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Abstract  

 

 

The increasing popularity of the Cre/loxP recombination system has lead to the 

generation of numerous transgenic mouse lines in which Cre recombinase is expressed 

under the control of organ or cell-specific promoters. Alterations in retinal pigment 

epithelium (RPE) are prevalent in the pathogenesis of a number of ocular disorders, 

including age-related macular degeneration. To date, six transgenic mouse lines have 

been developed that target Cre to the RPE under the control of various gene promoters. 

However, multiple lines of evidence indicate that high levels of Cre expression can be 

toxic to mammalian cells. We report here that in the Trp1-Cre mouse, a commonly used 

transgenic Cre strain for RPE gene function studies, Cre recombinase expression alone 

leads to RPE dysfunction and concomitant disorganization of RPE layer morphology, 

large areas of RPE atrophy, retinal photoreceptor dysfunction, and microglial cell 

activation in the affected areas. The phenotype described herein is similar to previously 

published reports of conditional gene knockouts utilizing the Trp1-Cre mouse, suggesting 

that Cre toxicity alone could account for some of the reported phenotypes and highlights 

the importance to include Cre-expressing mice as controls in conditional gene targeting 

studies. 
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Introduction 

  
 The retinal pigment epithelium (RPE) is a multifunctional, cuboidal monolayer of 

cells that separates the retinal photoreceptors from the choroid. The RPE is an essential 

component of the vertebrate retina and perform diverse functions including the formation 

of the outer blood retinal barrier, the phagocytosis of photoreceptor outer disk segments, 

and the regeneration of 11-cis retinal for the visual cycle.(1,2) Dysfunction of the RPE 

has been linked with a variety of ocular disorders, including age-related macular 

degeneration and retinitis pigmentosa, among others.  

 The Cre- loxP recombination system has been instrumental in dissecting the spatial 

and temporal function of many important genes involved in development, physiology or 

disease through the generation of organ or cell-specific knock out animals. It is an elegant 

technique to bypass lethal or severe developmental defects resulting from systemic 

ablation of essential genes.(3) Cre recombinase is a 38-kDa protein that catalyzes the 

recombination between two of its loxP recognition sites, a 34 bp sequence consisting of a 

core 8 bp sequence and two 13 bp palindromic flanking sequences.(4) However, several 

lines of evidence indicate that Cre expression can be toxic in mammalian cells since it 

can cleave mammalian DNA in a nonspecific manner at sequences sharing limited 

homology with the 34 bp loxP sequence.(5) Pseudo/cryptic- loxP sites that occur naturally 

in Escherichia coli, yeast and mammalian genomes serve as low affinity substrates for 

Cre recombinase (6-8) and continuous exposure to high concentrations of the enzyme 

triggers cleavage and recombination between these sites. These “illegitimate” 

recombinations can result in growth inhibition, cell cycle arrest, DNA strand breaks or 

even gross chromosomal aberrations.(9-11)  
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 Here, we report the phenotype induced by Cre expression in the RPE of the Trp1-

Cre transgenic mouse strain, where Cre is expressed under the control of tyrosinase 

related protein 1 (Trp1/Tyrp1, hereafter referred as Trp1) gene promoter. Trp1 belongs to 

the tyrosinase family of proteins, which are uniquely expressed in melanin synthesizing  

cells, including the RPE. Trp1 is a glycoprotein located in the melanosomal membrane 

that acts within the context of a series of reactions in the melanogenic pathway to control 

melanin production in melanosomes.(12) In this manuscript we describe damage to RPE 

and retina in the Trp1-Cre mouse that includes drastic  changes in gross cellular and 

ultrastructural morphology, irregularities in gene expression and ERG abnormalities; 

these alterations are not exhibited in their littermate controls. 
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Materials & Methods 

 

Animals 

All animal experiments followed the guidelines of the ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research and were approved by the Animal Care 

Committee of Massachusetts Eye and Ear Infirmary. The transgenic mouse line 

expressing Cre recombinase under the control of the Trp1  promoter was used for the 

experiments.(13) Genotyping of the Trp1-Cre transgenic allele was performed with the 

following primer set: Trp1-CreF, 5ƍ-GCGGTCTGGCAGTAAAAACTATC-3ƍ�DQG�7US�-

CreR, 5ƍ-GTGAAACAGCATT GCTGTCACTT-3ƍ�DORQJ�ZLWK�DQ�LQWHUQDO�FRQWURO�SULPHU�

set: CTAGGCCACAG AATTGAAAGATCT and 5ƍ - 

GTAGGTGGAAATTCTAGCATCATCC-3ƍ��ZKLFK�SURGXFHG�DPSOLFRQV�RI�����DQG�����

bp, respectively (See Supplementary Figure 1A at http://ajp.amjpathol.org). The Trp1-

Cre mouse strain was backcrossed for at least 10 generations with C57Bl/6 mice. All 

mice harboring the Trp1-Cre transgene were genotyped for the rd1 (retinal degeneration 

1; rd1) mutation (14) and only mice that did not carry the mutation where used for the 

experiments. Genomic DNA from FVB/N mice was obtained from Jackson Laboratories 

(Bar Harbor, Maine) and used as a positive control for the rd1 mutation. (See 

Supplementary Figure 1B at http://ajp.amjpathol.org) Littermate mice not carrying the 

Cre transgene were used as controls for all experiments. The ROSA26R reporter gene 

mouse was obtained from Jackson laboratories.(15) Anesthesia was achieved by 

intraperitoneal injection of 50 mg/kg ketamine hydrochloride (Phoenix Pharmaceutical, 

Inc., St. Joseph, MO) and 10 mg/kg xylazine (Phoenix Pharmaceutical, Inc.), and pupils 

were dilated with topical 0.5% tropicamide (Alcon, Humacao, Puerto Rico)  

http://ajp.amjpathol.org/
http://ajp.amjpathol.org/
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Immunohistochemistry of RPE flatmounts 

Under deep anesthesia mice were perfused through the left ventricle with 10 ml PBS 

followed by 10 ml of 4% parafolmadehyde (PFA). Eyes were enucleated and the 

anterior segment and retina were removed under a dissecting microscope. Special 

attention was paid during the removal of the retina to avoid damage of the underlying 

RPE. Four relaxing radial incisions were made and the remaining RPE-choroid-sclera 

complex was flat mounted on a glass slide. Flatmounts were air-dried for 10 min and 

incubated for 1 hr with blocking solution (5% donkey serum, 0.3% bovine serum 

albumin, 0.3% Triton-X). Primary antibodies were incubated overnight at 4oC in a 

moisture chamber. A full list of antibodies as well as their working concentrations is in 

Supplemental Table 1 at http://ajp.amjpathol.org. 

 

X-Gal Staining IRU�ȕ-Galactosidase Activity 

For whole-mount X-Gal staining, eyes were enucleated and fixed for 7 min in 4% PFA. 

After fixation, eyes were washed thoroughly three times with wash buffer (0.1 M 

sodium phosphate, 2 mM MgCl2, 0.01% deoxycholate, 0.02% Nonidet P-40). 

Immediately after washing, eyes were placed in pre-warmed (37oC) X-Gal staining 

solution (5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6-6H2O diluted in wash buffer)  and X-Gal 

(5-bromo-4-chloro-3-LQGRO\O�ȕ-D-galactopyranoside, SIGMA) was added to a final 

concentration of 1 mg/ml. Eyes were protected from light and incubated in 37oC 

overnight. For tissue sections, eyes were enucleated and embedded into optimal 

temperature cutting medium (OCT-TissueTek). Serial sections of 10 ȝP�ZHUH�FXW�XVLQJ�

http://ajp.amjpathol.org/
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a cryostat (LeLFD��DQG�DVVD\HG�IRU�ȕ-galacatosidase activity, as described above. To 

better visualize X-gal staining in the RPE, pigment was bleached (after X-gal staining) 

by incubation in KMnO4 (0.25% in water) for 35 min at room temperature (protected 

from light) and subsequent incubation in oxalic acid (1% in water) for 20 min at room 

temperature. 

 

Fluorescein Angiography (FA) 

FA was performed using a commercial camera and imaging system (TRC 50 VT camera 

and IMAGEnet 1.53 system; Topcon, Paramus, NJ). Photographs were captured with a 

20-diopter lens in contact with the fundus camera lens after intraperitoneal injection of 

0.1 mL of 2% fluorescein sodium (Akorn, Decatur, IL). 

 

ERG Analysis 

ERGs were recorded as previously described (16). Briefly, following an overnight dark 

adaptation mice were anesthetized with sodium pentobarbital at 80 mg/kg given 

intraperitoneally. Their pupils were dilated with 0.2% phenylephrine and 0.02% 

cyclopentolate hydrochloride. Full- field, rod-dominant (>95%) ERGs were elicited with 

10 µsec flashes of white light (4.3 log ft-Lt) presented at 1-minute intervals in a 

Ganzfeld dome. 

 

Electron Microscopy  

Eyes were enucleated under deep anesthesia and the globe was cleaned of all extraneous 

tissue then rinsed with saline. The globe was immediately placed into fixative consisting 
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of 2.5% gluteraldehyde and 2% formaldehyde in 0.1 M cacodylate buffer with 0.08 M 

CaCl2 at 4 °C. After a short 10 to 15 min fixation, the eye was bisected at the limbus and 

the anterior segment was separated from the posterior segment and the parts to be 

examined were placed  back in the fixative.  Within 24 hr of enucleation, the tissue was 

washed in 0.1 M cacodylate buffer and stored at 4°C. The tissue was post- fixed for 1.5 

hr in 2% aqueous OsO4. Tissue was dehydrated in graded ethanols, transitioned in 

propylene oxide, infiltrated with propylene oxide and epon mixtures (TAAB 812 resin, 

Marivac, Quebec, Canada) embedded in epon and cured for 48 hr at 60°C. One-micron 

sections were cut on a Leica Ultracut UCT and stained with 1% toluidine blue in 1% 

borate buffer. For transmission electron microscopy observation, thin sections were cut 

at 70-90 nm and stained with saturated, aqueous uranyl acetate and Sato’s lead stain. 

Examination was done on a Philips CM-10 electron microscope.  

 

Animal SD-OCT  

Optical coherence tomography was performed using a spectral domain OCT system 

(SDOCT Bioptigen Inc., Durham, NC) as previously described.(17) Briefly, a volume 

analysis centered on the optic nerve head was performed, using 100 horizontal, raster, 

and consecutive B-scan lines, each one composed by 1200 A-scans. The volume size 

was 1.6 x 1.6 mm. Total retinal thickness and outer nuclear layer thickness was assessed 

at 500 ȝP����� ȝP����� ȝP�GLVWDQFH�IURP�WKH�RSWLF�QHUYH�KHDG��QDVDOO\�DQG�WHPSRUDOO\��

and at 200 ȝP����� ȝP�DERYH�DQG�EHORZ�WKH�RSWLF�QHUYH�KHDG��  

 

Western Blot analysis 
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The choroid-RPE tissue from Trp1-Cre mice and respective controls was separated from 

the retina and homogenized in lysis buffer(18), supplemented with a mixture of 

proteinase inhibitors (Complete Mini; Roche Diagnostics, Basel, Switzerland). The 

samples were centrifuged  (14,000 rpm for 30 min at 4°C) and supernatants were 

collected. Protein concentration was assessed with the bicinchoninic acid protein assay 

(BCA, Pierce, Rockford, IL, USA). Thirty micrograms of protein per sample were 

separated in a 4-20% gradient sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) 

(Invitrogen Corporation, Carlsbad, CA, USA) electrophoresis and the proteins were 

electroblotted onto PVDF membranes. After 20 min incubation in blocking solution 

(Starting Block TMT20, Thermo Scientific, Waltham, MA), membranes were incubated 

with primary antibodies overnight at 4°C. Supplemental table 1 includes a full list of 

antibodies and their working concentrations. Peroxidase- labeled secondary antibodies 

(Amersham Pharmacia Biotech, Piscataway, NJ, USA) were used and proteins were 

visualized with enhanced chemiluminescence technique (Amersham Pharmacia 

Biotech). 

 

ELISA  

Analysis of IL-10 production was performed using a quantitative ELISA kit (R&D 

Systems). After perfusion with 10 ml PBS, choroid-RPE lysates from wild type and 

Trp1-Cre mice were collected and assayed for IL-10 protein levels according to the 

manufacturer’s instructions. Values were normalized to lysate protein levels. 

 

Statistical Analysis 
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Values are expressed as mean ± SEM (unless specified), and statistical analysis was 

performed using an un-paired Student t-test (***, P < 0.001; **, P < 0.01; *, P < 0.05; 

ns, P > 0.05). 

 

Results 

 
Expression pattern of Cre-recombinase in the Trp1-Cre mouse  

To evaluate the expression pattern of Cre recombinase in the Trp1-Cre transgenic mouse 

strain, adult 2 month old Trp1-Cre mice were crossed with the ROSA26 reporter gene 

mouse to yield a Trp1-Cre;ROSA26R line. Upon Cre gene expression, the recombinase 

activity results in the excision of a loxP-flanked STOP sequence that prevents 

expression of a lacZ gene.(15) 7KXV��ȕ-galactosidase staining reflects Cre recombinase 

activity in vivo. We confirmed that the Trp1-Cre mouse provided robust Cre expression 

in the RPE (Fig.1C). To estimate the percentage of Cre- expressing cells, X-Gal staining 

and subsequent melanin bleaching were performed on whole eyecups of Trp1-

Cre;ROSA26R mice. There was a variable degree of mosaicism in Cre-expression 

ranging from 60 to 90% of total RPE cells (Fig.1F, Supplementary Fig. 1C at 

http://ajp.amjpathol.org). Ectopic Cre expression in other ocular tissues was evident 

such as the ciliary margin of the retina (Fig. 1A, B, E), ciliary pigment epithelium (Fig. 

1B) and optic nerve stalk (See Supplementary Fig. 1D at http://ajp.amjpathol.org). 

ROSA26R eyecups incubated with X-Gal staining solution did not show any ȕ-

galactosidase activity. (Fig. 1G, H) Taken together, these data indicate that the 

expression pattern of our Trp1-Cre strain is consistent with the one described by Mori et 

al in the initial description of the Trp1-Cre mouse.(13) 

http://ajp.amjpathol.org/
http://ajp.amjpathol.org/
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Severely altered RPE morphology in the Trp1-Cre mouse 

Intercellular tight junctions are critical for the maintenance of RPE monolayer integrity. 

Adherens proteins, such as ȕ-catenin, are important for intercellular adhesion and 

preservation of the epithelial morphology, whereas tight junction proteins, like zona 

occludens-1 (ZO-1), have a fundamental role for the formation and function of outer 

blood retinal barrier.(19) To examine the morphology of the RPE layer in the Trp1-Cre 

mouse, immunofluorescent staining was performed on flatmounts using a monoclonal 

DQWLERG\�DJDLQVW�WKH�DGKHUHQV�MXQFWLRQ�SURWHLQ�ȕ-catenin. In Trp1-Cre mice, the majority 

of the RPE monolayer had lost its classic honey-comb appearance and the cells were 

enlarged, polygonal, and dysmorphic compared to wild type controls (Fig. 2A-F). 

Quantitative analysis showed a dramatic decrease in RPE cell density (number of cells 

per unit area)(Fig. 2G). Average cell size and perimeter were found to be significantly 

higher in Trp1-Cre mice compared to wild types (Fig.2H, I). Similar results were 

obtained after immunostaining with a FITC-conjugated monoclonal antibody against 

ZO-1 (See Supplemental Fig. 2A at http://ajp.amjpathol.org). Furthermore, although ȕ-

catenin is mostly associated with the cell membrane, an aberrant cytoplasmic 

distribution was evident indicating a disturbance in its characteristic membranous 

association (Fig. 2D, F arrows). The latter was accompanied by a reduction of protein 

expression as shown by Western blot on 2-month-old choroid-RPE lysates. (Fig. 2K, L). 

Finally, immunofluorescent staining with a mouse monoclonal antibody against Cre 

recombinase revealed nuclear localization of the protein as expected. (Fig. 2F). 

 

http://ajp.amjpathol.org/


 

 

12 

Pigmentary defects in the RPE of the Trp1–Cre mouse 

Macroscopic examination of RPE flatmounts from Trp1-Cre mice revealed wedge-

shaped areas of pigmentary defects that were extending from the mid-periphery until the 

ora serrata (Fig.3B, arrows). To further examine this finding, FA was performed in adult 

1-month-old animals. The pigmentary defects observed previously corresponded to areas 

of hyperfluoresence that increased in intensity over time but not in size (window defect) 

(Fig.3F, G, H, arrows). These defects were bilateral and interestingly found at all times 

in similar position in the periphery of the eye (2 and 10 o’clock meridians). In addition, 

late phase angiograms of Trp1-Cre mice revealed diffuse background hyperfluorescence 

(Fig.3G, H). Next, Trp1-Cre and wild type littermate controls were perfused with 

rhodamine-conjugated concanavalin-A lectin and counterstained the overlying RPE 

layer with a FITC-conjugated antibody against ZO-1 (Fig.3I-N). As expected, in wild-

type animals the RPE layer precluded visualization of the underlying choroid due to its 

dense melanin content (Fig.3I-K), whereas in Trp1-Cre mice the choroidal vasculature 

was visible beneath the RPE indicating a defect in its pigmentation (Fig.3L-N), which 

may account, at least in part, for the diffuse background hyperfluorescence observed on 

)$��7KLV�ZDV�IXUWKHU�VXSSRUWHG�IURP��ȝP�VHPL- thin sections stained with toluidine blue, 

where the RPE layer was flattened with large discontinuities in its pigmentation (Fig. O-

Q). 

 

Morphological abnormalities in the RPE of the Trp1-Cre mice  

Next, the morphology of the RPE layer was assessed by transmission electron 

microscopic analysis of adult 2-month-old wild type and Trp1-Cre mice. There was a 
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substantial decrease in the thickness of RPE cells of Trp1-Cre mice with either loss or 

disorganization of the apical villi, which did not integrate with the outer segments of 

photoreceptors (Fig.4D-I, asterisk). In addition, a reduction of basal laminar infoldings 

was noted (Fig. 4E-H). Melanin granules were larger (Fig. 4E,F) and irregularly shaped 

(Fig.4E,H) compared to the elliptical or spherical shape of  wild type controls (Fig 4A-

C). RPE cells with little or no melanin granules were also evident (Fig.4D, G, I). In line 

with the initial description of the Trp1-Cre mouse, there were no abnormalities in the 

shape of choroidal melanocytes (Fig.4B, E-G), which do not express Cre recombinase 

(13). 

 

Retinal abnormalities in Trp1-Cre mice  

Given the critical role of the RPE in the maintenance and function of the photoreceptor 

cell layer, retinal function of Trp1-Cre mice was examined. ERG analysis was 

performed on adult 1-month-old animals. Both scotopic and photopic responses were 

significantly reduced in Trp1-Cre mice compared to the ERG responses obtained from 

wild type mice counterparts (Fig. 5A). To assess whether there is a progressive 

degeneration of photoreceptors aged 4-month-old mice were analyzed and their ERG 

responses compared with that of 1-month-old animals. No significant differences were 

identified between the ERGs of the two groups (data not shown). Consistent with the 

abnormal ERG data, a pronounced decrease in total retinal thickness (Fig. 5B,C) and 

outer nuclear layer thickness (Fig. 5B,D) was seen in Trp1-Cre mice as examined in vivo 

with Spectral Domain Optical Coherence Tomography (SD-OCT). Finally, western blot 

analysis of choroid-RPE lysates for RPE65, a protein abundantly expressed in the RPE 
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that plays a critical role in retinoid processing, revealed a significant reduction in its 

expression level compared to wild-type animals, suggesting possible deficits in the 

visual cycle (Fig. 5E). 

 

Microglial cell activation in the Trp1-Cre mouse 

The retinal microglia constitute the resident macrophages of the retina and are among 

the first cells to respond after tissue injury (20). Under normal conditions, the retinal 

microglia are distributed throughout the retinal layers with the notable exception of the 

subretinal space, which is considered an immune privileged site (21). To investigate 

whether Cre-mediated RPE damage triggers microglial cell activation, 

immunofluorescent staining was performed on RPE flatmounts using an antibody 

against the macrophage/microglial cell marker Iba-1, a calcium-binding protein involved 

in membrane ruffling and phagocytosis and is significantly upregulated during 

microglial cell activation (22). No microglial cells were detected in the subretinal space 

of wild type 2 month-old mice (Supplemental Fig. 3A-C at http://ajp.amjpathol.org). On 

the other hand, immunofluorescent staining of RPE flatmounts from Trp1-Cre mice 

revealed a dramatic accumulation of microglial cell in the subretinal space, mostly at the 

areas of the damaged RPE (Fig. 6A-F, Supplemental Figure 3 D-F at 

http://ajp.amjpathol.org). Furthermore, microglial cells acquired an amoeboid- like 

morphology with short processes (Fig. 6H) indicative of their phagocytic-activated state.  

Moreover, their cell bodies co- localized with cellular debris stained positive for FITC-

ZO1 that was most likely originating from phagocytosed RPE cells (Fig. 6G-I, 

Supplemental Fig. 3 D-F at http://ajp.amjpathol.org). Finally microglial cells were 

http://ajp.amjpathol.org/
http://ajp.amjpathol.org/
http://ajp.amjpathol.org/
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intimately associated with areas of dysfunctional RPE cell membranes or areas of RPE 

remodeling, as identified from the absence of ZO-1 immunostaining of RPE cell 

membranes or the structural changes of surrounding RPE cells, respectively (Fig 6 J-L, 

and Supplemental Figure 3K-M at http://ajp.amjpathol.org).

http://ajp.amjpathol.org/
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Discussion 

 

The present study describes a phenotype in the Trp1-Cre mice characterized by 

dramatic changes in the morphology of the RPE monolayer, irregularities in its 

pigmentation, retinal dystrophy and concomitant activation of the retinal microglia in the 

affected areas.  The described phenotype had 100% penetrance with patchy distribution 

and was observed in both male and female hemizygous mice for the Trp1-Cre transgene. 

In the Trp1-Cre strain, Cre expression in the RPE starts from embryonic day 10.5 (time 

of RPE differentiation) to postnatal day 12 (13) and significant changes in RPE 

monolayer appearance were evident also on postnatal day 14 indicating that Cre may 

have exerted its toxic effect even before this time point (See Supplemental Fig. 2B at 

http://ajp.amjpathol.org).  

It is known that the insertion of a Cre transgene or any other transgene may affect 

the function of the upstream gene promoter chosen to drive transgene expression. For 

instance, CD19-Cre mice, which are employed to evaluate gene function in B-cells, show 

50% decrease in the levels of CD19 expression compared to wild type B-cells (23). 

Similarly, rat insulin II promoter-&UH�PLFH��H[SUHVVLQJ�&UH�LQ�SDQFUHDWLF�ȕ-cells, are 

glucose intolerant (24). Therefore, the abnormalities in RPE pigmentation and 

melanosome shape we observed in the Trp1-Cre mouse and previously reported by two 

other studies (25, 26) may be attributed to abnormalities in the function of Trp1 gene 

promoter, which drives Cre expression in this particular strain and is heavily involved in 

melanin synthesis under normal conditions (27). 

Findings described in this study suggest that some of the phenotypes described in 

prior RPE specific knockout studies utilizing Trp1-Cre mice may have been a 

http://ajp.amjpathol.org/
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combination of the targeted loxP gene excision and/or the Cre transgene presence toxicity 

itself (Table 1)(25, 26, 28-32). For instance, retinal dystrophy with abnormal ERG 

responses and decreased RPE65 expression have been reported by two independent 

studies (26, 29) using the Trp1-Cre line to knockout RXRĮ�DQG�/UDW, respectively, as we 

see in Trp1-Cre alone. Similarly, areas of hyperfluoresence that increased in intensity 

over time but not in size (window defect) on FA have been reported as a result of 

conditional ablation of VEGF in the RPE (25). In addition, the mosaic nature of the Cre 

toxicity phenotype necessitates that as proper controls panoramic investigation of the 

RPE monolayer should be included in RPE conditional knockout studies. Therefore, 

based on our findings in this study, we may need to re-evaluate the conclusions drawn 

from previous studies using the Trp1-Cre mouse (21 - 27). 

Another interesting finding of this study is the activation of the retinal microglia 

and its subsequent migration to the subretinal space, which is normally devoid of immune 

cells (21). The RPE plays an important role in keeping the retinal microglia in a ramified-

quiescent state through the secretion of immunosuppressive cytokines such as TGF-ȕ��IL-

10 and PEDF among others (33). Indeed, IL-10 protein levels were found to be 

significantly decreased in choroid-RPE lysates from Trp1-Cre mice compared to wild 

type controls (See Supplemental Fig. 3N at http://ajp.amjpathol.org), which may partially 

explain the profound activation. However, it is not clear whether the reduction in IL-10 

was due to a decrease in RPE cell number or due to a general manifestation of RPE 

dysfunction. In our study, the retinal microglia were strongly associated with areas of 

damaged RPE cells and phagocytosed cellular debris most likely originating from RPE 

cells. It is plausible that microglial cells play a role in repopulating and remodeling the 

http://ajp.amjpathol.org/
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RPE monolayer following dysfunction or cell death with the aim of maintaining its 

integrity. This is further supported by several recent studies demonstrating that activated 

subretinal microglia can influence the function of RPE cells or even change their 

morphology (34, 35). The accumulation of activated subretinal microglia has been 

demonstrated in specimens from patients with dry AMD (36). Further investigations are  

needed to fully elucidate the interplay between the RPE and the retinal microglia. 

 To date, six mouse lines expressing Cre recombinase in the RPE have been reported 

in the literature (13, 37-41), yet this is the first report indicating potential problems 

caused by prolonged and robust Cre expression by the RPE. The possibility of such  

toxicity effect should alert investigators utilizing other lines expressing Cre in the RPE. 

While the use of transgenic animals with high levels of Cre expression can ensure a high 

recombination level they may also pose a significant risk of Cre-mediated cellular 

toxicity potentially due to non-specific “illegitimate” recombination events (9). To avoid 

this complication, several strategies have been developed to control Cre expression such 

as induction via tamoxifen or tetracycline administration or the use of self-deleting Cre-

expressing vectors (42). Despite these efforts, issues of toxicity remain even with ligand-

dependent recombinases (43, 44). Therefore, it is clear that inclusion of the most crucial 

control, namely mice carrying the Cre transgene, and a comprehensive investigation of 

the RPE flat mount should always be included in conditional gene targeting studies for 

accurate interpretation of scientific results. 
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FIGURE LEGENDS 

 

Figure 1. ȕ-galactosidase activity in the Trp1-Cre;ROSA26R line. Sagittal frozen 

sections showing Cre expression in the ciliary margin of the retina (A-B), ciliary body 

(B) and retinal pigment epithelium (C). Representative RPE flatmounts from Trp1-

Cre;ROSA26R mice (E-F) showing the extent of Cre expression in the peripheral retina, 

which was folded over for better visualization of X-Gal staining (arrows). Melanin 

bleaching (F-H) to identify the percentage of Cre expressing cells. No ȕ-galactosidase 

activity was observed in ROSA26R controls incubated with X-Gal staining solution (D, 

G-+��6FDOH�EDUV��$�������ȝP��%�������ȝP���&-'������ȝP��(-+������ȝP� 

 

Figure 2. Morphological abnormalities of RPE monolayer of the Trp1-Cre mouse. 

Immunohistochemical staining for the junctional protein ȕ-catenin revealed severe 

disorganization of RPE cells (C, D) with loss of its classic honeycomb appearance (A, B) 

Substantial loss of ȕ-catenin membranous association (D,F arrows) was also observed 

compared to wild type controls. Significant decrease in cell density (G), increase in cell 

size and cell perimeter in Trp1-Cre mice (H-I). (K) Western blot analysis of choroid-RPE 

protein lysates from wild type and Trp1-Cre mice showed significant decrease in ȕ-

catenin protein expression levels. (L) Densitometric analysis of ȕ-catenin expression. 

6FDOH�%DUV�$�&�����ȝP��%�'-)������ȝP 

 

Figure 3. Pigmentary defects in Trp1-Cre mice. (A,B) Macroscopic examination of RPE 

flatmounts from wild type and Trp1-Cre mice showed large wedge shaped areas of 
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depigmentation (arrows). (C-H) Early and late phase FA demonstrated large areas of 

hyperfluorescence at 10’ (G) and 2 o’clock (H) meridians. (I-N) Perfusion with 

rhodamine conjugated Concancavalin A lectin and counterstaining with FITC-ZO-1. In 

wild type mice, the melanin content of the RPE blocked the fluorescent signal from the 

choroid. In Trp1-Cre mice visualization of the underlying large bore capillary bed of the 

choroid can be seen due to abnormalities in its pigmentation. (O-Q) Large areas of 

depigmented and flattened RPE cells  (arrows) were seen on 1um toluidine blue sections, 

compared to the uniform shape of wild type RPE cells (Q). Scale Bars, A, B : 500 ȝm, I-

1�����ȝP��3-4������ȝP� 

 

Figure 4. Ultrastructural abnormalities in the RPE of the Trp1-Cre mouse (D-I) and 

littermate control mice (A-C). Abnormalities in the number (D, I), shape (E) and size (F, 

H) of RPE melanin granules were seen in Trp1-Cre mice compared to the fusiform shape 

of wild type controls (A-C). Notice the unusually large melanin granule (asterisk) (F). 

The apical villi (AV) were collapsed and did not integrate with photoreceptors, as in wild 

type RPE. Microglial cell (M) with phagocytic granules in the subretinal space (E, 

outline). POS, photoreceptor outer segments; CC, choriocapillaris; AV, apical villi, BLI, 

basal laminar infoldings; BRM, Bruch’s membrane; CH, choroid; M, 

macrophage/microglial cell Scale bars; A,B,D,I: 1 ȝm, &�����ȝP��(�)�*������ȝP 

 

Figure 5. Retinal abnormalities in Trp1-Cre mice. (A) Representative scotopic and 

photopic responses in 1-month-old control and Trp1-Cre mice. Amplitudes of both a- 

waves and b-waves were reduced in Trp1-Cre mice. (B) In vivo evaluation with SD-OCT 
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(spectral domain optical coherence tomography) at the level of optic nerve (arrow) and 

����ȝP�DERYH��DUURZKHDG��DQG�PHDVXUHPHQW�RI� WRWDO� UHWLQDO�WKLFNQHVV��EOXH�DUURZ��DQG�

outer nuclear layer thickness (orange arrow). (C-D) Significant decrease in total retinal 

thickness and outer nuclear layer thickness was seen in Trp1-Cre mice. (E) Western blot 

analysis of choroid-RPE lysates for RPE65 protein expression levels (n = 6). 

 

Figure 6. Microglial cell activation and migration to the subretinal space in the Trp1-Cre 

mouse. (A-F) Iba-1 positive microglial cells were mostly confined to the areas of injured 

RPE cells. (G-I) Cellular debris stained positive for FITC-ZO1 co- localized with cell 

bodies of activated, amoeboid shaped microglial cells (arrows). (J-K) Microglial cells 

were commonly associated with areas of dysfunctional RPE cell membranes, as indicated 

from the absence of ZO-1 immunostaining. Scale bars, A-&������ȝP��'-)������ȝP��*-L: 

���ȝP 

 

Supplemental Figure 1. (A) Genotyping for Cre- transgene (100 bp) and internal 

positive control (~324 bp) (Ǻ�� PCR analysis for the presence of the rd1 mutation. 

Genomic DNA from FVB/N mice was used as positive control. (C) X-Gal staining and 

subsequent melanin bleaching of Trp1-Cre ; ROSA26R flatmounts reveals variable 

degree of mosaicism in Cre expression. Scale Bar : 500 ȝm (D) Wholemount X-Gal 

staining confirms ectopic Cre expression in the optic nerve stalk, as initially reported by 

Mori et al (13).  

 

Supplemental Figure 2.  (A) Double immunofluorescent staining of RPE flatmounts 
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from Trp1-Cre mice and littermate wild type controls using antibodies against the 

proteins ZO-��DQG�ȕ-catenin. Loss of the classic honeycomb appearance of the RPE 

monolayer can be observed. Scale bar 200 ȝm (B) Immunofluorescent staining using an 

antibody against ȕ-catenin on RPE flatmounts obtained at P14 indicates significant 

disorganization of the RPE monolayer. Scale bar 100 ȝm 

 

 

Supplemental Figure 3.  

Double immunofluorescent staining of RPE flatmounts using a FITC conjugated antibody 

against ZO-1 and the microglial cell marker Iba-1. The subretinal space is devoid of  

microglial cells in wild type mice (A-C), compared to Trp1-Cre mice where significant 

microglial cell activation is observed. (D-F) Microglial cell bodies co-localized strongly 

with cellular debris stained positive for FITC-ZO1. Scale Bars A-F :100 ȝm. Microglial 

were often localized in areas of RPE remodeling. Notice the changes in the shape of RPE 

cells (arrows) Scale Bar: 10 ȝP.  Isotype control antibodies (K-M) Quantitative 

determination of IL-10 protein levels in choroid-RPE protein lysates obtained from Trp1-

Cre and littermate controls (N).
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Table 1. Studies that have used the Trp1-Cre mouse to inactivate targeted loxP sites 

 
 

 
 

# Targeted Gene Phenotype described Year Ref. 

1 RXRĮ Decreased expression of RPE65, CRALBP x 
photoreceptor alterations ; decrease in number ; 
shortening of OS ; reduced light responses on ERG  

2004 26 

2 VEGFĮ Microphthalmia x absence of choroid x reduction in the 
content of melanin granules x abnormally shaped 
melanin granules x disorganization of basal infoldings 
x loss of apical villi x reduced RPE thickness x ERG 
abnormalities (decrease in a and b wave) x RPE 
defects on fluorescein angiography 

2005 25 

3 Lrat reduced light responses on ERG x shortening of rod 
outer segments x slight reduction in photoreceptor 
nuclei  

2007 29 

4 PTEN Retinal degeneration x reduction in ONL x pigmented 
tumors in spleen 

2008 30 

5 ȕ-catenin Microphthalmia x colobomas x disruption of cellular 
junctionsx 

2009 28 

6 ȕ-catenin Microphthalmia x colobomas x disruption of cellular 
junctionsx 

2009 31 

7 RBP-Jț, Notch1, 
Notch2 

Microphthalmia x benign pigmented tumors 2010 32 
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