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Abstract

Retinal photoreceptors are particularly vulnerable to local high-glucose concentrations. Oxidative stress is a risk factor for diabetic retinopathy
development. Melanocortin receptors represent a family of G-protein-coupled receptors classified in five subtypes and are expressed in retina.
Our previous data indicate that subtypes 1 and 5 receptor agonists exert a protective role on experimental diabetic retinopathy. This study
focuses on their role in primary retinal cell cultures in high-glucose concentrations. After eye enucleation from wild-type male C57BL/6 mice,
retinal cells were isolated, plated in high-glucose concentration and treated with melanocortin receptors 1 and 5 agonists and antagonists.
Immunocytochemical and biochemical analysis showed that treatment with melanocortin receptors 1 and 5 agonists reduced anti-inflammatory
cytokines and chemokines and enhanced manganese superoxide dismutase and glutathione peroxidase levels, preserving photoreceptor integ-
rity. According with these evidences, we propose a major role of melanocortin receptors 1 and 5 on primary retinal cell response against high
glucose or oxidative insults.
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Introduction

Hyperglycaemia is one of the most common complications of dia-
betes leading to vision impairment worldwide [1, 2]. Hyperglycaemia
is also accompanied by oxidative misbalance. Briefly, oxidative stress
can be considered as a pro-oxidant over drive versus the antioxidant
ones [3]. Several reports have focused on the relevance of oxidative
stress for diabetes outcome. In fact, the use of co-adjuvant antioxi-
dant therapies may result helpful for the management of this disease
[4–6].

Among the antioxidant enzymes, manganese superoxide dismu-
tase (MnSOD) and glutathione peroxidase (GPx) play a key role on
the antioxidant cell machinery. GPx and MnSOD are crucial for

oxidative balance on neural tissue including retina [4, 7]. More con-
cretely, it has been reported that catalase, GPx and MnSOD genes are
significantly reduced in patients with diabetic retinopathy [8].

Retina is a complex neural cell layer lining the inner surface of the
eye involved in processing of visual stimuli [9]. Several cell types are
included on retina for example amacrine cells, M€uller cells, ganglion
cells and photoreceptors among others. It has been demonstrated
that retinal photoreceptors are particularly vulnerable to local high-
glucose concentrations [10] and oxidative stress is a risk factor for
diabetic retinopathy development [11], and retinal photoreceptor
alterations may play an important role in the progression of diabetic
retinopathy [12].

Melanocortin receptors (MCR) represent a family of G-protein-
coupled receptors classified in five subtypes (MCR1-5) [13–15]. MCR
are expressed in several tissues including retina [9, 16], and they can
be activated or inhibited by either agonists as a-melanocyte-stimulat-
ing hormone (a-MSH) or antagonists as agouti-related protein [17].
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MCR agonists as a-MSH preserve from rat dry-eye alterations via
protein kinase A–cAMP response element-binding protein (PKA-
CREB) and extracellular signal-regulated kinases–protein kinase B
(ERK-AKT) pathways [18] and more concretely, it protects retinal pig-
ment epithelium from oxidative stress by activating the melanocortin
receptor 1–protein kinase B–mammalian target of rapamycin complex
1 (MCR1-AKT-mTOR) pathway [19]. Fitting with this, previous data
from our laboratory indicate that MCR1 and MCR5 receptor agonists
exert a protective role on experimental diabetic retinopathy by modu-
lating the pattern of cytokine and chemokine expression [13].

Following this previous data from our laboratory, here we would
like to test whether the protective role of MC1,5 receptors is exerted
on some proper structures of the retina such as the photoreceptors.
Thus, a study was undertaken on a primary retina-cell culture stimu-
lated with high-glucose concentrations and with MCR1,5 agonists
were used under high-glucose conditions to delve into the protective
role of MCR agonists on photoreceptors, through evolution of the
expression and levels of two specific photoreceptor markers as opsin
and recoverin.

Material and methods

BMS-470539 and PG-901 were used as MCR1 and MCR5 agonist,

respectively, although PG901 also binds with antagonistic activity MC3R

and MC4R [20, 21]. Compounds were supplied by Professor Grieco

(Pharmacy Department, University of Naples Federico II).

Animals

All the experimental procedures were performed according to the Sec-

ond University of Naples guidelines of the Ethic Committee for animal

experiments. Three-week-old male C57BL/6 mice (18–22 g) (Harlan,

Milan, Italy) were housed in standard cages (n = 10 per cage) with a
cycle of 12 hrs light (7 a.m. to 7 p.m.) and 12 hrs dark, humidity and

temperature automatically controlled to 60% and 21 � 1°C,
respectively.

Retinal cell cultures

Retinal cell cultures were obtained according to Santiago et al. [2] with
some modifications. Briefly, mice (n = 10) were anesthetized by intraperi-

toneal injection of ketamine/medetomidine (ketamine 100 mg/kg and

medetomidine 0.25 mg/kg). After eye enucleation, retina was dissected

under sterile conditions using the enzymes trypsin and collagenase A
[22]. After dissociation, the cells were collected by centrifugation and

resuspended in Eagle’s minimum essential medium (MEM) supplemented

with 26 mM NaHCO3, 25 mM HEPES, 10% heat-inactivated foetal bovine

serum, penicillin (100 U/ml) and streptomycin (100 lg/ml). The cells
were maintained in humidified atmosphere of 5% CO2 air at 37°C. The
cells were plated at a density of 2.0 9 106 cells per cm2 on 24-well plates

or 35 mm Petri dishes, coated with poly-D-lysine (0.1 mg/ml; Sigma-
Aldrich, St Louis, MO, USA). Two days after, cells were incubated for

20 days with high-glucose concentration 25 mM D-glucose (high glucose)

or 5 mM D-glucose (control) [11]. After this, retinal cell cultures were

treated for 24 hrs with MC-r agonists PG-901 (MC5 agonists, 10
�10 M);

(BMS-470539, 10�5 M) [23]. Each treatment was repeated three times.

Immunocytochemistry

Cells cultured in glass coverslip were fixed with 4% paraformaldehyde

in PBS pH 7.4 for 10 min. at room temperature. After fixation, the cul-

tures were washed with PBS and incubated 1 hr with blocking solution
5% BSA serum (Sigma-Aldrich) 0.05% Tween in PBS, and then incu-

bated overnight with monoclonal anti-opsin (1:1000; Sigma-Aldrich) and

anti-recoverin (1:1000; Abcam, Cambridge, UK) antibodies. Alexa Fluor�

488 (Jackson Laboratory, West Baltimore Pike, West Grove, PA, USA)-
conjugated goat polyclonal antibody (1:1000) was used as secondary

for opsin detection. Cy3-conjugated goat polyclonal anti-rabbit (Jackson

Laboratories; 1:400) was used as secondary for recoverin detection.

Nuclei were counterstained by DAPI. Quantification of fluorescence
intensity was determined by LEICA software (Milan, Italy). The method

used by Alessio et al. [24] was applied to calculate the percentage of

positive cells in each microscope field. This was calculated by the num-
ber of green or red (opsin or recoverin) positive cells of 400 cells in six

different microscope fields according to the previous method [24].

Western blotting

Western blotting was performed on retinal cell lysates obtained following

the protocol described by Baptista et al., [10]. Briefly, cells were washed

with ice-cold phosphate-buffered saline (PBS, in mM: 137 NaCl, 2.7 KCl,
10 Na2HPO4, 1.8 KH2PO4, pH 7.4, at 4°C) and lysed with RIPA buffer

(50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100,

0.5% DOC, 0.1% SDS, 1 mM DTT) supplemented with complete minipro-
tease inhibitor cocktail tablets and phosphatase inhibitors (10 mM NaF

and 1 mM Na3VO4). Lysates were incubated on ice for 30 min. and cen-

trifuged at 16,000 9 g for 10 min. at 4C°. The protein concentrations

were determinate as described by Bradford (1976). The primary poly-
clonal antibodies used are anti-manganese superoxide dismutase MnSOD

(dilution 1:200; Millipore, Merck, Milan, Italy) and anti-glutathione peroxi-

dase (GPx) (dilution 1:200; Abcam, UK). Anti-b-actin was used as loading

control, with an enhanced chemiluminescence detection reagent (ECL).
Protein bands were quantified by densitometry performed with a Bio-Rad

ChemiDoc MP Imaging system. Secondary antibodies used were anti-

mouse and anti-rabbit (dilution 1:1000; Santa Cruz Biotech, CA, USA).

RT-PCR

Total RNA was extracted using RNeasy Plus Mini Kit (Qiagen, West
Sussex, UK), according to the manufacturer’s instructions. Contaminat-

ing DNA was removed from RNA preparations performed with the

Ambion� Thurbo DNA-free system (Life Technologies, Waltham, MA,

United States) using manufacturer’s instructions. The concentration and
purity of the RNA were then analysed using the Nanodrop ND-1000

(NanoDrop Technologies, Wilmington, DE, USA). Complementary DNA

(cDNA) was obtained by reverse transcription (RT) of 1 lg of total
DNase-treated RNA, with the Superscript III reverse transcriptase sys-

tem (Invitrogen, Carlsbad, CA, USA) and oligo(dT)15 as a primer follow-

ing manufacturer’s protocol. Real-time PCR was performed with Read

Mix PCR Master Mix (ThermoScientific, Waltham, MA, United States)
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and the following amplification profile: 95°C for 2 min.; 35 cycles -
94°C for 30 sec., 55°C for 35 sec. and 72°C for 65 sec., followed by

final elongation step at 72°C for 5 min. Each 25 ll reaction consisted

of 1 ll of diluted cDNA (150 ng/ll RNA), 22.5 ll of 1.19 ReddyMix

PCR MasterMix, 1 ll of ddH2O and 1 ll of commercially available pri-
mer for amplification of mouse MC1R and MCR5 (Qiagen). mRNA data

were normalized relative to GAPDH and then used to calculate expres-

sion levels. Negative controls were either RT without enzyme or PCR
without cDNA template. The protocol for the RT-PCR was performed

according to Siniscalco et al., [25].

MCR1 and MCR5 protein levels

MCR1 and MCR5 protein levels were determined by a commercial Elisa

kit (Biosource, San Diego, CA, USA and Canada), according to manufac-

turer’s protocol.

Statistical analysis

The results of each experiment are presented as mean � S.E.M. of the

three treatments. Statistical significance was determined using ANOVA fol-

lowed by Bonferroni’s test. For the immunocytochemistry, the

mean � S.E.M. of the percentages was calculated and expressed in graph.
Differences were considered significant when *P < 0.05 versus high glu-

cose, **P < 0.01 versus high glucose and °P < 0.01 versus control.

Results

MCR1 and MCR5 gene expression and protein in
retinal cells cultured in high glucose

RT-PCR showed a significant increase of MCR1,5 gene expres-
sions in retinal cells after high-glucose exposure compared to
control cells (P < 0.01 versus control). In contrast, both MCR1,5

genes were significantly reduced (P < 0.01 versus control) in the
presence of the MCR1,5 agonists (PG901 and BMS-470539,
respectively) (Fig. 1A and B).

To confirm gene expression data, MCR1,5 protein levels were
measured by ELISA assay, and fitting with RT-PCR results, protein
levels show the same expression profile. MCR1,5 protein levels were
significantly increased under high-glucose conditions. Consistently
with RT-PCR, MCR1,5 agonists were able to reduce the high-glucose-
increased MCR1,5 protein levels (Fig. 2A and B).

Decreased MnSOD and GPx enzyme levels are
restored by MCR1,5 agonists

MnSOD and GPx antioxidant enzymes were significantly decreased after
high-glucose exposure compared to normal glucose (control) cultured
cells (Fig. 3A and B). Conversely, MnSOD and GPx levels were signifi-
cantly increased after MCR1,5 agonist treatment (Fig. 3A and B).

Opsin and recoverin cell labelling

Among the different cell types included in the retinal cell culture, the
presence of photoreceptors can be recognized by the presence of
recoverin and opsin. Under control conditions (5 mM Glucose), pho-
toreceptors exhibit large cytoplasm expansions, and opsin is sparsely
distributed along the cytoplasm membrane (Fig. 4). In contrast, pho-
toreceptors exposed to high-glucose concentration (25 mM) present
less opsin labelling (Fig. 4), as evidenced by the percentage of opsin-
positive cell on the total of cells counted. However, the addition of the
MC receptor agonists, PG901 and BMS-470539, and melanocortin
receptors 1 and 5 to high-glucose-treated photoreceptors presented a
pattern of opsin labelling more similar to that shown after control
conditions (Fig. 4).

Control recoverin-positive cells present a red dye with cytoplasm
location (Fig. 4). However, high-glucose-treated cells present almost
null recoverin reactivity (Fig. 4). In contrast, the addition of PG901, or

Fig. 1 RT-PCR analysis showed (A) MCR1 (melanocortin receptors 1)

and (B) MCR5 (melanocortin receptor 5) gene expression in retinal cells
cultured in high-glucose (25 mM) concentration, and in the presence or

absence of MCR1 agonist BMS-470539 and MCR5 agonist PG- 901. The

results are reported as the mean � S.E.M. of n = 3 treatments and the

significant results expressed as °P < 0.01 versus control and
**P < 0.01 versus high glucose.
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BMS-470539, resulted in evident pattern of labelling similar to that
observed under control conditions (Fig. 4).

Structurally, high-glucose-(25 mM) cultured cells appear with
abnormal morphology of photoreceptors characterized by stringy,
swelled and compressed size, with respect to the control (5 mM). In
contrast to this, treatment of high-glucose-cultured cells with the
compounds BMS-470539 and PG-901 improved photoreceptors mor-
phology that indeed appear less distorted, more regular and more
similar to the control cells (Fig. 4).

Discussion

The present study shows that murine primary retinal cells exposed to
a high-glucose medium express a damaged photoreceptors pheno-
type. This demonstrated by a morphological assessment and by a
decrease of two markers of cell membranes and photoreceptors
integrity, the opsin and recoverin onto the cell surface.

It is well known that high glucose in diabetes is an independent
risk factor for several vascular and non-vascular diseases [26], and
promotes direct cellular alterations by inducing a stress response
independently of the diabetic condition [26–28]. At level of the retina,
a persistent hyperglycaemia leads derangement of retinal vessels and
retinal structure causing retinopathy [13]. Several previous studies
indicated different pathways and pattern of mediators as responsible
of this damage, including oxidative stress and inhibition of antioxidant
enzyme gene expression [4, 8, 29]. They do not describe, however,
the role of melanocortin peptides and their receptors in this mecha-
nism. Endogenous melanocortins are peptides that control many
physiological and pathological processes through the activity of dif-
ferent 7-transmembrane G-protein-coupled receptors called MCR1-5

[13]. These MCR, probably due to their role on skin cancer, skin-
related diseases or even obesity [30], MCR, have attracted attention
of many researchers on the last two decades, from 75 results in 1998

Fig. 2 ELISA assay showed high levels of MCR1,5 protein in retinal cells
cultured in high-glucose concentration. These were significantly

decreased by the treatment with BMS-470539 and PG- 901 (MCR1 and

MCR5 agonists). The results are reported as the mean � S.E.M. of

n = 3 treatments and the significant results expressed as °P < 0.01
versus control and **P < 0.0 versus high glucose.

Fig. 3Western blotting analysis showed that high glucose (25 mM)
decreases MnSOD and GPx enzyme levels; (A, B). Treatment with the

compounds BMS-470539 (MCR1 agonist) and P-901 (MCR5 agonist)

restored the MnSOD and GPx enzyme levels. (A, B). MnSOD: man-

ganese superoxide dismutase; GPx: glutathione peroxidase. The results
are reported as the mean � S.E.M. of n = 3 treatments and the signifi-

cant results expressed as *P < 0.05 versus high glucose, **P < 0.01

versus high glucose and °P < 0.01 versus control.
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Fig. 4 Depicted are representative immunocytochemistries of retinal cells cultured in 5 mM or 25 mM glucose and labelled with opsin, recoverin

and 40,6-diamidino-2-phenylindole (DAPI) antibodies. Cells were treated with BMS-470539 and PG-901, and representative microscopic fields for

each treatment are shown. Accordingly, the percentage of recoverin and opsin-positive cells is represented in the graph. The results are expressed
as mean � S.E.M. of the percentages of positive cell/total cell counted in each analysed field for each treatment. The statistical significance was

reported as °P < 0.01 versus control; **P < 0.01 versus high glucose. 409 magnification.
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to 270 results in 2015 (PubMed). Indeed, beyond melanocyte regula-
tion, MCR are related to other cell-signalling pathways such as the
leucocytes activation, the promotion of inflammation resolution and
the consequent tissue protection [13]. Moreover, it has been shown
that a-MSH or other MCR agonists has immunosuppressive activity
in experimental uveitis [25, 31] and also protects retinal endothelial
cells from oxidative-induced damage [32]. Fitting with this knowl-
edge, in an initial study, we described for the first time that MCR1,5

agonists help diabetic retinopathy by concretely protecting retinal
vascular network [13, 32] in a murine model, through the inhibition of
the local inflammatory and immune responses [13]. To these pioneer-
ing results have been added now the new data of an antioxidant and
defensive response of the retinal cells following activation of MCR1,5.
Particularly, here we show that MCR1,5 agonists promote a protective
response on photoreceptors of high-glucose-cultured primary retinal
cells by preserving their structure from the abnormal morphology
and cytoplasm swelling induced by high glucose. High glucose also
promotes an evident MCR1,5 overexpression in these cells, and
MCR1,5 agonists normalize this increase. From the biochemical point
of view, the activation of the MCR1,5 was accompanied by restoring of
the levels of both GPx and MnSOD enzymes, impaired by high-glu-
cose exposure [13]. Noteworthy, impaired antioxidant enzymes by
high-glucose results in a high accumulation of hydrogen peroxide
(H2O2) and superoxide (O2

•�), and a reduced nitric oxide (NO)
bioavailability [33], thus driving retinal cells towards derangement.

Photoreceptors are case sensitive to high-glucose conditions [10]
playing a pivotal role on diabetic retinopathy [12]. In fact, photorecep-
tor cell membranes are particularly rich in polyunsaturated fatty acids
and extremely vulnerable to oxidative damage being the major site of
superoxide generation in diabetes [34]. As MCR1,5 modulate the
nuclear transcription of the cAMP response element-binding protein
(CREB) [17, 35] and CREB as a redox-regulated pathway modulating

MnSOD transcription [36], a possible theoretical frame, supporting
this proposal, is that high-glucose exposure overexpresses MCR1,5

and the addition of MCR1,5 agonists lead to cAMP-PKA-CREB,
increasing MnSOD transcription.

Beyond this and in view of the present results, we cautiously pro-
pose a major role of MCR1,5 on cell response against high glucose or
other oxidative insults. On another note, previous finding have shown
that agonism with MTII (dual MCR3,4 agonist) or antagonism with
SHU9119 (dual MCR3,4 antagonist) did not affect phenotype of the
retina [13]. Future research must be focused on the MCR1,5 overex-
pression significance and how oxidative stress lead to this MCR1,5

overexpression. A better knowledge on the molecular basis of MCR1,5

system would be of interest for developing MCR agonist-based thera-
pies against diabetic complications, especially if the research will pre-
pare more selective and powerful compounds towards the MCR5 than
the PG-901 compound used in the present study.
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