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Abstract

We study the problem of designing efficient auc-
tions where bidders have interdependent values;
i.e., values that depend on the signals of other
agents. We consider a contingent bid model in
which agents can explicitly condition the value of
their bids on the bids submitted by others. In par-
ticular, we adopt a linear contingent bidding model
for single minded combinatorial auctions (CAs), in
which submitted bids are linear combinations of
bids received from others. We extend the exist-
ing state of the art, by identifying constraints on
the interesting bundles and contingency weights re-
ported by the agents which allow theefficientsec-
ond priced, fixed point bids auction to be imple-
mented in single minded CAs. Moreover, for do-
mains in which the required single crossing con-
dition fails (which characterizes when efficient, IC
auctions are possible), we design a two-stage mech-
anism in which a subset of agents (“experts”) are
allocated first, using their reports to allocate the re-
maining items to the other agents.

1 Introduction

Auction design is an important topic of research in artificial
intelligence. Auctions involve the allocation of a set of re-
sources among strategic agents, each of which has a private
signal regarding the value of a subset of the resources being
sold. In this paper, we consider settings in which the bidders’
valuations are interdependent, i.e. they depend not only on
their own signal, but also on the signals of other agents.

Such auctions often occur in practice. Consider, for exam-
ple, the allocation of the right to show a series of ad impres-
sions to consumers in online advertising. Several advertisers
have different signals about the likelihood of these consumers
clicking on these slots and following through their clicks with
purchases. In this setting, the value of an advertiser for ob-
taining a set of impressions may also depend on the signals
of other bidders. This is because some advertisers may have

data on the likelihood users will convert the impressions into
purchases, thus are “experts”, while others are “novices”.

The aim of this work is to study such auctions in combina-
torial settings withsingle minded bidders(=desiring exactly
one bundle of items) and placingcontingent bids. In contin-
gent bid auctions, agents are not required to describe others’
signals, but are only asked to submit conditional bids of the
form: “If Agent 1 bids $x for bundleB1, then I will bid $y
for bundleB2”. For this setting, Dasgupta and Maskin [2000]
design anefficientauction, in which allocation is computed
based on the fixed point of the vector of bids. They also
show this auction can be implemented in an ex-post equi-
librium, subject to the agent’s valuations satisfyingsingle
crossing condition (SCC). However, Dasgupta and Maskin
do not provide practical instantiations of valuation domains
that satisfy SCC. Yet, we argue that describing actual nego-
tiation domains is a crucial step in order to apply these im-
portance insights in practice. Towards this end, the work of
Ito and Parkes [2006] (which our work builds on), provides
an instantiation of Dasgupta and Maskin’s model, by identi-
fying a linear valuation model in which the fixed point con-
vergence and single crossing conditions are satisfied. How-
ever, the results in Ito and Parkes allow the implementation
of theefficientauction only in the single item case. For sin-
gle minded combinatorial auctions (CAs), they propose an
alternative method using greedy allocation, which is truthful,
but not efficient. The main contribution of this work is to fill
this gap, and describe domains in which the efficient auction
proposed by Dasgupta and Maskin [2000] can be truthfully
implemented in single minded combinatorial domains.

In more detail, our analysis will consider both combina-
torial settings (where exactly one copy is available of each
item) and combinatorial multi-item settings (involving mul-
tiple copies of some of the items). We derive constraints on
the linear contingency weights and the structure of bundles
demanded, such that the required single crossing condition
holds and, thus, the efficient allocation can be truthfully im-
plemented. In the second part of the paper, we consider do-
mains in which the single crossing condition fails, due to the
fact that a large number of bidders have values contingent on
the private signals of a few “expert” bidders. For this setting,



we provide an alternative to the greedy method discussed in
Ito and Parkes [2006], that aims to exploit the structure of in-
terdependencies between the agents. Specifically, we propose
a two-stage mechanism that involves pre-allocating the expert
agents in the first stage, followed by an efficient allocationfor
the remaining agents. The paper concludes with a discussion.

2 Related work
There have been several works that consider interdepen-
dent valuations, reporting both positive and negative re-
sults. For single-dimensional signals, where the private in-
formation of a bidder can be captured by a single number,
ex post efficient auctions exist (Dasgupta and Maskin [2000];
Krishna [2009]). For multi-dimensional signals, there are
strong negative results about the ability to truthfully im-
plement efficient outcomes (Dasgupta and Maskin [2000];
Jehiel and Moldovanu [2001]).

Other works have considered interdependent value auc-
tions in more specific settings. One proposed alternative is
to design mechanisms where values are contingent directly on
the signals (an approach taken in previous work of Dashet al.
[2005]; Itoet al. [2004], among others), in which each agent
explicitly is asked to provide a valuation function based onall
signals. However, such approaches assume domain knowl-
edge, such as a common language to describe the private sig-
nals advertisers have about ad impressions.

The work of Itoet al. [2004] consider settings with a spe-
cial structure, in which agents are either “experts” (agents
whose signals influences others) or “amateurs” (who fol-
low other agents’ signals). An alternative class of interde-
pendent value auctions are the so-called execution contin-
gent mechanisms (Ceppiet al. [2011]; Kleinet al. [2008];
Mezzetti [2004]). In these mechanisms, the payments are
computed in the second stage, after the values are revealed
to the agents by the allocation and thus they circumvent the
problem of the single crossing condition. However, these
two-stage mechanisms have weak incentives in the second
stage, and thus have limited applicability.

3 Preliminaries
Denote byM the set of items to be allocated, andN the set
of agents (bidders) for these items, wherem = |M | and
n = |N | are the sizes of these sets (unless otherwise spec-
ified, setM may include multiple copies of the same item).
A single minded bidder has aninteresting (or useful) bundle
Wi ⊆ M , and moreover we useki = |Wi| to denote the sizes
of the useful bundles. Each agent’s value is described by an
interdependent functionzi(X, s) ≥ 0 on bundlesX ⊆ M ,
defined in terms of signalss = (s1, . . . , sn) as:

zi(X, s) =

{

zi(s), if X ⊇ Wi

0, otherwise
(1)

We assume free disposal, that is the agent’s value is (weakly)
increasing with additional goods. Functionzi(s) ≥ 0 defines
the agent’s value for an interesting bundle, given signalss.

In this work, we use the linear contingent bids model, as
first defined in Ito and Parkes [2006]. For combinatorial do-
mains, the model can be defined as follows. Each agent
i ∈ N reports an interesting bundlêWi (potentially untruth-
fully), a stand alone valuev0i , and a set of weight bundle pairs

{(αi,1, Xi,1) . . . (αi,n, Xi,n)} for all agentsj 6= i, where
αi,j ∈ R≥0 andXi,j ⊆ M . Taken together, this defines
the following contingent value function:

vi(X, v−i) =

{

v0i +
∑

j 6=i αi,jvj(Xi,j , v−j) for X ⊇ Ŵi

0 otherwise

(2)
Wherevi(X, v−i) denotes agenti’s value for bundleX, de-
termined in a fixed point, w.r.t. thevaluesof other agents. The
private valuev0i of each agent is a weakly increasing function
of its signal (i.e. ∂v0i /∂si ≥ 0). However, because in this
paper we only work with valuations and don’t model signal
spaces explicitly, we can assume wlog.v0i = si.

In order for an allocation to be computable in this inter-
dependent value setting, a key requirement is that the set of
valuations converge to a single fixed point inRN

≥0. Formally,
the valuation equilibrium point is defined as a fixed point of
the mapping(v1, . . . vn) 7→ (v1(v−1), . . . vn(v−n)), where
vi(v−i) : 2

M 7→ R≥0.

Theorem 1 (Ito and Parkes [2006])A single minded con-
tingent bid domain has a unique fixed point if

∑
j 6=i αi,j < 1,

for all i ∈ N .

Note that the existence of a unique fixed point is fully deter-
mined by the contingency weightsαi,j , and not by the useful
bundlesWi that agents demand. Thus, as long as the condi-
tion in Theorem 1 holds, the contingent bid system will con-
verge to a fixed point, regardless of theWi.

The condition in Theorem 1 is sufficient for convergence,
but is not also necessary. A tight condition can be derived
using determinants of the valuation vectors, which is however
difficult to interpret, the condition in Theorem 1 being more
useful for this work. In the remainder of this section and in
Section 4 we will only focus on domains which satisfy the
property in Theorem 1, thus for all results going forward a
unique fixed point of the valuations exists.

3.1 An Efficient Contingent Bids Auction
In an interdependent value auction, each agent is required to
place a contingentbid function bi(X, b−i), which takes the
same form as the value function in Equation 2, and is evalu-
ated by the auction in an analogous way. A bidbi is truthful
iff it is truthful for all parts of the report (i.e. contingency
weightsαi,j , private valuev0i and interesting bundleWi).

For the contingent bidding model, Dasgupta and Maskin
[2000] propose an efficient auction that can be general-
ized to the multi-item case as follows: (1) Compute the
fixed point bids~bfp , as defined by the mapping induced
by Equation 2 (but using the space of reported bids); (2)
Compute the efficient allocationX∗ = (X∗

1 , . . . , X
∗
n) =

argmaxX∈Γ

∑
i∈N bfpi (Xi) to maximize total value (break-

ing ties at random), whereΓ denotes the set of feasible allo-
cations; and (3) computes the payment to each winneri as:

min b
′
i

s.t. b′i +
∑

j 6=i

b
∗
j (X

∗
j ) ≥ maxX∈Γ

∑

j 6=i

b
∗
j (Xj) (3)

whereb∗j (X) = bj(X, (~b′i, b
∗
−i,j)), and~b′i(X) = b′i for X ⊇

Ŵi and 0 otherwise. Hereb∗−i denotes the new fixed point in



the bid space if agenti would bidb′i for its interesting bundle
Ŵi; the intuition being that agenti pays the smallest amount
it could have bid and still won, also accounting for the effect
of its report on the bids of other agents.

In order fortruthful bidding to be anex-post Nash equilib-
rium in this efficient auction, the agent’s valuation functions
must satisfy the property of Generalized Single Crossing
Condition (Generalized SCC) Dasgupta and Maskin [2000]).

Definition 1 (Generalized SCC) If, for signals(s1, . . . , sn)
there is a pair of allocationsX and X ′, tied for
value, i.e.:

∑
j∈N zj(Xj , s) =

∑
j∈N zj(X

′
j , s) =

maxX′′∈Γ

∑
j∈N zj(X

′′

j , s) then for every agent i such that
Xi 6= X ′

i, we require:
[

∂

∂si
zi(Xi, s) >

∂

∂si
zi(X

′
i, s)

]

⇐⇒

[

∂

∂si

∑

j∈N

zj(Xj , s) >
∂

∂si

∑

j∈N

zj(X
′
j , s)

] (4)

Intuitively explained, for any two allocationsX andX ′ tied
for (maximal) value, generalized SCC requires that, when-
ever the value of agenti for X is improving more quickly
than forX ′ with respect to its signal, this is also true for the
total social welfare of all agents. Conceptually, this is true
when the marginal effect of an agent’s signal on its own value
dominates the marginal effect of its signal on the aggregate
economy of agents. The link between truthful implementa-
tion in CAs and generalized SCC is given by Theorem 21:

Theorem 2 (Dasgupta and Maskin, Ito and Parkes [2006])
Given an valuation domain with an expressive bidding lan-
guage, the second-price interdependent value single minded
CA auction is efficient in an ex post Nash equilibrium iff the
generalized SCC property holds.

Note the theorem requires a preference language expres-
sive enough for the preference domain and, importantly, it
only holds for single dimensional signal spaces (which in a
CA domain means single minded bidders). But given these
assumptions, the theorem guarantees efficient and truthful
implementation, as long as generalized SCC holds in the
value domain. The focus of Section 4 is on deriving con-
straints on the weights in the linear contingency model, which
assure generalized SCC holds in single minded, combinato-
rial domains. In the case of asingle itemauction, the follow-
ing condition is known to be sufficient for truthfulness:

Theorem 3 (Ito and Parkes [2006])The second price, in-
terdependent value, single item auction (i.e.|M | = 1), satis-
fies SCC and is truthful whenever

∑
j 6=i αi,j < 1, for ∀i ∈ N .

For single minded CAs this condition is sufficient for as-
suring we have fixed point bids (cf. Theorem 1), but not for
generalized SCC. To see this, consider the example shown in
Figure 1, with the contingent valuations:
v1(AB, v−1) = 5 + 0.5v2(C); v2(C, v−2) = 6

1The SCC definition in the initial paper Dasgupta and Maskin
[2000] is too strong to be useful in combinatorial domains. This
form of the Generalized SCC condition is cited in Ito and Parkes to
personal communication with Eric Maskin in October 2005.

0.5

0.7

0.5 0.7

V1({A,B}) V4({A})

V3({A,B,C})0.2

V2({C})
V5({B,C})

Figure 1: Example showing failure of Generalized SCC

v3(ABC, v−3) = 7 + 0.5v1(ABC) + 0.2v2(AC)
v4(A, v−4) = v5(BC, v−5) = 1 + 0.7v1(AB).
If all the bidders place truthful bids (withbi = vi, ∀i ∈ N ),

then fixed point in the bid space would be:b1(AB) =
8, b2(c) = 6, b3(ABC) = 12.2, b4(A) = 6.6, b5(BC) =
6.6. The mechanism allocates:X1 = {AB}, X2 =
{C}, X3 = X4 = X5 = ∅. Now, suppose an own value
v01 = 8, which means:
v1(AB, v−1) = 8 + 0.5v2(C)
Then, thetruthful fixed point bids would beb1(AB) =

11, b2(c) = 6, b3(ABC) = 13.7, b4(A) = 8.7, b5(BC) =
8.7. In this case, allocation would beX ′

4 = {A}, X ′
5 =

{BC}. But then, bidder 1 could easily misreport anyv̂01 < 7
and be allocated instead. The reason is that SCC is broken
here for agent 1 and allocationsX = 〈{AB}, {C}, ∅, ∅, ∅〉
andX ′ = 〈∅, ∅, ∅, {A}, {BC}〉. This is because the signal
of agent 1 (s1 = v01) has a greater marginal influence on the
value of the opposing coalitionA4, A5 than onA1, A2.

4 Domains with efficient allocation
In this section, we study which restrictions on the contin-
gency weights or interesting bundle structure demanded by
each agent ensure truthful implementation of the efficient
auction presented in Section 3.1 in a combinatorial domain.
Similar to Ito and Parkes [2006], our aim is to identify pref-
erence domains defined by universal, anonymous, restrictions
on the total contingency weights reported by each agent.

For all the domains we explore, convergence to a unique
fixed point is assured by the property in Theorem 1, so in this
section we focus on conditions which guarantee that General-
ized SCC holds. First, for the proofs we require an additional
lemma, which characterizes domains in which the total con-
tingency weight of each agent is bounded by a threshold.

Lemma 1 (Threshold Property) Consider a setting withN
agents whose values are interdependent on each other, letτ ∈
(0, 1) be some fixed threshold. Then, if for all agents∀i ∈ N
it holds that

∑
j∈N αi,j < τ this implies that∀j, i ∈ N :

∂zj

∂si
< τ , for all j 6= i

wherezj = zj(X) (for someX ⊇ Wi) is the value function
of agentj andsi is the private signal of agenti.

Intuitively, what the property says is that if all the total
weights specified by any agent is less thanτ , then the total
cumulative dependency of the value of any agent on any other
must be less thanτ .

Proof 1 The proof is by induction on the maximum degree
of the derivative∂zj/∂si. First, we use the assumption that
∂zi/∂si = 1 for ∀i ∈ N (this follows from our setup in which



si = v0i , the value of an agent w.r.t. its own private signal).
For j 6= i the derivative will be a sum of products ofαp,l

terms, depending on the derivation paths fromj to i.

Denote byD(k)
zj/si

the n-th degree derivative ofzi w.r.t. si,

and byR(Dzj/si) the maximum rank of this derivative, when

it become a constant. Formally,R(Dzj/si) = k iff ∂zj
∂(k)si

>

0 and ∂zj
∂(k+1)si

= 0. Intuitively, this means the maximum
derivation path fromj to i has exactlyk iterations. The proof
then follows two steps.

Initialization step: For R(Dzj/si) = 1, we know:
∂zj

∂si
= αj,i

∂zi

∂si
= αj,i <

∑

p∈N

αj,p < τ

Induction step: Assuming the property holds for all∀p ∈
N for whichR(Dzp/si) ≤ k, we show it also holds for all
j ∈ N for whichR(Dzj/si) = k + 1:

∂zj

∂si
= αj,i

∂zi

∂si
+

∑

p 6=i,R(Dzp/si
)≤k

αj,p
∂zp

∂si

Since we know, by construction∂zi∂si
= 1 and ∂zp

∂si
< τ < 1

this means:
∂zj

∂si
< αj,i +

∑

p 6=i

αj,p =
∑

p∈N

αj,p < τ

Thus, if the property also holds for any agentp ∈ N with
R(Dzj/si) ≤ k, it also holds for all agentsj ∈ N for which
R(Dzj/si) = k + 1.

Intuitively, if some agentj’s value is contingent on the
value of other agent(s)k 6= j, i whose value is, in turn, con-
tingent onsi, this cannot lead to a stronger contingency ofzj
on si than if that contingency was expressed directly. Given
this linear contingency model, we are ready to characterize
CA domains that satisfy Generalized SCC.

Theorem 4 In a preference domain in which, for all agents
∀i ∈ N it holds that

∑
j∈N αi,j <

ki

m (whereki = |Wi|,m =

|M |), then Generalized SCC holds.

Proof 2 The proof starts from the generalized SCC condition
from Def. 1. Assume, by contradiction, that SCC is violated
⇐⇒ ∃i ∈ N and∃ two efficient allocationsX,X ′ s.t.:

∂

∂si
zi(Xi, s) >

∂

∂si
zi(X

′
i, s), but :

∂

∂si

∑

j∈N

zj(Xj , s) <
∂

∂si

∑

j∈N

zj(X
′
j , s) (4)

In a single minded bidder model, the first equation must
mean that:Wi ⊆ Xi, but Wi * X ′

i (i.e. agenti is allo-
cated its useful bundle by allocationX, but not byX ′). Now,
consider the agents that are allocated their useful bundles
by allocationX ′, and let us denote their set bySopp (this
is the potential “opposing”’ coalition to agenti being allo-
cated). Formally,Sopp = {j ∈ N, s.t.Wj ⊆ X ′

j} (necessar-
ily i /∈ Sopp). We can restrict the 2nd term of Eq. 2 as:

∂

∂si

∑

j∈N

zj(X
′
j , s) =

∂

∂si

∑

j∈Sopp

zj(X
′
j , s)

This is because, by definition, agentsj /∈ Sopp do not de-
rive any value from allocationX ′ (as they are not allocated

their useful bundle byX ′). Since there are at mostm items
available for allocation:

∑

j∈Sopp kj ≤ m. Moreover, we

have that∂zi∂si
= 1 and because our starting condition and

Lemma 1, for∀j 6= i the following holds: ∂zj∂si
<

kj

m . This
means that we get the following inequality:

∑

j∈Sopp

∂

∂si
zj(X

′
j , s) <

∑

j∈Sopp

kj

m
< 1

But, for the allocationX (in which agenti is allocated,
i.e. Wi ⊆ Xi), we must have that:∂∂si

∑
j∈N zj(Xj , s) ≥

1, because at least agenti is allocated byX, which gives a
contradiction with the assumption in Equation 2.

Note that the bound provided by Theorem 4 gives a tight
condition on all agents. Even if the condition fails for one
agent but holds for all the others, Generalized SCC can still
fail. Consider the the example illustrated in Figure 1, with
the same agents and values. If the contingency weights from
Agents 4 and 5 areα4,1 = 0.33 (under the threshold of1/3
given by Theorem 4), butα5,1 = 0.68 (above the threshold
of 2/3), the condition fails for only one agent (Agent 5). Yet
Generalized SCC still fails for Agent 1.

4.1 Domains with subset/superset constraints
One way to relax the bound on the contingency weights is
to impose additional structure on the bundles agents demand,
such as having values contingent only on agents whose useful
bundles are subsets or supersets of their own. In order for
such constraints to work, however, in this section we restrict
the analysis only tosingle unit combinatorial domains, where
there is onlyone unit of each type of item. Hence, no item can
be replaced with another in any of the agents’ useful bundles.

Theorem 5 Consider a single unit combinatorial domain
with single minded bidders, in which agents specifying con-
tingent bids demand only bundles that aresubsets, i.e.:
αi,j > 0 =⇒ Wi ⊆ Wj , ∀i ∈ N . Generalized SCC holds if
∀i, j ∈ N : ∑

j∈N

αi,j <
ki

maxp∈N kp

Proof 3 The proof follows the same structure as the proof of
Theorem 4. As before, consider two allocationsX (in which
agenti is allocated its useful bundle) andX ′ (in which it is
not). We work towards the same contradiction of generalized
SCC. As before, consider the setSopp of opposing agents to
i, agents that are allocated byX ′. Formally, we can define
Sopp as the set of agentsj ∈ N allocated byX ′ for which
∂zj(X

′
j ,s)

∂si
6= 0 (for these agentsαj,i > 0 andWj ⊆ X ′

j).
Important to note that, necessarily, for∀j ∈ Sopp,Wj *
Xj , because allocationX allocates agenti its target bundle,
and due to our assumptions that goods are single unit and
Wj ⊆ Wi, it cannot be that both agenti and any of the agents
j ∈ Sopp are simultaneously allocated useful bundles. Thus,
the agents in the setSopp should satisfy:

• ∀j ∈ Sopp,Wj ⊆ Wi. This is due to our starting as-
sumption, asαj,i > 0 for j ∈ Sopp.

• ∀j, l ∈ Sopp,Wj ∩ Wk = ∅. This is because there is
a single unit of each good, and bothj, l ∈ Sopp are



allocated their useful bundles byX ′, which would not
be possible unless these bundles do not overlap.

This means that the useful bundles of agentsj1, j2 . . . j|S| ∈
Sopp represent, at most a disjoint partition ofWi, meaning:

Wj1 ∪Wj2 ∪ . . .Wj|S|
⊆ Wi

where any pair is mutually disjoint, i.e.Wjl ∩Wjl = ∅. This
means

∑
j∈Sopp kj ≤ ki. Due to Lemma 1, this means:

∂zj(X
′
j , s)

∂si
<

kj

maxp∈N kp
≤

kj

ki

Where the last relation is an equality if agenti is actuallyp,
and strict otherwise. This gives the set of inequalities:

∑

j∈Sopp

∂zj(X
′
j , s)

∂si
<

∑

j∈Sopp

kj

ki
<

∑

j∈Sopp kj

ki
< 1

The other efficient allocationX (which allocates toi) has:
∂
∂si

∑
j∈N zj(Xj , s) ≥ 1 giving the required contradiction.

V4({A,B})

V3({A,C})

V1({A,B,C})

.33

.99

V2({A})

V6({B})

V5({C})

V7({A,B,C})

.16

.16

.66

.66

.16

.16

Figure 2: Example of a domain with subset constraints

In Figure 2 we show an example domain with subset con-
straints. Edge weights were assigned such that the sum of
dependencies from each agent is the maximal allowed in The-
orem 5 (decimals were rounded down). The total contingency
weight ofA2, A2 andA6 (who demand 1 item each) must be
bounded by13 , as they together could form a potential SCC-
breaking coalition againstA1. However, the weight restric-
tion ofA7 onA1 is < 1, as this agent could not form a coali-
tion againstA1 with any other agent. Example 1 shows why
this logic fails in a domain with multi-unit supply (i.e. why
the single unit assumption in Theorem 5 is needed).

Example 1 Consider an example withm = 12 identical
items, and n=4 agents: Agent 1 demandingk1 = 7 items
(with v01 = 4), Agent 2 demandingk2 = 1 item (withv01 = 4),
and Agents 3 and 4 demandingk3 = k4 = 6 items each. The
only 2 value interdependencies are from Agents 3 and 4 on
the value of agent 1:α3,1 = 6/7, α4,1 = 6/7 (recall that
they satisfy the condition thatW3 ⊆ W1 andW4 ⊆ W1, as
they demand 6 items out of 7). In this case, agent 1 can mis-
report v̂01 = 2 and be allocated, preventing the bids of 3 and
4 from forming a larger blocking coalitionSopp against it.

Next, we study the case ofsupersetconstraints.

Theorem 6 In a single-unit supply, combinatorial domain
with single minded bidders, if each agent is restricted to
specifying contingent demand bids that aresupersets, i.e.
αi,j > 0 =⇒ Wi ⊇ Wj , ∀i ∈ N , then Generalized SCC
holds if∀i, j ∈ N,

∑
j∈N αi,j < 1.

Proof 4 The proof follows the same structure as before, con-
sidering two allocations:X, in which agenti is allocated and

X ′ in which it is not. DefineSopp as the set of agentsj ∈ N

allocated byX ′ for which
∂zj(X

′
j ,s)

∂si
6= 0. Due to the super-

set assumption, there exists at most one such agent, i.e. the
cardinality |Sopp| = 1. This can be shown by contradiction.
Suppose there are 2 agentsj, k ∈ Sopp, j 6= k. We know that
∃Wi,Wi 6= ∅ s. t. Wj ⊇ Wi andWk ⊇ Wi. Since there is
only a single unit available of any item,X ′ cannot allocate
both agentsj and k simultaneously. Therefore,Sopp con-
tains a single agent (and it must contain at least one agent,
because we assumed agenti was allocated byX, but not by
X ′, hence some other agent must have receivedi’s items in
X ′). But from Lemma 1, we know that for∀j ∈ Sopp, j 6= i,
∂zj/∂si < 1, hence: ∂

∂si

∑
j∈N zj(X

′
j , s) < 1 and AND

∂
∂si

∑
j∈N zj(Xj , s) ≥ 1, hence Generalized SCC holds.
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Figure 3: Example of a domain with superset constraints

Figure 3 shows an example with superset constraints, with
edge weights assigned such that the sum of dependencies by
each agent is the maximal one allowed in Theorem 6. Note
the value of agentA1 has a large influence on the values of
other bidders (5 times higher than on its own value). How-
ever, there is no problem with Generalized SCC, because all
the agents whose valuations depend (even indirectly)A1’s
value must have demands that include itemA, thus they could
never be allocated simultaneously, as a coalition.

This is an interesting result, because it means the constraint
for domains with superset demand structure is the same as in
the single item case. By comparison, that for subset demands
the contingency weight limit needs to be lower for SCC to
hold. However, we believe superset type constraints are more
natural in practical applications.

5 A truthful auction between experts and
amateurs when Generalized SCC fails

In Section 4, we identified several domain restrictions which
ensure the Generalized SCC property holds, and theefficient
auction can be implemented. These domain restrictions are
useful in applications where no bidder’s valuation has an
“outsize influence” on the rest of the market. Yet, in many
real-world settings, the opinion of a few expert agents can
drive valuations across the whole market. Real markets are
often divided into a few experts (who have an “inside signal”
regarding the true value of some items) and a large number
of “amateurs”. Although theefficientauction from Section
3.1 cannot be applied, we can use the special structure of the
value contingencies between agents to develop a two-stage
auction tailored specifically for such cases. Informally, first a



small number of expert agents are allocated their useful bun-
dle for a fixed price (or, in our case, for free). Their reports
are then used to compute the fixed point bids for the remain-
ing agents, who are allocated through the second-price, fixed
point bid auction. Formally, first define the influence score of
agenti as:Infl(i) =

∑
j 6=i αj,i.

Consider the following mechanism which sets threshold
level τ for the influence score2. Next, the set of available
itemsM is partitioned into two distinct sets:Mp (allocated
through the “expert pre-allocation stage”) andMa (allocated
based on received bids). The “experts first” mechanism has
two allocation stages (denoted byXp andXa):

1. Pre-allocation of expert agents:All agentsi ∈ N with
Infl(i) > τ are allocated their useful bundle (Xp

i = Wi)
for free and leave the market. Here, we assume thatMp

is set large enough for all agents withInfl(i) > τ to
be allocated, but any items inMp not allocated remain
unsold (and unavailable for Stage 2).

2. Allocation based on received bids:Reports fromall
agentsi ∈ N (including the ones pre-allocated in stage
1 that left the market) are used to allocate the remaining
Ma items, using the fixed point valuationsvi:

X
a =< X

a
1 , . . . , X

a
n >= argmax

X∈Γ(Ma,N)

∑

i∈N

zi(Xi, s)

whereΓ(Ma, N) denotes the set of possible ways to
allocateMa items amongN agents. It is possible that
an agent that has been pre-allocated in stage 1 is also
allocated byXa (i.e. Xa

i = Xp
i = Wi). In this case, the

corresponding items remain unsold.

Theorem 7 The “experts first” mechanism is truthful.
Proof(Sketch) First note that the influence score does not
depend on the agents’ own reports, only on the contingency
weights reported byotheragents. Thus, no agent can unilat-
erally determine its “expert” status and allocation in Stage 1.
However, an agent can affect the score and ranking of other
pre-allocated agents, so the agents participating in Stage2
must be indifferent which agents are pre-allocated in Stage1.
This holds because, first, the number of itemsMp available
for pre-allocation is fixed (any items left unused are unallo-
cated), there is no way for an agent to increase supply of items
Ma available in Stage 2. Second, the competition agents face
in Stage 2 is the same, as it includes the bids from all agents
i ∈ N , even if some were pre-allocated. Thus, both the
supply and the competition they face is the same, regardless
pre-allocations in Stage 1. And because the mechanism en-
sures all agents that potentially break SCC are pre-allocated
in Stage 1, these agents have no incentive to misreport.

Example 3: Consider an auctioneer who needs to sell 1000
identical items (e.g. 1000 identical bottles of wine). There are
2 agents:A1 andA2 who demand 5 items each, with values
v1(W1 = 5) = $20, respectivelyv2(W2 = 5) = $50. More-
over, there are 101 agentsAc that demand 10 items each, but
their valuation being exclusively contingent on that ofA1,
as: vc(Wc = 10) = 10 ∗ v1(Wc = 10) (i.e. αc,i = 10),
and another 101 agentsAi that also demand 10 items each,

2A level of τ = 1 is natural from the perspective of ensuring
SCC, though a higher level may be sufficient as well.

with independent valuesvi(Wi = 10) = $10. Thus, in
this setting one agent (A1) can be thought of as a wine ex-
pert, and a lot of bidders are willing to buy larger quantities
and pay more contingent on her opinion. If all bidders are
truthful (which means the reported bid vectors are equal to
their values~bi = ~vi), then the fixed point bids areb1 = $20,
b2 = $50, bi = $10 andbc = $200. In this case all 1000
items would be allocated to 100 of thebc bidders (breaking
ties at random), who pay$200 for 10 items. The social wel-
fare is then:

∑
j∈N |v1

vj = 100∗$200 = $20, 000. However,
SCC is clearly broken here forA1 who can simply misre-
port b̂1(W1 = 5) = $0.5, leading to the fixed point bids:
b1 = $20, b2 = $50, bi = $10 and bc = $5, and the
mechanism would allocate 5 items each toA1, A2 and 10
items each to 99 of theAi agents. This has a much lower
social welfare of

∑
j∈N |v̂1

vj = $1040.5. Consider how this
example would work with pre-allocation, whereMp = 10
are reserved for pre-allocation andMa = 990 can be allo-
cated using the fixed point bids (withτ = 1). In the pre-
allocation stage, only agentA1 with Infl(A1 ) = 990 > 1
is pre-allocatedXp

1 = 5 items for free, and 5 items remain
unsold. AsA1 was already allocated, in Stage 2, the report
of A1 can be used to compute the truthful fixed point bids:
b1 = $20, b2 = $50, bi = $10 andbc = $200. Then 99 of the
Ac agents are allocated 10 items each, giving a social welfare
of

∑
j∈N vj(X

p ∪Xa) = 99 ∗ $200 + $20 = $19820.
Note that the above example is somewhat simplified, as

only one agent is an expert. In practice, e.g. in the wine do-
main, there may be several wine experts whose opinion large-
scale buyers (e.g. restaurants, merchants) follow. Then, more
items may need to be reserved for pre-allocation (e.g. 50 out
of 1000), but the intuition remains the same.

6 Conclusions
This paper advances the state of the art in interdependent
value auctions by deriving conditions under which theeffi-
cient contingent bid auction of Dasgupta and Maskin [2000]
can be implemented in combinatorial domains with single
minded bidders. Starting from the linear contingency model
of Ito and Parkes [2006], we identify domain restrictions on
the total weights and bundle structures which lead to prefer-
ence domains where generalized SCC is satisfied, and hence
the efficient auction can be truthfully implemented. We com-
plement these results with a truthful two-stage allocationpro-
cedure for domains that do not satisfy Generalized SCC,
which involves first pre-allocating to a set of experts, and us-
ing their reports to allocate efficiently the remaining items.

There are several issues that could be explored in future
work. Previously, Ito and Parkes [2006] proposed a truth-
ful auction for single minded CAs, which uses greedy allo-
cation, where the allocation decision is taken separately for
each item. While neither the greedy method, nor the “experts
first” method in this paper guarantee efficiency, it would be
interesting to compare their average case performance in a
practical application, such as the keyword advertising auc-
tions in the introduction. Another relevant question for future
research is exploring interdependent value auctions in online
settings (such as in Constantinet al. [2007]; Gerdinget al.
[2011]), where agents arrive in the market over time.
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