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BAYESIAN META-ANALYSIS FOR IDENTIFYING
PERIODICALLY EXPRESSED GENES IN FISSION YEAST

CELL CYCLE

By Xiaodan Fan, Saumyadipta Pyne and Jun S. Liu∗

Harvard University, Chinese University of Hong Kong and Broad Institute

The effort to identify genes with periodic expression during the cell
cycle from genome-wide microarray time series data has been ongoing
for a decade. However, the lack of rigorous modeling of periodic ex-
pression as well as the lack of a comprehensive model for integrating
information across genes and experiments has impaired the effort for
the accurate identification of periodically expressed genes. To address
the problem, we introduce a Bayesian model to integrate multiple in-
dependent microarray data sets from three recent genome-wide cell
cycle studies on fission yeast. A hierarchical model was used for data
integration. In order to facilitate an efficient Monte Carlo sampling
from the joint posterior distribution, we develop a novel Metropolis-
Hastings group move. A surprising finding from our integrated analy-
sis is that more than 40% of the genes in fission yeast are significantly
periodically expressed, greatly enhancing the reported 10-15% of the
genes in the current literature. It calls for a reconsideration of the
periodically expressed gene detection problem.

1. Introduction. Cell division cycle is the concerted sequence of pro-
cesses by which a cell duplicates its DNA and divides into two daughter cells.
Many genes are expressed periodically at a specific stage during the cell cycle
when they peak and trough over a certain time range. They are termed as
“cell cycle-regulated genes”. Here, in the context of mRNA expression stud-
ies, we call these “Periodically Expressed (PE) genes”. In contrast, other
genes are called “APeriodically Expressed (APE) genes”. Identification of
PE genes is both of theoretical importance because of the need to under-
stand the different mechanisms underlying these genes’ involvements in the
cell cycle processes, and of practical importance due to the biological links
between cell cycle control and many diseases such as cancer (Sherr, 1996;
Whitfield et al., 2002; Bar-Joseph et al., 2008).

With the help of the microarray techniques and various cell phase synchro-
nization methods (synchronizing the progression of cells through the stages
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2 X. FAN ET AL.

of cell cycle), researchers have conducted genome-wide time series expression
analyses on synchronized cells for various species ranging from fungi to plant
to human (Cho et al., 1998; Spellman et al., 1998; Laub et al., 2000; Ishida
et al., 2001; Menges et al., 2002; Whitfield et al., 2002; Rustici et al., 2004;
Peng et al., 2005; Oliva et al., 2005; Bar-Joseph et al., 2008). Several strate-
gies for identifying PE genes on these data have been developed, such as the
fitting of a sinusoidal function (Spellman et al., 1998), clustering techniques
(Eisen et al., 1998; Whitfield et al., 2002), the single-pulse model (Zhao
et al., 2001), the partial least squares regression approach (Johansson et al.,
2003), the average periodogram (Wichert et al., 2004), the linear combina-
tion of cubic B-spline basis (Luan and Li, 2004), the random-periods model
(Liu et al., 2004), the least square fitting for the periodic-normal mixture
model (Lu et al., 2004), the Fourier score combined with p-value of regula-
tion (de Lichtenberg et al., 2005), the robust spectral estimator combined
with g-statistic (Ahdesmaki et al., 2005), and the up-down signature method
(Willbrand et al., 2005). Zhou et al. (2005) applied a Bayesian approach for
single experiment data by fixing the period at pre-estimated value. Most of
these methods use a set of known PE genes to estimate the cell cycle period
prior to testing the periodicity for other genes.

While the previous efforts have often reported positively about the pres-
ence of periodic signal in these gene expression data, doubts were raised as
to whether such periodic gene regulation was reproducible (Shedden and
Cooper, 2002; Wichert et al., 2004) and, by extension, about the identity
and count of PE genes discovered by subsequent analyses. One prevalent
reason for skepticism is the reliance of many of the studies on ad hoc thresh-
olds to classify genes as PE or otherwise. For example, Cho et al. (1998)
detected the PE genes by visual inspection; Spellman et al. (1998) designed
a cutoff value based on prior biological knowledge. Another possible reason
is that the commonly assumed white noise background model for time se-
ries might be too unrealistic to allow correct inference about the identity
and count of PE genes (Futschik and Herzel, 2008). Furthermore, all pre-
vious approaches were designed for analyzing single time series per gene,
which did not allow for an efficient combination of data from multiple ex-
periments and therefore lacked the power to identify a large fraction of all
PE genes. Recently Tsiporkova and Boeva (2008) proposed a procedure to
combine multi-experiment data based on a dynamic time warping alignment
technique, which is potentially useful for analyzing multiple cell cycle data
sets if combined with a periodicity detection algorithm. However, the pro-
cedure requires each time point within a time series to be aligned to a time
point within the other time series, which is not always appropriate when
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BAYESIAN META-ANALYSIS OF CELL CYCLE GENE EXPRESSION 3

the lengths of cell cycle period, the sampled time ranges, and the sampling
frequencies are all different between experiments.

Recently three independent studies (Rustici et al., 2004; Peng et al., 2005;
Oliva et al., 2005) conducted elutriation and cdc25 block-release synchro-
nization experiments to measure genome-wide expression in fission yeast
(Schizosaccharomyces pombe) cell cycle. The results from these three stud-
ies also showed discrepancies with regard to the identity and count of PE
genes. They reported 407, 747 and 750 PE genes, respectively, with only 176
genes being common to all three lists. However the availability of 10 genome-
wide experiments produced by these three different labs has made the fission
yeast currently the organism with the largest cell cycle transcriptome data,
which provides us an opportunity to obtain a better understanding of the
cell cycle. Marguerat et al. (2006) combined the ten data sets from the three
studies by multiplying p-values for gene regulation and periodicity from each
experiment. They concluded that no more than about 500 PE genes can be
reliably identified from the combined data. While observing that well over
1000 fission yeast genes could be periodically expressed and that each study
had detected a different subset of these, they attributed the discrepancy to
inconsistent gene naming, the use of different data analysis methods, and
the use of arbitrary thresholds.

We investigated the PE gene identification problem by employing a Bayesian
approach to provide (1) a more realistic and comprehensive model for the
cell cycle time series data, and (2) an efficient and rigorous way to com-
bine data from multiple experiments. A hierarchical model together with
MCMC computation is used to integrate different sources of variation and
correlation into a single coherent probabilistic framework. We applied this
approach to integrate the ten genome-wide time series data sets. A strik-
ing finding from our analysis is that more than 2000 genes are significantly
periodically expressed. This number greatly enhances the count of possible
cell cycle regulated genes in the current literature. Most interestingly, our
finding can be visualized clearly from Fig 4, which merely displays the orig-
inal data, but with the genes ordered according to our inferred periodicity
strength and peaking phase.

2. Materials and methods. In Section 2.1, we describe the cell cycle
gene expression data. In Section 2.2, we outline our parametric model for cell
cycle gene expression. The Bayesian computation of the model is described
in Section 2.3 and Section 2.4. In Section 2.5, we present our strategies for
distinguishing PE genes from APE genes based on the model fitting results.
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4 X. FAN ET AL.

2.1. Microarray time series data. We obtained the normalized gene ex-
pression data for ten genome-wide experiments by three cell cycle microar-
ray studies (Rustici et al., 2004; Peng et al., 2005; Oliva et al., 2005) from
the websites listed in Table 1. For each experiment, a culture of cells are
grown and synchronized. A set of microarrays are used to measure gene ex-
pressions at selected time points (possibly with technical replication of the
microarray). All values were converted to log-ratios with base 2. To make
the log-ratios comparable across arrays, we transformed the values for every
array separately to set the median log-ratio of each array to zero. Log-ratios
from technical replicates, if present, were averaged. Time series with more
than 25 percent missing entries were omitted. We unified gene names across
the studies based on GeneDB database entries (Hertz-Fowler et al., 2004).
The genes without a consistent nomenclature were excluded.

Let Yget denote the gene expression log-ratio at time Tet in experiment
e for gene g, where g = 1, · · · , G, e = 1, · · · , E, t = 1, · · · , Se. Here Yget is
the observed data; Tet, the time of the measurement; G, the total number
of genes studied; E, the total number of independent experiments; and Se,
the total number of time points measured in experiment e. The whole data
set can be visualized as a G-by-E matrix of time series, where each row
corresponds to one gene and each column corresponds to one experiment.
If we pool together all filtered data from the ten data sets, we have that
G=4994, E=10, and Se ranges from 18 to 52. A detailed overview of the
data is given in Table 1. For illustration, the data for two genes are shown
in Fig 1.

2.2. Model. We model each time series as a mean curve with additive
independent and identically distributed (i.i.d.) Gaussian noise for measured
time points. The mean curve is a function of time consisting of a trend
component and a periodic component. For the trend component, we uses
a linear function along with a truncated quadratic function to model the
block-release effect (artifacts introduced by experimental protocols for syn-
chronization; see Lu et al. (2004)) and the general trend shown by the time
series. We assume a first order Fourier model for the periodic component.
A damping term is added to the periodic component to model the cell cy-
cle de-synchronization effect, which implies that the periodic phenomenon
eventually disappears as time increases. To model the whole matrix of time
series, we assume that the periodic components for all genes within one ex-
periment share the same period, which is equal to the cell division time (i.e.
duration between the birth of a cell up to its division into two daughter
cells). We further assume that the relative peak time within the cell cy-
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BAYESIAN META-ANALYSIS OF CELL CYCLE GENE EXPRESSION 5

cle for every gene is fixed, which allows all genes to share the same phase
shift when the periodic components across experiments are compared. More
specifically, we assume the following model (M1 ) for each time series:

Yget = age+bgeTet+cge(min(Tet−dge, 0))2+Age cos(µeTet+ψe+φg)e−λeTet+εget

where
age + bgeTet + cge(min(Tet − dge, 0))2: trend component
Age cos(µeTet + ψe + φg)e−λeTet : periodic component
εget ∼ N(0, σ2

ge): i.i.d. noise
age, bge: coefficients of the linear trend of a time series
dge: ending time of block-release effect of a time series
cge: magnitude of block-release effect of a time series
σ2
ge: noise level of a time series
Age: amplitude of periodic component of a time series
µe: cell cycle angular frequency, equal to 2π divided by the period of cell

cycle of an experiment
ψe: experiment-specific phase, which models the phase-shift between two

experiments
φg: gene-specific phase, which decides its peaking time
λe: magnitude of the de-synchronization effect of an experiment

For each gene, we use different amplitude parameter Age for different
experiments to account for the effects of different experimental platforms and
synchronization techniques. If a gene is not periodic, the fitted amplitude
Age should be close to zero. For such time series, the phase parameter φg
is redundant. To capture different noise levels in different experiments, we
specify a hierarchical structure for the noise component by assuming that all
σ2
ge from the same experiment share the same inverse chi-square distribution

with chosen degree of freedom C12 (a constant specified in Appendix A) and
unknown hyper-parameters ζe:

σ2
ge|ζe ∼ Inv − χ2(C12, ζe).
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6 X. FAN ET AL.

For convenience, we introduce the following notation:

Y ≡ {Yget, for g = 1, · · · , G; e = 1, · · · , E; t = 1, · · · , Se}: expression values
Θe ≡ {µe, ψe, λe, ζe}: experiment-specific parameters
Θ ≡ {Θ1, · · · ,ΘE}
Φ ≡ {φ1, · · · , φG}: gene phases

Γge ≡ {age, bge, cge, dge, Age, σ2
ge}: time-series-specific parameters

Γg ≡ {Γg1, · · · ,ΓgE}
Γ ≡ {Γ1, · · · ,ΓG}

All variables may be visualized within a gene-by-experiment (i.e., G×E)
matrix (Fig 2), which shows their dependence structure. Each row corre-
sponds to a gene-specific parameter φg and each column represents the set
of experiment-specific parameters (µe, ψe, λe, ζe). Each cell of the matrix
corresponds to the variables specific to a time series. The gene-specific pa-
rameter φg is the key to integrate the time series for gene g from multiple
experiments. Experiment-specific parameters Θe are used to pool informa-
tion across all genes within a particular experiment.

For model comparison, we also introduce the following model (M0) for
APE genes:

Yget = age + bgeTet + cge(min(Tet − dge, 0))2 + εget

The only difference between M0 (null model) and M1 (alternative model) is
the periodic component Age cos(µeTet + ψe + φg)e−λeTet .

2.3. Identifiability. In the M1 model, the phase parameters ψe and φg
are not identifiable because the joint posterior distribution remains the same
if we add a constant z to all ψe and subtract z from all φg. This non-
identifiability problem can be solved by fixing one of the phase parameters,
but the loss of one degree of freedom makes the MCMC algorithm very
“sticky” (slow-mixing). Since we only care about the relative values of ψe’s
and φg’s, we solve the problem by assigning a reasonably tight prior distri-
bution to one of the phase parameters and flatter priors to others, and using
a transformation group move to improve mixing of the MCMC chain (see
Appendix A.3).

For periodic signal fitting, the angular frequency parameter µe is usually
non-identifiable because a time series with angular frequency µe is also a
time series with angular frequency µe/n for any positive integer n. We avoid
this problem by specifying the periodic signal as a damping single sinusoidal
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curve and limiting the domain of µe to a bounded range. The bound of µe
is instituted via its prior which is based on our prior knowledge of the cell
cycle duration in fission yeast.

2.4. Bayesian computation. We estimate all unknown parameters through
MCMC simulation of their joint posterior distribution. More specifically, we
use a Metropolis-within-Gibbs algorithm to iteratively sample one set of
parameters given all the others:

• Step 1: sample experiment-specific parameters Θe conditional on Φ, Γ
and Y
• Step 2: sample gene-specific parameters φg conditional on Θ, Γ and Y
• Step 3: sample time series-specific parameters Γge conditional on Θ, Φ

and Y

The MCMC chain composed of these basic moves suffers from a slow mix-
ing problem caused by strong correlations among some parameters. We can
alleviate the problem by parallelizing each of the three steps based on the
conditional independence of the parameters. For instance, we can parallelize
the sampling of Γge from their full conditional distribution since they are
independent of each other given Θ, Φ and Y . When some parameters are
highly correlated in their joint distribution, single-component moves cause
very slow-mixing. To cope with this problem, we designed a new sampler
called Metropolized independence group sampler (MIPS) by combining the
ideas of grouping (Liu et al., 1994) and Metropolized independence sampler
(Hastings, 1970; Liu, 1996, 2001). The key idea is to update the whole subset
of correlated variables simultaneously independent of the current state us-
ing a sequential proposing procedure. MIPS moves are inserted to the main
Metropolis-within-Gibbs iteration. The details of the MCMC implementa-
tion are given in Appendix A.

2.5. Strategies for discerning PE genes from APE genes. We used three
statistics to judge which genes are PE ones. Among them, Bayesian Infor-
mation Criterion is used to compare the fitting of model M1 with that of
model M0, both to real data. The other two statistics measure the period-
icity by comparing the fitting of M1 model to the real data with that to the
permuted data or the data simulated from the M0 model.

2.5.1. Permutation test. Since we fit model M1 to every gene, even the
APE genes are modeled with experiment-specific parameters Θ that are
primarily determined by PE components. Therefore, to examine the effect of
our Bayesian model fitting procedure on APE genes, we generate background
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8 X. FAN ET AL.

data by permuting each time series for every gene in the real data, which
destroys any periodic pattern therein. We run the same MCMC algorithm
to fit the M1 model to the background data set by fixing all experiment-
specific parameters Θ at the posterior mode obtained from the MCMC run
for the real data.

2.5.2. Simulation from the null model. One problem of using the per-
mutation data as background control is that the permuted time series do
not capture the intrinsic autocorrelation of the measured time series, which
exists even if it is not periodically expressed. For example, many time series
in the real data show a general trend without oscillation, which may be a
result of the gene’s response to the perturbation caused by synchronization
techniques. To accommodate this possible bias, we generate a second data
set from the M0 model. Compared to the permuted time series, M0 explains
the autocorrelation in the time series by a mean curve. We run the same
MCMC algorithm to fit M0 to all genes in the real data.

We simulated from the M0 model a data set of similar size and structure
as the combined real data set. All parameters are simulated from their cor-
responding prior distributions. Both M1 and M0 are fitted to this simulated
data set. While fitting M1, we fix all experiment-specific parameters Θ at
the posterior mode obtained from the MCMC run for the real data.

2.5.3. Model comparison. One approach for discerning PE genes from
APE genes is to use permuted data or data simulated from the null model
as background control, and to fit the M1 model to both the real data and
the background data. The fitting of the background data is then used to
determine a threshold for the desired false positive rate (FPR). Another ap-
proach is to fit both models M1 and M0 to the real data, and then do the
classification based on a comparison of the fitness of the models. Various
information criteria can be used for this task, such as Akaike’s Informa-
tion Criterion (AIC) (Akaike, 1973), Bayesian Information Criterion (BIC)
(Schwarz, 1978), and Deviance Information Criterion (DIC) (Spiegelhalter
et al., 2002), to just name a few.

A full Bayesian alternative to our approach here is to introduce a latent
variable Ig for each gene to indicate whether it comes from M1 or M0. Then,
the reversible-jump strategy (Green, 1995) can be used to build a MCMC
sampler to traverse the joint space of the latent indicators and model param-
eters. But due to the global nature of many parameters in our model, this
approach is computationally extremely expensive. Additionally, the results
so obtained may be too sensitive to our model assumptions. Thus, we feel
that using randomization and null model approaches in the spirit of poste-
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BAYESIAN META-ANALYSIS OF CELL CYCLE GENE EXPRESSION 9

rior predictive model checking (Gelman et al., 1996) provides a more robust
detection of PE genes.

2.5.4. Statistics for periodicity. We use multiple gene-specific statistics
to measure the periodicity of a gene. Based on the fitted parameter values
for the M1 model, we define the gene-specific Signal-to-Noise Ratio (SNR)
as the relative strength of the fitted periodic component compared to the
noise level:

SNRg =
E∑
e=1

∑Se
t=1{Age cos(µeTet + ψe + φg)e−λeTet}2

σ2
ge

.

The SNR statistic combines periodicity information for a gene from every
experiment in terms of the amplitude of its periodic component. For each
gene, we calculate SNR for each iteration of the MCMC chain, and then
summarize the posterior samples of SNR using the 2.5th percentile, the
97.5th percentile, and the mean. Genes with higher SNR values are more
likely to be periodically expressed. We also use the fitted phase to measure
periodicity from the fitted parameters of the M1 model. More specifically,
we use the length of the 95% central posterior interval (denoted by LPI) of
a gene’s relative phase φg + ψ1 (ψ1 is chosen arbitrarily since only the dif-
ference of relative phase matters) as one of the periodicity measures. Genes
with a higher LPIs are less likely to be periodic either because their pe-
riodic components are too weak or their multiple time series might show
inconsistent peaking time within the cell cycle.

We use Bayesian Information Criterion difference (BIC01) to measure
periodicity based on the fitted posterior modes of the two models. Let L0

g

and L1
g denote the likelihood values for gene g at the posterior mode of

the parameters for models M0 and M1, respectively. The model comparison
criterion BIC01 is defined as BIC01

g = 2log(L1
g)−2log(L0

g)−(k1−k0)log(N),
where N is the number of observed data points for the gene, k0 and k1 are the
number of free parameters in models M0 and M1, respectively. A gene with
positive BIC01 value prefers model M1 to M0. Genes with higher BIC01

values are more likely to be periodically expressed.

3. Results and discussion.

3.1. Model fitting check. The MCMC chain on the entire real cell cycle
data converged in approximately 2000 iterations. The autocorrelation func-
tion of the posterior probabilities from each chain showed that the MCMC
algorithm is efficient in terms of effective sample sizes after burn-in. The de-
tails of the model fitting diagnosis are given in the supplemental materials of
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10 X. FAN ET AL.

this paper. Fig 3 displays the posterior distribution of the cell cycle length
2π/µe for each of the ten experiments. After convergence, the experiment-
specific parameters Θ showed little variation, i.e., their marginal posterior
distributions had very small variance compared to their ranges. Based on the
posterior mode determined from the MCMC chain, we calculated the residue
of each time series. The autocorrelation analysis of the residue showed that
by fitting M1 to the data, the autocorrelation was reduced to the level com-
parable to those of i.i.d. noise. Comparison of variance reduction between
the real and the permuted data suggested that the M1 model explained
a significant amount of variance for most of the genes showing significant
autocorrelation in their time series.

3.2. Number of periodically expressed genes. We ranked all genes in the
order of decreasing posterior mean SNR value. Thus, highly ranked genes
are more likely to be periodically expressed. We then stratified this sorted
list into 6 groups, re-ordered each group according to the fitted peaking time.
Fig 4 shows the whole sorted data set. Strikingly, a periodic pattern stands
out for all gene groups after simply reordering them (note that these are
simply rearranged original data). The pattern is clear and consistent across
all experiments for the top 2000 genes, which suggests that about 40% of all
genes in the organism could be periodically expressed. The pattern is still
strong for genes in the range 2001-3500. We can even observe periodicity
among the remaining genes shown in the bottom group, which however is
comparable to the top ranking “genes” in the permuted data.

For a comparison with the result from traditional clustering methods, the
microarray clustering software Cluster (Eisen et al., 1998) was used to group
genes with similar gene expression. A heatmap similar to Fig 4 is included
in the supplemental materials of this paper. Compared to the ubiquitous
periodic pattern in Fig 4, only several small clusters with visible periodic
pattern may be observed from the hierarchical clustering result.

We used two approaches to test whether the visual periodic pattern in
Fig 4 is statistically significant. The first approach compares the fitting of
M1 model to the real and background data, i.e., the permuted data or the
data simulated from the M0 model. Two statistics are used to measure the
periodicity for this approach. The SNR statistic measures the amplitude of
the periodic component, while the LPI statistic measures the uncertainty
of the relative phase of every gene. Fig 5 and Fig 6 show the estimated
posterior densities of these measures. The curves from the background data
provide a null distribution for the corresponding statistic, from which we can
estimate FPR for any given threshold. The clear separation of the posterior
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BAYESIAN META-ANALYSIS OF CELL CYCLE GENE EXPRESSION 11

densities for the real and background data suggests that a lot of genes show
a periodic pattern that is stronger than i.i.d. noise or M0 data. For example,
by comparing the LPI curves of the real and permuted data in Fig 6, we
can claim 3086 PE genes for FPR=0.002, corresponding to about 10 false
positives. Similarly, by comparing the posterior mean SNR values of the real
and permuted data in Fig 5, we can claim 3599 PE genes for FPR=0.002.
The number of claimed PE genes when using the simulated data from the
M0 model as background control is similar. For instance, the comparison of
the posterior mean SNR densities yields 3414 PE genes for FPR=0.002, and
that of the LPI densities yields 3036 PE genes for FPR=0.002.

The second approach compares the fitting of the two models M1 and M0,
both using the real data. We used BIC as the model comparison criterion.
As shown in Fig 7, almost all BIC01 values from the permuted data as
well as the simulated data from the M0 model are smaller than zero. For
the real data, we can claim 2003 PE genes from the combined analysis by
using zero as the threshold for BIC01. Corresponding to this threshold, the
permuted data will only produce one false positive PE gene, corresponding
to FPR=0.0002.

The results of these three statistics are summarized in Table 2. Here we
used the permuted data as background control. The average Spearman cor-
relation between pairs of the statistics is 0.87, suggesting that the three
statistics are highly consistent in ranking the genes’ periodicity. The ap-
proaches based on permutation control (SNR, LPI) made more significant
claims than the model selection approach. Overall, we obtained a list of 1898
significant PE genes that are claimed by all the three statistics.

3.3. Performance comparison. To evaluate the performance of identify-
ing PE genes, we defined a benchmark set as the union set of the list of PE
genes derived from small-scale experiments (Marguerat et al., 2006) and a
core set of genes whose periodic regulation is conserved between budding
yeast and fission yeast (Lu et al., 2007). The resulting benchmark set con-
sists of 162 genes. We used this benchmark set to compare our method with
the method used by Marguerat et al. (2006).

The statistic used for gene classification by Marguerat et al. (2006) is a
score calculated from a p-value of regulation and a p-value of periodicity.
When combining multiple experiments for gene classification, they multi-
plied the p-values from individual experiments to get a total p-value of
regulation and a total p-value of periodicity. To estimate the FPR of their
statistic, we calculated the scores for the permuted data. For our method,
we use the SNR statistic for gene classification.
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12 X. FAN ET AL.

Fig 8 shows the performance of the our SNR statistic and Marguerat et
al.’s score on both the combined data (all experiments) and the Exp1 data (a
single experiment) in the form of ROC curves. For any given FPR value, we
estimate the threshold of a statistic from the permuted version of the data.
The corresponding false negative rate (FNR) is estimated by the fraction of
the genes in the benchmark set that are classified as APE gene according to
this threshold. When applied on the data from a single experiment (Exp1
data), the SNR statistic apparently outperforms Marguerat et al.’s score.
The gain of statistical power at the single experiment level could be due to
our explicit modeling of the trend component and the de-synchronization
effect, which makes our model more realistic for the cell cycle time series.
When comparing their performances on the combined data, it seems that
the SNR statistic increases the statistical power over Marguerat et al.’s
score significantly. This is due not only to a more realistic model for single
time series, but also to our approach of the Bayesian meta-analysis. Instead
of combining the p-values from individual experiments, we model multiple
experiments simultaneously so as to borrow information across experiments.

Fig 8 indicates that the same statistic performed better at discerning PE
genes with the combined data than with the data from a single experiment.
This is also true when comparing the performances of a statistic using the
overall combined versus that using any subset of the experiments. The de-
tailed information is given in Table 2 in the supplementary material. This is
natural because any subset contains less information than the full combined
data; but on the other hand, it also indicates that each experiment captured
some information about genes’ periodicity during cell cycle.

3.4. Subset analysis. To compare three individual studies (Rustici et al.,
2004; Peng et al., 2005; Oliva et al., 2005) and different experimental tech-
niques, we used the same method for the combined data set to fit model M1

to all three individual data sets, also the two collections of experiments using
different synchronization techniques (elutriation or cdc25 block-release). We
first determined the 95% posterior interval of the SNR statistic for each gene
to account for the uncertainty of its SNR estimate. Then for comparison of
all the subsets at the same significance level, we claim a gene to be PE if
its posterior mean SNR value is above the upper 97.5% posterior limits of
the SNR of at least 4984 (out of 4994) permuted “genes”. For the combined
data, we thus claimed 2032 PE genes. Fig 9A and Fig 9B show the overlap
of the results from our subset analyses. Fig 9C shows the overlap of the
original results from the three individual studies. There are 976 genes which
are reported as PE by our combined analysis but not by any of the three
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original studies. Supporting evidences for these genes are included in the
supplementary material.

Similar to Fig 9C, the discrepancy about the count and identity of PE
genes exists between individual data sets (Fig 9A) and across synchroniza-
tion techniques (Fig 9B) although we have unified the whole analysis proce-
dure. Therefore instead of attributing the discrepancy between the subsets
to inconsistent gene naming or use of different analysis methods or arbitrary
thresholds (Marguerat et al., 2006), we suggest that the cause is intrinsic
to the data. It also shows that most genes in the discrepant part show sig-
nificant periodicity in the combined analysis. The combined analysis also
captured many genes which can not be detected by subset data analysis.
Combined with the benchmark analysis, we observed that 5 out of the 40
benchmark genes whose periodicity have been confirmed by small-scale ex-
periments (Marguerat et al., 2006) were missed by all three original studies
as well as our combined analysis. On the other hand, 6 out of the 92 core
environmental stress response genes with known function (Chen et al., 2003)
were claimed as periodically expressed by all three original studies as well
as by our combined analysis, suggesting that their periodic signal is clear
to all methods. Possibly, the periodicity measure for widely used positive or
negative benchmark sets are not quite accurate.

To investigate the discrepancy between different subsets, we systemati-
cally tested these subsets’ pairwise reproducibility using the posterior mean
SNR values. If it is true that the genes have an intrinsic order in terms of
periodicity and all individual data sets are of similar quality in revealing this
ordering information, the periodicity measures across pairs of subsets should
be consistent. Each data set yields a SNR vector measuring the periodicity
of all genes. The key idea is to check whether the Spearman correlation of
the two SNR vectors is still significant after removing genes which are top
ranked in both vectors. The details are shown in Fig 10. After removing
the 847 genes that are highly ranked by both Peng et al. and Oliva et al.,
the remaining genes’ SNR values from these two data sets show no positive
Spearman correlation at the significance level of 0.05. This sets the number
of reproducible genes supported by these two data sets (5 experiments) to
847. This same count increases to 934 for Rustici et al. versus Peng et al.
(7 experiments), and to 1008 for Rustici et al. versus Oliva et al. (8 experi-
ments). The increasing of reproducible genes is consistent with the increase
in the size of data involved in comparison. The number further increases to
1554 when comparing elutriation experiments with cdc25 experiments. This
suggests that although the number of reproducible genes is less than the
number of PE genes suggested by the combined analysis, the reproducibility
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is improved by including more data in the comparison or by partitioning the
data according to experiment technique.

To explain the above subset discrepancy, possible flaws in the bench-
mark sets, and the high number of significant genes in the combined anal-
ysis, we hypothesize a network-based dynamics for the cell cycle process.
For instance, periodic signals from transcription of key cell cycle-regulated
genes propagate through the relevant downstream regulatory networks of
the organism potentially targeting a considerable number of genes. Thus,
depending on the status of the network, these genes may show an observ-
able periodic pattern under one condition, and be too weak to detect under
another condition. As a consequence of the combined effect of the variation
in periodicity and experimental noise, each study could capture a different
subset of the PE genes. The difference of the cell cycle length shown in Fig 3,
which could not be explained solely by microarray platform difference, is a
further evidence of such variation. For example, the cell cycle lengths in the
posterior mode for the two cdc25 experiments in Rustici et al. are 135 and
138 minutes. While in Oliva et al. and Peng et al., this number increases
to 164 and 173 minutes, respectively. Although they are using the same
synchronization technique on the same organism, subtle environmental or
physiological differences have changed the speed of the cell cycle oscillation.
Therefore, it may have also changed relative amplitudes of oscillation of the
genes leading to overall ranking discrepancy.

4. Conclusion. In spite of the rapid rise in the number of microar-
ray experiments, many of which address related issues, a systematic meta-
analysis of such data is rarely attempted. We conducted a meta-analysis
of ten fission yeast cell cycle genome-wide time-series experiments with a
model-based Bayesian approach. Compared to other methods, key features
of our model include the fixed relative phase of the peaking time of the
genes across all experiments (e.g., a gene will peak 10 degrees earlier than
another gene in an experiment if and only if the same happens in another
experiment) and a flexible amplitude for periodic components. Our approach
does not require training sets to estimate important global parameters such
as the period of cell cycle, but to infer them from all the data. Notably,
our parametric approach deals with phase shift, signal amplitude difference,
noise level difference and de-synchronization automatically. Despite the high
dimensionality, the implemented MCMC chain mixes well with the help of
global moves. The residual analysis shows that our model fits the data well.

A striking finding of our analysis is that more than 2000 genes are signif-
icantly periodically expressed, which accounts for approximately 40% of all
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the genes in the fission yeast genome. The subset analysis suggests that this
number may increase with more data included. This enhances greatly the
current knowledge of only 10-15% of all fission yeast genes that are reported
as periodically expressed during the cell cycle. Interestingly, genome-wide
oscillation has also been reported by recent studies on other cyclic phenom-
ena in the cell, such as the metabolic cycle and circadian periodicity (Klevecz
et al., 2004; Tu et al., 2005; Ptitsyn et al., 2007). Clearly, certain amount
of influence of the global cell cycle processes on most genes in the genome,
in particular in unicellular organisms such as fission yeast, cannot be ruled
out. For instance, the folding and unfolding of chromosomes over the course
of cell cycle will have genome-wide incidental effect on transcription. How-
ever, earlier studies concede that limited ability to distinguish precisely the
weakly periodic oscillations from prevalent microarray noise only allowed
conservative estimates of PE genes. By explicitly modeling periodic and
non-periodic components, and different sources of variation and noise, our
model-based approach helps to overcome this long-standing limitation. The
resulting list of more than 2000 PE genes would allow the researchers to cast
a much wider and deeper net for cell cycle regulated genes that can lead to
investigation of novel or relatively less known gene modules and networks
involved in the machinery of cell cycle regulation.

It should be noted that the key idea behind our model is rather general.
It can be applied to detect periodic patterns where the amplitude is noisy
but the patterns are nonetheless consistent across different experiments. The
data can be any collection of time series. A study of cell cycle data from other
species such as the budding yeast, mouse, human, etc, using the proposed
method can be of immediate interest.

One possible way to improve the current method is to employ a more
robust error model, using for example t-distributions instead of Gaussians
for the noise term (Hampel et al., 1986; Lange et al., 1989). But as a price to
pay, the computational complexity may be increased substantially. It should
be noted that, as stated in Section 2.5.3, alternative Bayesian model selec-
tion methods may also applied to this problem. For example, Green (1995)
provides a way to perform joint model selection and parameter estimation
via reversible jump MCMC. It may be applicable to this problem if the effi-
ciency of reversible jump MCMC moves can be improved significantly. The
methods proposed by Chib (1995) and Chib and Jeliazkov (2001), which
estimate the marginal likelihood of the data under a model, may also be a
worthwhile direction to explore.

APPENDIX A: MCMC IMPLEMENTATION
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A.1. Prior distribution. We assigned reasonably diffuse but still proper
prior distributions for all parameters:

age ∼ N(0, C1)
bge ∼ N(0, C2)
cge ∼ N(0, C3)
dge ∼ Unif(0, C4)
Age ∝ Exp(rate = C5), 0 ≤ Age < C6

µe ∼ Unif(C7, C8)
ψ1 ∝ N(0, C9), −π ≤ ψ1 < π

ψe ∝ N(0, C10), e = 2, · · · , E, −π ≤ ψe < π

φg ∼ Unif(−π, π)
λe ∼ Unif(0, C11)

σ2
ge|ζe ∼ Inv − χ2(C12, ζe)

ζe ∼ Exp(C13)

The constants in the prior distributions are assigned correspondingly, mak-
ing use of our prior knowledge: C1 = 1, C2 = 0.0052, C3 = 0.00012, C4 =
500, C5 = 10, C6 = 10, C7 = 2π/180, C8 = 2π/120, C9 = 0.22, C10 =
12, C11 = 0.006, C12 = 4, C13 = 50.

A.2. Posterior distributions and Metropolis-within-Gibbs. We
can write down the joint distribution of the data and parameters as:

p(Y,Θ,Φ,Γ) =p(Y |Θ,Φ,Γ)p(Θ,Φ,Γ)

=[
G∏
g=1

{
E∏
e=1

〈
Se∏
t=1

p(Yget|age, bge, cge, dge, Age, σ2
ge, φg, µe, ψe, λe)〉

p(age)p(bge)p(cge)p(dge)p(Age)p(σ2
ge|ζe)}p(φg)]

〈
E∏
e=1

p(µe)p(ψe)p(λe)p(ζe)〉

We assume that all missing data are missing completely at random, so
their corresponding components are simply omitted from this expression.

Again, we introduce the following symbols for convenience:
Dget ≡ Yget − age − bgeTet − cge(min(Tet − dge, 0))2

Rget ≡ Dget −Age cos(µeTet + ψe + φg)e−λeTet
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Xget ≡ (1, Tet, [min(Tet − dge, 0)])

Xge ≡

 Xge1
...

XgeSe


Zget ≡ Yget −Age cos(µeTet + ψe + φg)e−λeTet

Zge ≡

 Zge1
...

ZgeSe


V ≡


1
C1

1
C2

1
C3


From the joint distribution, we can get all full conditional posterior distri-
butions: age

bge
cge

 |rest ∼ N((
XT
geXge

σ2
ge

+ V )−1X
T
geZge

σ2
ge

, (
XT
geXge

σ2
ge

+ V )−1)

p(dge|rest) ∝ 1
C4

exp{−
∑Se

t=1
R2

get

2σ2
ge
}

Age|rest ∝ N(µ, σ2), 0 ≤ Age < C6

where:

µ =
∑Se
t=1 cos(µeTet + ψe + φg)e−λeTetDget − σ2

geC5∑Se
t=1{cos(µeTet + ψe + φg)e−λeTet}2

σ2 =
σ2
ge∑Se

t=1{cos(µeTet + ψe + φg)e−λeTet}2

p(µe|rest) ∝ 1
C8−C7

∏G
g=1

∏Se
t=1 exp{−R2

get

2σ2
ge
}, C7 ≤ µe < C8

p(ψe|rest) ∝ C−0.5
9

∏G
g=1

∏Se
t=1 exp{−R2

get

2σ2
ge
− ψ2

e
2C9
}, −π ≤ ψe < π, for e = 1

p(ψe|rest) ∝ C−0.5
10

∏G
g=1

∏Se
t=1 exp{−R2

get

2σ2
ge
− ψ2

e
2C10
}, −π ≤ ψe < π, for e =

2, · · · , E
p(φg|rest) ∝

∏G
g=1

∏Se
t=1 exp{−R2

get

2σ2
ge
}, −π ≤ φg < π

p(λe|rest) ∝
∏G
g=1

∏Se
t=1 exp{−R2

get

2σ2
ge
}, 0 ≤ λe < C11

σ2
ge ∼ Inv − χ2(Se + C12,

C12ζe+
∑Se

t=1
R2

get

Se+C12
)

ζe ∼ Gamma(C12
2 G+ 1, C12

2

∑G
g=1

1
σ2

ge
+ C13)

For conditional distributions which we only know up to a normalization
constant, we used the Metropolis-Hastings algorithm to draw samples. When
fitting M0 model to a gene, the full conditional distribution of its parameters
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can be obtained by simply replacing all Age with zero in the corresponding
full conditional distribution from M1.

A.3. Advanced MCMC moves for better mixing. Besides the ba-
sic Metropolis-within-Gibbs iteration, we insert the following moves to per-
turb the MCMC chain in order to help it traverse faster through the high
dimensional space where there are many local modes and strong correlations
among a group of parameters.

• Phase parameters ψe and φg are not identifiable in model M1 because
the joint posterior distribution is invariant if we add a value to all ψe
and subtract the same value from all φg. One way to solve this non-
identifiability problem is to fix one of them, but it appears that the
loss of one degree of freedom makes the chain very sticky, i.e., slow
to converge. As an alternative, we assign zero-centered normal prior
distributions to all ψe, and use a transformation group move (Liu and
Wu, 1999; Liu and Sabatti, 2000; Liu, 2001) to improve mixing of
the MCMC sampler. Specifically, we first propose a move by adding
a random number z to all ψe and subtracting z from all φg, and then
use the Metropolis-Hastings rule to accept or reject this move. Since
we only care about the relative phases of genes and experiments, we
use φg + ψ1 as gene’s relative phase and ψe − ψ1 as the phase for an
experiment.
• When a gene violates the assumption that its peaking time in the cell

cycle relative to all other genes is fixed across different experiments,
its multiple time series will show inconsistent phases, which leads to
multiple modes for its phase parameter φg and amplitude parameters
Age. It is difficult to get out of this kind of local mode by updating
φg and Age separately and locally. We combine the idea of grouping
(Liu et al., 1994) and Metropolized independence sampling (Hastings,
1970; Liu, 1996, 2001) to deal with this kind of local modes. We call it
Metropolized independence group sampler (MIPS). We first propose
a new φg independent of old φg, say, from its prior distribution or
an approximation of its conditional posterior distribution. Then, we
sample all Age conditional on the new φg. The Metropolis-Hastings
rule is used to decide whether to accept this move or not. To get a
good proposal of Age, we use linear regression to get the least square
estimate of Age and use it as the center of the proposal distribution of
Age.
• We again use MIPS to deal with the strong correlation within the trend

parameters (age, bge, cge, dge) for a time series. The key is to propose
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a new dge independent of the old dge and sample (age, bge, cge) jointly
conditional on the new dge, which is a multivariate normal distribution
here.
• There are also strong correlations between λe and all Age of the same

experiment e. We still use MIPS to perturb the MCMC chain. We
propose a new λe independent of the old λe and sample all Age of the
same experiment e conditional on the new λe. Similar to the MIPS
moves for φg and Age of the same gene g, we used the least square
estimate of Age to improve the proposal efficiency.

It should be noted that MIPS improves the mixing of the MCMC chain,
especially at the initial state of the sampling, with an extra cost in com-
putation. Our simulations indicated that this is a worthy effort. In meta-
analysis, it is not unusual that different experiments support different values
for a shared parameter. As a result, the shared parameter may have a multi-
modal distribution. In that case, strategies such as MIPS for making global
moves are desirable.
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Table 2
Correlation of different statistics and their classification results

Statistic SNR LPI BIC01

SNR 3599 3051 1967
LPI -0.93 3086 1906
BIC01 0.86 -0.83 2003

NOTE: The permuted data was used as background control. The lower-left part of the
table shows the Spearman correlation between pairs of statistics. The numbers on the
diagonal are the number of PE genes claimed by corresponding statistic. For SNR, we
use a cutoff corresponding to FPR=0.002 for the two mean SNR density. For LPI, we
also use the threshold corresponding to FPR=0.002. We use zero as the threshold for
BIC01. The upper-right part of the table show the number of PE genes claimed by a

pair of statistics. Within them, 1898 genes are claimed by all three statistics.

g

eeee ,,,

2,,,,, gegegegegege Adcba

egeSgetge YYY ,,,,1

Fig 2. Dependence structure of all variables. All links are undirected. Bullets represent a
variable or a group of variables. Diamonds represent the dependence of the variables linked
to it. Corresponding to the G-by-E matrix of time series, the main parameter structure
can be visualized as a matrix, where each row corresponds to a gene-specific parameter φg

and each column corresponds to experiment-specific parameters (µe, ψe, λe, ζe). Each cell
of the matrix corresponds to the variables specific to a time series. For example, all φg’s are
independent of each other conditional on all (µe, ψe, λe, ζe); a time series is independent
of all other time series conditional on the union of φg and (µe, ψe, λe, ζe).

imsart-aoas ver. 2007/09/18 file: CellCycleFullModelFitting_v14.tex date: September 26, 2009



26 X. FAN ET AL.

130 140 150 160 170 180

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

cell cycle length (minutes)

de
ns

ity

Fig 3. Posterior distributions of all cell cycle lengths 2π/µe (unit: minute). The posterior
distribution of the cell cycle length is represented by the second half of the first 4000
iterations from 6 independent MCMC chains. The density curves of the ten 2π/µe are
drawn here.

imsart-aoas ver. 2007/09/18 file: CellCycleFullModelFitting_v14.tex date: September 26, 2009



BAYESIAN META-ANALYSIS OF CELL CYCLE GENE EXPRESSION 27

Exp1  Exp2  Exp3  Exp4  Exp5    Exp6         Exp7             Exp8              Exp9                Exp10
35

01
-49

94
    

    
    

    
    

    
    

    
    

    
    

    
   2

00
1-3

50
0  

    
    

    
    

    
    

    
    

    
    

 90
1-2

00
0  

    
    

    
 60

1-9
00

  3
01

-60
0  

1-3
00

  
Ge

ne
 R

an
k

Rustici et al. Peng et al. Oliva et al.

Fig 4. Heatmap of all genes’ time series data ranked by decreasing mean SNR value.
Columns correspond to time points, which are grouped by experiment and sorted by time
within each group. Rows correspond to genes, which are ranked by their mean SNR value
and sorted by their mean peak times within each group. For example, the first row group
contains the 300 genes with the highest mean SNR value from our combined analysis of
all 10 experiments, and they are sorted by their relative phase φg + ψ1 within the group.
Each time series is normalized to zero mean and unit variance for display. The heatmap is
drawn by TreeView (Eisen et al., 1998) with default setting. Red indicates up-regulation,
green indicates down-regulation, black means no change of expression levels, and grey is
missing data. It shows a periodic pattern for all gene groups.

imsart-aoas ver. 2007/09/18 file: CellCycleFullModelFitting_v14.tex date: September 26, 2009



28 X. FAN ET AL.

0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

log(SNR)

de
ns

ity

real data
permuted data
simulated from M0

Fig 5. Density comparison of SNR from the three data sets. The M1 model is fitted to the
real data, permuted data, and the data simulated from the M0 model. For each gene, we get
the posterior mean of the SNR statistic from the combined analysis. For each data set, we
pool all genes together to get a kernel density estimate, which is shown in this graph. The
vertical line indicates the threshold corresponding to FPR=0.002 in the permuted data,
from which one can claim 3599 PE genes from the real data.
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Fig 6. Density comparison of LPI from the three data sets. LPI is defined as the Length
of the 95% central Posterior Interval (LPI) for a gene’s relative phase φg +ψ1. LPI mea-
sures our uncertainty about a gene’s peaking time. The vertical line indicates the threshold
corresponding to FPR=0.002 in the permuted data, from which one can claim 3086 PE
genes from the real data.
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Fig 7. Density comparison of BIC01 from the three data sets. Both the M1 model and
the M0 model are fitted to the three data set. For each gene, BIC01 is calculated at the
posterior mode to compare its fitting between the M0 model and the M1 model. The vertical
line indicates the threshold BIC01 = 0, from which one can claim 2003 PE genes from the
real data and only 1 gene from the permuted data.
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Fig 8. Performance on the benchmark set. For each of the four methods listed in the
figure legend, we plot FNR against FPR under various thresholds. For each threshold, the
benchmark set of 162 PE genes is used to estimate FNR. The permuted version of the data
is used to estimate FPR. A smaller under-curve area corresponds to a better classification
performance for the benchmark set.
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Fig 9. Venn diagrams showing overlap between claimed PE genes from subsets of the data.
Each gene set in all diagrams is compared with the result from the combined analysis that
we did using our method. The number before the plus sign is the number of genes also
claimed as periodically expressed by our combined analysis. The stand-alone circle repre-
sents the part which is reported only by the combined analysis. (A) Comparing the results
from individual data sets using our method. (B) Comparing the results from two syn-
chronization techniques using our method. (C) Comparing the results reported in original
studies.
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Fig 10. Spearman correlation test for reproducibility between pairs of data sets. For each
data set, we rank genes in the order of decreasing mean SNR value. For a pair of data
sets, we define a gene’s combined rank as its lower rank in the two data sets. We then sort
genes according to the combined rank. Top genes in the resulted list are the overlapping
part of the top ranking genes from individual lists, i.e., the reproduced part if we claim the
same number of PE genes from individual lists. To test the reproducibility between a pair
of data sets, we remove a certain number of the top ranking genes in the resulted list and
then do Spearman correlation test for the remaining genes’ mean SNR value. The p-value
of this test will tell us whether the two data sets will still produce consistent gene ordering
after we take out the most consistent genes. This graph shows the relationship between the
number of removed top ranking genes and the Spearman correlation test p-value. Different
curves correspond to different pairs of data set. The horizontal dotted line corresponds to
the p-value threshold of 0.05. The solid curve and the horizontal dotted line crossed when
the number of removed genes increases to 1554, which means the elutriation experiment
data and the cdc25 experiment data will not produce significant overlapping after we deleted
the 1554 top ranking genes.
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