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Abstract
Background aims. Mesenchymal stromal cells (MSCs), after intraparenchymal, intrathecal and endovenous administration,
have been previously tested for cell therapy in amyotrophic lateral sclerosis in the SOD1 (superoxide dismutase 1) mouse.
However, every administration route has specific pros and cons. Methods. We administrated human MSCs (hMSCs) in the
cisterna lumbaris, which is easily accessible and could be used in outpatient surgery, in the SOD1 G93A mouse, at the
earliest onset of symptoms. Control animals received saline injections. Motor behavior was checked starting from 2 months
of age until the mice were killed. Animals were killed 2 weeks after transplantation; lumbar motoneurons were stereologically
counted, astrocytes and microglia were analyzed and quantified after immunohistochemistry and cytokine expression was
assayed by means of real-time polymerase chain reaction. Results. We provide evidence that this route of administration can
exert strongly positive effects. Motoneuron death and motor decay were delayed, astrogliosis was reduced and microglial
activation was modulated. In addition, hMSC transplantation prevented the downregulation of the anti-inflammatory
interleukin-10, as well as that of vascular endothelial growth factor observed in saline-treated transgenic mice compared with
wild type, and resulted in a dramatic increase in the expression of the anti-inflammatory interleukin-13. Conclusions. Our
results suggest that hMSCs, when intracisternally administered, can exert their paracrine potential, influencing the in-
flammatory response of the host.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a late-onset
neurodegenerative disease that causes degeneration
and death of upper and lower motoneurons, leading
to weakness, muscle atrophy, fasciculations, spas-
ticity and finally, death as the result of respiratory
failure (1). Currently, there is no treatment for ALS.
Riluzole, the only drug approved by the Food and
Drug Administration for ALS, has a very limited
outcome because it increases survival by only 2e3
months compared with placebo (2).

In the past decade, stem cell therapy emerged as a
possible strategy to modulate the motoneuron envi-
ronment, in terms of astrogliosis and microglial
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activation that occur in ALS, and to deliver trophic
factors to support motoneuron survival (3,4). To this
aim, several studies reported beneficial effects after
transplantation of different types of stem cells in
animal models of ALS: mesenchymal stromal cells
(MSCs) (5e7), neural stem cells (8e11), olfactory
ensheathing cells (12) and induced pluripotent cells
(13); also, clinical trials have demonstrated the
feasibility of human MSC (hMSC) transplantation in
patients (14e16). The cell type that better matches
safety conditions and immunomodulatory/neuro-
trophic roles consists of MSCs. MSCs are bone
marrow (BM) cells expanded ex vivo (17); they
represent a small fraction (0.001e0.01%) of the BM
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cell population. Although BM is the best character-
ized source of MSCs, umbilical cord blood, Whar-
ton’s jelly, placenta, adipose tissue and many others
represent promising alternatives (18). Several
groups, including ours (6), have shown that MSC
transplantation can delay the behavioral symptoms
and motoneuron death in animal models of ALS (4).
MSCs have been delivered intraparenchymally,
intrathecally, intramuscularly or intravenously, each
of which has its own advantages and disadvantages
(4). In the present study, we decided to administer
MSCs in the cisterna lumbaris, which is easily
accessible and could be used in outpatient surgery, in
an animal model of ALS, the SOD1 (superoxide
dismutase 1) G93A mouse, at the earliest onset of
symptoms. We provide evidence that this route of
administration can exert positive effects. Addition-
ally, we analyzed the expression of several pro-
inflammatory and anti-inflammatory cytokines by
the host, identifying one of the hMSC mechanisms
of action.
Methods

Animal care and use

Experiments were performed on male transgenic
mice B6SJL-TgN(SOD1G93A)1Gur over-express-
ing human SOD1, containing the Gly93 to Ala
mutation (Jackson Laboratory, Bar Harbor, ME,
USA; stock No. 002726); these mice have a high
transgene copy number, as reported in the data
sheet. Founders were kindly gifted by M. Bentivoglio
and R. Mariotti (University of Verona). The colony
was derived by breeding of male transgenic mice to
naive (B6xSJL/J)F1 female mice (Janvier SAS, Le
Genest-Saint-Isle, France).

All experimental procedures on live animals were
carried out in strict accordance with the European
Communities Council Directive 86/609/EEC
(November 24, 1986) Italian Ministry of Health and
University of Turin institutional guidelines on animal
welfare (law 116/92 on Care and Protection of living
animals undergoing experimental or other scientific
procedures; authorization No. 17/2010-B, June 30,
2010); additionally, an ad hoc Ethical Committee of
the University of Turin approved this study. All ef-
forts were made to minimize the number of animals
used and their suffering. They were identified by
polymerase chain reaction (PCR) according to Jack-
son Laboratory’s genotyping protocol.
Genotyping mice

DNA from mouse tail was extracted by incubation
of a0.5-cm-longspecimenof tail in100mLof lysis buffer
(10 mmol/L Tris HCl, 50 mmol/L KCl, 0.01% gelatin,
0.45% IGEPAL� CA-630 [Sigma-Aldrich], 0.4%Tween-20)
and 25 mg of proteinase K at 55�C overnight
under gentle shaking. On the extracted DNA, we per-
formed PCR to evaluate the presence of the human
transgene superoxide dismutase-1 (hSOD1). The
primers used, suggested by Jackson Laboratories,
were 50-CATCAGCCCTAATCCATCTGA-30 and
50-CGCGACTAACAATCAAAGTGA-30 for hSOD1
gene and50-CTAGGCCACAGAATTGAAAGATCT-30

and 50-GTAGGTGGAAATTCTAGCATCATCC-30

for mouse interleukin 2 gene (mIL-2), as internal
control.
Behavioral tests

To treat the animals at the symptom onset, the mice
(hMSC TG, n ¼ 16; sal TG, n ¼ 14) were weighed
weekly and underwent a battery of behavioral tests
starting from the asymptomatic phase: scoring of
motor deficits by a trained observer (6), rotarod and
paw grip endurance (PaGE) tests (19).

The first 2 weeks of tests (starting around post-
natal day 60 [P60]) were considered as training for
the animals that were tested weekly. Thereafter, the
tests were performed twice per week.

The values obtained before onset of symptoms
were considered as baseline to be compared with
those obtained after treatment until the mice were
killed at 14 days after grafting, to evaluate the effects
of hMSCs on the decay in behavioral performance
caused by disease.

The neurological test was performed in an open
field [size: 70 (width) � 120 (depth) cm] to assess
gait; the mice were evaluated for signs of motor
deficits with the following -point scoring system: 4
points if normal (no sign of motor dysfunction); 3
points if hind limb tremors were evident when sus-
pended by the tail; 2 points if gait abnormalities were
present; 1 point for dragging of at least one hind
limb; 0 points for inability to right itself within 30
seconds.

For the rotarod test, we measured the time ani-
mals could remain on the rotating cylinder in a 7650
accelerating model of a rotarod apparatus (Ugo
Basile, Comerio, Va, Italy). Each animal was given
three trials. The arbitrary cut-off time was 300 sec-
onds, and the accelerated speed went from 4 to 32
rpm. The size of rotarod equipment is 40 (width) �
30 (depth) � 38 (height) cm, and the rotating cyl-
inder diameter is 3 cm.

For the PaGE test, the animal was placed on the
wire lid of conventional housing cage [size: 38
(width) � 22 (depth) cm]. The lid was gently shaken
to prompt the mouse to hold onto the grid before it
was swiftly turned upside down. Grip score was
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measured as the length of time that the mouse was
able to hang on to the grid. The arbitrary cut-off time
was 90 seconds.
Isolation and characterization of hMSCs

BM cells were harvested from the iliac crest of adult
or pediatric donors who underwent BM collection
for a related patient after written informed consent,
in accordance with the ethics committee of the
hospitals Ospedale Infantile Regina Margherita-
Sant’Anna-Mauritian order, which approved the
collection of BM cells.

The cells were counted and plated directly in
MSC Growth Medium (MesenCult Proliferation
Kit, Stemcell Technologies, Vancouver, Canada)
containing 10% fetal bovine serum at the density of
100,000 cells/cm2 in T25 or T75 flasks (Becton
Dickinson, Franklin Lakes, NJ, USA) and main-
tained at 37�C with an atmosphere of 5% CO2. After
5 days, the non-adherent cells were removed and re-
fed every 3 to 4 days. At confluence, cells were de-
tached or re-plated at 103 cells/cm2 for 3 to 5 more
passages. The cells were counted and analyzed at
each passage for cellular growth, viability, immuno-
phenotype and multipotent capacity, as described
previously (20e22).

Twenty-four hours before transplantation, 10 mg/
mL of bisbenzimide (Sigma, St Louis, MO, USA)
was added to the culture medium to label the cell
nuclei. The cells were then resuspended in saline
solution to obtain a final concentration of 60,000
cells/mL to be used for transplantation.
hMSC transplantation

Mice were divided into three groups: (i) SOD1
transgenic mice (hMSC TG; n ¼ 16), which had
300,000 hMSCs, in a volume of 5 mL of saline so-
lution, injected into the cisterna lumbaris; (ii) SOD1
untreated mice (sal TG; n ¼ 14), which received 5
mL of saline solution injected into the cisterna lum-
baris and (iii) wild-type mice (sal WT, n ¼ 10), 5 mL
of saline solution injected into the cisterna lumbaris.
The amount of hMSCs used for transplantation was
based on previous studies indicating that injections
of 300,000 cells (23) were more effective than
100,000 intrathecal cells (24).

When TG mice showed decay in performance
twice (i.e., when the animals displayed decreased
motor behavior in two consecutive testing sessions),
they underwent surgery and were killed 2 weeks later.
Age-matchedWTmice were killed. Briefly,mice were
deeply anaesthetized with 3% isoflurane vaporized in
O2/N2O 50:50. The lumbar spine was exposed, and
spinal muscles were displaced laterally; the injections
were performed at the L5-L6 intervertebral space (25)
with the use of a glass micropipette (outer tip diam-
eter, 50 mm) connected to a syringe body by a silicon
tube. hMSCs/saline was slowly injected (over
approximately 60 seconds) into the cisterna lumbaris.
The wound was then sutured, and the mice were
returned to their cages.
Histological examination

Two weeks after transplantation, a group of animals
(hMSC TG, n ¼ 9; sal TG, n ¼ 8; WT, n ¼ 5) were
deeply anesthetized as previously described and un-
derwent intracardiac perfusion with 4% buffered
paraformaldehyde, pH 7.4. The lumbar spinal cords
were removed and post-fixed in paraformaldehyde
for 2 h at 4�C. Additionally we randomly checked the
hMSC presence at thoracic and cervical levels.

Samples were transferred overnight into 30%
sucrose in 0.1 mol/L phosphate buffer at 4�C for
cryoprotection, embedded in cryostat medium
(Killik; Bio-Optica, Milan, Italy) and cut on the
cryostat (Microm HM 550) in serial transverse
50-mm-thick sections, kept in phosphate-buffered
saline (PBS) at 4�C or mounted onto gelatin-coated
slides, to be processed for immunostaining.

Before any further reaction, all sections were
mounted in PBS, coverslipped and examined with the
use of a Nikon Eclipse E800 epifluorescence micro-
scope under 40-6-diamidino-2-phenylindole (DAPI)
filter set to check the transplanted hMSC survival.
Immunofluorescence

For immunofluorescence, after unspecific binding
sites were blocked for 30 min at room temperature
with 0.3% Triton X-100 and 10% normal donkey
serum (Sigma-Aldrich) in PBS, pH 7.4, the sections
were incubated with the following primary antibodies
at 4�C overnight [for the origin and specificity of the
antibodies see also Uccelli et al. (5)]: polyclonal anti-
glial fibrillary acidic protein (GFAP) (rabbit; 1:500;
DakoCytomation, Glostrup, Denmark), polyclonal
anti-ionized calcium binding adaptor molecule 1
(IBA1) (rabbit, 1:1000; Wako Chemicals, Neuss,
Germany), monoclonal anti-neuronal nuclei (mouse;
1:10; Chemicon, Temecula, CA, USA) and mono-
clonal anti-human nuclei (mouse; 1:100, Millipore,
Temecula, CA, USA).

The sections were then washed in PBS and
incubated in 1:200 cyanine 3econjugated secondary
antibodies anti-rabbit or anti-mouse (1:200; Jackson
ImmunoResearch Laboratories; West Grove, PA,
USA).

The sections were examined with the use of a
Nikon Eclipse 90i epifluorescence microscope and

mailto:end body part
mailto:H1 Section
mailto:end H2 Section
mailto:end body part
mailto:end body part
mailto:end body part
mailto:H1 Section
mailto:end H2 Section
mailto:end body part
mailto:end body part
mailto:H1 Section
mailto:end H2 Section
mailto:end body part
mailto:end body part
mailto:end body part
mailto:H1 Section
mailto:end H2 Section
mailto:end body part
mailto:end body part


1062 M. Boido et al.
photographed with the use of a Nikon DS-5Mc
digital camera. Photomicrographs (except for those
used for GFAP and IBA1 quantification) were
manipulated and mounted in plates with the Photo-
shop CS2 software, with the use of autocontrast
enhancement. To make three-dimensional re-
constructions, some preparations were also exam-
ined with the use of a Leica TCS SP5 confocal laser
scanning microscope.

To evaluate glial involvement, GFAP immuno-
reactivity in 12 spinal cords (6 hMSC TG versus 6
sal TG) and IBA1 immunoreactivity in 6 spinal cords
(3 hMSC TG versus 3 sal TG) were analyzed. For
semi-quantitative analysis, we considered L5 spinal
cord level. In particular, we quantified GFAP
immunoreactivity in ventral horns (laminae VIII-IX).
These areas were identified with the use of a Nikon
Eclipse 90i epifluorescence microscope and photo-
graphed with the use of the Nikon DS-5Mc digital
camera (at 40�). The percentage of the overall
GFAP-positive area was quantified with the use of
Scion Image software for Windows (freeware version
of NIH image, Scion Corporation, Frederick, MD,
USA) by an observer who was blinded to the group
identity of the specimens examined. We classified
IBA1epositive microglial cells as “ramified” and
“amoeboid”; we obtained a mean number of cell
profiles/animal in sal TG and hMSC TG groups.
Nissl staining

One series of serial lumbar sections (one every 400
mm) from each animal was Nissl-stained to perform
stereological counts. Sections were mounted on 2%
gelatin-coated Superfrost slides and air-dried over-
night; slides were hydrated in distilled water for 1
min before staining in 0.1% Cresyl violet acetate for
10 min, dehydrated in an ascending series of ethanol,
cleared in xylene and cover-slipped with Eukitt
(Bioptica, Milan, Italy).
Stereological counts

Motoneuron quantification was performed in sal WT
(n ¼ 5), sal TG (n ¼ 6) and hMSC TG mice (n ¼ 6).
Their nucleoli were counted at 40� in the lumbar
tract. Only neurons with an area �200 mm2 (classi-
fied as alpha motoneurons) and located in a
congruent position were counted (6,26).

A total estimated number of alpha motoneurons
was obtained through the use of a stereological
technique, the Optical Fractionator (27), by use of a
computer-assisted microscope and the Stereo-
Investigator software (MicroBrightField, Williston,
VT, USA). Cells were counted on the computer
screen with the use of an Optronics MicroFire
digital camera mounted on a Nikon Eclipse E600
microscope.

We also calculated the total volume of the
reconstructed segment (expressed in mm3) and the
motoneuron density expressed as number of moto-
neurons/mm3.
Cytokine assays

Sal WT (n ¼ 5), sal TG (n ¼ 6) and hMSC TG mice
(n ¼ 7) were killed by means of cervical dislocation,
and their lumbar spinal cord was rapidly dissected on
ice. Total RNA from the spinal cord was extracted
with the use of Trizol, following the supplier’s in-
structions (Invitrogen, Milan, Italy). The first-strand
complementary DNA (cDNA) was synthesized with
2 mg of total RNA with the use of the High Capacity
cDNA Reverse Transcription Kit, following the
supplier’s instructions (Applied Biosystems, Monza,
Italy).

The cDNAs from animals of each group were
pooled together. This 50-ng sample of the mixed
cDNAs was amplified by means of TaqMan reagent-
based chemistry on TaqMan Array Plates (Applied
Biosystems) containing 92 assays to detect mouse
genes belonging to the immune response.

For single gene analysis, the cDNA of individual
mice was analyzed for IL-10, IL-12a and IL-13 and
vascular endothelial growth factor (VEGF) expres-
sion. The cDNA of each animal was previously pre-
amplified with the use of the PreAmp Kit, following
supplier’s instructions (Applied Biosystems), and
was then amplified with the use of the same TaqMan
assay contained in the TaqMan Array Plate. All
TaqMan gene expression assays have a PCR effi-
ciency of 100% within measurement error (�10%).
The amplifications were run in triplicate in one assay
run. Beta-glucuronidase messenger RNA (mRNA)
was used as housekeeping gene for data normaliza-
tion. Changes in mRNA levels were determined as
the difference in threshold cycle between target and
housekeeping mRNA (DCt) followed by the
comparative Ct method for relative quantification
(DDCt). All the reactions were performed on the
StepOne Detection System (Applied Biosystems).
Statistical analysis

The data are expressed as mean � standard error of
the mean (SEM). For stereological counts and gene
expression analysis, statistically significant differ-
ences among means were determined by one-way
analysis of variance (ANOVA), followed by post hoc
Newman-Keuls test. For astrogliosis and microglia
activation, we used the unpaired t-test. For behav-
ioral test analysis, inter-group differences were
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statistically compared by means of two-way ANOVA.
The thresholds for statistical significance data were
set at P < 0.05. Statistical analysis was performed
with the use of GraphPad Prism 5 software (Graph-
Pad Software, San Diego, CA, USA).
Results

Engraftment of hMSCs

The hMSCs used in this study displayed the specific
features defined by the International Society for
Cellular Therapy guidelines, as previously demon-
strated (22,28).

We injected 300,000 hMSCs into the cisterna
lumbaris of early symptomatic SOD1 mice. After 2
Figure 1. HumanMSC engraftment. Two weeks after graft, bisbenzimid
on the dorsal meninges (broken line identifies the spinal cord boundary
hMSCs in the parenchyma of the ventral horn, outlined by broken line
positive hMSCs also express human nuclei antigen, as shown at low (E an
bar ¼ 30 mm in A, 32 mm in B, 50 mm in C, E and F, 20 mm in D and
weeks, we killed the animals and analyzed the spinal
cords (Figure 1).

Grafted hMSCs were identified after pre-labeling
with bisbenzimide. DNA-binding dyes such as bis-
benzimide or DAPI could diffuse to the host tissue
from dying labeled hMSCs, as suggested by other
authors (29). However, they are used ordinarily as
stem cell markers in grafts, in the absence of reports
of dye diffusion (30e32). Moreover, we rarely
observed dead hMSCs in this study and in the pre-
vious ones; also, we never found motoneurons, as-
trocytes or microglia labeled by bisbenzimide
diffused from hMSCs. Additionally, to exclude the
bisbenzimide leakage, we performed an immunoflu-
orescence reaction against human nuclei antigen
for specifically labeling hMSCs; as shown in
e-positive hMSCs were observed in the lumbar tract. (A,B) hMSCs
), often penetrating into the spinal parenchyma (arrowheads). (C)
, (D) hMSCs in proximity of motoneurons. (EeI) Bisbenzimide-
d F, same magnification of C) and high (GeI) magnification. Scale
3.5 mm in GeI.
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Figure 1EeI, bisbenzimide-labeled MSCs are also
human nucleiepositive.

We detected the highest number of hMSCs on the
meninges, both ventrally and dorsally; however, we
also detected a significant number of cells in the spinal
parenchyma, even in the ventral horns in proximity of
the motoneurons. hMSCs migrated cranially at a
distance from the injection site. We observed cells
mostly at the lumbar segment level and in reduced
amounts at the lower thoracic level (T11-T12 verte-
bral segment). In one case, we observed surviving cells
along the meninges up to the cervical level.
Stereological counts of lumbar motoneurons

Stereological counts showed significant inter-group
differences in the motoneuron number (Table I): the
number of motoneurons was greatly decreased in sal
TG compared with sal WT (P < 0.01), but trans-
plantation partially prevented motoneuron death
because their number was significantly higher in
hMSC TG than in sal TG (P < 0.05). Similar results
were obtained regarding the total volume of anterior
horn of the L1-L5 segment of the spinal cord and
relative motoneuron density (Table I).
Behavioral tests

The decrease in motor performance in treated versus
untreated SOD1 mice was evaluated with a battery of
behavioral tests (neurological tests, rotarod test,
PaGE test; Figure 2) as well as body weight
measurements.

The first values reported in the graph (Figure 2)
represent the scores obtained before the symptom
appearance (“�39 days” in the graph); when mice
showed two repeated deficits for two consecutive
times, they were considered symptomatic and un-
derwent surgery and hMSC/saline transplantation.
The values in the graph at the “graft” time correspond
to the last performance before transplantation. Mice
were then killed 2 weeks later. Results concerning the
body weight are shown differently, as described below.

The neurological test is described in Figure 2A. In
this test, the first symptoms appeared later than with
Table I. Stereological analysis of the lumbar spinal cord.

sal WT

Motoneuron number 1947.34 � 222.26a

L1-L5 volume (mm3) 3.27 � 0.39
Motoneuron density 633.13 � 104.46a

All the studied parameters (motoneuron number, volume of the L1-L5
allows a delay of the motoneuron death compared with sal TG group. D
means of one-way ANOVA and Newman-Keuls post hoc test. Motoneuro
sal TG, bP < 0.05. sal WT versus sal TG, cP < 0.01. Motoneuron den
the following two tests; therefore, we considered it less
reliable. In the sal TG mice, the deficits occurred
earlier than in the hMSC TG, even though 14 days
after graft, the final scores in the two groups were
similar (2.9 � 0.5 in treated mice versus 2.4 � 0.5 in
untreated mice); moreover, the change in score after
surgery/transplantation was �1.36 � 0.46 and �1.07
� 0.48 in sal and hMSC TG mice, respectively.

The PaGE test is described in Figure 2B. This
test evaluates the hind limb resistance. After the in-
jection, the decline in performance is steady in both
groups but slightly faster in the untreated animals
(the last performance at “þ14 days” was 21 � 10
seconds for transplanted mice, 6 � 2 seconds for
sham-operated mice; P < 0.01). The decline
observed from the graft day until the mice were killed
was e41 � 8 seconds in the treated animals
versus �50 � 5 seconds in the untreated animals.

The rotarod test is described in Figure 2C. This
test measures motor performance and coordination
of rodents. The performance just before the “graft”
was statistically indistinguishable in the two trans-
genic groups; however, in the following days, the
disease progression appeared earlier in the sal TG
mice than in the hMSC TG mice, obtaining at 14
days the final values of 69 � 23 seconds versus 134 �
47 seconds in the untreated versus treated mice,
respectively (P < 0.05). We observed a decrease in
the time of performance (expressed in seconds) equal
to �161 � 30 for the untreated mice and �93 � 53
for the treated mice.

We observed differences in body weight between
the pre-symptomatic phase (17 days before graft) and
the day the mice were killed (14 days after graft) in
the SOD1 mice. The reduction of body weight in this
period was 1.23 � 0.64 g in the hMSC TG mice and
2.50 � 0.96 g in the sal TG mice (difference not
significant).
Reactive astrogliosis and microglial activation

Because neuroinflammation is strongly involved in
ALS progression, we evaluated semiquantitatively
the astroglial reaction in the ventral spinal horn by
means of GFAP and IBA1 immuno-analysis
hMSC TG sal TG

1478.23 � 80.17b 1042.92 � 132.12c

3.12 � 0.11 2.69 � 0.15
474.04 � 19.78 391.13 � 51.01

ventral horn and motoneuron density) highlight that hMSC graft
ata are reported as mean � SEM; statistical analysis performed by
n number: sal WT versus hMSC TG, aP < 0.05. hMSC TG versus
sity: sal WT versus sal TG, aP < 0.05.
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Figure 2. Behavioral tests. Functional recovery of hMSC TG (gray diamonds) and sal TG mice (black squares), studied with a battery of
tests [neurological test (A), PaGE test (B) and rotarod test (C)]. The first values reported in the graph represent the scores obtained before
symptom onset (from “�39 days” to “�3 days”), whereas the values reported at the “graft” time correspond to the last performance before
graft. In every test after transplantation, treated mice show a delay in the motor impairment progression in comparison to sal TG group.
Scores are expressed as mean � SEM (*P � 0.05; **P � 0.01).
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Figure 3. Astrogliosis and microglial activation analysis. Evaluation of reactive astrogliosis in terms of GFAP immunoreactivity and of
microglia activation as measured by IBA1 immunoreactivity in the lumbar spinal cord of hMSC TG and sal TG mice. (A,B) The density of
GFAP-immunopositive profiles is reduced in hMSC TG group (A) compared with the sal TG group (B). (C) Graph relative to astrogliosis.
(D,E) The two groups show different patterns of microglial activation: hMSC TG mice are predominantly characterized by ramified
microglia (arrowheads; D), whereas sal TG mice mostly display amoeboid microglia and, in some cases, in clusters (arrows; E). (F) Graph
relative to microglia activation. Scale bar ¼ 50 mm.
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(Figure 3). The percentage of the overall GFAP-
positive area was quantified with the use of Scion
Image software for Windows by an observer blinded
to the group identity of the specimens examined.

We quantified the densities of GFAP-immuno-
positive profiles at L5 level, in proximity to the injec-
tion site. The density was 7.39% � 0.89% and 5.46%
� 0.38% in sal TG and hMSC TG mice, respectively
(sal TG versus sal WT, P < 0.05) (Figure 3A,B).

Moreover, IBA1epositive microglial cells were
classified as “ramified” and “amoeboid”; 73.4% �
1.4% and 55.7% � 16.2% ramified cells were found
in hMSC TG and sal TG mice, respectively, and
26.6% � 1.4% and 44.3% � 16.2% amoeboid cells in
hMSC TG and sal TG mice, respectively (“ramified”
hMSCTGversus “amoeboid” hMSCTG,P< 0.001).
In sal TGmice, we often observed abnormal clustering
of hyperactivated amoeboid microglia (Figure 3D,E).
The data are summarized in the graph in Figure 3C,F.
Cytokine expression in SOD mice transplanted with
hMSCs

To characterize the mouse genes activated by hMSC
transplantation in the cisterna lumbaris of SOD1
mice, we collected the RNA from the lumbar spinal
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cord of sal WT, sal TG and hMSC TG mice. We
pooled the cDNA of animals belonging to the same
group for a first qualitative analysis with the use of a
TaqMan Array Plate that allowed us to investigate
the modulation of 92 mouse genes belonging to the
immune response family. Actually, a large number of
genes displayed very different expression levels in sal
TG mice compared with sal WT mice; many im-
mune-responsive genes were modulated by hMSC
transplantation (data not shown), and we selected
the genes that were strongly influenced by graft. The
genes of the anti-inflammatory interleukins IL-10
and IL-13, the pro-inflammatory IL-12a and VEGF
were further investigated by means of real-time PCR
with the use of TaqMan specific assays. As shown in
Figure 4A, IL-10 expression decreased 5-fold in sal
TG compared with sal WT, whereas transplantation
of hMSC restored IL-10 mRNA control levels (sal
WT versus hMSC TG, P < 0.05). On the other
hand, IL-12a expression was unchanged among the
three experimental groups (Figure 4B), as first
observed with the use of the array plate. On the
contrary, IL-13 expression was slightly reduced in sal
TG compared with sal WT and was strongly upre-
gulated through hMSC transplantation (16- and 8-
fold compared with sal TG and sal WT, respectively,
P < 0.05; Figure 4C). Finally, VEGF mRNA levels
were strongly (9-fold) downregulated in sal TG
compared with sal WT (Figure 4C). hMSC TG mice
showed upregulated VEGF levels (3-fold) compared
with sal TG, even though they did not reach sal WT
values (P ¼ 0.001; Figure 4D).
Figure 4. Expression analysis of IL-10, IL-12a, IL-13 and VEGF. mRNA
respectively) in the lumbar spinal cord of WT and TG mice injected wi
hMSC TG mice (gray columns). Each column represents mean � SEM
Discussion

This study clearly confirms, with a less invasive
experimental paradigm, the beneficial effects of
hMSCs in the ALS model, previously demonstrated
with intraparenchymal administration of the cells (6).
Although others provided evidence for the molecular
signature of hMSCs as a substrate for their paracrine
role (33), we demonstrated that intracisternally
delivered hMSCs modulate the expression of cyto-
kines and, to a larger extent, of immunomodulatory
molecules by the host, providing evidence for a pu-
tative mechanism of their action.
Experimental model

Even though genes other than those affecting muta-
tions of SOD1 can give rise to familial ALS (34),
animal models for these emerging forms are still
lacking or do not reproduce the histopathological
hallmarks of human disease. Therefore, for basic
experimental studies, the SOD1 G93A mouse re-
mains the most commonly used animal model (35).
For this study, we used a slightly different model
than in a previous one (6): the difference consists in
the number of copies of mutated SOD1 (the previous
model had approximately 30% fewer copies of the
transgene construct than the present, as stated by
Jackson Laboratory) and consequently in the time of
onset of disease (14 weeks versus 28 weeks) and in
the life expectancy (16 weeks versus 34 weeks). The
time of administration of hMSCs was at the onset of
expression levels of IL10, IL12a, IL13 and VEGF (A, B, C and D,
th saline (sal WT: white columns; sal TG: black columns) and in
. *P < 0.05 hMSC TG versus sal TG; xP < 0.05 versus all groups.
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symptoms. We expressly decided to treat the animals
only at the inception of the disease because, at the
moment, there is no way of anticipating the occur-
rence of disease in humans. The onset was detected,
mouse by mouse, on the basis of behavioral tests, and
not arbitrarily decided on the basis of the literature—
such as at a predetermined age, because there is
some inter-individual variability in the onset of dis-
ease (36) that might affect the study; the day in which
the mouse showed at least two behavioral deficits in
the hind limbs, for the second consecutive test ses-
sion, was considered the day of disease onset (36).
hMSCs as drug delivery systems

To test a new method of administration, we injected
hMSCs into the cisterna lumbaris. We previously
reported the hMSC ability to survive and migrate
after intraparenchymal transplantation into the lum-
bar spinal cord of presymptomatic SOD1 G93A
mice, to prevent neuroinflammation, to delay the
progressive decrease in the motoneuron number and
to support a delay in motor impairment (6).

As reviewed by many authors, MSCs could
represent a valid tool in view of a cell therapy
approach in ALS, Parkinson disease, multiple scle-
rosis, spinal cord injury and stroke as the result of
their immunomodulatory and neuroprotective po-
tential. MSCs can release soluble molecules such as
cytokines and chemokines and express immuno-
relevant receptors. Finally, they can release a number
of neurotrophic and neuroprotective factors [nerve
growth factor, brain-derived neurotrophic factor,
glial cell lineederived neurotrophic factor, neuro-
trophin-3 and VEGF] that are essential for support-
ing motoneuron survival and delaying disease
progression (37e39).

As previously shown (6), we did not provide
immunosuppression to mice and we did not find any
sign of immunoreaction to allogenic graft, even in the
long term. hMSCs express low levels of human
major histocompatibility complex class I and lack
human major histocompatibility complex class II, do
not express the CD40, CD80 or CD86 co-stimula-
tory molecules and are immunosuppressive. Never-
theless, there are some reports of immunorejection of
hMSCs (40).
Comparison among different methods of administration

The local, intraparenchymal method of administra-
tion of stem cells aims directly at their target. We
have shown that transplanted hMSCs, injected
into the lumbar spinal cord (6) had beneficial effects
on motoneuron survival, glial activation and
motor behavior. The same approach was used in two
open-label pilot studies in which hMSCs were
injected with the use of a surgical procedure into
different levels of the thoracic spinal cord of 19 pa-
tients with ALS (15,16). On the other hand, with this
paradigm, we observed a limited craniocaudal
diffusion, approximately 1 mm from the injection
site, which might be relevant in mice (6) but requires
multiple injection sites in patients (4,15), increasing
the risk for side effects caused by surgery and pene-
tration through the dorsal horn. Alternatively,
genetically engineered hMSCs have been trans-
planted intramuscularly in a mouse model, leading to
beneficial effects on muscle innervation, motoneuron
survival and motor behavior (41).

Contrasting results have been obtained with
intravenous delivery of MSCs. They are mostly
trapped in the afferent vessels of the lungs and
apparently are degraded there [our unpublished ob-
servations, 2012 (42)]. In the lungs, they can
embolyze and cause endothelial damage (43). On the
other hand, Uccelli et al. (5) showed that hMSCs
injected intravenously in an ALS SOD1 mouse
model improve motor function and survival of mo-
toneurons, reduce ubiquitin aggregates and activate
astrocytes and microglia. An immediate immuno-
modulatory effect induced by intravenous adminis-
tration of MSCs has been shown in five patients with
ALS by Karussis et al. (44).

Intrathecal delivery of high doses of hMSCs into
the cisterna magna improves motoneuron survival,
even though only few of them reach the spinal cord
(45). hMSC transplantation into the cisterna magna
of SOD1 rats through a catheter reaching the lumbar
enlargement delayed motoneuron death and the
decay in motor behavior and decreased microglial
activation; moreover, hMSCs entered the spinal cord
parenchyma and fused with astrocytes (46).

In the present study, we injected hMSCs in the
cisterna lumbaris, and studied the effects on the
histopathological parameters of the lumbar spinal
cord. After 2 weeks from transplantation, we
observed transplanted cells into the parenchyma,
which suggests that not only diffusible factors can
enter the spinal cord but also the hMSCs can migrate
into the parenchyma to exert their paracrine activity.
The finding of hMSCs through the whole lumbar
spinal cord (and at a lesser extent at the lower
thoracic level and rarely at the cervical level) suggests
that the flux of the cerebrospinal fluid is bidirectional
and allows, at least in mice, the transplanted cells to
reach upper neuromers. Therefore, injection into the
cisterna lumbaris allows more cell diffusion than the
intraparenchymal procedure (6) and is the less
invasive than the intraparenchymal and the intra-
thecal administrations and is more target-specific
than intravenous delivery.
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Anti-inflammatory, immunomodulatory and
neuroprotective potential of hMSCs

ALS is a multi-factorial (47), non-cell autonomous
disease, implicating that both microglial activation
and astrogliosis are not mere epiphenomena of
motoneuron death but play a pathogenetic role (48).

Therefore, it is relevant to provide evidence that
hMSCs can play an immunomodulatory role in the
disease, modulating both astrogliosis and microglial
activation, as shown in the present study and in our
previous report (6). To this aim, Uccelli et al. and
others have characterized in detail the molecules that
are secreted by hMSCs (see above).We further extend
their findings, providing evidence that the host spinal
cordmodifies the expression of its neuroinflammatory
andmodulatorymolecules as a consequence of hMSC
transplantation. Even though specific cytokines can
hardly be assigned to a pro- or anti-inflammatory role,
in our experiments we observed consistent changes in
their expression that suggest a beneficial role for their
regulation by hMSCs.

Some authors have already demonstrated the
MSC potential in exerting a paracrine influence on
the microglial/astroglial function. For example, in
vitroMSCs significantly increase microglial release of
molecules associated with a neuroprotective pheno-
type such as CX3CR1, nuclear receptor 4 family,
CD200 receptor and insulin growth factor 1. MSCs
can modulate the microglial state, switching it from a
detrimental phenotype to a neuroprotective one (49).

Indeed, microglia are resident brain cells that
react to pathological tissue alterations. In physio-
logical conditions, microglial cells display a “ramified
resting” state; in most central nervous system disor-
ders characterized by altered homeostasis, microglia
become “activated,” still ramified but with stouter
cell processes; furthermore, fully activated microglia
retract their cytoplasmic processes and become
“amoeboid” (50). Microglial cells are Janus-faced
cells that can exert both detrimental and beneficial
effects: indeed, the literature describes cytotoxic
classically activated M1 microglia and a neuro-
protective alternatively activated M2 microglia (51).
Such phenotypical bipartition is elicited by environ-
mental signals, receptors expressed on microglial
surface and the activated intracellular signaling
pathways (52). In the case of classic activation, the
transcription of inflammatory cytokines, such as tu-
mor necrosis factor-a, IL-1b is induced, whereas in
the case of alternative activation, the release of anti-
inflammatory cytokines, such as IL-4, IL-10, and
insulin-like growth factor 1, is promoted (51).
Changes in cytokine expression such as IL-10 may be
induced by hMSCs through the secretion of prosta-
glandin E2 (53).
This is in agreement with our findings. Indeed,
we observed an increased level of endogenous IL-10,
which could correlate with the different microglial
morphology shown by hMSC TG and sal TG.
hMSC TG microglia, characterized by a limited
activation state, could provide a better neuro-
protective effect compared with sal TG microglia,
showing amoeboid and round morphologies. Simi-
larly, Gomes-Leal (54) described different patterns
of microglial activation after middle cerebral artery
occlusion, associating the ramified/intermediate
microglia to a downregulated inflammatory profile.
The final phenotype would depend on both noxious
and beneficial stimuli present in the extracellular
space. Shaked et al. (55) suggest that moderate
microglial activation allows for a better reaction in a
hostile environment.

Recently, differences in the morphology of
microglial cells, especially close to motoneurons,
have been reported in pre-symptomatic SOD1 mice,
thus suggesting an early involvement of microglia in
the onset of disease (56). In agreement with our re-
sults, Dibaj et al. (57) found that after disease pro-
gression, microglial cells tend to switch to an
ameboid phenotype and to cluster together.

On the other hand, Sun et al. (58), analyzing in
vitro the MSC-conditioned medium influence on
astrocytic gene expression, did not identify signifi-
cant changes in IL-10 expression but, conversely,
found a significant decrease in IL-6 expression. We
also observed a slight downregulation of IL-6 after
hMSC transplantation in TG mice (data not shown).

As concerns IL-13, in disagreement with our
observations, in 2007, Shi et al. (59) reported an
upregulation of IL-13 in peripheral blood CD4þ and
CD8þ T cells in ALS, in correlation with the severity
and progression of the disease. However, more
recently, Fiala et al. (60) stimulated peripheral blood
cells by mutant SOD1 and performed a microarray
analysis of 28,869 genes: they observed a strong
stimulation of expression of seven cytokines (IL-10,
IL-23A, granulocyte-macrophage colony-stimulating
factor, IL-1b, IL-1a, IL-6 and IL-7) but not of IL-13.
Even though the neuroinflammatory role of IL-13 is
still debated, in agreement with our results, there is
evidence that MSCs, transplanted after spinal cord
injury, can increase IL-13 levels and reduce tumor
necrosis factor-a and IL-6 expression, in association
with increased numbers of M2 macrophages (61).

Finally, there is evidence that VEGF expression
represents a major therapeutic target in ALS. VEGF
delivery in ALS experimental models can improve
histopathological and behavioral phenotypes after
intraventricular injection of VEGF-165eexpressing
adeno-associated virus serotype 4 vector (62), and
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systemic administration of recombinant VEGF re-
duces astrogliosis and supports maintenance of
neuromuscular junctions (63,64). Our present re-
sults suggest that hMSCs can induce an upregulation
in the expression of VEGF by the host, which might
protect motoneurons and delay their cell death.
Conclusions

On the basis of the present study, by intracisternal
delivery, hMSCs can provide beneficial therapeutic
effects. Moreover, our results support the idea that
MSCs, besides playing a bystander role and deliv-
ering neuroprotective and immunomodulatory mol-
ecules to the host, elicit a response by the host,
modifying its cellular and molecular response to
disease. Further studies are needed to fully identify
the cell-derived bioactive factors to be used as drugs.
The identification of the key molecules delivered by
MSCs could allow designing pharmaceutical pro-
tocols that mimic the MSC mode of action (65). On
the other hand, as a distinct advantage over phar-
macological therapy, MSCs can be modulated by the
environment and tune their paracrine role to the
needs of the host.
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