. However, lesion type and size were 

significantly related, X2 (1, n = 19) = 9.32, p < .01. Six out of nine children with CI had 

large lesions, whereas only one of 10 children with PV had a large lesion.

Procedure

Measures taken at child age 30-months—Parents were asked to interact with their 

children as they normally would, and parent-child dyads were videotaped for a 90 minute 

period. Typical activities included meal time, book reading, toy play etc., but no direction 

was given to engage in any particular activities. We coded the videotape taken at child age 

30-months as described below.

Speech coding categories and language measures: All parent and child speech in the 

videotaped sessions was transcribed. The unit of transcription was the utterance, defined as 

any sequence of words that was preceded and followed by a pause, a change in 

conversational turn, or a change in intonational pattern. Transcription reliability was 

established by having a second individual transcribe 20% of the videotapes with a reliability 

criterion of 95% agreement on utterance transcription. We calculated parent and child total 

number of word tokens, total number of different word types, and mean length of their 

utterances measured in words (MLU-w) from the transcripts.

Parent and child contextualized and decontextualized talk: Decontextualized language 

utterances produced by parents and children were identified and coded as described in Rowe 

(2012). Categories of decontextualized language included narrative, pretend, and 

explanation (see Table 2). Reliability was achieved by having two coders independently 

code 10% of the videotaped sessions for decontextualized language. Percent agreement 

averaged 95.6% with a mean Cohen’s kappa value of 0.73. All utterances that were not 

coded as decontextualized were considered contextualized. Number of decontextualized and 

contextualized utterances was transformed using log transformation before statistical 

analyses.

Measures taken at child age kindergarten

Child vocabulary comprehension: Children were administered the Peabody Picture 

Vocabulary Test (PPVT-3) in winter or spring of kindergarten (PPVT-III, Dunn & Dunn, 

1997). PPVT-3 scores collected in winter of preschool were used for three of the TD 

children who missed their kindergarten visits. Raw scores were converted to standardized 

scores based on the published age norms. The average age at the time the PPVT-III was 

administered was 6.11 years (SD = 0.63) for TD children and 6.34 years (SD = 0.43) for 

children with BI, t(66) = 1.46, p > 0.10.

Child syntax production: Children were administered the Recalling Sentences subtest of 

Clinical Evaluation of Language Fundamentals (CELF-3) in winter or spring of kindergarten 
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(Semel, Wiig, & Secord, 2003). Raw scores were converted to standardized scores based on 

the published age norms. Data from four TD children and six children with BI were not 

collected due to experimenter error or child fatigue, leaving a sample of 45 typically 

developing children and 13 children with BI who received this measure. The average age at 

the time the task was administered was 5.91 years (SD = 0.57) for TD children and 5.81 

years (SD = 0.57) for children with BI, t(56) = 0.48, p > 0.10.

Child narrative production: Children were administered a narrative task (described below) 

in the winter of kindergarten. Data from four TD children and two children with BI were not 

collected on this measure due to experimenter error or child fatigue, leaving a sample of 45 

typically developing children and 17 children with BI2. The average age at the time the task 

was administered was 6.01 years (SD = 0.42) for TD children, and 5.80 years (SD = 1.53) 

for children with BI, t(60) = 0.96, p > 0.10.

Stimuli consisted of short (30–73 sec) cartoons made in Germany about a mouse and his 

friends, unfamiliar to American children (the Maus cartoons, www.diemaus.de). The stories 

in the selected cartoons had at least one goal, an initiating event, an attempt to achieve the 

goal), and an outcome or resolution. Each story was thus defined by a series of events that 

were causally connected. Children were asked to watch two cartoons on a DVD player and 

describe what they had seen immediately after viewing each.3 Children were videotaped 

during all phases of the task. To introduce each story, a still picture of the story characters 

appeared on a DVD player and the experimenter identified the characters by name and key 

objects in the story (e.g., bicycle, camera, socks, telephone). After the cartoon ended, the 

experimenter asked, “Can you tell me the story, as much as you remember?” Children who 

did not respond were prompted with questions including, “Who was in the story?” or “Can 

you tell me what happened?” The retelling of each story continued until the children 

spontaneously indicated they were finished, or until they responded “yes” when asked 

whether they were finished.

Each narration was transcribed and coded for narrative structure on a scale from 0 to 6. 

Narrative structure was evaluated using a hierarchical system adapted from Stein and 

colleagues (Stein, 1988; Trabasso, Stein, Rodkin, Munger, & Baughn, 1992). Narrations 

were categorized as follows: (0) Zero-level narrative; (1) A descriptive sequence; (2) Action 

sequence; (3) Reactive sequence narrative; (4) Incomplete goal-based narrative; (5) 

Complete goal-based narrative; (6) Complete goal-based narrative. Coding details and 

examples of stories in each narrative structure category are provided in the Appendix (for 

further information on coding see Demir et al., 2014). To establish reliability, a second 

coder analyzed the narratives produced by six TD children and three BI children. Interclass 

correlation coefficient between the raters on the narrative structure scores was substantial 

(0.76) and was consistent with agreement scores in similar narrative studies (James & 

2All analyses reported in the results section were repeated with the subset of children who were administered all three measures (45 
TD children, 13 children with BI). The pattern of results was unchanged.
3For a more detailed discussion of the design, see Demir et al., 2014. Children were also presented with three comprehension 
questions after each story. There were no significant differences in the children’s responses to comprehension questions, t(58) = 0.53, 
p > .10; both groups performed relatively well on these questions, indicating that the questions were not particularly challenging for 
either group (TD: M = 0.75, SD = 0.20, BI: M = 0.72, SD = 0.24).
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Pellegrini, 1996, McCabe, Bliss, Barna & Bennett, 2008). Discrepancies were resolved 

through discussion. Raw scores were transformed using log transformation before any 

statistical analyses were conducted.

Results

Parent language input

Parents produced many more contextualized utterances than decontextualized utterances––

93% of all utterances were contextualized for the parents of TD children, 89% for the 

parents of children with BI. However, there was considerable variability in parents’ use of 

contextualized and decontextualized utterances. For example, one parent did not produce 

any decontextualized utterances; another produced over 400 decontextualized utterances 

(see Table 3).

ANCOVAs with group (parents of TD children, parents of children with BI) as the between-

subjects variable, and parent SES as the covariate, were conducted on total contextualized 

utterances and total decontextualized utterances, and also on each of the three types of 

decontextualized utterances (narrative, pretend, explanation). The ANCOVAs on 

contextualized as well as decontextualized utterances revealed a significant main effect of 

parent SES (contextualized: F(1,64) = 5.77, p < .05; decontexualized: F(1,64) = 6.76, p < .

05), and no effect of group (contextualized: F(1,64) = 0.54, p > .10; decontextualized: 

F(1,64) = 0.84, p > .10). Thus, higher SES parents produced more of both types of talk, but 

there was no average difference between parents of TD children and parents of children with 

BI. For narrative utterances, there was no effect of SES, F(1,64) = 2.35, p > .10, or group, 

F(1,64) = 0.47, p > .10. For explanations, there also was no effect of SES, F(1,64) = 0.58, p 

> .10, but parents of children with BI produced significantly more explanation utterances 

than parents of TD children, F(1,64) = 11.99, p < .01. For pretend utterances, there was an 

effect of SES, F(1,64) = 4.53, p < .05, but no effect of group, F (1, 64) = 0.08, p > .10 (see 

Table 3). Parent uses of the three types of decontextualized utterances were correlated with 

each other. For parents of TD children, the correlations ranged from r = 0.34 to r = 0.63. For 

parents of children with BI, the correlations ranged from r = 0.44, to, r = 0.76. As a result, 

and because the patterns of results were the same for total decontextualized utterances and 

for each separate category, we use total number of decontextualized utterances, without 

distinguishing the types, in all subsequent analyses.

We used the mean length of contextualized and decontextualized utterances in words (MLU-

w) as our measure of linguistic complexity (see Table 3). A repeated measures ANOVA on 

MLU-w, revealed a main effect of utterance type F(1,66) = 101.12, p < .01. The average 

MLU-w for parent decontextualized utterances was 6.25 words (SD = 1.89), compared to 

3.96 words (SD = 0.55) for contextualized utterances. Again, neither the main effect of 

group, F(1,66) = 0.01, p > .10, nor the interaction between group and utterance type, F(1,66) 

= 0.01, p > .10, was significant. Thus, on average, parent decontextualized utterances were 

more linguistically complex than contextualized utterances.
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Child language at 30-months

ANCOVA analyses were conducted on children’s word types at 30 months with group (TD 

vs. BI) as the between-subjects variable, and parent SES as the covariate. This analysis 

revealed a significant effect of SES, F(1,64) = 5.90, p < .05, but no effect of group, F(1,64) 

= 0.01, p > .10. A parallel analysis on children’s MLU-w showed no significant effect of 

either SES, F(1,64) = 2.63, p > .05, or group, F(1,64) = 1.67, p > .10. Similar ANCOVAs 

were conducted on children’s contextualized and decontextualized utterances at 30 months, 

with group (TD children, children with BI) as the between-subjects variable and parent SES 

as the covariate. The ANCOVA on contextualized utterances revealed no significant effect 

of SES, F(1,64) = 2.86, p <.10, or group, F(1,64) = 0.19, p >.10. The ANCOVA on 

decontextualized utterances revealed a significant effect of SES, F (1,64) = 9.33), p <0.01, 

but no effect of group, F(1,64) = 2.38, p > .10.

The number of decontextualized utterances parents produced at child age 30-months was 

significantly correlated with children’s decontextualized utterances at 30 months (TD: r = 

0.82, p < 0.01, BI: r = 0.84, p < 0.01), but parent-child contextualized utterances were not 

correlated with each other (TD: r = 0.26, p < .10, BI: r = 0.05, p > .10) (see Table 3). The 

high correlations between parent use of decontextualized language and child use of 

decontextualized language did not allow us to control for child decontextualized language 

skill in our analyses because of multicollinearity. Instead, we used a measure of child 

sensitivity to parent decontextualized language, which we call child follow-ups, to control 

for the child’s contribution to decontextualized conversations. Child follow-ups were 

measured by the percent of parent decontextualized utterances that were followed by a child 

response. Parent decontextualized language was significantly correlated with child follow-

ups, but the correlations was not as high (r = 0.25, p < 0.04) as the correlation between 

parent and child decontextualized language. The correlations between parent 

decontextualized utterances at 30 months and child language measures at 30 months (word 

types, MLU-w, narrative utterances) were significant, with values ranging from r = 0.34 to r 

= 0.56. When we examine the relation between parent decontextualized language input and 

later child outcomes, we control for the specific child language measure at 30 months most 

relevant to the outcome variable (e.g., word types for vocabulary, MLU-w for syntax, and 

child narrative utterances for narrative outcomes). Indeed, children’s word types were 

significantly correlated with vocabulary outcomes (TD: r = .57, p < .01, PL: r = .68, p < .

01), MLU-w with syntax outcomes (TD: r = .44, p < .01, PL: r = .70, p < .01) and their 

narrative utterances with narrative outcomes (TD: r = .31, p < .05, PL: r = .26, p = .26).

Child vocabulary, syntax and narrative skills in kindergarten

Child vocabulary (PPVT) scores averaged 108.20 (SD = 16.89) for TD children, and 105.79 

(SD = 18.42) for children with BI. Child syntax (CELF) scores averaged 10.63 (SD = 3.04) 

for TD children and 10.85 (SD = 3.18) for children with BI. The groups did not differ on 

either PPVT, t(66) = 0.51, p > .10, or CELF, t(56) = 0.23, p > .10. However, the groups did 

differ on mean narrative structure score, which was significantly higher for TD children (M 

= 3.63, SD = 1.43) than for children with BI (M = 2.62, SD = 1.55), t(66) = 2.44, p < .05.
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Relation between early parent input and later child language skills

Predicting child vocabulary skill at kindergarten—Table 4 presents the correlations 

between child PPVT scores and parent SES, parent contextualized utterances, and parent 

decontextualized utterances. For TD children, PPVT was related to all three variables. For 

children with BI, PPVT was related only to parent decontextualized utterances related, 

possibly because the SES range was narrower in the BI group than in the TD group. Table 5 

presents a multiple regression analysis examining the relation between parent 

decontextualized utterances and child PPVT, controlling for parent SES, parent 

contextualized utterances, child group (TD vs. BI), and child word types at 30-months. In all 

regression analyses, we first include control variables: parent SES, child characteristics 

(group, oral language at 30 months), and parent overall talk. We then introduce 

decontextualized input measures and the interaction terms. We keep only the significant 

interaction terms in the final models.

Parent SES was a significant (p < .01) positive predictor of PPVT (Model 1)4. Controlling 

for parent SES, group was not a significant predictor of PPVT (Model 2). Controlling for 

parent SES and group, number of child word types at 30 months was a significant (p < .01) 

positive predictor of later PPVT (Model 3). Parent contextualized utterances (Model 4) was 

not a significant predictor of PPVT above the other controls. However, parent 

decontextualized utterances was a significant (p < .05) positive predictor of PPVT, with 

parent SES, parent contextualized utterances, child word types at 30 months, and group 

controlled (Model 5). Interaction terms between group and decontextualized language input 

and child word types and decontextualized language input were tested and were not 

significant (Model 6). Decontextualized utterances remained a significant predictor of PPVT 

even when we controlled for child follow-ups (in addition to other control variables), β = 

0.89, p = .02 (Model 7).

Predicting child syntax skill at kindergarten—For both TD and BI children, CELF 

was related to parent decontextualized utterances (Table 4). Table 6 presents a multiple 

regression analysis examining the effect of parental decontextualized utterances on 

children’s CELF Recalling Sentences score, controlling for parent SES, parent 

contextualized utterances, child group (TD vs. BI), and child MLU-w at 30 months. Parent 

SES was a significant (p < .01) positive predictor explaining 14% of the variation in CELF 

(Model 1). Controlling for parent SES, whether the child was in the TD or BI group was not 

a significant predictor of CELF (Model 2). Controlling for parent SES and group, child 

MLU-w at 30 months was a significant predictor of later CELF (p < 0.01) (Model 3). 

Neither parent contextualized utterances (Model 4) nor parent decontextualized utterances 

(Model 5) was a significant predictor of CELF, with parent SES, parent contextualized 

utterances, child utterances at 30 months, and group controlled (Model 5). However, the 

interaction between child MLU-w and parent decontextualized utterances was negative and 

4All analyses were repeated using percent of decontextualized utterances as predicting later outcomes instead of the number of 
decontextualized utterances. Controlling for other control variables, percent of decontextualized utterances did not significantly 
predict later vocabulary (β = 0.13, p =0.24), or syntax scores (β = 0.16, p =0.23), but significantly predicted narrative scores (β = 0.30, 
p =0.02). The results suggest that while for vocabulary and syntax outcomes, the sheer number of decontextualized talk might be the 
important factor, for higher-order language functions, such as narrative outcomes, both the sheer frequency and the density of 
decontextualized talk in everyday language might play a significant role in predicting later outcomes.
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significant, suggesting that as child MLU-w increased, the relation between parental 

decontextualized input and CELF grew smaller (Model 6). An interaction term between 

group and decontextualized language input was also tested and found not to be significant 

(Model 6). A final model, in which we removed the non-significant interaction term, 

explains 42.3 percent of the variation in CELF (Model 7). Decontextualized utterances 

remained a significant predictor of later syntax even controlling for child follow-ups (in 

addition to other control variables), β = 1.38, p = .01 (Model 8).

Predicting child narrative skill at kindergarten—For both TD children and children 

with BI, parent decontextualized utterances correlated with later narrative structure scores, 

but parent contextualized utterances and parent SES did not (Table 4). Table 7 presents a 

multiple regression analysis examining the relation of parent decontextualized utterances to 

child narrative structure scores, controlling for parent SES, parent contextualized utterances, 

child group (TD vs. BI), and child narrative utterances at 30 months. Parent SES (Model 1) 

was not a significant predictor of later narrative structure, but group was (p < .01, Model 2). 

Child narrative utterances at 30 months was also a significant (p < .05) predictor of narrative 

skills in kindergarten, controlling for SES and group (Model 3). Parent contextualized 

utterances did not predict narrative skills above and beyond controls (Model 4), but parent 

decontextualized utterances was a significant (p < .01) positive predictor (Model 5). We 

tested interaction terms in Model 6. The interaction between group and decontextualized 

language was significant (p < .05), indicating that the effect of decontextualized language 

input on later child narrative skill was larger for children with BI than for TD children. 

Similarly, the interaction between child narrative utterances and parent decontextualized 

utterances was negative and significant, suggesting that the effect of parent decontextualized 

input was stronger for children who produced fewer narrative utterances at 30 months. 

Model 6 is the best fitting model to the data and explains 45 percent of the variation in 

kindergarten narrative skill. Decontextualized utterances remained a significant predictor of 

later narrative even when we controlled for child follow-ups (in addition to other control 

variables), β = 1.14, p < .01 (Model 7).

Note that children with BI had significantly lower narrative outcomes (but not vocabulary or 

syntax outcomes) than TD children in kindergarten. This difference raised the possibility 

that narrative skill, rather than brain injury status, was driving the greater effect that parent 

decontextualized input had on children with BI than on TD children. Figure 1 presents 

narrative structure scores at kindergarten as a function of parent decontextualized talk at 30 

months for TD children (left graph) and for children with BI (right graph). Parent input is 

more strongly related to child kindergarten narrative score in children with BI (R2 = 0.56) 

than in TD children (R2= 0.24). But the figure also categorizes children according to 

narrative skill level at kindergarten––children at the low end of the distribution (i.e., below 

the group mean for all children) are indicated by triangles; children at the high end (i.e., 

above the group mean) are indicated by squares. Note that a large proportion of the children 

with BI performed poorly on the narrative task at kindergarten (i.e., there are proportionally 

more triangles in the right graph than in the left graph). To determine whether the group by 

parent decontextualized language input interaction for narrative skills is related to brain 

injury status per se, or to the lower narrative skill level of children in the BI group, we 
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carried out a regression analysis on a subset of 15 TD children and 15 children with BI, 

matched on narrative structure scores. To create the matched sample, for each child with BI, 

one TD child with a matching or closest narrative score was selected. In cases of ties, a TD 

child with the closest PPVT and CELF scores was selected. Two children with BI performed 

lower than all TD children in terms of their narrative scores and thus were excluded from the 

matched sample. In this matched subset, TD children and children with BI did not 

significantly differ from each other on vocabulary (t(28) = 0.69, p > .10), syntax (t(25) = 

0.12, p > .10), or narrative (t(28) = 0.08, p > .10). The regression analysis revealed a 

significant effect of parent decontextualized utterances on narrative structure, b = 0.76, t(29) 

= 2.53, p < .05, but no significant effect of group, b = 0.17, t(29) = 0.35, p > .10, and no 

significant interaction between group and decontextualized language, b = 0.02, t(29) = 0.04, 

p > .10, controlling for parent SES, parent contextualized utterances and child narrative 

utterances. Thus, when the two groups are equated with respect to narrative skill, the 

differential effect that parent input appeared to have on children with BI than on TD children 

disappears. However, this result should be interpreted with caution given that equating 

children on the basis of narrative skill made the sample size smaller and removed a fair 

amount of variance in the performance of children, which might have made it less likely to 

observe a significant interaction.

Decontextualized language features mediating effects of parent input

Parent decontextualized utterances were linguistically more complex than contextualized 

utterances. They also significantly predicted later child vocabulary, syntax and narrative 

outcomes. Our next step was to determine whether the linguistic properties of parent 

decontextualized utterances mediated (i.e., were at least partially responsible for) the 

relation between parent decontextualized utterances and later child vocabulary, syntax, and 

narrative outcomes. To do this analysis, we added MLU-w (our measure of linguistic 

complexity) into the regression analyses reported above. In predicting child vocabulary 

outcomes, when we controlled for parent MLU-w, parent decontextualized utterances ceased 

to be a significant predictor (Table 5, Model 7). Similarly, in predicting child syntax 

outcomes, controlling for parent MLU-w, parent decontextualized utterances ceased to be a 

significant predictor (Table 6, Model 8). In contrast, predicting child narrative outcomes, 

when we controlled for both parent MLU-w, parent decontextualized utterances remained a 

significant predictor (Table 7, Model 7). These findings suggest that the linguistic features 

of parent decontextualized language input are responsible for the relation between parent 

decontextualized language and child vocabulary and syntax, but not for the relation between 

parent decontextualized and child narrative.

Parent input and child outcomes in relation to child lesion characteristics

Table 8 presents the number of decontextualized utterances produced by parents of children 

with BI at child age 30 months as a function of the child’s lesion characteristics: lesion 

laterality (LH versus RH lesions), lesion type (PV versus CI lesions), and lesion size (S/M 

versus L lesions). Three ANCOVAs were conducted to examine the relation between parent 

decontextualized language and child lesion characteristics, using parents of TD children as a 

comparison group and controlling for parent SES. Parent decontextualized language did not 
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vary as a function of child lesion laterality, F (2,63) = 0.43, p > .10, lesion type, F(2,63) = 

1.19, p > .10, or lesion size, F(2,63) = 1.55, p > .10.

Table 8 presents PPVT, CELF and narrative structure scores at kindergarten for children 

with BI as a function of child lesion characteristics. An ANOVA analysis revealed that 

neither child PPVT, F(2,59) = 0.19, p > .10, nor CELF, F(2,55) = 0.60, p > .10, varied with 

lesion laterality, but narrative structure did, F(2,59) = 3.91, p < .05. Bonferroni corrected 

post-hoc pairwise comparisons revealed that children with RH lesions had lower narrative 

structure scores than TD children, p < .05. No other differences were significant. Turning 

next to lesion type, we found that neither child PPVT, F(2,65) = 1.88, p > .10, nor CELF, 

F(2,55) = 1.42, p > .10, varied with lesion type, but narrative structure scores did, F(2,59) = 

8.53, p < .01. Bonferroni corrected post-hoc pairwise comparisons revealed that children 

with CI lesions received significantly lower narrative scores than both children with PV 

lesions, p < .05, and TD children, p < .01. Further, we found significant effects of lesion size 

on PPVT, F(2,65) = 3.33, p < .05, and narrative structure, F(2,59) = 4.79, p < .05, but not on 

CELF, F(2,55) = 1.92, p > .10. Children with large lesions received significantly lower 

PPVT scores than children with small/medium lesions, p < .05, and marginally lower scores 

than TD children, p = .09. Children with large lesions received significantly lower narrative 

structure scores than TD children, p < .05.

Last, we examined whether the effect of parent input on narrative structure varied depending 

on child lesion characteristics. Our sample of children with BI was small and different lesion 

characteristics were highly correlated with each other. Analyses examining whether lesion 

size, type, and laterality interacted with parent input all revealed the same patterns; as a 

result, we provide only a single regression analysis (lesion type) to illustrate the pattern. 

Because neither parent SES nor parent contextualized utterances predicted narrative 

structure, we included only child narrative utterances, lesion type, parent decontextualized 

utterances, and the interaction between lesion type and parent decontextualized utterances in 

the regression analysis. Parent decontextualized utterances was a significant predictor of 

child narrative structure, b = 1.01, t(16) = 3.05, p = 0.01, controlling for child narrative 

utterances, lesion type, and the interaction between lesion type and parent decontextualized 

utterances, none of which were significant predictors of narrative structure. These variables 

explained 66% of the variance in narrative structure. Although the results of this analysis 

should be interpreted with caution because of the small sample size, overall, the findings 

suggest that the effect of parent decontextualized input does not vary by lesion type for 

children with pre- or perinatal unilateral brain injury5.

Discussion

Previous studies indicate that parent decontextualized language––talk about the there-and-

then––predicts later child language (Rowe, 2012, Tabors, Roach & Snow, 2001). 

5Analyses examining whether lesion size and lesion laterality interact with parent input revealed a similar pattern as the lesion type 
results. Neither the interaction between decontextualized language input and lesion size nor the interaction between decontextualized 
language input and laterality reached significance (lesion size: b = 0.01, t(16) = 0.02, p > .10, lesion laterality: b = −0.11, t(16) = −0.14 
p > .10) but, in both of these analyses, there were significant main effects of decontextualized language (lesion size: b = 0.72, t(16) = 
2.04, p = 0.06 , lesion laterality, b = .88, t(16)=3.33, p< 0.01)
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Researchers have hypothesized that this is because talk that extends beyond the here-and-

now contains diverse vocabulary and complex linguistic structures (Beals, 2001; Curenton & 

Justice, 2004; Rowe, 2012). Our study provides evidence for this hypothesis. (1) We find 

that syntactic complexity (as measured by MLU in words) in parent decontextualized 

language is, indeed, higher than parent contextualized language. (2) We also find that parent 

decontextualized language does, indeed, predict later child language skills, controlling for 

early child language, parent SES and, importantly, parent contextualized talk, which 

constitutes the bulk of the language input young children receive. (3) Finally, we find that in 

predicting later vocabulary and syntax skill, the richness of decontextualized language 

mediates the relation between parent decontextualized language and child vocabulary and 

syntax outcomes. However, parent decontextualized language remains a significant predictor 

of child narrative outcomes even when we control for linguistic complexity, suggesting that 

the macro-features of decontextualized language, e.g. connectors, anaphoric pronouns, 

might also be contributing to narrative skill. Importantly, we find a significant relation 

between parent decontextualized language and later child language outcomes for both TD 

children and for children with BI.

One of the contributions of our study is to show that the experience-dependent nature of 

language learning is robust in the face of early brain injury. The same kinds of language 

input that support language development in typically developing children also support 

language development in children who are learning language with a brain that has been 

modified by an early injury. Moreover, our findings show that decontextualized language, 

the specific type of input that is important in fostering later language skills, has the potential 

to be more important for children with BI than for TD children, particularly when it comes 

to the complex narrative language with which children with BI often have difficulty. Recall 

that, in our data, parent decontextualized language played a larger role for children with BI 

than for TD children in the development of narrative skill, but not syntax or vocabulary; and 

that the children with BI had lower outcomes in kindergarten than the TD children in 

narrative skill, but not syntax or vocabulary. When the children with BI were matched to the 

TD children in terms of their narrative skill in kindergarten, the difference between groups 

disappeared––that is, parent input no longer had a bigger effect on child output for children 

with BI than for TD children, although our findings need to be replicated with a larger 

sample size that has a wider skill range. Our findings thus suggest that differences between 

children with BI and TD children in the impact that parent input has on child output may be 

due, not to children’s brain injury per se, but to their relatively low levels of linguistic skill.

Rowe, Levine, Fisher & Goldin-Meadow (2009) also found that parent input can play a 

more powerful role for children with BI than for TD children (see also Wilcox & Shannon, 

1996). The effect Rowe and colleagues found was selective––parent input played a more 

powerful role for children with BI than for TD children with respect to productive syntax but 

not with respect to vocabulary. Our findings suggest that this difference may be an 

outgrowth of the fact that the children with BI performed worse than the TD children with 

respect to syntax but not with respect to vocabulary.

In support of the hypothesis that input has the potential to play a greater role for children 

with lower language skills, we found that the effect of parent decontextualized talk on 
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syntax and narrative outcomes was greater for children with lower syntax and narrative 

skills at 30 months than for children with higher skills. This phenomenon holds for both 

typically and atypically developing children. Consistent with Rowe et al. (2009), we did not 

find a comparable effect for either group for vocabulary – the impact of parent input on 

vocabulary did not vary as function of child vocabulary, which is a less complex skill than 

either syntax or narrative. Intervention and parent input have also been shown to play a 

greater role for TD children from low-SES families, who typically have lower levels of 

language skills, than for TD children from high-SES families (Brooks-Gunn, Gross, 

Kraemer, Spiker, & Shapiro, 1992; Loken, Mogstad, & Wiswall, 2012; Rowe, Raudenbush, 

& Goldin-Meadow, 2012). Our findings thus add to a growing literature suggesting that 

language input has its biggest effects when language development is delayed, either due to 

biological or environmental risk factors.

Although our small sample size precludes definitive conclusions about the relation between 

lesion characteristics and language development, the findings are consistent with our 

hypotheses and the existing literature. Within the children with BI, we found that lesion 

characteristics were related to narrative skill. In particular, as expected, CI lesions, which 

tend to be larger and involve more brain regions than PV lesions, are associated with lower 

narrative skills than PV lesions. The finding that children with right hemisphere lesions tend 

to have lower narrative skills than children with left hemisphere lesions is consistent with 

previous studies (Dardier, Reilly, Bates, Delaye & Laurent-Vannier, 2005, Reilly, Stiles, 

Wulfeck, & Nass, 2005).

Given the correlational nature of our study, which used parent talk in naturalistic parent-

child interactions to predict children’s later language skills, we cannot rule out the 

possibility that the parents were providing more decontextualized language to children with 

more advanced language and/or with better nonverbal interactional skills (e.g., better able to 

attend or follow the caregivers’ joint attention)––that is, that the parents’ use of language 

was reflecting their child’s linguistic skill rather than shaping it. We did control for the 

children’s linguistic competence and the extent to which the children were sensitive to their 

parents’ decontextualized utterances in our analyses. But the only way to cleanly make the 

causal argument is to randomly assign children to groups receiving different amounts of 

decontextualized language input (e.g., Rogosa, 1980; Shadish, Cook, & Campbell, 2002). 

Nevertheless, our findings support the possibility that increasing the amount of 

decontextualized language that parents provide may be beneficial to children’s later-

developing, more complex language skills. The next step is to test this prediction 

experimentally by encouraging parents to incorporate decontextualized talk into their 

conversations with children. If this manipulation has positive effects, it would have 

implications for the development of interventions for children at risk for language 

difficulties, whether from biological or environmental causes.

In summary, we have found that early parent decontextualized language is a particularly rich 

form of language, and perhaps as a result, reliably predicts later language skill in both 

children with early brain injury and in typically developing children––even when 

contextualized parent input, demographic factors, and child preschool productive language 

skill are controlled. The variability in language development observed in children with BI is 
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thus a product not only of the biological characteristics of the children’s lesions, but also of 

the language input the children receive. Being exposed to decontextualized language early in 

development has the potential to mitigate the later-appearing difficulties that children with 

early brain injury often experience on complex linguistic tasks.
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Appendix. Examples of narrative in each structure category

(0) Zero-level narrative: Narrative without a descriptive sequence and without 

structure TD: none. PL: I think tail flying.

(1) Descriptive sequence narrative: Contains the physical and personality 

characteristics of an animate protagonist

TD: She was going to wake up Ellie. There was a high telescope. PL: Mouse 

answers the phone, and the cord is broken.

(2) Action sequence narrative: Contains actions described in a temporal, but not 

causal, order

TD: He was stuck in a hole, and his tail was spinning, and he got where --, he 

was walking on the other side. PL: They were sleeping. Then somebody woke up 

and put a --.

(3) Reactive sequence narrative: Contains actions that are causally organized, but 

does not include the protagonist’s goal

TD: After the mouse was sleeping. Then the elephant was sleeping. Then they 

were snoring. Then the mouse can’t sleep. He sleeps again. Then the elephant 

just snored, and he put the top on. And the elephant can’t sleep because he 

sneezed. Then the mouse—the top hits the mouse in the face. He never saw 

nobody. PL: The elephant was snoring. The mouse put the beer cap on his trunk, 

and the elephant woke up, and he was like--, and it hit the mouse, and woke him 

up.

(4) Incomplete goal-based narrative: Contains a goal statement and/or an attempt, 

but no outcome

TD: The mouse—he wanted to keep the tea warm, and he kept going from hat to 

hat to hat to hat, and then he found the elephant Ellie. PL: He tried to see the 

telescope. He was bouncing on a trampoline, and he was trying to look out the 

telescope again.

(5) Complete goal-based narrative with one episode: Contains one episode with 

temporal and causal structure, goal of the protagonist, an attempt to achieve the 

goal and an outcome of these attempts

TD: Mouse was taking a walk and enjoying the day, but he fell in the hole, and 

he tried to get up and his tail spinned like a helicopter, and it took him up, and 

he said that’s how you get out of a deep dark hole. PL: Mouse wanted to jump 

over, but then he found a hole, and he used his tail to get out.

(6) Complete goal-based narrative with multiple episodes: Contains multiple 

episodes with multiple goal–attempt–outcome sequences

TD: And that he -- it was a nice day for laundry, and then he hanged up some 

socks. They -- the wind was so strong. It blew them away. He tried again. They 

blew them away. Then he thought the holes would do it. He -- he threaded the -- 

Demir et al. Page 20

Dev Psychol. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the socks and holes. He put it on. The wind blew at it, but it didn't go away. The 

end. PL: After school Ellie likes to take a nap. Mouse was looking for a phone. 

He wanted to call the friend, but there was no answer. So Mouse tried again but 

-- but first he can't get the phone number, and then tried again and then again, 

but then Ellie -- then he saw Ellie, but then he saw that the cord was broken. So 

he put the tail in there, and it worked. The end.
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Figure 1. 
Child narrative structure score at kindergarten as a function of number of parent 

decontextualized utterances produced at child age 30 months for TD children (left graph) 

and children with BI (right graph). Children are also categorized according to whether their 

narrative scores were below (triangles) or above (squares) the group mean combined across 

groups in kindergarten; data are log transformed. Note that a large proportion of the children 

with BI were below the mean at kindergarten (marked with triangles), and that children who 

were above the mean (marked with squares) in the BI group displayed the same pattern as 

children above the mean (also marked with squares) in the TD group.
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Table 2

Definition and examples of decontextualized language categories in the parents of TD children and children 

with BI.

Definition Examples

Narrative: Talk about events that happened in the 
past or will happen in the future (Beals & 
DeTemple, 1993; Beals & Snow, 1994).

TD: “Mom is going to go to the foot doctor tomorrow.”
“Remember when we got those cars at our vacation?”
BI: “Daddy's going to bring you home early for lunch.”
“All the little kids kept trying to help and they were actually scaring her away.”

Pretend: Talk during pretend episodes of 
interaction, including making an object represent 
another, attributing actions, thoughts or feelings to 
inanimate objects, assuming a role or persona, 
enacting scripts or routines (Katz, 2001).

TD: “Do you think the baby wants to have some juice?”
“I will save you from the wicked sister.”
BI: “Can I pour you a cup of tea?”
“Come on horsies, gallop back to your stall.”

Explanations: Talk that requests or makes logical 
connections between objects, events, concepts or 
conclusions (Beals, 1997; Beals, 2001).

TD: “Yes, let's turn the blocks so you can see the patterns on them.”
“If we don't have all of our ingredients, all the things to put into the cookies, we won't be 
able to make them.”
BI: “Because we already washed our hands, I think we should just put the crayons away 
for now.”
“We need to get you in the big girl swing so you get a little more fun again.”
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Table 3

Contextualized and decontextualized utterances produced by parents of children with BI,parents of TD 

children, children with BI and TD children at child age 30 months.

30 months

TD (n=49) BI (n=19)

M (SD) Range M (SD) Range

Number of parent contextualized utterances 838.25 (380.41)
244–1694

983.63 (353.76)
291–1744

Number of parent decontextualized utterances 62.98 (64.11)
0–271

120.16 (134.16)
2–426

Number of parent narrative decontextualized utterances 17.31 (33.06)
0–212

16.79 (21.14)
0–75

Number of parent pretend decontextualized utterances 37.96 (53.15)
0–250

80.00 (112.51)
0–315

Number of parent explanation decontextualized utterances 7.71 (5.76)
0–20

23.37 (21.05)
0–86

Number of child contextualized utterances 513.37 (224.17)
131–956

461.51 (212.45)
66–1237

Number of child decontextualized utterances 40.31 (45.46)
0–249

50. 11 (72.25)
0–260

Number of child narrative decontextualized utterances 7.31 (11.93)
0–56

6.21 (9.78)
0–35

Number of child pretend decontextualized utterances 32.63 (43.53)
0–245

43.26 (69.04)
0–242

Number of child explanation decontextualized utterances 0.36 (0.85)
0–3

0.63 (2.31)
0–10

Parent contextualized utterances mean length of utterance 3.96 (0.55)
2.54 – 5.18

3.95 (0.55)
2.79–4.69

Parent decontextualized utterances mean length of utterance 6.25 (1.87)
0 – 11.64

6.26 (2.07)
0.10–0.22
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