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Mazzeo et al. describe methods of patterning metallized paper to create touch pads of arrayed 

buttons that are sensitive to contact with both bare and gloved fingers.  The paper-based keypad 

shown detects the change in capacitance associated with the touch of a finger to one of its 

buttons.  Mounted to an alarmed cardboard box, the keypad requires the appropriate sequence of 

touches to disarm the system.   
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This paper describes low-cost, thin, and pliable touch pads constructed from a 

commercially available, metallized paper commonly used as packaging material for beverages 

and book covers.  The individual keys in the touch pads detect changes in capacitance or contact 

with fingers by using the effective capacitance of the human body and the electrical impedance 

across the tip of a finger.  To create the individual keys, a laser cutter ablates lines through the 

film of evaporated aluminum on the metallized paper to pattern distinct, conductive regions.  This 

work includes the experimental characterization of two types of capacitive buttons and illustrates 

their use with applications in a keypad with 10 individually addressable keys, a keypad that 

conforms to a cube, and a keypad on an alarmed cardboard box.  With their easily arrayed keys, 

environmentally benign material, and low cost, the touch pads have the potential to contribute to 

future developments in disposable, flexible electronics, active, “smart” packaging, user interfaces 

for biomedical instrumentation, biomedical devices for the developing world, applications for 

monitoring animal and plant health, food and water quality, and disposable games (e.g., providers 

of content for consumer products). 

There is no simple method of integrating buttons with structures on single-use or throw-

away devices.  Current commercial buttons are not thin enough, inexpensive enough, or easy 

enough to array seamlessly with paper-based products for disposable applications.  The touch 

pads in this work are thin (~60 µm in some cases), simple to array, fabricated by etching patterns 

into metallized paper, low-cost (< $0.25 m-2 for the thin grade of metallized paper we use in this 

work), and lightweight (100s of g m-2).  The individual keys measure changes in capacitance 

when touched by a user, and the buttons require no physical displacement of conductive 

elements.  Even though the individual keys on the touch pads detect changes in capacitance, the 

paper-based keypads are still functional when touched by fingers in nitrile gloves. 



Submitted to  

 3 

Developments in paper-based electronics include ring oscillators with organic electronics[1], 

transistors[2-4], methods for patterning conductive traces[5-7], speakers[8], super capacitors[9], batteries[10], 

MEMS [11], and solar cells[12].  Each of these developments focuses on a single technological 

advance that would enable new types of consumer products.  Many types of new consumer 

products will require some form of user interface or input.  In order to gather key strokes from 

end users with polymer-based or textile-based flexible electronics, it is possible to use changes in 

resistance[13] or capacitance[14-17].  Obviously, technology being developed commercially –

Samsung, 3M, Displax, Elo TouchSystems, and other companies are pursuing technology for 

transparent touch-based systems – for use with glass-based displays on mobile phones or 

computer screens might also be applicable to future developments in one-time use, paper-based 

electronics.  Conventional capacitive touch screens detect changes in capacitance through a piece 

of glass with a thickness much greater than that of the polymeric coatings on top of the metallized 

paper.  Thus, instead of detecting changes in capacitance of 10s or 100s of pF, they use optimized 

electronics to detect changes closer to 1 pF.  Besides a patent for capacitive buttons on posters[18], 

there are no descriptions for simple methods of receiving input/key strokes on paper-based 

substrates. 

Metallized paper is a commodity.  It is easy to ablate or cut the metal film with a laser or 

razor blade, and it is both durable (i.e., documents can last for years) and disposable.  Touch pads 

made from metallized paper may fill a niche between displays with touch screens and 

conventional, commercial keypads.  The metallized paper (A-238 and A-550 from Vacumet 

Corporation) consists of cellulose, polymeric coatings, and evaporated aluminum (see SI Figure 

1).  The cellulose serves primarily as structural support for a ~10-nm thick, conductive layer of 

evaporated aluminum.  The metallized layer without structural support would not have sufficient 

strength for manual handling or use.  The polymer-based portions of the paper assist in adhering 
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the metallized layer to the cellulose and protect the thin, metallized layer from scraping or other 

environmental damage.  The uncoated side of the metallized paper has exposed cellulose-based 

paper, which can absorb moisture, while the polymeric coating on the opposite side of the paper 

blocks moisture.  Nevertheless, using the laser cutter to ablate through the polymeric coating can 

make the metallized paper more susceptible to moisture on the coated side.  Experiments have 

also shown that a paper-based button exposed to moisture can exhibit a change in effective 

capacitance (see Supporting Information). 

A button or key on a touch pad is a physical device that signals a single, binary change in 

state when touched by a user, and returns to its original state when no longer touched.  To array 

buttons on metallized paper, we used a laser cutter (VersaLaser from Universal Laser Systems) to 

ablate lines through the aluminized layer of the paper to create discrete, conductive regions.  

These conductive regions served as both electrodes for the buttons and conducting traces that 

lead to external electronics. 

Each button on the touch pads described in this work is a capacitor.  The individual 

capacitors, or buttons, have a capacitance – the ratio of storable charge to the applied electric 

potential – that changes when touched with a finger.  Between parallel plates, capacitance (C) 

scales with the inverse of the gap (Equation 1), where e  is the dielectric constant of the material 

separating the plates, oe  is the permittivity of free space (8.854 x 10-12 F/m), A is the cross-

sectional area of the plates, and d is the distance between plates.   

dAC oee=         (1) 

In the case of capacitive coupling of a finger to a parallel-plate capacitor, we consider the finger 

to contribute electrical impedance (Zb) (see Figure 1 A-D).  This electrical impedance acts as a  
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“body capacitor” with an approximate capacitance of 100 pF and an approximate resistance of 

1.5 kΩ[19].  Because of the polymer coated on the top surface of the metallized paper, the finger 

does not make direct, conductive contact with the top plate of the capacitor.  As the finger 

approaches the polymeric coating above the metallized layer, the capacitance between the finger 

and the top plate of the button (Cg) increases.  When the finger makes contact with the button, the 

body capacitor then makes a significant, detectable contribution to increasing the effective 

capacitance measured at the button. 

Buttons using parallel-plate capacitors require two sheets of metallized paper.  The 

bottom sheet (not touched with a finger) serves as a grounded electrode, while the top sheet 

(touched with a finger) carries an applied potential and is electrically active. To create buttons on 

a single sheet of metallized paper, we patterned active and grounded electrodes adjacent to each 

other (Figure 1 F).  A finger can bridge between the active electrode and grounded electrode on a 

single side of metallized paper (Figure 1 G).  For a single button with a single sheet of metallized  
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Figure 1 
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Figure 1: Schematic layouts for two types (A-D and E-H) of capacitive keys made with 

metallized paper.  (A) Components for a two-layer key based on capacitive coupling between a 

finger and an active electrode.  (B)  Assembled capacitor from components shown in A.  (C)  A 

finger serves as an external, electrical coupling to the active electrode.  (D) Description of the 

electrical circuits without (left) and with (right) the coupling of the finger to the active electrode.  

R is the value of the resistor placed in series with an untouched button with effective capacitance 

of C1.  The source of electric potential (Vs) applies a stepped, repeating pattern to the circuit. (E) 

Metallized paper used for single-layer touch pads.  (F) Etched or ablated lines through the 

conductive portion of the metallized paper designate regions or traces of conductance.  (G) A 

finger bridges the gap between an active electrode and a grounded electrode to cause a 

measurable change in capacitance.  (H) Description of the electrical circuits without (left) and 

with (right) the coupling of the finger to the electrodes.   
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paper, assigning either of the electrodes to ground would not make a difference provided the 

areas of the electrodes are comparable.  Nevertheless, a single sheet of multiple buttons benefits 

from having a single grounded electrode that surrounds all of the buttons without the need for 

individually grounded traces running to each button. 

The change in electrical impedance with a finger bridging between the grounded and 

active electrodes is a result of the skin acting as a dielectric material and the ionic solution within 

or on the surface of the finger acting as a conductive material.  The dominant electrical path from 

one metallized electrode to an adjacent electrode goes from a metallized electrode, through the 

insulating coating on the metallized paper, through or along the surface of the finger, through the 

insulating coating above the adjacent electrode, to the metallized layer on the adjacent electrode. 

The electrical impedance through or along the surface of the human finger (Zf) acts in parallel 

with the impedance (Zb) through the finger and the body of the person.  Given our objective and 

microprocessor-based method of detecting on/off touches, we model the variable impedance of 

each key as having an effective capacitance or time constant associated with an “RC-circuit” (see 

SI Figure 3). 

To aid our understanding of the interaction of a finger with our capacitive buttons, we 

have detected touches successfully with gloved human fingers and non-human finger-portions of 

nitrile gloves filled with aqueous solutions.  Human fingers in gloves (SterlingTM nitrile powder-

free examination gloves from Kimberly-Clark) caused smaller changes in capacitance than those 

observed with bare human fingers, but the changes in capacitance with human fingers in gloves 

were still measurable.  The layer of rubber between the finger and the conductive layer of the 

metallized paper increased the distance between the finger and the electrodes (relative to a bare 

finger touching a button) and thus, caused a reduction in the overall measured capacitance.  The 

finger-portion of a glove filled with an aqueous solution (deionized water in one case and 
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~150 mM NaCl in another) also registered responses with the system shown in SI Video 1.  For 

both cases (glove filled with deionized water and glove filled salt water), the apparent change in 

capacitance was less than that with a gloved finger.  The reduced change in capacitance may have 

been from the effective thickness of the glove being greater than that of human skin, reduced 

conductivity of the aqueous solution, or increased resistance in the path to electrical ground 

through the liquid-filled portion of the glove.  In contrast to a liquid-filled glove, an air-filled 

glove registered almost no observable change in capacitance when pressed against a key (i.e., 

capacitive buttons would rarely trigger a response by lighting an LED).  We attribute these 

spurious readings to the accumulation of surface charge on the outer surface of the glove. 

Vacumet Corporation evaporates approximately 0.05 g/m2 of aluminum onto papers of 

different thicknesses.  Assuming a density of 2700 kg/m3 for aluminum, the thickness of the layer 

of evaporated aluminum is less than 20 nm.  The two grades of metallized paper used in this work 

have specified average thicknesses and ranges of 56±6 µm and 137±5 µm.  These specified 

thicknesses include paper, coatings of polymer, and evaporated aluminum (see SI Figure 1). By 

measuring the electrical resistance of different cut sheets of metallized paper, we estimate the 

average thickness and standard deviation of the evaporated aluminum to be 13±2 nm (see SI 

Figure 2). 

Figure 1 A-D show the configuration for keys based on coupling between a finger and a 

parallel-plate capacitor with two layers of metallized paper.  To fabricate two-layered buttons, we 

etched the traces and cut out the overall dimensions of the sheets of metallized paper using a laser 

cutter.  Once cut, we used double-sided tape (Indoor Carpet Tape from 3M) to hold the pieces of 

metallized paper together.  We brushed on silver conductive adhesive (Silver Conductive 

Adhesive 503 from Electron Microscopy Sciences) to connect traces or tabs on the metallized 

paper electrically with external electronics through conductive pads or wired leads 



Submitted to  

 10 

To measure the changing effective capacitance of the buttons and demonstrate interactive 

applications using paper-based touch pads, we used the Arduino platform (UNO and MEGA 

2560).  Arduino is a microprocessor-based system with open-source hardware and software for 

signal processing and computation (see http://www.arduino.cc/ ).  The Arduino platform has also 

demonstrated its utility for applications with flexible or wearable electronics[20].  The Arduino is 

capable of applying a step input to a resistor and capacitor in series and measuring the time 

required for the potential on the capacitor to reach 2 V (see an example at 

http://arduino.cc/it/Tutorial/CapacitanceMeter and the Supporting Information for code used in SI 

Video 1).  Using this measured time, it is possible to estimate an “RC” time constant and 

calculate an effective capacitance for a circuit with a known resistance (see SI Figure 3).  The 

typical resistance for the resistor placed in series with a button was 100 kΩ or 1 MΩ.  To buffer 

the potential across the capacitor against the impedance of the inputs leading to the Arduino, we 

used an operational amplifier (LM324) with unity gain.  We also used a demultiplexing chip (TI 

CD4067BE 1:16) addressed with four binary outputs to measure the responses of 10 to 48 

individual buttons with only one to three electrical inputs.  The Arduino-based system and 

accompanying electronics required about 0.4 W, even though an estimate for the power required 

for an individual button of 100 pF is 250 nW (see Supporting Information for both estimates). 

At this point, the electronics for detecting changes in capacitance are neither mechanically 

compliant nor inexpensive enough to be considered disposable after a single use.  The packaged 

electronics might plausibly be multiple-use with only the paper-based system being disposable.  

It is also conceivable that the electronics could be made inexpensive enough through mass-

production and conventional techniques for fabricating semiconductor-based circuits (e.g., 

disposable RFID tags and cell phones are representative efforts to produce low-cost, complex 

electronic systems).  To make the required circuits flexible, DuPont™ Pyralux® or the metallized 
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paper itself might serve as a flexible substrate.  Nevertheless, we envision applications, which 

might use reusable electronics for interfacing the disposable touch pads with standard protocols 

for communication with personal computers or commercial electronic databases (e.g., a small box 

with reusable electronics for sensing and wireless transfer of data might ship multiple times with 

distinct disposable touch pads and packaging). 

 To test our touch pads, we constructed single buttons (Figure 2).  One button consisted of 

parallel plates (Figure 2 A and B), while the other button consisted of a single layer of metallized 

paper with etched traces to form inter-digitated electrodes, or macroscopic buttons that were easy 

to touch (Figure 2 D and E).  We mounted the buttons to a manila folder with double-sided tape, 

connected the electrical leads of the buttons to an Arduino-based system, and used the serial 

output from the Arduino to log data on a laptop computer.  Figure 2 C and F show the measured 

effective capacitances in a box plot – based on the time required for the potential across the 

capacitive button in series with a resistor of 1.01 MΩ to reach 2 V with a step input of 5 V – 

measured over five seconds of sampling for seven untouched buttons and seven touched buttons 

with an index finger from a single user.  The touch button with a single sheet of metallized paper 

was more sensitive than the touch button with two sheets (see Supporting Information for more 

details).  Touch buttons in a single sheet are also easier to construct than touch buttons in a two-

layer configuration (i.e., no need to align and bond two layers of metallized paper to each other). 

To demonstrate the functionality of the touch button in Figure 2 D, we pressed the button 

shown over 2000 times, and it continued to function reproducibly without exhibiting drift (i.e., it 

was not necessary to adjust the threshold of detection.  That said, we have implemented a scheme 

for other touch pads with moving averages for the thresholds on the Arduino to ensure proper  



Submitted to  

 12 

Figure 2 
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Figure 2: Capacitive buttons fabricated with metallized paper. (A) The top piece was Vacumet 

A-238 (thickness of 56 µm) with etched lines outlining the touched, active region, and the bottom 

piece (grey) was Vacumet A-550 (thickness of 137 µm) and served as an electrical ground.  

Manually cut pieces of double-sided tape bound the two pieces of metallized paper together.  (B) 

Photo of the button shown in A.  (C) Box plots for the effective capacitance of the button shown 

in B for two sets (touched with a bare finger and untouched) of seven measurements, each lasting 

five seconds and having more than 660 sampled points (n>660). The whiskers extend 1.5 X the 

interquartile length dictated by the distance between the top (75th percentile) and bottom (25th 

percentile) of the boxes.  The horizontal line in the box shows the median, and the crosses 

represent outliers.  (D) A single piece of Vacumet A-238 etched with inter-digitated fingers 

forming a button.  The greyed region served as electrical ground.  (E) Photo of the tested button 

shown in D.  (F) Box plot for the effective capacitance of the button shown in E for two sets 

(touched and untouched) of seven measurements, each lasting five seconds and having more than 

490 points (n>490).  The attributes of the box plot are the same as those in C, except the median 

is at the top of the box for the untouched cases.  
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responses over extended periods of time (see http://www.arduino.cc/en/Tutorial/Smoothing and 

included code for SI Video 1 in the Supporting Information).  We also measured the response of 

the button to hundreds of presses with a bare finger and a gloved finger (nitrile-based glove from 

Kimberly-Clark).  Figure 3 shows some of the measurements taken with the Arduino-based 

system after the button had already received more than 1000 presses.  The red crosses shown in 

Figure 3 A and B indicate when the Arduino-based system detected a change in the state of the 

button relative to a fixed threshold of an effective capacitance of 78 pF.  Figure 3 C and D show 

the distribution of peak values in measured capacitance during each press.  The touches with a 

finger in a gloved hand elicited a much smaller change in capacitance than that observed with a 

bare finger, and future improvements in electronics might improve sensitivity to gloved fingers.   

To make a keypad with ten buttons (Figure 4), we ablated lines in a piece of Vacumet A-

238 (thickness of 60 µm) to form conductive traces and inter-digitated regions for ten separate 

keys.  After ablating the lines in the metallized paper, we attached the keypad to a manila folder 

with double-sided tape.  To connect the keypad to external electronics, we attached 30-gauge 

wire to each of the contact pads (ten contact pads for the keys and one contact pad for the ground) 

with conductive paste.  To address the separate keys, we used an input and five outputs (one 

output supplied a stepped signal to the RC circuits and the other four addressed a demultiplexer) 

on the Arduino.  The stepped signal from the Arduino went through the same resistor for all ten 

keys but went through a separate capacitive region as dictated by a 1:16 demultiplexer (TI 

CD4067BE).  Figure 4 C shows measurements taken when a gloved finger touched each key 

individually, touched keys “0” and “1” simultaneously, and touched keys “1” and “2” 

simultaneously.  With another 10-button keypad mounted to a piece of plastic (see SI Video 1), 

more than 25 different people were all able to trigger the appropriate LEDs to respond with the 

touch of their bare fingers. 
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Figure 3 

 



Submitted to  

 16 

Figure 3: Measured changes in capacitance for the capacitive button shown in Figure 2 D after 

the button had already experienced more than 1000 touches.  (A) Measurements taken with a bare 

finger touching the button.  The ticks show when the electronic system registered a capacitance 

greater than or equal to the threshold of 78 pF.  The red baseline shows the threshold set at 78 pF.  

(B) Measurements taken with a gloved finger and the same threshold (red baseline) shown in A.  

(C) The distribution (general extreme value) of peak capacitances measured during 335 presses of 

the button with a bare finger.  The data had a minimum measured peak at 490 pF.  (D) The 

distribution (normal) of peak capacitances measured during 504 presses of the button with a 

gloved finger.  The mean was 120±7 pF (± 1 standard deviation) for 504 presses, and the 

minimum peak measured was at 93 pF. 
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Figure 4 
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Figure 4: Touch pad with 10 keys that produced measurable changes in capacitance when 

touched with a bare or gloved finger.  (A) The single layer (105 mm x 116 mm) layer comprises 

discrete keys (17 mm x 19 mm) with metallized traces leading to contact pads for connection to 

the Arduino-based system.  (B) Photo of the completed keypad being touched with two gloved 

fingers on key “2” and key “8”.  (C) Measured responses at each of the 10 buttons to touches 

with a gloved finger.  The change in capacitance was greater with a bare finger than that 

measured with a gloved finger.  
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To demonstrate the fabrication of a three-dimensional keypad from a two-dimensional 

patterned piece of metallized paper, we ablated lines in a piece of Vacumet A-550 (thickness of 

140 µm) and created traces for six individual buttons as shown in Figure 5 A.  Then, we gently 

folded (sharp creases could cause a break in electrical conductivity) the two-dimensional pattern 

around a cube to form the three-dimensional keypad shown in Figure 5 B and C. Using the 

Arduino-based electronics and the same demultiplexer used for the keypad with 10 buttons, the 

three-dimensional keypad detected touches with either bare or gloved fingers and lit 

corresponding LEDs (see SI Video 2). 

The paper-based touch pads described in this work may be useful as active packaging to 

prevent theft of the contents of containers.  To demonstrate a possible implementation (see Figure 

6 and SI Video 3), we attached a piece of metallized paper (thickness of 60 µm) with a 10-button 

keypad and two LEDs to a cardboard box with double-sided tape (Figure 6 A and B).  The 

keypad served as the user interface to arm or disarm an alarm “built” into the box. 

When armed, the LEDs were off.  Opening the top lids on the box caused a decrease in 

the capacitance between the two pieces of metallized paper taped to the lids (capacitive switch).  

This decrease in capacitance, unlike the increases experienced by the buttons when touched with 

a finger, triggered the alarm, sounded a buzzer, and lit up both LEDs on the metallized paper.  

For purposes of demonstration, closing the lids caused the alarm to stop sounding.   

To disarm the alarm, the user entered a numeric code by touching the keys on the keypad.  With 

every press of one of the keys, the blue LED would flash to provide visual feedback to the user.  

To demonstrate the functionality of all the keys in SI Video 3, we set the password to 

“0,1,2,3,4,5,6,7,8,9”.  When disarmed, the electronics lit the green LED, and opening the box did 

not trigger the alarm.  To arm the alarm from the disarmed state, a user hit any button on the 

keypad, and the LEDs returned to an unlit state.  
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Figure 5 

 

Figure 5: Paper-based touch pad fixed to a cube. (A) Layout for six buttons—one button for each 

face.  Each edge of the cube has a length of 38 mm.  (B) Image and associated output for a bare 



Submitted to  

 21 

finger touching the button on face number “2”.  (C) Image and associated output for a gloved 

thumb and index finger making simultaneous contact with buttons number “5 and “2”.   

  



Submitted to  

 22 

Figure 6 
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Figure 6: An alarmed cardboard box with a paper-based touch pad.  (A) On an outside face of 

the box, the paper-based touch pad had accompanying LEDs to provide feedback to the user. 

Both LEDs turned on when the alarm went off.  In the upper left region, there was a capacitive 

switch to detect whether or not the box was open.  (B) The keypad and accompanying LEDs.  

The keypad had to receive the appropriate code to disable the alarm.  The blue LED flashed 

whenever a button was pushed.  (C) Close-up photo of the capacitive switch.  (D) All the required 

electronics inside the box for operating the alarm.  The buzzer sounded when the alarm went off. 
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Capacitive sensing and metallized paper provide a low-cost solution for integrating 

electronic interfaces with paper-based products.  The paper-based keypads in this work are 

disposable, are as a thin as 60 µm, are simple to etch in a single layer of metallized paper, and 

can consist of arrays of button.  The keypads respond to both bare and gloved fingers, but 

performance is more reliable with bare fingers.  Paper that serves as a structural support for very 

thin layers of metal (approximate thickness of 10 nm) has the potential to provide solutions for 

future developments in sensors and flexible electronics. 

Acknowledgements 

This work was supported by Defense Advanced Research Projects Agency (DARPA) N/MEMS 

S&T Fundamentals Program under grant no. N66001-1-4003 issued by the Space and Naval 

Warfare Systems Center Pacific (SPAWAR) to the Micro/nano Fluidics Fundamentals Focus 

(MF3) Center, the Gates Foundation, and DARPA Transient Electronics grant no. W911NF-11-

1-0254.  In addition, we would like to thank Steven A. Morin, Sam Liss, Adam A. Stokes, 

Jabulani R. Barber, Robert F. Shepherd, and Courtney Hilliard for helpful discussions. 

 
 
References  
[1] F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Appl. Phys. Lett. 
2004, 84, 2673. 
[2] R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. 
Ahnood, I. Ferreira, E. Fortunato, Adv. Mater. 2011, 23, 4491. 
[3] S. Yun, S. D. Jang, G. Y. Yun, J. H. Kim, J. Kim, Appl. Phys. Lett. 2009, 95. 
[4] R. Martins, P. Barquinha, L. Pereira, N. Correia, G. Goncalves, I. Ferreira, E. Fortunato, 
Appl. Phys. Lett. 2008, 93. 
[5] A. Russo, B. Y. Ahn, J. J. Adams, E. B. Duoss, J. T. Bernhard, J. A. Lewis, Adv. Mater. 
2011, 23, 3426. 
[6] A. C. Siegel, S. T. Phillips, M. D. Dickey, N. S. Lu, Z. G. Suo, G. M. Whitesides, Adv. 
Funct. Mater. 2010, 20, 28. 



Submitted to  

 25 

[7] D.-H. Kim, Y.-S. Kim, J. Wu, Z. Liu, J. Song, H.-S. Kim, Y. Y. Huang, K.-C. Hwang, J. 
A. Rogers, Adv. Mater. 2009, 21, 3703. 
[8] H. Tian, T. L. Ren, D. Xie, Y. F. Wang, C. J. Zhou, T. T. Feng, D. Fu, Y. Yang, P. G. 
Peng, L. G. Wang, L. T. Liu, ACS Nano 2011, 5, 4878. 
[9] Z. Weng, Y. Su, D. W. Wang, F. Li, J. H. Du, H. M. Cheng, Adv. Energy Mater. 2011, 1, 
917. 
[10] L. B. Hu, H. Wu, F. La Mantia, Y. A. Yang, Y. Cui, ACS Nano 2010, 4, 5843. 
[11] X. Liu, M. Mwangi, X. Li, M. O'Brien, G. M. Whitesides, Lab on a Chip 2011, 11, 2189. 
[12] M. C. Barr, J. A. Rowehl, R. R. Lunt, J. J. Xu, A. N. Wang, C. M. Boyce, S. G. Im, V. 
Bulovic, K. K. Gleason, Adv. Mater. 2011, 23. 
[13] R. K. Kramer, C. Majidi, R. J. Wood, "Wearable tactile keypad with stretchable artificial 
skin", presented at 2011 IEEE International Conference on Robotics and Automation (ICRA), 
May, 2011. 
[14] D. Cotton, I. M. Graz, S. P. Lacour, Sensors Journal, IEEE 2009, 9, 2008. 
[15] A. R. Deangelis, D. B. Wilson, B. A. Mazzeo, US Patent 7,578,195, 2009. 
[16] A. R. Deangelis, B. D. Wilson, B. A. Mazzeo, US Patent 7,395,717, 2008. 
[17] A. R. Deangelis, B. D. Wilson, B. A. Mazzeo, US Patent 7,301,351, 2007. 
[18] R. Hagglund, T. Unander, A. From, P. Wagberg, US Patent App. 20,070/018,998, 2003. 
[19] ESD Fundamentals, ESD Association, Rome, NY 2010. 
[20] L. Buechley, M. Eisenberg, Pervasive Computing, IEEE 2008, 7, 12. 
  



Submitted to  

 26 

Paper-based, Capacitive Touch Pads 

Aaron D. Mazzeo1, Will B. Kalb1, Lawrence Chan1, Matthew G. Killian1,  

Jean-Francis Bloch2, Brian A. Mazzeo3, and George M. Whitesides1,4,* 

1Department of Chemistry and Chemical Biology, Harvard University 

2Institut National Polytechnique de Grenoble 

3Department of Electrical and Computer Engineering, Brigham Young University 

4Wyss Institute for Biologically Inspired Engineering at Harvard University 

*corresponding author: gwhitesides@gmwgroup.harvard.edu 

  



Submitted to  

 27 

Supporting Information:  

Characterization of Metallized Paper 

For the metallized/aluminized paper used in this work, we measured resistances along 

pieces with a length of 50 mm and widths ranging from 2 to 25 mm.  For the widest set (width of 

25 mm) of 7 separate pieces, we measured a resistance of 5±0.6 Ω (mean ± 1 standard deviation).  

For the thinnest set of 7 separate pieces, we measured a resistance of 58±7 Ω (see SI Figure 2).  

Using a resistivity of 26 nΩ•m for aluminum, the average calculated thickness across all 49 

samples was 13 ±2 nm. 

Etching and Cutting Components 

The process of assembling a touch pad consisted of cutting the individual layers from 

metallized paper, double-sided tape, and if desired, additional paper for structural support.  For 

this work, we used a VLS3.50 laser cutter (50-watt laser) from Universal Laser Systems with the 

standard 2.0-in. lens. According to its user guide, the laser cutter has x-y resolution up to 1000 

dpi (25 µm), but the spot size of the beam used to ablate material is much larger and depends on 

the selected lens (three available options).  The 2.0-in. lens we typically use has a nominal spot 

size of 1.8 mm, but another lens can have a spot size of approximately 0.4 mm.  For the initial 

prototyping of buttons shown in this work, the resolution of the laser cutter is more than 

sufficient, and we have not attempted to minimize the size of the buttons themselves.   

To array buttons on a single sheet of metallized paper, the laser cutter ablated lines in the 

thicker Vacumet A-550 metallized paper without cutting completely through the paper to form 

conductive traces or separate regions of conductivity on the paper.  With the thin metallized 

paper (Vacumet A-238) and non-uniformities in the cutting power of the laser cutter, it was 

difficult to avoid cutting through the entire piece of paper in certain regions while still removing 

the aluminum.  In some cases, ablation at low power left perforated lines through the paper.   
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SI Figure 1 

 

SI Figure 1: Morphology of metallized paper from Vacumet Corporation. (A) The metallized 

paper consists of cellulose with 3 polymeric coatings and 1 layer of evaporated aluminum.  (B) 

SEM image showing the entire thickness of a cross-sectional slice of metallized paper (Vacumet 

A-550).  (C) SEM image showing a cross-sectional portion of Vacumet A-550.  The layer of 

evaporated aluminum (faint line) is much thinner than the polymeric layers (see SI Figure 2).



Submitted to  

 29 

SI Figure 2 

 

SI Figure 2: Measurements of the resistances and estimated thicknesses of cut samples of 

metallized paper.  (A) Image of one set of samples with a length of 50 mm and varied widths of 

2, 5, 8, 10, 15, 20, and 25 mm.  The spots at each end of the samples are regions of silver-based 

conductive paste. (B) Averaged resistances (BK Precision 5370) of seven different samples for 

each specified width with the error bars showing ±1 standard deviation.  (C) Estimated 

thicknesses for the evaporated aluminum, where the thickness is ( )wRLh r= , ρ is the resistivity 

of the aluminum (26 nΩ•m), L is the length of the samples (50 mm), w is the width of the 

samples, and R is the measured resistance.  The number of samples is 7 (n=7) at each point 

shown on the graph.  The averaged, estimated thickness of all the samples (n=49) is 13 nm with a 

standard deviation of 2 nm.  
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Cutting through the thickness of the thin paper was not usually an issue for fabricating buttons 

when using double-sided tape to adhere the patterned metallized paper to another surface. 

We cut through Vacumet A-238 (aluminized paper with a thickness of 56 µm) with the 

settings of 12% power, 80% speed, and 500 pulses per inch.  To ablate through the conductive 

layer without cutting out parts completely, we used 3.5%, 80% speed, and 500 pulses per inch on 

the laser cutter or 3% power, 70% speed, and 500 pulses per inch.  To cut through the 

Vacumet A-550 (thickness of 136 µm), we used settings of 15% power, 80% speed, and 500 

pulses per inch.  We found settings of 6% power, 80% speed, and 500 pulses per inch adequate 

for cutting traces in the paper without cutting completely through the paper.   

Interfacing to external electronics 

We brushed on conductive silver paste (Silver Conductive Adhesive 503 from Electron 

Microscopy Sciences) to connect traces or tabs on the metallized paper electrically with external 

electronics through conductive pads or wired leads.  Initially, we scraped away or dissolved a 

portion of the polymeric coating above the evaporated aluminum with a razor blade or 2 µL of 

acetone.  Nevertheless, we found that the solvent in the conductive adhesive dissolved through 

the insulating coating sufficiently to form an electrically conductive bond. 

Thresholds for registering touch 

The Arduino-based systems calculated delays or elapsed times and compared them with 

temporal thresholds to determine changes in effective capacitance.  To measure capacitance in 

terms of standard units (Farads), we estimated an effective time constant tr*, which corresponded 

to the time required for the voltage to reach 2 V out of the applied 5 V.  For an ideal RC circuit 

(SI Figure 3A), tr*=ln(5/3)RC or 0.51RC, where R and C represent the resistance and capacitance, 

respectively.  Notably, the measured potential with an oscilloscope – not used to acquire any data 

shown in the main text – were not ideal (SI Figures 3B and C) possibly because  
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SI Figure 3 

 
SI Figure 3: (A) The capacitance of a button (type shown in Figure 2E) increases when touched.  

To measure the change in capacitance of a button, we used a resistor in series with the capacitive 

button.  (B) While applying a step in potential across the resistor-capacitor (RC) circuit, we 

observed the potential across the capacitive button increase with a time constant equivalent to the 

product of the resistance and capacitance in the circuit (data shown is from the button in Figure 2 

E).  The required amount of time for the capacitor to charge to 2 V (threshold for Arduino’s input 

to go from 0 to 1) required time tr*.  For the shown measurement of the untouched button, 

tr* =13 µs.  (C) When touched, the capacitance across the button increased and tr* =1300 µs.  
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of the complex nature of the impedance of the contact between the finger and the button, the 

impedance through or along the finger itself, or the finger-body-ground impedance.  For Figure 4 

C, the thresholds were 95 µs for key 0, 97 µs for key 1, 95 µs for key 2, 102 µs for key 3, 106 µs 

for key 4, 100 µs for key 6, 100 µs for key 6, 106 µs for key 7, 106 µs for key 8, and 100 µs for 

key 9.  In other versions of the programmed Arduino (e.g., Figure 4 B, Figure 5, and Figure 6), 

we implemented an averaging routine (see http://www.arduino.cc/en/Tutorial/Smoothing) to 

adjust thresholds in real-time based on measurements of effective capacitance of the untouched 

keys. 

Measurements on single buttons 

We constructed the buttons shown in Figure 2; one button consisted of parallel plates 

(Figure 2 A and B), while the other button consisted of a single layer of metallized paper with 

etched traces (Figure 2 D and E).  The material for the top layer of Figure 2 B and the entire 

device shown in Figure 2 E was the thin metallized paper (Vacumet A-238), while the bottom 

layer of Figure 2 B was the thicker metallized paper (Vacumet A-550).  To test the devices, we 

mounted them to a manila folder with double-sided tape.  

To measure the changing capacitance of the devices shown in Figure 2 C and F, we 

placed a resistor of 1.01 MΩ (measured with R.S.R 308B Multimeter at 21◦C, 50% RH) in series 

with the capacitive button.  Using Arduino, it was possible to calculate the required amounts of 

time for the potential across the capacitor to reach 2 V.  Each point in the graphs is the mean of 

the effective capacitance of the button calculated over five seconds of sampling. 

For measurements on two-layered devices (22 ◦C, 50 % RH), seven measurements without 

being touched had a mean capacitance of 206 pF and a standard deviation of 15 pF for n=4746 (n 

is the number of samples taken during the five seconds of sampling).  Seven measurements while 
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touched with a bare finger had a mean capacitance of 331 pF and a standard deviation of 33 pF 

for n=4634. 

For measurements on a button with a single layer of metallized paper (22 ◦C, 49% RH),  

seven measurements without being touched had a mean capacitance of 43.8 pF and a standard 

deviation of 4.1 pF for n=5564.  Seven measurements while touched with a bare finger had a 

mean capacitance of 2120 pF and a standard deviation of 520 pF for n=3837.   

To make an approximate comparison for the sensitivities between the two-layered button 

and the button made from a single layer of metallized paper, we calculated an upper limit for the 

capacitance of an untouched button (mean capacitance plus 3X the standard deviation of the 

measurements) with a lower limit for the capacitance of a touched button (mean capacitance 

minus 3X the standard deviation of the measurements).  For the two-layered button, we found the 

upper limit of 251 pF (206 pF+ 3×15 pF) for the untouched button to be greater than the lower 

limit of 238 pF (331-3×17pF) for the touched button.  For the button fabricated with inter-

digitated electrodes on a single piece of metallized paper, we found upper limit of 56.1 pF (43.8 

pF + 3×4.1 pF) for the untouched button to be less than the lower limit of 560 pF (2120 pF - 

3×520 pF) for the touched button.  Thus, this comparison suggested that the touch pads with a 

single layer of metallized paper and inter-digitated electrodes/buttons were more sensitive than 

the buttons fabricated using two layers of metallized paper. 

Consumption of Power 

For one of our systems with an Arduino Uno, we measured a draw of approximately 

0.4 W (50 mA of current at 8 V of potential) to all of the electronics.  We also noticed an increase 

in draw of a few milliamps when one of the touched buttons triggered an LED (the LED was in 

series with a resistor of 1 kΩ and had an applied potential of 5V).  A standard 9-V battery holds 
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about 16.2 kJ of energy (500 mAh at 9 V) and could handle a draw of 9 V at 0.4 W for 

approximately 11 hours.   

With more efficient electronics, the touch pads could last for much longer periods of time 

with a standard 9-V battery.  The potential across the resistor in an RC-circuit in response to a 

step input of potential Vs has the following relationship: 

tt
sR eVV -= , 

where t is time and τ is the time constant RC.  Using the expression for power (VR
2/R) and 

integrating with respect to time, the energy dissipated in the resistor in response to a step input in 

potential Vs is the following: 

2

2
s

R
CVE = , 

or the energy stored in the capacitor of the RC-circuit.  For a resistor in series with a capacitor of 

100 pF (approximate value for one of our buttons) and a step input in potential of 5 V, the energy 

dissipated in response to a single step input upon charging the capacitor is 1.25 nJ.  Because the 

resistor dissipates energy for both the charging and discharging of the capacitor, the dissipated 

energy for a complete cycle of a square wave-like input is 2.5 nJ.  If we sample the button 100 

times a second, the dissipated power is 250 nW per button.  With 10 buttons, we would dissipate 

2.5 µW, which is about 5 orders of magnitude less than the power consumed by the Arduino-

based system.  In reality, the electronics required to power the buttons will require more power 

than these ideal estimates.  Nevertheless, there is ample room for improvement even by just 

reducing the magnitude of the applied potential. 
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Environmental Conditions 

To test the performance of a paper-based touch pad subject to changes in humidity, we 

placed a pot of heated water (~57 ◦C) in a clear, plastic container with the 10-button keypad 

shown in SI Video 1.  We then used the serial output from an Arduino Uno to record the 

temperature with a voltage divider and a thermistor (RL0503-17.56K-96-MS from GE Sensing 

and Inspection Technologies), relative humidity with a breakout board from Sparkfun (HIH-4030 

with a response time of 5 s from Honeywell), and the effective capacitance of button "0" on the 

keypad using the method described in SI Figure 3.  SI Figure 4 A shows the resulting 

measurements plotted against time.  Once the water-filled plot entered the chamber, the relative 

humidity rose from approximately 24% to 98% in approximately 17 minutes.  After 17 minutes, 

we opened the container to let moisture escape, and the relative humidity within the chamber 

decreased to 31%.  During the entire process the change in temperature within the chamber was 

less than 2 ◦C.  To show that the touch pads can function in cold climates, SI Figure 4 C shows 

the effective capacitance of a button being pressed 20 times in a cold room with a temperature of 

4 ◦C and a relative humidity of 50%. 

The effective capacitance of the untouched button remained steady until the relative 

humidity reached approximately 85%.  Then, the effective capacitance rose as shown in SI Figure 

4 B along the path with the arrow pointing upwards and to the right.  It is possible that the 

increase in effective capacitance was a result of moisture accumulating on the surface of the 

button or within the paper comprising the button because visible moisture accumulated on the 

walls of the plastic container, the effective capacitance appeared to continue to rise even after 

humidity was leveling off near 98%, and the effective capacitance exhibited a hysteretic behavior 

as the relative humidity decreased with the opening of the chamber.  The hysteretic behavior 
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SI Figure 4 

SI Figure 4: (A) Plots of the relative humidity, effective capacitance of a button, and temperature 

in a chamber versus time. (B) The effective capacitance of a button plotted against relative 

humidity for the environmental conditions in A.  (C) The measured effective capacitance of a 

button being touched with a bare finger in a cold room with a temperature of 4 ◦C and relative 

humidity of 50%.  
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shown in Figure 4 B suggests the paper needed time to dry before the effective capacitance 

returned to its initial value.  The moisture may have also served to reduce the resistance between 

the electrodes and cause an increase in the effective time constant.   

 To observe the effect of moisture on the resistance of a button, we used an LCR meter 

(B&K Precision Model 885) to measure the parallel capacitance and resistance of a button 

exposed to moisture spouting from an ultrasonic humidifier (Vicks V5100NS).  Before exposure 

to the moisture, the measured parallel capacitance and resistance were 13 pF and 250 MΩ at a 

measured frequency of 1 kHz.  Once exposed to moisture, the measured capacitance increased to 

100 pF, while the resistance in parallel with the capacitance decreased to 700 kΩ.  After shutting 

off the humidifier, the button dried within a few minutes, and the capacitance decreased to 15 pF 

with a resistance of 100 MΩ. 

In addition to varying humidity as shown in SI Figure 4 A and B, we placed the same 

keypad in an oven to measure effective capacitance as a function of temperature.  While going 

from 25 ◦C to 57 ◦C over a period of 40 minutes with a reduction in relative humidity from 8% to 

1%, the mean effective capacitance was 141 pF with a standard deviation of 2.3 pF. 

Cost 

Thin metallized paper costs less than US $0.25 per square meter, and thicker metallized 

paper costs less than US $0.75 per square meter.  The 10-button keypad requires between 2-3 

minutes of time on the laser cutter.  An estimate for the mass of conductive paste per contact is 

10 mg, and the conductive paste costs US $39 per 15 g.  Thus, the conductive paste cost about 

US $0.03 per button.  A cheaper alternative might be carbon ink.  An estimated cost of the thicker 

metallized paper for the 10-button keypad (0.01 m2) is US $0.08, and an estimate cost for the 
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conductive paste is $0.33 (ten buttons but 11 contacts including electrical ground).  Thus, the cost 

of materials for the 10-button keypad is less than $0.50. 

The Arduino costs about US $25 in its pre-made form, but less user-friendly controllers 

could cost less.  The breadboard costs about US $7.  The operational amplifier costs less than US 

$3 each in small quantities.  The software for programming the Arduino is open-source (free).  

The buzzer for the alarmed box costs less than US $4.  The total cost of the reusable electronics is 

less than US $50, and the electronic components could cost much less with appropriate design for 

manufacturing. 
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SI Figure 5 

 

SI Figure 5: A functional QWERTY-based keyboard with 48 keys.  (A)  Metallized paper with 

etched traces and buttons of the QWERTY-based keyboard before its assembly.  Individual traces 

(etched with the laser cutter) lead to a button for each key.  The width of the keyboard was 

approximately 25 cm wide and 10 cm tall (not including the extra printed circuit board).  (B) The 

assembled keyboard with a patterned piece of paper designating the location of each key and also 

allowing contact between the metallized finger and a bare finger.  Below the metallized paper is 

foam, acrylic, and an additional printed circuit board with an Arduino board, multiplexers, and 

other appropriate electronics.  (C) The user after just having finished typing “GMW Group” (see 

SI Video 4).
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SI Video 1 

 

SI Video 1: This video shows four different clips showing a functional 10-button keypad.  The 

first two clips show bare fingers touching keys, while the last two clips show gloved fingers 

touching the keys.  Each key addresses an individual LED.  Simultaneous touching of multiple 

keys lights multiple LEDS.  The “ThresholdFactor” (variable in the code included at the end of 

the Supporting Information) had a value of 1.12 for all four clips. 
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SI Video 2 

 

SI Video 2: This video shows four different clips showing a functional 6-button keypad folded 

around a cube.  The first two clips show bare fingers touching keys, while the last two clips show 

gloved fingers touching the keys.  Each key/face addresses an individual LED.  Simultaneous 

touching of multiple keys lights multiple LEDS.  Within the same code used for SI Video 1, the 

“ThresholdFactor” (variable in the code included at the end of the Supporting Information) had a 

value of 1.13 for all four clips. 
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SI Video 3 

 

SI Video 3: Video of the alarmed box described in Figure 6.  The box is in an unarmed state 

initially, so that opening it does not set off an alarm.  Touching the keypad then arms the box, and 

the alarm goes off with the opening of the lids.  By typing the password into the keypad, the box 

returns to its unarmed state, and it is possible to open the lids again without setting off the alarm. 
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SI Video 4: 

 

SI Video 4: Video of the functioning keyboard described in SI Figure 5.  The user types in the 

phrase “GMW Group” and then proceeds to demonstrate the functionality of every key. 

  



Arduino Code for SI Video 1 
/*Adapted from 
http://arduino.cc/it/Tutorial/CapacitanceMeter and  
http://www.arduino.cc/en/Tutorial/Smoothing*/ 
#define Output A1 
#define Input1 A0 
#define MultiplexA A2 
#define MultiplexB A3 
#define MultiplexC A4 
#define MultiplexD A5 
#define LED0 2 
#define LED1 3 
#define LED2 4 
#define LED3 5 
#define LED4 6 
#define LED5 7 
#define LED6 8 
#define LED7 9 
#define LED8 10 
#define LED9 11 
 
unsigned long StartTime; //Time when step output goes 
high 
unsigned long ElapsedTime0; //Length of time 
(microseconds) 
//required for RC circuit to reach 2 V. 
unsigned long ElapsedTime1; 
unsigned long ElapsedTime2; 
unsigned long ElapsedTime3; 
unsigned long ElapsedTime4; 
unsigned long ElapsedTime5; 
unsigned long ElapsedTime6; 
unsigned long ElapsedTime7; 
unsigned long ElapsedTime8; 
unsigned long ElapsedTime9; 
 
unsigned long TotalStartTime; //Time when measurments 
begin 
 
const int NumReadings=30; 
const int SkipCountsForSmoothing=5; 
int AverageNow=0; 
long int Counter=0; 
 
const float ThresholdFactor=1.12; 
int Index0=0; 
int Index1=0; 
int Index2=0; 
int Index3=0; 
int Index4=0; 
int Index5=0; 
int Index6=0; 
int Index7=0; 
int Index8=0; 
int Index9=0; 
 
int Threshold0=95;  //Starting Values for Moving Averaged 
//Thresholds in microseconds 
int Threshold1=97; 
int Threshold2=95; 
int Threshold3=102; 
int Threshold4=106; 
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int Threshold5=100; 
int Threshold6=100; 
int Threshold7=106; 
int Threshold8=106; 
int Threshold9=100; 
 
int Thresholds0[NumReadings];  //Array of the Moving 
Averages 
int Thresholds1[NumReadings];  //Array of the Moving 
Averages 
int Thresholds2[NumReadings];  //Array of the Moving 
Averages 
int Thresholds3[NumReadings];  //Array of the Moving 
Averages 
int Thresholds4[NumReadings];  //Array of the Moving 
Averages 
int Thresholds5[NumReadings];  //Array of the Moving 
Averages 
int Thresholds6[NumReadings];  //Array of the Moving 
Averages 
int Thresholds7[NumReadings];  //Array of the Moving 
Averages 
int Thresholds8[NumReadings];  //Array of the Moving 
Averages 
int Thresholds9[NumReadings];  //Array of the Moving 
Averages 
 
int ThresholdsTotal0=NumReadings*Threshold0;  
//Running Total for Moving Averages 
int ThresholdsTotal1=NumReadings*Threshold1;  
int ThresholdsTotal2=NumReadings*Threshold2; 
int ThresholdsTotal3=NumReadings*Threshold3; 
int ThresholdsTotal4=NumReadings*Threshold4; 
int ThresholdsTotal5=NumReadings*Threshold5; 
int ThresholdsTotal6=NumReadings*Threshold6; 
int ThresholdsTotal7=NumReadings*Threshold7; 
int ThresholdsTotal8=NumReadings*Threshold8; 
int ThresholdsTotal9=NumReadings*Threshold9; 
 
void setup() 
{ 
  pinMode(Output, OUTPUT); 
  pinMode(Input1, INPUT); 
  pinMode(MultiplexA, OUTPUT); 
  pinMode(MultiplexB, OUTPUT); 
  pinMode(MultiplexC, OUTPUT); 
  pinMode(MultiplexD, OUTPUT); 
  pinMode(LED0,OUTPUT); 
  pinMode(LED1,OUTPUT); 
  pinMode(LED2,OUTPUT); 
  pinMode(LED3,OUTPUT); 
  pinMode(LED4,OUTPUT); 
  pinMode(LED5,OUTPUT); 
  pinMode(LED6,OUTPUT); 
  pinMode(LED7,OUTPUT); 
  pinMode(LED8,OUTPUT); 
  pinMode(LED9,OUTPUT); 
  digitalWrite(MultiplexA,LOW); 
  digitalWrite(MultiplexB,LOW); 
  digitalWrite(MultiplexC,LOW); 
  digitalWrite(MultiplexD,LOW); 
  digitalWrite(LED0,LOW); 
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  digitalWrite(LED1,LOW); 
  digitalWrite(LED2,LOW); 
  digitalWrite(LED3,LOW); 
  digitalWrite(LED4,LOW); 
  digitalWrite(LED5,LOW); 
  digitalWrite(LED6,LOW); 
  digitalWrite(LED7,LOW); 
  digitalWrite(LED8,LOW); 
  digitalWrite(LED9,LOW); 
  for (int ThisReading = 0; ThisReading < NumReadings; 
ThisReading++){ 
    Thresholds0[ThisReading] = Threshold0; 
    Thresholds1[ThisReading] = Threshold1; 
    Thresholds2[ThisReading] = Threshold2; 
    Thresholds3[ThisReading] = Threshold3; 
    Thresholds4[ThisReading] = Threshold4; 
    Thresholds5[ThisReading] = Threshold5; 
    Thresholds6[ThisReading] = Threshold6; 
    Thresholds7[ThisReading] = Threshold7; 
    Thresholds8[ThisReading] = Threshold8; 
    Thresholds9[ThisReading] = Threshold9; 
  } 
  Serial.begin(9600); 
  Serial.println("System for Measuring Capacitance "); 
  Serial.println("Time to reach 2 V in microseconds"); 
  TotalStartTime=millis(); 
} 
 
void loop() 
{ 
  //For Channel 0 on multiplexer (Button 0) 
  digitalWrite(MultiplexA,LOW); 
  digitalWrite(MultiplexB,LOW); 
  digitalWrite(MultiplexC,LOW); 
  digitalWrite(MultiplexD,LOW); 
  delay(1); 
  digitalWrite(Output,HIGH); 
  StartTime=micros(); 
  while(digitalRead(Input1)<1){ 
  } 
  ElapsedTime0=micros()-StartTime; 
  digitalWrite(Output,LOW); 
  delay(2); 
  //For Channel 1 on multiplexer (Button 1) 
  digitalWrite(MultiplexA,HIGH); 
  digitalWrite(MultiplexB,LOW); 
  digitalWrite(MultiplexC,LOW); 
  digitalWrite(MultiplexD,LOW); 
  delay(1); 
  digitalWrite(Output,HIGH); 
  StartTime=micros(); 
  while(digitalRead(Input1)<1){ 
  } 
  ElapsedTime1=micros()-StartTime; 
  digitalWrite(Output,LOW); 
  delay(2); 
  //For Channel 2 on multiplexer (Button 2) 
  digitalWrite(MultiplexA,LOW); 
  digitalWrite(MultiplexB,HIGH); 
  digitalWrite(MultiplexC,LOW); 
  digitalWrite(MultiplexD,LOW); 
  delay(1); 
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  digitalWrite(Output,HIGH); 
  StartTime=micros(); 
  while(digitalRead(Input1)<1){ 
  } 
  ElapsedTime2=micros()-StartTime; 
  digitalWrite(Output,LOW); 
  delay(2); 
  //For Channel 3 on multiplexer (Button 3) 
  digitalWrite(MultiplexA,HIGH); 
  digitalWrite(MultiplexB,HIGH); 
  digitalWrite(MultiplexC,LOW); 
  digitalWrite(MultiplexD,LOW); 
  delay(1); 
  digitalWrite(Output,HIGH); 
  StartTime=micros(); 
  while(digitalRead(Input1)<1){ 
  } 
  ElapsedTime3=micros()-StartTime; 
  digitalWrite(Output,LOW); 
  delay(2); 
  //For Channel 4 on multiplexer (Button 4) 
  digitalWrite(MultiplexA,LOW); 
  digitalWrite(MultiplexB,LOW); 
  digitalWrite(MultiplexC,HIGH); 
  digitalWrite(MultiplexD,LOW); 
  delay(1); 
  digitalWrite(Output,HIGH); 
  StartTime=micros(); 
  while(digitalRead(Input1)<1){ 
  } 
  ElapsedTime4=micros()-StartTime; 
  digitalWrite(Output,LOW); 
  delay(2); 
  //For Channel 5 on multiplexer (Button 5) 
  digitalWrite(MultiplexA,HIGH); 
  digitalWrite(MultiplexB,LOW); 
  digitalWrite(MultiplexC,HIGH); 
  digitalWrite(MultiplexD,LOW); 
  delay(1); 
  digitalWrite(Output,HIGH); 
  StartTime=micros(); 
  while(digitalRead(Input1)<1){ 
  } 
  ElapsedTime5=micros()-StartTime; 
  digitalWrite(Output,LOW); 
  delay(2); 
  //For Channel 6 on multiplexer (Button 6) 
  digitalWrite(MultiplexA,LOW); 
  digitalWrite(MultiplexB,HIGH); 
  digitalWrite(MultiplexC,HIGH); 
  digitalWrite(MultiplexD,LOW); 
  delay(1); 
  digitalWrite(Output,HIGH); 
  StartTime=micros(); 
  while(digitalRead(Input1)<1){ 
  } 
  ElapsedTime6=micros()-StartTime; 
  digitalWrite(Output,LOW); 
  delay(2); 
  //For Channel 7 on multiplexer (Button 7) 
  digitalWrite(MultiplexA,HIGH); 
  digitalWrite(MultiplexB,HIGH); 
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  digitalWrite(MultiplexC,HIGH); 
  digitalWrite(MultiplexD,LOW); 
  delay(1); 
  digitalWrite(Output,HIGH); 
  StartTime=micros(); 
  while(digitalRead(Input1)<1){ 
  } 
  ElapsedTime7=micros()-StartTime; 
  digitalWrite(Output,LOW); 
  delay(2); 
  //For Channel 8 on multiplexer (Button 8) 
  digitalWrite(MultiplexA,LOW); 
  digitalWrite(MultiplexB,LOW); 
  digitalWrite(MultiplexC,LOW); 
  digitalWrite(MultiplexD,HIGH); 
  delay(1); 
  digitalWrite(Output,HIGH); 
  StartTime=micros(); 
  while(digitalRead(Input1)<1){ 
  } 
  ElapsedTime8=micros()-StartTime; 
  digitalWrite(Output,LOW); 
  delay(2); 
  //For Channel 9 on multiplexer (Button 9) 
  digitalWrite(MultiplexA,HIGH); 
  digitalWrite(MultiplexB,LOW); 
  digitalWrite(MultiplexC,LOW); 
  digitalWrite(MultiplexD,HIGH); 
  delay(1); 
  digitalWrite(Output,HIGH); 
  StartTime=micros(); 
  while(digitalRead(Input1)<1){ 
  } 
  ElapsedTime9=micros()-StartTime; 
  digitalWrite(Output,LOW); 
  delay(2);     
  //Print Results   
  /*Serial.print(millis()-TotalStartTime); 
   Serial.print("   "); 
   Serial.print(ElapsedTime0,DEC);  
   Serial.print("   "); 
   Serial.print(ElapsedTime1,DEC);  
   Serial.print("   "); 
   Serial.print(ElapsedTime2,DEC);  
   Serial.print("   "); 
   Serial.print(ElapsedTime3,DEC);  
   Serial.print("   "); 
   Serial.print(ElapsedTime4,DEC);  
   Serial.print("   "); 
   Serial.print(ElapsedTime5,DEC);  
   Serial.print("   "); 
   Serial.print(ElapsedTime6,DEC);  
   Serial.print("   "); 
   Serial.print(ElapsedTime7,DEC);  
   Serial.print("   "); 
   Serial.print(ElapsedTime8,DEC);  
   Serial.print("   "); 
   Serial.print(ElapsedTime9,DEC); 
   Serial.print("   ");*/ 
  //Turn on appropriate LED(s) 
  AverageNow=Counter%SkipCountsForSmoothing; 
  if(ElapsedTime0>Threshold0*ThresholdFactor){ 
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    digitalWrite(LED0,HIGH); 
    //Serial.print("   "); 
    //Serial.print("1"); 
  } 
  else{ 
    digitalWrite(LED0,LOW); 
    //Serial.print("   "); 
    //Serial.print("0"); 
    if(AverageNow==0){ 
      ThresholdsTotal0=ThresholdsTotal0-
Thresholds0[Index0]; 
      Thresholds0[Index0]=ElapsedTime0; 
      ThresholdsTotal0=ThresholdsTotal0+ElapsedTime0; 
      Threshold0=ThresholdsTotal0/NumReadings; 
      Index0=Index0+1; 
      if(Index0>=NumReadings){ 
        Index0=0; 
      } 
    } 
  } 
  if(ElapsedTime1>Threshold1*ThresholdFactor){ 
    digitalWrite(LED1,HIGH); 
    //Serial.print("   "); 
    //Serial.print("1"); 
  } 
  else{ 
    digitalWrite(LED1,LOW); 
    //Serial.print("   "); 
    //Serial.print("0"); 
    if(AverageNow==0){ 
      ThresholdsTotal1=ThresholdsTotal1-
Thresholds1[Index1]; 
      Thresholds1[Index1]=ElapsedTime1; 
      ThresholdsTotal1=ThresholdsTotal1+ElapsedTime1; 
      Threshold1=ThresholdsTotal1/NumReadings; 
      Index1=Index1+1; 
      if(Index1>=NumReadings){ 
        Index1=0; 
      } 
    } 
  } 
  if(ElapsedTime2>Threshold2*ThresholdFactor){ 
    digitalWrite(LED2,HIGH); 
    //Serial.print("   "); 
    //Serial.print("1"); 
  } 
  else{ 
    digitalWrite(LED2,LOW); 
    //Serial.print("   "); 
    //Serial.print("0"); 
    if(AverageNow==0){ 
      ThresholdsTotal2=ThresholdsTotal2-
Thresholds2[Index2]; 
      Thresholds2[Index2]=ElapsedTime2; 
      ThresholdsTotal2=ThresholdsTotal2+ElapsedTime2; 
      Threshold2=ThresholdsTotal2/NumReadings; 
      Index2=Index2+1; 
      if(Index2>=NumReadings){ 
        Index2=0; 
      } 
    } 
  } 
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  if(ElapsedTime3>Threshold3*ThresholdFactor){ 
    digitalWrite(LED3,HIGH); 
    //Serial.print("   "); 
    //Serial.print("1"); 
  } 
  else{ 
    digitalWrite(LED3,LOW); 
    //Serial.print("   "); 
    //Serial.print("0"); 
        if(AverageNow==0){ 
      ThresholdsTotal3=ThresholdsTotal3-
Thresholds3[Index3]; 
      Thresholds3[Index3]=ElapsedTime3; 
      ThresholdsTotal3=ThresholdsTotal3+ElapsedTime3; 
      Threshold3=ThresholdsTotal3/NumReadings; 
      Index3=Index3+1; 
      if(Index3>=NumReadings){ 
        Index3=0; 
      } 
    } 
  }  
  if(ElapsedTime4>Threshold4*ThresholdFactor){ 
    digitalWrite(LED4,HIGH); 
    //Serial.print("   "); 
    //Serial.print("1"); 
  } 
  else{ 
    digitalWrite(LED4,LOW); 
    //Serial.print("   "); 
    //Serial.print("0"); 
    if(AverageNow==0){ 
      ThresholdsTotal4=ThresholdsTotal4-
Thresholds4[Index4]; 
      Thresholds4[Index4]=ElapsedTime4; 
      ThresholdsTotal4=ThresholdsTotal4+ElapsedTime4; 
      Threshold4=ThresholdsTotal4/NumReadings; 
      Index4=Index4+1; 
      if(Index4>=NumReadings){ 
        Index4=0; 
      } 
    } 
  } 
  if(ElapsedTime5>Threshold5*ThresholdFactor){ 
    digitalWrite(LED5,HIGH); 
    //Serial.print("   "); 
    //Serial.print("1"); 
  } 
  else{ 
    digitalWrite(LED5,LOW); 
    //Serial.print("   "); 
    //Serial.print("0"); 
    if(AverageNow==0){ 
      ThresholdsTotal5=ThresholdsTotal5-
Thresholds5[Index5]; 
      Thresholds5[Index5]=ElapsedTime5; 
      ThresholdsTotal5=ThresholdsTotal5+ElapsedTime5; 
      Threshold5=ThresholdsTotal5/NumReadings; 
      Index5=Index5+1; 
      if(Index5>=NumReadings){ 
        Index5=0; 
      } 
    } 
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  } 
  if(ElapsedTime6>Threshold6*ThresholdFactor){ 
    digitalWrite(LED6,HIGH); 
    //Serial.print("   "); 
    //Serial.print("1"); 
  } 
  else{ 
    digitalWrite(LED6,LOW); 
    //Serial.print("   "); 
    //Serial.print("0"); 
    if(AverageNow==0){ 
      ThresholdsTotal6=ThresholdsTotal6-
Thresholds6[Index6]; 
      Thresholds6[Index6]=ElapsedTime6; 
      ThresholdsTotal6=ThresholdsTotal6+ElapsedTime6; 
      Threshold6=ThresholdsTotal6/NumReadings; 
      Index6=Index6+1; 
      if(Index6>=NumReadings){ 
        Index6=0; 
      } 
    } 
  } 
  if(ElapsedTime7>Threshold7*ThresholdFactor){ 
    digitalWrite(LED7,HIGH); 
    //Serial.print("   "); 
    //Serial.print("1"); 
  } 
  else{ 
    digitalWrite(LED7,LOW); 
    //Serial.print("   "); 
    //Serial.print("0"); 
    if(AverageNow==0){ 
      ThresholdsTotal7=ThresholdsTotal7-
Thresholds7[Index7]; 
      Thresholds7[Index7]=ElapsedTime7; 
      ThresholdsTotal7=ThresholdsTotal7+ElapsedTime7; 
      Threshold7=ThresholdsTotal7/NumReadings; 
      Index7=Index7+1; 
      if(Index7>=NumReadings){ 
        Index7=0; 
      } 
    } 
  } 
  if(ElapsedTime8>Threshold8*ThresholdFactor){ 
    digitalWrite(LED8,HIGH); 
    //Serial.print("   "); 
    //Serial.print("1"); 
  } 
  else{ 
    digitalWrite(LED8,LOW); 
    //Serial.print("   "); 
    //Serial.print("0"); 
    if(AverageNow==0){ 
      ThresholdsTotal8=ThresholdsTotal8-
Thresholds8[Index8]; 
      Thresholds8[Index8]=ElapsedTime8; 
      ThresholdsTotal8=ThresholdsTotal8+ElapsedTime8; 
      Threshold8=ThresholdsTotal8/NumReadings; 
      Index8=Index8+1; 
      if(Index8>=NumReadings){ 
        Index8=0; 
      } 
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    } 
  } 
  if(ElapsedTime9>Threshold9*ThresholdFactor){ 
    digitalWrite(LED9,HIGH); 
    //Serial.print("   "); 
    //Serial.println("1"); 
  } 
  else{ 
    digitalWrite(LED9,LOW); 
    //Serial.print("   "); 
    //Serial.println("0"); 
    if(AverageNow==0){ 
      ThresholdsTotal9=ThresholdsTotal9-
Thresholds9[Index9]; 
      Thresholds9[Index9]=ElapsedTime9; 
      ThresholdsTotal9=ThresholdsTotal9+ElapsedTime9; 
      Threshold9=ThresholdsTotal9/NumReadings; 
      Index9=Index9+1; 
      if(Index9>=NumReadings){ 
        Index9=0; 
      } 
    } 
  } 
  Counter=Counter+1; 


