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Abstract: 24 

Flapping flight places strenuous requirements on the physiological performance 

of an animal.  Bird flight muscles, particularly at smaller body sizes, generally contract at 26 

high frequencies and do substantial work in order to produce the aerodynamic power 

needed to support the animal's weight in the air and to overcome drag.  This is in contrast 28 

to terrestrial locomotion, which offers mechanisms for minimizing energy losses 

associated with body movement combined with elastic energy savings to reduce the 30 

skeletal muscles' work requirements. Muscles also produce substantial power during 

swimming, but this is mainly to overcome body drag rather than to support the animal's 32 

weight.  Here, I review the function and architecture of key flight muscles related to how 

these muscles contribute to producing the power required for flapping flight, how the 34 

muscles are recruited to control wing motion, and how they are used in maneuvering. An 

emergent property of the primary flight muscles, consistent with their need to produce 36 

considerable work by moving the wings through large excursions during each wing 

stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of 38 

their resting fiber length (33-42%).  Both muscles are activated while being lengthened or 

undergoing nearly isometric force development, enhancing the work they perform during 40 

subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a 

smaller range of contractile strains (12-23%), reflecting their role in controlling wing 42 

shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke 

plane mainly via changes in whole-body pitch during take-off and landing, relative to 44 

level flight, allowing their wing muscles to operate with little change in activation timing, 

strain magnitude, and pattern.            46 
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 48 

Birds power flight primarily by large pectoralis muscles that depress the wings at the 

shoulder. The dominant role and large size of the pectoralis muscle, therefore, enables a 50 

critical assessment of how muscle function is tailored to meet the mechanical power 

requirements of flapping flight over a range of flight conditions. The smaller 52 

supracoracoideus muscle of birds, about one-fifth the size of the pectoralis, is the primary 

wing elevator active during upstroke, particularly at slow to moderate speeds and during 54 

hovering (at faster flight speeds, wing elevation is likely produced passively by aerodynamic 

forces acting on the wings, which remain extended during upstroke to maintain lift through 56 

bound circulation [1, 2]). Smaller extrinsic and intrinsic wing muscles assist in modulating 

wing orientation and controlling wing shape. These muscles likely contribute to adjustments 58 

of the wing's performance as an airfoil [3-7] and, thus, may indirectly affect flight power 

requirements.  However, because of their small size the intrinsic muscles of the wing likely 60 

contribute little additional mechanical power for flight.       

Prior analyses of muscle-tendon architecture have shown that muscles differ widely 62 

in their design for changing length while producing force, but due to their conservative 

properties for force production and relative fiber strain (ratio of activated length change 64 

relative to resting fiber length), skeletal muscles generally perform about the same amount of 

work in proportion to their mass [8-11]. Longer fibered muscles, such as the avian pectoralis, 66 

however are well suited to producing the larger movements required for moving the wings to 

produce effective aerodynamic power for weight support and to overcome drag.  In addition 68 

to having longer fibers, greater operating strains also enhance the range of movement that a 

muscle generates.  Thus, the operating strains of certain flight muscles are expected to be 70 
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greater than those of muscles that support an animal's weight during terrestrial locomotion 

[12] that contract over more limited strain ranges, allowing more economical force 72 

production.  Muscles, having short fibers that attach to a longer tendon such as those found in 

the legs of terrestrial animals, produce large forces and can recover substantial elastic energy 74 

from their tendon and aponeurosis [12-15].  These muscles are best used for movements that 

require little net shortening or lengthening of the muscle. Consequently, pinnate muscles 76 

having these architectural features are commonly found in distal limb regions. The intrinsic 

wing muscles of birds are commonly short fibered and pinnate, and have long tendons.  This 78 

enables these muscles to control distal movements of the wing while, at the same time, being 

small and light weight.   Their function has not been much studied to date, beyond a few 80 

comparative functional anatomical descriptions [7, 16, 17] and assessment of their 

neuromuscular activity patterns [3, 16, 17]. Even so, these studies are important because they 82 

provide a framework for future studies that seek to assess how the smaller intrinsic wing 

muscles are used to achieve flight across different conditions, and in birds with differing 84 

wing designs and flight styles. 

In the context of this earlier work, the functions of the two primary flight muscles of 86 

birds, the pectoralis and supracoracoideus, are reviewed here in relation to the mechanical 

power needed to meet the aerodynamic requirements for flapping flight.  The vast majority of 88 

morphological and physiological work has largely focused on the pectoralis because of its 

dominant role in powering avian flight.  Consequently, much of the review of avian muscle 90 

function will focus on the pectoralis, with particular comparison to its antagonist, the 

supracoracoideus.  Preliminary in vivo analyses of the triceps and biceps muscles, which 92 

control wing shape via elbow extension and flexion, are also considered in relation to 
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changes in flight performance required for take-off, landing, and maneuvering flight.  Future 94 

directions for research to improve our understanding of the neuromuscular control and 

functional design of avian flight are also identified. 96 

 

Functional anatomy of primary avian flight muscles. 98 

The pectoralis is a large muscle (~8-11% body mass; [15,16]) that attaches to the 

humerus of the wing at the deltopectoral crest (DPC; Fig. 1). Its main portion 100 

(sternobrachialis, SB) originates from an enlarged sternal keel, with more anterior fibers  

[Figure 1 here] 102 

arising from the furcula, or 'wishbone'.  A much smaller portion (thoracobrachialis, TB) 

originates dorsally from ribs.  The fibers of the thoracobrachialis and posterior region of the 104 

sternobrachialis insert on an internal aponeurosis that merges with the more anterior SB 

fibers before attaching to the DPC.  In addition to producing mechanical work during 106 

downstroke, the pectoralis also pronates the wing. The smaller supracoracoideus lies deep to 

the pectoralis, also originating from the keel of the sternum and is about one-fifth of the 108 

pectoralis in mass (~2% body mass). By means of its tendon, which inserts and acts dorsally 

at the shoulder as a pulley, the supracoracoideus elevates and supinates the wing during 110 

upstroke [18-21].  Whereas the pectoralis is comprised of generally long fibers with modest 

pinnation (pigeon: 31 to 67 mm, mean 41 mm), the supracoracoideus is a classic bipinnate 112 

muscle with short fibers (pigeon: 15-21, mean 18 mm).   It produces elevation and supination 

of the wing by means of a long tendon that passes dorsally over the shoulder, via the triosseal 114 

foramen of the avian pectoral girdle, before attaching to the dorsal surface of the proximal 

humerus adjacent to the DPC.  The pectoralis is comprised mainly of fast-oxidative (Type 116 
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IIa) fibers (~85% in pigeons) with a smaller component of fast-glycolytic (Type IIb) fibers 

[20, 21].  Fiber type composition of the supracoracoideus, to my knowledge, has not been 118 

examined in pigeons, but in the European starling is comprised of a greater fraction (68%) of 

fast-glycolytic versus fast-oxidative fibers [22]; whereas, in zebra finches, Anna's 120 

hummingbirds [23], and Atlantic puffins [24], the supracoracoideus is exclusively comprised 

of fast-oxidative fibers.  122 

 

In vivo assessment of avian muscle function during flight. 124 

Because of its focal insertion on the ventral surface of the DPC in pigeons (Fig. 1B), 

doves, cockatiels, budgerigars, magpies, and certain other species of birds, forces produced 126 

by the pectoralis can be estimated directly by means of strains recorded using a strain gauge 

bonded to the dorsal surface of the DPC (in several avian species the pectoralis also inserts 128 

along the ventral proximal shaft of the humerus, preventing this approach).  Details for 

exposing and attaching metal foil strain gauges to obtain strain-calibrated in vivo recordings 130 

of pectoralis force are described elsewhere [25, 26].  Although some uncertainty exists in the 

calibration of DPC-strain to pectoralis muscle force [27], such recordings provide a reliable 132 

and temporally detailed recording of time-varying muscle force. Other methods for obtaining 

muscle force and estimates of mechanical power output for bird flight also have their 134 

limitations [28, 29].  A similar skeletal-strain based approach to extract the time-varying 

force transmitted by the supracoracoideus muscle via the muscle's tendinous insertion on to 136 

the proximal dorsal shaft of the humerus has also been used [30]. 

In combination with DPC strain-force recordings of the pectoralis and the 138 

supracoracoideus, in vivo measurements of muscle fascicle strain are obtained in localized 
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muscle sites by means of sonomicrometry, a technique based on measurements of the 140 

propagation of sound pulses within the muscle to determine length changes [31].  Because 

the sonomicrometry transducers lie adjacent to muscle fascicle bundles, they provide a 142 

measure of fascicle strain rather than muscle fiber strain per se.  Nevertheless, the two 

measures are likely to be quite similar.  In the large pectoralis, sonometric measurements 144 

obtained from multiple sites (anterior and posterior SB and TB) in pigeons showed similar 

fascicle strain levels in the larger SB portion of the muscle, but smaller strains in the most 146 

posterior SB and TB portions of the muscle [32].  By averaging the sonomicrometry data for 

fascicle strain across recording sites (weighted by the estimated fraction of muscle mass that 148 

each site represents) or by relying on a single recording site within the muscle and assuming 

the site is representative for the muscle as a whole, the total work of the muscle can be 150 

assessed based on the muscle's length change.  Muscle work is therefore determined by 

averaging fascicle strain multiplied time fascicle length, in relation to the time-varying force 152 

the muscle produces.   The product of muscle fascicle length change and force is visualized 

as a work loop over the course of a wingbeat, or muscle contraction, cycle (see Fig. 3).  The 154 

timing of muscle activation is recorded simultaneously using fine-wire electromyography 

(EMG) electrodes inserted into and anchored adjacent to those fascicles for which a 156 

sonometric evaluation of strain is recorded [31].  The EMG provides a measure of the timing 

of muscle activation and relative motor recruitment in relation to muscle force and length 158 

change.  In total, the force, strain and neuromuscular activation recorded from the muscle 

serve to describe the temporal dynamics of the muscle's contractile performance across a 160 

range of flight conditions. 

162 
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Functional analysis of pectoralis and supracoracoideus muscles during flight. 

The pectoralis muscle is activated to contract late in upstroke, prior to wing 164 

reversal (Figs. 2A).  Force development follows soon after the start of activation (~ 2-8 

ms in pigeons and cockatiels) and peaks early in the downstroke, continuing until the end  166 

[Figure 2 here] 

of downstroke.  The pectoralis undergoes a slight stretch or remains nearly isometric 168 

(depending on the species and flight condition studied), as force develops late in upstroke 

and through wing reversal to begin the downstroke (Figs. 2 & 3). By developing force 170 

while nearly isometric or being briefly stretched, the rate of force rise and the magnitude 

of peak force are appreciably enhanced due to force-velocity effects [33, 34]. As a result, 172 

the work that the pectoralis performs is substantially increased while the muscle shortens 

during the remainder of downstroke.  Deactivation of the pectoralis occurs early in the 174 

downstroke, almost coincident with the timing of peak force generation.  This allows the 

muscle to relax to near zero force prior to being stretched passively in the upstroke.  176 

Importantly, this reduces the antagonistic ('negative') work required of the 

supracoracoideus to elevate the wing. The timing of pectoralis deactivation relative to its 178 

continuing force production points to the problematic nature of inferring muscle force 

production based on EMG recordings alone.  180 

[Figure 3 here] 

For those species studied [27, 35, 36], the in vivo force-length work behavior of 182 

the pectoralis is generally similar across a range of flight speeds and conditions (Fig. 3).  

As noted above, activation of the pectoralis in these species occurs late in upstroke, as the 184 

muscle is being lengthened (this is most extreme in the mallard, Fig. 3B) or is nearly 
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isometric, allowing the muscle to develop force rapidly for a given level of activation. In 186 

contrast to classical expectations for the operating fascicle strain of a muscle (~10-15% 

of resting length) based on isometric force-length properties [33, 34]), the pectoralis of 188 

these species undergoes strains of 32-40% during different flight conditions (take-off, 

ascending and descending flight, and changes in speed during level flight), stretching 20-190 

30% beyond the muscle's resting length (measured when the wings are folded against the 

bird's body on the perch), and shortening 8-12% less than resting length.  This large strain 192 

excursion underlies the ability of the pectoralis to perform substantial work during the 

downstroke of each contraction cycle.  Forces produced by the pigeon pectoralis were 194 

found to vary about 40% across flight conditions, ranging from take-off and ascending 

flight to landing and descending flight [26].  Forces produced by the cockatiel pectoralis 196 

during level flight across speeds ranging from 1 to 14 m/s in a wind tunnel were found to 

vary 65% [35].  These forces are estimated to be less than 40-60% of the peak isometric 198 

force that the muscle can generate [26], reflecting in part the rapid shortening that the 

muscle undergoes to produce work. In cockatiels, doves and pigeons, the pectoralis 200 

achieves 58-73% of the maximum theoretical work output possible for the observed force 

and active strain range [30, 35] (Fig. 3A). 202 

[Figure 4 here] 

Not surprisingly, the supracoracoideus of pigeons exhibits mirror-like force, 204 

length and activation timing patterns relative to the pectoralis [30] (Fig. 4).  As the main 

upstroke muscle, the supracoracoideus is activated late in downstroke just prior to wing 206 

reversal.  The muscle develops force rapidly while being nearly isometric, reaching peak 

force very early in the upstroke.  The early onset of force development by the 208 
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supracoracoideus likely reflects the its role in decelerating and re-accelerating the wing 

during the downstroke-upstroke transition, as well as its role in wing supination [19].  210 

Estimates of the elastic energy storage within the supracoracoideus tendon (51±62 mJ 

during level and 88±85 mJ during ascending flight) are consistent with this role, given 212 

that the magnitude of inertial kinetic energy exceeds the amount of elastic energy stored 

and returned by the supracoracoideus tendon [30].  The additional inertial power of the 214 

wing's motion is likely transformed into useful aerodynamic power mainly in the 

downstroke, as has been traditionally assumed [37] .  The rapid supination of the wing 216 

produced by the supracoracoideus is important for achieving a short duration upstroke, 

with the potential for positive lift generation in birds with wing-tip reversal flight 218 

kinematics [38] or for minimizing unwanted negative lift.  It also maximizes the duration 

of downstroke lift production and was likely an important feature in the evolution of an 220 

active flapping flight stroke [19]. Rapid supination of the wing to initiate upstroke in 

rufous hummingbirds [39] is key to this species' ability to generate positive upstroke lift, 222 

which has been estimated to be 25-33% of their total lift production [40]. In pigeons, the 

amount of force produced antagonistically between the two muscles was estimated to be 224 

small [30].  During slow level flight, the negative work of the pigeon pectoralis just prior 

to the end of the upstroke is about 18% of the positive work the muscle performs during 226 

the downstroke. This may well reflect a role in absorbing inertial energy of the wing as it 

is decelerated late in upstroke [30].  By comparison, negative work of the pigeon 228 

supracoracoideus is 14% of the positive work that the muscle performs and occurs late in 

downstroke to decelerate the wing at this time. 230 
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The short fibers of the bipinnate supracoracoideus muscle require them to operate 

over large strains, similar to those of the pectoralis.  Supracoracoideus fascicle strains 232 

range from 33 to 40% of the muscle's resting length during descending, ascending and 

level flight [30].  The supracoracoideus fascicles also undergo a smaller degree of stretch 234 

relative to their rest length (6 to 12% across flight conditions) compared with their net 

shortening strain (-27% for all flight conditions). This pattern of fascicle length change 236 

relative to resting length is opposite to the pattern of strain observed within pectoralis 

fascicles, which lengthen by 20 to 30% of their resting length before shortening to ~10% 238 

less than rest at the end of downstroke  (Fig. 4). Interestingly, the modulation of muscle 

strain in the supracoracoideus reflects mainly differences in the degree of wing 240 

depression (stretching the supracoracoideus and its tendon) that occur at the end of 

downstroke across the three flight conditions that were studied. Because of its relatively 242 

small size, the pigeon supracoracoideus generates 1.6 times the mass-specific muscle 

power output of the pectoralis. This reflects the much greater operating stresses (force 244 

normalized to physiological cross-sectional area) of the supracoracoideus, which ranged 

from 85 to 125 kPa for descending versus ascending flight, compared with stresses of 50 246 

to 58 kPa in the pectoralis across the same flight condition [30], and 57 to 76 kPa in an 

earlier study of the pigeon pectoralis when corrected for the muscle's estimated 248 

myofibrillar area [26]. 

250 
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Comparative data for avian pectoralis power output versus speed.  

[Figure 5 here] 252 

Because the pectoralis is the dominant avian flight muscle (in pigeons, the 

pectoralis represents 60% of total wing muscle mass, unpublished data), the muscle's 254 

power output can be used to assess how whole body power output and, indirectly, 

aerodynamic power output vary as a function of flight condition and speed in a bird.  256 

Measurements of pectoralis mechanical power output and wingbeat frequency have been 

published for black-billed magpies (P. pica), cockatiels (N. hollandicus), and ringed-neck 258 

doves (S. risoria) across a range of flight speeds while flying level and steady in a wind 

tunnel [27, 41] (Fig. 5).  Except for magpies, the other two species showed a U-shaped 260 

power versus flight speed curve, generally consistent with aerodynamic theory.  This 

reflects high induced power costs at slow flight speeds and hovering that decease as 262 

speed increases, and high profile and parasite power costs (due to increasing wing and 

body drag) at higher flight speeds.  The absence of an observed increase in pectoralis 264 

muscle power at higher flight speeds in magpies may reflect either an inability of this 

species, with its lower aspect ratio and less pointed wings, to achieve sufficient thrust in 266 

order to overcome the profile and parasite drag costs it incurs at higher flight speeds 

limiting the top speed that it can achieve [27], or that the birds were unwilling to fly at 268 

faster speeds in the wind tunnel.  Although the wind tunnel used to study the magpies 

was smaller (50% less in cross-dimensions of the working section) than that used to study 270 

the cockatiels and doves, artifacts such as a possible ground or wall effect [42] were not 

judged by the authors to be the basis for the magpies' lower power cost at faster flight 272 

speeds.   In the two other species (cockatiels and doves), pectoralis muscle power output 
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at the fastest flight speeds exceeded that produced when the birds were nearly hovering 274 

(Fig. 5).  Thus, although pectoralis power output was high as expected during 1 m/s flight 

in the magpies, it remains unclear why the muscle's power output did not reach or exceed 276 

this level at faster flight speeds. 

Given that other muscles are involved in flapping flight and do mechanical work, 278 

it is certainly the case that the total muscle mechanical power requirement for flight is 

greater than estimates based on the pectoralis alone.  In the study of pigeons, for which 280 

pectoralis and supracoracoideus muscle power output were both determined [30], 

inclusion of supracoracoideus power output increases the total power output of flight by 282 

nearly 25%. Pectoralis power output across flight modes was 3.2 times greater than that 

of the supracoracoideus but less than the nearly 5-fold difference in muscle mass.  284 

Together, these two muscles represent 71% (unpublished data) of the total fight muscle 

mass of a pigeon.  If the remaining smaller extrinsic and intrinsic wing muscles perform 286 

the same relative mass-specific work, this would suggest a total power requirement that 

may be nearly 40% greater than that determined for the pectoralis alone. 288 

Aerodynamic models for estimating the power requirements of the flight of birds 

at different speeds [43-45] are commonly used to infer ecological strategies for 290 

maximizing a bird's flight range or minimizing the metabolic power requirement for 

flight as a function of time [46].  Although measurements of pectoralis muscle 292 

mechanical power output are consistent with the general change in power versus flight 

speed (being highest at slow and fast speeds, with a minimum at an intermediate flight 294 

speed), the absolute magnitude of the power cost for flapping flight across species and 

speeds remains uncertain. Arguments for one approach and/or method being superior to 296 
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another remain unconvincing.  This is due to assumptions and simplifications that quasi-

steady aerodynamic theory makes to estimate flight power requirements, and 298 

uncertainties in the calibration of pectoralis force and assessment of regional fascicle 

strain profiles from localized fascicle recordings on the experimental side.  More recent 300 

attempts to estimate muscle power output based on isolated work loop muscle 

measurements in relation to EMG recordings made during flight [28, 29] also have their 302 

limitations. These include estimating muscle recruitment from relative EMG magnitude 

across flight speeds to adjust the maximally stimulated muscle power measurements 304 

derived from in vitro work experiments.  Such an approach necessarily determines the 

change in flight power requirements based on changes in recorded EMG intensity. It also 306 

results in lower estimates of flight muscle power requirements of cockatiels (minimum 

power cost = ~40 W/kg at 7 m/s) compared with those (74-79 W/kg at 5-7 m/s) obtained 308 

using DPC-based force measurements [27, 35]. Additional studies that refine the use of 

these approaches, or use other methods [47], will improve our ability to quantify the 310 

absolute power costs of flapping flight for particular species operating across various 

flight conditions.  Consistent with the in vitro muscle work and EMG intensity results 312 

that ascribe change in muscle power output across flight speed due to changes in EMG 

intensity [28, 29], results based on in vivo fascicle strain, EMG, and DPC-strain 314 

calibrated force recordings [27, 35] also showed EMG intensity to be highly correlated 

with muscle force (R2=0.92).  In the latter studies, changes in EMG intensity accounted 316 

for 65% of the modulation of muscle power, with changes in fascicle strain amplitude 

accounting for 25% and changes in wingbeat frequency only 10% of the modulation in 318 

muscle power [27, 35].  
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Using measurements of DPC strain-calibrated pectoralis force and fascicle strain 320 

to determine in vivo pectoralis power output, the comparative power curves for the 

different species studied to date suggest that wing loading, as well as wing and tail shape, 322 

are likely important determinants of a species' relative muscle power cost. Doves have 

the highest wing loading (36 N/m2) of the species studied to date [2] and correspondingly 324 

have the highest relative flight power cost over a broad range of speeds (Fig. 5).   

Magpies, have the lowest aspect ratio wings (5.0 versus budgerigars: 7.3, cockatiels: 7.0, 326 

and doves: 5.7) and rounded wingtips, which likely helps to lower their muscle mass-

specific power requirements but may also limit the fastest speeds they can achieve. 328 

At present, it would be imprudent to place heavy reliance on the accuracy of 

experimental or theoretical modeling results to specify precisely whether a species has a 330 

minimum power cost at a particular flight speed, given the uncertainty and limitations to 

the resolution and accuracy of currently available approaches used to estimate flight 332 

power costs.  For example, whereas oxygen consumption data for cockatiels [48, 49] 

indicate a minimum metabolic power cost at 10 m/s, measurements of pectoralis muscle 334 

power data suggest a minimum in the range of 5 to 7 m/s [27, 29].  Combining the 

metabolic power results for cockatiels with their mechanical muscle power results [49] 336 

indicates that muscle efficiency increases with flight speed, ranging from 6.9 to 11.2% 

based on the muscle power data of Morris and Askew [29], or from 12.2 to 28.3% based 338 

on the DPC-pectoralis force and fascicle strain recordings of Tobalske at al. [27]. 

Differences in muscle efficiency are likely given that the shortening velocity of 340 

the pectoralis muscle fascicles varies with flight speed.  For cockatiels [27, 35], fascicle 

shortening velocities ranged from 5.19 to 6.73 muscle lengths/s across flight speeds from 342 
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1 to 13 m/s.  The range of efficiencies derived from in vitro muscle measurements 

adjusted for EMG intensity [29] are low compared with those expected for vertebrate 344 

skeletal muscle, which range from 20-28% at optimal shortening velocities [50].  It seems 

surprising that the evolution of flight muscle function in cockatiels and other birds would 346 

be constrained to substantially lower efficiencies.  Although wingbeat frequency varies 

only slightly across flight speeds (10% in cockatiels), the magnitude of pectoralis fascicle 348 

strain changes in a shallow U-shaped pattern, paralleling changes in pectoralis force [29], 

which results in the overall muscle power versus speed relationship that is observed for 350 

cockatiels (Fig. 5). Although fascicle strain rate varies with flight speed, the generally 

uniform contractile properties of the pectoralis across a range of flight speeds [27, 29] 352 

(Fig. 3) reflect the strikingly uniform fiber type characteristics of the avian pectoralis [21-

23]. This is in contrast to the much larger change in fascicle shortening velocity with 354 

running speed that occurs in the leg muscles of terrestrial animals [51-54]. 

 356 

 

Muscle function in relation to the control of take-off, landing and maneuvering flight. 358 

Whereas the pectoralis and supracoracoideus are mainly responsible for 

producing the mechanical power required for sustained flapping flight in birds, it is 360 

unclear whether the activity of these large flight muscles is modulated to achieve 

maneuvering flight behaviors, or whether the smaller wing extrinsic and intrinsic muscles 362 

are recruited to adjust wing orientation and wing shape.  Past work based on 3D 

kinematics, muscle force, and EMG recordings suggest two possibilities.  In pigeons [6, 364 

55] left and right pectoralis muscles appear to exhibit differential timing of force 
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development and magnitude, with downstroke of the outside wing phase advanced 366 

relative to the inside wing of a turn.  In rose-breasted galahs [5], little difference in the 

kinematic timing of downstroke or pectoralis EMG activity was noted during 90o turns.  368 

Instead, there was evidence of differential activation of the left and right biceps muscles, 

with the inside biceps showing stronger activity, indicative of increased elbow flexion 370 

and reduction of inside wing span. In both sets of studies, however, more detailed 

kinematics of wing shape and motion during these maneuvers was not available given the 372 

limited resolution of the motion-analysis systems used at the time.  Future work will 

benefit from improved kinematic resolution during turning flight, combined with further 374 

study of left wing versus right wing muscle contractile asymmetry. 

[insert Figure 6 here]  376 

In studies of pigeons taking-off from an elevated perch platform, flying level and 

landing on a similar perch, measurements of wing, body and tail kinematics reveal little 378 

change in wing or tail movements relative to the bird's body [56].  Instead, most of the 

change in global orientations of the tail, wing and wing stroke plane, which determine the 380 

aerodynamic properties of the bird's flight stroke, are achieved by changes in body pitch 

(Fig. 6A).  During take-off, pigeons pitch forward (head down) inclining their stroke 382 

plane to a more vertical orientation to provide increased thrust for acceleration after the 

take-off jump from the perch.  During landing, the pigeon pitches back (head up), 384 

changing its stroke plane to a more horizontal orientation to help decelerate as it lands. 

Changes in global stroke plane angle during take-off and landing are significantly greater 386 

and less, respectively, than observed during level flight. 
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The uniform motion of the pigeon's wings relative to its body during take-off, 388 

level and landing flight, suggests that the control of wing and body movement across 

these key phases of flight relies on subtle shifts in aerodynamic and inertial forces 390 

produced by the tail and wings relative to the body to control body pitch.  The pitch 

moment of inertia of a bird, though greater than its roll moment of inertia, is still quite 392 

small. As a result, slight shifts in the orientation of net aerodynamic force produce the 

observed pitch acceleration. In pigeons, the shift in direction of net aerodynamic force 394 

need only be ~8 mm relative to its center of mass to produce the observed pitch moment 

[56]. Consistent with this, no significant differences were observed in the neuromuscular 396 

activation (EMG) or contractile strain behavior of the wing muscles examined (Fig. 6B) 

[57].  This result suggests that the control of body orientation and wing motion relative to 398 

the body does not require substantial changes in flight muscle activation and contractile 

function.  Instead, the highly maneuverable bodies of many birds (low pitch, roll and yaw 400 

moments of inertia) enables them to achieve changes in body and wing orientation that 

allow rapid sharp turning, or to shift from take-off to landing flight, with subtle changes 402 

in neuromuscular function that are likely to prove challenging to identify. 

 404 

Discussion and Summary. 

Muscle function in bird flight depends on the production of substantial 406 

mechanical work performed at a high rate.  Although skeletal muscles generally have a 

similar capacity for generating mass-specific work, the avian pectoralis is well suited to 408 

performing work with large length excursions.  This is a prerequisite for powering flight 

because the wings must move through a large excursion during downstroke to produce 410 
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effective aerodynamic lift.  The pectoralis achieves this by having relatively long 

fascicles that shorten over a large fraction (up to 42%) of their length.  The timing of 412 

muscle activation late in upstroke also allows the pectoralis to rapidly develop force 

under nearly isometric or stretching conditions.  This elevates the work that the muscle 414 

performs as it shortens (Fig. 3).  

Because of its large size and principal role in producing aerodynamic lift, the 416 

contractile function of the avian pectoralis provides a valuable index for the power 

requirements of flight based on measurements of its force production, contractile strain 418 

and neuromuscular activation.  This is in contrast to the multiple muscle groups in the 

limbs of running animals that contribute to muscle power for movement.  Nevertheless, a 420 

functional examination of the broader suite of wing muscles is needed in order to 

understand how flight movements, particularly those during maneuvering, are controlled.  422 

Although much smaller wing muscles may not contribute significantly to the mechanical 

power underlying flight, by adjusting the orientation and shape of the wing they can alter 424 

the wing's aerodynamic properties and, thus, influence how aerodynamic forces and 

power are shifted between the wings for maneuvering. 426 

An unexpected result is that shifts in body, tail and wing movement during take-

off, level and landing flight of pigeons are achieved mainly by changes in whole body 428 

pitch, rather than by changes in wing or tail motion relative to the body itself.  The degree 

to which turning flight is achieved by left versus right asymmetries of smaller wing 430 

muscles, acting to 'steer' the bird around a turn, as opposed to modulation of the larger 

power producing pectoralis and/or supracoracoideus muscles remains unclear.  Evidence 432 

exists that both sets of muscles may contribute to the necessary aerodynamic asymmetries 
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that result in a turning maneuver. The low moments of inertia and highly maneuverable 434 

bodies of birds means that left versus right asymmetries in turning flight, or fore-aft 

asymmetries in aerodynamic force production during take-off and landing flight are 436 

likely to be small and challenging to identify. 

Future studies will benefit from improved imaging that will allow detailed 438 

changes in wing shape, orientation and movement to be quantified and related to the 

timing and magnitude of muscle activation, and where possible, changes in muscle 440 

length, force and work.  These measurements become increasingly difficult for smaller 

muscles, located more distally in the wing.  Force measurements, in particular, are 442 

difficult to obtain for most muscles, hampering the ability to assess muscle force and 

work output in relation to maneuvering flight. In the case where muscles are too small, or 444 

forces cannot be recorded directly, in vitro or in situ measurements of muscle force [29] 

can play an important role for assessing the muscle's contractile properties and role(s) in 446 

flight. The remarkable ability of birds to fly over a range of speeds while often 

maneuvering through complex environments, makes understanding the neuromuscular 448 

and aerodynamic features of these flight behaviors of considerable interest to 

physiologists, biomechanists and aeronautical engineers. 450 

Similarly, the aerodynamic and metabolic power requirements for flight are of 

considerable interest to avian and evolutionary ecologists interested in the strategies that 452 

birds use to forage and migrate to ensure a successful life history.  For this reason, 

additional free flight data on bird metabolism, characteristic flight speeds and behavior 454 

need to be linked to additional experimental assessments of flight energy metabolism and 

musculoskeletal function.  While quasi-static aerodynamic models can provide a rough 456 



A. A. Biewener  Muscle function during avian flight 

- 21 - 

estimate of flight costs, the importance of non-steady aerodynamic effects on flight 

power costs are now well recognized and cannot be ignored. Thus, additional modeling 458 

and experimental studies that seek to yield improved measurements of muscle function 

and aerodynamic power output are needed. 460 
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Figure Captions. 470 
 
Figure 1.  A) Anatomical organization of avian wing musculature (adapted from [3]), 472 

showing key muscles that have been studied, and B) showing the general sites used to 

record pectoralis force via deltopectoral crest (DPC) bone strain, pectoralis fascicle 474 

strain, and neuromuscular activation (EMG). 

 476 
Figure 2.  Representative in vivo recordings of pectoralis fascicle strain, neuromuscular 

activation (EMG), and force for three wingbeats in a cockatiel flying at 7 m/s in a wind 478 

tunnel.  Adapted from [35]. 

 480 
Figure 3.  Representative in vivo work loop patterns produced by the A) pectoralis of 

cockatiels (N. hollandicus) at three different flight speeds (adapted from [35]), and B) the 482 

pectoralis of three other species: ring-neck doves (S. risoria), pigeons (C. livia) and 

mallard ducks (A. platyrynchos) (adapted from [27, 31, 36]).  The force produced by the 484 

muscle is plotted against its fascicle strain (L/Lo, where Lo is the muscle's resting length: 

strain = 1.0).  In the first panel of (A) the dashed rectangle denotes the maximum work 486 

that the muscle could produce for its maximum force and strain; the realized work of the 

muscle is 68% of its theoretical maximum.   The strain range for all muscles is the same 488 

(0.9 to 1.3, or 40% range of muscle length change), but force ranges differ in (B) due to 

the different sized muscles. The bold gray portion of each work-loop represents the 490 

period of neuromuscular activation measured by EMG.  Arrows denote the direction of 

force and fascicle length changes. 492 

 
Figure 4.  Representative recordings of the pigeon supracoracoideus (wing elevation) 494 

fascicle strain, EMG and force, and pectoralis (wing depression) fascicle strain, EMG and 
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force recorded during takeoff from an elevated perch platform and level free flight at ~ 496 

4.5 m/s (7 wingbeats are shown).  Gray panels represent the downstroke for the initial 

four wingbeat cycles, with the upstroke in white background (adapted from [30]). 498 

 
Figure. 5. Comparative flight power curves for three avian species, showing changes in 500 

pectoralis mass-specific muscle power (determined from calibrated DPC-strain force and 

fascicle strain recordings) versus flight speed in a wind tunnel (adapted from [27]). 502 

 
Figure 6. A) Changes in wing stroke plane (SPAloc) and body pitch angle (in global 504 

space) of a pigeon during successive wingbeats of take-off, mid-level flight, and landing 

(adapted from [56]).  The strong correlation of wing stroke plane angle versus body angle 506 

is shown to the right. B) Representative in vivo recordings of muscle strain and activation 

(EMG) of extrinsic and intrinsic wing muscles of a pigeon during take-off, level (~ 4.5 508 

m/s) and landing flight corresponding to a similar sequence shown in A) above (adapted 

from [57]). 510 

 
 512 

running head: Muscle function during avian flight 
 514 



A. A. Biewener  Muscle function during avian flight 

- 24 - 

 References. 516 
 
1. Rayner JVM. Form and Function in Avian Flight. Curr Orn. 1988; 5:1-66. 518 

2. Tobalske BW, Hedrick TL, Biewener AA. Wing kinematics of avian flight across 

speeds. J Avian Biol. 2003; 34:177-84. 520 

3. Dial KP. Activity patterns of the wing muscles of the pigeon (Columba livia) during 

different modes of flight. J exp Zool. 1992; 262:357-73. 522 

4. Dial KP, Gatesy SM. Neuromuscular control and kinematics of the wings and tail 

during maneuvering flight.  Am Zool. 1993. 33: 5. 524 

5. Hedrick TL, Usherwood JR, Biewener AA. Low speed maneuvering flight of the 

rose-breasted cockatoo (Eolophus roseicapillus). II: Inertial and aerodynamic 526 

reorientation. J Exp Biol. 2007; 210:1912-24. 

6. Warrick DR, Dial KP. Kinematic, aerodynamic and anatomical mechanisms in the 528 

slow, maneuvering flight of pigeons. J exp Biol. 1998; 201:655-72. 

7. Vazquez RJ. Functional anatomy of the pigeon hand (Columba livia): a muscle 530 

stimulation study. J Morph. 1995; 226:33-45. 

8. Alexander RM. The work that muscles can do. Nature. 1992; 357:360. 532 

9. Alexander RM. Principles of Animal Locomotion. Princeton, NJ: Princeton 

University Press; 2003. 534 

10. Biewener AA. Animal Locomotion. Oxford: Oxford University Press; 2003. 

11. Marsh RL. How muscles deal with real-world loads: the influence of length 536 

trajectory on muscle performance. J exp Biol. 1999; 202:3377-85. 

12. Biewener AA. Muscle function in vivo: the design of muscles used as springs versus 538 

muscles used to generate mechanical power. Am Zool. 1998; 38:703-17. 

13. Alexander RM. Elastic Mechanisms in Animal Movement. Cambridge: Cambridge 540 

University Press; 1988. 

14. Biewener AA, Roberts TJ. Muscle and tendon contributions to force, work, and 542 

elastic energy savings: a comparative perspective. Exer Sport Sci Rev. 2000; 28:99-

107. 544 

15. Roberts TJ, Marsh RL, Weyand PG, Taylor CR. Muscular force in running turkeys: 

the economy of minimizing work. Science. 1997; 275:1113-5. 546 

16. George JC, Berger AJ. Avian Myology. New York: Academic Press; 1966. 



A. A. Biewener  Muscle function during avian flight 

- 25 - 

17. Raikow R. Locomotor system. In: King AS, McLelland J, editors. Form and 548 

Function in Birds. London: Academic Press; 1985. p. 57-147. 

18. Poore SO, Ashcroft A, Sanchez-Haiman A, Goslow GE, Jr. The contractile 550 

properties of the m. supracoracoideus in the pigeon and starling: a case for long-axis 

rotation of the humerus. J exp Biol. 1997; 200:2987-3002. 552 

19. Poore SO, Sanchez-Haiman A, Goslow GEJ. Wing upstroke and the evolution of 

flapping flight. Nature. 1997; 387:799-802. 554 

20. Kaplan SR, Goslow GE, Jr. Neuromuscular organization of the pectoralis (pars 

thoracicus) of the pigeon (Columba livia): implications for motor control. Anat Rec. 556 

1989; 224:426-30. 

21. Rosser BWC, George JC. The avian pectoralis: histochemical characterization and 558 

distribution of muscle fiber types. Can J Zool. 1986; 64:1174-85. 

22. Goslow GEJ, Wilson D, Poore SO. Neuromuscular correlates to the evolution of 560 

flapping flight in birds. Brain Behav Evol. 2000; 55:85-99. 

23. Welch KCJ, Altshuler DL. Fiber type homogeneity of the flight musculature in small 562 

birds. Comp Biochem & Physiol B. 2009; 152:324-31. 

24. Kovacs CE, Meyers RA. Anatomy and histochemistry of flight muscles in a wing-564 

propelled diving bird, the Atlantic puffin, Fratercula arctica. J Morphol. 2000; 

244:109–25. 566 

25. Biewener AA, Dial KP, Goslow GE, Jr. Pectoralis muscle force and power output 

during flight in the starling. J exp Biol. 1992; 164:1-18. 568 

26. Dial KP, Biewener AA. Pectoralis muscle force and power output during different 

modes of flight in pigeons (Columba livia). J exp Biol. 1993; 176:31-54. 570 

27. Tobalske BW, Hedrick TL, Dial KP, Biewener AA. Comparative power curves in 

bird flight. Nature. 2003; 421:363-6. 572 

28. Morris CR, Askew GN. The mechanical power output of the pectoralis muscle of 

cockatiel (Nymphicus hollandicus): the in vivo muscle length trajectory and activity 574 

patterns and their implications for power modulation. J Exp Biol. 2010; 213:2770-

80. 576 



A. A. Biewener  Muscle function during avian flight 

- 26 - 

29. Morris CR, Askew GN. Comparison between mechanical power requirements of 

flight estimated using an aerodynamic model and in vitro muscle performance in the 578 

cockatiel (Nymphicus hollandicus). J Exp Biol. 2010; 213:2781-7. 

30. Tobalske BW, Biewener AA. Contractile properties of the pigeon supracoracoideus 580 

during different modes of flight. J exp Biol. 2008; 211:170-9. 

31. Biewener AA, Corning WR, Tobalske BT. In vivo pectoralis muscle force - length 582 

behavior during level flight in pigeons (Columba livia). J exp Biol. 1998; 201:3293-

307. 584 

32. Soman A, Hedrick TL, Biewener AA. Regional patterns of pectoralis fascicle strain 

in the pigeon Columba livia during level flight. J Exp Biol. 2005; 208:771-86. 586 

33. Lieber RL. Skeletal Muscle Structure and Function. Baltimore: Williams and 

Wilkins.; 1992. 588 

34. McMahon TA. Muscles, Reflexes, and Locomotion. Princeton: Princeton Univ. 

Press; 1984. 590 

35. Hedrick TL, Tobalske BW, Biewener AA. How cockatiels (Nymphicus hollandicus) 

modulate pectoralis power output across flight speeds. J Exp Biol. 2003; 206:1363-592 

78. 

36. Williamson MR, Dial KP, Biewener AA. Pectoralis muscle performance during 594 

ascending and slow level flight in mallards (Anas platyrynchos). J exp Biol. 2001; 

204:495-507. 596 

37. Pennycuick CJ, Hedenström A, Rosén M. Horizontal flight of a swallow (Hirundo 

rustica) observed in a wind tunnel, with a new method for directly measuring 598 

mechanical power. J exp Biol. 2000; 203:1755-65. 

38. Tobalske B, Dial KP. Flight kinematics of black-billed magpies and pigeons over a 600 

wide range of speeds. J exp Biol. 1996; 199:263-80. 

39. Tobalske BW, Warrick DR, Clark CJ, Powers DR, Hedrick TL, Hyder GA, et al. 602 

Three-dimensional kinematics of hummingbird flight. J Exp Biol. 2007; 210:2368-

82. 604 

40. Warrick DR, Tobalske BW, Powers DR. Aerodynamics of the hovering 

hummingbird. Nature. 2005; 435:1094-7. 606 



A. A. Biewener  Muscle function during avian flight 

- 27 - 

41. Dial KP, Biewener AA, Tobalske BW, Warrick DR. Direct assessment of 

mechanical power output of a bird in flight. Nature. 1997; 390:67-70. 608 

42. Rayner JMV. On the aerodynamics of animal flight in ground effect. Phil Trans R 

Soc Lond B. 1991; 334:119-28. 610 

43. Pennycuick CJ. Power requirements for horizontal flight in the pigeon Columba 

livia. J exp Biol. 1968; 49:527-55. 612 

44. Pennycuick CJ. Bird Flight Performance.  A Practical Calculation Manual. Oxford: 

Oxford University Press; 1989. 614 

45. Rayner JVM. Estimating power curves of flying vertebrates. J exp Biol. 1999; 

202:3449-61. 616 

46. Hedenström A. Adaptations to migration in birds: behavioural strategies, 

morphology and scaling effects. Phil Trans R Soc Lond B. 2008; 363:287-99. 618 

47. Usherwood JR, Hedrick TL, McGowan CP, Biewener AA. Dynamic pressure maps 

for wings and tails of pigeons in slow, flapping flight, and their energetic 620 

implications. J  Exp Biol. 2005; 208:355-69. 

48. Bundle MW, Hansen KS, Dial KP. Does the metabolic rate–flight speed relationship 622 

vary among geometrically similar birds of different mass? J Exp Biol. 2007; 

210:1075-83. 624 

49. Morris CR, Nelson FE, Askew GN. The metabolic power requirements of flight and 

estimations of flight muscle efficiency in the cockatiel (Nymphicus hollandicus). J 626 

Exp Biol. 2010; 213:2788-96. 

50. Woledge RC, Curtin NA, Homsher E. Energetic Aspects of Muscle Contraction. 628 

London: Academic Press; 1985. 

51. Daley MA, Biewener AA. Muscle force-length dynamics during level versus incline 630 

locomotion: a comparison of in vivo performance of two guinea fowl ankle 

extensors. J Exp Biol. 2003; 206:2941-58. 632 

52. Gabaldón AM, Nelson FE, Roberts TJ. Mechanical function of two ankle extensors 

in wild turkeys: shifts from energy production to energy absorption during incline 634 

versus decline running. J Exp Biol. 2004; 207:2277-88. 



A. A. Biewener  Muscle function during avian flight 

- 28 - 

53. Gillis GB, Biewener AA. Hindlimb muscle function in relation to speed and gait: in 636 

vivo strain and activation in a hip and knee extensor of the rat (Rattus norvegicus). J 

exp Biol. 2001; 204:2717-31. 638 

54. Gillis GB, Flynn JP, McGuigan P, Biewener AA. Patterns of strain and activation in 

the thigh muscles of goats across gaits during level locomotion. J Exp Biol. 2005; 640 

208:4599-611. 

55. Warrick DR, Dial KP, Biewener AA. Asymmetrical force production in the 642 

maneuvering flight of pigeons. Auk. 1998; 115:916-28. 

56. Berg AM, Biewener AA. Wing and body kinematics of takeoff and landing flight in 644 

the pigeon (Columba livia). J Exp Biol. 2010; 213:1651-8. 

57. Berg AM. Kinematics, aerodynamics, and neuromuscular function of avian flight: 646 

takeoff and landing, ascent and descent. PhD Thesis. Cambridge: Harvard 

University; 2010. 648 

 

 650 



Tensor propatagialis

Extensor metacarpi radialis

Biceps brachii

Pectoralis (TB)

Pectoralis (SB)

Flexor carpi ulnaris

Triceps brachii

Scapulohumeralis caudalis

Supracoracoideus

Figure 1 (Biewener)

A.

B.

DPC
strain gauge

Pectoralis

Humerus

Sonomicrometry
& EMG electrodes



1.0

Pe
ct

o
ra

lis
 S

tr
ai

n
 (L

/L
   

)
o

-1.0

EM
G

 (v
)

Fo
rc

e 
(N

)
downstroke

20

40

1.3

1.2

1.1

0.9

upstroke

wrist

1.0

wingtip

W
in

g
 E

le
va

ti
o

n
 (c

m
) 20

-20

0

0                                                        0.10                                                     0.20                                                    0.30
Time (s)

Figure 2 (Biewener)



P
E

C
T

st
ra

in
(L

/L
o)

-0.3

0

0.3

0

25

50

P
E

C
T

st
re

ss
(k

P
a)

S
U

P
R

A
st

ra
in

(L
/L

o)

-0.4

0

0.2

-0.2

-100

100

200

0S
U

P
R

A
st

re
ss

(k
P

a)

Time (s)

0 0.5 1.0

take-off

down up S
U

P
R

A
E

M
G

(v)0

0.5

-0.5

P
E

C
T

E
M

G
(v)0

3

-3

Figure 4 (Biewener)



40

20

0
1.0 1.2 1.0 1.2 1.0 1.2

40

20

0

40

20

0

Strain (L/Lo)

Fo
rc

e
(N

)

50

25

0
1.0 1.2

60

30

0

120

60

0
1.0 1.2 1.0 1.2

Fo
rc

e
(N

)

Strain (L/Lo)

B. Dove pectoralis Pigeon pectoralis Mallard pectoralis
132 W/kg, 7 m/s 97 W/kg, ~5 m/s 131 W/kg, ~5 m/s

A.

Figure 3 Biewener

Cockatiel pectoralis

150 W/kg, 1 m/s 79 W/kg, 7 m/s 180 W/kg, 13 m/s

50
kPa

50
kPa

50
kPa

50
kPa



Cockatiel

Magpie

Dove

250

200

150

100

50

0
151050

Pe
ct

or
al

is
m

as
s-

sp
ec

ifi
c

po
w

er
(W

/k
g-

m
us

cl
e)

Flight Velocity (m/s)

Figure 5. (Biewener)



-60

-30

30

-30 30 60 90
body angle (deg)

S
P

A
lo

c (
de

g)

R2 = 0.950
y = 0.99x - 48.0

takeoff landing
midflight

-90

-60

-30

0

30

60

90

1
2 3 4 mid -3 -2 -1 0

body angle
SPAloc

an
gl

e 
(d

eg
)

wingbeat

takeoff landingmidflight

A.

pectoralis

humerotriceps

scapulotriceps

biceps

0.1

time (sec)1 2 30

wingbeat number: wing foldingfootdown0-4 -3 -2 -14321 5

takeoff midflight landing on perch

B.

strain

EMG

strain

strain

EMG

strain

EMG

strain

EMG

Figure 6.  Biewener


	Biewener_PTRS_AvianFlightMuscleFx_AcceptedMS
	Fig1.PigeonFlightMM2
	Fig2.Cockatiel_FlightMMrecording
	Fig4Supra&Pectoralis_R1
	Fig3_WorkLoops_R1
	Fig5.PowerCurves
	Fig6_TakeoffLanding_Rev1

