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Abstract 

Seaweed are a diverse group of algae with great value and vast application possibilities. 

The seaweed Fucus vesiculosus, stands out for having elevated concentrations of polyphenols and 

antioxidant activities. Polyphenols possess many biological properties including antioxidant, 

antimicrobial, anti-inflammatory, and free radical scavenging activities. Therefore, this species is 

a possible candidate as natural source of bioactive compounds for the development of novel 

products to be applied in the nutraceutical, pharmaceutical, and cosmetic industries, in the future. 

This project aimed to investigate the effects of seasonality, and culture conditions such as salinity 

and ultraviolet radiation (UV) on the antioxidant contents and in vitro properties of F. 

vesiculosus. This was carried out through spectrophotometric analysis, namely total phenolic 

contents (TPC), high performance liquid chromatography (HPLC), α,α-diphenyl-β-picrylhydrazyl 

(DPPH) radical scavenging activity and iron chelating capacity. Furthermore, the epiphytic algae 

coverage was determined and physodes (structures containing phenolics) were investigated 

microscopically through vanillin-HCL staining. 

This information was used to identify the best harvest time targeting the highest 

concentration of antioxidants, which was hypothesized to be in late summer-early autumn, due to 

the protection against UV-irradiation over summer by phenolic accumulation. Significant 

differences supporting seasonality in antioxidants were found. Late Spring to early Fall had the 

highest extraction yields (P»0.0045) and concentrations (P< 0.0010) in contrast to the lowest 

winter concentrations. A total of 13 monophenolic acids were detected through RP-HPLC, with 

September samples being the most diverse in compounds and March samples the least. Gallic 

acid was identified in all analyzed months. Furthermore, antioxidant contents and activity was 

linked to environmental parameters, namely positive correlations between temperature, TPC (P= 

0.0391) and DPPH (P= 0.0016); likewise, between sunlight hours per day, TPC (P= 0.0458) and 

DPPH (P=0.0060).  During experimental growth trials, three salinity concentrations and presence 

of UV light were tested, to verify or reject the second hypothesis: increasing salinity and 

exposure to UV light would yield higher polyphenolic concentrations. No significant differences 

were observed between the TPC and salinity (P=0.0525), and light (P=0.2443), under the 

experimental conditions tested. Regarding growth rate there were significant differences between 

different salinities (P=0.0216). Lastly, physodes were observed to test a third hypothesis 

inquiring on their location within tissues. Microscopic images revealed that physodes were 

distributed mainly in the outer layers of the blades, epidermis and outer cortical layers, serving as 

a shield effect. 

Keywords: Seaweed, phenolic compounds, HPLC, seasonal variation, antioxidant assays 
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Resumo  

As algas são um grupo diversificado de organismos muito valorizado com várias 

aplicações, que atualmente constituem um recurso marinho sub-explorado. O grupo das algas 

castanhas é conhecido pelo seu elevado valor nutricional incluindo vários compostos 

bioativos, na sua composição. Dentro deste grupo, a espécie Fucus vesiculosus, ou Bodelha, 

destaca-se por ter uma atividade antioxidante forte, associada a elevados níveis de polifenóis. 

Os polifenóis pertencem a uma classe de moléculas que possuem muitas propriedades 

biológicas, incluindo atividade antioxidante, antimicrobiana, anti-inflamatória e de 

eliminação de radicais livres. Assim, esta espécie representa uma escolha plausível para o 

desenvolvimento de novos produtos a serem aplicados na indústria nutracêutica, farmacêutica 

e cosmética, futuramente. Esta tese de mestrado teve como objetivo analisar a variação de 

conteúdos antioxidantes, através da identificação, quantificação e caracterização das 

propriedades in vitro de polifenóis, na macroalga F. vesiculosus. Nomeadamente através de 

uma análise espectrofotométrica, HPLC e TPC, do método do radical DPPH e da medição da 

atividade quelante de ferro. O projeto dividiu-se em duas etapas principais: sendo o primeiro 

o mapeamento das variações sazonais no conteúdo de polifenóis e atividade antioxidante em 

amostras de populações naturais. E a segunda, a identificação das condições de cultura 

ótimas, nomeadamente, salinidade e exposição a radiação UV, numa experiência à escala de 

laboratório, de forma a otimizar a concentração de polifenóis. Adicionalmente, as algas 

epífitas e os físodos foram observados ao microscópio ótico. Os físodos são vesículas que 

contém os polifenóis na célula vegetal e a técnica de coloração com vanilina-HCL permite a 

sua observação.  

A alga F. vesiculosus foi amostrada mensalmente da praia Bellevue, a norte de 

Copenhaga, na Dinamarca, contemplando as diferentes estações de um ano completo. 

Pigmentos e polifenóis foram extraídos de algas previamente liofilizadas. Estes compostos 

foram identificados (sempre que possível), quantificados e caracterizados através de ensaios 

antioxidantes. Esta informação foi utilizada para identificar o melhor período de colheita 

desta espécie de alga, visando uma maior concentração em compostos antioxidantes. Este 

período foi considerado como hipótese sendo no final de verão - início de outono, devido à 

acumulação destes compostos durante o verão, que servem como proteção contra as radiações 

ultravioletas. Foram obtidas diferenças significativas que evidenciam a sazonalidade em 

antioxidantes nesta espécie. Os produtos de extração (P»0.0045) e concentração de polifenóis 

(P< 0.0010) mais elevados foram obtidos desde o final da primavera até ao início de outono, 
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em contraste com os meses de inverno, com os valores mais baixos. O número e tipo de 

pigmento manteve-se constante ao longo de todas as estações, estando sempre oito picos em 

cada cromatograma. Os pigmentos foram identificados como duas clorófilas, (clorofila C2 e 

clorofila-a) e seis carótenoides (fucoxantina, Prasinaxantina, dinoxantina, Diatoxanthin, 

Zeaxantina a carotenos a+b). Os pigmentos demonstraram sazonalidade quantitativamente, 

sendo que a sua concentração aumenta do verão para o inverno e primavera, de forma a 

compensar a diminuição de luz disponível. Foram detectados 13 ácidos monofenólicos, 

através da análise de UV RP-HPLC, setembro foi o mês com maior diversidade de compostos 

e março o de menor diversidade. Ácido gálico foi identificado e estava presente em todos os 

meses analisados. Os conteúdos antioxidantes e a atividade antioxidante demonstraram 

correlação positiva com parâmetros ambientais, nomeadamente correlações positivas entre a 

temperatura, TPC (P= 0,0391) e DPPH (P= 0,0016); bem como entre as horas de luz solar, 

TPC (P= 0,0458) e DPPH (P= 0,0060).  

Durante o ensaio experimental, foram testadas três concentrações de salinidade (»13, 

28 e 40 PSU) e ainda a exposição a radiação UV, para verificar ou rejeitar a segunda hipótese 

deste projeto, de que com o aumento das variáveis em questão, seria possível otimizar a 

concentrações de polifenóis. Não foram observadas diferenças significativas entre os 

tratamentos para a TPC relativamente à salinidade (P=0.0525) e à luz (P=0.2443), nas 

condições experimentais testadas. Houve diferenças significativas entre a taxa de crescimento 

dos tratamentos para diferentes salinidades (P=0.0216). No decorrer da experiência, 

problemas em manter os níveis de salinidade constante poderão ter influenciado os resultados 

obtidos. Por último, físodos foram observados microscopicamente para testar a terceira 

hipótese, que inquiria sobre a sua localização nos tecidos. Imagens microscópicas revelaram 

um efeito de escudo, uma vez que os físodos se encontram distribuídos principalmente nas 

camadas externas das algas: na epiderme e camadas corticais externas. Os meses de verão 

coincidiram com a altura de maior incidência de algas epífitas, das quais três espécies foram 

encontradas a crescer sobre F. vesiculosus (verde, castanha e vermelha). A herbivoría e o 

parasitismo de organismos epífitos sobre esta alga é também um dos motivos descritos 

noutros estudos para justificar o aumento das concentrações de polifenóis durante os meses 

de verão.  
Palavras chave: Algas, compostos fenólicos, HPLC, variação sazonal, ensaios antioxidantes 
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Introduction 

1.1 Seaweed biology and distribution 

Seaweed are a diverse group of marine macroalgae, divided into three major groups: 

Chlorophyta (Green), Rhodophyta (Red) and Phaeophyceae (Brown), depending on their 

dominant pigments and preferred wavelength absorption (Makkar et al., 2016, Baweja et al., 

2016). They are key elements in aquatic ecosystems given their role as primary producers, 

utilizing carbon dioxide, water and light energy for photosynthesis, yielding organic 

carbohydrates, and making biomass building blocks by assimilating nutrients such as 

nitrogen and phosphorous. Not only are they responsible for producing a large percentage of 

atmospheric oxygen, but also sustaining complex food webs (Roff et al., 2011).  

Seaweed typically inhabit the rocky shores of coastal ecosystems, including the 

intertidal and the shallow subtidal, within the temperate and polar regions (Guiry, 2015). In 

these zones, they are faced with extreme conditions as a result of the tidal cycle, which they 

endure by anchoring themselves to the substrate by means of holdfasts (Guiry, 2015, Baweja 

et al., 2016). Their vertical distribution is closely related to photosynthesis light requirements; 

thus, most are constricted from 8 to 40 m in depth. Still, in very clear waters they can go up 

to 250 m deep, this is the case in some regions of the Mediterranean, Caribbean and Brazil 

(Guiry, 2015). The photosynthetic pigments of each algal group, spectral distribution and 

light intensity are limiting factors in growth and decisive for zonation (Kanaizuka et al., 

2002). Characteristically, green seaweed inhabit the upper shallow zones, because of their 

greater need for light availability; brown seaweed tolerate less light than green, so they are 

placed in the middle, although many possess gas filled pouches to float at the surface; red 

seaweed can withstand the greatest depths, since they have adapted pigments to make use of 

blue light, which penetrates deeper in the water column (Baweja et al., 2016, Guiry, 2015, 

Kanaizuka et al., 2002). 

1.2 Seaweed aquaculture 

Seaweed have been used worldwide for thousands of years, predominantly in Asian 

countries, and are currently estimated in a total annual value of US$ 5.5-6 billion 

corresponding to 7.5-8 million tonnes of wet seaweed (McHugh, 2003). Seaweed farming has 

been growing rapidly, and is expected to continue, to meet the increasing demand for food, 

fuels, bioactive compounds and enhanced health functional food products (Tiwari and Troy, 
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2015, FAO, 2016). In China, Japan, and the Republic of Korea, seaweed have been a 

traditional food source for over 2000 years, contrarily to western countries, where their 

utilization is mainly for non-food applications (Tiwari and Troy, 2015). Asian countries 

dominate the worldwide production of seaweed (99%) being China the main producer, 

followed by Korea and Japan. In European countries seaweed are largely underexploited 

resources: wild harvesting and aquaculture is only 0.009% of the total worldwide production, 

and accounts to 0.08% of the annual value, the main producers are from France and Norway 

(Farvin and Jacobsen, 2013, Hoefnagel, 1991, FAO, 2017). 

1.3 The search for novel bioactive compounds 

Antioxidants are widely used by the food, cosmetic and nutraceutical industries to 

enhance the oxidative stability of lipid rich products. The use of synthetic antioxidants, such 

as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), has raised some 

concerns due to their health risks and toxicity. This has led to the search of novel plant-based 

natural sources of antioxidants (Hermund et al., 2016). Seaweed are sources of 

polysaccharides, minerals, vitamins and bioactive compounds, such as sulphated 

polysaccharides, peptides, amino acids, lipids and polyphenols (Holdt and Kraan, 2011). 

Therefore, they hold a great potential for the extraction of high-value products with 

biological activities, that can be applied in the nutraceutical, pharmaceutical, and cosmetic 

industries (Fernando et al., 2016). Research on the factors contributing to bioactive 

compounds variation, in natural and cultivated algae, is important since bioactivity is many 

times extract-specific and varies with location, growth conditions, seasonality and species 

(Stengel et al., 2011) .  

Brown algae are particularly interesting for having a wide range of bioactive 

compounds and high nutritional value, and are recognized as rich sources of biologically 

active phenolic compounds (Hermund et al., 2016, Fernando et al., 2016). Currently, they are 

most known for their alginates (polysaccharides), used for commodities such as stabilising 

agents, but also in the pharmaceutical and health industries (McHugh, 2003). Worldwide 

biomass collected from the wild or cultivated is coming from a few species of the orders 

Laminariales and Fucales, and are valued in about US$ 300 million per year (Guiry, 2015). 

Fucus vesiculosus is one of the most common species in the North Sea and Danish inner 

waters and is a promising resource due to elevated levels of total phenolic compounds, and 

higher antioxidant activities, compared to both red or green algae (Hermund et al., 2016). 
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1.4 Study species 

The study species, F. vesiculosus, also known as Bladderwrack (this species) or 

Rockweed (Fucus species in general), belongs to the brown algal class, a group with high 

nutritional value and content of a wide range of bioactive compounds (Holdt and Kraan, 

2011). It is especially rich in polyphenolic compounds and excels in scavenging activities 

(Wang et al., 2009). The basic form of the brown alga is the thallus, a simple, relatively 

undifferentiated vegetative body, divided into three basic structural units, holdfast, stipe and 

blades (Figure 1). The disc shaped holdfast is firmly attached to a substrate; the stipe is 

prominent, flexible, and connects the holdfast to the blades and fronds, which are 

dichotomously branched and have a tough leather-like surface to endure wave action. In the 

blades, there are characteristic gas vesicles or air bladders (usually paired) that may be absent 

in smaller individuals and in exposed shores. They help maintain the blades at the surface for 

better light exposure and improve photosynthesis. Fertile fronds have fruiting bodies, the 

receptacles, with several conceptacles inside (Evert and Eichhorn, 2013, Guiry and Guiry, 

2016, White, 2008). 

 The presence of this species is predominantly along rocky and stony coasts, usually 

appearing highly concentrated and widely distributed. It is one of the most important 

phytobenthic species of the Baltic, providing habitat for species-rich epiphytic and epibenthic 

communities (Torn et al., 2006). It prefers salty, brackish waters and sheltered rocky shores, 

and is also associated to cold water patches from spring–summer upwelling (Guiry, 2015, 

Viana et al., 2015, Plass, 2013). 

Figure 1 Structure of a mature F. vesiculosus thallus. Adapted from (Evert and Eichhorn, 2013, Hermund et al., 2016).  
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1.4.1 Life cycle 

In the Baltic Sea, F. vesiculosus exhibits two periods of reproduction, the most 

pronounced is during early summer (May to June) but can also occur in late autumn 

(September to November) (Berger et al., 2001). The life cycle of F. vesiculosus is portrayed 

in Figure 2, they are dioecious (male and female individuals) and have a gametic life cycle, 

meiosis occurs before the gamete formation and the zygote and adult are diploid (2n) (Evert 

and Eichhorn, 2013). Gametes are produced in specialized chambers, the conceptacles, 

located in the receptacles at the tips of fertile fronds (Pearson and Serrão, 2006). During 

reproductive periods, eggs and sperm are released only in calm waters (Serrao et al., 1996a, 

Serrão et al., 1999), resulting in up to a million fertilized eggs, per individual (Pearson and 

Serrão, 2006, Serrao et al., 1996a), except when salinity is limiting to gamete viability 

(Serrão et al., 1996b, Serrão et al., 1999). The zygote attaches to the substrate within a few 

hours after release and then grows directly into a young diploid seaweed. Seaweed enter a 

period of dormancy in winter and new biomass grows slowly, until spring arrives again, and 

receptacles mature (Serrão et al., 1999). After the reproductive period, the receptacles and 

parts of the fronds that support it are usually abscised (Berger et al., 2001). The lifespan of 

this species is around 2 to 3 years in Spain (Viana et al., 2015). Some individuals can have 

clonal propagation especially in the sheltered conditions of the Baltic, where vegetative 

propagules can develop rhizoids and attach to substrate given enough time (Tatarenkov et al., 

2005). 

 
  

Figure 2 The life cycle of Bladderwrack (F. vesiculosus). Sperm from the male thallus fertilizes the egg that is 
released from the female thallus and forms a zygote that will attach to a substrate and grow into a new individual. 
ÓMadalena Mendes 
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1.4.2 Geographic distribution 

This species occurs in the North Atlantic in coastal regions: in the eastern coast of 

Canada and North America; around the coastlines of the British Isles, Faroe Islands, Iceland, 

Morocco, Iberian Peninsula, France, Belgium, the Netherlands and Germany; in Scandinavia 

and the Baltic sea, as well as some regions of the Arctic including Greenland (Guiry and 

Guiry, 2016, White, 2008, OBIS, 2017). 

1.4.3 Cultivation 

There are few experimental data and studies on the cultivation of F. vesiculosus, it has 

been possible to produce sporophytes from spores in lab cultures, but they die once deployed 

in the field making it a challenging species to work with. The majority of Fucus species are 

manually harvested from shores and are currently not farmed at an industrial scale (NetAlgae, 

2012). At this stage, offshore cultivation is described by Hermund et al., (2016), as a 

plausible option for this species. Nevertheless, onshore tank cultivation is also a possibility; it 

allows a higher control over culture conditions and access to seaweed is easier, which may be 

very useful if the biomass is meant for high-end applications. Hermund et al., (2016) findings 

reveal that apical fronds of F. vesiculosus generally have higher polyphenolic contents, which 

suits a more sustainable cultivation because only young parts need to be harvested, instead of 

a full removal of the seaweed, and then there is continued vegetative growth of the remaining 

thalli. 

In reference to culture conditions, optimal growth consist of cold water (<18°C), a 

minimum 8-hour photoperiod, salinities vary from 18-40 PSU, accessible nitrogen, and a 

suitable substrate for attachment in a sheltered or semi exposed areas, (Hermund et al., 2016, 

White, 2008). There seem to be no specific nutrient requirements, a temperature of 15 ºC 

promotes rapid growth; and increased biomass densities in a culture tank significantly limit 

growth rate (Fulcher and McCully, 1969, McLachlan et al., 1971). The highest relative 

growth rate of vegetative branches of F. vesiculosus has been reported in the summer months 

(up to 0.7% per day) compared to winter growth (less than 0.3% per day) in the Northern 

Baltic (White, 2008). Fulcher and McCully (1969) documented small and slow growth in 

isolated thalli apices of mature individuals, as well as small portions of thalli lacking apices 

regenerating with shoots. Individuals are known to easily regenerate new fronds from the 

holdfast after destructive events (Viana et al., 2015). Fulcher and McCully (1969) further 

reported improvements in growth by designing an apparatus that enabled alternating periods 
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of immersion and exposure, just like a tidal cycle in natural conditions. They also obtained 

low levels of contamination in the system, which they attributed to the antibiotic properties of 

produced polyphenols. On the other hand, McLachlan et al., (1971) obtained algae 

comparable in size in less time, when using a submerged culture, finding that the absence of a 

tidal cycle did not restrain from a successful cultivation. It is relevant to note that within the 

Baltic Sea there is little or no influence of tidal cycles (Pearson and Serrao, 2006). 

1.5 Antioxidant compounds 

Bioactive compounds from seaweed that display antioxidant properties are valuable in 

the sense that they can replace synthetic antioxidants, such as n-propyl gallate, 

monoglyceride citrate, butylated hydroxyanisole, butylated hydroxytoluene (BHT) and 

butylated hydroxyquinone, many of which are restricted due to health concerns and toxicity 

(Cérantola et al., 2006). Moreover, they may be used to replace available natural mono-

compound antioxidants, such as tocopherol and ascorbic acid, which are insufficient in most 

fish-oil-enriched foods (Farvin and Jacobsen, 2013, Hermund et al., 2016). Listed below are 

some of the commercially relevant applications of seaweed antioxidant extracts. They can be 

applied in food to avoid lipid oxidation and prolong shelf life, already shown in muesli bars 

(Hermund et al., 2016). They are fit to be used as supplements in functional foods, 

pharmaceutical drugs, in cosmetics and skin care industries, for example, as radiation 

protection agents (Holdt and Kraan, 2011, Parys et al., 2010). The seaweed antioxidants can 

be beneficial to human health by regulating the balance between reactive oxygen species 

(ROS) production and scavenging. ROS are highly reactive towards essential biomolecules, 

hence damaging the integrity of cells (Belda et al., 2016). Lastly, antioxidants serve as 

defense mechanisms against many diseases, such as cardiovascular diseases, diabetes, cancer, 

atherosclerosis, aging, and other degenerative diseases (Fernando et al., 2016). 

1.5.1 Pigments 

Pigments selectively absorb light giving colour to the algae. They also possess 

antioxidant properties (Raposo et al., 2015). Brown seaweed major accessory pigments are 

chlorophyll c1 + c2 and xanthophylls, such as fucoxanthin. The abundance of xanthophylls is 

responsible for the brownish colour and masks the other pigments, chlorophyll-a and –b; β-

carotene and other carotenoids (Holdt, 2011). Chlorophyll-a and –b, are responsible for the 

green colour in plants, and are essential to photosynthesis, since they absorb light and are 

primary electron donors. Additionally, in certain marine algae, including brown algae, exist 
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Polyphenols

Phenolic acids

Hydroxycinnamic acid 
(coumaric, caffeic, ferulic acids) 

Hydrobenzoic acids (gallic, 
protocatechuic, salicylic acid)

Flavonoids

Flavonols (Quercetin, 
Myricitrin)

Flavones (Apigenin, Luteolin)

Isoflavones (Daidzein, 
Genistein)

Flavanones (Hesperidin)

Flavanols (Catechins, 
Condensed Tannis)

Anthocyanins 
(Protoanthocyanidins)

Stilbenes (Resveratrol)

Lignans (Enterodiol)

Other Phenols (Phlorotannins, Bromophenols)

chlorophyll-c, accessory pigments with a blue-greenish colour. Carotenoids are a family of 

red yellow and orange lipophilic tetraterpenoids that protect plants against photo-oxidative 

processes. They are effective free radical scavengers and deactivators, and promote 

antioxidant interactions with other compounds, which enhances this effect. They are divided 

into xanthophylls, with oxygen, and carotenes, hydrocarbons without oxygen (Hermund et 

al., 2016, Safafar et al., 2015).  

1.5.2 Polyphenols 

Phenolic compounds are a diverse class of biological molecules, produced as secondary 

metabolites and present in most algal groups (Stengel et al., 2011, Schoenwaelder, 2008, 

Tsao, 2010). They comprise around 8000 natural occurring compounds, with a hydroxyl 

group (-OH) bonded directly to an aromatic hydrocarbon group (Fernando et al., 2016, Holdt 

and Kraan, 2011). They are classified into different groups as a function of the number of 

phenol rings they contain and on the structural elements that bind these rings to each other 

(Pandem et al., 2009). The main classes include phenolic acids, flavonoids, stilbenes and 

lignans (Figure 3). 

Figure 3 Polyphenols classification based on Pandem et al. (2009), Tsao (2010) and IUPAC (2014). 
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Often acting as stress compounds and involved in chemical protective mechanisms, 

they display antioxidant, antimicrobial, anti-inflammatory, and free radical scavenging 

activities, through single electron transfer and through hydrogen atom transfer (Belda et al., 

2016, Fernando et al., 2016, Safafar et al., 2015, Schoenwaelder, 2008). They play an 

important role in diverse biological processes, including UV photo-protection, polyspermy 

blocking, trace metal bounding, protection against herbivores, oxidative stress, and injuries 

(Belda et al., 2016, Pandem et al., 2009, Salgado et al., 2007). Hence, their concentration can 

be increased by various parameters, both biotic, grazing, settlement of bacteria and other 

fouling organisms; and abiotic, excessive irradiance from UVA and UVB, metal 

contamination, as well as osmoregulatory stress from increasing rain or salinity (Ragan and 

Jensen, 1978, Schoenwaelder, 2008, Stengel et al., 2011). Lower salinity has been associated 

to a higher concentration of secondary metabolites, and consequently greater antioxidant 

potency; while higher salinities promote higher concentration of polysaccharides, and less 

antioxidant power in the species Fucus ceranoides, Linnaeus  (Cotas, 2015). 

Brown seaweed are rich in different phenolic compounds, some examples are described 

in Table 1. Bromophenols are common to most seaweed, though it is phlorotannins that make 

up most of the phenolic compounds of brown algae, going up from 5-30% of the dry weight 

(dw) of the seaweed (Hefernan et al., 2015, Stengel et al., 2011). Phlorotannins are exclusive 

to brown seaweed and are divided into numerous classes, depending on the type of linkage 

between phloroglucinol units (Cérantola et al., 2006, Hefernan et al., 2015). They are 

characterized by having a molecular mass from 126 Da to 100 kDa; a polymeric structure 

formed by phenolic oxidative coupling; 14–24 phenolic hydroxyl groups and 5–8 aromatic 

rings per 1,000 units of relative molecular mass (Hefernan et al., 2015, Martinez and 

Castaneda, 2013). Exceptionally, they also display primary functions within growth and cell 

wall development in Fucales, where they are very abundant (Cérantola et al., 2006). Martínez 

& Castañeda, (2013) divide three main groups of phlorotannins: fucols, phloroethols and 

fucophloroethols. The first two are constituted of only aryl-aryl and aryl-ether bonds 

respectively and the latter contains both (Cérantola et al., 2006).  
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Phenolic compounds Examples 

Bromophenols 2-bromophenol, 4-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, 

2,4,6-tribromophenol 

C6-C4-C6 

metabolite 

Colpol, 8,9-dihydrocolpol 

Meroditerpenoids Plastoquinones, sargaquinoic acid, sargachromanols, chromene 

derivatives. 

Phenolic acids Gallic, protocatechuic, gentisic, chlorogenic, vanillic, caffeic 

Phlorotannins Phloroglucinol, phloroglucinol with a C20 acyl side chain, fucols, 

fucophlorethols, fuhalols, phlorethols, eckols, eckstolonol, phloroeckol, 

phlorofucofuroeckol-A, triphlorethol-A, trifucodiphloroethol-A, 

dioxinodehydroeckol, carmalol, diphlorethohydroxycarmalol 

 
1.5.2.1 Physodes 

The distribution of phenolics in plants is not uniform at the tissue, cellular and sub 

cellular levels. Insoluble phenolics are found in cell walls, while soluble phenolics are present 

within the plant cell vacuoles (Pandey et al., 2009). Polyphenolic compounds are stored in 

membrane bound vesicles called physodes (Ragan, 1976). Looking into the specific location 

of phenolic compounds, in the cell tissue, gives us some insight into understanding the 

ecological and physiological functions of these compounds (Ragan and Jensen, 1978). 

Physodes are present in many stages of the algal life cycle, from the early development 

(spores, gametes, zygotes) up to the adult plant, in cell wall formation, in vegetative tissue, 

for adhesion, polyspermy prevention, defence and UV protection (Ragan, 1976, 

Schoenwaelder, 2008). They are found in the periphery of cells and perinuclear regions, 

where they are most likely produced, their size varies between 0.1-10 µm in diameter 

(Schoenwaelder, 2008). In the newest shoots, where there is more active growth, they seem 

to be richer in total phenols (Ragan, 1976).  

Physodes can be stained and observed in fresh or fixed tissue, under light or electron 

microscopy (Schoenwaelder, 2008). Vanillin-HCl colours the physodes red, which is 

described as an efficient method by Ragan (1976) and can specifically detect phlorotannins 

(Shibata et al., 2004). Nevertheless, there are many histochemical staining methods specific 

Table 1. Distribution of phenolic compounds in Phaeophyceae. Adapted from (Stengel et al., 2011, Parys et al., 2010, 
Fernando et al., 2016, Wang et al., 2009). 
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for  available including osmium tetroxide, neutral red, toluidine blue O, fast red GG, and 

cresyl blue (Schoenwaelder, 2008). By light microscopy with vanillin-HCl staining, it has 

become clear that phlorotannins accumulate primarily within the vegetative cells of the outer 

cortical layer of brown algae, regardless of the variety of tissue, stage of growth or organ 

(Shibata et al., 2004). A few authors have contributed to the study of the polyphenols and 

physodes in F. vesiculosus (Baardseth, 1958, Ragan, 1976, Ragan and Jensen, 1977, 1978). 

However, considering that many used indirect methodologies of detection dependent on 

colorimetric reagents, for example, the Folin-Denis; a fresh overtake of this topic would be 

useful, to determine distribution and secretion of phlorotannis and phenolic substances in 

brown algae (Shibata et al., 2004). The morphology of the cell tissue in Fucus fronds is 

displayed in Figure 4. There are three main sections: the inner most layer is called the 

medulla, its filamentous cells are fully covered in mucilage; the middle layer is the cortex, 

comprised of cortical cells loosely arranged in some mucilage, lastly the epidermis, with 

photosynthetic cells closely packed together. The central area in the medulla midrib contains 

longitudinal filaments tightly packed together. 

  

Figure 4 Arrangement of tissues in the F. vesiculosus frond, seen in a transversal section. Adapted from (Evert & Eichhorn 
2013; Hermund et al. 2016). 
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1.5.3 Extraction methods 

Polyphenols are polar molecules that must be extracted from inside the cell wall, with 

minimum risk of damage to the compounds, by different means (Martínez and Castañeda, 

2013, Safafar et al., 2015). Solvent polarity is very defining for the extraction yield and 

antioxidant activity. It interferes with the qualitative and quantitative analysis of extracted 

compounds and must have the ability to penetrate the cell wall and dissolve compounds of 

interest (Sineiro et al., 2008). In plant studies, highest yields are obtained with ethanol, 

methanol, and their mixtures with water, other utilized solvents are ethyl acetate or acetone 

(Sineiro et al., 2008).  

Water (we), acetone (ae) ethanolic (ee), and methanolic (me) extracts have presented 

different results, on both TPC and antioxidant activities in the extraction of polyphenols from 

Icelandic seaweed (Wang et al., 2009). Water has been described as being efficient in 

extracting iron chelating compounds, in spite of being a poor solvent for phlorotannis (Farvin 

and Jacobsen, 2013). Meanwhile, acetone, ethanol and methanol are highly effective and 

yield large polyphenolic contents, in addition to having good radical scavenging capacity and 

reducing power results (Farvin and Jacobsen, 2013, Hermund et al., 2016, Wang et al., 2009). 

However, environmental concerns urge industries to switch from conventional solvents to 

more sustainable methods, for instance, the pressurized liquid extraction, when producing 

natural novel antioxidants (Hermund et al., 2016). There is a need for the improvement of 

fractionation and purification of bioactive components, which is certain to increase the 

activity and other potential health benefits, launching polyphenols as natural sources of 

antioxidants for commercial use (Wang et al., 2009).  

1.5.4 Identification and quantification 

Polyphenols are quantified through TPC usually determined by the FC assay (Singleton 

and Rossi, 1965). This method consists in the spectrophotometric detection between 725 and 

765 nm, of a blue complex and molybdenum oxide, from the oxidation of phenolic rings, 

phosphotungstic and phosphomolybdic acids (Hermund et al., 2016). TPC units are expressed 

as phloroglucinol or Gallic Acid Equivalents (GAE) (Martínez and Castañeda, 2013, Farvin 

and Jacobsen, 2013). Phlorotannins tend to dominate within polyphenols, and consequently, 

the total phenolic content is often related to them (Wang et al., 2009, Farvin and Jacobsen, 

2013). In Hermund et al., (2016) TPC also varied within the tissue location of the algae, 

younger tips had higher values than the older ones. Sometimes this method causes 
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uncertainty because non-phenolic substances can interfere and fall into the spectrum of 

phenolic compounds, causing an overestimation of TPC (Hermund et al., 2016). 

HPLC is ideal to separate polyphenols, due to their polar nature and high solubility, and 

gives a rapid structural identification (Hermund et al., 2016). In order to fully identify and 

characterize polyphenols, advanced analytical methods must be applied, for example, tandem 

mass spectrometry (MS) and nuclear magnetic resonance (NMR) and could even be 

combined with HPLC (Hermund et al., 2016). In previous studies with F. vesiculosus, 13 

phlorotannins isomers with molecular weights between 374 and 870 Da were identified by 

mass spectrometry, and the antioxidant activity decreased with increasing molecular weight 

(Hermund et al., 2016). 

1.5.5 Antioxidant activity assays 

Antioxidant assays have been used to characterize the antioxidant properties of 

polyphenols in F. vesiculosus (Arnold et al., 1995, Farvin and Jacobsen, 2013, Hermund et 

al., 2016, Wang et al., 2009). They can be determined by in vitro studies, which are simple, 

cheap and fast methods to characterize antioxidants (Hermund et al., 2016). This study 

focuses on two antioxidant activity mechanisms which will hereby briefly be discussed. 

Polyphenols contain many hydroxyl groups bound to an aromatic ring making them 

very good candidates for donating protons to a radical, acting as chain breaking molecules or 

antioxidant upon secondary oxidation (Sineiro et al., 2008). Screening of substances with 

potential antioxidant activity and scavenging of free radicals is widely performed by using 

DPPH, a stable radical (Yang et al., 2008). Studies have shown that algal polyphenols are 

mainly responsible for the free radical scavenging activities of extracts, since high TPC 

correlates with high DPPH (Wang et al., 2009, Hermund et al., 2016). Though sometimes co-

extracted active compounds also contribute to the overall scavenging effect, as is the case 

with fucoxanthin and sterols from 70% ae, and sulphated polysaccharides, proteins or 

peptides in we (Wang et al., 2009). Ferrous iron chelating indicates how antioxidants reduce 

oxidized intermediates into a more stable form, two neighboring OH groups (o-diphenol) are 

required in the structure, an essential characteristic for food and skin care products (Hermund 

et al., 2016). 
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Objectives 

The aim of this project was to analyze the antioxidant variation in the seaweed F. 

vesiculosus, this was done through physical location of polyphenols, quantification of 

polyphenols and pigments, and characterization of antioxidant activities, by DPPH and iron 

chelating method. Fucus vesiculosus was furthermore evaluated as a potential source in the 

future development of natural antioxidants which is of interest to industries. This study was 

divided in three stages (summarized in a Fluxogram illustrated in Figure 6), the first being the 

mapping of the seasonal polyphenolic and pigment variations, by monthly samples 

throughout a year of natural populations, which was used to determine the optimal season for 

biomass harvesting and utilization. The second stage was the identification of optimized 

culture conditions in lab scale experiments, regarding salinity concentration and UVA light, 

to yield higher polyphenolic concentrations to be potentially used industrially. The third stage 

was imaging of the polyphenol content in F. vesiculosus by vanillin HCl staining and 

microscopy. The physical location of polyphenols gives information on the extraction 

methods and possibilities. As a complement to this work, the epiphyte coverage was 

evaluated qualitatively to gather knowledge on what species occur in the sampling region and 

at what time of the year they are most present. 

 

1.1 Hypotheses 

This study tested the following hypotheses: 

H1 - There are seasonal differences in the polyphenolic content and activity of wild 

F. vesiculosus, more specifically, late summer and early autumn months present the highest 

polyphenol values.  

H2 – Increased salinity and UVA light increases the antioxidant yield, and therefore it 

is possible to optimize F. vesiculosus antioxidant contents, in respect to these parameters.  

H3- The physodes can be stained by vanilin HCl and are located in the outer cells. 
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The hypotheses led to the more specific tasks that were carried out: 
 Extraction and profiling of polyphenols and pigments from F. vesiculosus. 

 Characterization of antioxidant activities from F. vesiculosus. 

 Evaluation of seasonal changes in the polyphenolic content of wild F. vesiculosus. 

 Testing the optimization of antioxidant contents in F. vesiculosus cultured under 

different environmental parameters, such as salinity concentration and UVA light 

exposure.  

 Microscopic evaluation of epiphytes and physodes in F. vesiculosus. 

1.2 Learning objectives 

 General skills on sampling and identification of seaweed. 

 Conduct a lab-scale seaweed culture trial, including management and manipulation 

of seaweed. 

 Identification of optimized conditions, regarding salinity concentrations and UVA 

light presence. 

 Quantification of antioxidants: polyphenols and pigments 

 Biochemical analysis of seaweed biomass: antioxidant extraction, profiling and 

antioxidant capacity essays. 

 Determine the optimal season for biomass utilization in F. vesiculosus. 

 Microscopic observation techniques, including staining of algal physodes. 

 General skills on data analysis (including statistics), interpretation, and discussion 

of scientific results. 

 Presentation for and discussion of data with the Bioactive Research Group 

 

 

  

Figure 5. Collection of biomass at Bellevue beach, Denmark. Ó Madalena Mendes 
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1.3 Fluxogram  

Extraction
Methanol	&	sonication

Quantification
TPC	&	HPLC

In	vitro	antioxidant	capacity	
assays

• DPPH	radical	scavenging	activity	
• Iron	(Fe2+) chelating	activity

Figure 6 Overview of the main stages of this thesis. 
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2.	Optimization	of	

Antioxidants	Lab-scale	

culture	

Best	harvesting	periods	

Yield	higher	antioxidant	concentrations	

Novel	natural	antioxidants	

3.	Microscopic	

Observation	of	Physodes	
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Methodology 

1.1 Sampling 

Wild F. vesiculosus (Figure 7a) was collected by hand, monthly, from June 2016 to 

May 2017. Additionally, fresh samples of F. vesiculosus were collected in March, to be used 

in polyphenol optimization experiments. They were conditioned at 10°C, with a 12h light 

photoperiod, 73,8 ± 14,4 µmol.s−1.W−1 photosynthetically active radiation (PAR) and »15 

PSU salinity (Hermund et al., 2016, McLachlan et al., 1971). The collection site was along a 

25 meter transect at the intertidal zone of Bellevue beach (55°46'17.4"N 12°35'48.4"E), 

North of Copenhagen, Denmark (Figure 7b). Samples were stored in a freezer room at -40°C, 

until further processing and analysis.  

 

1.2 Environmental data 
Environmental data was obtained from weather archives of the Danish Meteorological 

Institute (Cappelen, 2017). Monthly averages of mean temperature (ºC), precipitation (mm) 

and sunlight (h) were taken from June to August 2016 (Denmark) and from September 2016 

to June 2017 (Lyngby-Tårbæk, the sampling location). Additionally, UV-dose 2017 

measurements from Copenhagen and yearly projections were used in this study (Cappelen, 

2017). 

  

Figure 7 a) Wild F. vesiculosus frond Ó Madalena Mendes. b) Sampling location, Bellevue beach, Denmark Ó Google. 

a b 
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(1) 

(2) 

(3) 

 

1.3 Dry matter and ash contents 

Samples were thawed overnight in a cool room and cleaned to remove holdfasts, 

epiphytes and bryozoans. Wet weight (ww) was determined gravimetrically after biomass 

was dapped with a paper towel, followed by freeze drying for 48 hours, using a Heto 

Drywinner (DW8, ThermoFisher Scientific), and dw measured gravimetrically. Then, each 

sample (representative of a month) was divided into triplicates of pooled individuals (Figure 

8) and reduced to a fine powder using a sample mill (FOSS Tecator), for 30 to 40 seconds. 

Dry biomass was calculated as the dry to wet weight ratio multiplied by 100 as following: 

!"#	%&'()**	(%) =
/0
00

×100 

Dry matter (dm) was determined after drying the samples in an oven at 105 °C for 24 

hours, until constant weight and ash content was determined by incineration in a muffle 

furnace at 550 °C for 6 h (Figure 9). Dry matter and ash content were calculated as following:  

!"#	()445"	 6	/(. 1006	/089 =
/(
/0

×100 

:*ℎ	 6	)*ℎ. 1006	/089 =
)*ℎ
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×100	 

 

		 

  

Figure 9 Crucibles with dried seaweed powder biomass: a) dry matter and b) ash 

b a 

Figure 8 Freeze dried F. vesiculosus collected at Bellevue beach in June 2016. 

a b 
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1.4 Antioxidant profiling 

1.4.1 Extraction 

Polyphenols were extracted with a solid liquid extraction (SLE) using methanol and 

sonication, according to (Farvin and Jacobsen, 2013). A total of 0.600 g of powdered 

seaweed were added to previously weighed centrifuge tubes. Then, 5 mL of methanol were 

added and mixed at room temperature. The mixture was placed in the sonicator, for 30 min 

(Branson Ultrasonics, CA, USA) and centrifuged at 3500 rpm for 10 min (Sigma 4-16ks, 

Germany). The supernatant content was collected to a separate tube, filtered (0.45 µm), and 

evaporated under nitrogen flow (Figure 10a). Remaining residue was re-extracted around 9 

times, under the same conditions. After evaporation, me were weighed and the absolute yield 

was calculated as following:  

:%*'<=45	#&5</	 6	(5. 1006	/(−1 =
(5
/(

×100 

Furthermore, the me of four months (2016: September; November; 2017: January and 

March) were analyzed by RP-HPLC, to identify simple phenolic compounds such as phenolic 

acids and flavonoids. After the previously described extraction process, the extracts were re-

diluted in MeOH and loaded to a sulfonic acid 6cc mixed-mode cation exchange (MCX) 

cartridge (OASIS Waters, USA), to remove pigments. The cartridge was conditioned and 

equilibrated with 3 mL of MeOH, 5 mL of sample were loaded, and finally the cartridge was 

washed with 4 mL of MeOH. The volume was collected and evaporated under the nitrogen 

flow (Figure 10b). The new extracts were weighed and the absolute yield (g me. 100g dm-1 of 

seaweed) was calculated. 

 

Figure 10 Polyphenol extraction process after nitrogen flow: a) test tubes with me b) Test tubes with me after 
removal of pigments with the OASIS MCX cartridge. 

b a 

(4) 

a b 
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(5) 

1.4.2 Identification and quantification of Pigments 

Pigments were analyzed bimonthly in triplicate samples, from July 2016 to May 2017, 

according to the method described in Safafar et al., (2015) with some modification. Pigment 

extraction was performed with methanol and sonication; and their quantification and 

identification by RP-HPLC. A total of 0,100 g of dried seaweed were weighed, and mixed 

with 3 mL of methanol (with 0.025 µg.ml-1 BHT). The test tubes were kept in a beaker with 

ice, covered with aluminum foil, and placed in a sonication bath, for 15 min (Branson 

Ultrasonics, CA, USA). The samples were then centrifuged at 5000 rpm for 10 minutes 

(Sigma 4-16ks, Germany), and the supernatant filtered (0.45µm) and collected to a separate 

tube. The remaining residue was re-extracted three times, under the same conditions, 

concluding a final volume of 10mL. 

A total of 1 mL of each sample was placed in HPLC vials and analyzed immediately or 

kept in the freezer at -18° without light, and analyzed in the following morning. RP-HPLC 

analysis was performed with an Agilent 1100 series HPLC (Agilent Technologies, CA, USA) 

equipped with Diode Array Detector (DAD) (Agilent G13158). Moreover, a Zorbax Eclipse 

C8 column 150 mm×46 mm×3.5 µm from Phenomenex was used for the separation. Elution 

was performed with a mixture of solvent A (70% MeOH + 30% of 0.028 M tertiary butyl 

ammonium acetate in water) and solvent B (MeOH) at a flow rate of 1.1 mL.min-1, chosen as 

the mobile phase. Retention times and peak were monitored and computed automatically by 

Chem32 integrator (Agilent, USA). DHI pigment standard mix (DHI LAB Products) was 

used as a pigment standard for the identification of peaks, and the pigments were detected at 

440 nm.  

Calculation of concentration of each individual peak of pigment (cpi): 

?@& = A5*@'B*5	C)D4'"	×	!&<=4&'B	C)D4'"×	A5D'E5"#	C)D4'"	×	?)<&%")4&'B	C)D4'" 

The peak areas and pigment identities were transferred to an excel file, and based on 

the response factors, the pigment concentrations were calculated: 

?@& =
FG
HI

×
:J

:K
×

:LM×AN&
FD

 

Where APi and RPi are the peak area and the response factor of pigment Pi, 

respectively; Vx is the extraction volume; Mf is the weight of the sample; Vc is the amount 
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of sample injected onto the column; Ac is the peak area of the internal standard in the 

extraction solvent; and As is the peak area of the internal standard in the sample. 

1.4.3 Identification and quantification of Phenolic compounds 

Phenolic acids and flavonoids were identified through a chromatographic qualitative 

analysis, HPLC, by a modified method of Safafar et al., (2015). RP-HPLC was performed 

with an Agilent 1100 series HPLC (Agilent Technologies, CA, USA), equipped with a DAD 

(Agilent G13158). The separation was carried out on a Prodigy ODS-3 column 250 mm x 46 

mm with 5 µm particle size from Phenomenex (Torrance, CA, USA). 

Elution was performed with a mixture of solvent A (Phosphoric acid in deionized 

water, pH=3) and solvent B (MeOH + Acetonitrile, 50:50 v/v) at a flow rate of 0.9 mL.min-1, 

chosen as the mobile phase, and the injection volume was 20µl. Detection was done using a 

DAD with reference wavelength of 255 nm. Retention times and peak were monitored and 

computed automatically by Chem32 integrator (Agilent, USA) and manually integrated when 

necessary. Identification of individual phenolic acids was done by the retention time of 

sample chromatographic peaks, being compared with the authentic standards under the 

equivalent HPLC operating conditions (Figure 11). Individual phenolic acids were identified 

by the retention time of sample chromatographic peaks being compared with those of 

authentic standards using the same HPLC operating conditions. Standards were Caffeic acid; 

Catechol; Cathechin; Chlorogenic; Coumaric; Ferulic; Gallic acid; Gentisic; Hesperidin; 

Hydroxybenzoic; Morin; Myricetrin; Protocatechuic; Quercitrin; Rutin; Salicylic; Syringic; 

and Vanilic.  

Calculation of concentration of each individual peak of phenolics (Cphenolic): 

(6) 

?@ℎ5B'<&D = :"5)	×	A	5*@'B*5	C)D4'"	×	!&<=4&'B	C)D4'"×	A5D'E5"#	C)D4'"	×	?)<&%")4&'B	C)D4'" 

Figure 11 HPLC-DAD analysis (255 nm) of standard mix. UV chromatogram with labeled peaks according to the 
compound they represent.  
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1.4.4 Determination of TPC 

Polyphenols were quantified spectrophotometrically by the determination of TPC, with 

the Folin-Ciocalteu (FC) assay method Singleton and Rossi (1965) according to Farvin and 

Jacobsen (2013) with some modifications. TPC were expressed as GAE mg.100 mg-1 of dried 

seaweed, and samples were run in analytical duplicates. An aliquot (100 µL) of extract 

(dissolved in methanol, concentration range from 0.6 to 3.8 mg. mL-1) was mixed with 0.75 

mL of FC reagent (10 % in distilled water) and incubated, at room temperature, during 5 

minutes. Then, 0.75 mL of sodium carbonate (7.5% in distilled water) was added to the 

mixture and incubated in darkness during 90 minutes. Total phenols were measured by the 

absorbance in a spectrophotometer at a wavelength of 725 nm (Shimadzu UV mini 1240, 

Duisburg, Germany). A standard curve plot with serial gallic acid solutions (0-100 µg. mL-1) 

was used for calibration. 

1.4.5 In vitro antioxidant capacity assays 

To determine the antioxidant properties of the me, two antioxidant activity assays were 

used, the DPPH scavenging activity and the iron chelating activity.  

1.4.5.1 DPPH radical scavenging activity 

DPPH was used to evaluate the efficiency of the antioxidant scavenging effect of the 

extracts on free radicals and H-atoms donation, measured by the method described in Yang et 

al., (2008) and Farvin and Jacobsen (2013) with some modification. The activity of each 

extract was measured in serial dilutions, with analytical triplicates, at a concentration range of 

0.0003-0.97 mg. mL-1. An aliquot (100 µl) of DPPH solution (0.1mM in 96% ethanol) was 

added to extract solution (100 µl). The mixture was agitated (600 rpm), and incubated in the 

dark, for 30 min at room temperature. The absorbance of the resulting solution (As) was 

measured at 517 nm using a microtiter plate reader spectrophotometer (Biotek, Shimadzu, 

Holm & Halby, Denmark). The following controls were used: sample control (A0), 100 µl 

extract + 100 µl EtOH; a sample blank (Ab), 100 µl DPPH + 100 µl MeOH; and finally, a 

positive control (100 µl DPPH + 100 µl BHT).  

Radical scavenging activity was calculated as follows and given as inhibition 

percentage (Farvin and Jacobsen, 2013). EC50 and 1/EC50 values were determined by plotting 

dose-response curves (GraphPad Prism 6), present in Annex C. Antioxidant Profiling. 

A)/&D)<	*D)E5B6&B6	)D4&E&4#	(%) = 1 −
:K − :O
:P

×100 
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(7) 

(8) 

	
1.4.5.2 Iron chelating activity 

The iron (Fe2+) chelating activity of the extracts was estimated by the method described 

in Farvin and Jacobsen (2013), with some modification. The activity of each extract was 

measured in serial dilutions, with analytical triplicates, at a concentration range of 0.084-

10.95 mg.ml-1. An aliquot of extract solution (100 µl) and distilled water (110 µl) were 

transferred into the microtiter plate. To start the reaction, ferrous chloride (20 µl; 0.5mM) 

was added and mixed (600 rpm), for 3 minutes. Then, ferrozine (20 µl; 2.5mM) was added, 

mixed again, and left at room temperature, during 10 minutes. The absorbance of the 

resulting solution (As) was read at 562 nm using a using a spectrophotometer (Biotek, 

Shimadzu, Holm & Halby, Denmark). The following controls were used: sample control 

(A0), 100 µl extract + 150 µl H2O; a sample blank (Ab), reagents + 210 µl H2O; and finally, a 

positive control with 100 µ of the metal chelator ethylenediaminetetraacetic acid (50 mM; 

EDTA) + 150 µl H2O. 

The iron chelating capacity was calculated as follows and given as inhibition 

percentage (Farvin and Jacobsen, 2013). EC50, 1/EC50 EC30 and 1/EC30 values were 

determined by plotting dose-response curves (GraphPad Prism 6), present in Annex C. 

Antioxidant Profiling. 

Q"'B	Dℎ5<)4&B6	)D4&E&4#	(%) = 1 −
:K − :O
:P

×100 
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1.5 Optimization of Polyphenols 

During a four-week trial, pooled individuals of F. vesiculosus were grown under two 

different lighting conditions (L1: PAR; L2: PAR+UVA); and three salinity concentrations 

(S20: 13.4±2.6; S30: 28.5±6.2; S40: 41.0±3.6 PSU).  L1 and S20 represent control groups; 

L2 measures the influence of UVA light and S2 and S3 measure the influence of an 

increasing gradient of salinity. The combination of different light and salinities resulted in six 

treatments, each with triplicates (n=3). The experimental setup is displayed in Figure 12. 

Seawater was collected from Bellevue beach and contamination was minimized by 

vacuum filtration (90 mm filter paper), salinity was adjusted with synthetic sea salt (Blue 

Treasure, Qingdao). The experiment was setup in a cold room, with fixed temperature of 

10 ºC and the photoperiod was increased throughout the trial, from 12h to 16h light, to 

simulate the transition of seasons into summer. PAR light was provided by Grolux F36W 

lamps (Sylvania, Australia), UVA light by a 40 W UVA sunlamp (Philips, Holland), and foil 

paper enclosed the experimental area, to help distribute light evenly. Fresh thali of F. 

vesiculosus (10.38 ± 0.57 g) were sectioned, weighed, and equally distributed in 500 mL 

Erlenmeyer flasks (DURAN, Germany), sealed with parafilm and connected by 3 mm 

diameter tubing to an air flow supply system (Eheim 400, Germany). The flasks were 

randomly distributed and changed positions throughout the experimental trial (Figure 12).  

Figure 12 Experimental setup for the optimization of polyphenols in F. vesiculosus, regarding photoperiod, type of 
lighting (L1: PAR and L2:  UV-A) and salinity gradient (S20; S30; S40 PSU). 
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(9) 

Cultures were maintained on a weekly basis, with monitoring of salinity, light, changes 

of water and addition of Cell-hi F2 (Varicon aqua) medium based on the Guillard F/2 

medium. At the end of the trial, biomass was weighed, before and after being freeze-dried, to 

determine the growth rate, which was calculated as follows: 

R"'04ℎ	")45	 %, /)#89 =
ln	(00V) − ln	(00M)

W
×100 

Where wwf is the final wet weight, wwi is the initial wet weight and T is time in days. 

Samples were milled and phenolic compounds were extracted, as described previously. 

Given the small quantity of biomass per sample, only one method of phenolic quantification 

was performed, the FC assay and results were expressed as GAE.  

1.6 Microscopic observation 

1.6.1 Physodes 

Fresh thalli of F. vesiculosus were hand-sectioned in the apical regions, using a sharp 

razor blade, and immersed in vanillin-HCL reagent for a few minutes. The vanillin-HCl 

reagent was prepared as follows: 10% vanillin dissolved in a freshly mixed 2:1 solution of 

95% EtOH plus concentrated hydrochloric acid (Shibata et al., 2004). Sections were observed 

under light microscopy and photographed (Eclipse 80i, Nikon) as can be seen in Figure 13. 

The location and distribution of physodes within the cell tissue was assessed. 

 

 

1.6.1 Epiphytes 

Epiphyte coverage was registered qualitatively throughout the sampling period. Three 

species of epiphytes were collected from May samples and observed under light microscopy 

and photographed (Eclipse 80i, Nikon) for identification purposes.  

Figure 13 Transversal section of F. vesiculosus apical region: a) before vanillin-HCL staining and b) after 
vanillin-HCL staining observed under light microscopy. Scale in pixels.ã Madalena Mendes  

a

 

b
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1.7 Data treatment 

Results were expressed as mean ± standard deviation (SD) and experiments were 

conducted in triplicates. Data was analyzed statistically through Excel and Prism 6 

(GraphPad Software). Normality was checked by the D'Agostino & Pearson omnibus test 

followed by the appropriate parametric or non-parametric test. Comparison between groups 

was done via post hoc tests and statistical significance was taken as p < 0.05. Kruskal-Wallis 

tests were performed to investigate the effect of seasonality on ash contents, absolute yield of 

me and UV HPLC phenolic compounds. A one-way ANOVA and Tukey's multiple 

comparisons test were performed to determine the effect of seasonality, in the TPC, radical 

scavenging activity; and iron chelating capacity. Furthermore, correlation between TPC, 

radical scavenging activity, iron chelating capacity and environmental parameters was 

investigated by a Pearson r test. The effects of light and salinity on the TPC and growth rate, 

of seaweed from the experimental trial, were tested by a two-way ANOVA. Significant 

difference was determined with >95% confidence level. 
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Results and discussion 

1.1 Dry matter and ash contents 

Dry biomass was approximately a quarter of initial fresh seaweed (26.53%), after 

freeze drying. The dm ranged from values of 87.4±2.9 to 92.9±0.3% in the freeze-dried 

samples. The standards for kelp production in Laminaria are of maximum water content for 

fresh-dried plants 22% and maximum water content for salt-dried plants 32% (FAO, 1989).  

The dm and ash contents are represented in Figure 14. Ash content ranged between 

15.4±0.3 to 19.9±0.3% and was not found to vary with any seasonal pattern like other 

studies. Ash content has been reported to range from 4.2 to 21.4% in F. vesiculosus (Truus et 

al., 2001, Balina et al., 2016). There were significant differences (P»0,0008) in the ash 

content in May samples compared to June and October, which could be related to 

environmental causes. An increase in salinity and in mineral levels in seawater would 

increase ash content, for example (Balina et al., 2016). 
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Figure 14 Biomass characterization of F. vesiculosus seasonal samples, regarding dry matter and ash contents. 
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1.2 Antioxidant profiling 

1.2.1 Extraction 

The absolute yield of me per dm of seaweed was in average 10.22%±0.03. A Kruskal-

Wallis test was performed and results showed significant differences among means 

throughout the year (P»0.0045) specifically in March, compared to June and May. The 

highest yields of me were found in the late spring and summer months, June and May 

(15.57%±0.00 dm; 14.08%±0.01 dm), also February (11.72%±0.01 dm). March had the 

lowest yield (6.58%±0.00 dm; Figure 15). Yields obtained in Farvin and Jacobsen (2013) 

were within the same range, we 15.7%±2.9 dm and ea 10.4%±0.5 dm, regarding April to 

September extracts. 

The chemical composition of seaweed is affected by many factors, geographic 

location, season, wave exposure and sea temperature, mineral levels in seawater, pH level 

and salinity (Balina et al., 2016). Fucus vesiculosus, has a high capacity to absorb 

environmental pollution, such as heavy metals, which are much higher in the Baltic Sea than 

in the North Atlantic. Therefore, it is preferred to extract algal compounds (proteins, 

minerals, fatty acids and antioxidant compounds) instead of direct consumption as a food 

(Balina et al., 2016). 

 

Figure 15 Fucus vesiculosus me absolute yield from initial dm of seaweed over the season June 2016 to May 2017. 
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1.2.2 Identification and quantification of pigments 

Pigments showed consistency seasonally, 8 peaks were present in all months 

analyzed, two chlorophylls and six carotenoids (Figure 16). In general, they increased 

concentration from July to March, and then decreased to May. July had the lowest pigment 

concentrations (0.37 ±0.05 µg.mg dm-1), and March the highest (1.71 ±0.25 µg.mg dm-1). 

The most abundant pigments were chlorophyll-a, fucoxanthin, and prasinaxanthin, detailed 

data concerning pigment concentration is displayed in Table 2. Previous studies have 

reported pigments within the brown algal class. They are chlorophylls (a, c1, c2); main 

accessory pigments (β-carotene, fucoxanthin, zeaxanthin, violaxanthin); and also minor 

pigments (antheraxanthin-like, cryptoxanthin-like, cryptoxanthin-5,6-epoxide-like, 

latoxanthin-like, and mactraxanthin-like carotenoids, and neoxanthin) (Stengel et al., 2011). 
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Figure 16 Pigment contents. Top: Seasonal variation in pigments. Bottom: HPLC-DAD analysis (440 nm) of 
pigments in F. vesiculosus extracts, from May 2017. Peak numbers refer to the compounds in Table 2. 
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Peak nº Pigment 
[µg.mg dm-1] 

2016 2017 

July September November January March May 

1 Chlorofyll C2 0.03 ±0.00 0.07 ±0.00 0.06 ±0.00 0.08 ±0.00 0.19 ±0.00 0.09 ±0.00 

2 Chlorofyll-a 0.14 ±0.01 0.29 ±0.01 0.30 ±0.05 0.42 ±0.05 0.62 ±0.01 0.43 ±0.03 

 Total chlorophylls 0.16 ±0.07 0.36 ±0.16 0.36 ±0.16 0.45 ±0.21 0.79 ±0.29 0.44 ±0.19 

3 Fucoxanthin 0.05 ±0.01 0.29 ±0.00 0.10 ±0.00 0.37 ±0.00 0.60 ±0.00 0.35 ±0.00 

4 Prasinaxanthin 0.05 ±0.01 0.10 ±0.00 0.10 ±0.00 0.14 ±0.00 0.15 ±0.00 0.22 ±0.00 

5 Dinoxanthin 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.03 ±0.00 0.02 ±0.00 

6 Diatoxanthin 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 

7 Zeaxanthin 0.01 ±0.00 0.02 ±0.00 0.30 ±0.10 0.03 ±0.00 0.05 ±0.00 nd 

8 Carotene a+b 0.14 ±0.01 0.29 ±0.00 0.03 ±0.00 0.42 ±0.00 0.62 ±0.00 0.43 ±0.00 

 Total carotenoids 0.22 ±0.05 0.48 ±0.11 0.47 ±0.11 0.66 ±0.16 0.92 ±0.23 0.79 ±0.17 

 Total pigments 0.37 ±0.05 0.84 ±0.12 0.82 ±0.12 1.11 ±0.16 1.71 ±0.25 1.23 ±0.16 

The specific pigment concentrations in F. vesiculosus has been previously reported 

for ae (Nygård and Ekelund, 2007, Bianchi et al., 1997); and in ethyl acetate fractions of 

liquid-liquid partitioning (eaf), we, ae and ee, in samples collected in May (Hermund et al., 

2016). Chlorophyll-a was found in concentrations of 5 µg.mg dw-1  (Nygård and Ekelund, 

2007); 0.16 µg.mg dw-1 (Bianchi et al., 1997); and 0, 0.1, 0.2 and 0 µg.mg dw-1, respectively 

(Hermund et al., 2016). Fucoxanthin was found in the concentration of 1 (Nygård & Ekelund 

2007);  0.12 (Bianchi et al., 1997); and 9.4, 0.6, 0 and 0.9 µg.mg dw-1 (Hermund et al., 2016), 

regarding each extraction type. The concentration of chlorophyll-a obtained was not as high 

as Nygård and Ekelund, (2007) but is in accordance with Bianchi et al., (1997); and Hermund 

et al., (2016) for we and ae. The concentration of fucoxanthin obtained was lower than 

reported in other studies. It should be considered that the unit of concentration, method and 

solvent of extraction are distinct in the different studies. 

Pigment concentration shows seasonality, with the increasing concentration from 

summer to winter and early spring suggesting a compensation towards decreasing light 

availability, in the same period. Given its role in photo-oxidation for photosynthesis, 

chlorophyll-a has pro-oxidative effects leading to the formation of singlet oxygen species 

(Hermund et al., 2016). On the other hand, fucoxanthins are recognized as antioxidants in 

Table 2 Pigment contents expressed in µg.mg dm-1from July 2016 to May 2017. Values are mean ± SD (n=3). 

nd = not detected. 
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autoxidation because of their high radical scavenging activity, and therefore often act 

synergistically with other compounds (Hermund et al., 2016). 

1.2.3 Identification and quantification of Phenolic compounds 

RP-HPLC UV chromatograms are represented in Figure 17, and detailed data on 

peaks and their concentration expressed in GAE is detailed in Table 3. A total of 14 phenolic 

compounds were detected in F. vesiculosus extracts at a 255nm wavelength. Most were 

unable to be correctly identified, except for Peak 2 (9.616±0.0 min) identified as Gallic acid. 

A Kruskal-Wallis test was performed and significant differences were detected in the means 

of phenolics compounds (P»0.0115), more specifically between September and March.  

12
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Figure 17 HPLC-DAD analysis (255 nm) of phenolic compounds in F. vesiculosus extracts, from May 2017. Peak numbers 
refer to the compounds in Table 2. UV chromatograms for polyphenols. Top to bottom: September, November; January and 
March. 
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September was the most diverse and rich month in phenolic compounds, with 13 

peaks present and total sum 36.9±6.5 mg GAE.100 mg dm-1. March was the least diverse, 

with only 3 peaks detected, although the second highest in total 28.8±3.8 mg GAE.100mg 

dm-1. This concentration is mostly given by a singular compound, Peak 1 (7.837±0.0 min), 

which increased markedly its concentration from November (6.4±1.1 mg GAE.100mg dm-1) 

to March (26.7±3.4 mg GAE.100 mg dm-1). Some of the detected peaks suggest possible 

matches with standards, considering retention times and literature, however without certainty, 

and therefore were calculated as GAE. Moreover, some of the unidentified peaks might 

correspond to different compounds, even having removed pigments, the lack of standards and 

literature about seaweed phenolic acids make it a challenging task.  

Peak nº Phenolic 
Compound 

Retention time 
(min) 

TPC [mg GAE.100 mg dm-1] 

September November January March 

1   7.837±0.0 8.5±2.3 6.4±1.1 11.4±4.7 26.7±3.4 

2 Gallic Acid 9.616±0.0 2.4±1.0 2.9±2.9 1.9±0.4 nd 

3   10.010±0.0 2.2±0.9 2.3±0.7 3.1±1.9 nd 

4   10.661±0.2 0.4±0.3 nd nd nd 

5 Protocatechuic1 11.606±0.0 0.9±0.7 1.0±1.3 1.4±0.7 nd 

6 Catechin1 11.917±0.0 0.9±0.4 0.9±0.4 1.0±0.5 nd 

7   12.947±0.0 1.5±0.3 0.2±0.4 0.3±0.4 nd 

8 Chlorogenic1 13.477±0.0 1.2±0.4 1.3±0.1 1.1±0.5 1.8±0.2 

9 Ferulic1 15.498±0.3 4.6±1.0 0.1±0.2 nd nd 

10   16.710±0.0 1.8±0.7 nd nd nd 

11 Myrcitrin1 17.339±0.1 10±2.0 0.4±0.4 nd 0.4±0.3 

12 Morin1 17.929±0.0 1.1±0.4 nd nd nd 

13   24.148±0.0 1.5±0.2 0.6±0.3 0.7±0.4 nd 

14   24.320±0.0 nd 0.3±0.3 0.1±0.1 nd 

Total     36.9±6.5 16.5±5.2 21±9.2 28.8±3.8 

 
A series of polyphenolic compounds have been previously documented in 

F. vesiculosus (Hermund et al., 2016, Parys et al., 2010, Singleton and Rossi, 1965, Wang et 

al., 2009, Farvin and Jacobsen, 2013). In Farvin and Jacobsen, (2013) six phenolic acids were 

identified by RP-HPLC in we and ee, at a 280nm wavelength. They obtained Gallic (ee: 2.9 ± 

0.1; we: 13.5 ± 1.0 mg.g-1 extract), Protocatechuic (ee: 14.0 ± 0.0; we: 1.7 ± 0.0 mg.g-1 

Table 3 Polyphenol contents analyzed by RP-HPLC, from September 2016 to March 2017. Unidentified polyphenol 
peaks and respective retention time (min) phenolic contents expressed in mg GAE. 100 mg dm-1.  

Values are mean ± SD (n=3). 1Uncertain about identification; nd = not detected. 
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extract), Gentisic (ee:  29.0 ± 0.8; we: 19.4 ± 1.2 mg.g-1 extract), Chlorogenic (ee: 0.1 ± 0.0; 

we: 0.9 ± 0.0 mg.g-1 extract), Vannilic (we: 1.2 ± 0.4 mg.g-1 extract), Caffeic (we: 0.9 ± 0.3 

mg.g-1 extract). Generally, values in Farvin and Jacobsen, (2013) are lower when compared 

to the present study in a similar unit. However, the difference in extraction methods, units 

used and sampling time, make a direct comparison of these results on phenolic acid 

constituents not feasible. HPLC is used to estimate the total simple phenolic compounds such 

as phenolic acids and flavonoids, whereas complex phenolics, such as phlorotannins, do not 

appear in the chromatogram, and require more in depth investigation with MS and NMR 

(Hefernan et al., 2015, Hermund et al., 2016).  

1.2.4 TPC and in vitro antioxidant capacity assays 

TPC, expressed as GAE, and antioxidant activity assays are shown in Table 4. A one-

way ANOVA and Tukey's multiple comparisons test were performed on TPC. Results show 

significant differences between the means of each month (P< 0.0010) for a=0.05. TPC 

ranged from 11±1.7 (November) to 18.4 ±1.6 mg GAE.100 mg dm-1 (May). Overall, the 

lowest values of TPC were obtained during winter months (November to January) and the 

highest during spring, summer and fall (March to October; Figure 18). 

Month 
TPC  

[mg GAE.100mg dm-1] 

DPPH radical 
scavenging  
[mg dm. mL-1] 

Iron chelating ability  

[mg dm. mL-1] 

1/EC50 1/EC50 1/EC30 

June 14.89±1.91abc 87.1±19.7ab 0.15±0.1 0.14±0.1 

July 16.19±1.72 abc 75.3±14.6 ab 0.11±0.1 0.07±0.1 

August 14.98±1.07 abc 60.2±34.9 ab 0.05±0.0 0.69±0.9 

September 15.06±1.07 abc 103.4±28.5b 0.12±0.0 0.31±0.4 

October 16.85±1.99 bc 30.9±43.6 ab 0.20±0.0 0.32±0.4 

November 11.65±1.34a 44.0±5.2 ab 0.15±0.1 0.15±0.1 

December 12.61±2.74ab 35.2±26.1 ab 0.07±0.1 0.30±0.3 

January 12.55±0.48ab 19.9±26.5a 0.06±0.0 0.31±0.1 

February 14.33±2.19abc 47.8±19.8 ab 0.12±0.1 0.20±0.1 

March 14.73±0.66abc nd* 0.17±0.0 0.14±0.2 

April 13.49±0.38ab 35.8±1.9 ab 0.12±0.1 0.12±0.1 

May 18.38±1.25c 62.0±23.4 ab 0.55±0.2 0.67±0.3 

Table 4 Characterization of F. vesiculosus extracts by SLE from June 2016 to May 2017. TPC and in vitro antioxidant 
properties determined by 1/ECxx values (DPPH radical scavenging activity and iron chelating ability). 

Values are mean ± SD (n=3). *no data. Letters a–c indicate if there are significant differences between months, for each 
analysis (same letters not significant). 
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Spectrophotometric methods to estimate TPC have been widely used to assess phenolic 

compounds (Hermund et al., 2016, Farvin and Jacobsen, 2013, Ragan and Jensen, 1978, 

Cotas, 2015, Hermund et al., 2015). In Farvin and Jacobsen (2013), TPC values were 

measured for April to September F. vesiculosus extracts. They obtained TPC for we 

607.7±15.1, and for ee 1045±45.8 mg GAE. 100 g-1 of dw, which are inferior to the values 

obtained in this study. Whereas in Hermund et al., (2015, 2016) September F. vesiculosus 

TPC values for we were 18.4±0.1; for ae 23.2±1.1; for ee 20.4±2.4; and for eaf 26.5±1.2 g 

GAE.100 g-1 of dw, which are slightly superior to the ones obtained in this study for the same 

method. Once again, the difference in extraction methods, units used and sampling location, 

make a direct comparison of these results on TPC unreliable. 

Ragan and Jensen (1978) previously found seasonal fluctuations in F. vesiculosus at the 

Trondheim fjord in Norway, with the Folin-Denis, Brentamine, and vanillin-H2SO4 

colometric methods. TPC was highest during the sterility phase (»11-13% of dw), August 

through March, and minimum values (»8-10% dw) were attained in the end of spring, just 

before the period of maximum fertility, in May to June. These results are not in accordance to 

the present study, it is also important to take notice that the TPC method was different. 

  

Figure 18 TPC from F. vesiculosus extracts, expressed as GAE, from June 2016 to May 2017. 
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The radical scavenging capacity 1/EC50 displayed in Figure 19, was highest during 

summer (May to September). It ranged from 19.9±26.5 (January) to 103.4±28.5 (September) 

mg dm.mL-1 and presented much higher values, when compared to the Iron chelating activity, 

0.05±0 (August) to 0.55±0.2 (May). The coefficient of variation from both in vitro 

antioxidant assays 1/EC50 and 1/EC30 values was quite high, sample variation in iron 

chelation had previously been documented (Hermund et al., 2016). A one-way ANOVA test 

was performed, and significant differences were detected for radical scavenging (P»0.0116) 

between September (highest activity) and January (lowest activity); but not for iron chelating 

(P»0.4670), for a=0.05. 

In Farvin and Jacobsen (2013), the extracts of April to September obtained DPPH EC50 

in ee of 9.9±1.6, and we 8.3±0.8 µg.mL-1. In the same study, iron chelating EC50 values in ee 

were 1000±75.0 and in we 128.6±23.0 µg.mL-1. When converted into similar units, these 

results are inferior to the present study in the same range of months. In Hermund et al. (2016) 

September F. vesiculosus extracts obtained a DPPH 1/EC50 in ae was 68.2±0.3; ee was 

75.3±15.4; and we 53.0±3.6 mg dw.mL-1. Furthermore, iron chelating 1/EC30 in ae was 

1.5±0.1; ee was 2.1±0.3; and we 2.5±0.2 mg dw.mL-1. The DPPH radical scavenging activity 

was lower in Hermund et al. (2016) in comparison to the present study, suggesting that me 

are better scavengers than ae, ee and we; whereas the iron chelating capacity was higher in 

Hermund et al. (2016). Studies have shown that iron chelating capacity is better in we, since 

other highly polar compounds, such as dietary fibers, are co-extracted and present good metal 

chelating abilities (Farvin and Jacobsen, 2013, Wang et al., 2009, Hermund et al., 2016). 

Figure 19 DPPH radical scavenging activity expressed as 1/EC50, from June 2017 to May 2017. There is no data for March. 
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To investigate correlation between TPC, radical scavenging activity (1/EC50) iron 

chelating activity (1/EC30) and environmental parameters (mean temperature, precipitation 

and sunlight) a Pearson r test was performed. Results showed that there were significant 

positive correlations between mean temperature, TPC (P=0.0391) and DPPH (P=0.0016); 

likewise, between sunlight hours, TPC (P=0.0458) and DPPH (P=0,0060). There was no 

correlation between iron chelating and these factors, or for any of the antioxidant measures 

and precipitation. A projection of the TPC, radical scavenging activity, mean temperature 

sunlight and UV-dose is represented in Figure 20. Environmental data enphasise a bell 

shaped peak graph, with increasing values from late winter to the summer maximum and 

back down again. TPC and DPPH scavenging activity also have their highest values in 

spring, summer and fall, and lowest during the winter months. 

  

 

Parys et al. (2009) documented fluctuations in phenolic compounds in Ascophyllum 

nodosum L. (fucoid species) throughout the year, in Scotland. The study used both FC and 

quantitative H nuclear magnetic resonance spectroscopy (qHNMR) to analyse TPC. The 

highest TPC occurred in summer, with a maximum in July (»1.0% FC; »2.2% qHNMR) 

while the lowest were recorded in winter, with a minimum in February (»0.3% FC; »0.6% 

qHNMR). This seasonal pattern agrees with the present study, despite concerning a different 

species. 

Figure 20 Left) UV-dose index for the year 2017 retrieved from DMI (Cappelen 2017). Right) Representation of antioxidant 
assays, (TPC and DPPH radical scavenging activity) and environmental parameters (mean temperature and sunlight), 
corresponding to data from June 2016 to May 2017 (Cappelen 2017) 
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Although being species specific,  the concentration of phenolic compounds is generally 

highest during the summer and lowest during fall and winter (Connan et al., 2004). The 

increase of phenolic compounds in summer has been linked to a photoprotective mechanism 

with dynamic photoinhibition of photosynthesis, to tolerate light stress in response to the 

intensified UV radiation (Hefernan et al., 2015, Hermund et al., 2016, Abdala-Díaz et al., 

2006). Fucus vesisculosus is an intertidal species and is often exposed to high solar radiation 

dosages over summer, therefore it developed an efficient physiological adaptation to tolerate 

the deleterious irradiances. Abdala-Díaz et al. (2006) suggested a link between the 

concentrations of polyphenols in brown algae to irradiance levels in the field, which indicates 

that the synthesis of these compounds has a very rapid turnover time. Furthermore, daily 

variation in phenolic compounds has been positively correlated with air temperature (low tide 

exposure), in Pelvetia canaliculata, Acscophyllum nodosum, and Bifurcaria bifurcate 

(Connan et al., 2004).  

The high incidence of grazing in summer and early autumn is also considered as one of 

the factors contributing to increase in polyphenols, when there is less growth and more 

carbon available for defence chemicals (Hefernan et al., 2015, Parys et al., 2009). 

Interestingly enough, the seasonal pattern of polyphenols also matches the reproductive cycle 

of F. vesiculosus, with fertile periods during summer (May to June) but also late autumn 

(September to November) and dormancy phases in winter (Berger et al., 2001). Low 

salinities have a negative effect on the reproduction of marine organisms, because they 

decrease the motility and longevity of gametes and polyspermy is more likely to occur. Fucus 

vesiculosus is present throughout most of the Baltic, and as such had to develop unique 

features to successfully reproduce despite the low salinities (Serrão et al., 1999). Hence the 

increase in polyphenol concentration during the reproductive season, since they are known to 

block polyspermy (Serrão et al., 1999). 
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1.3 Optimization of Polyphenols 

Phenolic compounds and growth rates were analyzed from an experimental trial on 

F. vesiculosus, to understand the effects of salinity concentration and light conditions on 

these parameters. TPC was similar between treatments, except in salinity 40, with a higher 

value for the UV treatment. The TPC concentration ranged from 2.5 to 8.4 mg GAE.100 mg 

dm-1. Detailed results are summarized in Table 5 and displayed in Figure 21. No significant 

differences were found between the TPC and salinity (P=0.0525) or light (P=2443) 

conditions, in the experimental setting, for a=0.05. Growth rates decreased as salinity 

increased and overall were higher in the seaweed exposed to UV light, there were significant 

differences between salinities (P=0.0216), specifically between 20 and 40 for the PAR light 

treatment. 
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Figure 21 TPC expressed in GAE of F. vesiculosus extracts and growth rate expressed in percentage per 
day during the experimental trial, where three salinity concentrations and two light conditions were tested. 
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Light Salinity code 
Salinity  

(PSU) 

TPC  

[ mg GAE.100 mg dm-1] 

Growth rate  

(%. day-1) 

UV+PAR 

20 12.7±2.9 6.6±4.2 1.1±0.1 

30 28.1±3.9 3.7±1.5 0.9±0.9 

40 40.3±3.5 8.4±2.3 0.6±0.2 

PAR 

20 14.1±2.1 7.0±2.5 1.1±0.2 

30 28.8±8.0 2.5±0.8 0.5±0.4 

40 41.7±3.7 4.7±1.2 0.1±0.0 
 

The concentrations of TPC obtained in the experiment, ranging from 2.5±0.8 to 8.4±2.3 

mg GAE.100 mg dm-1, were much lower than from natural populations. This might be 

explained by the milling of biomass and extraction process. For the seasonal analysis, a large 

quantity of biomass was milled into fine powder, contrarily to the experiment, in which each 

sample had around 10 g of ww. This resulted in much larger particles for the experiment 

biomass, and less surface for the methanol to act on during extraction. It might also be that 

polyphenols were released into the water as a response to the stress of the harvest or trial 

itself since they act as defense mechanisms (Fernando et al. 2016; Pandey et al. 2009). In the 

future, this could be verified by a biochemical analysis of the water.  

These results were taken with a grain of salt given the errors that occurred during the 

experimental trial, for instance, maintaining the right salinity for each treatment during the 

trial. Even though flasks were closed in parafilm, every other day water would evaporate and 

increase salinities, when detected, fresh water was immediately added up to the 500mL mark 

and salinity measured (Figure 22). The instability within each salinity group could have 

affected the outcome of the experiment leading to the very high coefficient of variation rates 

for both TPC and growth rates.  

  

Table 5 Experimental trial regarding light and salinity concentrations. Salinity values registered during the trial are 
given in PSU, growth rate in percentage and TPC in GAE. Values are mean ± SD (n=3). 

Figure 22 Experimental setup. Erlenmeyer flasks under PAR and UVA light.ã Madalena Mendes 
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1.4 Microscopic observation 

1.4.1 Physodes 

Transversal sections of the tips of F. vesiculosus seaweed, from the lab-culture 

experiment, were observed under light microscopy. HCl-vanillin staining revealed the 

epidermis and outer cortical layer covered in physodes, and a few scattered in some regions 

of the cortex and medulla, evidenced by the red coloration, seen in Figure 23. These 

observations are in accordance to previous research (Ragan, 1976, Schoenwaelder, 2008) and 

therefore the third hypothesis was accepted. Bladderwrack seaweed inhabit the upper most 

regions of the littoral and possesses gas vesicles to float, therefore they are more exposed to 

UV radiation, tidal cycles of desiccation (even if little in the Baltic) and salinity changes 

(White, 2008). They are also subject of intense fouling during summer, which covers a large 

part of the fronds (Evert and Eichhorn, 2013). The location of the physodes in the outer 

layers of the tissue, suggest a barrier or shield effect against both biotic and abiotic 

parameters.  

 
  

Figure 23 Transverse sections of F. vesiculosus taken from the light and salinity experiment: a) PAR.20; b) PAR+UV.20; 
c-e) UV.30; f) PAR+UV.40. Scales are in pixels. Ó Madalena Mendes 

a b 

c d 

e f 
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1.4.2 Epiphytes 

Epiphytes were present during the warmer summer months, May to September, with a 

significant amount of fouling. Three species of filamentous algae, Rhizoclonium sp; 

Ectocarpus siliculosus (Dillwyn) Lyngbye; and Polysiphonia sp. (Guiry and Guiry, 2016), 

were found growing on F. vesiculosus (Figure 24). However, further investigation such as 

gene sequencing should be used to fully identify these species. The increased phenolic 

compounds, during summer, are also produced to discourage herbivores (Evert and Eichhorn, 

2013, Hefernan et al., 2015). Fucus vesiculosus harbours many visitors, surface grazing 

snails, herbivorous isopods and fish, and tube worms looking for substrate and shelter 

(White, 2008). During winter months, the increased wave exposure and whiplash effect help 

control epiphytes (Torn et al., 2006). 

a b 

c 
d 

e 
f 

Figure 24 F. vesiculosus epiphytes May 2017 a-b) Chlorophyta, Rhizoclonium sp; c-d) Phaeophyceae, Ectocarpus 
siliculosus; e-f) Rhodophyta, Polysiphonia sp. Scales are in pixels. Ó Madalena Mendes 
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Conclusions and Future Perspectives 

The study of the polyphenolic variations within F. vesiculosus is necessary for the 

future development of natural antioxidants. Antioxidants from this species have shown to be 

active in food models, such as muesli bars, and in lotions making it very appealing to the 

food and cosmetic industries (Hermund 2016). Knowledge on seasonal patterns, and 

optimized culture conditions, regarding salinity and UV light, are useful to understand these 

variations and yield higher concentrations of polyphenolic compounds. Given the seasonal 

variation in polyphenol concentration, the time of the year is crucial and to be taken in 

consideration, if F. vesiculosus is to be cultivated and harvested at an industrial scale. 

This study analyzed the variation in the antioxidant content and activity of the seaweed 

F. vesiculosus, which shows high potential in terms of bioactive compounds. The collective 

results on RP-HPLC, TPC and radical scavenging activity assays confirmed the first 

hypothesis, that there are seasonal differences in the polyphenolic content and activity of wild 

F. vesiculosus. More specifically, late spring, summer and early autumn months (April to 

October) presented the highest polyphenol content and activity, whereas winter the lowest. 

Seasonality was linked to environmental parameters, mean temperatures and sunlight hours, 

which correlated positively to the quantity (TPC) and quality (DPPH radical scavenging 

activity) of antioxidants. Unfortunately, UV-index data from 2016 is archived and was not 

available from DMI. For this reason, it could not be included in this study, apart from a 

graphical representation of daily UV-doses for 2017, it would however be very interesting to 

collaborate with DMI and compare this data to these results. Pigment contents revealed a 

reverse pattern of seasonality in comparison to polyphenols, due to photosynthetic 

requirements during lower light availability periods. HPLC alone only permits the 

identification of monophenolic compounds and the FC assay is a spectrophotometric 

analysis. In a future perspective, the use of advanced methods, such as MS and NMR, to 

identify and quantify complex polyphenols, mainly phlorotannis, would complement this 

study, since they are the most abundant polyphenols in brown seaweed. In light of this 

research, I would suggest that the best harvesting periods for F. vesiculosus, in Denmark, are 

from late spring, right before the reproduction peak (April-May), to early Fall (September-

October), because they demonstrated high antioxidant contents and activity and therefore 

ideal for specific extraction of these compounds. If the biomass is intended to be used for 

direct consumption as food I would suggest harvesting before the summer months to avoid 

the intense fouling regarded negatively in a commercial perspective. 
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There were no significant differences between the TPC, regarding salinity and light 

obtained during the optimization of polyphenols experiment, therefore, the second hypothesis 

was rejected. The increased salinity and UVA light did not have effects on the antioxidant 

yield, and therefore it was not possible to optimize F. vesiculosus antioxidant contents, under 

the experimental conditions of this study. However, it would be interesting to repeat this 

study, but ensuring the stability of salinity conditions since this is of major importance to 

correctly assess its effect. It would also be beneficial to upscale the experiment from flasks to 

small tanks using more individuals, thus having more seaweed biomass to work with and 

avoid problems in the extraction process. During winter months, polyphenol levels are very 

low, and so it would be useful to cultivate F. vesiculosus in land aquaculture, under optimal 

conditions, to increase those levels.  

Physodes were observed under the microscope and were distributed mainly in the outer 

layers of the blades, epidermis and outer cortical layers, confirming the third hypothesis. This 

distribution is likely to be a defense mechanism, against UV irradiation and herbivory, in 

such that it provides a shield effect.  

 

 

 

  

Figure 25 Sampling at Bellevue beach in January 2017.ã Madalena Mendes 
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Annex 

A. Environmental data 

 

 

 

 

  

Month Mean Temperature (°C) Precipitation (mm) Sunlight (h) 

June* 16 79 235 

July* 16.4 85 175 

August* 16.1 60 195 

September 16.4 33.4 216.6 

October 8.9 76.1 85.5 

November 4.3 54.2 88.9 

December 4.5 34.8 53.6 

January 0.9 19.1 63.3 

February 1.9 51.1 62.1 

March 4.9 46.4 118.1 

April 6.7 65.8 170.1 

May 12.6 24 248.4 

Table A. 1 Data from the Danish Meteorological Institute (Cappelen 2017). Monthly averages of mean temperature (ºC), 
precipitation (mm) and sunlight (h) were taken from June to August 2016 (*; Denmark) and from September 2016 to May 2017 
(Lyngby-Tårbæk, the sampling location). 
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B. Dry matter, ash contents and extraction 

 

  

 

Table A. 2 Biomass characterization of F. vesiculosus seasonal samples, regarding dry weight, dry matter and ash contents, 
expressed as percentages. Mean ±SD. 

 

Year Month XY
YY

(%) dm (%) Ash (%) 

2016 

June 25.30 92.5±0.5 15.4±0.3 

July 24.85 89±0.5 16.9±0.4 

August 27.57 92.4±0.1 17±0.4 

September 28.00 91±0.5 15.7±0.5 

October 26.15 91.8±0.1 15.6±0.2 

November 31.80 90.5±1.3 17.5±0.3 

December 32.07 91±0.1 16.7±0.2 

2017 

January 36.42 90.7±1.4 16.7±0.3 

February 25.68 92±0.8 16.5±0.3 

March 24.02 92.4±1 16.9±0.3 

April 21.44 92.9±0.3 16.6±0.1 

May 15.11 87.4±2.9 19.9±2.3 

  M 26.53 91.1±1.6 16.8±1.2 

Table A. 3 Absolute extraction yield of me (%) before and after OASIS column. 

Month Before OASIS MCX After OASIS MCX 

September 11.9±3.9 6.3±0.7 

November 8.4±1.9 5.3±0.7 

January 8.1±1 6.5±2.6 

March 8.6±0.6 4.1±0.5 

M 9.2±2.5 5.6±1.6 



 51 

C. Antioxidant Profiling 

 

  

 

Figure A. 1 HPLC-DAD analysis (440 nm) of pigments in F. vesiculosus extracts. Top to bottom: 
September, November (2016), January, March and May (2017). 
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TPC 
DPPH 

1/EC50 
IRON 

1/EC30 
Mean temperature 

(°C) 
Precipitation 

(mm) 
Sunlight 

(h) 

TPC 

 

0.3969027 0.3822672 0.6001376 0.1795217 0.584765 

DPPH 1/EC50 0.3969027 

 

-0.0657744 0.8300945 0.1914146 0.7655177 

IRON 1/EC30 0.3822672 -0.0657744 

 

0.2525267 -0.3907158 0.3661713 

Mean temperature (°C) 0.6001376 0.8300945 0.2525267 

 

0.4009816 0.8542211 

Precipitation (mm) 0.1795217 0.1914146 -0.3907158 0.4009816 

 

0.1669941 

Sunlight (h) 0.584765 0.7655177 0.3661713 0.8542211 0.1669941 

  

 

 

TPC 
DPPH 

1/EC50 
IRON 

1/EC30 
Mean temperature 

(°C) 
Precipitation 

(mm) Sunlight (h) 

TPC 

 

0.2268058 0.2200792 0.03910611* 0.5766503 0.04581959* 

DPPH 1/EC50 0.2268058 

 

0.8476338 0.001563902* 0.5728801 0.006030666* 

IRON 1/EC30 0.2200792 0.8476338 

 

0.4284458 0.209194 0.2417426 

Mean temperature (°C) 0.03910611 0.001563902 0.4284458 

 

0.1964169 4.038126e-04* 

Precipitation (mm) 0.5766503 0.5728801 0.209194 0.1964169 

 

0.6039402 

Sunlight (h) 0.04581959 0.006030666 0.2417426 4.038126e-04 0.6039402 

  

 

  

Table A. 4 TPC, antioxidant activity assays and environmental data Pearson correlation matrix. 

Table A. 5 TPC, antioxidant activity assays and environmental data Pearson correlation matrix P-values. *Significant 
differences for a=0.05 
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EC50 Iron chelating activity

-1.0 -0.5 0.0 0.5 1.0 1.5

20

40

60

80

100

6.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-40

-20

20

40

7.1 log-dose vs response

log[sample extract], MIn
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5
-20

20

40

60

80

8.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

9.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

150

10.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

50

100

150

11.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-20

20

40

60

12.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

20

40

60

80

1.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5
-20

20

40

60

80

2.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5
-20

20

40

60

80

100

3.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5
-20

20

40

60

80

100

4.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

5.1 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

50

100

150

6.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

150

7.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

20

40

60

80

8.2 log-dose vs response

log[sample extract], M
In

hi
bi

tio
n 

%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

150

9.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-20

20

40

60

10.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

11.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

12.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

20

40

60

1.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

150

2.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5
-20

20

40

60

80

100

3.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5
-20

20

40

60

80

4.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

50

100

150

5.2 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

6.3 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

150

7.3log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

20

40

60

8.3 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

150

9.3 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

50

100

150

10.3 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5

-50

50

100

11.3 log-dose vs response

log[sample extract], M
In

hi
bi

tio
n 

%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

20

40

60

12.3 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

20

40

60

80

1.3 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5
-20

20

40

60

80

2.3 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.5 1.0 1.5
-20

20

40

60

80

100

3.3 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

20

40

60

80

100

4.3 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 

-1.0 -0.5 0.0 0.5 1.0 1.5

20

40

60

80

100

5.3 log-dose vs response

log[sample extract], M

In
hi

bi
tio

n 
%

Inhibitor 


