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Abstract data on the likelihood users will convert the impressiornis in
We study the problem of desianing efficient auc purchases, thus are “experts”, while others are “novices”.
tions \ljvh}:are bﬁjders have intlgrdlegendlelnt valllJJes; The aim of this work is to study such auctions in combina-
i.e., values that depend on the signals of other  torial settings witfsingle minded bidderg=desiring exactly
agents. We consider a contingent bid model in one bundle of items) and placirgntingent bids In contin-

which agents can explicitly condition the value of gent bid auctions, agents are not required to describesther
their bids on the bids submitted by others. In par- S|gnaI§, but are on!y asked to submit cond|t|onf?1l bl_ds of the
ticular, we adopt a linear contingent bidding model ~ form: “If Agent 1 bids $x for bundieB,, then | will bid $y

for single minded combinatorial auctions (CAs), in for bundleB,". For this setting, Dasgupta and Maskin [2000]
which submitted bids are linear combinations of design arefﬁmentaucuqn, in which aIIocatlor] is computed
bids received from others. We extend the exist- ~ Pased on the fixed point of the vector of bids. They also
ing state of the art, by identifying constraints on show this auction can be implemented in an ex-post equi-
the interesting bundles and contingency weights re- "b””m' subjeq’g to the agent's valuations satlsfyla@gle.
ported by the agents which allow tleéficientsec- crossing condition (SCCHowever, Dasgupta and Maskin
ond priced, fixed point bids auction to be imple- do not prowde practical instantiations of valyauon domnsai
mented in single minded CAs. Moreover, for do- t'ha.t satisfy S.CC.' Yet, we argue t.hat describing actual nego-
mains in which the required single crossing con- tiation doma!ns is a Cruc@ step in order_to apply these im-
dition fails (which characterizes when efficient, IC portance insights in practice. Towards this end, the work of

auctions are possible), we design a two-stage mech- Ito and Paykgas [2006] (which our work 'builds on), pr‘?"‘de$
anism in which a subset of agents (“experts”) are an instantiation of Dasgupta and Maskin’s model, by identi-

allocated first, using their reports to allocate the re-  1¥Ing @ linear valuation model in which the fixed point con-
maining items to the other agents. vergence and smgle crossing conditions are.satlsfled. How-
ever, the results in Ito and Parkes allow the implementation
of the efficientauction only in the single item case. For sin-
. gle minded combinatorial auctions (CAs), they propose an
1 Introduction alternative method using greedy allocation, which is fiwlth
Auction design is an important topic of research in artificia but not efficient. The main contribution of this work is to fill
intelligence. Auctions involve the allocation of a set of re this gap, and describe domains in which the efficient auction
sources among strategic agents, each of which has a privagoposed by Dasgupta and Maskin [2000] can be truthfully
signal regarding the value of a subset of the resources beirignplemented in single minded combinatorial domains.
sold. In this paper, we consider settings in which the bisider  In more detail, our analysis will consider both combina-
valuations are interdependent, i.e. they depend not only otorial settings (where exactly one copy is available of each
their own signal, but also on the signals of other agents.  jtem) and combinatorial multi-item settings (involving mu
Such auctions often occur in practice. Consider, for examtiple copies of some of the items). We derive constraints on
ple, the allocation of the right to show a series of ad impresthe linear contingency weights and the structure of bundles
sions to consumers in online advertising. Several adegstis demanded, such that the required single crossing condition
have different signals about the likelihood of these coremsm holds and, thus, the efficient allocation can be truthfuthy i
clicking on these slots and following through their clickstw  plemented. In the second part of the paper, we consider do-
purchases. In this setting, the value of an advertiser fer obmains in which the single crossing condition fails, due ® th
taining a set of impressions may also depend on the signafact that a large number of bidders have values contingent on
of other bidders. This is because some advertisers may havke private signals of a few “expert” bidders. For this seffi



we provide an alternative to the greedy method discussed (a1, Xi1) . . . (i n, X; )} for all agentsj # i, where

Ito and Parkes [2006], that aims to exploit the structuraefi «; ; € R>o andX; ; C M . Taken together, this defines
terdependencies between the agents. Specifically, we ggopothe following contingent value function:
a two-stage mechanism that involves pre-allocating thegxp WS vi(Xig,0-;)  for X D Wi
agents in the first stage, followed by an efficient allocafn ~ vi(X,v—;) ={ ‘ g TR T =

iy - . . th )
the remaining agents. The paper concludes with a discussion otherwise

(2)
Wherev; (X, v_;) denotes agenits value for bundleX, de-
2 Related work i i termined i(n afixe)d point, w.r.t. thealuesof other agents. The
There have been several works that consider interdepenyivate valuen? of each agent is a weakly increasing function
dent valuations, reporting both positive and negative reof its signal (i.e. 90?2 /ds, > 0). However, because in this
sults. For single-dimensional signals, where the private i paper we only work with valuations and don’t model signal
formation of a bidder can be captured by a single numberspaces explicitly, we can assume wiad.= s;.
ex post efficient auctions exist (Dasgupta and Maskin [2000] | order for an allocation to be computable in this inter-
Krishna [2009]). For multi-dimensional signals, there aregependent value setting, a key requirement is that the set of
strong negative results about the ability to truthfully im- \ajyations converge to a single fixed pointiA,. Formally,
plement efficient outcomes (Dasgupta and Maskin [2000]ihe valuation equilibrium point is defined as a fixed point of

Jehiel and Moldovanu [2001]). the mapping(vy,...v,) — (vi(v_1),...vn(v_p)), where
Other works have considered interdependent value augs (,, )" 2M s R

tions in more specific settings. One proposed alternative is’ ) _
to design mechanisms where values are contingent direetly ol heorem 1 (Ito and Parkes [2006])A single minded con-
the signals (an approach taken in previous work of Detstl. ~ tingent bid domain has a unique fixed poin}if, ,; a;,; <1,
[2005]; Ito et al.[2004], among others), in which each agentfor all i € V.

explicitly is asked to provide a valuation function basedBn  note that the existence of a unique fixed point is fully deter-
signals. However, such approaches assume domalr_1 knowkined by the contingency weights_;, and not by the useful
edge, such as a common language to describe the private sigynqlesiy; that agents demand. Thus, as long as the condi-

nals advertisers have about ad impressions. _ tion in Theorem 1 holds, the contingent bid system will con-
The work of Itoet al.[2004] consider settings with a spe- verge to a fixed point, regardless of tHé.

cial structure, in which agents are either “experts” (agent - e condition in Theorem 1 is sufficient for convergence,

whose signals influences others) or “amateurs” (who foly, ;+ s not also necessary. A tight condition can be derived
low other agents’ signals). An alternative class of interde using determinants of the valuation vectors, which is haxev

pendent value auctions are the so-called execution continyigicy,t to interpret, the condition in Theorem 1 being more
gent mechanisms (Cepei al. [2011]; Kleinetal. [2008];  ,sefy| for this work. In the remainder of this section and in
Mezzetti [2004]). In these mechanisms, the payments arg

, ction 4 we will only focus on domains which satisfy the
computed in the second stage, after the values are reveal ﬁf)perty in Theorem 1, thus for all results going forward a
to the agents by the allocation and thus they circumvent th nique fixed point of the valuations exists
problem of the single crossing condition. However, these '
two-stage mechanisms have weak incentives in the secongl{ an Efficient Contingent Bids Auction

stage, and thus have limited applicability. , , ) i
In an interdependent value auction, each agent is required t

3  Preliminaries place a contingerid function b;(X, b_;), which takes the

Denote byM the set of items to be allocated, andthe set SaMe form as the value function in Equation 2, and is evalu-
of agents (bidders) for these items, whene — |M| and ated by the auction in an analogous way. A bijds truthful

n = |N| are the sizes of these sets (unless otherwise spe#f it is truthful for all parts of the report (i.e. contingen
ified, set)M may include multiple copies of the same item). Weightsay; ;, private values? and interesting bundig;). _
A single minded bidder has anteresting (or useful) bundle’ _ For the contingent bidding model, Dasgupta and Maskin
W; € M, and moreover we use = |IW;| to denote the sizes [2000] propose an efficient auction that can be general-
of the useful bundles. Each agent’s value is described by a#ed to the multi-item case as follows: (1) Compute the

interdependent function; (X, s) > 0 on bundlesX € M,  fixed point bidst, as defined by the mapping induced

defined in terms of signals= (s1, ..., s,) as: by Equation 2 (but using the space of reported bids); (2)
X 8) — zi(s), fFXDOW,; 1) Compute the efficient allocatioX* = (X7,...,X}) =
z(X,s) = 0, otherwise argmarxer Y ;en b{p(Xi) to maximize total value (break-

We assume free disposal, that is the agent's value is (weaklynd. ties at rgngom), wherg ?}enotes the set of Leasible allo-
increasing with additional goods. Functier{s) > 0 defines cations; and (3) computes the payment to each winasr

the agent's value for an interesting bundle, given sigsals min b;
In this work, we use the linear contingent bids model, as stb+ S b5 (X]) > mazxer 3b5(X) (3)

first defined in Ito and Parkes [2006]. For combinatorial do-
mains, the model can be defined as follows. Each agent

i € N reports an interesting bundl&; (potentially untruth- ~ Whereb} (X) = b; (X, (b, b, ;)), andb; (X) = b; for X 2
fully), a stand alone value?, and a set of weight bundle pairs W, and 0 otherwise. Heri" ; denotes the new fixed point in

Jj#i J#i



the bid space if ageritwould bid¥; for its interesting bundle — 07

W;; the intuition being that ageritpays the smallest amount

it could have bid and still won, also accounting for the dffec s 05 @
of its report on the bids of other agents. @

In order fortruthful bidding to be arex-post Nash equilib- 0.2 @
rium in this efficient auction, the agent'’s valuation functions
must satisfy the property of Generalized Single Crossing _. ) ) ,
Condition (Generalized SCC) Dasgupta and Maskin [2000]). Figure 1: Example showing failure of Generalized SCC

Definition 1 (Generalized SCC) If, for signals(si, ..., sp)
there is a pair of allocationsX and X', tied for v3(ABC,v_3) = 7+ 0.50; (ABC) + 0.2v2(AC)
value, i.e.: Z]EN zj(X;,8) = Z]EN zj(X;,s) = v4(A,v_q) =v5(BC,v_5) = 1+ 0.7v1(AB).

., ‘ (x" : If all the bidders place truthful bids (withy = v;, Vi € N),
e 2jen % (X, s) then for every agent i such that o %6 4 hoint in the bid space would be; (AB) —
i # Xj, we require: 8,ba(c) = 6,b3(ABC) = 12.2,b,(A) = 6.6,b5(BC) =
[izi(Xi,s)>izi(X{,s)} 6.6. The mechanism allocatesX; = {AB}, X, =
Ds; dsi @ {C}, X3 = X4 = X5 = (. Now, suppose an own value
) ) , v{ = 8, which means:
= {asi D s8> 5= 3 Zf(vaS>] vi(AB,v_1) = 8 + 0.505(C)
JeN JeN Then, thetruthful fixed point bids would be); (AB)

o : . /g 11,b2(c) = 6,b35(ABC) = 13.7,b4(A) = 8.7,b5(BC)
Intuitively explained, for any two allocation¥ and X"’ tied 8.7. In this case, allocation would b&} — {A}, X —

for (maximal) value, generalized SCC requires that, when- . . . -
ever the value of agentfor X is improving more quickly {fdcg Blljlt thinat}'r?ieré C(_)I_l#d (raasnynmilsr;ﬁp?ggvg/f E)r ken
than for X’ with respect to its signal, this is also true for the a € aflocated Instead. 1he reason IS tha S Droke

total social welfare of all agents. Conceptually, this igetr here for agent 1 and allocatiod¢ = ({A5},{C},0,0,0)

;S o k
when the marginal effect of an agent’s signal on its own value"’l?ant_1 (0, (@ @’0{’%]}’ {BCr}>. tTrhrIr? ';5 %eﬁailrL:fsle trr]‘e S'?]nt"al

dominates the marginal effect of its signal on the aggregatgali%eof théélo_ gls?n asozl%gg € A Swgn gn A u: ce on the
economy of agents. The link between truthful implementa- pposing 455 12

tion in CAs and generalized SCC is given by Theorém 2

, 4 Domains with efficient allocation
Theorem 2 (Dasgupta and Maskin, Ito and Parkes [2006])

Given an valuation domain with an expressive bidding lan-n this section, we study which restrictions on the contin-
indegency weights or interesting bundle structure demanded by

each agent ensure truthful implementation of the efficient
auction presented in Section 3.1 in a combinatorial domain.
Similar to Ito and Parkes [2006], our aim is to identify pref-
Note the theorem requires a preference language expregrence domains defined by universal, anonymous, restrictio
sive enough for the preference domain and, importantly, ibn the total contingency weights reported by each agent.
only holds for single dimensional signal spaces (which in a For all the domains we explore, convergence to a unique
CA domain means single minded bidders). But given thesgixed point is assured by the property in Theorem 1, so in this
assumptions, the theorem guarantees efficient and truthfdlection we focus on conditions which guarantee that General
implementation, as long as generalized SCC holds in thgzed SCC holds. First, for the proofs we require an additiona
value domain. The focus of Section 4 is on deriving con-lemma, which characterizes domains in which the total con-
straints on the weights in the linear contingency modelcWhi  tingency weight of each agent is bounded by a threshold.

assure generalized SCC holds in single minded, combinatq_— . . .
. : . . . emma 1 (Threshold Property) Consider a setting withv
rial domains. In the case ofsingle itemauction, the follow- agents whose values are interdependent on each otherdet

CA auction is efficient in an ex post Nash equilibrium iff the
generalized SCC property holds.

ing condition is known to be sufficient for truthfulness: (0, 1) be some fixed threshold. Then, if for all agevitss N
Theorem 3 (Ito and Parkes [2006]) The second price, in- itholdsthaty®, y «;; < 7 thisimplies that/j, i € N:
terdependent value, single item auction (|&{| = 1), satis- 0z; o

fies SCC and is truthful whenevgt ., a; ; < 1,forvi € N. oy, <7 -forallj#i

For single minded CAs this condition is sufficient for as- Wherez; = z;(X) (for someX 2 W) is the value function
suring we have fixed point bids (cf. Theorem 1), but not forOf @gentj ands; is the private signal of agent
generalized SCC. To see this, consider the example shown iAtuitively, what the property says is that if all the total
Figure 1, with the contingent valuations: weights specified by any agent is less tharthen the total
v1(AB,v_1) =5+ 0.502(C); v2(C,v_3) = 6 cumulative dependency of the value of any agent on any other

T e g _— __must be less than.

The SCC definition in the initial paper Dasgupta and Maskin . . . .
[2000] is too strong to be useful in combinatorial domains. ThisProof 1 The proof is by induction on the maximum degree
form of the Generalized SCC condition is cited in Ito and Parkes toof the derivativedz;/0s;. First, we use the assumption that
personal communication with Eric Maskin in October 2005. 0z;/0s; = 1forVi € N (this follows from our setup in which



s; = vY, the value of an agent w.r.t. its own private signal).

For j # i the derivative will be a sum of products af,;
terms, depending on the derivation paths frpto .

Denote byDi’j}Si the n-th degree derivative of w.r.t. s;,

and byR(D, /,) the maximum rank of this derivative, when

. . Ozs

it become a constant. FormallR(D., /,,) = k iff 554 >

0 and % = 0. Intuitively, this means the maximum
84

derivation path fromy to ¢ has exactly iterations. The proof
then follows two steps.
Initialization step: For R(D.,/,,) = 1, we know:

aZj o 822 .
95, Ozj,ifas' =5, < E ajp < T
‘ ‘ peEN

Induction step: Assuming the property holds for &lp €
N for which R(sz/si) < k, we show it also holds for all

j € NforwhichR(D., /,,) =k+1:

sz azz Z

= -+
p#ALR(D;, /s, )<k

0zp

oy
J!Pasi

aSi = Qi 881

Since we know, by constructi(gff =1 andgis’; <7T<1
this means:, '

s

8731' < @y +Zaj,p = ZO‘M <T

B pFi peEN
Thus, if the property also holds for any agent N with
R(D.,/s,) < k, italso holds for all agentg € N for which
R(Dzj/si) =k+1.

Intuitively, if some agentj’s value is contingent on the
value of other agent(s) # j,i whose value is, in turn, con-
tingent ons;, this cannot lead to a stronger contingency: of

their useful bundle byX’). Since there are at most items
available for allocation: 3, .., k; < m. Moreover, we

have that2:: = 1 and because our starting condition and

0s;
Lemma 1, forvj # i the following holds:g—z < % This

means that we get the following inequality:

Z %Zj(X;7S)< Z ks

jegorr 770 jeSopp

<1

But, for the allocationX (in which agent; is allocated,
i.e. Wi C X;), we must have that;2- >\ 2;(X;,s) >
1, because at least agenis allocated byX, which gives a
contradiction with the assumption in Equation 2.

Note that the bound provided by Theorem 4 gives a tight
condition on all agents. Even if the condition fails for one
agent but holds for all the others, Generalized SCC can still
fail. Consider the the example illustrated in Figure 1, with
the same agents and values. If the contingency weights from
Agents 4 and 5 arey ; = 0.33 (under the threshold af/3
given by Theorem 4), buts ; = 0.68 (above the threshold
of 2/3), the condition fails for only one agent (Agent 5). Yet
Generalized SCC still fails for Agent 1.

4.1 Domains with subset/superset constraints

One way to relax the bound on the contingency weights is
to impose additional structure on the bundles agents demand
such as having values contingent only on agents whose useful
bundles are subsets or supersets of their own. In order for
such constraints to work, however, in this section we restri
the analysis only tgingle unit combinatorial domainsvhere
there is onlyone unit of each type of iterilence, no item can

ons; than if that contingency was expressed directly. Givenye replaced with another in any of the agents’ useful bundles

this linear contingency model, we are ready to Characterizglz_

CA domains that satisfy Generalized SCC.

Theorem 4 In a preference domain in which, for all agents
Vi e Nitholdsthaty". \ i ; < ki (wherek; = [W;|,m =
|M]), then Generalized SCC holds.

Proof 2 The proof starts from the generalized SCC condition
%roof 3 The proof follows the same structure as the proof of

from Def. 1. Assume, by contradiction, that SCC is violate
<= i € N andd two efficient allocationsy, X’ s.t.;

Js
0 0 /
sz(vas) < g ZZJ(Xj,S)

(’)si ‘ ‘
JEN JEN

0
TZZ(XMS) > Os

izi(XZ{,s), but :

4)

In a single minded bidder model, the first equation musts.;(x;.s)

mean that: W, C X, butW; ¢ X/ (i.e. agenti is allo-
cated its useful bundle by allocatid, but not byX”). Now,

heorem 5 Consider a single unit combinatorial domain
with single minded bidders, in which agents specifying con-
tingent bids demand only bundles that asabsets i.e.:
a;; >0 = W; CW;,Vie N. Generalized SCC holds if

Vi,j € N: ks

= maxpen kp

Theorem 4. As before, consider two allocatiofigin which
agents is allocated its useful bundle) anl’ (in which it is
not). We work towards the same contradiction of generalized
SCC. As before, consider the &P of opposing agents to

1, agents that are allocated h¥’. Formally, we can define
S°orp as the set of agents € N allocated byX’ for which

a.-— # 0 (for these agents;; > 0 andW; C X).
Important to note that, necessarily, fotj € S°P?, W, ¢

consider the agents that are allocated their useful bundlesX;, because allocatiork” allocates agent its target bundle,

by allocation X’, and let us denote their set PP (this
is the potential “opposing™ coalition to agent being allo-
cated). Formally,S°?? = {j € N,s.t. W; C X[} (necessar-

ily ¢ ¢ S°PP). We can restrict the 2nd term of Eq. 2 as:
8 ! a !
T&sz(xjfs)zasi Z Zj(vas)

JEN jeserp

This is because, by definition, agerit¢ S°P? do not de-
rive any value from allocatioX’ (as they are not allocated

and due to our assumptions that goods are single unit and
W; C W;, itcannot be that both ageatind any of the agents

j € S°PP are simultaneously allocated useful bundles. Thus,
the agents in the se&t°PP should satisfy:

o Vj € S°PP W; C W;. This is due to our starting as-
sumption, asy;; > 0 for j € S°PP,

o Vj,l € S°P? W; N W;, = . This is because there is
a single unit of each good, and bothl € S°PP are



allocated their useful bundles h¥’, which would not X’ in which it is not. Defing5°?? as the set of agentse N
be possible unless these bundles do not overlap. allocated byX’ for which 0zJ<vas) £ 0. Due to the super-

This means that the useful bundles of aggitg> ... jis| €  set assumption, there exists at most one such agent, i.e. the

S°PP represent, at most a disjoint partition &f;, meaning:  cardinality | S°??| = 1. This can be shown by contradiction.
Wi, UWj, U W o CW; Suppose there are 2 agents: € S°PP, j # k. We know that
where any pair is mutually disjoint, i.8V;, N\ W, = 0. This ~ 3Wi, Wi # 0s. t. W; 2 W; andW}, 2 W;. Since there is
meansy _g.., k; < k;. Due to Lemma 1, this means: only a single unit available of any itenX” cannot allocate
J 9 (X both agentsj and £ simultaneously. Therefore&°?? con-
% (X5, 8) < kj < ki tains a single agent (and it must contain at least one agent,
Jsi maxpenky ~ ki ¥ because we assumed agenmtas allocated byX, but not by
Where the last relation is an equality if agers actuallyp, X’ hence some other agent must have receit@ilems in
and strict otherW|§e. This gives the set of inequalities: X’). But from Lemma a1 we know th;’:\t foj € SPP, j +£ i,
Z 02;(X}, s) - Z ki _ > jesorr K <1 0zj/0s; < 1, hence: 5= .y zj(Xj,s) < 1and AND
i Osi oo ki ki 323 en 2i(Xj,8) > 1, hence Generalized SCC holds.

The other efficient allocatioX (which allocates ta) has:
32> ien #(Xj, 8) > 1 giving the required contradiction.

Figure 3: Example of a domain with superset constraints
Figure 2: Example of a domain with subset constraints
Figure 3 shows an example with superset constraints, with
In Figure 2 we show an example domain with subset conedge weights assigned such that the sum of dependencies by
straints. Edge weights were assigned such that the sum &Rch agent is the maximal one allowed in Theorem 6. Note
dependencies from each agent is the maximal allowed in Théhe value of agentl; has a large influence on the values of
orem 5 (decimals were rounded down). The total contingencyther bidders (5 times higher than on its own value). How-
weight ong, A, and A (who demand 1 item each) must be ever, there is no problem with Generalized SCC, because all
bounded by, as they together could form a potential SCC-the agents whose valuations depend (even indirectly$
breaking coalition against;. However, the weight restric- value must have demands that include iténthus they could
tion of A; on A, is < 1, as this agent could not form a coali- never be allocated simultaneously, as a coalition.
tion against4; with any other agent. Example 1 shows why Thisis aninteresting result, because it means the constrai
this logic fails in a domain with multi-unit supply (i.e. why for domains with superset demand structure is the same as in
the single unit assumption in Theorem 5 is needed). the single item case. By comparison, that for subset demands
the contingency weight limit needs to be lower for SCC to
hold. However, we believe superset type constraints are mor
natural in practical applications.

Example 1 Consider an example witlm = 12 identical
items, and n=4 agents: Agent 1 demanding = 7 items
(withv? = 4), Agent 2 demanding, = 1 item (withv = 4),
and Agents 3 and 4 demandikg = k4, = 6 items each. The .
only 2 value interdependencies are from Agents 3 and 4 o A truthful auction between experts and
the value of agent 1oz, = 6/7, au1 = 6/7 (recall that amateurs when Generalized SCC fails
they satisfy the condition thdt’; C W, and W, C Wy, as
they demand 6 items out of 7). In this case, agent 1 can mi

report 7 = 2 and be allocated, PfeV?Ut'“gp;he bids of 3and 5, tjon can be implemented. These domain restrictions are
4 from forming a larger blocking coalitioS*?® against it. useful in applications where no bidder’'s valuation has an
Next, we study the case efipersetonstraints. “outsize influence” on the rest of the market. Yet, in many
real-world settings, the opinion of a few expert agents can
with single minded bidders, if each agent is restricted todrlve valuations across the whole market. Real markets are

specifying contingent demand bids that amepersets i.e. often divided into a few experts (who have an “inside signal”

a5 0 — W, D W.Vie N, then Generalized SCC regarding the true value of some items) and a large number
hé)ljds ifvi,j € N,3 é’ <1 of “amateurs”. Although thefficientauction from Section
jeN Yij

3.1 cannot be applied, we can use the special structure of the
Proof 4 The proof follows the same structure as before, convalue contingencies between agents to develop a two-stage
sidering two allocationsX, in which agent is allocated and  auction tailored specifically for such cases. Informallgtfa

In Section 4, we identified several domain restrictions Wwhic
Ensure the Generalized SCC property holds, aneffgent

Theorem 6 In a single-unit supply, combinatorial domain



small number of expert agents are allocated their useful burwith independent values;(W; = 10) = $10. Thus, in
dle for a fixed price (or, in our case, for free). Their reportsthis setting one agent4() can be thought of as a wine ex-
are then used to compute the fixed point bids for the remainpert, and a lot of bidders are willing to buy larger quangitie
ing agents, who are allocated through the second-price fixeand pay more contingent on her opinion. If all bidders are
point bid auction. Formally, first define the influence scdre o truthful (which means the reported bid vectors are equal to
agenti as: Infl(i) = >, ; @i their valuesh; = @), then the fixed point bids afg = $20,
Consider the following mechanism which sets thresholdh, = $50, b; = $10 andb. = $200. In this case all 1000
level 7 for the influence scofe Next, the set of available items would be allocated to 100 of tihe bidders (breaking
items M is partitioned into two distinct setsi/? (allocated ties at random), who pa$200 for 10 items. The social wel-
through the “expert pre-allocation stage”) ahfl" (allocated fare is then:zjeva1 v; = 100%$200 = $20, 000. However,
based on r.eceived bids). The “experts first” mechanism hagcc is clearly broken here fot; who can simply misre-
two allocation stages (denoted By’ and.X“): port b (W, = 5) = $0.5, leading to the fixed point bids:
1. Pre-allocation of expert agents:All agentsi € N with b, = $20, b, = $50, b, = $10 andb. = $5, and the
Infi(i) > 7 are allocated their useful bundl&f = ;)  mechanism would allocate 5 items eachAg, A, and 10
for free and leave the market. Here, we assumefat items each to 99 of thel; agents. This has a much lower
is set large enough for all agents withfi(i) > 7to  social welfare ofy ;. v, v; = $1040.5. Consider how this
be allocated, but any items i/? not allocated remain example would work with pre-allocation, whefd? = 10
unsold (and unavailable for Stage 2). are reserved for pre-allocation afd® = 990 can be allo-
2. Allocation based on received bids:Reports fromalll cated using the fixed point bids (with = 1). In the pre-

agentsi € NV (including the ones pre-allocated in stage allocation stage, only agent; with Infl(A;) = 990 > 1
1 that left the market) are used to allocate the remainings pre-allocatedX” = 5 items for free, and 5 items remain

M* items, using the fixed point valuations unsold. AsA4; was already allocated, in Stage 2, the report
X =< X?{,..., X} >= argmax Z 2(Xi, 8) of A; can be used to compute the truthful fixed point bids:
XEN(M®,N) je N b1 = $20, by = $50, b; = $10 andb, = $200. Then 99 of the

whereI'(M¢, N) denotes the set of possible ways to A. agents are allocated 10 items each, giving a social welfare
allocate)M“ items amongV agents. It is possible that of >,y v;(X? U X*) = 99 x $200 + $20 = $19820.

an agent that has been pre-allocated in stage 1 is also Note that the above example is somewhat simplified, as
allocated byX“ (i.e. X = X? = W,). In this case, the only one agent is an expert. In practice, e.g. in the wine do-
corresponding items remain unsold. main, there may be several wine experts whose opinion large-
scale buyers (e.g. restaurants, merchants) follow. There m

Theorem 7 The “experts first” mechanism is truthful. ; )
. , items may need to be reserved for pre-allocation (e.g. 50 out
Proof(Sketch) First note that the influence score does notqf 1000), but the intuition remains the same.

depend on the agents’ own reports, only on the contingenc% .
weights reported bpther agents. Thus, no agent can unilat- 6~ Conclusions o
erally determine its “expert” status and allocation in $tdg  1Nis paper advances the state of the art in interdependent
However, an agent can affect the score and ranking of othefalué auctions by deriving conditions under which &fé-
pre-allocated agents, so the agents participating in S?age ¢ieéntcontingent bid auction of Dasgupta and Maskin [2000]
must be indifferent which agents are pre-allocated in Stage ¢@n be implemented in combinatorial domains with single
This holds because, first, the number of iteid available minded bidders. Starting from the_hnear contingency model
for pre-allocation is fixed (any items left unused are unallo Of Ito and Parkes [2006], we identify domain restrictions on
cated), there is no way for an agent to increase supply ositemthe total weights and bundle structures which lead to prefer
M¢ available in Stage 2. Second, the competition agents fac@nce domains where generalized SCC is satisfied, and hence
in Stage 2 is the same, as it includes the bids from all agent€ efficient auction can be truthfully implemented. We com-
i € N, even if some were pre-allocated. Thus, both thedlement these res_ults with atruthfultvyo-stage allogapnm
supply and the competition they face is the same, regardleg€dure for domains that do not satisfy Generalized SCC,
pre-ailocations in Stage 1. And because the mechanism eMhich involves first pre-allocating to a set of experts, asd u
sures all agents that potentially break SCC are pre-atidcat "9 their reports to allqcate efficiently the remaining item
in Stage 1, these agents have no incentive to misreport. There are several issues that could be explored in future
Example 3: Consider an auctioneer who needs to sell 1000V0rk.  Previously, Ito and Parkes [2006] proposed a truth-
identical items (e.g. 1000 identical bottles of wine). Tnare  ful auction for single minded CAs, which uses greedy allo-
2 agents:4; and A, who demand 5 items each, with values cation, where Fhe aI_Iocatlon decision is taken separately f
v1 (W7 = 5) = $20, respectively, (W = 5) = $50. More- each item. While neither the greedy method, nor the “experts
over, there are 101 agents that demand 10 items each, but f|rst” method in this paper guarantee efficiency, it would t_)e
their valuation being exclusively contingent on that.4f, ~ interesting to compare their average case performance in a
as: v (W, = 10) = 10 x v3(W, = 10) (i.e. ae; = 10), practl_cal appllcatlon_, such as the keyword ad\_/ertlsmg auc
and another 101 agents; that also demand 10 items each, tionsin the introduction. Another relevant question faufe
research is exploring interdependent value auctions imenl

2A level of 7 = 1 is natural from the perspective of ensuring Settings (such as in Constangnal. [2007]; Gerdinget al.
SCC, though a higher level may be sufficient as well. [2011]), where agents arrive in the market over time.
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