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Introduction 

Studying random fluctuations to characterize the properties of dynamical systems has been a 

classic approach of condensed matter physics and has more recently been extended to economics 

and biology. Historically, this field of research was prompted by the observation of what is 

known today as Brownian motion. In 1827, botanist Robert Brown used an optical microscope to 

observe that when pollen from Clarckia pulchella was suspended in water, individual grains 

within the pollen displayed jittery movements (1). He further demonstrated that the observed 

random motion was not due to the presence of ‘living’ animalcules within the pollen, because the 

motion was also observed in microscopic examinations of fossilized wood and dust (1). Since 

this early observation of Brownian motion, there has been a steady stream of studies on this 

subject, but the first key conceptual advancement came from Albert Einstein in a 1905 paper (2) 

that predicted that the mean square displacement of a Brownian particle was proportional to the 

time of observation. Einstein assumed that the motion of a Brownian particle is governed by the 

temperature of the fluid, which produces a random force and the friction of the fluid on the 

particle. These assumptions yield the classic formula of diffusion that gives the mean square 

distance covered by a Brownian particle during a given time interval as τδ Dx
N
=2 , where D is 

the diffusion constant that depends on the temperature and the friction of the fluid. This formula 

emphasizes that some relevant information about the stochastic variable )(txδ  defined with 

)()( txxtx
Time

δ+=  is obtained by characterizing its second moment (i.e. variance). 

Here we bring Brownian motion back to biology. Most of the themes discussed in this chapter 

illustrate how the concept of the Brownian particle and the measure of its associated mean square 

displacement can be used directly to extract intracellular biochemical parameters from individual 
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living cells. The literature on this subject is vast, and I purposely selected only few examples for 

the sake of simplicity and cohesiveness, focusing exclusively on bacteria. The intent of this 

chapter is not to present an exhaustive review of the subject, but rather to discuss several 

methods that may be useful for characterizing the behavior of individual cells. 

First, we will describe the principles and latest developments of fluorescence correlation 

spectroscopy (FCS). This technique is based on monitoring the fluctuations of the fluorescence 

signal associated with dyes that diffuse in and out a small volume of detection (3-5). We will 

discuss the specific application developed to measure coding and non-coding RNAs in individual 

living bacteria (6-7).  

Second, we will introduce the well-known stochastic Langevin equation that describes the 

motion of a Brownian particle in the limit of low Reynolds number. We will discuss how the 

same phenomenological stochastic equation has been successfully used to model and 

characterize cell-to-cell variability in the expression of a single gene in bacteria (8). Thus far, 

most of the studies have focused on the static distribution of the cell-to-cell variability within an 

isogenic population (8-9). However, we will extend the discussion to the dynamic aspect of 

variability and we will desrcibe how the analysis of temporal fluctuations of cellular behavior 

can be used to determine intracellular biochemical parameters (10). Finally, the Langevin 

equation makes predictions about the linear response of dynamical systems to a small external 

perturbation. While this phenomenological equation has been used to describe physical systems 

at thermodynamic equilibrium, we will show that this framework can also be extended to living 

cells. This extension is possible when the system exhibits a well-defined steady-state and has 

Markovian dynamics (11). Under Markovian dynamics, the system has a short memory and can 

relax to a well-defined steady-state.  However, this framework is particularly relevant to study 
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energy consuming mechanisms that are present in the living cells (12). In this chapter, we will 

discuss the usefulness of this approach to characterize the existence of a fundamental 

interdependence between spontaneous fluctuations in living cells and their response to a small 

external stimulus. For non-equilibrium systems, such as living cells, this relationship between 

fluctuation and response has been recently formalized in a fluctuation-response theorem by (11). 

While this theorem predicts the existence of a coupling between fluctuation and response, it does 

not reveal how this coupling varies as a function of the system parameters, such as gene 

expression or reaction rates. Therefore, it would be interesting to discuss under what 

circumstances biological systems would exhibit similar coupling. This approach predicts 

constraints between variability and response to environmental changes in specific classes of 

biological systems. We illustrate the usefulness of this theorem using chemotaxis in E. coli as 

experimental system. We will re-interpret the fluctuation-response theorem and the Langevin 

equation to highlight the existence of this fundamental relationship between behavioral 

variability and the response to a small chemotactic stimulus in single bacteria. Subsequently, we 

will report the design principle in chemotaxis shared by other biological systems, which 

determines the coupling between response and fluctuations. 

 

1 Fluorescence Correlation Spectroscopy (FCS)  

In characterizing the diffusion of fluorescent molecules in solution, Magde, Elson, and Webb, 

pioneered and developed a new quantitative technique for biology called FCS (3-5). The 

principle of this technique consists of measuring the fluorescence signal emitted from molecules 

diffusing freely in and out of a confocal volume of detection. The fluorescence intensity 
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fluctuates because individual molecules are entering and leaving the volume of detection defined 

by a diffraction limited laser spot. A normalized autocorrelation function is used to analyze the 

fluctuations nδ  of emitted photons (i.e. fluorescence intensity),  

2
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The function G(t) depends on the shape of the illumination profile that is generally Gaussian. In 

this section, we will focus only on 2-D diffusion. (For a detailed review of the mathematical 

derivations of the function G(t) see Krichevsky and Bonnet (13).) While 2-D diffusion involves 

fewer parameters and can be a good approximation for 3-D diffusion, it is also well-suited to 

examine the diffusion of fluorescent markers in rod-like bacterial cells, such as E. coli. If we 

neglect the diffusion of molecules along the z-axis, G(t) can be simplified to: 
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where N is the number of fluorescent particles per detection volume and freeξ is the typical 

diffusion time of these particles through the detection volume. Fitting the experimental 

autocorrelation function with G(t) yields the number of molecules present on average in the 

volume of detection and the diffusion coefficient of the molecules, which depends on their size 

and the viscosity of their environment.  

The power of this approach lies in the fact that the measurements are self-calibrated because they 

characterize the fluctuations of fluorescence relative to the mean fluorescence signal. Thus, the 

result does not depend on the intensity of the excitation light. Of course, there are several 

important limitations to this approach. First, fluctuations in the emitted fluorescence signal must 
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be large enough relative to the mean. This condition restricts the technique to low concentration 

of fluorescent markers. For example, the definition of the autocorrelation function becomes poor 

when there are more than 1000 molecules per effective volume of detection of ~0.1fl. Second, 

the technique is sensitive to bleaching, which introduces correlations in the fluctuations of 

intensity and introduces artifacts in the measurements. Third, if molecules are localized and 

cannot diffuse freely, then FCS does not work. Despite these limitations, FCS has proven to be a 

powerful tool in single-cell measurements (14-16). 

1.1 Measuring intracellular protein diffusion in single bacteria 

While FCS was initially developed to measure small traces of dyes in solution (4), it has more 

recently been applied to living single cells (17). This technique became less invasive with the use 

of genetically encoded fluorescent proteins (6-7). Using FCS, one of the first examples of the 

direct quantification of protein concentration within single living cells revealed that the bacterial 

motor in E. coli exhibits an extremely steep input-output sigmoid relationship with a Hill 

coefficient of about 10 (16). This result is specific to the single-cell approach because when the 

same bacterial motor was characterized at the population level, it had an input-output 

relationship that was much smoother with a Hill coefficient of ~ 3 (18-20). To understand this 

discrepancy, it is important to note that that there exists a strict relationship between the motor 

behavior and the concentration of a specific signaling protein that controls the motor behavior. 

When standard ensemble techniques are used to evaluate protein concentration, such as 

immunoblotting, they ignore the inherent cell-to-cell variability. As a result, ensemble average 

effectively smoothed out the typical motor characteristics, leading to lower values of the Hill 

coefficient.  
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1.2 Measuring intracellular diffusion of RNA in single bacteria 

In addition to measuring protein concentration, FCS has been extended to quantify coding and 

non-coding RNA in single cells (6-7). To label RNA, it is common to use the MS2 labeling 

system originally developed for yeast by Bertrand and colleagues (21) and subsequently adapted 

to E. coli (22). This system employs two gene constructs encoded on plasmids: a fusion of the 

RNA-binding MS2 coat protein and GFP (MS2-GFP) and a 23-nucleotide ms2 RNA binding site 

(ms2-binding site) located downstream of a gene on an RNA transcript. MS2-GFP can either 

diffuse freely through the cell or bind to the ms2-binding sites on the transcript. There are two 

ms2-binding sites and each site binds an MS2-GFP homodimer. To monitor temporal variations 

in RNA concentration in real-time, it is essential to account for the slow maturation time of GFP 

and thus to pre-express MS2-GFP. Free MS2-GFP fusion proteins diffuse through the detection 

volume (diffraction limited laser spot) with a typical time of ~ 1 ms. The sensitivity of detection 

of non-coding RNA is increased by fusing a ribosomal binding site to the tandem of ms2-binding 

sites, which produces an RNA/MS2-GFP/ribosome complex that diffuses with a typical diffusion 

time of ~ 30 ms, 30-fold slower than free MS2-GFP in the cytoplasm. These measurements have 

high temporal resolution, requiring only a 2-second acquisition time to obtain a reliable 

autocorrelation function.  

To determine the concentration of bound GFP molecules and, therefore, the concentration of the 

RNA transcripts labeled with MS2 coat proteins, the original autocorrelation function (Equation 

[2]) is extended to Formula [3a] (13). This new formula takes into account the fact that there is a 

mixture of bound and free molecules in the detection volume and that their diffusion time is 

much faster than the dynamical dynamics of binding and unbinding: 
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where N is the number of fluorescent particles in the detection volume, y is the fraction of MS2-

GFP molecules bound to the mRNA–ribosome complex, and freeξ  and boundξ  are the diffusion 

times of free and bound MS2-GFP, respectively. The parameter y is a proxy to infer the RNA 

concentration in the single cell. Finally, Formula [3b], developed by Rigler and colleagues (23), 

takes into account the increase in brightness due the two ms2-binding sites that are present in 

each RNA transcript (each binding an MS2-GFP homodimer). 
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This model can fit any experimental autocorrelation function in living E. coli by adjusting only 

two parameters, N and y. The lower limit of detection for N was about two transcripts per 

volume of detection. 

When the RNA transcript containing the ms2-binding sites encoded the dsRed fluorescent 

protein, the self-calibration by FCS of RNA measurements from free and bound MS2-GFP was 

in good agreement with the simultaneous measurement of dsRed protein concentration. It is 

important to note that the genetic design used in this approach guarantees that only the freely 

diffusing mRNA transcripts that are not physically associated with an RNA polymerase or 

plasmid DNA are measured. To this end, the ms2-binding sites were located after the DsRed stop 

codon. With this orientation, the binding sites are transcribed only after DsRed is fully 

transcribed. The mRNA then becomes ‘visible’ when the MS2-GFP proteins bind to the mRNA 

transcript with fully transcribed ms2-binding sites.  
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1.3 Advances in FCS for single-cell measurements 

Current FCS techniques require that the RNA molecules are free to diffuse. However, a recent 

study from Jacobs-Wagner and colleagues (24) used in situ hybridization to show that in 

Caulobacter crescentus and E. coli, chromosomally expressed mRNAs tend to localize near their 

site of transcription during their lifetime. This observation implies that the diffusion coefficients 

of chromosomally expressed mRNA are two orders of magnitude lower than mRNA molecules 

expressed from plasmids. When RNA transcripts are localized, imaging becomes necessary to 

quantify concentration (21, 25). To overcome this obstacle, wide-field FCS combines standard 

FCS measurements with imaging. This new experimental approach makes it possible, in 

principle, to quantify both freely diffusing and localized RNA molecules. The extension to wide-

field FCS has become possible due to the development of new cameras that use an electron 

multiplying CCD technology (EMCCD). EMCCD cameras are ideal detectors because they 

combine speed and sensitivity with high quantum efficiency. These EMCCD cameras can be 

used as photon detectors, in ‘kinetics mode’, with only one- or two-point excitation volumes (26-

27). The reading time of the pixels from the chip of the camera is far slower than the typical dead 

time of avalanche photon-diodes used for standard FCS single point detectors that have a dead 

time of about 70 ns. However, this lower temporal resolution should not be an issue for 

measurements in living cells because the typical timescales involved are of the order of a 

millisecond. Thus, the EMCCD cameras could be used to perform FCS measurements with a 

time resolution of 20 µs, which should suffice to determine the relevant timescales associated 

with molecular diffusion in cells (26-27). To improve the time resolution, Heuvelman and 

colleagues (28) aligned a line illumination of the sample with one line of adjacent pixels in the 

EMCCD chip. The physical configuration of the camera in the kinetics mode simultaneously 
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reads adjacent pixels from the same line and clears them within about 0.3 µs. This parallel 

multichannel acquisition of the fluorescence signal with an EMCCD camera improved the time 

resolution down to 14 µs. While FCS measurements were performed only along one dimension, 

this approach should also work with several contiguous lines to extend FCS measurements along 

the two dimensions with a sub-millisecond resolution. Wide-field FCS will most likely be 

immediately applicable to small rod-shaped bacteria, such as E. coli or Salmonella. For thicker 

eukaryotic tissue and cells, it is also necessary to scan along the z-axis. To expand FCS 

technique to higher throughput measurements along the z-axis, Needleman and colleagues (29) 

developed a pinhole array correlation imaging technique based on a stationary Nipkow disk and 

an EMCCD. While this technique has not been tested on live cells, it has the potential power to 

perform hundreds of FCS measurements within cells thicker than bacteria, with high temporal 

resolution. 

 

2 Spectral analysis of molecular activity fluctuations to infer chemical rates 

2.1 A practical aspect of the Langevin equation 

There exists a phenomenological stochastic equation called the Langevin equation that describes 

in a general way the fluctuations of a mass-spring system in a viscous fluid, with spring constant 

springk , damping constant γ , and fluctuating random force )(tf . When the Reynolds number is 

low, there is no acceleration, and friction (γ ) dominates the dynamics of the particle’s position 

)(tx : 

)(tfxkx spring +−=γ  [4] 
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This model has been found to be very useful to interpret, in the regime of linear approximation, 

the behavior of a large range of dynamical systems. For example, we will see that this model can 

be extended to study of biochemical reactions taking place in cells.  

Taking the Fourier transform of the Langevin equation allows us to calculate the power spectrum 

of the fluctuations of the position xδ at equilibrium: 

)(
2)( 22

2

ωωγ
ωδ

+
=

c

KTx  [5] 

In the classic Langevin equation, the amplitude of the spontaneous fluctuations (D) defined with 

)'()'()( ttDtftf −= δ  is obtained using the equipartition theorem that couples the thermal 

energy KT, and the energy stored in the spring given by: 

timespring xkKT 2δ=   [6] 

 )'(2)'()'()( ttKTttDtftf −=−= γδδ , where T  is the temperature and K is the Boltzmann 

constant.  Formula [5] has several practical applications. For example, it is particularly useful to 

evaluate the sensitivity range of a mechanical transducer used in single molecule experiments. In 

such experiments, the mechanical transducer can be the cantilever of a force microscope, a glass 

fiber, or the trap formed by an optical tweezers that senses the motion of a small bead submerged 

in solution. To determine whether to use a stiff or soft cantilever for a given experiment, one can 

plot the power spectrum of the fluctuations of the cantilever’s position. Spontaneous fluctuations 

of the mechanical transducer induced by the thermal noise are not distributed uniformly over all 

frequencies. The fluctuations die out for frequencies larger than the typical corner frequency 
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γ
ω spring
c

k
=  . If the transducer becomes stiffer, the spontaneous fluctuations will spread over 

higher frequencies because the corner frequency γω kc =  becomes larger. Most importantly, the 

thermal energy stored in the system remains constant 
spring

time k
KTx =2δ , which represents the total 

area defined by the power spectrum ω
ωωγ

δ dKTx
c

∫
∞+

+
=

0 22
2

)(
2 . In other words, this constraint 

implies that the amplitude of the spontaneous fluctuations of a stiff spring will be smaller at 

lower frequencies than those of a softer spring (Figure 1). If the signal we plan to measure is in a 

lower frequency range, then a stiffer mechanical transducer will exhibit a lower background 

noise in this frequency range but the sensitivity of the transducer will be reduced by the same 

amount (30). Thus, reducing the stiffness of the transducer does not improve the signal-to-noise 

ratio. By contrast, reducing the dimension of the transducer will reduce the friction coefficient 

γ , which, in turn, will increase the corner frequency γω kc = . So at equal stiffness, the 

background noise can be reduced by using transducers with smaller dimensions.  Using this 

analysis, it was found that the force-extension measurements of a single DNA molecule are less 

noisy using an optical trap (31-32) with sub-micron latex beads, than using micro-glass fibers 

that are several micron long transducers (33).  

 

2.2 Measuring noise to infer the sensitivity of a chemical system 

For kinetic reactions, the positional coordinates )(tx  of the elastic spring corresponds to the 

concentration. Using the equation describing the fluctuations in a mass-spring system, Bialek and 

Setayeshgar introduced a model to describe the dynamics associated with the binding and 
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unbinding of a ligand to a receptor at equilibrium in a thermal bath (34). This case study is 

thought to be general because the fluctuations of receptor occupancy are governed solely by 

thermal noise. This assumption allows the authors to use the fluctuation-dissipation theorem 

(FDT) as a framework to relate the amplitude of the fluctuations to the macroscopic behavior of 

the receptor described by a kinetic equation. In the Bialek-Setayeshgar model, fluctuations in 

receptor activity reflect the fluctuations in the rates k+ and k- associated with the binding and 

unbinding of the ligand to the receptor. This approach is similar to that of a spring that is 

submerged in a thermal bath (Section 2.1). The only difference lies in the constraints that define 

the amplitude of the fluctuation D  in the Langevin equation. The fluctuations of the rates +k and 

−k are related to the fluctuations of the associated free energy that define the two receptor states. 

Using this noise analysis, they determined the sensitivity range of sample receptor. Their 

analysis is analogous to that of the mechanical transducers in section 2.1.  

Similarly, the fluctuations in chemical reactions can yield information about the typical chemical 

rates governing the reactions. In the simplest example of an isomerization reaction, a molecule 

switches back and forth between an active and inactive state: 

 [7] 

where A and A* are the concentration of the inactive and active forms, and k+ and k- are the 

respective reaction rates from the inactive to active and the active to inactive form. The 

concentration of A* changes such that  

)(*)()(* tAktAktA −+ −=  [8] 
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We linearize about the steady-state using 

)(**)(* tAAtA δ+=  

)()( tAAtA δ+=  

)()( tkktk +++ += δ  

)()( tkktk −−− += δ  

and Equation [8] becomes  

( ) *** AkkAkAkA δδδδ −+−+ ++−=   

The rates are related by the difference of the free energy FΔ between the active and inactive 

states, such that KT
F

e
k
k Δ

−

+

=  . Using this relationship, the fluctuations of the rates are given by 

KT
F

k
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k
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+

 

and, Equation [8] takes the usual Langevin form: 

   )()(*)()(* tF
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AktAkktA δδδ

+
−+ ++=  [9] 

The Langevin equation [9] is analogous to the equation describing fluctuations of a mass-spring 

system (Equation [4]). To apply the FDT, it is convenient to Fourier transform Equation [9]: 
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The Fourier transform is defined with dtetAA ti∫
∞

=
0

)(*)(*~ ωδωδ and the response function 

)(tχ determines the linear response *AΔ to a small external perturbation Fδ such that 

∫
∞

−=Δ
0

')'()'()(* dtttFttA δχ  
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the response function becomes: 
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applying the FDT: 

[ ])(~Im2)(* ωχ
ω
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Equation [10] becomes 
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Plotting the power spectrum is a convenient way to study the output fluctuations of a system. 

The corner frequency of the power spectrum in a log-log plot gives a measure of the sum of the 

rates, and its integral from 0 to infinity yields the total variance of the noise of this isomerization 

reaction (Eq. 7): 
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Therefore the total variance is: 

( )
)(
** 2 −+

+

+
=

kk
AkAδ   [13] 

In this approach (34), there is no assumption about the underlying statistics that govern switching 

between A and A*. Instead, it relies on thermodynamic equilibrium and the use of the FDT. 

While this approach is powerful to describe in vitro systems where thermodynamic equilibrium 

can be well-defined, we cannot directly extend it to living cells because they are open systems 

and they are far from thermodynamic equilibrium. In Section 3, we will discuss novel 

experimental and theoretical approaches used to describe the linear response of living cells to a 

small stimulus based on an extension of the FDT. 

 

2.3 Modeling cell-to-cell variability from the noise of single gene expression in living cells- the 

static case 

It also is now common to use the Langevin equation (35) to characterize the expression noise of 

a single gene (8-9). While the Langevin model yields results equivalent to that of Monte Carlo 

simulations, its power lies in its straightforward physical interpretation that is often obscured in 

numerical simulations. One standard way to deal with the stochastic aspect of chemical reactions 

is to assume that each coordinate of a given chemical system independently obeys Poisson 

statistics for which the variance and average are equal, the molecular system is well mixed, and 

concentrations are continuous variables. For example, Ozbudak and colleagues (8) characterize 

the transcription of a single gene within a cell using a simple model: txntxn RNAkRNA
dt
d

ηγ +−=  , 
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where the number of mRNA molecules, RNA , is a continuous quantity, γ  is the degradation rate 

of RNA, txnk is the transcription rate per DNA, and txnη is a random function that models the 

noise associated with transcription. This Langevin equation assumes that there exists a steady 

state and that fluctuations about the steady concentration RNAδ reflect the response of the system 

to a Gaussian white noise source, 0)( =ttxnη  and )()()( τδτηη Dtt txntxn =+ , where backets 

represent population averages, and δ represents the Dirac δ -function. Expanding around this 

steady-state,
γ
txnkRNA = , by setting RNARNARNA δ+=  gives the Langevin equation for 

RNAδ :  

)(tRNARNA
dt
d

txnηγδδ =+  [14] 

Fourier-transforming this equation gives ,1
)(
)(

ωγωη
ωδ

i
RNA
txn +

=  Dtxn =
2)(ωη , so that the 

variance of the fluctuations is given by ∫ =
+

=
γωγπ

ω
δ

2
1

2 22
2 DDdRNA . Although this system 

is not at thermodymic equilibrium and we cannot use the equi-partition theorem, we can 

determine the value of D by assuming Poisson statistics for the fluctuations RNAδ . Therefore, 

setting RNARNA =2δ yields the amplitude of the input white noise txnkD 2= (8). Unlike in 

the Bialek-Setayeshgar model (Section 2.2), we cannot invoke the FDT because this system is 

not at thermodynamic equilibrium. In this static approach, there is usually no need to define the 

response function because, in general, the goal of these studies is to evaluate the variance 

associated with the transcription or translation of a specific gene. In other words, they aim to 
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measure the cell-to-cell variability within a clonal population of cells in a steady-state regime (9, 

36).  

 

2.4 The power of time-series to characterize signaling in single cells  

Because it is experimentally simpler, most experimental studies typically describe the noise of 

biological systems as cell-to-cell variability (8-9), see Section 2.3. Such studies assume that 

biological systems are ergodic, that is, the temporal average at the single cell level is equal to the 

ensemble average across many cells at a fixed time point. Experimentally, this assumption 

implies that a snapshot of a population of cells at steady state can reveal the statistics of the 

system. However, this assumption is not always sufficient because the snapshot approach does 

not allow us to characterize the temporal correlations in protein fluctuations taking place within 

the individual cell. Thus, due to the difficulty of such experiments, only a few experiments have 

used time-series analysis to determine noise from a single gene (10, 25, 37-38). For example, to 

distinguish which genes within a transcriptional network have an active regulatory connection, 

Dunlop and colleagues characterized the cross-correlation of the spontaneous fluctuations in the 

activity of two promoters, galS and galE, in the galactose metabolism system in E. coli (10). A 

copy of each promoter controlling the expression of either CFP or YFP was integrated into the 

chromosome. It is not obvious that the cross-correlation would reveal interactions between the 

two genes because global noise would also simultaneously affect the activity of both promoters. 

However, there exists a time lag in the profile of the cross-correlation function between 

promoters that have active and inactive transcriptional interactions (here a feed-forward loop 

(39)). Therefore, time lags in cross-correlation functions can distinguish the uniform effect of 
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global extrinsic noise from the specific cases of active regulatory interactions. While this lag 

time is measurable by performing the cross-correlation of the activity of two promoters, it also 

requires that the difference between the maturation times of CFP and YFP is small enough 

compared to the lag induced by the regulatory interactions.  

Beyond gene expression, spectral analysis has been used to analyze the nature of the temporal 

fluctuations throughout the signaling cascade of the chemotaxis system in E. coli. This system 

governs the locomotion of bacteria and allows the cells to move towards the source of chemical 

attractants, such as amino acids (40). In E. coli, chemotaxis has become a canonical system for 

the study of signal transduction networks because this network involves few components, it is 

amenable to tractable quantitative analyses. It exhibits, however, complex behaviors, such as 

sensitivity to stimulus and adaptation to environmental changes (see chapter Chemotaxis). The 

activity of the chemotaxis kinase CheA directly reflects environmental changes in the 

neighborhood of the bacterium. For example, following a sudden increase in aspartate 

concentration in the environment, aspartate will bind to Tar receptors, which will induce a drop 

of activity of the kinase CheA. For the sake of simplicity, we will assume that CheA, can be 

either in an active (A) or inactive state (A*) (Figure 2). When the kinase is active, it transfers a 

phosphate group to the diffusible signaling response regulator CheY. Active CheYp binds to the 

basal part of the rotary motor that powers the rotation of a long flagellar filament and increases 

the probability of the motor to rotate in a clockwise (CW) direction. In swimming bacteria, 

clockwise (CW) rotation induces tumbles and CCW smooth runs. In the absence of a stimulus, 

the bacterial motor switches randomly between CCW and CW rotations, whose frequency 

reflects the steady-state activity of the kinase and randomizes the trajectory of a swimming cell. 

To summarize, a drop in kinase activity, caused by a sudden stimulus of aspartate, induces CCW 
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rotation of the motor (smooth run) and bias the random trajectory of the cell toward gradient of 

attractant. After its initial drop, the kinase activity adapts back to its pre-stimulus level. This 

adaptation mechanism is governed by two antagonistic enzymes, CheR and CheBp, which 

regulate the activity of the kinase-receptor complexes (Figure 2) (41). The standard assumption 

is that non-stimulated cells that are exposed in a steady environment would exhibit a steady 

behavior. A single-cell analysis revealed that the slow fluctuations in CheA activity were 

reflected in the switching behavior of a single motor (42). Power spectra were used to analyze 

the fluctuations of the stochastic switching events of individual motors between two states. 

According to Equation [15], 

	   [15] 

the common expectation for constant rates +k  and −k  is that the power spectrum associated 

with the fluctuations CWMδ  should exhibit a Lorentzian profile. This power spectrum, identical 

to that of Section 2.2 (Equation [12]), would exhibit at long timescale a flat profile in a log-log 

plot: 

])([
1~)( 22 −+ ++ kk

p
CWM ω
ω  [16] 

Surprisingly, for bacteria in a steady environment, such as motility medium that does not support 

growth, the spectrum exhibits a corner frequency at short timescale (~1 sec), followed by a 

growing profile that ranges from ~10 sec to ~15 min. The slope of the power spectrum at long 

timescale indicates that the CCW and CW intervals from the motors are not exponentially 

distributed. Interestingly, the fluctuations of CheA activity are directly reflected in the 
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distributions of runs and tumbles of an individual bacterium. Therefore, the switching events are 

not governed solely by the Poisson statistics of the motor but also by an additional process that 

takes place in the signaling cascade and that occurs at much longer timescale. The complex 

profile (Figure 3) can be understood as the superimposition of two Lorentzians, one representing 

the motor switching with a knee frequency at short timescale and another one with a knee 

frequency at a much longer timescale due to the fluctuations of the CheA kinase activity 

governed by the slow antagonistic action of CheR and CheBp (Figure 2). As a consequence, 

different relative expressions of CheR or CheBp concentrations would yield different amplitudes 

of the fluctuations of CheA activity at long timescales. The CheR/CheBp ratio controls the 

amplitude of an adjustable source of behavioral variability (42). By contrast, population 

measurements found that the distribution CCW and CW were exponentially distributed, which 

would yield the power spectrum described by equation 16 without long timescale fluctuations 

observed at the single cell level (43). This discrepancy exemplifies the non-ergodic nature of 

some biological systems for which the analysis of long time series in individual cells is essential. 

 

3 Relationship between fluctuations and response, extending the FDT to living cells 

None of the previous examples has addressed the dynamical aspect of the FDT that relates 

spontaneous fluctuations with the linear response of a system to small external perturbation. 

Instead, this theorem has only been used to evaluate the variance associated with cell-to-cell 

variability within isogenic populations at a given time point. The next section explores whether 

the spontaneous fluctuations in biological systems is related to the response to a small external 

perturbation as predicted by the FDT. 
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3.1 Violation of the FDT due to energy consuming mechanisms 

A classic example of experimental violation of the fluctuation-dissipation theorem uses hair-

bundles from bullfrogs (12).  

)()( tC
dt
dt βχ −= 	  [18] 

While the theorem relates the response function to the derivative of the autocorrelation function, 

it is often more convenient to use its formulation in the frequency space: 

)(~Im2)(~ ωχ
βω

ω =C  [19] 

 

where )(~Im ωχ is the imaginary part of the Fourier transform of the response function, which 

represents the dissipation of the system, and the function )(~ ωC  is the power spectrum of the 

spontaneous fluctuations. In physics, 1−β  would represent the equilibrium temperature of the 

environment for the system. When the system departs from the equilibrium due to a mechanism 

that consumes energy, the theorem is violated.  A standard measure of the degree of violation of 

the theorem is provided by the ratio between the temperature of the system and an effective 

temperature )(ωeffT  : 

)(~Im
)(~

2
)(

ωχ
ωωβω C

T
Teff ⋅=  [20] 

If this ratio is equal to unity, the theorem is satisfied. When the relationship is less than unity, the 

system contains an active mechanism that consumes energy, and the theorem is violated. Using 

Equation [20], Martin et al. compared the spontaneous fluctuations of a hair-bundle from 

bullfrog to its response to a sinusoidal mechanical stimulation. To demonstrate that the theorem 
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was violated (12) (Figure 4), they showed how far the ratio  
T

Teff )(ω
  deviated from the unity.  

They concluded that the random fluctuations of hair cells are not solely due to the effect of 

thermal energy but also to an active mechanism within the hair cells. Such mechanism could 

govern active filtering and sharp frequency selectivity in this hearing system. In living systems, 

where there exist many energy consuming mechanisms, it is expected that the FDT is violated. 

3.2 The Prost-Joanny-Pandaro fluctuation-response theorem and its application to molecular 

motors 

A recent theoretical analysis of the FDT demonstrated that if a system has a well-defined steady 

state with Markovian dynamics, the FDT is extensible to a fluctuation-response theorem even in 

the absence of thermodynamic equilibrium (11). This result is extremely relevant to living cells 

that are not at thermodynamic equilibrium. Many biological systems display a well defined 

steady-state and exhibit fluctuations that are caused by underlying Markovian dynamics. Here, 

the term Markovian refers to dynamic processes that have short “memory” so that they can relax 

fast enough to a well-defined steady state. In the Prost-Joanny-Parrando (PJP) fluctuation-

response model (11), the steady-state exists when there is a well-defined probability distribution 

function );( λρ css  of the variables c controlled by a set of parameters αλ . The probability 

distributions are associated with the potentials )];(log[);( λρλφ cc ss−= . The PJP fluctuation-

response theorem relates the response function )'( tt −αγχ to the correlation function: 

ss

ssss tctc
dt
dttC

dt
dtt

γα
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λφ
λ
λφ

χ
∂

∂
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This theorem is directly applicable to in vitro biological systems and, in particular, to the 

bullfrog hair cells (Section 3.1). As we know, the standard FDT is violated in this system. 

However, when the coordinates derived from the potentials φ are used instead of using the 

conventional set of variables, such as the position coordinates, the extended PJP theorem is 

satisfied. This theorem becomes particularly practical to identify all the slow variables of a 

system, which contribute to the observed fluctuations and the relaxation to a small external 

stimulus.  

Similarly, this theorem applies to processive molecular motors (44-45) that have non-linear 

dynamics and do not obey energy conservation because ATP is used as a source of energy. When 

an optical tweezers traps a single motor, it acts like an elastic spring opposing the motor motion. 

As demonstrated in the PJP paper (11), the Langevin equation is a good model for describing the 

position of the motor )(tx  subject to stochastic fluctuations )(tη : 

)(])([)( txtxktx ss η+−−=  

where x(t) is the position from the center of the trap of a small latex bead that is covalently 

attached to molecular motor. The random function )(tη encapsulates both the complex stochastic 

behavior of the motor and the effect of thermal noise: 

0)( =tη , )'(2)'()( ttDtt −= δηη  

Here 1−k  is the relaxation time of this system and kD=2σ . In the case of a motor trapped in an 

optical tweezers, the potential );( λφ c  has the following analytical expression: 

)2log(
2
1

2
)(log)( 2

2

2

πσ
σ

ρφ +
−

=−= s
ss

xxx  

Using this potential, one can easily verify if the PJP fluctuation-response relationship (Equation 

[17]) is satisfied. 
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3.3 Conjecture: Fluctuation-response relationship and its implication on single cell behavior 

While the formulation of the PJP fluctuation-response theorem is convenient for in vitro systems 

whose potentials can be expressed analytically, it is less useful for living cells whose potentials 

are not directly accessible. However, as long as the underlying dynamic processes can be 

approximated by Markovian statistics and the variables under study, such as the concentrations 

of signaling proteins or the expression level of a specific gene, have a well-defined steady state, 

the PJP fluctuation-response relationship should also be, in principle, valid for living organisms. 

Applying the PJP fluctuation-response theorem to living cells means that we can formally write 

down a general relationship between the spontaneous fluctuations and the response function of 

the system to a small external perturbation. To illustrate the potential significance of the PJP 

fluctuation-response theorem in living cells, we will use bacterial chemotaxis (see Section 2.4). 

In E. coli, chemotaxis is one of the few biological systems in which both spontaneous 

fluctuations and response to a small external perturbation can be measured with high precision 

from individual living cells. Such accuracy is possible because the fluctuations of switching 

events between CW and CCW rotation of the bacterial motor reflect the fluctuations in the 

concentration of the signaling protein CheYp. Therefore, the output signal of the chemotaxis 

network is directly measurable. Moreover, this output signal can be experimentally monitored 

over a long timescale with high temporal precision, and its associated variance of the noise 2σ  

and correlation time corτ  can be characterized by computing the autocorrelation function C(t). In 

this system, the exposure to a small step of attractant defines the external perturbation, and the 

linear response can be characterized by the response function )(tχ and its associated response 

time, resτ . In the regime of linear approximation, it is expected that the response time and the 
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correlation time from the spontaneous fluctuations before stimulus are similar, but in practice, 

we can only expect these two times to be proportional corτ α resτ . This relationship, which is a 

consequence of the linear approximation alone, yields a first practical prediction that the 

response time can be inferred from the spontaneous fluctuations before stimulus. 

If the chemotaxis system were at thermodynamic equilibrium, the standard FDT would be 

satisfied: 

)()( tC
dt
dt βχ −= 	   

Additionally, the response function and the autocorrelation functions would be directly 

accessible from the measurements of the time series produced from the switching behavior 

between CW and CCW rotational states from an individual motor. However, as in the hair 

bundle example (12), the chemotaxis system likely violates the FDT because of the presence of 

energy-consuming mechanisms. Instead, we can use the PJP theorem to assume that there exists, 

in principle, a relationship between fluctuations and the response of the system to a small 

external stimulus. Alternatively, we can formally use a Langevin equation that couples the 

characteristics of the spontaneous fluctuations and cellular response to a small stimulus. The 

fluctuations of the switching behavior of individual motors are directly related to the 

fluctuations, Aδ , of the kinase activity CheA. Therefore, the behavior of the chemotaxis system 

can be coarse-grained by the following Langevin equation (41): 

 

)(1* tDAA
cor

δηδ
τ

δ +−=  

where )(tDδη   is an input random function that has the characteristics of white noise and an 

amplitude D, and corτ is the measured correlation time in the output of the signaling system. In 
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this phenomenological model, there exists a strict relationship between the noise amplitude	  of the 

kinase activity 2
CheAσ and the correlation time of the system corτ  such that corCheA

D
τσ
2

2 = . 

Importantly, because corτ α resτ , the noise 2
CheAσ  that governs the behavioral variability is coupled 

to the cellular response resτ  through the coefficient D. The coupling coefficient D can depend on 

the cellular state in a very complex way. Unfortunately, we do not have access to all variables of 

this living system, and it is not realistic to predict theoretically how D depends on the cellular 

state. However, if the general PJP fluctuation-response theorem is valid, it implies, in principle, 

the existence of a coefficient D that governs the coupling between noise and response time for 

each cellular state. In chemotaxis, the noise of the kinase CheA is reflected in the behavioral 

variability of the motor behavior of a single bacterium, and the coefficient D should govern the 

coupling between the cellular response and the behavioral variability of bacteria as stated by the 

Langevin equation. 

While it is difficult to evaluate how the coefficient D varies with different cellular states, it is 

straightforward to compute it for different concentrations of the chemotaxis proteins using a 

standard kinetic model of chemotaxis. For example, in a simple stochastic model, D was 

modeled using the fact that the adaptation mechanism is governed by a futile cycle (41).  Futile 

cycles are ubiquitous in signaling cascades and usually consist of two catalysts acting 

antagonistically to regulate the activity of a kinase protein. In brief, the two catalyst enzymes act 

as a sort of push-pull mechanism to control the activity of the kinase CheA (46). In chemotaxis, 

the coefficient D represents the strength of the spontaneous fluctuations taking place within a 

futile cycle associated with the methylation and demethylation reactions of receptors and was 

explicitly calculated in Emonet and Cluzel (41):  
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ArAbD ⋅+⋅ *~  
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 , and where *A is the concentration of free active kinase, 

bpε is the concentration of CheB-P, bK  is the Michaelis-Menten constant, bk  is the catalytic rate 

associated with demethylation and A  is the concentration of free inactive kinase, rε  is the 

concentration of CheR, rK  is the Michaelis-Menten constant, and rk  is the catalytic rate 

associated with methylation. Importantly, the coefficient D has strictly the same form as in ref. 

(47), where D was independently calculated for a vertebrate photo-transduction cascade. This 

similarity results from the fact that the same futile cycle is used as an adaptive mechanism in 

both signaling cascades. A wide range of other signaling pathways use similar cycles, such as 

Map-kinase pathways, so it is tempting to hypothesize that for most of these pathways the 

coupling between noise and response time should exhibit similar properties as that predicted in 

the chemotaxis signaling pathway. For example, in bacterial chemotaxis, we theoretically found 

that D varies weakly with the CheA kinase activity. As a result, we can predict that the cellular 

response scales linearly with behavioral variability measured before stimulus. In other words, 

this prediction implies that cells with the largest noise would also exhibit the longest response to 

a small external stimulus. It would certainly be interesting to investigate this prediction 

experimentally in a range of biological systems to determine when and how spontaneous 

fluctuations are coupled to the cellular response. 

 

Although the discussion of this last section is highly speculative, it highlights the possibility that 

beyond the chemotaxis network, the PJP fluctuation-response theorem and the Langevin 
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equation could provide a useful and general framework to characterize how noise and cellular 

response could be coupled in living organisms.  
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Figure 1: Thermal spontaneous fluctuations of a mechanical transducer. Changing the 

corner frequency, γω springc k= , is achieved by changing the stiffness or the dimension 

of the mechanical transducer. 

Reprinted by permission from Macmillan Publishers Ltd: [Nature Reviews Molecular Cell 

Biology] (Bustamante et al “Grabbing the cat by the tail: manipulating molecules one by 

one” 1: 130-136), copyright (2000). 
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Figure 2: Receptor-kinase signaling cascade in the chemotaxis system. When 

ligands bind to transmembrane receptors, the receptors control the kinase CheA (A) 

activity.In its active form (A*) CheA phosphorylates the signaling molecule CheY (Y) into 

the active form CheY-P (Yp). CheY-P diffuses throughout the cell and interacts with the 

flagellar motors to induce clockwise rotation (tumble) (MCW) from counterclockwise 

rotation (run) (MCCW). The phosphatase CheZ (Z) dephosphorylates CheY-P. A sudden 

increase in ligand-binding causes a decrease in kinase activity. Two antagonistic 

enzymes regulate the activity of the kinase-receptor complexes. The methyltransferase 

CheR (R) catalyzes the autophosphorylation of CheA by methylating the receptors. The 

active kinase A* phosphorylates the methylesterase CheB in CheB-P (Bp). CheB-P 

removes methyl groups from active receptor complexes, which catalyze kinase 

deactivation.
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Figure 3: Noise in the chemotaxis network. (Black curve) Power spectrum of the 

network output from a single non-stimulated wild-type cell can be described by two 

superimposed Lorentzian curves (grey). The knee frequency (dashed arrows) of each 

Lorentzian curve comes from distinct parts of the signaling network (Fig. 1). The higher 

frequency is the typical time for the motor switching. The lower frequency is the typical 

time for the CheA kinase fluctuations. Adapted by permission from Macmillan 

Publishers Ltd: Nature (Korbokova et al “From molecular noise to behavioural variability 

in a single bacterium” 428: 574-578), copyright (2004). 
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Figure 4: The effective temperature from a bundle of hair cells. Top panel: an active 

mechanism dissipates energy and violates the FDT. Bottom panel: When the active 

mechanism in the hair bundle is disrupted, the ratio 
T

Teff )(ω
is near unity, and FDT is 

satisfied. Reprinted from Martin et al “Comparison of a hair bundle's spontaneous 

oscillations with its response to mechanical stimulation reveals the underlying active 

process” 98: 14380-14385, Copyright (2001) National Academy of Sciences, U.S.A. 
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