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Supplement. Supplementary material contains additional detail about phylogenetic analysis methods and 
supplementary tables and figures. 

Prior to Bayesian analyses of symbiont and host loci, MrModeltest (Nylander 2004) was used to test a set 
of nested models of sequence evolution that are restrictions of the general time-reversible model with rate 
variation among sites (Yang 1994). The best-fit model of sequence evolution for each gene was evaluated 
based on the Akaike information criterion using standard procedures in PAUP v4.0b10 (Posada & Crandall 
2001, Swofford 2003) and then chosen according to Akaike weights (Akaike 1974) (Table S2). Diffuse priors 
were used for all analyses. Priors for the following parameters were used: topology (all topologies equally 
weighted), branch lengths (exponential (10) prior), instantaneous rate matrices (Dirichlet 1,1,1,1,1,1 prior), 
and equilibrium base frequencies (Dirichlet 1,1,1,1 prior). 

For models with gamma distributed rates and/or a proportion of invariant sites, a uniform (0.05,50) prior 
and a uniform (0,1) prior, respectively, were assumed. All Markov chain Monte Carlo (MCMC) analyses in 
MrBayes were conducted using Metropolis coupling with 20 or more parallel chains. Swap rates between 
adjacent chains were considered adequate if they exceeded 20%. For each analysis, at least 5 independent 
MCMC runs that were each iterated at least 5.0 × 107 times were conducted until MCMC convergence was 
reached. A burn-in of at least 500 samples was removed, and the remaining samples from all independent runs 
were combined to construct majority rule consensus phylograms. MCMC convergence was assessed using the 
CODA package in R (R Development Core Team 2007). As a further test of convergence, the medians of the 
posterior distributions of model parameters for each locus were compared to maximum likelihood estimates 
computed using PAUP to ensure their close agreement (Table S2). 

Table S1. Overview of the genetic, location, and ultrastructural evidence used to reclassify the Juan de Fuca (JdF) 
bathymodioline specimens examined in this study. COI: Cytochrome c oxidase; ND4: NADH dehydrogenase subunit 4; 
TEM: Transmission electron microscopy images showed bacteriocytes with coccoid bacteria that appeared to be extra-
cellular; −: not determined 

    Bathymodioline Symbiont  

Specimen JdF vent 
segment Lat/Long Depth 

(m) 
Morph-

ology 
Genes  

TEM 16S 
rRNA Reference 

COI 18S ND4 

JdF2008 Endeavor 47° 58’N, 129° 
05’ W 2189 −      This study 

JdF1999  
(Bathymodiolus 
sp.) 

Endeavor 47° 56’ N, 129° 
06  W 2200 −  − −   (McKiness et al. 2005) 

JdF1990  
(Adipicola MV) 

Middle 
Valley 

48° 27.5’ N, 
128° 42.5’ W 2420   − −  − (Juniper et al. 1992, 

Southward 2008) 
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Table S2. Primers for host and symbiont genes examined in this study. Polymerase Chain Reaction (PCR) 
conditions: initial denaturation for 5 min at 98°C; 30 cycles of 10 s at 98°C, 30 s at annealing temperature, 1 min at 
72°C; extension for 10 min at 72°C. PCR mixture: 1X HF buffer (Finnzymes), 0.2 mM dNTPs, 0.5 mM each primer, 
1 unit of Phusion DNA polymerase (Finnzymes). Cytochrome c oxidase (COI) primers based on an alignment of 
COI genes from Benthomodiolus lignicola (AY275545), Bathymodiolus sp. (DQ077892), and Benthomodiolus 
geikotsucola (AB257513). 18S primers are overlapping across the gene 

Gene ID Gene Forward primer  
(5'  3') 

Reverse primer  
(5'  3') 

Size 
(bp) 

Annealing 
temp. 

Reference 

Host       

COI 

Mitochondrial 
cytochrome 
oxidase c 
subunit I 

COIdegF – 5'-GTT GGC 
ACG KCC AGG WAG AT-

3' 

COIdegR – 5'-ATA GTR 
ATM CCT CCA GCT 

ARW-3' 
~ 500 58 This study 

ND4 

Mitochondrial 
NADH 

dehydrogenase 
subunit 4 

Arg BL – 5'-CAA GAC 
CCT TGA' ITT CGG CTC 

A-3' 

NAP 2H – 5'-TGG AGC 
TTC TAC GTG RGC TTT-

3' 
~1200 52 

(Arevalo et al. 
1994, 
Bielawski & 
Gold 1996) 

18S Small subunit 
rRNA 

1F – 5'-TAC CTG GTT 
GAT CCT GCC AGT AG-

3' 

3R – 5'-AGG CTC CCT 
CTC CGG AAT CGA AC-

3' 
~450 49 (Giribet et al. 

1996) 

  
3F – 5'-GTT CGA TTC 
CGG AGA GGG A-3' 

18Sbi – 5'-GAG TCT CGT 
TCG TTA TCG GA-3' ~1000 49 

(Giribet et al. 
1996); (Giribet 
et al. 1999) 

  
18S2 – 5'-ATG GTT GCA 

AAA GCT GAA A-3' 

9R – 5'-GAT CCT TCC 
GCA GGT TCA CCT AC-

3' 
~800 49 

(Giribet et al. 
1999); (Giribet 
et al. 1996) 

Symbiont       

16S Small subunit 
rRNA 

27F – 5'-AGA GTT TGA 
TCM TGG CTC AG-3' 

1492R – 5'-TAC GGY 
TAC CTT GTT ACG ACT 

T-3' 
~ 1500 50 (Weisburg et 

al. 1991) 
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Table S3. Best-fit models and phylogenetic model parameters for host and symbiont gene analyses. pi = 
equilibrium frequency of nucleotide base i; k = transition/transversion (ts/tv) rate ratio; R(i) = general time-
reversible rate matrix parameterized as in PAUP v.4.0; I = proportion of invariant sites; a = gamma (G) shape 
parameter; all Bayesian estimates are the median of the marginal posterior distribution. Symbiont gene 
analyses utilizing multiple partitions included a rate multiplier to allow rate heterogeneity between partitions. 
AIC: Akaike information criterion, a model comparison criterion; lower scores indicate better models 

Locus   AIC  Base frequencies  Rate matrix  Rate variation 
     pA pC pG pT  R(a) R(b) R(c) R(d) R(e)  a I  

Host                   
COI ML  11960.39  0.27 0.10 0.19 0.43  1.02 9.36 0.67 3.50 31.02  0.32 0.26  
(GTR + I + G) Bayes    0.27 0.10 0.19 0.44  0.97 7.41 0.84 3.50 17.62  0.50 0.23  
                   
ND4 ML  15235.30  0.23 0.14 0.26 0.37  1.20 5.37 0.90 1.45 6.63   0.17  
(GTR + I) Bayes    0.22 0.14 0.26 0.38  1.18 5.20 0.94 1.46 6.31   0.18  
                   
18S ML  9638.67  0.24 0.23 0.28 0.25  1.15 2.55 1.24 0.53 3.27  0.69 0.67  
(GTR+I+G) Bayes    0.24 0.24 0.28 0.25  1.11 2.67 1.24 0.40 3.09  0.09 0.65  
                   
Symbiont          k         
16S ML  10802.19  0.26 0.21 0.27 0.25  1.77         
(HKY) Bayes    0.42 0.14 0.23 0.21  0.65         
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Fig. S1. Bayesian phylogeny of mytilids based on the 18S rRNA gene (1604 bp). JdF2008 (bold, this 
study) and Benthomodiolus lignicola fall basal to all other bathymodiolines. The outgroup Crassostrea 
gigas (AM12263) was removed for illustrative purposes 
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Fig. S2. Bayesian phylogeny of bathymodiolines based on NADH dehydrogenase subunit 4 gene 
(441 bp). JdF2008 (bold, this study) and Benthomodiolus lignicola fall basal to all other 
bathymodiolines and cluster together with strong support (Pp = 1). Outgroup taxa (Mytilus edulis, 
Mytilus galloprovincialis, Mytilus trossulus, Crassostrea gigas, and Modiolus modiolus) were 
removed for illustrative purposes 
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