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SUMMARY

We consider storage media which consist of a number of write-once bit positions (wits). A wit initially contains
a “0”, that may be irreversibly overwritten with a ““1”.

It was shown by Rivest and Shamir [5] that, by coding techniques one can reuse such a write-once memory
(wom) up to a very high rate. We present two new cyclic womcodes, based on PG (2,2) and PG (3,2) respectively,
which attain the RS-bound. These codes can be decoded with a decoding algorithm for Hamming codes. Some
other high-rate womcodes, derived from those above, are discussed.
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RESUME
Nous considérons des mémoires constituées de positions permettant Iécriture irréversible d’un bit (wits). Un wit
contient initialement un zéro, qui peut étre définitivement transformé en un. Nous utilisons des techniques de codage
pour réutiliser ces mémoires a écriture unique avec un rendement élevé.
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1. Introduction

We consider storage media which consist of a number
of write-once bit positions (wits). A wit initially
contains a “0”, that may be irreversibly overwritten
with a “1”. We call such a storage medium a ‘““write-
once memory” or wom.

Examples of woms are punched cards or digital opti-
cal disks.

In their pioneering paper on this subject, Rivest and
Shamir [5] showed that it is possible to use a wom
several times, by using “womcodes”.

They gave many examples of womcodes, and show
that the “capacity” (defined later) of a womcode is
greater than the number of wits. They also derive
asymptotic results for this capacity.

The following coding scheme was their prime ‘“motiva-
ting example™.

Example 1.1: We write two times 2 bits in a memory
of 3 wits, as follows:

First writing Second writing
Message x r (%) ¥ (x)
00 000 111
01 100 011
10 010 101
11 001 110

This scheme must be interpreted as follows:

The first time we receive a message x, we write r (x).

Later, we will receive for the second time a message,
say y. If x=y we don’t change the memory, if x#y

we change the memory state to r’ (y), by only chan-
ging O’s to 1’s. Without coding, we would have to
use 4 wits.

Remark that after the second writing we lost the
information on the first message.

2. Notation

We call a coding scheme that uses n wits to represent
t times one out of v messages (i.e. write once and
change t—1 times) a { v )'/n womcode. More general,
with a (v, v,, ..., v, »/n womcode the message in
the 'th generation can be one of a set V; of v,
messages.

Such a womcode must have the following properties:

1. Each memory content that occurs must determine
uniquely the last received message, and

2. for each memory content xe{0, 1}" occuring in
the s’th generation (s <t) it must be possible to encode
all sequences of messages (m,,q, ..., M), MEV,
such that x,<x,, ;= ... £x, (componentwise).

The womcode is determined by giving for all possible
memory states and new messages the new memory

state (update function [5]).

w ({vy, Uy, ..., v,y) denotes the least n for which a
{vy, 03 ..., 0, »/n womcode exists, and, of course,
w(v)Y)=w (v, v,..., V)

Rivest and Shamir [5] derive a lower bound for
w ({v>%). This can be easily extended to a lower
bound for w ({vy, vy, ..., 1,)), see [4], which we
shall refer to as the RS-bound.

The capacity C and the rate R of a (v, v,, ..., 0, )/n
womcode are defined as C:=log (v;.v,...., ),
R:=C/n.

For example, the {4 )%/3 womcode of example 1.1
has C=4 and R=1.33...(=1.33 ... bit per wit).
The following two examples of womcodes are descri-
bed in [5].

Example 2.1. A <{5>3/5 cyclic womcode
{Rate=1.39...), constructed by D. Klarner.

Message 1 is represented by 10000 in the first genera-
tion, either 01001 or 00110 in the second, and one of
01111, 10110 or 11001 in the third generation.
Message i, 1<i<5 is represented by a cyclic shift
over i—1 positions of the words for the first message
(since 5 is prime they are all distinct).

Example 2.2: A {7>%7 cyclic womcode
(rate=1.60. . .), constructed by D. Leavitt, by exten-
ding the method of example 2.1 (to appear).

We will present a new cyclic {7 >*/7 womcode. The
first, second and fourth generations are equivalent to
these of Leavitt’s code, but the third generation is
different (private communication). We will use a pro-
jective geometry PG (2, 2) or 2«7, 3, 1) symmetric
block design (Steiner triple system) or Fano plane.
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These are different names for the same object, descri-
bed in Figure 2. 3.

Fig. 2.3. — The Fano plane.

This picture should be interpreted as follows: The
plane consists of seven points (numbered 1, 2, ..., 7)
and seven lines, each containing three points (the six
lines together with the circle in Figure 2. 3). Remark
that any pair of points is on exactly one line, and
any two lines intersect in exactly one point.

With the enumeration as in Figure 2. 3, the incidence
vectors of lines with the points of the plane are the
cyclic shifts of 1101000.

In what follows, we shall identify the seven points of
the plane with the wits of a seven-wit memory.

As a consequence, every memory content can be identi-
fied with a configuration of points in the plane (i.e.
the points for which the corresponding wit contains
al).

3. A(7>%/7 womcode

The < 7 >*/7 womcode which we propose is described
in terms of configurations of points in the Fano plane
in Figure 3. 1 below.

generation number configurations

1 O] (a point)
2 4
&——2p (two points)

3 —

©®

B N (a plane with one
or
N or two points missing)

Fig. 3. 1. — A description of a { 7)*/7 womcode.

(a line and a point)
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Figure 3.1 should be interpreted as follows: possible
memory states of the womcode are described by their
corresponding configurations [The encircled points in
(3. 1)]. Since there are seven messages, they are identi-
fied with the seven points in the Fano plane, For
each configuration the message (point) represented is
indicated by an arrow.

Using the properties of the Fano plane given after
(2.3) it is easy to check that Figure 3.1 describes
indeed a {7 >*/7 womcode:

1. Each memory state determines uniquely a message
point, and

2. For each configuration in generation i, and for
each message point received, it is possible, by adding
one or two points, to find a configuration in genera-
tion i+ 1 representing the received message point.
(NB: if the same message is received twice, the
memory state is not changed.)

Example 3.2: Suppose we reccive the message
sequence 2, 5, 3, 7. Using the womcode of (3.1),
we obtain the following sequence of configurations
representing them:

Corresponding to the sequence of memory contents
0100000, 0110000, 1111000, 1111110.

DEcobpING

For the decoding, we use the fact that the codewords
of the [7, 4] binary perfect Hamming code are all the
linear combinations modulo 2 of the lines of the Fano
plane (see, for instance [3]). So the code words are
07, lines, symmetric differences of two lines, and the
whole plane. Configurations of the womcode in (3. 1)
are never Hamming codeword, so they are at Ham-
ming distance 1 from exactly one Hamming code
word. Moreover, by inspection of (3.1) we see that
this Hamming codeword is obtained by adding
(mod 2) the message point to the configuration. So,
if we denote the memory content as a Hamming
codeword, the error vector yields exactly the message
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(i. e. using syndrome decoding, each message corres-
ponds with one of the seven possible non-zero syndro-
mes).

4. More womcodes from projective geometries

Example 4.1: Consider the projective geometry
PG (3, 2). It contains 15 points, 35 lines of 3 points
and 15 Fano planes of 7 points.

The [15, 11] Hamming code can be seen as the collec-
tion of all linear combinations mod 2 of lines in
PG (3, 2).

Now the approach of sections 3 can be generalised:
it is possible to construct a { 15 »7/15 womcode which
can be “decoded” by the method described in
section 3, i.e. the message represented by each
memory state in the womcode is just its Hamming
code error, and is obtained by computing the syn-
drome (see [4] for details).

Example 4.2: Fix a line in the Fano plane. The
configurations of the first two generations in (3.1),
restricted to those on this line, describe a ¢ 3)2%/3
womcode. Since a line is a PG (1, 2), this womcode
could be considered as the first code of a class of
womcodes, based on PG (n, 2), all having the pro-
perty that they can be denoted with syndrome deco-
ding for the Hamming code. Of course, the second
code of this class is the code in section 3, the third is
(4.1). These three codes are optimal in the sense that
w({3)>%) 23, w({3)%) 24, w ({77427,
w (7% 28, w({1557) 215 w({15)%) 216, all by
the RS-bound.

The next code in this class is a (31 )/31 womcode.
The RS-bound yields w ({31 )% >3],
w ({31 >'%)=32. We have constructed a {31 )>!%/31
womcode, so that some sequences of length 11 cannot
be encoded. However, we think that by further selec-
tion of the configurations it is possible to construct
at least a {31 )'2/31 womcode.

An important feature of the codes described is that
messages correspond to a coset of a linear error-
correcting code with (n—k) xn parity check matrix
H.

Encoding a new message m in a memory with state
xe{0, 1}" is equivalent to finding a ye{0, 1}" such
that m=y. HT and y=x, componentwise. This is also
described in [2], together with a dynamic program-
ming algorithm for finding a y with minimal weight.
However, other constraints for y than having minimal
weight, can be posed, such as “y must be one of the
configurations of (3.1)”.

In [4] some constraints are described to construct
(2" k132" *_1 womcodes based on the corres-
ponding Hamming codes.

For some of these constraints the exact value of ¢ is
determined.

If turns out that, using only the minimal weight
constraint, does not always (and probably only for
n=3 or n=7) yield the maximal t.

5. Extensions

For more details of these extensions, see [4).

Extension 5.1: Consider again the code of (4.2). If
we allow a 4-th message, represented by the empty
set and the whole line, in the first resp. second genera-
tion, a {4)>?/3 womcode is obtained. This is the
womcode of example 1. 1.

Extension 5.2: Consider the code of section 3. If, in
the first, third and fourth generation, we aliow an
eighth message, represented by the empty set, a line
or the whole plane respectively, we obtain a
(8,7, 8, 8)/7T womcode (rate is 1.69...).

Extension 5.3: Adding to the configurations in the
third generation all those consisting of three non-
colinear points, it is possible to represent three more
messages, giving an {8, 7, 11, 8 >/7 womcode (rate is
1.75...). 11 is best possible here.

Extension 5.4: By extending the memory of the code
of section 3, respectively example 4.1 with one wit, it
is possible to construct an {8, 14, 11, 8 >/8 (rate is
1.66...) and a {16 >7/16 (rate is 1.75...) womcode,
respectively.

Conclusion

We have considered memories (woms) which consist
of a number of Write-Once bit positions (wits).
Using projective geometries, we have constructed
codes, which make it possible to use these woms
several times.

It turned out that the message, represented by the
memory-content, can be seen as the syndrome of the
binary Hamming code.
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