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QUANTILE UNCORRELATION AND INSTRUMENTAL REGRESSIONS
∗

TATIANA KOMAROVA1, THOMAS SEVERINI2, AND ELIE TAMER3

Abstract. We introduce a notion of median uncorrelation that is a natural ex-
tension of mean (linear) uncorrelation. A scalar random variable Y is median
uncorrelated with a k-dimensional random vector X if and only if the slope from
an LAD regression of Y on X is zero. Using this simple definition, we characterize
properties of median uncorrelated random variables, and introduce a notion of mul-
tivariate median uncorrelation. We provide measures of median uncorrelation that
are similar to the linear correlation coefficient and the coefficient of determination.
We also extend this median uncorrelation to other loss functions.
As two stage least squares exploits mean uncorrelation between an instrument vec-
tor and the error to derive consistent estimators for parameters in linear regressions
with endogenous regressors, the main result of this paper shows how a median un-
correlation assumption between an instrument vector and the error can similarly
be used to derive consistent estimators in these linear models with endogenous
regressors. We also show how median uncorrelation can be used in linear panel
models with quantile restrictions and in linear models with measurement errors.
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1. Introduction

We introduce a concept of quantile uncorrelation, or L1-uncorrelation, between two

random variables that is a natural extension of the well known mean uncorrelation, or

L2-uncorrelation. We term this type of uncorrelation, “median uncorrelation,” which

is the counterpart of the familiar mean (linear) uncorrelation, or simply uncorrelation.

We characterize the relationship between random variables that are uncorrelated

in this manner. We provide a series of properties that imply or are implied by

median uncorrelation. Naturally, for example, independence of two random variables

implies median uncorrelation (or in this case Lp-uncorrelation for any p ≥ 1). Also,

this uncorrelation is not symmetric, and is nonadditive, but it retains an important

invariance property.

We extend our definition to median uncorrelation between random vectors which

results, indirectly, in a multivariate version of a quantile restriction. We also derive an

asymmetric correlation measure, based on this notion of quantile uncorrelation, that

takes values in [−1, 1] with a value of zero for uncorrelation. In addition, we provide

another correlation measure that is the analog of the coefficient of determination, or

R2, in linear regressions. We also extend this concept to cover Lp-uncorrelation for

p ≥ 1.2

As two stage least squares is based on exploiting linear uncorrelation between the

error and an excluded random variable (the instrument), we also show that this

uncorrelation leads naturally, and under easily interpretable conditions, to “instru-

mental” regressions with median uncorrelation. These are analogs of Basmann and

Theil’s two stage least squares, or 2SLS, (Theil (1953) and Basmann (1957)) as de-

rived from the usual mean uncorrelation between two random variables. As in the

classical 2SLS, median uncorrelation leads to an estimator that is derived by taking

a “sample analogue” of the median uncorrelation measure. This estimator, similar

to one used by Chernozhukov and Hansen (2005) (or CH) , is consistent provided

that this uncorrelation holds (along with other standard assumptions). Other appli-

cations are natural counterparts of existing least squares methods. For example, by

exploiting this uncorrelation further, we show that as instrumental variable methods

can be used in mean-based models to remedy the problem of classical measurement

error, we show how variables obeying our median uncorrelation condition can be used

as instruments to obtain estimates of parameters in linear models with measurement
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error under quantile restrictions. Furthermore, panel data quantile regression of dif-

ferenced data delivers consistent estimates of parameters of interest without making

assumptions on the individual effects under median uncorrelation restrictions. So,

this uncorrelation gives support for running standard quantile regression of first dif-

ferenced outcomes on first differenced regressors, under an absolute loss function to

obtain consistent estimates of the slope parameters in linear models.

An important feature of the concept of median uncorrelatedness is the fact that it

is defined in terms of the linear predictor, and hence is explicitly a “linear concept.”

Basically, it shares this property with say best linear predictors in that, heuristically,

a random variable is median uncorrelated with another if the latter is not “useful”

as a linear predictor of the former under absolute loss. Finally, this notion of median

uncorrelation is general and is loss function based.

There is a large literature in econometrics on best predictor problems. Man-

ski (1988) delineates estimators derived from prediction problems from various loss

functions. There, best linear predictors are derived and consistent estimators are

provided that are based on the analogy principle. The structural linear model based

on quantile restrictions is equally well studied starting with the work of Koenker and

Bassett (1978); see also Koenker (2005). There has also been a series of papers deal-

ing with the presence of endogenous regressors in models with quantile restrictions.

Amemiya (1981) proposed a two-staged least absolute deviation estimator. Then,

based on method of moments, Honoré and Hu (2004) provide methods that can be

used to do inference on parameters defined though separable moment models (that

can be nonlinear). Chernozhukov and Hansen (2005) (CH) in a series of papers shed

new light on general class of monotonic models with conditional quantile restrictions.

They provide sufficient point identification conditions for these models, and also an

estimator that they is consistent under those conditions. CH study also the asymp-

totic properties of their estimator and characterize its large sample distribution. The

estimator based on our median uncorrelation assumption is the same as the one used

in CH. Finally, Sakata (2007) provides estimators based on an L1 loss function for

instrumental regression models.

In Section 2, we provide first a few elementary definitions that lead to median

uncorrelation. After defining median uncorrelation, Section 3 characterizes this un-

correlation concept in terms of various properties of the joint distribution of random

variables. Section 4 shows how median uncorrelation leads to natural estimators in
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linear models with endogenous regressors. This notion is extended in section 5 to lin-

ear quantile regression with measurement error and to panel data quantile regression.

Section 6 concludes.

2. Definition and Properties

Let T be a scalar random variable and let S be a k-dimensional random vector

such that E|T | <∞ and E||S|| <∞. We are interested in the following optimization

problem since it is key in defining our concept of median uncorrelation:

min
(α,β)

E|T − α− S �β|.

Define M(T, S) ⊂ Rk as the set of solutions to this problem with respect to β:

M(T, S) ≡ {β : ∃α such that (α,β) = argmin
(α̃,β̃)

E|T − α̃− S �β̃|}.

In general, one can find distributions in which M(T, S) is a set. However, under

weak conditions, M(T, S) is a singleton; see Propositions 1 and 2 below. Notice that

for a fixed β,

E|T − S �β −Med(T − S �β)| = min
α

E|T − α− S �β|,

where

Med(z) ≡ inf{t : P (z ≥ t) ≥ 0.5}.

Therefore,

M(T, S) = argmin
β

E|T − S �β −Med(T − S �β)|.

The next propositions are important for deriving characterizations of median un-

correlation. Proposition 1 gives sufficient conditions that guarantee that M(T, S) is

a singleton. Proposition 2 provides a converse result.

Proposition 1. Suppose that equation

(2.1) E[Ssgn(T − S �b−Med(T − S �b))] = 0

has a unique solution1 b∗. Then M(T, S) is a singleton and M(T, S) = b∗.

1The function sgn(·) is defined in the following way:

sgn(x) =






1, x > 0
0, x = 0
−1, x < 0.
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The proposition below establishes that if (2.1) has a solution, then the converse

to the result in proposition 1 is also true. So, the combination of the those two

propositions provide necessary and sufficient conditions for characterizing M(T, S)

as the solution to (2.1).

Proposition 2. Suppose that (2.1) has a solution. If M(T, S) is a singleton, then

M(T, S) is the unique solution to (2.1).

The next definition introduces the notion of median uncorrelation of a random

vector with another random vector. Here, and in the remainder of the paper, we

take M(T, S) = 0 to mean that M(T, S) contains the single value 0.

Definition 2.1 (Median Uncorrelation). Let W denote an l-dimensional random

vector. We will say that W is median uncorrelated with S if

(2.2) M(c�W,S) = 0 for all c ∈ �l.

The definition above is loss function based. So, it naturally carries over to quan-

tiles other than median, by simply changing the absolute loss to asymmetric loss by

using the “check function.” Moreover, implicit in this definition, is a formulation

for multivariate quantiles. In particular, when defining this uncorrelation property

meant for scalar quantiles to the multivariate case, we require that median uncorre-

lation holds for any linear combination of the elements of the multivariate vector, as

in (2.2). Finally, a key property that this “loss” function maintains is the invariance

property below.

Lemma 2.1 (Invariance). For any constant vector b ∈ �k and any constant scalar

a,

M(T + a + S �b, S) = M(T, S) + b.(2.3)

This property plays a key role below. Linearity of the model is essential for this

invariance property to hold. The concept of uncorrelation we introduced itself, is

intimately tied to the linear model and is similar to the relationship between uncor-

relation in the least squares setup and its relationship to the linear model. Median

uncorrelation is median linear uncorrelation.
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3. Characterizations of Median Uncorrelation

In this section, we provide key insights that explore further the meaning of median

uncorrelation in definition 2.1 above. The following characterization lemma collects

a set of properties that are helpful in gaining intuition about median uncorrelation.

Theorem 3.1 (Properties of Median Uncorrelation). The following hold:

A. A sufficient condition for an l-dimensional random vector W to be median-

uncorrelated with a random vector S is that Med(c�W |s) = Med(c�W ) for all

c ∈ �l.

B. If W is median-uncorrelated with S, it does not necessarily follow that S is

median-uncorrelated with W .

C. A sufficient condition for W to be median uncorrelated with S is that the

conditional characteristic function of W given S is real.

D. Consider a scalar random variable T and any random vector S. Assume that

M(T, S) is a singleton. Then T can be written as

T = α0 + S �M(T, S) + δ,

where M(δ, S) = 0, and α0 is any constant.

E. For a scalar random variable T and random vectors S and Z in �k, assume

that equation (2.1) and the equation

E[Zsgn(T − Z �b−Med(T − Z �b))] = 0

have solutions, and M(T, S + Z) is a singleton. Then,

M(T, S) = M(T, Z) = 0 ⇒ M(T, S + Z) = 0.

F. For a scalar random variable T and a binary 0/1 random variable S such that

the median of T |S = 1 and the median of T |S = 0 are unique, the following

hold:

if (2.1) has a solution, then

M(T, S) = 0 =⇒ Med(T |S = 1) = Med(T |S = 0) = Med(T );

if M(T, S) is a singleton, then

M(T, S) = 0 ⇐= Med(T |S = 1) = Med(T |S = 0) = Med(T ).

Property (A) can be directly derived from the definition and basically states me-

dian independence as a sufficient condition for median uncorrelation. (B) is simple
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and is in direct contrast with mean uncorrelation which is a symmetric property.

Property (D) is important and it states that any scalar random variable T can be

decomposed as a linear combination of S’s and another random variable that is me-

dian uncorrelated with S. This is a direct result of the invariance property in (2.3)

above. Moreover, this is similar to the linear mean decomposition in best linear

prediction examples. See (3.1) below. Evidently, if W is median-uncorrelated with

S, then S is not useful in the L1 prediction of linear functions of W .

3.1. Comparison to Mean Uncorrelation. It is helpful to compare the median

uncorrelation with the usual mean uncorrelation, which is well known.

Consider the optimization problem

min
(α,β)

E(T − α− S �β)2).

This problem always has a unique solution. Denote its solution with respect to β as

L(T, S). This is the L2 analogue of M(T, S).

It is easy to show that, for scalar S, for example, L(T, S) = Cov(T, S)V ar(S)−1.

In addition, W and S are (mean) uncorrelated if, for any c ∈ �l, c �= 0, L(c�W,S) = 0

since

L(c�W,S) = V ar(S)−1Cov(S, W )c

Properties in Theorem 3.1 above have the following L2 versions.

L2 Properties. The following hold:

A. A sufficient condition for an l-dimensional random vector W to be (mean) un-

correlated with a k-dimensional random vector S is that E(c�W |S) = E(c�W )

for all c ∈ �l. This holds in particular if W is mean independent with S.

B. If W is uncorrelated with S, then S is uncorrelated with W .

C. A sufficient condition for W to be uncorrelated with S is that the conditional

characteristic function of W given S is real.

D. For a scalar random variable T and a k-dimensional random vector S, variable

T can be represented as follows:

(3.1) T = α0 + S �L(T, S) + δ∗,

where L(δ∗, S) = 0 and α0 is any constant.

Clearly, If W is uncorrelated with S, then S is not useful in the L2 prediction of

linear functions of W .
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The main technical differences between median uncorrelation and uncorrelation are

that (1) median uncorrelation is not symmetric, (2) if W1 and W2 are both uncorre-

lated with S, then the vector (W1,W2) is uncorrelated with S, while the same is not

true for median uncorrelation, (3) a condition for W and S to be uncorrelated can be

given in terms of W alone (i.e., Cov(W,S) = 0) without reference to linear functions

and (4) the additivity of L(W,S), i.e., L(W1 +W2, S) = L(W1, S)+L(W2, S), which

often greatly simplifies technical arguments. This latter difference basically means

that if W1 is uncorrelated with S and W2 is uncorrelated with S, then W1 + W2 is

uncorrelated with S. Two simple results in proposition 3 below compare the median

uncorrelation with the usual mean uncorrelation.

Proposition 3. Let T be a scalar random variable and S be a random vector in Rk.

(1) If V , a scalar random variable, is independent of S, then

cov(T + V, S) = cov(T, S),

but

M(T + V, S) �= M(T, S) in general.

(2) If V , a random vector in Rk, is independent of T , then

cov(T, S + V ) = cov(T, S),

but in general,

M(T, S + V ) �= M(T, S)

In the next section, we give a simple measure for median correlation that is

bounded between -1 and 1.

3.2. Measures of median correlation. In the case when two random variables

are not median uncorrelated, we would like to be able to measure the degree of their

median correlation. Two such measures are introduced below. The first generalizes

the usual (mean) correlation; the second generalizes the idea of the coefficient of

determination.

First, we review the L2 case. For scalar random variables T and S, introduce the

normalized random variables

T̃ =
T − E(T )

σT
,

S̃ =
S − E(S)

σS
.
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Correlation between T and S is measured by the correlation coefficient corr(T, S):

corr(T, S) = E
�
|T̃ ||S̃|sgn(T̃ )sgn(S̃)

�

A second way to measure the linear relationship between two scalar random vari-

ables is to consider the extent to which a linear function of one random variable is

useful in prediction of the other; when applied to data, this measure is the coefficient

of determination, often denoted by R2. Thus, let

R2 ≡ rsq(T, S) = 1−
min(α,β) E[(T − α− βS)2]

E[(T − E(T ))2]
.

It is well-known that rsq(T, S) = corr(T, S)2.

Now, consider the L1 case; we begin by considering the analogue of corr. Let

T̃ =
T −Med(T )

E|T −Med(T )| ,

and

S̃ =
S −Med(S)

E|S −Med(S)| .

Let medcorr(T, S) be the measure of median correlation between T and S. It is

defined as:

medcorr(T, S) ≡ E
�
|S̃|sgn(T̃ )sgn(S̃)

�

Note that in general, medcorr(T, S) is different from M(T, S).

Theorem 3.2. For random variables T and S, the following hold:

(1) medcorr(T, S) ∈ [−1, 1].

(2) Suppose that the conditions in proposition 1 are satisfied. Then

sgn(medcorr(T, S)) = sgn(M(T, S)).

Blomqvist (1950) introduced the following measure of median correlation between

random variables T and S:

k(T, S) = E [sgn(T −Med(T ))sgn(S −Med(S))] ,

or, in terms of normalized variables

k(T, S) = E
�
sgn(T̃ )sgn(S̃)

�
.

As we can see, this measure is different from ours. In particular, k(T, S) is symmetric

and does not satisfy the invariance property. The value of medcorr(T, S) measures
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the degree of linear relationship between T and S while k(T, S) represents an analog

of Kendall’s rank correlation because

k(T, S) = Pr((T−Med(T ))(S−Med(S)) > 0)−Pr((T−Med(T ))(S−Med(S)) < 0).

The L1 analogue of rsq is

medrsq(T, S) ≡ 1− minβ E|T − βS −Med(T − βS)|
E|T −Med(T )| .

Note that

medrsq(T, S) = 1− E|T − β0S −Med(T − β0S)|
E|T −Med(T )| ,

where β0 is an arbitrary element of M(T, S). This method was used in Koenker and

Machado (1999) to measure the goodness of fit for quantile regressions. Koenker and

Machado (1999) explain why medrsq is bounded between 0 and 1. They also show

that this correlation measure takes the value of 1 where the random variable T and

the random vector S are linearly perfectly correlated.

We collect some results about medrsq and about the relationship between medcorr

and medrsq in the following theorem.

Theorem 3.3. For random variables T and S, the following hold

(1) If M(T, S) = 0 then medrsq(T, S) = 0; if medrsq(T, S) = 0 then 0 ∈
M(T, S).

(2) medrsq(T, S) = 0 if and only if medcorr(T, S) = 0.

Part (1) shows that medrsq takes the value of zero when T is median uncorrelated

with S. This is similar to the usual R2 in linear models. Part (2) says that this

median R2 is equal to zero when the median correlation is zero.

Next, we generalize the concept of L1-correlation to other loss functions. This will

be a natural extension to the above results.

3.3. Lp-correlation for any p ≥ 1. The notion of L1-correlation can be generalized

to the case of Lp-correlation for any p ≥ 1.

Definition 3.1. For a random variable Y and for any p, 1 ≤ p <∞, define Medp(Y )

as follows:

Medp(Y ) ≡ inf
�
d : E

�
|Y − d|p−1sgn(Y − d)

�
= 0

�
.



11

Note that Med1(Y ) = Med(Y ) and Med2(Y ) = E(Y ).

Let T be a random variable and S be a random vector with values in �k. Consider

the optimization problem

min
(α,β)

E|T − α− S �β|p.

We are interested in the solutions to this problem with respect to β. Denote the set

of these solutions as Mp(T, S):

Mp(T, S) ≡ {β : ∃α such that (α, β) = argmin
(α̃,β̃)

E|T − α̃− S �β̃|p}.

Notice that for a fixed β,

E|T − S �β −Medp(T − S �β)|p = min
α

E|T − α− S �β|p.

Therefore,

Mp(T, S) = argmin
β

E|T − S �β −Medp(T − S �β)|p.

We can obtain results analogous to the ones in propositions 1 and 2.

Proposition 4. Suppose that equation

(3.2) E
�
S|T − S �b−Medp(T − S �p−1sgn(T − S �b−Medp(T − S �b))

�
= 0

has a unique solution b∗. Then Mp(T, S) is a singleton and Mp(T, S) = b∗.

The next proposition establishes that if (3.2) has a solution, then the claim converse

to the one in proposition 4 is true.

Proposition 5. Suppose that (3.2) has a solution. If Mp(T, S) is a singleton, then

Mp(T, S) is the unique solution to (3.2).

The proofs of propositions 4 and 5 are omitted because they are similar to the

proofs of propositions 1 and 2.

The next definition introduces the notion of the Lp-uncorrelation of a random

vector with another random vector.

Definition 3.2 (Lp-uncorrelation). Let W denote a l-dimensional random vector.

We will say that W is Lp-uncorrelated with S if

Mp(c
�W,S) = 0 for all c ∈ �l.
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To measure the Lp-correlation of a scalar random variable T with a scalar random

variable S, let us normalize these variable and define T̃ and S̃ in the following way:

T̃ =
T −Medp(T )

(E|T −Medp(T )|p)
1
p

,

S̃ =
S −Medp(S)

(E|S −Medp(S)|p)
1
p

.

Define the Lp-correlation of T with S as follows:

medcorrp(T, S) = E
�
|S̃||T̃ |p−1sgn(T̃ )sgn(S̃)

�
.

The value of medcorrp(T, S) always lies in the interval [−1, 1], and it can be shown

that under conditions in proposition 4,

sgn(medcorrp(T, S)) = sgn(Mp(T, S)).

Note that if T = c1 +c2S with probability 1, for some c2 > 0, then medcorrp(T, S) =

1. Also, if T = c1 + c2S with probability 1, for some c2 < 0, then medcorrp(T, S) =

−1. It is easy to see that medcorr2(T, S) coincides with the familiar correlation

coefficient corr(T, S).

The Lp analogue of medrsq is defined as follows:

medrsqp(T, S) ≡ 1− minβ E|T − βS −Medp(T − βS)|p

E|T −Medp(T )|p ,

and obviously,

medrsq(T, S) = 1− E|T − β0S −Medp(T − β0S)|p

E|T −Medp(T )|p ,

where β0 is an arbitrary element of Mp(T, S).

4. Median Uncorrelation and Instrumental Regression

This is the main section of the paper in which we exploit the median uncorrelation

concept to define estimators for parameters in linear models with endogenous vari-

ables. The estimator (and the model) are defined via the uncorrelation assumption

in the same way as some versions of 2SLS are defined from the mean uncorrelation.

Consider the following model:

Y = α0 + X �β0 + �,(4.1)

where Y and � are real-valued random variables, X is a k-dimensional random vector

with a positive definite covariance matrix, α0 is an unknown scalar parameter, and
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β0 is an unknown slope vector. The parameter of interest is β0. Assume that � has

median 0, but that

Med(�|x) �= 0,

where Med(.|.) denotes the conditional median. The problem here is that this con-

ditional median is allowed to depend on X. There are many reasons for this type of

“endogeneity” in economic models. Classical work on demand and supply analysis in

linear (in parameter) models motivate many early works in linear models with mean

restrictions where instrumental variables assumptions were used to eliminate least

squares bias that arises from this endogeneity. See Theil (1953), Basmann (1957)

and Amemiya (1985) and references therein. There are a set of papers that deal

with endogeneity in linear (and nonlinear) quantile based models. See for example

Amemiya (1981) for a 2 stage interpretation of the 2SLS, and Chernozhukov and

Hansen (2005) for an approach to inference in quantile based models, both linear

and nonlinear, in the presence of endogenous regressors.

Recall that the 2SLS strategy is based on finding an instrument vector Z such that

E[Z�] = 0, and using this uncorrelation (moment) condition to derive a consistent

estimator for β. In this section, we extend this intuition to median uncorrelation

whereas we assume the presence of a random vector Z, which we call a vector of

instruments, that obeys a median uncorrelation assumption (see Assumption A.1

below). This median uncorrelation property, similarly to its counterpart E[Z�] = 0,

leads naturally to a simple estimator for β0.

Assumption A.1. Let there be a d-dimensional random vector Z such that:

1. There exists a k × d constant matrix of full rank γ, with d ≥ k, such that

X = γZ + δ

for some random vector δ.

2. (δ, �)� is median uncorrelated with Z.

First, we require that the dimension of Z be at least equal to the dimension of

X. This is the necessary condition for point identification. In the case where this

condition fails, the model will partially identify β0. The key assumption is part 2

of A.1 where we require that not only � be median uncorrelated with Z and δ be

median uncorrelated with Z, but also that (δ, �)� = (X − γZ, �)� be jointly median

uncorrelated with Z (since the fact that M(�, Z) = 0 and M(δ, Z) = 0 does not

imply that (δ, �)� is median uncorrelated with Z.)
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Given assumption A.1, we are able to easily prove the following theorem, which

constitutes the main result in this section.

Theorem 4.1 (Main Result). Consider the function

Ψ(β) = M(Y −X �β, Z).(4.2)

Let assumption A.1 hold. Then

Ψ(β) = 0 ⇐⇒ β = β0.

Proof: Note that by assumption A.1, we have

Y = α0 + Z �γ�β0 + δ�β0 + �.

Let

m ∈M(Y −X �β, Z) = M(α0 + Z �γ�(β0 − β) + δ�(β0 − β) + �, Z).

By the invariance property in lemma 2.1, there exists m0 ∈M(δ�(β0−β)+ �, Z) such

that

m = γ�(β0 − β) + m0.

Note that δ�(β0 − β) = (β0 − β)�δ. Hence, since (δ, �)� is median uncorrelated with

Z, m0 = 0. It follows that m = γ�(β0 − β) and, hence, that

Ψ(β) = γ�(β − β0).

Since d ≥ k and γ is full column rank by assumption A.1, we have

Ψ(β) = 0 ⇐⇒ β = β0,

which proves the theorem. �
The theorem can be used as the basis for an estimation method for β0. Note that

in case we use the least squares function L(., .) instead of M(., .), we get exactly

Basmann’s interpretation of the 2SLS estimator of β0. Moreover, note that the

estimator that is based on the result in the theorem above is the same as the one used

by Chernozhukov and Hansen (2005). Let Ŷ denote an n × 1 vector of realizations

of Y , let X̂ denote an n × k matrix of realizations of X and let Ẑ denote an n × d

matrix of realizations of Z. Define �M(Ŷ , Ẑ) to be the vector c ∈ �d that minimizes
�

j

|Ŷj − a− Ẑ �
jc|

when minimizing over (a, c). Then, β̂ is defined as the solution in b to

�M(Ŷ − X̂b, Ẑ) = 0.



15

β̂ can be obtained, as in CH, by minimizing

β̂ = argmin
b∈�k

��M(Ŷ − X̂b, Ẑ)�A,

where � · �A is the weighted by A Euclidian norm.

It is interesting to note that the sufficient condition for identification in CH adapted

to the linear model is (in our notation) that for all Z the following has a unique

solution at the true parameter β0:

P (Y < α0 + X �β|Z) = E
�
1[Y < α0 + X �β]|Z

�
=

1

2
,

while our median uncorrelation condition requires that the moment condition

(4.3) E[Zsgn(Y −X �β −Med(Y −X �β))] = 0

has a unique solution at β0.

CH’s condition above can be written as

E
�
sgn(Y −X �β0 −Med(Y −X �β0))|Z

�
= 0,

which obviously implies (4.3) when it is calculated at β0. Clearly, it is a conditional

statement, as opposed to an unconditional statement. Of course the identification

approach in CH applies to a much larger class of models, including nonlinear ones.

We next state the asymptotic distribution without any conditions and refer the

reader to Chernozhukov and Hansen (2005) for details, and for ways to compute the

estimator and its standard errors. Under the conditions in CH, as N →∞, we have
√

N(β̂ − β)
d→ N (0, C−1D[C−1]�),

where C = E[f�(0|X, Z)XZ �] and D = 1
4E[ZZ �] and � = y − α0 −X �β0.

4.1. Relationship to 2SLS assumptions. In the usual endogenous model

Y = α0 + X �β0 + �,

Cov(�, X) �= 0.

Here, a random vector Z is an instrument if Cov(X,Z) and Cov(Z, Z) have full rank

and Cov(Z, �) = 0, or E[Z�] = 0 with a mean zero assumption on �.

Let γ = Cov(X, Z)Cov(Z, Z)−1 and define δ = X − γZ. Then,

X = γZ + δ.

Here (δ, �)� is uncorrelated with Z because δ is uncorrelated with Z by construction

and � is uncorrelated with Z by definition. This is not true in the median case, where
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we need to impose condition in part 2 in Assumption A.1 above. This is the key

difference between the mean and the median formulations.

5. Other Applications of Median Uncorrelation

We provide two other applications of this median uncorrelation by mimicking

implications of mean uncorrelation when dealing with measurement error in linear

models under quantile restrictions, and in panel data models with quantile restric-

tions.

5.1. Quantile Regression with Measurement Error. We apply the idea of me-

dian uncorrelation to linear quantile regressions with classical measurement error in

the regressors. In particular, consider the model

Y = α0 + X∗�
β0 + �, Med(�) = 0,(5.1)

where we assume that M(�, X∗) = 0 or that � is median uncorrelated with a k-

dimensional random vector X∗. We do not observe X∗ directly, but we observe an

error-ridden version of it, X, such that

X = X∗ + ν,(5.2)

where we assume that M(ν, X∗) = 0. We also observe Y . To remedy the identifi-

cation problem that results from the measurement error, we follow the treatment of

the linear model under the mean uncorrelation and use instruments. Let there exist

a d-dimensional random vector Z and a k × d constant matrix γ, with d ≥ k, such

that

(5.3) X∗ = γZ + ψ

for some random vector ψ, and M(ψ, Z) = 0. Then

X = γZ + ψ + ν.

Given the results of the previous section, we can show the following result.

Theorem 5.1. For model (5.1) suppose that we observe (Y, X) such that (5.2) holds

with M(ν, X∗) = 0. Moreover, assume that (�, ν, ψ) is median uncorrelated with Z

and that γ in (5.3) has full rank. Then,

M(Y −X �β, Z) = 0 ⇐⇒ β = β0.
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Comments: Note, that the requirements of the above model are that the vector

(�, ν, ψ) is jointly median uncorrelated with Z. The real assumption here is that the

vector of unobservables is required to be median uncorrelated with Z. In contrast, in

the mean uncorrelation model, all that is required is for � to be uncorrelated with Z

and that for Z to be correlated with X∗ (with the usual rank conditions). So, again,

as in the 2SLS generalization, it is the joint median uncorrelation that is needed.

5.2. Quantile Regression with Panel Data. We are interested in inference on

β0 in the following model:

yit = x�itβ0 + αi + �it, t = 1, 2,(5.4)

where αi is the individual effect that is arbitrarily correlated with xi = (x�i1, x
�
i2)

�.

Denote ∆yi = yi1 − yi2, ∆xi = xi1 − xi2 and ∆�i = �i1 − �i2. Suppose that we have

a data set of iid observations (yi,xi) for i = 1, . . . , N , where yi = (yi1, yi2)�. If we

maintain the assumption that �i = (�i1, �i2)� is median uncorrelated with xi, then

β0 = M(∆yi, ∆xi)

for any i. Indeed, this follows from

E|∆yi − a−∆x�iβ| = E|∆�i − a−∆x�i(β − β0)|

and the definition of the median uncorrelation of the vector �i with xi. In fact, it is

possible to relax median uncorrelation to requiring that the random variable ∆�i to

be median uncorrelated with ∆xi.

6. Conclusion

The paper considers the 2SLS estimator that is commonly used in econometrics

for estimating regressions with endogenous variables. This estimator is based on the

assumption that even though a regressor is correlated with the error, there exists

an excluded exogenous regressor that is (linearly) uncorrelated with the error. This

regressor is called an instrument. And so, 2SLS exploits implications of this (linear)

uncorrelation between the instrument and the error in the main regression to obtain

a consistent estimator for the slope. This paper tries to follow the same model,

but uses median uncorrelation instead. This median uncorrelation is new to our

knowledge and is exactly similar to mean uncorrelation, except that it uses the

absolute loss function, as opposed to the squared loss function used with the mean.

We characterize properties of two vectors that are linearly median uncorrelated and



18

then provide a measure of median uncorrelation that is bounded between -1 and 1.

This is meant to mirror the typical correlation coefficient in linear models. We also

provide counterparts to R2 the coefficient of determination. Most importantly, we

show that in a linear regression model where the regressors are correlated with the

errors, a median uncorrelation assumption between a set of instruments and the error

provides the basis for inference on the linear slope parameter β that is akin to what

the 2SLS approach does under mean uncorrelation. We apply this uncorrelation

concept to other examples like linear models with measurement error and quantile

restrictions, and panel data quantile models.
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7. Appendix

Proof of Proposition 1. Consider and b ∈ �k such that b �= b∗. The proposition

will be proved if we show that

(7.1) E|T − S �b∗ −Med(T − S �b∗)| < E|T − S �b−Med(T − S �b)|.

The following holds:

E|T − S �b∗ −Med(T − S �b∗)|

=(1) E [T sgn(T − S �b∗ −Med(T − S �b∗))]

=(2) E [(T − S �b−Med(T − S �b))sgn(T − S �b∗ −Med(T − S �b∗))]

=(3) E [|T − S �b−Med(T − S �b)|sgn(T − S �b−Med(T − S �b))sgn(T − S �b∗ −Med(T − S �b∗))]

<(4) E|T − S �b−Med(T − S �b)|.

(1) and (2) follow from (2.1) and the definition of median. (4) follows from the fact

that b∗ is the unique solution to (2.1), and therefore,

(7.2) P (sgn(T − S �b−Med(T − S �b))sgn(T − S �b∗ −Med(T − S �b∗)) = −1) > 0.

Proof of Proposition 2. Let b∗ = M(T, S). First of all, we want to show that

b∗ solves (2.1). Suppose this is not so:

E [Ssgn(T − S �b∗ −Med(T − S �b∗))] �= 0.

Let b̃ be a solution to (2.1). Similar to how we did it in the proof of proposition 1,

we can show that

E|T − S �b̃−Med(T − S �b̃)| < E|T − S �b∗ −Med(T − S �b∗)|,

which contradicts the fact that b∗ = M(T, S). Thus, b∗ is a solution to (2.1).

Now let us show that b∗ is the unique solution to (2.1). Suppose (2.1) has another

solution b̃, b̃ �= b∗. Then, again, using techniques in the proof of proposition 1, we

can establish that E|T −S �b̃−Med(T −S �b̃)| ≤ E|T −S �b∗−Med(T −S �b∗)| as well

as E|T − S �b∗ −Med(T − S �b∗)| ≤ E|T − S �b̃ −Med(T − S �b̃)|. This implies that

E|T − S �b∗ −Med(T − S �b∗)| = E|T − S �b̃ −Med(T − S �b̃)|, which contradicts the

fact that M(T, S) is a singleton.

Proof of Lemma 2.1.
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We prove this lemma in two steps. In the first step we show that M(T, S) + b ⊂
M(T + a + S �b, S). In the second step, we establish that M(T + a + S �b, S) ⊂
M(T, S) + b.

First of all, note that for a given b and any a,

M(T + a + S �b, S) = argmin
q∈�k

E|T + S �(b− q)−Med(T + S �(b− q))|.

Let m1 ∈M(T, S). This implies that for any q ∈ �k

E|T + S �(b− q)−Med(T + S �(b− q))| ≥ E|T − S �m1 −Med(T − S �m1)|.

Obviously, the inequality becomes the equality if q = m1 + b. Therefore, m1 + b ∈
M(T + a + S �b, S).

Now let m2 ∈M(T + a + S �b, S). This implies that for any β ∈ �k

E|T − S �β −Med(T − S �β)| ≥ E|T + S �(b−m2)−Med(T + S �(b−m2))|.

The inequality becomes the equality if β = m2 − b. Therefore, m2 − b ∈ M(T, S)

and, hence, m2 ∈M(T, S) + b.

Proof of Theorem 3.1.

(A): Suppose Med(c�W |s) ≡ c∗. Then, we know that c∗ minimizes the following

problem over ALL (measurable) functions g(S):

E|c�W − c∗| ≤ E|c�W − g(S)|.

In particular, this holds for any linear function of S, α + S �β with β �= 0.

(B): It is clear from the definition of median uncorrelation. This means that the

definition of median uncorrelation is not symmetric.

(C): This means that the conditional characteristic function of c�W given S is real,

which in part means that the conditional distribution of c�W given S is symmetric

around 0. Hence, Med(c�W |s) = 0 = Med(c�W ) for all s.

(D): Let δ = T −α0−S �M(T, S), where α0 is any constant. Showing that M(δ, S)

is equal to 0 is a direct result of the invariance property in (2.3).

(E): Proposition 2 and the conditions M(T, S) = 0 and M(T, Z) = 0 imply that

E [Ssgn(T −Med(T ))] = 0, E [Zsgn(T −Med(T ))] = 0.

Then

E [(S + Z)sgn(T −Med(T ))] = E [Ssgn(T −Med(T ))]+E [Zsgn(T −Med(T ))] = 0.
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The last equation and the assumption that M(T, S+Z) is a singleton, and proposition

2 imply that M(T, S + Z) = 0.

(F ): For the first part of the statement, we note that proposition 2, the conditions

that (2.1) has a solution and that M(T, S) = 0 imply

E[Ssgn(T −Med(T ))] = 0.

For the second part of the statement, we note that proposition 2, the equation

E[Ssgn(T − Med(T ))] = 0 and the fact that M(T, S) is a singleton imply that

M(T, S) = 0.

The discussion below proves the statement.

Given that the conditional median of T |S = 1 is unique, we have:

E[Ssgn(T −Med(T ))] = 0 ⇐⇒ E[sgn(T −Med(T ))|S = 1] = 0

⇐⇒ Med(T ) = Med(T |S = 1).

Because E[sgn(T −Med(T ))] = 0, then

E[sgn(T −Med(T ))|S = 1] = 0 ⇐⇒ E[sgn(T −Med(T ))|S = 0] = 0.

Therefore, it is also true that

E[Ssgn(T −Med(T ))] = 0 ⇐⇒ Med(T ) = Med(T |S = 0).

Proof of Theorem 3.2.

(1): This follows from

|medcorr(T, S)| = |E[S̃sgn(T̃ )sgn(S̃)]| ≤ E[|S̃|] = 1.

(2): First, let us prove that M(T, S) = 0 ⇐⇒ medcorr(T, S) = 0.

M(T, S) = 0 ⇐⇒ E [Ssgn(T −Med(T ))] = 0

⇐⇒ E

�
S −Med(S)

E|S −Med(S)|sgn

�
T −Med(T )

E|T −Med(T )|

��
= 0

⇐⇒ E
�
S̃sgn(T̃ )

�
= 0

⇐⇒ medcorr(T, S) = 0.

Note that medcorr(T, S) = medcorr(T̃ , S̃) and

M(T, S) =
E|T −Med(T )|
E|S −Med(S)|M(T̃ , S̃),
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and hence, sgn(M(T, S)) = sgn(M(T̃ , S̃)). Thus, it is enough to show that

sgn(medcorr(T̃ , S̃)) = sgn(M(T̃ , S̃)).

Denote b∗ = M(T̃ , S̃). For b∗ = 0 the result is already proven.

Suppose b∗ �= 0. Notice that

sgn(medcorr(T̃ , S̃)) = sgn(b∗)sgn(E[b∗S̃sgn(T̃ )]),

therefore, the result will be proven if we establish that E[b∗S̃sgn(T̃ )] > 0.

Indeed, using the fact that b∗ satisfies

E
�
S̃ sgn(T̃ − b∗S̃ −Med(T̃ − b∗S̃))

�
= 0,

we obtain

E[b∗S̃sgn(T̃ )] =E
��

b∗S̃ + Med(T̃ − b∗S̃)
�

sgn(T̃ )
�

=E
��

b∗S̃ + Med(T̃ − b∗S̃)
��

sgn(T̃ )− sgn(T̃ − b∗S̃ −Med(T̃ − b∗S̃)
��

=2E
��

b∗S̃ + Med(T̃ − b∗S̃)
�

1(T̃ > 0)1(T̃ − b∗S̃ −Med(T̃ − b∗S̃) < 0)
�

−2E
��

b∗S̃ + Med(T̃ − b∗S̃)
�

1(T̃ < 0)1(T̃ − b∗S̃ −Med(T̃ − b∗S̃) > 0)
�

+E
�
|T̃ |1(T̃ = b∗S̃ + Med(T̃ − b∗S̃))

�

+E
�
|b∗S̃ + Med(T̃ − b∗S̃)|1(T̃ = 0)

�

Notice that all the four terms in the last sum are non-negative. Moreover, at least

one of the first two terms in this sum is strictly positive because

Pr
�
sgn(T̃ )sgn(T̃ − b∗S̃ −Med(T̃ − b∗S̃)) = −1

�
> 0,

which can be proven by applying techniques from the proof of proposition 1 and

taking into account that b∗ �= 0. Therefore, E[b∗S̃sgn(T̃ )] > 0.

Proof of Theorem 3.3.

(1): If M(T, S) = 0, then

medrsq(T, S) = 1− E|T −Med(T )|
E|T −Med(T )| = 0.

If medrsq(T, S) = 0, then

min
β

E|T − βS −Med(T − βS)| = E|T −Med(T )|,

so that, clearly, 0 ∈M(T, S).
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(2): If medrsq(T, S) = 0, then, from part (3), 0 ∈ M(T, S). It follows that

E[Ssgn(T −Med(T ))] = 0 and, hence, that medcorr(T, S) = 0. If medcorr(T, S) =

0, then E[Ssgn(T −Med(T ))] = 0 so that 0 ∈M(T, S). It follows that

min
β

E|T − βS −Med(T − βS)| = E|T −Med(T )|.

Proof of Theorem 5.1.

The proof of this theorem is analogous to the proof of theorem 4.1.

Let

m ∈M(Y −X �β, Z) = M(α0 + Z �γ�(β0 − β) + ψ�(β0 − β) + �− ν �β, Z).

By the invariance property in lemma 2.1, there exists m0 ∈M(ψ�(β0−β)+�−ν �β, Z)

such that

m = γ�(β0 − β) + m0.

Note that ψ�(β0 − β) = (β0 − β)�ψ and ν �β = β�ν. Hence, since (�, ν, ψ)� is median

uncorrelated with Z, m0 = 0. It follows that m = γ�(β0 − β), and hence, that

M(Y −X �β, Z) = γ�(β0 − β).

Since d ≥ k and γ is full column rank by assumption, then

M(Y −X �β, Z) = 0 ⇐⇒ β = β0.
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Honoré, B., and L. Hu (2004): “On the Performance of Some Robust Instrumental Variables
Estimators,” Journal of Business and Economic Statistics, 22(1), 30–39.

Koenker, R. (2005): Quantile Regression. Cambridge University Press.
Koenker, R., and G. Bassett (1978): “Regression Quantiles,” Econometrica, 46, 33–50.
Koenker, R., and J.A.F. Machado (1999): “Goodness of Fit and Related Inference Processes
for Quantile Regression,” Journal of the American Statistical Association, 94(448), 1296–1310.

Manski, C. F. (1988): Analog Estimation Methods in Econometrics. Chapman and Hall.
Sakata, S. (2007): “Instrumental variable estimation based on conditional median restriction,”
Journal of Econometrics, 141(2), 350–382.

Theil, H. (1953): “Estimation and Simultaneous Correlation in Complete Equation Systems,”
The Hague: Centraal Planbureau.


