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Abstract: 16 

 Over the past 30 years, studies of single muscles have revealed complex patterns of 17 

regional variation in muscle architecture, activation, strain, and force.  In addition, muscles are 18 

often functionally integrated with other muscles in parallel or in series.  Understanding the extent 19 

of this complexity and the interactions between muscles will profoundly influence how we think 20 

of muscles in relation to organismal function, and will allow us to address questions regarding 21 

the functional benefits (or lack thereof) and dynamics of this complexity under in vivo conditions.  22 

This paper has two main objectives.  First, we present a cohesive and integrative review of 23 

regional variation in function within muscles, and discuss the functional ramifications that can 24 

stem from this variation.  This involves splitting regional variation into passive and active 25 

components.  Second, we assess the functional integration of muscles between different limb 26 

segments by presenting new data involving in vivo measurements of activation and strain from 27 

the medial gastrocnemius (MG), iliotibialis cranialis (IC), and iliotibialis lateralis pars 28 

preacetabularis (ILPR) of the helmeted guinea fowl (Numida meleagris) during level running on 29 

a motorized treadmill.  Future research directions for both of these objectives are presented.      30 



 3 

1. Introduction 31 

 Animal locomotion is a field of central importance to research in biology and engineering 32 

[1-3].  In addition, how muscles actuate running in vertebrates has captivated the interest of 33 

scientists for hundreds of years [4-6], and there continues to be an ever broadening set of 34 

approaches to research on this topic.  Over the past few decades, significant advancements in 35 

our understanding of muscle function have been accompanied by the discovery of considerable 36 

complexity within and between muscles. Perhaps a pertinent analogy to a muscle is an 37 

orchestra, which only functions appropriately when all of the instrumental components (string, 38 

brass, woodwind, and percussion) work in a synergistic fashion.  Similarly, a muscle is 39 

comprised of many different components, all of which act in a coordinated fashion in order to 40 

execute a movement (Fig. 1).  The overall goal of this manuscript is to address the complexity of 41 

muscle function, with specific foci on the regional variation in architecture and function within 42 

muscles, and the complex interactions that can occur between muscles. 43 

A single muscle, or muscle fascicle, can exhibit variation in activation, strain, and 44 

architecture [7-17].  Many muscles exist within the limb of an animal, with muscles that work 45 

together as synergists or in opposition as antagonists across a common joint.  Among 46 

functionally equivalent muscles (i.e. synergists), substantial variation can occur depending on 47 

the role of the muscle [18-21].  The muscles within a limb, however, are often connected, 48 

resulting in the potential for intermuscular force transmission [22-25] (Fig. 1).  For example, 49 

recent work has highlighted the connections between muscles, whether they are within a single 50 

limb segment [26] or between adjacent limb segments [27].  Ultimately, muscle architecture and 51 

fibre type composition, in vivo recruitment patterns, activation history, and the way in which a 52 

muscle is recruited relative to other muscles ultimately determine the mechanical function of that 53 

muscle.  54 
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This hierarchical organization and complexity of muscle function is reviewed in this 55 

manuscript and new data is presented regarding the mechanical linkages between muscles of 56 

different limb segments in the helmeted guinea fowl, Numida meleagris.  Given that a single 57 

cohesive analysis of regional variation within muscles does not exist, we seek to integrate the 58 

existing studies regarding passive and active regional variation and to propose common themes 59 

and possible avenues for future research.  Regional variation and force transmission between 60 

muscles are key topics that are likely to drive a large portion of neuromuscular research over 61 

the coming decades.  Thus, our contribution is timely and should assist those who will explore 62 

this interesting aspect of muscle function. 63 

 64 

2. Functional heterogeneity within muscles:   65 

It is common for muscles to exhibit regional variation in a number of important factors, 66 

including activation [14, 28-32], mechanical action [33], fibre type [34-36], architecture [37-39], 67 

and strain [8, 10, 11, 13, 40-42].  In fact, it is unlikely that many muscles actually exhibit 68 

homogeneous structure and function.  The added level of complexity is something that will 69 

require future consideration when constructing musculoskeletal models [43, 44] or performing in 70 

vivo muscle experiments.  Despite the apparent ubiquity of this regional variation, a complete 71 

understanding of the mechanisms underlying the dynamic variation and/or the functional 72 

ramifications of this heterogeneity is lacking.     73 

 74 

(a) Regional variation in muscle activation patterns 75 

 Several aspects of neuromuscular function can vary with muscle region, whether the 76 

muscle is compartmentalized [45, 46] or not [15, 31].  For example, work by English [9] 77 
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highlighted the compartmentalization of the lateral gastrocnemius (LG) of the cat hindlimb with 78 

respect to activation.  He found that more intense EMG activity was often observed in the distal 79 

compartments of the LG than the proximal compartments at slow locomotor speeds.  However, 80 

activity in the proximal compartments equaled or surpassed that in the distal compartments at 81 

moderate to fast locomotor speeds.  This not only highlights the functional complexity within a 82 

muscle, but also the context-dependent nature of this heterogeneity.  More recent work by 83 

Wakeling [14] found that recruitment of different compartments within several human ankle 84 

extensors depends on the mechanics of movement.  In this case, individuals were tested on a 85 

stationary bicycle at various pedaling frequencies and crank torques.  Ultimately, this type of in 86 

vivo data will reveal how regional variation can change with demand, and whether there are 87 

commonalities among diverse groups of vertebrates.   88 

 Different regions of a muscle can be recruited based on their action at a specific joint.  89 

For example, the cat sartorius has two regions that control separate movements [47].  Based on 90 

activation patterns, the medial region provides the forces need to flex the hip and knee during 91 

the initial stages of the swing phase.  However, the anterior region of the same muscle provides 92 

forces for hip flexion and knee extension.  Thus, two regions of the same muscle can act in 93 

opposite ways at a single joint.  This was also found by Higham and colleagues [8] in that a 94 

portion of the MG primarily exerts an extensor moment at the knee while another portion 95 

primarily exerts a flexor moment at the knee.  This complexity in function has not received much 96 

attention, but highlights the potential for the division of labor within a given muscle.  97 

Why would a single muscle exhibit regional variation in recruitment patterns?  We 98 

discuss two possible explanations, including 1) regional variation in fibre type and 2) regional 99 

variation in branching patterns of motor neurons. Given that the ‘size principle’ states that slow 100 

oxidative (type Ia) fibres will be recruited prior to fast oxidative (type IIa) or fast glycolytic (type 101 

IIb) fibres, any region that is predominantly slow oxidative will be recruited in the absence of 102 
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activity in other regions under conditions of low demand (e.g. slow walking), setting up a 103 

situation of regional variation in activation.  Several studies have examined the regionalization of 104 

fibre types within muscles, but few have correlated fibre type with differential activation patterns.  105 

In the rat medial gastrocnemius, for example, the proximal region contains predominantly fast-106 

twitch oxidative fibres whereas the distal region is comprised of predominantly fast-twitch 107 

glycolytic fibres [48]. As highlighted in the next section, the regional gradient of slow oxidative 108 

fibres from deep to superficial areas of a muscle are common [49], leading to differential 109 

recruitment.  In the pig masseter, histochemical fibre type was found to correlate with activation 110 

patterns [28].  Thus, it is likely that regional variation in activation will occur when there is 111 

variation in the distribution of fibre types.   112 

Different parts, or compartments, of a muscle can receive input from motor neurons that 113 

are located in different regions of a motor nucleus.  For example, the proximal compartment of 114 

the cat lateral gastrocnemius (LG) receives input from neurons that primarily occupy more 115 

rostral portions of the LG motor nucleus [50].  Whereas mostly large motoneurons innervate 116 

proximal compartments, the distal compartments receive input from both large and small 117 

motoneurons.  Thus, the recruitment of a given area of muscle will depend on what region of the 118 

motor nucleus is activated, and the spatial pattern of motoneuron innervation in that region of 119 

muscle.  120 

 121 

(b) Differential force generation and force-length relationships within muscles   122 

Different parts of a muscle can vary in the way in which force is generated via several 123 

mechanisms.  Different regions can exert different torques about a joint [33, 48, 51], but single 124 

muscles can also have multiple actions at a single joint [8, 47].  These differences can result 125 

from segregation of fibre types or segregation of motor units within vertebrate muscle (reviewed 126 
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in [49]).  For example, it is relatively common to observe a decreasing gradient of slow-oxidative 127 

fibres from deep to superficial areas of a muscle.  According to the size principal of recruitment, 128 

slow-oxidative fibres will be recruited prior to the faster fibres, which are located superficially.  129 

Thus, force will be transmitted from the active muscle fibers to the passive muscle fibers.  The 130 

latter will therefore become a compliant structure that could be in parallel (as per the example 131 

just given) or in series (see below).   132 

In addition, different parts of a muscle, if active at different times, can exert different 133 

torques at a given joint.  For example, Carrasco et al. [33] studied the magnitudes and 134 

directions of torques exerted by four different compartments of the cat LG, and found that 135 

different compartments exerted significantly different pitch, yaw, and roll torques at the ankle 136 

joint.  These compartments were located in different proximo-distal and medio-lateral regions.  It 137 

was postulated by Carrasco et al. [33] that these neuromuscular compartments are important 138 

anatomical substrates that can be used by the nervous system to modulate the overall 139 

mechanical action produced by a muscle.  How this mechanical regionalization relates to 140 

dynamic locomotor behavior is still unknown. 141 

An interesting study by Turkawski and colleagues [52] determined whether individual 142 

motor units within the masseter muscle of the rabbit were capable of generating different force 143 

vectors, and whether different motor units types were distributed heterogeneously throughout 144 

the muscle.  They found that the motor unit force decreased, on average, going from anterior to 145 

posterior in the muscle and from superficial to deep.  The anterior region of the masseter 146 

produced the greatest forces.  The torques produced by different regions of the muscle also 147 

differed.  The largest torques, like forces, were produced by the motor units in the anterior 148 

superficial masseter, whereas relatively small torques were produced by the motor units in the 149 

posterior deep masseter.  In terms of function, the distribution of torques and forces likely 150 

represents distinct roles within the masseter of rabbits.  The superficial region of the muscle is 151 
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likely responsible primarily for generating large jaw closing moments, whereas the posterior 152 

deep masseter mainly functions in lateral jaw movements.  Thus, a single muscle can exhibit 153 

functional segregation that corresponds with architectural and activation differences. 154 

The medial gastrocnemius of rats is compartmentalized and exhibits considerable 155 

variation in function and architecture between these compartments.  De Ruiter and colleagues 156 

examined the function and fibre type composition of the most proximal and most distal 157 

compartment of this muscle under in situ conditions [48].  The most proximal compartment is 158 

comprised of predominantly fast-twitch oxidative fibres whereas the distal compartment 159 

contained mainly fast-twitch glycolytic fibres.  Each of these compartments was stimulated 160 

independently by isolating the branches of the sciatic nerve that served these regions.  161 

Interestingly, the force-length relationship of whole muscle was narrower when the proximal 162 

compartment was stimulated and maximum force was observed at shorter lengths for this 163 

compartment.  As expected from fast-twitch glycolytic fibres, the maximum shortening velocity of 164 

the muscle was significantly higher when the distal compartment was stimulated.  Although 165 

regional activation patterns have not been quantified for this muscle, it is postulated that the 166 

proximal compartment would be recruited under in vivo conditions when lower power outputs 167 

are required.  In contrast, the distal compartment would become important during high power 168 

demanding activities.  Taken together, these results highlight the variation in mechanical 169 

properties that can occur within single locomotor muscles.  However, the functional importance 170 

of this regionalization is yet to be determined.    171 

 172 

(c) Regional variation in strain within muscles: patterns and mechanisms 173 

More recent work has highlighted the variable fascicle strain patterns that can occur 174 

within single muscle over a range of vertebrate and invertebrate taxa [8, 11, 12, 40, 42, 53].  175 
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Within the medial gastrocnemius of helmeted guinea fowl (Numida meleagris), the proximal 176 

region (closer to the knee) undergoes a stretch-shorten cycle when force is being generated 177 

during stance [7, 8].  In contrast, the distal region of the same muscle remains relatively 178 

isometric during the same period of time.  It appears that these differences in muscle fascicle 179 

strain are not necessarily due to differences in activation intensity [8].  Instead, regional 180 

differences in stiffness and fiber type might drive differences in strain along the length of a 181 

muscle.  The distal region of the MG of guinea fowl is associated with a broad aponeurosis, 182 

whereas the proximal region of the muscle lacks a significant external aponeurosis.  Indeed, 183 

aponeuroses can act as stiff springs in both the longitudinal (parallel with the long axis of the 184 

muscle) and transverse (perpendicular to the long axis of the muscle) directions [54].  One 185 

potential explanation for heterogeneous fascicle strain within a muscle could be regional 186 

variation and prevalence of aponeuroses.   187 

As highlighted by Blemker and Colleagues [44], variation in fascicle lengths and 188 

curvature of muscle fascicles can help explain heterogeneity in strain within the human biceps 189 

brachii.  They used a 3D muscle model to interpret in vivo data obtained by Pappas and 190 

colleagues [11].  Although Blemker and Colleagues were able to explain the in vivo results using 191 

the model, they note that other factors, such as sarcomere popping, may contribute to strain 192 

heterogeneity.  However, the latter normally occurs when muscles operate at extreme lengths 193 

on the descending limb of the force-length curve, rather than the ascending limb, which is where 194 

the biceps brachii typically operates [55].  Whatever the case, it is clear that the mechanisms 195 

underlying strain heterogeneity are multidimensional and require further investigation. 196 

 197 

(d) Regional variation within muscles in relation to muscle fatigue 198 
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 Given that muscles can exhibit regional variation in architecture and physiological 199 

properties, it is likely that muscle fatigue (or whole-body fatigue) will influence single muscles in 200 

complex ways.  Indeed, De Ruiter and colleagues [48] found that the distal compartment of the 201 

rat medial gastrocnemius (MG) fatigued faster than the proximal compartment.  This was likely 202 

due to the fact that the distal region was comprised of fast-glycolytic fibres whereas the proximal 203 

compartment contained fast-oxidative fibres.  How this regional variation in the effects of fatigue 204 

influence the overall mechanics of the muscle under in vivo conditions is not fully understood.  If 205 

a muscle is compartmentalized, with compartments in series responding differently to exercise-206 

induced fatigue, then it is likely that the fatigued compartment will be become a passive element 207 

that can be pulled on from other, non-fatigued, compartments.  This could significantly influence 208 

the overall length of the muscle in relation to its force-length curve, which might then lead to a 209 

sub-optimal active length.  Whether muscles operate in different regions of their force-length 210 

curve during fatigue would be worthwhile to investigate in future work.  211 

In a recent study, Higham and Biewener [53] examined the in vivo responses of different 212 

regions within a muscle to fatigue, finding that fascicle shortening in the proximal region of the 213 

MG of guinea fowl, but not the distal region, decreased significantly with fatigue.  This is the first 214 

evidence that in vivo mechanical changes due to fatigue can vary between muscle regions.  It is 215 

quite possible that this differential effect of fatigue is related to fibre type regionalization in the 216 

MG of guinea fowl given that recent work, using immunohistochemistry, indicates that the 217 

proximal region of the MG contains 100% fast-twitch fibres compared to 58% fast-twitch in the 218 

distal region (J.W. Hermanson, T.E. Higham & A.A. Biewener, unpublished data).  However, 219 

Higham and Biewener [53] did not find a difference in EMG activity between the two regions as 220 

a result of fatigue, suggesting that factors downstream of the neuromuscular junction in the 221 

muscle fibres became impaired as a result of fatigue.    222 

  223 
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(f) Functional benefits of regional variation within muscles 224 

It is important to note that the functional benefits of regional variation are not known, but 225 

will likely become apparent over the next few decades.  However, it is likely that the benefits are 226 

multidimensional and that, in many cases, a functional benefit may not exist.  Here we propose 227 

several possibilities that might suggest functional benefits of regional variation in activation, 228 

architecture, and contractile properties.  These possibilities, of course, depend ultimately on the 229 

mechanism of the variation.  For example, if the variable stiffness of aponeuroses results in 230 

stiffness differences across the muscle under in vivo conditions, then the effect of an 231 

aponeurosis on a muscle's regional contractile behavior first needs to be identified.  In the case 232 

of the guinea fowl medial gastrocnemius, the distal region of the muscle is associated with a 233 

sheet of connective tissue, which increases the stiffness in that region [8].  Thus, the distal 234 

region remains relatively isometric, enhancing force generation while limiting work output. The 235 

increased stiffness in the distal region also enhances the muscle-tendon unit's ability to resist 236 

tensile forces, analogous to a tie rod.   237 

Another functional benefit to heterogeneity is the ability of the nervous system to recruit 238 

different parts of a muscle that then might exert different torques about a given joint [33].  This 239 

could potentially give an animal an increased level of control over joint mechanics and an 240 

increased diversity of movements.  Vertebrates can execute a number of dynamic locomotor 241 

movements, including jumping, turning, hopping, running, gliding, flying, swimming, and many 242 

others.  Thus, it might be beneficial for an animal to have fine control over joint mechanics via 243 

differential recruitment of compartments that can produce different torques about a joint.   244 

 Finally, architectural diversity within a muscle might yield beneficial functions.  For 245 

example, differences in fiber and/or fascicle length will potentially result in different force-length 246 

relationships between fibers.  If this is the case, then different fibers will reach their optimal 247 



 12 

length for force generation at different overall muscle lengths, which would effectively increase 248 

the plateau of the muscle force-length curve.  This would lead to a more ‘generalized’ muscle in 249 

that it could operate more effectively over a variety of lengths and thus locomotor behaviors.  250 

Alternatively, muscles that are architecturally homogeneous would be more ‘specialized’ and 251 

would only be able to produce force effectively over a narrow range of lengths and ultimately 252 

conditions. 253 

 254 

(g) Future directions 255 

Given that motor units can be distributed in a non-random fashion within a muscle, and 256 

the fact that locomotion can vary (with respect to intensity and kinematics) drastically depending 257 

on the situation, it is not surprising that heterogeneity is a feature of muscle function.  The main 258 

question that remains unanswered is whether this heterogeneity has adaptive significance or 259 

whether it is merely a byproduct of architecture and/or motor unit distribution.  It is true that 260 

regional variation in other factors, such as the distribution of connective tissue, might suggest 261 

benefits to heterogeneity.  If patterns of regional variation prove to be adaptive, then future work 262 

assessing the origins and consequences of regional variation across diverse taxa will yield 263 

important information regarding how complex systems evolve.  264 

It is clear after more than 30 years of research that regional variation in architecture and 265 

function is a common feature of muscle biology.  Now that the prevalence of this phenomenon is 266 

recognized, we now must work to understand regional variation in the context of natural 267 

dynamic locomotor behavior.  Recent work has taken a step in this direction by quantifying 268 

activation and strain patterns within muscles under dynamic conditions that vary in demand [7, 269 

14].  However, much like the work by Hoffer and colleagues [47], understanding how motor units 270 

are recruited under dynamic in vivo conditions will yield important information regarding how a 271 
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single pool of motor neurons can be used to control functional disparate regions of a muscle.  272 

This would lead to defining motor units based on their function and morphology, not just the 273 

latter.  This will be particularly important for interpreting the role of multifunctional muscles that 274 

contain regions that might be more important for specific tasks.      275 

Incorporating regional variation in architecture into three dimensional muscle models will 276 

provide a more sophisticated way of analyzing muscle injury [56].  The distribution of 277 

aponeurosis tissue throughout a muscle has a large impact on the strain distribution [8].  To link 278 

variation in aponeurosis with potential for injury, Rehorn and Blemker [56] constructed a finite 279 

element model of a human hamstring muscle, the biceps femoris longhead (BFLH), using 280 

magnetic resonance (MR) images.  They discovered that muscles with one wide and one 281 

narrow aponeurosis are more likely to get injured than muscle with two wide aponeuroses.  In 282 

areas where the aponeurosis is relatively narrow (proximal region near the myotendinous 283 

junction), BFLH strains are likely higher, which then increases the incidence of injury.  Future 284 

work assessing in vivo strains in relation in aponeurosis width would confirm this. 285 

Functional heterogeneity within muscles has been revealed for a limited number of 286 

vertebrate taxa, including cats [9], rats [41], pigs [28], guinea fowl [8], pigeons [10], desert 287 

iguanas [15], toads [13], and humans [14, 40].  Future work that focuses on exploring the 288 

diversity in heterogeneity will provide important information regarding the evolution of complex 289 

function within muscles.  In addition, examining multiple species within a genus or family would 290 

facilitate linking relatively subtle differences in heterogeneity to differences in ecology, 291 

biomechanics, or limb morphology.  By understanding the functional ramifications of 292 

heterogeneity, we will be better equipped to apply this to musculoskeletal models [43, 44] and in 293 

vivo experiments. 294 

(i) A cautionary note for in vivo studies? 295 
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 We propose that the questions being addressed in a given study will dictate the 296 

importance of the regional variation outlined in this paper.  It is true, however, that determining if 297 

and how regional variation exists can only provide additional information, even if to highlight the 298 

lack of regional variation within a muscle [57].  We highlight three scenarios where quantifying 299 

regional variation will be important in future work.  First, if the questions forming a study are 300 

related to how muscles work under in vivo conditions, then addressing regional variation in 301 

architecture and/or function will be important.  For example, if one wishes to determine how 302 

much work a muscle does while an animal runs, it is increasingly evident that regional strain 303 

should be addressed.  As highlighted by Higham et al. (2008), using only strain measurements 304 

in the proximal region of the MG of guinea fowl would result in an over-estimation of whole-305 

muscle work, whereas a single measurement of strain in the distal region would result in an 306 

under-estimation.  Thus, combining strain measurements in two or more locations would likely 307 

yield a more accurate measure of whole-muscle strain.  A second situation in which regional 308 

variation will be important is when a study wishes to link limb kinematics with muscle strain [58].  309 

It is possible for a part of a muscle to exhibit very little strain while another region undergoes a 310 

considerable amount of shortening or lengthening [8].  If in vivo measurements were taken only 311 

from the region that remained relatively isometric, and there were significant changes in joint 312 

angle, then one might conclude that a decoupling exists between joint movement and muscle 313 

strain.  However, the conclusions would be quite different if measurements had only been 314 

obtained from the region that underwent a considerable amount of length change.  A third 315 

scenario in which regional variation should be quantified is in studies that wish to use EMG 316 

signals to determine the recruitment of various fibre types.  As highlighted above, muscles can 317 

exhibit considerable degrees of regional variation in fibre type composition.  Thus, the signals 318 

obtained from a given EMG electrode will be linked to the regional variation within the muscle.  319 

In this case, it would be beneficial to understand the distribution of fibre types within the muscle 320 

of interest, and then sample from different regions under in vivo conditions. 321 
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 In many cases, quantifying the patterns of activity (using EMG) that are recorded from 322 

many muscles simultaneously can provide a detailed picture of the relative activation patterns 323 

and hence muscle use [59-62].  In these cases, it is likely not feasible to assess variation within 324 

a single muscle given space, surgical, and data acquisition limitations.  In addition, the question 325 

in these studies is predominantly focused on the inter-muscular or even inter-specific 326 

relationships rather than the specific functioning of a single muscle.  Thus, while heterogeneity 327 

is likely prevalent in almost all terrestrial vertebrates, it is not always pertinent to a given study.    328 

 329 

3. Inter-segmental connections between muscles:  A case study using the helmeted 330 

guinea fowl, Numida meleagris. 331 

(a) Introduction 332 

Apart from the dynamic coupling of different limb segments that arises naturally from the 333 

multiarticular nature of a body [63], hindlimb muscles of vertebrates are often connected to 334 

others via several different mechanisms [22, 26, 27, 64].  First, synergists can join at a common 335 

tendon, thus exerting force at a common insertion [8].  Second, synergists can be connected in 336 

parallel via common aponeuroses along the length of the muscles [23-26], resulting in the 337 

transmission of forces via connections of the intact inter-muscular connective tissue network.  338 

Third, muscles can be connected in series across adjacent limb segments by fleshy connections 339 

or via connective tissue networks.  This aspect of inter-muscular force transmission has 340 

arguably received the least amount of attention, yet, to the extent that it exists, likely has 341 

substantial effects on the in vivo function of muscles. 342 

In guinea fowl, more than one of these in-series (and in-parallel) connections exist.   As 343 

highlighted by Ellerby and Marsh [27], the flexor cruris lateralis pars pelvica (FCLP), flexor cruris 344 

lateralis pars accessoria (FCLA), and the gastrocnemius intermedia (GI) form a triarticular 345 
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complex.  However, an additional complex exists between the iliotibialis cranialis (IC), iliotibialis 346 

lateralis pars preacetabularis (ILPR), and medial gastrocnemius (MG) (Fig. 2).  The latter 347 

receives insertions from both the IC and ILPR.  However, the MG itself is divided into sections 348 

that act to flex the knee and a section that exerts an extensor moment at the knee [8].  The 349 

latter section actually wraps around the lower limb and the knee, and this part of the MG is 350 

where the IC and ILPR insert (see Fig. 2).  The goal of this study was to explore the activation 351 

and strain of these three muscles under in vivo conditions to assess potential functional 352 

interactions (i.e. periods of co-activation) during running.  We hypothesized that, while a period 353 

of co-activation might occur, there would be tractable strain patterns that relate to the activation 354 

of the muscles.  In other words, if one muscle is active and shortening, then the other muscle in 355 

series (if not active) will be lengthened by the in-series connection.   356 

(b) Methods and materials 357 

(i) Experimental subjects 358 

 Four helmeted guinea fowl (Numida meleagris L.) of comparable size (average mass: 359 

2.3 ± 0.2 kg) were used.  This species is ideal for studies of animal locomotion as individuals 360 

are easily trained to run on a treadmill and are capable of maintaining a high level of running 361 

performance [7, 8, 65, 66].  All surgical and experimental protocols were approved by the 362 

Harvard University Institutional Animal Care and Use Committee.   363 

(ii) Surgical protocol 364 

 The birds were anesthetized using an intramuscular injection of ketamine (20 mg/kg) 365 

and xylazine (2 mg/kg).  During the surgical procedures, subsequent anesthesia was 366 

maintained at 1-2% isoflurane while monitoring the animal’s breathing rate.  Recording 367 

electrodes and transducers were passed subcutaneously to the shank from a 1-2 cm dorsal 368 

incision over the synsacrum. A second 4-5 cm incision was then made over the anterior and 369 
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distal portion of the upper limb.  This exposed the IC and ILPR, and the electrodes and 370 

transducers were pulled subcutaneously through using this incision.  A third 4-5 cm incision was 371 

then made on the lateral side of the right shank, overlying the division between the anterior and 372 

posterior muscular compartments, which exposed the lateral gastrocnemius.  This incision was 373 

used to pull the electrodes and transducers down to the lower limb from the synsacrum.  A 374 

fourth 4-5 cm incision was then made on the medial side of the right shank to expose the MG.     375 

 Sonomicrometry crystals (2.0 mm, Sonometrics Inc., London, Ontario, Canada) were 376 

implanted in the proximal region of the MG, which we will now refer to this as the pMG given 377 

that this region of the muscle has been shown to function differently from other parts of the 378 

same muscle [7, 8].  We also implanted the same sized crystals into the distal regions of the IC 379 

and ILPR (Fig. 2).  Small openings in the muscle (approximately 3mm deep) were made using 380 

fine forceps, and the crystals were placed in these openings such that each crystal pair was 381 

aligned along a fascicle axis.  The crystals were secured using 4-0 silk suture to close the 382 

muscle opening.  In all muscles and locations, crystals were spaced approximately 10 mm apart. 383 

 Fine-wire (0.1 mm diameter, California Fine Wire, Inc., Grover Beach, California, USA) 384 

twisted, silver bipolar electromyographic (EMG) hook electrodes (0.5 mm bared tips with 1 mm 385 

spacing) were implanted using a 24 gauge hypodermic needle immediately adjacent to each 386 

pair of sonomicrometry crystals and secured to the muscle's fascia using 4-0 silk suture.  387 

Electrodes were implanted into the proximal and distal regions of the LG and MG.   388 

 All lead wires (from EMG and sonomicrometry) were pre-soldered to an insulated 389 

connector (Newark, Chicago, Illinois, USA).  The connector was wrapped in duct tape and 390 

sutured to the skin of the back using 4-0 vicryl.  VetwrapTM (3M, St. Paul, Minnesota, USA) was 391 

then used to surround the lead wires and connector.   392 

(iii) Experimental protocol 393 
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 Following at least one night of recovery, animals ran on a level motorized treadmill at a 394 

speed of 2.0 m s-1, which represents a run [21, 67, 68].  Each sequence was recorded in lateral 395 

view using a digital high-speed camera (Photron Fastcam 1024PCI, Photron USA Inc., San 396 

Diego, California, USA) at a rate of 250 frames s-1.  A trigger (post) stopped the camera 397 

recording and the voltage pulse from the trigger was used to synchronize the video with the in 398 

vivo muscle data. 399 

 Lightweight shielded cable (Cooner Wire, Chatsworth, USA) attached to the connector 400 

on the bird's back was attached to a Triton 120.2 sonomicrometry amplifier (Triton Technology 401 

Inc., San Diego, USA) and EMG amplifiers (Grass, P-511, West Warwick, USA).  EMG signals 402 

were amplified 2000x and filtered (60 Hz notch, 100-3000 Hz bandpass) before sampling. 403 

Voltage outputs from these amplifiers were sampled by an A/D converter (Axon Instruments, 404 

Union City, USA) at 5000 Hz. Lengths recorded by the Triton sonomicrometer were adjusted by 405 

2.7% to correct for the faster speed of sound in muscle versus water. Also, because the Triton 406 

filters introduce a 5 ms phase delay, all length measurements were corrected for this offset, as 407 

well as an offset (+0.82 mm) introduced by the faster speed of sound through the epoxy lens of 408 

each sonomicrometry crystal (see [48] for details).  Following experiments, animals were 409 

euthanized with an intravenous (brachial) injection of sodium pentobarbital (120 mg/kg).  Each 410 

muscle was dissected free to confirm placement of sonomicrometry crystals and EMG 411 

electrodes and to verify origins and insertions.  412 

(iv) EMG analysis 413 

 EMG recordings for each stride cycle analyzed were first baseline-corrected.  Several 414 

timing variables were quantified including onset, offset and duration.  Determination of the onset 415 

and offset followed previous methods [69].  These timing variables were related to other key 416 

events, such as the time of force generation (measured for the MG previously). 417 



 19 

(v) Sonomicrometry 418 

 Sonomicrometry techniques and analyses followed previous studies [7, 8, 21, 57, 70].  419 

Fractional length changes (ΔLseg/Lo) of the muscle's fascicles were calculated based on segment 420 

length changes measured between the crystals (Lseg) relative to the resting length (Lo), which 421 

was measured while the animal stood at rest.  As a convention, shortening strains are negative, 422 

and lengthening strains are positive.   423 

(vi) Statistical Analyses 424 

 We used a two-factor analysis of variance where individual and muscle were the 425 

independent variables and factors related to muscle function (e.g. fascicle strain) were the 426 

dependent variables. To account for multiple observations within each individual, the F-values 427 

were calculated by dividing the main effect (e.g. muscle) by the interaction term involving 428 

individual and the factor of interest (e.g. muscle x individual).  Further details of this calculation 429 

can be found in [71].  P<0.05 was used as the criterion for statistical significance in all tests.  430 

SYSTAT version 9 (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses.  Unless 431 

stated otherwise, all values are mean ± S.E.M. 432 

(c) Results 433 

(i) General patterns 434 

 As highlighted in previous work [7, 8], pMG activity began within the 50 ms preceding 435 

footfall.  Following footfall, the pMG lengthened and then shortened (Fig. 3).  For the remainder 436 

of the stance phase, the pMG remained relatively isometric.  Similarly, the IC and ILPR often 437 

lengthened immediately following footfall, although this lengthening period was longer for the IC 438 

than the other muscles.  Muscle EMG patterns differed considerably between the three muscles 439 

(Fig. 3).  The IC was active primarily during the swing phase of the stride, whereas the ILPR 440 
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was commonly active during the latter half of the stance phase of the stride.  The pMG was 441 

active for the very last portion of the swing phase and then the first 50-70% of the stance phase.     442 

(ii) Overlap in activity patterns and resulting length changes 443 

 The pMG and the IC did not exhibit any overlap in EMG activity apart from a brief period 444 

during mid-swing.  The average overlap of EMG activity between the ILPR and the pMG was 445 

34.4 ± 2.3 ms, and this occurred during the latter half of stance.  During this period of 446 

overlapping activity, the ILPR shortens by approximately 6%, whereas the pMG remains 447 

essentially isometric (less than 1% change in length) (Fig 4).  This difference in strain was 448 

significantly different (ANOVA, P<0.05).  Overlap in activity between proximal muscles and the 449 

pMG did not occur during the initial part of stance (Fig. 3), indicating that these muscles are 450 

relatively independent during this phase. 451 

(d) Discussion 452 

 Our discussion focuses on the interactions between the ILPR and the pMG as this was 453 

the only muscle combination to exhibit overlapping activity. Also, the connective tissue linking 454 

these two muscles is more substantial than the connective tissue between the pMG and the IC.  455 

During the overlap in activity in the latter half of stance, the ankle and knee are both being 456 

extended [27, 67].  In accordance with this, previous studies indicate that there is an extensor 457 

moment at the knee during this part of stance in guinea fowl [72] and turkeys [73].  Combined 458 

with the fact that both of these muscles exert extensor moments at the knee, it is predicted that 459 

shortening will occur in both the ILPR and the pMG.  In addition, ankle extension would result in 460 

shortening of the MG.  Despite both of these kinematic predictors, the pMG remains relatively 461 

isometric.  What can explain the isometric behavior of the pMG?  One explanation, which is 462 

supported by our results, is that the shortening of the ILPR during this period is preventing the 463 

pMG from shortening due to the connection between the muscles.  This might help maintain an 464 
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optimal length of the MG while it is generating force.  However, future work would be required to 465 

validate this explanation. 466 

 Although we predicted that the initial period of lengthening in the pMG might result from 467 

interactions with the ILPR or IC, this does not appear to be the case.  Instead, the flexion of the 468 

knee that occurs during the initial half of stance in guinea fowl [67] likely results in stretching of 469 

this region while it is active given that the proximal region exerts a knee extensor moment.  470 

Thus, the strain patterns in the MG throughout a stride cycle are driven by multiple factors, 471 

including regional differences in architecture, interactions with other muscles, activation 472 

patterns, and joint kinematics.  The relative importance of each factor is time-dependent, with 473 

intermuscular interactions being important during the latter half of stance.  474 

 Our study only examined locomotion on a level surface at 2 ms-1.  It is quite possible that 475 

the linkage between the ILPR and pMG provides functional flexibility under diverse conditions.  476 

Thus, we have only begun to understand how these muscles can interact.  Under certain 477 

circumstances, for example, the overlap in activity might differ from that observed in the current 478 

study, which might be related to changes in functional demand.  As suggested by Ellerby and 479 

Marsh [27], the presence of inter-segmental muscles complexes suggests that dividing a limb 480 

into segments might not be functionally relevant.   481 
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Figure captions: 676 
 677 
 678 
Figure 1.  Schematic showing the control and feedback associated with terrestrial locomotion.  679 

Sensory input is integrated in the central nervous system, which then controls the pool of motor 680 

units in a given muscle.  However, regional variation in motor unit (MU) recruitment (e.g. 681 

proximal or distal) will result in regional patterns of muscle work (force x fascicle strain).  The 682 

dashed red lines highlight one scenario that would result in regional variation within a muscle.  683 

Collectively, the regional patterns of work will result in net work and net muscle force, which will 684 
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drive limb movement.  However, work and force from other muscles can act to move the limb 685 

(black arrow) or act on regions of other muscles (dashed blue arrow), highlighting inter-686 

segmental connections or the lateral transfer of force between muscles.   687 

 688 

Figure 2.  Schematic showing a lateral view of the left hindlimb of a helmeted guinea fowl.  The 689 

proximal portion of the medial gastrocnemius is shown wrapping around the leg and receiving 690 

insertions from the ILPR and IC.   691 

 692 

Figure 3.  Representative fascicle length change patterns (A) and muscle activity patterns (B, C, 693 

& D) for two consecutive strides of a guinea fowl running steadily at 2 m s-1 on a level motorized 694 

treadmill.  The pMG (blue), IC (black), and ILPR (red) are all shown.  The initial footfall occurs at 695 

0 ms and the stance phases are represented by the shaded areas.       696 

 697 

Figure 4.  Average fascicle strain (% of resting length) for the pMG (left) and ILPR (right) during 698 

the period of co-activation during the latter half of stance.  There was a significant difference in 699 

strain between the two muscles (ANOVA; P<0.05).     700 
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