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Abstract

In this paper we propose a constitutive model to analyze in-plane extension of
the fascia lata in goats. We first perform a histological analysis of the fascia
that shows a well-organized bi-layered arrangement of undulated collagen
fascicles oriented along two well defined directions. To develop a model
consistent with the tissue structure we identify the absolute and relative
thickness of each layer and the orientation of the preferred directions. New
data are presented showing the mechanical response in uniaxial and planar
biaxial extension. The main part of the paper focuses on a constitutive
theory to describe the mechanical response. We provide a summary of the
main ingredients of the nonlinear theory of elasticity and introduce a suitable
strain-energy function to describe the anisotropic response of the fascia. In
the final part of the paper we validate the model by showing good agreement
of the numerical results and the experimental data.
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1. Introduction

Deep fascia is a type of connective tissue found throughout the body that
encloses many muscles and connects them to each other and to bones. There
is growing evidence that fascia can influence limb stability, force transmission,
and elastic energy storage during locomotion (Garfin et al., 1981; Bennett,
1989; Maas and Huijing, 2005; Maas et al., 2005a,b). However, quantifying
the role of fascia during active movement presents challenges. First, its sheet-
like structure contains multiple layers of well-organized collagen fibers making
the tissue highly anisotropic. Second, deep fascia has multiple connections to
muscles and bones that generate complex non-homogeneous states of strain.
The complex structure and loading environment of fascia may help explain
why many current musculoskeletal models ignore its role in simulations of
muscle function (see Tang et al. (2009) and Lee et al. (2010)). In an effort
to address this deficiency, we describe here the mechanical properties of an
example of a deep fascial structure, the fascia lata in the goat hind limb, us-
ing structurally-driven assumptions to capture and reproduce its anisotropic
response measured during strain-controlled uniaxial and biaxial tension tests.

Most published data on the fascia lata have been limited to uniaxial ten-
sion with either the applied stretch increasing monotonically or in the form of
periodic loading, unloading and reloading up to different, but fixed, stretches
(Gratz, 1931; Butler et al., 1984; Bennett, 1989). Gratz (1931), using fresh
human specimens of fascia lata, identifies the maximum safe stress in sim-
ple tension as 14.5 MPa corresponding to a strain of 3.5% and the ultimate
strength as 54 MPa for 9% strain. A wide range of values of the tissue
strength have been reported in literature (Hinton et al., 1992; Butler et al.,
1984), likely due to methodological differences in measurement of the me-
chanical response (Butler et al., 1984; Sacks, 2000). Most biological tissues
are anisotropic, requiring a wide range of experimental data to obtain ap-
propriate representations of their behaviors. Strain-controlled planar biaxial
tension can generate deformations that more closely resemble fascia’s in vivo
state of strain compared to uniaxial tension.

Fascia lata’s structure has been described differently because of its layered
arrangement and, possibly, because of variation between different species in
which it has been studied. For example, Butler et al. (1984) described hu-
man fascia lata as a bi-layered tissue with weak interaction between layers.
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Based on analysis of fascia lata from a number of different mammals, Ben-
nett (1989) distinguished three distinct layers: a thin outermost layer rich
in randomly oriented collagen fibers and two inner layers each containing
parallel fascicles of collagen fibers oriented along a clear direction. The two
families of fibers each contained in one of the layers, enclose an angle of 70◦ to
85◦. More recently, Stecco et al. (2009) proposed that deep fascia has either
completely independent layers or some regions within layers that are loosely
connected by bundles of collagen fibers present in low quantities. These
varied descriptions of fascial structure highlight the importance of combin-
ing tissue-specific structural investigations and accurate experimental data
towards constitutive modeling formulations.

Constitutive models (mathematical models of material behavior) of bi-
ological tissues have experienced a constant progression over the years in
which the material structure has become the enabling criteria to perform
simplifications of their three dimensional expressions. Initially, published
phenomenological models of biological tissues focused on isotropic symmetry
(Fung, 1967; Veronda and Westmann, 1970; Demiray, 1972; Haut and Little,
1972; Jenkins and Little, 1974). These formulations can properly replicate
uniaxial data of biological tissues rich in collagen fibers, however, the isotropic
symmetry assumption is questionable since it is inconsistent with the struc-
ture and mechanical response of the material. More recently, greater focus
has been placed on evaluating structural characteristics of collagen-rich bio-
logical tissues in relation to the material anisotropic response and in merging
the findings to develop new constitutive descriptions (Lanir, 1983; Sacks and
Sun, 2003; Lin et al., 2009; Natali et al., 2010). A comprehensive review
of different constitutive formulations that use exponential, polynomial and
logarithmic forms of strain energy functions to describe anisotropy within
the tissue are given by Holzapfel et al. (2000).

In the present study we develop a constitutive model of goat fascia lata,
which assumes nonlinear elasticity and anisotropy. Our approach investigates
the structure of fascia lata in goats containing oriented fascicles of wavy col-
lagen fibers that are confined within two well-defined layers. In one layer,
the fibers run longitudinally by inserting proximally into the tensor fascia
lata and connecting distally to the patella and knee. The second, transverse
layer contains fibers that span the tissue, connecting with the gluteobiceps
muscle (see Figure 1). We develop the model to be consistent with the tissue
structure after identifying the number, arrangement, absolute and relative
thickness of individual layers. The tissue response is measured via strain-
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controlled biaxial testing, enabling us to capture its general behavior which
results from the two primary families of fibers that are not mechanically
equivalent or orthogonal. With this procedure we overcome previous limi-
tations that focused on replicating only uniaxial experimental data of the
tissue analytically and which did not properly account for the presence of
more than one single family of fibers. The different loading conditions we
apply here are required to obtain model parameters that are representative
of the tissue behavior for a wider range of deformations. A more accurate
constitutive model of fascia can be incorporated into musculoskeletal simu-
lations and used to better understand the interaction between muscle and
fascia during locomotion.

The paper is organized as follows. Section 2 describes the methods to
characterize the tissue structure and the experimental procedure used to
determine the stress-deformation response in vitro. Section 3 presents the
images and parameters extracted from the structural characterization along
with the stress-deformation response. Section 4 introduces the notation nec-
essary to describe the kinematics with the appropriate stress and strain ten-
sors along with their associated invariants. The hyperelastic constitutive
model is developed in Section 5 and the corresponding numerical results are
compared to data. Concluding remarks are provided in Section 6.

2. Experimental Methods

All experiments performed in this study met Harvard University and
Tufts University IACUC guidelines. Fascia lata was dissected from the
hindlimbs of five adult goats Capra hircus shortly after death and then
wrapped in cotton gauze soaked with 1× phosphate buffered saline (PBS).
Samples were maintained at 4◦C prior to mechanical testing, which was com-
pleted within 48 hours post mortem.

2.1. Tissue imaging and histological investigation

Digital microscopic images of fascia lata samples were used to measure
the angle enclosed by the longitudinal and transverse fascicles in their respec-
tive layers. The angle is defined from the contrast created by the edges of the
parallel fiber bundles in each layer when imaged using an inverted light mi-
croscope (Figure 1b). After image acquisition, all analysis and measurements
were performed with ImageJ (NIH).
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Figure 1: Image (a) shows the location of facia lata and major muscles groups in hindlimbs
of adult goats (Bennett (1989), reproduced with permission of the copyright owner, Wiley,
UK). Image (b), light microscopy, is used to determine the structural arrangement of
the preferred directions. From the analysis of multiple samples we found that the angle
between the longitudinally and transversely oriented collagen fibers is between 67◦ and
80◦.

Four small strips of tissue approximately 10 mm × 15 mm were fixed
in 3.65% formaldehyde solution before being embedded in paraffin. For the
histological analysis we prepared 5 µm thick sections from each strip of ma-
terial taken at four locations along their length. Two sets of sections were
prepared. The first set was obtained by cutting the tissue along a plane
perpendicular to the longitudinal fiber direction, the second by cutting a
different sample perpendicular to the transverse fiber direction. For consis-
tency, a light microscope was used to identify the fiber directions prior to
paraffin embedding. Sectioned samples were mounted on slides and stained
with Hematoxylin and Eosin (H&E) to obtain an overall inclusive image of
the tissue sample, and Masson’s trichrome to stain collagen fibers and tissue
matrix. Slides were examined at 50× using a Zeiss Axiovert 40 CFL inverted
microscope with standard dichromic mirrors.

The digital image collection of the slides was performed with integrated
QCapture Pro software (QImaging, Surrey, BC, Canada). First, a global
calibration scale was applied by imaging a stage micrometer. Next, im-
ages captured using the same length scale, were analyzed to determine the
thickness of each layer and the cross sectional area ratio of longitudinal to
transverse fascicles. A threshold was set prior to conversion into binary mode
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such that only the collagen fascicles were visible. Images were converted to
an 8-bit grayscale format to differentiate the mature fiber fascicle from the
loose collagen ground matrix surrounding them. The cross sectional area of
each bundle was then extracted and individually identified as longitudinal or
transverse prior to summation to calculate the total cross sectional area of
the bundles in each layer. The thickness of the layers was measured manually
by taking 64 individual equi-spaced measurements per layer per slide.

2.2. Sample preparation for mechanical testing

Using a custom made cruciform die cutter, two samples were obtained
from the fascia lata of each goat leg. The two arm pairs of the die cutting
tool have a width of 12 mm each and measure 62 mm from end to end, see
Figure 2a. The gage region is precluded by the 12 mm × 12 mm square
area in the center of the cruciform where four physical gage marks were
attached with Loctite 4013 medical device adhesive. The marks were used
by the machine for measuring deformation and controlling strain rate. Prior
to testing, the terminal parts of the sample ends were wrapped with 800 grit
sand paper and securely clamped in custom designed grips. Fine sand paper
reduces the risk of slip and optimizes distribution of the clamping pressure
across the specimen arm to decrease the risk of localized damage.

Although the same die was used to cut all cruciform samples, some vari-
ations in the final shape occur due to the slippery texture of the tissue in
the hydrated state. Therefore, an image of the sample from the video ex-
tensometer was recorded before testing and used later to measure the gage
region dimension of each sample (Figure 2a) to calculate cross sectional area.
Similarly, the constant strain rate in all samples was ensured by imposing a
deformation speed that was proportional to the distance between opposing
marks measured by the video extensometer in the reference configuration.
The average thickness of the gage region of each sample was measured using
a contact micrometer (Mitutoyo Corp.) with a resolution of ±0.01 mm. In
addition to the cruciform specimens, longitudinally and transversely oriented
rectangular strips of fascia lata were cut for uniaxial tension tests.

Two mutually orthogonal in-plane directions with the convention that
the fiber and loading direction always coincide along the 2-axis of the cruci-
form sample (Figure 2b) were defined to outline the test sequence and data
evaluation. Therefore, for each fascia lata, one sample was cut with the lon-
gitudinal set of fibers closely aligned with one of the axes of the cutting die
(2-axis), in the second sample the 2-axis was aligned with transverse fibers.
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The sketch in Figure 2b shows that one of the fiber direction does not co-
incide with the directions of the applied load. This condition generates a non-
homogeneous deformation within the gage region of the specimen and has
important implications in material modeling (Holzapfel and Ogden, 2009).

2.3. Mechanical testing

All mechanical testing was performed using a custom built Zwick/Roell
planar biaxial testing machine. The machine controls strain measured from
the specimen in real time to within a tolerance of 0.25% by independently
modulating the applied load at each actuator drive. Details and layout of
the equipment are given in Pancheri and Dorfmann (2013).

To assess the mechanical properties of fascia lata in biaxial tension we
programmed the equipment to perform two series of tests where a new sample
was used at the start of each series. The applied maximum stretch levels
were designed to generate a strain field in the tissue sample that nears but
is below its damage point. The collagen fibers of fascia lata, which are
oriented longitudinally, coincide with the loading-unloading direction (2-axis)
in the first series. During the second series, the fibers that span transversely
across the tissue were aligned with the loading direction. The reference
configuration was determined at the beginning of each testing sequence by
the position of the physical gage marks when a 0.08 N preload was detected
by all four load cells. This value was the minimum to assure the samples
maintain the horizontal position prior to immersion in the water bath and
was critical to ensure the same initial conditions for all tests. Testing was
conducted with samples immersed in a constant temperature bath at 39◦C,
controlled by an auto regulated circulator (Ecoline Type RE 104; LAUDA
Königshofen, Germany). A quasi-static strain rate of 0.0015 s−1 was applied
throughout all tests. Each test series contained a sequence of four biaxial
loading routines, with each routine followed by a 180 s rest period. Upon
completion of each sequence the sample was always returned to the initial
reference configuration. The test series was as follows:

• Starting from the reference configuration, with λ1 = 1 held constant,
the specimen was subjected to five loading-unloading cycles in the 2-
direction with maximum extension λ2 = 1.04.

• After the rest period, with λ2 = 1, the specimen was first stretched
to λ1 = 1.03. Then, with λ1 = 1.03 held constant, the specimen
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was subjected to five loading-unloading cycles with maximum stretch
λ2 = 1.04.

• Again, after the rest period, with λ1 = 1 held constant, the specimen
was then subjected to five loading-unloading cycles with maximum ex-
tension λ2 = 1.06.

• Once more, after the rest period, λ1 was increased to 1.03 and kept
constant, the specimen was subjected to five loading-unloading cycles
with maximum stretch λ2 = 1.06.

To determine the values of the parameters of the constitutive model we
averaged the biaxial extension data corresponding to the loading phase of
the last cycle of each sequence. Averaging the response of the samples from
five different animals, reduces inter-sample variations and makes the model
parameters representative of the tissue rather than individual samples.

The rectangular specimens used to determine the mechanical response
in uniaxial tension underwent a single extension to rupture. Six samples
collected from the five goats were stretched in the direction of the longitu-
dinally oriented collagen fibers. Six additional samples from 3 of the goats
were subjected to simple tension in the direction of the transversely oriented
fibers. Similarly to the cruciform samples, using stretch as the independent
variable, the uniaxial tension data were averaged to characterize the tissue
response in the longitudinal and transverse directions.

3. Experimental Results

The value of the opening angle between the longitudinal and transverse
fiber directions is determined to be between 67◦ and 80◦, see Figure 1.

3.1. Histology

Histological sections show that the fascia lata has a well-organized struc-
ture comprising oriented fascicles with interspersed fibroblasts and fibrocytes,
see Figure 3a. Fibrocytes play a vital role to maintaining the overall struc-
tural integrity of the tissue in the living animal. Undulated fibers of mature
Type I collagen form the bundles, see Figure 3b (Masson’s Trichrome).

The structure of fascia lata is bi-layered, with the proteoglycan (ground)
matrix connecting the layers and enveloping all fascicles. Although collagen
is present in the matrix, it is less organized and thus likely allows for some
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Figure 2: (a) A cruciform shaped specimen in biaxial tension. Using the provided contrast,
the digital gage marks follow the movement of the physical markers. Each gage mark is
tracked independently, which allows to control and adjust the strain rate of each actuator.
The Cartesian coordinate system used to describe the test sequence and the orientation
of the preferred directions are shown by the schematic representation (b).

Figure 3: (a) The well-organized structure of fascia lata contains many interspersed fi-
broblasts (H&E stain 400× magnification). (b) The fascicles of Type I collagen contain
undulated collagen fibers (Masson’s Trichrome stain 400× magnification).

degree of motion between individual fascicles and between the two layers of
tissue. Figure 4a shows a section obtained by cutting fascia lata perpen-
dicular to the transverse fiber direction, Figure 4b shows a section obtained
by cutting the tissue perpendicular to the longitudinal fibers. The arrange-
ment of longitudinally and transversely oriented fascicles is distinctly differ-
ent. The uppermost layer contains the transversely oriented fibers which are
grouped in a single row of fascicles; the lower layer contains the longitudi-
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Figure 4: Histological sections of the tissue at 50×magnification. Image (a) shows a section
that is obtained by cutting fascia lata perpendicular to the transverse fiber direction, image
(b) by cutting the tissue perpendicular to the longitudinal fibers. The layer of longitudinal
fascicles is on average 4 times thicker than the transverse.

nally oriented fibers. Histology slides show that the cross sectional area of
fascicles in the longitudinal direction are generally always larger in size than
those of the transverse. In some regions, one large fascicle spans the entire
thickness of the longitudinal layer; in others, two or even three of lesser di-
ameter are present across its thickness. The thickness of the longitudinally
and transversely oriented fiber layers is 246.4 ± 42.8 µm (mean ± S.D.) and
61.3 ± 8.7 µm, respectively. We find that, using images captured from slides
at the same length scale, the total cross sectional area ratio of longitudinal
to transverse fascicles is between 3.6 and 5.7.

3.2. Mechanical characterization

3.2.1. Simple tension

Specimens subject to simple tension reach maximum stress when λ is
between 1.1 and 1.18. The Cauchy stress at failure is 38.4 ± 10.3 MPa (mean
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Figure 5: Cauchy stress σ versus stretch λ of fascia lata in uniaxial tension in the direction
of longitudinally and transversely oriented fibers. The dotted lines represent averaged
experimental data, the solid lines the corresponding numerical results. Stress values are
given in MPa.

± S.D.) in the longitudinal direction and 8.6 ± 2.9 MPa in the transverse
direction. Since the model parameters are obtained from the biaxial data
following the procedure outlined in Section 2.3, for ease of comparison we
restrict representation of the uniaxial stress-deformation response to λ = 1.08
(see Figure 5). The uniaxial tension data are averaged and are shown by the
dotted lines in Figure 5 as Cauchy stress versus stretch. The data clearly show
that the mechanical response of specimens stretched in the direction of the
longitudinally oriented fibers is distinctly stiffer compared to the response of
samples that span transversely across fascia lata. The solid lines in Figure 5
represent the numerical results of the constitutive model and will be discussed
in Section 5.1. The data show an exponential increase in stress up to an
elongation of approximately λ = 1.06 at which point permanent damage
occurs in the material.

3.2.2. Biaxial tension

In this section we present representative results of the stress-deformation
response of a longitudinal and a transversely oriented sample based on the
protocol in Section 2.3. A detailed analysis of material properties will be
provided in a forthcoming publication (Eng et al. (2013)).
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Figures 6 and 7 show the response of a specimen in which the longitudi-
nally oriented fibers of fascia lata coincide with the 2-axis. Specifically, the
figures display the Cauchy stress in the 2-direction as a function of stretch
for two different, but constant extensions in the 1-direction, see Figure 2b
for the orientation of the coordinate axes. Similarly, Figures 8 and 9, present
load-deformation results in biaxial tension using an experimental setup where
transversely oriented fibers of fascia lata coincide with the 2-axis. In all cases
five loading-unloading cycles in the 2-direction are performed. For clarity
only the last cycle is shown.

Images (a) and (c), in Figures 6 – 9 depict the response during initial
extension in the 1-direction to a pre-selected value λ1 with λ2 = 1 constant.
Now, with λ1 held constant, the specimen is subjected to loading-unloading
cycles in the 2-direction with maximum values of λ2 = 1.04 and λ2 = 1.06.

The images denoted (a) and (b) in Figure 6 depict the stress-stretch
responses of the loading-unloading sequence in the 2-direction with maximum
stretch λ2 = 1.04 and with no deformation in the 1-direction (λ1 = 1).
The images (c) and (d) show the loading-unloading in the 2-direction with
the same maximum stretch λ2 = 1.04, but λ1 now increased to 1.03. The
same specimen, after a resting time of 180 seconds, was subject to additional
characterization tests. The additional sequence was identical to the one
shown in Figure 6, except that the maximum extension in the 2-direction
was increased from λ2 = 1.04 to λ2 = 1.06. The corresponding results are
shown in Figure 7.

The biaxial sequence was then used to determine the stress-stretch re-
sponse of a different specimen, in which fibers that span the fascia lata were
aligned with the loading-unloading direction (see Figure 2b). The results
corresponding to the loading-unloading cycle in the 2-direction, with maxi-
mum stretches of 1.04 and 1.06, are shown in Figures 8 and 9. The extension
in the 1-direction was again held constant at values of λ1 = 1 and λ1 = 1.03.

Fascia lata is much stiffer in the longitudinal direction compared to the
transverse direction. This difference can be seen, in Figures 6 and 8 by
comparing values of the Cauchy stress σ2 during cyclic loading as represented
in the images (b) and (d) (Note the change in scale from Figures 6 to 8). The
same observation applies to the Cauchy stress σ2 in Figures 7 and 9 shown
in (b) and (d).

The Cauchy stress σ2 during cycling loading in the images (b) and (d) in
Figures 6 and 7 also shows that stretching fascia lata in the transverse direc-
tion does have a negligible effect on its response in the longitudinal direction.
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This differs from the results given in Figures 8 and 9, in which Cauchy stress
σ2 during cyclic loading in the transverse direction was affected more by the
different amounts of stretch applied in the 1-direction. Further, the graphs
in image (d) show that the stress required to maintain the stretch of 1.03
constant in the 1-direction is much higher than the stress required to cycle
the tissue in the 2-direction. The biaxial response of the two samples high-
light the observed mechanical anisotropy of fascia lata to an extent never
captured through uniaxial tests alone. The tissue structure results are con-
sistent with the biaxial response, in which the thicker collagen fiber layer in
the longitudinal direction reinforces the tissue to withstand higher loads.

4. Constitutive modeling

The images of the tissue structure in Section 3.1 show that goat fascia
lata consists of two distinct layers of different thickness containing fibers
that are oriented along two non-orthogonal directions and are surrounded
by a matrix containing collagen fibers of random arrangement. Therefore,
not surprisingly, the measured planar biaxial response is highly anisotropic.
Moreover, the response in the direction of the two fibers is not mechani-
cally equivalent. Shear stresses during deformation are then unavoidable to
maintain pure homogeneous deformation, regardless of the angle of the fibers
relative to the Cartesian axes of strain. Also, the initial loading and subse-
quent unloading stress-stretch response curves, do not coincide indicating
dissipation of energy. In the theory that follows, the material is considered
anisotropic and nonlinearly elastic. The objective is to propose a constitu-
tive model that accounts for the observed material behavior. We focus on the
quasi-static response and consider the material properties and deformation
to be independent of time. We define the notation necessary to describe the
kinematics, summarize appropriate strain and stress tensors along with the
associated invariants. For a more general representation of the theory we
refer to, for example, Holzapfel (2001) and Ogden (1997).

4.1. Basic equations

To describe the deformation of a deformable body we select an arbitrary
chosen configuration as a reference, which we denote Br, and identify a generic
material point by its position vector X relative to some origin. Application
of mechanical forces deforms the body, so that the point X occupies the
new position x = χ(X) in the deformed configuration B. The vector field χ
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Figure 6: (a) and (c) depict the initial response of a preconditioned sample during extension
in the 1-direction to a pre-selected value λ1 with λ2 = 1 constant. Then, with λ1 held
constant, the specimen is subjected to loading-unloading cycles in the direction of the
longitudinally oriented fibers (2-direction) with maximum stretch λ2 = 1.04. Graphs in
(b) and (d) show the last of five cycles. Stress values are given in MPa.

describes the deformation of the body and assigns to each point X a unique
position x in B and viceversa attributes a unique reference position X in Br

to each point x. The deformation gradient tensor F relative to Br, is defined
by

F = Gradx, (1)
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Figure 7: (a) and (c) depict the initial response of a preconditioned sample during extension
in the 1-direction to a pre-selected value λ1 with λ2 = 1 constant. Then, with λ1 held
constant, the specimen is subjected to cyclic loading-unloading in the direction of the
longitudinally oriented fibers (2-direction) with maximum stretch λ2 = 1.06. Graphs in
(b) and (d) show the last of five cycles. Stress values are given in MPa.

Grad being the gradient operator with respect to X. The Cartesian com-
ponents are Fij = ∂xi/∂Xj, where xi and Xj are the components of x and
X, respectively, with i, j ∈ {1, 2, 3}. We also adopt the standard notation
J = det F, with the convention J > 0.

The deformation referred to as planar extension is defined by the equa-
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Figure 8: Graphs in (a) and (c) depict the initial response of a preconditioned sample
during extension in the 1-direction to a pre-selected value λ1 with λ2 = 1 constant. Then,
with λ1 held constant, the specimen is subjected to cyclic loading-unloading in the di-
rection of the transversely oriented fibers (2-direction) with maximum stretch λ2 = 1.04.
Graphs in (b) and (d) show the last of five cycles. Stress values are given in MPa.

tions

x1 = F11X1 + F12X2, x2 = F22X2 + F21X1, x3 = F33X3,

where F33 is the stretch in the out of plane direction, which we denote by λ3.
From these expressions we find that the components of the deformation gra-
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Figure 9: Graphs in (a) and (c) depict the initial response of a preconditioned sample
during extension in the 1-direction to a pre-selected value λ1 with λ2 = 1 constant. Then,
with λ1 held constant, the specimen is subjected to cyclic loading-unloading in the di-
rection of the transversely oriented fibers (2-direction) with maximum stretch λ2 = 1.06.
Graphs in (b) and (d) show the last of five cycles. Stress values are given in MPa.

dient F, referred to the two sets of Cartesian coordinate axes, are represented
by the matrix F, which is given by

F =

 F11 F12 0
F21 F22 0
0 0 F33

 . (2)
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The resulting matrices of the left and right Cauchy-Green deformation ten-
sors B = FFT and C = FTF, denoted B and C, are

B =

 F 2
11 + F 2

12 F12F22 + F21F11 0
F12F22 + F21F11 F 2

22 + F 2
21 0

0 0 F 2
33

 , (3)

and

C =

 F 2
11 + F 2

21 F12F11 + F21F22 0
F12F11 + F21F22 F 2

22 + F 2
12 0

0 0 F 2
33

 . (4)

The theory of hyperelasticity characterizes the elastic response of a body
by a strain energy function W defined per unit volume in the reference config-
uration Br. For a homogeneous material W depends only on the deformation
gradient F and we write W = W (F). In this paper we restrict attention
to incompressible materials, subject to the constraint J = det F ≡ 1. The
nominal stress tensor S and the symmetric Cauchy stress tensor σ are then
given, respectively, by

S =
∂W

∂F
− pF−1, σ = F

∂W

∂F
− pI, (5)

where p is an arbitrary hydrostatic pressure. Equation (5) shows that for an
incompressible material, the Cauchy stress σ and the nominal stress S are
related by σ = FS.

We introduce unit vectors M and M′ to denote the two preferred di-
rections of an anisotropic material in the reference configuration Br and,
following the work by Spencer (1971) and Ogden (2001), define the struc-
tural tensors M⊗M and M′ ⊗M′. The material considered here is said to
be isotropic if W is an isotropic function of the three tensors F, M⊗M and
M′⊗M′. Then, the form of W is reduced to the dependence on the principal
invariants I1, I2, I3 of C, which are defined by

I1 = trC, I2 =
1

2

[
I2

1 − tr(C2)
]
, I3 = det C = J2, (6)

together with five invariants that depend on M and M′. These are calculated
as

I4 = M · (CM), I5 = M · (C2M), I6 = M′ · (CM′), I7 = M′ · (C2M′),
(7)
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with the remaining invariant I8 a function of both fiber directions

I8 = M · (CM′). (8)

For an incompressible anisotropic material the symmetric Cauchy stress
tensor is obtained from equation (5)2 and has the explicit form

σ = 2W1B + 2W2(I1B−B2) + 2W4m⊗m + 2W5(m⊗Bm + Bm⊗m)

+ 2W6m
′ ⊗m′ + 2W7(m′ ⊗Bm′ + Bm′ ⊗m′)

+ W8(m⊗m′ + m′ ⊗m)− pI, (9)

where m = FM, m′ = FM′ and the notation Wi = ∂W/∂Ii applies for
i = 1, 2, 4, . . . , 8 with no dependency on I3.

The strain energy of materials with preferred directions is, in general,
written as the sum of two contributions, one associated with the isotropic
properties of the base matrix and the second with the anisotropy being gen-
erated by the embedded fibers. For an incompressible material we have

W = Wiso(I1, I2) +Wfib(I4, I5, I6, I7, I8), (10)

where the term Wiso represents the isotropic matrix and Wfib accounts for
the directional reinforcements (Qiu and Pence, 1997; Holzapfel et al., 2000;
Merodio and Ogden, 2005; Horgan and Saccomandi, 2005; Dorfmann et al.,
2007, 2008). Based on the structure of fascia lata outlined in Section 3.1 and
following the simplification suggested by Holzapfel et al. (2000), we reduce
the number of invariants and consider the form

W = Wiso(I1) +Wfib(I4, I6), (11)

which still provides sufficient flexibility to capture the mechanical response
of fascia lata. The use of the reduced formulation (11) allows to write the
Cauchy stress (9) as

σ = 2W1B + 2W4m⊗m + 2W6m
′ ⊗m′ − pI. (12)

5. A specific material model

The disorganized collagen matrix that connects the inner and outer layers
of fascia lata and envelops all fascicles is considered isotropic. We therefore
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propose the exponential strain energy function due to Demiray (1972) to
model the mechanical properties. It has the form

Wiso =
µiso

2α
{exp [α(I1 − 3)]− 1}, (13)

where µiso denotes the shear stiffness of the matrix and α is a dimensionless
material parameter. The anisotropic character of the tissue is described by

Wfib =
µt

2kt

{exp
[
kt(I4 − 1)2

]
− 1}+

µl

2kl

{exp
[
kl(I6 − 1)2

]
− 1}, (14)

where the subscripts t and l refer, respectively, to material properties in the
transverse and longitudinal directions of fascia lata. The parameters µt and
µl describe the degree of anisotropy and kt and kl are two dimensionless
parameters associated with the two directions.

To obtain explicit expressions of (12) we place the two preferred directions
M and M′ parallel to the (X1, X2) plane as

M = cosϕe1 − sinϕe2, M′ = cosϕ′e1 + sinϕ′e2, (15)

where e1 and e2 denote the in-plane Cartesian unit vectors and ϕ and ϕ′ the
angles formed by the two fiber directions with e1. We use the membrane
approximation σ33 = 0 to eliminate the hydrostatic pressure term p and
the incompressibility condition det F ≡ 1 to eliminate the term F33 from
the above equations. We further assume pure homogeneous deformation
with F11 = λ1, F22 = λ2 and F12 = F21 = 0, where λ1 and λ2 denote the
principal stretches. This last assumption will be discussed in more detail in
the concluding remarks.

The right Cauchy-Green deformation tensor C, which for planar extension
has the components given by equation (4), simplifies to

C =

 λ2
1 0 0

0 λ2
2 0

0 0 λ−2
1 λ−2

2

 , (16)

with the invariant I1 defined by (6)1 given by

I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 . (17)

The use of equations (15) and (16) in (7)1,3 gives the invariants I4 and I6 as

I4 = λ2
1 cos2 ϕ+ λ2

2 sin2 ϕ, I6 = λ2
1 cos2 ϕ′ + λ2

2 sin2 ϕ′. (18)
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Finally, using the strain energy functions (13) and (14) in (12) results in
explicit expressions of the in-plane stress components. These are

σ11 = µiso(λ2
1 − λ−2

1 λ−2
2 ) exp [α(I1 − 3)]

+ 2µtλ
2
1 cos2 ϕ (I4 − 1) exp

[
kt(I4 − 1)2 − 1

]
+ 2µlλ

2
1 cos2 ϕ′ (I6 − 1) exp

[
kl(I6 − 1)2 − 1

]
, (19)

σ22 = µiso(λ2
2 − λ−2

1 λ−2
2 ) exp [α(I1 − 3)]

+ 2µtλ
2
2 sin2 ϕ (I4 − 1) exp

[
kt(I4 − 1)2 − 1

]
+ 2µlλ

2
2 sin2 ϕ′ (I6 − 1) exp

[
kl(I6 − 1)2 − 1

]
, (20)

and

σ12 = 2λ1λ2

{
µt cosϕ sinϕ (I4 − 1) exp

[
kt(I4 − 1)2 − 1

]
+ µl cosϕ′ sinϕ′ (I6 − 1) exp

[
kl(I6 − 1)2 − 1

]}
. (21)

Equation (21) shows that, in general, shear stresses are required to maintain
a pure homogeneous deformation. These vanish when the preferred directions
coincide with the coordinate axes, i.e. ϕ = 0, ϕ′ = π/2. See the discussion of
fiber-reinforced materials given by Ogden (2001).

5.1. Model results

The averaged response of the biaxial data of the fifth re-loading with
maximum stretch λ2 = 1.06 are represented by the dots in Figures 10 and 11.
More specifically, images (a) and (b) in Figure 10 show the average of the fifth
loading cycle for specimens stretched in the direction of the longitudinally
oriented fibers to the maximum stretch λ2 = 1.06 for lateral stretches λ1 = 1
and λ1 = 1.03, respectively. The corresponding average data for specimens
stretched in the direction of transversely oriented fibers are shown by the
images (a) and (b) in Figure 11.

In what follows, we use the unit vector M′ to specify the fiber orientation
that coincides with the loading-unloading direction. From equation (15) and
using the sign convention introduced in Section 2.3 we find the fiber angle
ϕ′ = π/2, see Figure 2. The angle ϕ that defines the orientation of the
second family of fibers is considered a phenomenological parameter and is
determined using a nonlinear optimization routine.

The nonlinear iterative algorithm for parameter estimation proposed by
Buzzi-Ferraris and Manenti (2009) is applied to determine the non-negative
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Table 1: Values of the parameters used to define the isotropic energy functions (13), the
anisotropic contribution (14) and the orientation of the preferred directions (15). The
values of µiso, µl, µt are given in MPa, the angle ϕ in degrees.

Summary of model parameters.

µiso α µl kl µt kt ϕ

4.8597 25.00 32.5193 60.6070 2.9505 60.7569 22.1982

values of the parameters µiso, α, µl, kl, µt, kt, ϕ (see Table 1). The equations
(19) and (20) are used in conjunction with the data in the minimization
routine to determine the set of parameters returning the smallest residuals
between the predicted and measured responses.

To limit the searchable domain of parameter sets giving accurate and
stable solutions we use the results from the tissue structure obtained from
histology and guide the range of permitted values for µl, µt and ϕ. Precisely,
based on the fiber bundle longitudinal to transverse cross sectional area eval-
uation, the value of the stiffness for µt is limited to be no less than one order
of magnitude smaller than the permitted value for µl, likewise the permitted
range of solutions for the fiber angle ϕ between the two layers is given a lower
bound of 10◦ and an upper bound of 25◦. We recall that ϕ denotes the fiber
angle with respect to the 1-axis and therefore the value of (90◦−ϕ) compares
with the opening angle reported in Section 3.

The values of the material parameters summarized in Table 1 are used to
evaluate the in-plane Cauchy stress components given by equations (19), (20)
and (21). As a consequence of the preferred directions not being orthogonal,
i.e. ϕ 6= 0, the shear stress component σ12 is different from zero. Using
equation (21), σ12 is approximately an order of magnitude smaller than σ11

and σ22. Since no data of the in-plane shear stress exist, we do not include
the graphs of σ12.

With the material parameters given in Table 1 the model is now used
to determine the stress components σ11 and σ22 in biaxial tension. Figure
10 compares the numerical results, shown by solid lines, to the averaged
data of fascia lata stretched in the direction of the longitudinally oriented
fibers. Image (a) illustrates the material and model responses when λ1 =
1 and constant and the stretch in the 2-direction increases from λ2 = 1
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Figure 10: Solid lines show the numerical results of the in-plane Cauchy stress compo-
nents σ11 and σ22, dotted lines the corresponding averaged experimental data. Image (a)
illustrates the response when λ1 = 1 and the stretch in the longitudinally oriented fiber
direction increases to λ2 = 1.08. Graphs in (b) show the corresponding results when the
stretch in the 1-direction is increased to a constant value of λ1 = 1.03. The values of the
Cauchy stress components are given in MPa.

to a maximum value of λ2 = 1.08. The graphs in image (b) again show
the material and numerical responses during the initial extension in the 1-
direction to λ1 = 1.03 with λ2 = 1 constant. Then, with λ1 = 1.03 and
constant, the material is again stretched in the longitudinal fiber direction to
λ2 = 1.08. The results show the model accurately describes the experimental
behavior of the tissue.

Similarly, Figure 11 shows the averaged data in biaxial tension of fascia
lata when stretched in the direction of the transversely oriented fibers. The
numerical solution again shows good agreement with the experimental data.

The model developed in Section 5 is now specialized to uniaxial tension.
In this context it is important to underscore that the values of the material
parameters in Table 1 are obtained using only the biaxial tension data. The
numerical results are therefore of particular interest since they provide the
opportunity to test the accuracy of the numerical response. The results of
the constitutive model for tensile loading in the direction of longitudinally
and transversely oriented fibers are shown by solid lines in Figure 5. Good
agreement with the experimental data is obtained up to values of 1.06% in the
two directions. Upon reaching this stretch, the stiffening behavior changes
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Figure 11: Solid lines show the numerical results of the in-plane Cauchy stress compo-
nents σ11 and σ22, dotted lines the corresponding averaged experimental data. Image (a)
illustrates the response when λ1 = 1 and the stretch in the transversely oriented fiber
direction increases to λ2 = 1.08. Graphs in (b) show the corresponding results when the
stretch in the 1-direction is increased to a constant value of λ1 = 1.03. The values of the
Cauchy stress components are given in MPa.

indicating the onset of softening due to alterations in the microstructure of
the tissue. Therefore, the elastic limit in uniaxial tension of fascia lata is
≈ 6%.

6. Concluding remarks

Motivated by the need to characterize the nonlinear mechanical properties
of connective tissue, such as fascia lata, we have presented new experimen-
tal data and developed a mathematical model that captures the observed
behavior with good accuracy. The experimental data, in addition to simple
tension, include planar biaxial extension that more closely resemble fascia’s
in vivo state of strain.

The histological analysis of goat fascia lata showed a bi-layered structure
containing collagen fascicles oriented along two preferred directions providing
anisotropic material behavior. The arrangement and the cross-sectional ar-
eas of the longitudinally and transversely oriented fascicles are different and
therefore the two directions are not mechanically equivalent nor are they
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orthogonal. Then, the in-plane shear stress (21) is required for the pure ho-
mogeneous deformation (16), that is, the principal axes of stress and strain do
not coincide. However, to our knowledge, there is currently no experimental
equipment available that allows applications of in-plane shear stress to a soft
biological tissue. In the absence of in-plane shear stress σ12, the off-diagonal
terms F12 and F21 in equation (2) are different from zero. Therefore, in our
approximation we do not include the effects of in-plane shear deformation.

The effect of in-plane shear is quantified in the following. Image (a) in
Figure 12 defines the undeformed configuration λ1 = λ2 = 1 from the video
extensometer using the physical gage marks to outline a rectangular reference
area. Image (b) depicts the sample stretched in the direction of the trans-
versely oriented fibers to λ2 = 1.06 with λ1 = 1.03 constant. The solid lines
indicate the size of the reference area, the dashed lines define the deformed
shape tangent to the physical gage marks. The intersections of the dotted
lines with the physical gage marks define the points that are used by the
equipment to control strain. Image (b) compares the rectangular reference
area to the current shape and is used to measure an in-plane shear of 0.0872
rad. For completeness, we recall that the corresponding stress-deformation
data are shown by Figure 9(d). Therefore, specializing the constitutive the-
ory in Section 5 to pure homogeneous deformation is, in this special case,
an acceptable approximation. For a more general discussion of the effects
of in-plane shear during biaxial testing of biological tissues we refer to, for
example, Sacks (2000).
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