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Abstract
The objective of this analysis was to develop a measure of neuropsychological performance for
cardiac surgery and assess its psychometric properties. Older patients (n=210) underwent a
neuropsychological battery using nine assessments. The number of factors was identified with
variable reduction methods. Item response theory-based factor analysis methods were used to
evaluate the measure. Modified parallel analysis supported a single factor, and the battery formed
an internally consistent set (coefficient alpha=0.82). The developed measure provided a reliable,
continuous measure (reliability >0.90) across a broad range of performance (−1.5 SD units to +1.0
SD units) with minimal ceiling and floor effects.
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Introduction
Impairment in cognitive function following cardiac surgery was first reported shortly after
the advent of cardiopulmonary bypass (Gilman, 1965). Since that time, improvements in
surgical techniques, perfusion, anesthesia, and surgical teams have improved cognitive
outcomes (Likosky, Nugent, & Ross, 2005). However, postoperative cognitive decline
(POCD) remains a significant factor in cardiac surgery occurring in 21-29% at 3-6 months,
31-34% at 1 year, and 42-50% at 5 years (Newman et al., 2001; van Dijk et al., 2007).
Despite its frequency, the methods for measuring POCD remain challenging because of a
lack of standardization of measurement and definition.

There have been a number of challenges in the study of cognitive function after cardiac
surgery. First, the neuropsychological tests used to assess cognitive function in cardiac
surgery patients vary widely. In a recent review of POCD after non-cardiac surgery, 72
different neuropsychological tests were used across the literature to assess cognitive
function.(Newman, Stygall, Hirani, Shaefi, & Maze, 2007) Second, many patients
undergoing cardiac surgery have pre-existing cognitive impairments (Ernest et al., 2006;
Rosengart et al., 2005), making them more susceptible to postoperative cognitive changes
and increasing the potential for floor effects in cognitive testing. The floor effect is
manifested by poor initial performance leading to limited/no possibility of decline.
Additionally, insensitive neuropsychological tests have a ceiling effect where most patients
perform at the maximum score and thus, differentiating between those who have modest
impairments and those who are functioning normally is not possible. Finally, the
neuropsychological tests scores are combined into a measure of cognitive decline that is
unique to the study. Sometimes even a single study uses more than one measure; for
instance, one randomized study of off-pump vs. on-pump surgery reported three methods for
defining cognitive change (van Dijk et al., 2007). As a result, no standardized method of
assessment or defining change in cognitive function after cardiac surgery currently exists.

A standard measure, or metric, for cognitive function would address these limitations.
Neuropsychological testing for a cognitive composite provides more complete coverage of
cognitive domains than a screening test and therefore, would be more sensitive to changes
postoperatively. Secondly, because floor and ceiling effects are less likely to occur on
multiple tests, the composite can describe cognitive function over a broader range of
cognitive function than a single test. Additionally, the selection of a standard measure or
metric for cognitive function would reduce variability across studies, because the battery of
tests and the contribution of each test to the measure would become standardized.

When an intervention or procedure impacts a specific domain of neuropsychological
functioning, it is essential that research and clinical attention focus on that specific domain.
In general, domain-specific changes can be assessed by considering individual tests or
creating composites of tests measuring the same ability.(Newman et al., 2001)

While not a substitute for study of individual neuropsychological domains, a global,
unidimensional measure of cognitive functioning is also required in many contexts. First,
many interventions, such as cardiac surgery, present many potential insults to cognition (e.g.
hypotension, cardiopulmonary bypass, anesthesia, microemboli, hypothermia, etc), thus, it is
unlikely that only a single cognitive domain will be affected, and a more general cognitive
measure may be preferred to assess overall impact. Second, a unidimensional composite
may be preferred to measure change over time, because of more favorable measurement
characteristics (e.g. precision, diminished floor/ceiling effects) and minimizing multiple
hypothesis testing across multiple domains. Finally, measurement of domain change in
relation to global cognition may be more clinically relevant than raw domain change.
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(Kanne, Balota, Storandt, McKeel, & Morris, 1998) Thus, a global undimensional composite
may provide greater statistical power over evaluating domain specific tests individually, and
may reduce risks of spurious inferences.

Another important role of a unidimensional composite is the comparison across studies. At
present, thirteen randomized trials have studied the impact of cardiopulmonary bypass on
POCD; these studies use a median of 9 neuropsychological tests (range 6-19) and 9 different
definitions of POCD. This makes comparison across studies difficult. A global composite
may also be a useful and formal way to compare or jointly analyze multiple studies by co-
calibrating the composite on a common metric(Crane et al., 2008), even when some of the
component neuropsychological tests differ between studies.

To address these issues, we undertook a systematic approach to developing a composite
measure of cognitive function using common neuropsychological tests collected as part of a
prospective observational study of cognitive outcomes following cardiac surgery (Rudolph
et al., 2009). We hypothesized that a) a single, summary measure of neuropsychological
performance would be adequate to explain covariation among selected neuropsychological
tests, and b) the psychometric properties of the summary measure would be conducive to
studying cognitive change with limited floor and ceiling effects. In addition, to improve the
ability to study neuropsychological performance across studies, we provide the needed
details for creating the neuropsychological composite measure, upon request. Investigators
may use this methodology to create comparable scores using somewhat different
neuropsychological test batteries and can aggregate results across studies to facilitate cross-
study comparisons. Thus, this methodology may represent a substantial advance in the study
of the neuropsychological sequelae of cardiac surgery and potentially, in the study of
longitudinal cognitive function assessed with neuropsychological measures.

Methods
Participants

The data for this study were collected from patients enrolled in a prospective, observational
cohort including patients (targeted age ≥60 years) who were undergoing coronary artery
bypass graft (CABG) surgery or combined CABG-valve replacement surgery at two
academic medical centers and one Department of Veterans Affairs medical center in
Massachusetts. Institutional review boards at the three medical centers approved the study
and all patients provided written informed consent. Four hundred and sixty-one adults were
screened for participation in the study, 200 refused, 17 were excluded due to additional
cardiac procedures, delirium prior to surgery, or inability to complete the preoperative
assessment, and 34 were excluded for missing data on more than 2 of 9 neuropsychological
tests included in the composite. The analytic sample therefore included 210 adults.

Neuropsychological Assessment
Preoperatively, a 45-minute neuropsychological battery was administered to patients. The
battery assessed cognitive domains of memory, learning, attention and executive functioning
in accordance with the Statement of Consensus on Assessment of Neurobehavioral
Outcomes after Cardiac Surgery (Murkin, Newman, Stump, & Blumenthal, 1995). The
Hopkins Verbal Learning Test (HVLT) (Brandt & Benedict, 1991), a 12-item verbal
learning and recall measure was administered. The retention percent was calculated as the
number of spontaneously recalled items divided by the maximum number of items learned.
The Visual Search and Attention Task required patients to identify a specific letter amidst a
field of distracting letters and was scored on the number of targets identified in 90 seconds
(Trenerry, Crosson, DeBoe, & Leber, 1990). The Trailmaking Test B (Trail Making Tests A
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and B, 1944), a timed test of shifting attention, involved alternating between a series of
numbers and letters. The Digit Symbol Substitution Test is a measure of working memory
and attention, where digits were represented by symbols and patients copied a symbol to the
corresponding number, and Digit Symbol Copy is a measure where patients copied the
symbol. In both tests, the number of correct responses in 90 seconds was recorded. Digit
span forward and backward (Wechsler, 1981), tests of working memory, required
participants to sustain attention and manipulate information by repeating a series of random
digits forward and backwards (Stuss & Levine, 2002), The measure was the number of
correct trials for each task. Semantic (category) and phonemic (letter) fluency tasks
measured language and knowledge storage patterns by requiring the subject to generate
words spontaneously in a category (animals and boys names) or beginning with a specific
letter (‘f’, ‘a’, and ‘s’) (Benton & Hamsher, 1976). For both, the measure was the number of
correct responses. The 30-item Boston Naming Test, a measure of naming, where patients
identify line drawings of increasing difficulty, was administered and the number of correct
responses was scored (Mack, Freed, Williams, & Henderson, 1992).

Statistical Approach
Overview—The statistical methods to develop the single factor model measure of cognitive
performance followed several steps; each step is introduced here and described in more
detail later. First, we organized the data into consistent scales across neuropsychological
tests using decile cut points. We used parallel analysis to determine the number of factors
(Hayton, Allen, & Scarpello, 2004). We estimated parameters of a measurement model
using confirmatory factor analysis (CFA) that was consistent with a graded response item
response theory (IRT) model and assessed the assumption of local independence. Finally,
post-hoc Bayesian methods were utilized to estimate the latent neuropsychological
composite scores for individual participants. Univariable and multivariable models were fit
using Stata 10 (Stata, Inc. College Station, TX) and multivariate measurement models were
fit using Mplus 5.1 (Muthén & Muthén, Los Angeles, CA). We used PARSCALE 4.1
(Scientific Software International, Chicago, IL) to generate test information functions.

Basing the measurement model in IRT offers several advantages. First, and perhaps most
importantly, IRT provides a framework to estimate cognitive ability that can be used in the
current and future studies; this is superior to factor analysis where the estimates are sample-
dependent. Moreover, the IRT ability estimates theoretically have interval scale properties
(Stevens, 1946), instead of ordinal scale properties, and thereby makes IRT suitable for
analyses of change over time. Finally, IRT allows for rigorous assessment of scale reliability
can define regions of variability and thresholds for clinically significant change.

Step 1: Create similar scales between neuropsychological tests—Each
neuropsychological test is measured on a scale that may be particular to that individual test.
For example, Trailmaking B is a timed test, HVLT is a percentage, and Digit Symbol
Substitution Test is scored as the number of correct responses. Additionally,
neuropsychological data are often skewed. To address these factors, neuropsychological data
were categorized into discrete categories using decile cut points. This provides an efficient
tool for normalizing the distributions. If deciles could not be defined because of severe
skew, we used the maximum number of categories allowed by the observed data. Deciles
were reversed prior to modeling for Trailmaking B so that all measures were in a consistent
direction (i.e. a higher decile representing better performance). Missing data were assumed
to be missing at random, and all observations were included in analyses using maximum
likelihood techniques (Muthen & Kaplan, 1987).
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Step 2. Parallel analysis to determine the number of latent factors—Parallel
analysis is a robust method for determining the number of latent factors that may account for
the covariation among a set of observed variables (Horn, 1965; Kiecolt-Glaser et al., 2003;
Zwick & Velicer, 1986). It involves obtaining random data by resampling the observed data
set multiple times, computing a correlation matrix and eigenvalues for each random data set,
and plotting the 90% confidence interval for the random eigenvalues and the observed
eigenvalues. If an observed eigenvalue is less than the 95th percentile of the random data, we
conclude that the value of the next eigenvalue is not greater than what would have been
observed by chance. The number of eigenvalues that lie above the 95th percentile of random
data eigenvalues is the number of factors supported.

Step 3. Estimate a measurement model—We used CFA on the estimated polychoric
correlation matrix to estimate a measurement model for the battery. Polychoric correlations
represent correlations among ordinal observed variables that are on the scale of Pearson
correlation coefficients. CFA on a polychoric correlation matrix is equivalent to a graded
response IRT model (Jöreskog & Moustaki, 2001; Mislevy, 1986). Typical IRT models
assume unidimensionality, or that a single common factor is sufficient to account for the
correlation among the test items. We explore violations of this assumption with a bifactor
model. A bifactor model is a measurement model where every indicator is caused by at most
two underlying factors, one being a general factor loading in all indicators(McDonald,
1999). Bifactor models, with some restrictions, are equivalent to hierarchical factor models
(Chen, West, & Sousa, 2006), but can be more useful in assessing unidimensionality and
local independence assumptions. Models were estimated with Mplus software using a
limited information multivariate probit regression framework and the mean and variance
adjusted weighted least squares estimator (Muthen & Kaplan, 1987). Model fit was assessed
with the root mean square error of approximation (range 0-1.0; 0=perfect model fit;
0.06-0.1=acceptable model fit; >0.1 unacceptable model fit (Browne & Cudeck, 1993; Hu &
Bentler, 1998)) and the comparative fit index (CFI, range 0-1.0; acceptable model fit ≥0.95
(Bentler & Chou, 1988; Bentler, 1990; Muthen & Kaplan, 1987)).

Step 4: Assess neuropsychological composite reliability and performance—
Another benefit of IRT is the ability to measure performance over a larger range of cognitive
ability compared to individual neuropsychological tests, which frequently have floor and
ceiling effects and demonstrate ordinal, rather than interval scaling properties. We assessed
the reliability of the scale using the classical test theory based internal consistency
coefficient using Cronbach's alpha (range of 0-1; acceptable reliability: ≥0.80 for group
differences and ≥0.90 for individual inferences) (Nunnally & Bernstein, 1994). We also
used an IRT concept known as item and scale information which is a method of estimating
of the amount of information provided by a scale over the range of cognitive ability. We
used the Edwards-Nunnally reliable change method to compute reliable change indices
(Atkins, Bedics, McGlinchey, & Beauchaine, 2005; Speer, 1992) and used the exaggerated
imprecision method of the reliable change method to account for regression to the mean.
The Edwards-Nunnally method centers confidence intervals (±2 standard errors) on the
estimated cognitive composite score and considers performance outside the confidence
interval as significant change (Speer, 1992).

Results
The cardiac surgery sample (Table 1) represented predominantly older patients (mean age
73 ±7 years) who were well educated (53% >high school education). Consistent with
national data (Rosamond et al., 2007), 24% were women. Our sample was racially
homogenous; only 5% self-described as a race or ethnicity group other than white. About 1
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in 5 had a Geriatric Depression Scale (15-item version) score of ≥5 which is indicative of
clinically relevant depressive symptoms (Zalsman, Weizman, Carel, & Aizenberg, 2001).

Scale Neuropsychological Data
The baseline performances on the 10 neuropsychological tests included in this analysis are
presented in Table 2 (top panel), and item correlation matrices are also presented (lower
diagonal, Pearson correlation coefficients for raw variables, upper diagonal polychoric
correlation coefficients for discrete versions). As can be seen, the tests varied in the
proportion of individuals completing each task primarily because patients declined
additional testing due to fatigue, medical illness, or duration of testing. No tests, except
category fluency and digit symbol substitution were normally distributed (p<.05)
(D'Agostino, Belanger, & D'Agostino Jr, 1990;Royston, 2005) and thus, the decile
transformation was justified. The coefficient of internal consistency (Cronbach's alpha)
suggested the battery formed an internally consistent set (α = 0.82), which is sufficient for
group differences research but not sufficiently reliable for individual differences research
(Nunnally & Bernstein, 1994).

Parallel Analysis
The first and second eigenvalues extracted from the polychoric correlation matrix were 4.21
and 1.28, respectively. The 95th percentile of the first and second random eigenvalues was
1.51 and 1.34, respectively. Because the second eigenvalue from the observed data falls
below the 95th percentile of the random data second eigenvalue, we concluded that the
second eigenvalue provided no additional information, which could not be expected by
chance alone. Thus, the parallel analysis supported a single neuropsychological composite.

Confirmatory Factor Analysis
Despite the findings of the parallel analysis, the root mean square error of approximation
(RMSEA) for the single factor model was 0.142, and the CFI was 0.887, both values outside
the accepted range for well fitting models (Table 3). To better explore the covariation in the
observed data, we used residuals from the single factor model to postulate a specific bifactor
CFA model that fit better (RMSEA=0.062, CFI=0.980). The factor loadings of the single
and bifactor models are displayed in Table 3 (right side). Bifactor CFA models can be
assumed to support sufficient unidimensionality if the item loadings on the general factor
(loading in all items) are greater than the item loadings on the specific factors
loadings(McDonald, 1999). For our bifactor CFA model, three pairs of related tests had
significant residual correlation (digit symbol copy and substitution, digit span forwards and
backwards, and phonemic and semantic fluency). Only digit span forwards and backwards
failed this test of sufficient unidimensionality as a pair. Phonemic fluency was loaded
essentially equally on the specific and general factor.

At this point, we would be justified in considering whether the inclusion of both digit span
forwards and backwards was necessary, or if one could be dropped from the task list (Cattell
& Cattell, 1960; Ozer & Reise, 1994). Substantive concerns motivated our retention of both
digit span forwards and backwards, including the ease/timing of administration, normal
distribution of results, and coverage of the working memory and attention domains. To
evaluate the bias in estimated cognitive ability caused by ignoring the multidimensional
structure, we compared estimated scores from the unidimensional model and the global
ability score from the bifactor model. These estimates were highly correlated (r=0.99), an
expected finding and a reflection of the fact that the factor loadings in the unidimensional
and for the bifactor-general factor were very similar. This correlation coefficient is not
informative about the suitability of a unidimensional or multidimensional measurement
model (Reise & Haviland, 2005). As a guide to methodological judgment on this issue, we
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examined the scale reliability as implied by the two measurement models and the individual-
level bias in latent trait estimation associated with using the overly simplified
unidimensional model. We estimated scale reliability based on the factor loadings (Brown,
2006) for the unidimensional factor model (ρ = 0.83) and the bifactor model (ρ = 0.85), and
conclude that impact of the local independence violations on score reliability are trivial. To
evaluate individual-level impact, we calculated bias in the unidimensional trait estimate
given the multidimensional structure as the difference between the factor score estimate
under the unidimensional model and the bifactor model. For a substantial sub-set of the
participants (n=57, 25%) the bias was more than trivial (at least |0.2| standard deviation
units). The magnitude of bias was related to performance on the digit symbol and trails
tasks, but not the digit span tasks. Therefore, we concluded the multidimensionality was
ignorable and use a unidimensional measurement model to generate latent trait estimates for
the participants.

Assess Performance and Reliability
The distribution of the estimated factor score for the unidimensional neuropsychological
composite is presented in Figure 1. We rescaled the factor score to a T-score metric (mean=
50; standard deviation=±10; range=25-75). The neuropsychological composite was normally
distributed (p=0.88 for test of deviation from normality) (D'Agostino et al., 1990;Royston,
2005) there was no floor or ceiling in this sample (i.e., no participant performed at the
lowest or highest level on all 9 tests). To further gain an appreciation of measurement
precision, we estimated item and battery information functions. In the range of 1 SD unit
above and below the mean, the neuropsychological performance battery provided excellent
measurement precision. The reliability index at this level was at least 0.90 in this ability
range which is sufficiently reliable to make inferences of individuals (Nunnally & Bernstein,
1994). The Edwards-Nunnally reliable change indices were calculated to measure the
performance of the neuropsychological composite across a range of cognitive ability and
reliable change regions are illustrated in Figure 2. Note that reliable change ranges from
about 0.5 SD units to 1.5 SD units across the range of the latent trait. In the cognitive score
range of 40-60 (67% of subjects), we could reliably measure a decline in cognitive function
of 0.5-0.8 SD units.

Model Parameters and Code
Upon request we will provide the specific details of our methodology and code to enable
other investigators to extrapolate our methods to other neuropsychological test batteries. Our
analyses were conducted with STATA (v10) and Mplus (v5.1). In addition, we have
prepared R code for the generation of latent trait estimates using the expected a posteriori
method (Bock & Aitkin, 1981) given similarly collected and scored neuropsychological
testing data.

Discussion
In this study, we used data from a neuropsychological assessment of 210 patients
undergoing cardiac surgery to develop a single measure of cognitive performance. We
presented evidence that the measure represents a general cognitive domain with high
internal consistency and is relatively free from floor and ceiling effects. To address some of
the past challenges in diagnosing cognitive decline after cardiac surgery, we have made the
computational algorithm available upon request, so that it can be applied to other data and to
stimulate and facilitate the comparison of cognitive data after cardiac surgery across studies.

Factor analysis has been used frequently to create neuropsychological composite scores in
patients (Newman et al., 2001; van Dijk et al., 2007). By using IRT to derive the
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neuropsychological composite, we address three major concerns about current methods to
assess cognitive function 1) floor and ceiling effects, 2) reliable and precise measurement
performance over a range of abilities, and 3) comparison of performance among different
studies. The neuropsychological composite we calculated demonstrated no ceiling or floor
effect and it reliably measured cognitive performance from 1.5 SD below the mean to 1.0
SD above the mean. Ultimately, this neuropsychological composite can be used by other
researchers to directly compare results as described below.

The publication of the decile thresholds, item parameters, and programming code allows
other researchers to construct a similar neuropsychological composite with their data. Such
IRT model comparisons are commonly used in educational testing to compare performance
on different versions of a test (McHorney, 2003). The open presentation of our model
provides not a definitive solution, but rather an initial step on which we can build a common
neuropsychological measure that can address change over time in patients undergoing
surgery and in other clinical settings.

Ultimately, with this approach the problem of different assessment batteries becomes a
statistical nuisance that can be addressed analytically rather than representing an intractable
problem that prevents direct comparison of studies. For this comparison to be possible, at
least one identical neuropsychological test needs to be performed within the battery (but the
more tests that overlap the greater the confidence in the co-calibration). Common
neuropsychological tests provide a basis to build a set of calibration models that could be
used to directly compare results of different studies. In the study of POCD, where time
before surgery is limited and brevity is essential, investigators may prefer a shorter battery
than what we have used in this study. Other investigators may not be satisfied with our
reliability estimates and prefer longer batteries. Different batteries may still be linked to our
metric so long as at least one common test appears across studies and appropriate modeling
constraints are applied. The development of a bank of batteries, decile thresholds, item
parameters, and programming code allows expansion of the neuropsychological composite
to different populations and in different settings. Ultimately, clinicians could administer a
core battery and define a consistent level of cognitive performance across many different
clinical settings.

We recognize several limitations of our work. First, this study has a limited sample size. It is
possible that if this study had been repeated in a larger sample, different parameter estimates
would have been obtained, presumably closer to true population values. We view the
neuropsychological composite as an initial solution, the value of which will grow when
additional investigators use our results to build composites in other studies of post operative
cognitive decline and link in overlapping and non-overlapping neuropsychological
performance data. Second, while our single measure displayed good precision, reliable
change indices, and was free from floor and ceiling effects, it is important to realize that our
neuropsychological composite may be useful in some but not all circumstances. Limitations
of composites may arise when the health status change or sub-group differences can be
expected to have specific effects on specific aspects of the composite (e.g., administration of
a anticholinergic medication impacts memory function (Kay & Granville, 2005)) or the
population subgroup is known to have a specific impairment on one aspect of the domain
(e.g., those with low education exhibit selective impairment on tests involving computation).
These possibilities should be evaluated using established methods for assessing
measurement non-invariance or tested formally with experimental or analytic strategies.
Third, previous studies have demonstrated some degree of preoperative impairment in the
cardiac surgery population (Ernest et al., 2006; Rosengart et al., 2005) which might limit the
generalizability of our single measure to an unimpaired population. On the other hand, this
baseline impairment may also exist in other medical and surgical samples. Fourth, our study
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was limited by the relative homogeneity of the sample with respect to gender and race/
ethnicity. However, our sample is distinguished by having one of the highest mean ages of
all published cardiac surgery cohorts to date. Finally, the derivation of our measure used
only preoperative data, and further study is required to determine our measure's ability to
detect change in cognitive function after cardiac surgery.

This work has strengths that deserve comment. First, our battery was chosen to be consistent
with the Statement of Consensus on Neurobehavioral Outcomes after Cardiac Surgery,
which provides for comparability with related studies (Murkin et al., 1995). Second, while
there is some missing neuropsychological data, most tests have >90% completion in our
data. We imposed a limit of at most 2 missing items to be included in our analysis, but such
a stringent requirement is not necessary from a statistical or measurement point of view
under the assumption of missing at random (i.e., the mechanism causing the missingness is
not related to the value that would have been observed on the test if it were observed).
Finally, the inclusion of the item parameters and software (R syntax) allows other
researchers to compare their summary scores to our work.

The measurement of perioperative cognitive function has been characterized by disparate
methods for the assessment, scoring, and definition of POCD. This study addresses many of
these limitations by developing a single neuropsychological composite which has limited
floor and ceiling effects and good reliability across a range of cognitive function. More
importantly, we will provide the needed model parameters to allow other investigators to
directly compare results from their work to ours (upon request). The methodology developed
here may enable statistical comparisons of a variety of neuropsychological test batteries
across studies. Future work can build on the foundation provided by this study to greatly
advance the understanding of cognitive function after cardiac surgery.
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Figure 1. Distribution of Estimated Neuropsychological Composite
The neuropsychological composite has been scaled (T-score) with a mean of 50 and a
standard deviation of ±10.
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Figure 2. Reliable Change Regions for the Neuropsychological Composite
Shaded areas describe regions of reliable change using the Edwards-Nunnally method
(Atkins et al., 2005; Speer, 1992). The asymmetric pattern reflects the accommodation of
regression to the mean in the determination of reliable change. The composite is scaled as a
T-score, with a mean of 50 and standard deviation of 10 in the sample. Therefore changes of
±6 are reliable changes at a latent trait (θ ) level of 50, of six-tenths of a standard deviation.
Two hypothetical persons are illustrated: A and B at time 1 and 2. Person A at time 1 (A1)
scored 50, and scored 42 (=50-8) at follow-up (A2). This change falls in the “Reliable
Decrease” area, meaning a clinically significant decrease in neuropsychological
performance has occurred (change in excess of measurement error and regression to the
mean). Person B scored 45 at baseline (point B1) and 50 (=45+5) at follow-up (B2). This
gain does not fall in the “Reliable Increase” area. Therefore, the gain does not reflect
improvement that is in excess of the measurement error of the instrument and taking into
account regression to the mean, i.e., the change is not reliable.
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Table 1

Participant characteristics (n=210)

Characteristic Mean (±SD) or
n(%)

Range

Age (years) 72 (±7) 48, 87

Men 160 (76%)

Race

 White 200 (95%)

 All others 10 (5%)

Education

 <high school 28 (13%)

 high school 68 (33%)

 >high school 114 (54%)

Mini-Mental State Examination
(0-30, 30 best)

27 (±2) 17, 30

Geriatric Depression Scale (0-15,
0 best)

3 (±3) 0, 13

SD, standard deviation;
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