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résumé et mots clés

The problem of quantizer design for detection or classification has a long history, with classical contributions by Kassam ,
Poor, Picinbono, Bucklew and others . The goal was to design a quantizer such that a detection rule based on the quantize d
information was optimized . During recent years an alternative approach has been developed which seeks to jointly optimiz e
quantization and classification by incorporating the Bayes risk resulting from the quantizer into the quantizer optimization .
In this paper the general classical approach of Picinbono and Duvaut is compared contrasted with the joint approach an d
illustrated by a simple example .

Signal quantization, signal detection, optimal classification, density estimation

abstract and key words

Il existe une importante littérature traitant du problème de la conception d'un quantificateur pour un système de détection ou d e
classification . A l'origine, les travaux menés dans ce domaine - notamment par Kassam, Poor, Picinbono et Bucklew - ont pour bu t
de concevoir un quantificateur qui optimise une règle de décision basée sur l'information quantifiée . Rompant avec cette approch e
classique, ces dernières années ont vu l'émergence d'une approche alternative dont l'objectif est d'optimiser conjointement le s
opérations de quantification et de classification . L'optimisation conjointe est réalisée par minimisation d'un critère Lagrangie n
comprennant l'erreur quadratique moyenne (quantification) et le risque de Bayes (classification) . Dans cet article, nous proposon s
de comparer l'approche conjointe à l'approche classique, plus courante, de Picinbono et Duvaut . Nous illustrons les deux méthode s
à l'aide d'un exemple simple .

Quantification, détection, classification, classification optimale par risque de Bayes, estimation de densité .

1 . introduction
A classical problem in signal detection or statistical classification
arises when one is provided quantized observables instead of th e
original observables . If the quantizer is out of the control of the de -
tection system designer, then the solution is to simply replace th e
original observations with the quantized observations in any sta-
tistical analysis . Although simple in principle, this can seriousl y
complicate the analysis, leading to the common assumption tha t
the quantization is high resolution and leaves the observation s
asymptotically unchanged or that one can use the Bennett hig h
rate quantization approximations to analyze the problem. More
importantly, the quantization might be part of the design so that

it can be optimized for the specific application . In this case it is
clearly suboptimal to simply design a minimum mean squared
error quantizer (e .g ., using the Lloyd algorithm) and then design
an optimal detector for the output of the quantizer . The cascade
of two separate optimization problems is unlikely to provide an
overall optimal solution to the true goal of providing an overall
design for quantizer and detector which is optimal given whatever
rate constraint is placed on the quantizer . Alternatively, a quan-
tizer designed to minimize mean squared error may inadvertantl y
lose information necessary for good detection performance .

A variety of early solutions to this problem considered ways of
designing quantizers so as to preserve the needed informatio n
for detection, usually by attempting to ensure that the quantize r
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preserved distinct conditional probability distributions under the
hypotheses to be decided as in [2, 3, 4, 5, 10] or by using Bennett -
style high rate approximations to approximate the conditiona l
densities resulting from quantization [6, 7] . Important to the
nonasymptotic approaches of interest here was the fact tha t
quantization was taken in the general sense of being describe d
by a partition S = {Si } of the real line R for a scalar quantize r
or Rk for a vector quantizer and a corresponding collection of
output labels C = {oi l so that the quantizer produced an outpu t
of ci if the input x E Si . In particular, the quantizer did no t
necessarily operate as a nearest neighbor or minimum distortion
with respect to squared error or Euclidean distance, more genera l
(non-polygonal) partition cells Si were permitted. Picinbon o
and Duvaut [8, 9] solved this general problem by designin g
the quantizer specifically to optimize the detector in the sens e
of minimizing the probability of error. This was accomplishe d
by optimizing the partition by maximizing its "deflection" — a
measure of how spread out the distributions of the quantizer
output distributions were, and then optimizing the quantizatio n
values for the partition . The partition optimization was show n
to be effectively a quantization of the likelihood ratio for the
given hypotheses and the observed input vector. This reduces to a
partition of the input space that is a refinement of the partition of
the space by a Bayes-optimal classifier . The formulation permits
a comparison with the performance of suboptimal quantizers
constrained to have rectangular cells and an analysis of the special
case of vectors with independent components .

The idea that a vector quantizer with a suitable encoder can be use d
in detection or classification problems has been much studied i n
recent years . Historically, the nearest neighbor classifiers popula r
in statistics [12, 13] use a minimum mean squared error vector
quantizer for classification, as does Kohonen's "learning vecto r
quantizer" [14, 15, 16] . These quantizers all use a minimu m
squared error encoder (MSE-encoder), but they are designed s o
as to minimize empirical classification error. The asymptotics of
such quantizer-based classifiers or partition-based classifiers ha s
been treated in great detail in Pollard [17] and Devroye et al . [18]
An obvious shortcoming of this approach is that the Voronoi cell s
of an MSE quantizer are polygonal, which means they are no t
always a good fit to the optimal cells from a detection standpoint .
If the quantizer rate is high, there will be many such cells and a
good approximation can be achieved, but in the nonasymptoti c
situation the fit can be quite poor.

Two situations of interest are not covered by the general solutio n
of Picinbono and Duvaut . The first is the case where the distribu-
tions are not known a priori and must be deduced from trainin g
or learning data. The second is the situation where detection or
classification is important, but it is not the only operation to b e
applied to the quantized data. An example of both situations i s
the detection of anomalies in a medical image . The multidimen-
sional distributions of groups of pixel intensities and the condi-
tional distributions of, say, microcalcifications are not known i n
advance, but there is a wealth of labeled examples available (e .g .,

http ://marathon .ccsee .usf.edufMammographylDatabase .htm) .
Furthermore, the quantization occurs in order to speed transmis-
sion and minimize storage requirements, but it is not only the
detection information that is important : a radiologist is likely to
inspect the reconstructed image for other things as well, so it i s
important that the reproduction look as good as possible for the
given bit rate . These considerations motivate the joint design of a
quantizer and classifier not only for the usual goal of quantizatio n
(minimum average squared error or similar distortion measure )
or of classification (minimum probability of error or, more gener -
ally, Bayes risk), but with the dual goal of minimizing both cos t
functions . The idea of joint classification and compression date s
back at least to Hilbert in 1977 [19] .

Our focus here is on a reformulation of the quantization problem
which includes the detection or classification aspect, but also re -
tains a squared error (or other) distortion measure . The basic idea
is simple : a distortion measure to measure general image qualit y
such as squared error is combined with a Bayes risk term to mea -
sure classification accuracy using the quantized output . Varyin g
the Lagrange multiplier provides a user to balance the relative
importance of the two tasks and the extreme cases yield the ob-
vious special cases : Bayes optimal classification with incidenta l
quantization or minimum distortion quantization with incidental
classification . An example shows that in some cases one can have
essentially optimal performance with respect to one cost functio n
(e .g ., Bayes risk) with only slightly suboptimal performance wit h
respect to the other (e .g ., mean squared error) . The code struc-
ture is called "Bayes-risk weighted vector quantization" or simpl y
"Bayes vector quantization" and many of the issues treated her e
are considered in more detail along with applications to image
segmentation in [20, 21, 22, 23, 24, 25, 26, 27] .

2. Bayes Vector
Quantization

A training sequence L = {(xn, yn), i = 1, 2, . . . , L} whic h
is a sample of a random process {(Xn , Yn), i = 1, 2, . . .} i s
observed, and the individual (Xn,Yn) are assumed to have a
common, but unknown, distribution Pxy on a generic (X, Y) E
A X x AY , where AX might be k-dimensional Euclidean space
and AY = {1, 2, . . . , M}. Typically Px is absolutely continuou s
and is described by some pdf fx on n k , and Py is discrete ,
described by some pmf py. We will later consider the case where
Pxy is not known and must be estimated based on L . The goal i s
to design a vector quantizer for data X based on L that provide s
a good tradeoff among average distortion, bit rate, and the Baye s
risk entailed by guessing Y from the encoded X .

A fixed rate Bayes vector quantizer (BVQ) consists of the follow-
ing components :
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Encoder/Partition : Ax —> Z, where Z = {0, 1 , 2, . . . , IZI —

if . Equivalently, the encoder is described by a partition S =
{Si ; i -4 Z} where â(x) = i if and only if x E Si .

Decoder/Reproduction Codebook : Z —# C, where C =
{ß(i) ; i E Z} where ß(i) is the label or reproduction codewor d
corresponding to index i (and the corresponding partition cell Si ) .

Classifier/Detector n : Z -4 Ay .

We assume a distortion measure d(x, x) = l lx — xl 12 =
k— 1

E lxi — x1 1 2 . The average distortion resulting for a given code
1= 0

is D(&, T3) = E[d(X, ß(â(X)))] . The classification cost is give n
by the Bayes risk :

M M

B(&,

	

Pr(lc(â(X)) = k and Y = j) ,

k=1 j= 1

where Cj,k is the cost of guessing Y = k based on the encode d
X when the true class is Y = j . For simplicity we assume that
Ci,k = 1 — S k,j = 0 for k = j and 1 otherwise . In this case
the average Bayes risk reduces to the probability of classificatio n
error.

A Lagrangian cost function is formed to incorporate the separate
costs of the two "decoders" : squared error for the reproduction
decoder and Bayes risk for the classifier. Given decoder d and
classifier lc, define the Lagrangian distortion between an input x
and an encoder output i a s

pa ,P (x, i) = d(x, )(i)) + a

	

Cj, , ç(oP(Y = j IX = x)
j=1

JÀ , p( , n) = E [pa,P(X , â(X))] =

	

+ AB(ix, lc )

There is anecdotal evidence to suggest that this joint approac h
may be useful even when the goal is purely classification or
compression . The intuition is that the second distortion measur e
helps avoid local minima and uses an auxiliary criterion to hel p
cluster the data.

3. Optimality properties
of Bayes VQ

Following the Lloyd clustering approach to quantizer design ,
we describe necessary conditions for overall optimality. These
properties yield a descent algorithm for designing the code [22] .
The components of the code are the encoder ä, the decoder ß, and
the classifier it . The goal is to minimize the Lagrangian distortio n

Ja,P(a, ß, n) = D ( 6z , ß) + AB(fi, lc) .

Optimal Decoder Given â, rc, the optimal decoder i s

ß(i) = argmin E[d(X, y)16r(X) = i] ,
ye A

the Lloyd centroids with respect to Px (conditional means for
MSE) .

Optimal Classifier Given ā , ß, the optimal classifier is

M

KBayes(2) = argmm{~ JCj kP(Y = jl ā(X) = i)} ,
k

	

j= 1

that is, the Bayes optimal classifier given the encoded input .

Optimal Encoder Given the i, /3, then the optimal encoder i s

6e(x) = argmin pa , p(x, i )

= argmin{d(x, ß(i)) + A

	

Cj,, (i) P(Y = j IX = x)} .
3 =

Iterating the three optimality properties provides a descent algo-
rithm based on learning set (a generalized Lloyd algorithm), an d
pairwise application yields a tree-structured VQ (TSVQ) . Unlik e
the usual Lloyd algorithm, however, the optimal encoder require s
the class posterior probabilities P(Y = j I X = x), which mus t
be estimated from L . Unlike the distribution Px used in the usual
Lloyd algorithm, these probabilities cannot be estimated simply
by the empirical distribution implied by the training set . The em -
pirical distribution defines these conditional probabilities in an
obvious fashion only for the x contained in the training set, yet
the designed code will have to be well defined for all future x .

4. BVQ and density
estimation

In the absense of a known joint distribution, the proposed strateg y
is to first design the estimator P = {PYIx (klx), k E 7-1 ; x E A }

based on labeled learning set L . Then design (&,d- using
px P and the implied encoder. The two-step procedure yields
a descent algorithm which should produce a good code if th e
density estimator is good . Bayes' rule implies that the distribution
estimation can be accomplished either by estimating pmfs o r
pdfs . In particular, if we estimate class conditional pdfs fk (x) _

fx)Y(x l k ) by /k(x), k E AY , then

PY)x( y l x) =	
fk(x)PY(k )	

.fm ( x ) PY (m )

where Py (k) = relative frequency of the class k in L . The density
estimate itself need not be sent to the decoder as it is not neede d
for decoding, only for encoding .
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Density estimation is a much studied topic in the statistical lit-
erature . See, e .g., Silverman [31] or Scott [29] . See also De-
vroye et al . [18] for theoretical aspects of vector quantization -
based ("partition-based") density estimators . Well known ap-
proaches also include kernel estimators, projection pursuit, and
tree-structured algorithms such as the CART or "classificatio n
and regression trees" algorithm [11] . If a lattice quantizer is used ,
these can also be viewed as a form of "histogram density estima -
tor," where the density in each Voronoi cell is the value of th e
histogram divided by the common cell volume .

A variety of algorithms for designing Bayes vector quantization
with posterior estimation have been developed and applied to arti -
ficial and real-world examples in the previously cited references .
Examples include the development of methods for nonparamet-
ric estimation of the posterior class probabilities required for the
Bayes VQ and studies of both tree-structured and full search Baye s
VQs [6] . Specific techniques for estimating posterior probabilities
include a tree-structured vector quantizer that is grown based on
a relative entropy splitting rule [20] and two estimators [24] tha t
are designed using the BFOS [30] variations on the CART algo-
rithm [11] . Specific examples include the combined compressio n
and classification for segmentation of computerized tomographi c
images, aerial images, mammograms, and documents [25, 21 ,
26, 24, 23] . A method of [31] for estimating class conditional
probabilities in simple two-dimensional quantization using a fas t
Fourier transform FFT was applied to BVQ in [27] . This simple
Gaussian example will be considered here as it illustrates several
properties of the method .

5 . Kohonen's example

Consider a random vector X = (Xo, X 1 ) described by a proba-
bility density function (pdf) [16]

fx0,xi ( xo, xi) = 2—I f (0o) , (

where f t x = N(0, a2 I) is the conditional pdf given that the
class label Y = k, where P(Y = 0) = P(Y = 1) = 1/2 and I
is the identity matrix . The Bayes rule for classification is simply
the maximum a posteriori (MAP) classifier :

f (

xo
),x~ (xo, x1 )

KMAP(xo,x1) = max-1
(o

)
	 (1)	

k

	

fxa,xi (xo, xi) + fxo,xl (x o, x l )

which can be explicitly solved for specific distributions and th e
resulting minimum Bayes risk computed. No VQ based classifie r
can provide lower Bayes risk . The optimal encoder needs to com -
pute P(Y = 1 X = x ) = fxly(x l l )pl/E j fxly(xlj)p, =
fx l y(x1l)/

	

fx ly(x, since the priors are equal, where

fxiy(xll) =
e zoo 1142 / 27ro-? . Because equal costs are as -

sumed, Col = C10 = 1, the optimal encoder, a*(x), then be -
come s

a*(x) =min -1 xß(z) 11 2 + A

1({/o=
1})e —811 x 1i2
	
+ 1({k(z) = 0}) 2

ē sil~il~ + 2

	

~ ~
The Bayes decision rule is a circle about the origin of radius 1 .923 ,
yielding an error probability of 0 .264 .

The Voronoi diagram for the parametric case where the the pdf' s
are actually known is shown in figure 1 . Here the inner cell s
coincide exactly with the actual Bayes region . The MSE Voronoi
regions resulting from the same codebook is also shown . Here
the polygonal regions do not well approximate the circle and th e
Bayes risk increases .

Figure 1. — Parametric BVQ Voronoi diagram (left) and MSE encoded
Voronoi diagram
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An example of a trained VQ (using an FFT-based density estima -
tor) based on five trials with a training set of 10,000 vectors and a
test set of the same time is shown in Figure 2. For comparison th e
following table shows the average squared error of the parametri c
and trained BVQ schemes along with several other methods . The
parametric BVQ is equivalent for classification to Picinbono and
Duvaut's scheme .

We also observed that the BVQs with the inverse halftonin g
estimator and with the CART-based estimator performed bette r
with lower values of A . For example, with A = 10, the (MSE,P e )
results for the two BVQs were (0 .633, 0 .266) and (0 .647, 0 .273) ,
respectively.

In general, we note that the average classifier performance fo r
the density estimating BVQ is very close to that achieved b y
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Figure 2. – (left) density estimating BVQ (right) using MSE encoder

the parametric BVQ where the density is known, and both ar e
extremely close to the optimal classifier performance based on
the original, unquantized, inputs, the performance that would b e
achieved by Picinbono and Duvaut's quantizer.

Tableau 1 . – MSE and Pe for Kohonen's Example .

BVQ : Inverse halftone estimator 0 .655 0 .26 9
BVQ : CART-based estimator 0,653 0 .27 4
Kohonen LVQ 0.725 0.27 9
Parametric BVQ 0.620 0.26 4
MSE Quantizer/Classifier Cascade 0 .598 0 .29 5
BVQ : TSVQ pmf estimator 0 .630 0.270
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