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Resumo 

 

Fundulus heteroclitus é um pequeno teleósteo extremamente resistente, capaz de sobreviver a 

uma larga gama de temperaturas e salinidades. É uma espécie endémica da costa Atlântica da 

América do Norte, onde pode ser encontrada quase continuamente desde a Terra Nova até à 

Flórida em zonas costeiras, estuários e sapais. Uma vez que apresenta capacidade de dispersão 

muito reduzida é uma espécie que raramente sai do ambiente que habita. Não só a biologia 

desta espécie já foi extensivamente estudada, como é também considerada uma espécie modelo 

para o estudo de variações clinais. Vários estudos focados na sua distribuição nativa 

demonstraram diferenças significativas a nível morfológico, genético e fisiológico ao longo da 

costa da Nova Jérsia (40-41º N), o que promoveu a divisão em duas subespécies: F. heteroclitus 

macrolepidotus com uma distribuição mais a norte e F. heteroclitus heteroclitus localizado a 

sul. F. heteroclitus foi encontrado pela primeira vez na Península Ibérica na costa sudoeste de 

Espanha na década de 70, tendo sido provavelmente introduzido entre 1970 e 1973. Desde 

então, estabeleceu-se com sucesso nesta região, podendo ainda ser encontrado na zona costeira 

da Ria Formosa em Portugal e no Delta do Ebro em Espanha. Neste estudo analisámos 

sequências obtidas a partir de um marcador mitocondrial, citocromo b, de modo a elucidar o 

padrão de expansão de F. heteroclitus na Península Ibérica. As sequências foram recolhidas a 

partir de indivíduos provenientes de três populações invasoras na Península Ibérica (Faro, Cádis 

e Delta do Ebro) e de 13 outras localizações ao longo da sua distribuição nativa. A análise das 

sequências compostas por 700 pares de bases revelou a presença de um único haplótipo comum 

a todos os indivíduos invasores provenientes da Ibéria. A extrema ausência de diferenciação e 

estrutura genética das populações Ibéricas é consistente com uma invasão recente desde a qual 

apenas se passaram cerca de 40 anos, e indica que estas populações invasores sofreram um forte 

efeito fundador: a primeira população resultou de um pequeno grupo de indivíduos e sofreu 

uma grande perda de diversidade genética. Apesar de normalmente as populações introduzidas 

não apresentarem uma diminuição na sua variação genética quando são fundadas por um 

pequeno reduzido número de indivíduos, a probabilidade de apresentarem níveis de diversidade 

genética comparáveis com os da distribuição natural é extremamente reduzida. A distribuição 

do haplótipo invasor na América do Norte é praticamente restrita à região onde a subespécie F. 

h. macrolepidotus habita. Para além das populações do norte, este haplótipo foi encontrado em 

apenas dois indivíduos numa das populações do sul. Considerando a raridade com que foi 

encontrado no sul, e que é o haplótipo dominante na região norte, nós sugerimos que o mais 
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provável é que os indivíduos invasores sejam provenientes da região norte, entre Nova Iorque 

e Nova Escócia. No nosso caso, a baixa resolução espacial para deteção da população de origem 

deve-se essencialmente à falta de diferenciação genética entre populações invasores. Após 

comparação do padrão genético que seria esperado caso esta espécie tivesse sido introduzida 

através de água de lastro ou libertação de espécimes provenientes de aquariofilia, nós sugerimos 

que a segunda opção será o vetor de introdução mais provável. Água de lastro é um dos 

principais vetores de introdução de espécies invasoras, sendo capaz de transportar em 

simultâneo um grande número de organismos. Uma vez que existem inúmeras embarcações 

distribuídas globalmente, é provável que ocorram múltiplas introduções ao longo do tempo, 

cada uma composta por um grande número de indivíduos. Como grandes números de 

indivíduos tendem a transportar maior diversidade genética, seria expectável encontrar na 

Península Ibérica níveis de variação genética similares aos da distribuição nativa. Contudo, a 

falta de diversidade genética demonstrada pelos nossos resultados rejeita este cenário. Apesar 

do comércio de espécies ornamentais ser responsável por várias introduções a nível global, a 

libertação de baixos números de indivíduos de cada vez faz com que sejam necessários 

múltiplos eventos de introdução para que as populações invasoras não demonstrem um efeito 

de fundador. Adicionalmente, os peixes comercializados para aquariofilia tendem a estar no 

estado adulto ou apresentam uma boa condição física, o que os torna mais aptos a sobreviverem 

em ambiente natural após introdução. Acresce que F. heteroclitus é uma espécie extremamente 

resistente, pelo que a probabilidade de sobrevivência é ainda potencialmente maior. Por 

conseguinte, consideramos que a hipótese mais provável relativamente à introdução desta 

espécie na Península Ibérica, mais precisamente na costa sudoeste de Espanha, está relacionada 

com o comércio de espécies ornamentais. Por fim, evocamos três pontos que apoiam a hipótese 

de que o estabelecimento de uma população invasora no Delta do Ebro se deveu a uma 

introdução antropogénica posterior e não a colonização natural. Primeiramente, comparamos a 

estimativa do tempo decorrido durante a colonização natural da Ria Formosa com a estimativa 

do tempo decorrido num cenário hipotético de colonização natural do Ebro Delta. Considerando 

que esta espécie tem uma dispersão extremamente reduzida, e supondo que os indivíduos 

demoraram cerca de 20 anos para se deslocarem 50 km no caso de Faro e mais de 1000 km para 

chegarem ao Delta do Ebro, uma colonização de longa distância em tão pouco tempo é 

extremamente improvável. Em segundo lugar, num cenário de dispersão natural até ao Delta 

do Ebro seria expectável encontrar várias populações estabelecidas entre Cádis, a localização 

mais a sul onde é encontrado da Península Ibérica, e o Delta do Ebro. Mais especificamente 

seria expectável encontrar esta espécie no Mar Menor, uma lagoa de água salgada de condições 
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favoráveis à colonização pelo F. heteroclitus, situada no Mediterrâneo. No entanto, como ainda 

não foram encontrados espécimenes nesta lagoa, pensa-se que este local se encontra ainda por 

colonizar. Em último lugar, o estreito de Gibraltar não pode ser excluído como potencial 

barreira para a dispersão natural de F. heteroclitus. Apesar de ainda não ter sido descrito como 

barreira para esta espécie em concreto, sabe-se que o estreito de Gibraltar limita a distribuição 

de várias espécies, nomeadamente de peixes endémicos da Península Ibérica, Aphanius iberus 

e Aphanius baeticus, de ecologia semelhante a F. heteroclitus. Pelas razões acima mencionadas, 

sugerimos que introdução antropogénica a partir de indivíduos invasores previamente 

estabelecidos no sul da Península Ibérica é o cenário mais provável para explicar a presença de 

indivíduos no Delta do Ebro. Adicionalmente, considerando a grande tolerância a salinidade e 

temperatura por parte desta espécie, é extremamente provável que continue a expandir a sua 

distribuição geográfica, enquanto as condições enfrentadas nos habitats novos forem favoráveis 

ao seu estabelecimento. 

 

Palavras-chave: DNA mitocondrial, citocromo b, espécies invasoras, vetor de introdução 
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Abstract 

 

Human activities such as trade and transport have increased considerably in the last decades, 

greatly facilitating the introduction and spread of non-native species at a global level. In the 

Iberian Peninsula, Fundulus heteroclitus, a small euryhaline coastal fish with short dispersal, 

was found for the first time in the mid-1970s. Since then, F. heteroclitus underwent range 

expansions, colonizing the southern region of Portugal, southwestern coast of Spain and the 

Ebro Delta in the Mediterranean Sea. We analysed mitochondrial DNA cytochrome b 

sequences to elucidate the invasion pathways in Iberia. We sampled three Iberian locations 

(Faro, Cádiz and Ebro Delta) and 13 other locations along F. heteroclitus native range in North 

America. Results revealed a single haplotype, common to all invasive locations, which can be 

traced to the northern region of the species native range. Thus, we suggest the origin of the 

founder individuals to be between New York and Nova Scotia. Additionally, the lack of genetic 

structure within Iberia is consistent with a recent invasion scenario and a strong founder effect. 

We suggest the most probable introduction vector is associated to aquarium trade and we further 

discuss the hypothesis of a second human mediated introduction responsible for the 

establishment of individuals in the Ebro Delta. Given the high tolerance to salinity and 

temperature, the species will most likely continue to spread geographically, as long as habitat 

requirements remain available. 

 

Keywords: introduction vector, cytochrome b, mitochondrial DNA, invasive species 
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CHAPTER 1: Introduction 

 

As a consequence of human activities involving large distance marine transportation and trade, 

the spreading of invasive species to new locations has been greatly facilitated (García-Llorente 

et al. 2008; Meyerson & Mooney 2007; Perrings et al. 2005; Rius et al. 2014; Williams et al. 

2013). European marine biological invasion rates have increased dramatically in the last 50 

years (Galil et al. 2014; Galil et al. 2016; Zenetos et al. 2012). According to Galil et al. (2014), 

there are over 850 invasive species in the European seas, of which 237 are found along the 

western European margins, 680 in the Mediterranean Sea and the remaining in the Baltic. Other 

studies make similar estimates, suggesting there are between 700 and 900 invasive species in 

the Mediterranean (Galil et al. 2016; Zenetos et al. 2012). The variation found between the 

estimates in the literature is probably due to the use of different definitions in each study. Here 

we refer to non-native or introduced species (synonyms: alien, exotic, non-indigenous, 

allochtonous) as “species, subspecies or lower taxon introduced intentionally or accidentally 

by a human-mediated vector outside its present or past natural range, and outside its natural 

dispersal potential” (Olenin et al. 2014). Additionally, we distinguish introduced from invasive 

species, defined as an “alien whose population has undergone an exponential growth stage and 

is rapidly extending its new range” (Occhipinti-Ambrogi & Galil 2004) and implies negative 

impacts on the recipient ecosystem (Russell & Blackburn 2017). Thus, we highlight the 

distinction between two processes: introduction or translocation and actual invasion, a possible 

but not obligatory outcome of the former (Blackburn et al. 2011; Russell & Blackburn 2017). 

 

1. Marine biological invasions 

According to an unified framework for biological invasions by Blackburn et al. (2011), the 

invasive process of a given species is composed by a sequence of four stages: transport, 

introduction, establishment and spread. Additionally, each stage is separated by different 

barriers which are required to be overcome for a species, or a population, to move on to the 

next stage (Blackburn et al. 2011). After overcoming the first barrier of geography via 

anthropogenic transport, a native species becomes non-native as it is introduced into the wild, 

in a new environment outside its natural distribution. However, not all non-native species are 

in fact introduced, since they might not be able to cross the human-made barriers imposed in 

the context of captivity and cultivation (barriers like fences). Nevertheless, two new barriers 

appear for the ones which manage to become introduced, preventing them from becoming 
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established: survival and reproduction. Non-native species must not only survive in the 

environmental conditions found in the new area, but also successfully reproduce. If the non-

native species long-term population growth rate is not positive it might still go extinct and 

multiple introductions may be necessary before becoming effectively established. Finally, the 

dispersal and environmental barriers are the final obstacles preventing a non-native species 

from effectively spreading to new locations; it is only in this stage that a non-native species 

becomes invasive. The environmental barrier limits the extent to which the invasive species 

expand their range by offering potentially adverse environmental conditions which are 

inappropriate for successful colonization of new areas. When a given species manages to 

overcome all barriers, the result is a fully invasive species, capable of dispersing, surviving and 

reproducing at several locations across a greater or lower scale (Blackburn et al. 2011).  

Marine biological invasions have three mains areas of concern: the vectors of invasions, 

that is the means by which the individuals expand their distribution to non-native areas, the 

threats that a new species will inflict on the existing dynamic equilibrium and the pathway of 

invasion, which can assist in predicting how the invasive species will geographically spread. 

Each of these points will be taken into consideration next, building an introductory overview 

of the subjects. 

 

1.1.  Introduction vectors 

Invasive species spread and occupy new marine and coastal ecosystems through several 

maritime introduction vectors, which are the “physical means or agent by which a species is 

transported” (Carlton 2001a). The main marine introduction vectors are ballast water, 

biofouling of vessel hulls, aquaculture, aquarium trade, live bait, live seafood trade and marine 

debris (Williams et al. 2013).  

Vessels can transport various invasive species via ballast water and biofouling. Ballast 

water is pumped into ships to provide them with stability and to compensate for the lack of 

cargo (Carlton 2001a). However, indiscriminate water pumping results in accidentally loading 

a wide range of species (Briski et al. 2012; Carlton 2001a, b; Gollasch 2007). Although the 

individuals transported are usually extremely small, such as plankton or other viable resting 

stages present within the ballast tank sediment (Briski et al. 2012; Carlton 2001a; Carver & 

Mallet 2002; Padilla & Williams 2004), introduction of bigger species, such as the Round Goby 

(Neogobius melanostomus) has been linked to ballast water (Fuller et al. 2017). Furthermore, 

as vessels and other submerged infrastructures are extremely prone to be colonized by a diverse 
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community of sessile and some mobile organisms, extensive biofouling has been demonstrated 

in hulls, sea-chests, anchors, pipes or rigs (Bax et al. 2003; Coutts & Dodgshun 2007; Davidson 

et al. 2009; Mineur et al. 2008; Wanless et al. 2010). Thus, moving these colonized surfaces 

provides a unique opportunity of human-mediated dispersal to species which could not survive 

natural long-distance drifting (Carlton 2001a). 

Accidental and intentional release of exotic species from aquaculture facilities is another 

important introduction vector. Since many farmed species, such as fishes and bivalves, are non-

native relatively to where they are being grown, and that specimens are frequently entering and 

leaving the facilities, aquacultures are especially prone to being responsible for multiple and 

frequent introductions (Bax et al. 2003; Naylor et al. 2001; Rius et al. 2014). Moreover, 

aquarium trade can be also associated to both intentional and accidental release of invasive 

species. For instance, fish may be released when they become unwanted by their owners 

(Duggan et al. 2006; Padilla & Williams 2004). Introductions may also be attributed to 

accidental escape from tanks during storms or to the release of water containing non-native 

organisms from domestic tanks and public aquariums (Duggan et al. 2006; Padilla & Williams 

2004; Rhyne et al. 2012). Considering that some species are commercialized at a global level 

and are extremely widespread, they can colonize all freshwater and marine environments 

(Padilla & Williams 2004). Similarly, the live seafood trade transports mature individuals at a 

global scale. Thus, the probability of some viable individuals reaching a natural environment 

and becoming established can be high (Chapman et al. 2003).  

The use of non-native live bait by anglers is also seen as an important introduction vector 

of invasive species, given unused live bait is commonly released into the environment where 

organisms may become established (Carlton 2001a; Kilian et al. 2012). Lastly, in the last five 

decades, the huge increase of anthropogenic floating marine litter in environment, namely 

plastic debris, has provided a significant alternative mean of transportation for several rafting 

species, which used to rely solemnly on natural floating materials for the dispersal of 

reproductive propagules (Katsanevakis & Crocetta 2014). Floating debris can be colonized by 

a wide range of taxa, which may spread and establish in new areas if conditions are favourable 

(Carlton 2001a; Katsanevakis & Crocetta 2014 and references therein).  

Regarding the European Seas, Galil et al. (2014) referred to shipping and culture activities 

as relatively more important in the western European margins and in the Baltic, whereas in the 

Mediterranean Sea the Suez Canal, a human-made corridor linking the Red Sea to the 

Mediterranean, is responsible for roughly more than half of the non-native species introduced. 

Likewise, Gollasch (2007) had previously reported the three most important vectors in Europe 
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were ballast-water, followed by fouling and aquaculture. However, if one focuses on the 

Mediterranean individually, it becomes clear that although roughly half of the invasive species 

were introduced via the Suez Canal, the relative importance of the vectors along its area is not 

homogeneous: shipping and aquaculture have a stronger impact on the western Mediterranean, 

whereas The Suez Canal is responsible for most invasions on the eastern Mediterranean (Galil 

et al. 2016; Zenetos et al. 2012). 

 

1.2.  Ecological and economic threats 

Marine invasive species pose a significant environmental threat since biological invasions are 

one of the major drivers of biodiversity loss, the others being habitat change, climate change, 

overexploitation and pollution (Brook et al. 2008; Millennium Ecosystem Assessment 2005). 

Marine invasive species are capable of deeply altering the invaded ecosystems by shifting 

nutrient and sediment dynamics, changing the available light, modifying the community 

structure and the trophic food web, causing the loss of native genotypes and displacing native 

species (Bax et al. 2003; Molnar et al. 2008; Wallentinus & Nyberg 2007). Hybridization, for 

instance, may lead to the loss of native genotypes via introgression of invasive genes into the 

native gene pool. The resultant hybrids may outcompete the native species (Grosholz 2002; 

Hänfling 2007; Vilà et al. 2010): for example, Rosenfield et al. (2004) demonstrated the hybrids 

original from the crossing of invasive sheepshead minnow (Cyprinodon variegatus) with the 

endemic Pecos pupfish (Cyprinodon pecosensis) in New Mexico, USA, displaced the endemic 

species due to their higher fitness. 

Biological invasions are also responsible for substantial economic losses which can arise 

from decreased fisheries and aquaculture production, extensive fouling of vessels’ hulls and 

other marine infrastructures such as water pipes (Bax et al. 2003; Molnar et al. 2008). For 

instance, the zebra mussel (Dreissena polymorpha), a Ponto-Caspian freshwater bivalve which 

has extensively invaded North America, is a good example of a widespread invasive species 

with multiple impacts (e.g., Connelly et al. 2007; Strayer 2009). Strayer (2009) reviewed an 

extensive list of ecological and economic impacts caused by its widespread invasion, since they 

provoked deep changes in the community structure and ecosystem dynamics. High densities of 

zebra mussels change nutrient concentrations, available light and phytoplankton biomass, 

leading not only to a decrease in the biomass of pelagic fish, but also to the extinction of native 

bivalves which are outcompeted by this invasive species (Strayer 2009). Moreover, zebra 

mussels are known for fouling water intake pipes and other infrastructures in electric power 

generation and drinking water treatment facilities, greatly reducing the water inflow. When this 
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happens, industries must undertake remediation measures along with prevention plans to avoid 

future infestations, both of which entail significant maintenance costs (Connelly et al. 2007). 

In another instance, the ctenophore Mnemiopsis leidyi, a gelatinous predator, is an example of 

ecosystem changes and consequent economic impacts after establishment. Mnemiopsis leidyi 

was introduced in the Black Sea in the early 1980s, probably via ballast-water (Shiganova 

1998). During 1989, increased zooplankton biomass due to overfishing in previous years 

allowed explosive growth of the invasive M. leidy (Shiganova 1998). The intensive predation 

on eggs and larvae of fish that followed the bloom collapsed the fisheries of planktivorous fish 

mainly in the northern region of the Black Sea, an area already under severe anthropogenic 

damage (Shiganova 1998).  

Invasive species may also increase the frequency of harmful algal blooms or foment the 

spread of disease-causing viruses and bacteria, directly threatening human health (Ruiz et al. 

1997). Finally, increased disturbance in a certain environment due to the negative impacts 

caused by invasive species may facilitate new future invasions, potentially culminating in an 

“invasional meltdown” (Adams et al. 2003; Simberloff & Von Holle 1999). 

 

1.3.  Invasive pathways 

After becoming established, it is almost impossible to completely eradicate invasive species 

(Katsanevakis & Crocetta 2014); eradication measures may be effective in the early phases of 

invasion but they are costly, require considerable effort and are often unsuccessful 

(Katsanevakis & Crocetta 2014; Otero et al. 2013). Thereby, preventing the establishment of 

new invasive species is of extreme importance and probably the best way to avoid the negative 

impacts associated to the spread of non-native species (Katsanevakis & Crocetta 2014; Otero 

et al. 2013). However, management at the introduction vector level is the only effective way to 

prevent new primary or secondary introductions (Katsanevakis & Crocetta 2014).  

Alternatively, a deep understanding of the invasion pathway, which is the route that a 

non-native species took to invade in a new region (Olenin et al. 2014), is crucial not only to 

prevent new invasions, but also to aid the development of effective conservation measures 

(Galil et al. 2014; Ghabooli et al. 2013; Handley et al. 2011). For instance, information on the 

ecology of the invasive species within its native range may help choosing adequate biological 

control agents for containment measures (Roderick & Navajas 2003). Furthermore, knowledge 

of the introduction vectors, population sources and their genetic characteristics can be used to 

create risk maps, which provide useful insights into the potential ecological impacts (Kulhanek 
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et al. 2011). Comparative risk analysis can be used more specifically to predict the impacts of 

different routes and the probability of occurring new primary or secondary invasions based on 

environmental suitability (Hulme 2009; Molnar et al. 2008; Stepien et al. 2005). 

However, it is a difficult task to reconstruct the invasion pathway and identify the putative 

source populations with historical and contemporary vector records, since they are frequently 

incomplete and misleading (Estoup & Guillemaud 2010; Handley et al. 2011). In this context, 

molecular genetic data is a powerful tool to recreate the invasive history: it identifies putative 

source populations and genetic bottlenecks, distinguishes between single or multiple 

introductions and discriminates between primary or secondary invasions (Bock et al. 2015; 

Cristescu 2015; Estoup & Guillemaud 2010; Handley et al. 2011). Although genetic data does 

not always allow for successful identification of these processes, there are three main conditions 

which increase the probability of accurate reconstruction of the invasive pathway, all fulfilled 

for Fundulus heteroclitus: (1) extensive sampling along the native range to ensure all the 

putative source populations and all native haplotypes are known, (2) presence of genetic 

structure in the native range to narrow down the putative source regions and (3) a short amount 

of time elapsed since the invasion, so that processes such as genetic drift do not increase the 

genetic differentiation between native and invasive populations (Cristescu 2015; Geller et al. 

2010).  

 

2. Fundulus heteroclitus 

The biology and ecology of the mummichog, Fundulus heteroclitus (Linnaeus, 1766), have 

been extensively studied (e.g., Burnett et al. 2007). It was referred as a “textbook example” of 

intraspecific latitudinal genetic variation by Avise (2004), being an important model for 

adaptive genetic cline studies due to its abundance, easy manipulation and unusually high level 

of polymorphism (e.g., Cashon et al. 1981; Nevo 1976; Powers & Place 1978; Van Beneden et 

al. 1981; Whitt 1969). Fundulus heteroclitus exhibits distinct and extensive latitudinal clinal 

variation in relation to morphological, physiological and genetic traits along the North 

American Atlantic coast, which have been thoroughly studied. 

Geographical analysis of morphological traits (Able & Felley 1986; Morin & Able 1983), 

enzyme-coding loci (Powers & Place 1978; Powers et al. 1986; Ropson et al. 1990), 

mitochondrial DNA (Bernardi et al. 1993; González-Vilaseñor & Powers 1990; Smith et al. 

1998), putative neutral nuclear microsatellite loci (Adams et al. 2006; Duvernell et al. 2008), 

and a variety of nuclear single-nucleotide polymorphisms (McKenzie et al. 2015, 2016; Strand 
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et al. 2012; Williams et al. 2010) demonstrated concordance of clinal patterns, which are 

centred between 40º and 41º N along the coast of New Jersey, USA. These studies concur with 

Morin & Able (1983), supporting the division of F. heteroclitus in two subspecies: F. 

heteroclitus heteroclitus (Linnaeus, 1766) in the locations below the cline (referred to as the 

southern populations) and F. heteroclitus macrolepidotus (Walbaum, 1792) above the cline 

(referred to as the northern populations).  

Current genetic patterns, characterized by restricted gene flow and isolation by distance 

between northern and southern populations, already existed before the last glacial period as the 

range expansion following glacier retraction did not disrupt them (Adams et al. 2006; Haney et 

al. 2009). Adams et al. (2006) supported previous studies (e.g., González-Vilaseñor & Powers 

1990; Ropson et al. 1990) by reporting the establishment of a secondary contact zone 15,000 

years ago during the last glacial retreat, after the sea level increase connected the once separated 

northern and southern populations. At the time, the Hudson River (40-41º N, Figure 1.1) 

presented itself as barrier to dispersal (Duvernell et al. 2008), especially while the glaciers were 

retreating and its flow increased considerably with the meltwater (Donnelly et al. 2005). Today, 

the secondary contact zone maintains and corresponds to the latitudes of clinal variation (Brown 

& Chapman 1991; Powers et al. 1991).  

Cashon et al. (1981) stated that the cline location coincides with the southernmost extent 

of the ice sheet at the time of maximum glaciation, implying that the northern saltmarshes were 

destroyed under the ice sheet, while the location of the southern saltmarshes varied due to sea 

level fluctuations. Thus, they suggested that the distribution of the current genetic patterns was 

shaped by the last glacial event 20,000 years ago (Cashon et al. 1981). González-Vilaseñor & 

Powers (1990) estimated the date of divergence between the two subspecies to have occurred 

one million years ago. Although this excludes the last glacial event as the trigger for genetic 

divergence, the last glacial events were probably responsible for shaping F. heteroclitus 

present-day distribution, being responsible for several episodes of population expansion and 

contraction (Ropson et al. 1990; Smith et al. 1998).  

Northern populations would have been best positioned to recolonize newly available 

habitats during glacial retraction, which were best suitable for species already adapted to colder 

temperatures (Powers & Schulte 1998; Ropson et al. 1990). Both microsatellite and 

mitochondrial DNA (mtDNA) data suggest that some of the northern populations managed to 

persist in the glaciated areas, although their distribution was patchy, discontinuous and with 

restricted gene flow (Adams et al. 2006; Haney et al. 2009). Furthermore, the estimated date 

of establishment of the two northernmost populations which should be the most recent ones, 
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Figure 1.1. Fundulus heteroclitus current distribution. (A) Native distribution (red line) in the 

North American Atlantic coast. The morphological, physiological and genetic clines detected 

between northern and southern populations in North America are located between latitudes of 

40 and 41º N black bold lines (F. heteroclitus photograph from: North American Native Fishes 

Association 2010). (B) Known invasive range (blue line and dot) in the Iberian Peninsula. 

 

matches a period of time between the beginning and the end of the last glacial maximum 

(Haney et al. 2009). This estimate suggests a range expansion within the glaciated area, which 

might have already started before the end of the last glacial event (Haney et al. 2009). 

Populations with the northern haplotype can also be found south of the contact zone, in the 

areas of extreme freshwater upper estuary (Smith et al. 1998). Their presence in such 

environments was probably a result of either a northward expansion of the northern 

haplotypes as the glaciers retreated, or of selection, as the northern haplotypes are better 

adapted to freshwater environments (Scott et al. 2004), potentially outcompeting the less fit 

southern haplotype (Smith et al. 1998; Whitehead 2009). 

After historical separation, clines may arise when the barrier to dispersal is removed, 

and gene flow and migration start occurring between populations (Powers & Place 1978). The 

cline formed in the contact zone will erode with gene flow (Brown & Chapman 1991), 

depending on distance and frequency of gene flow (Endler 1977). In the absence of selection, 

F. heteroclitus dispersal must be less than one or two km to maintain its allozyme clines 

located in the contact zone, which remain stable up to day (Brown & Chapman 1991). Their 
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results are congruent with previous reports of F. heteroclitus displaying short dispersal 

distances (1-2 km, Fritz et al. 1975; Lotrich 1975). Although clines may have arisen due to 

isolation, they are currently maintained by natural selection which may vary both in type and 

intensity in different locus: not all clines are located exactly at 40º N (Brown & Chapman 

1991). Location discrepancies found among the clines for mitochondrial DNA and individual 

nuclear genes suggest selection has been impacting the geographical variation of some loci, 

whereas others are more affected by stochastic random processes (Ropson et al. 1990).  

According to Ropson et al. (1990), selection is commonly used to explain clines found 

in morphological traits and polymorphic proteins, which are linked to an environmental 

gradient, such as mean water temperature. In this case, clines are located along a steep thermal 

gradient, where temperature is correlated with latitude (Fangue et al. 2006; Place & Powers 

1979; Powers & Place 1978). In this context, thermal selection has been suggested to be 

responsible for maintaining these clines (reviewed in Powers & Schulte 1998; Schulte 2001): 

for example, biochemical data on the lactate dehydrogenase-B (Ldh-B) allozyme has shown 

selective advantage in warmer or colder habitats depending on the genotype (Place & Powers 

1977; Powers 1972; Powers & Powers 1975). The northern populations of F. h. 

macrolepidotus are associated to the Ldh-Bb genotype which displays a selective advantage 

in cold temperatures, while the southern populations are associated to the Ldh-Ba genotype, 

better adapted to higher temperatures (DiMichele & Powers 1982; Powers & Place 1978; 

Powers & Schulte 1998; Schulte 2001). The presence of genetic patterns like the ones created 

by differential fitness of F. heteroclitus genotypes in relation to water temperature are also 

found in other species which exhibit thermal selection in clinal maintenance, supporting this 

theory (Powers et al. 1986). Selection against warm water phenotypes in other nonmigratory 

polymorphic species, which recolonized the once glaciated northern areas during the last 

glacial event retreat has been already demonstrated (e.g., Christiansen & Frydenberg 1974; 

Corbin 1977). More recently, McKenzie et al. (2015) suggested the secondary contact area 

corresponds to a bimodal hybrid zone, which presents some level of pre- and/or post-zygotic 

reproductive isolation influencing its population structure, even though isolation is not 

complete as there is still some gene flow occurring between the subspecies; strong selection 

may be acting against less fit hybrids who exhibit maladapted combinations of distinct 

parental genotypes.  
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2.1.  Biology and ecology of Fundulus heteroclitus 

This ubiquitous killifish can be found in freshwater, brackish or saltwater, and inhabits sheltered 

coastal areas such as saltmarshes, tidal creeks, estuaries or bays all year-round (Bigelow & 

Schroeder 1953; Hardy Jr 1978). Fundulus heteroclitus withstands a wide range of salinities, 

from 0 to 120.3 ppm (Griffith 1974), and temperatures, from -1.5 ºC (Umminger 1972) to 36.3 ºC 

(Garside & Chin-Yuen-Kee 1972), surviving abrupt changes in both parameters (Bulger 1984; 

Hardy Jr 1978). In North America, its size, among other characteristics, is correlated with 

latitude: total length (TL) can vary from 90 mm in the south, up to 100-120 mm at the most 

northern areas of its distribution (Kneib & Stiven 1978). In the Iberian Peninsula, fish caught 

in the Guadalquivir marshes had sizes between 100-120 mm (TL, up to 132 mm, Fernández-

Delgado 1989) while fish from the Ebro Delta were generally slightly smaller (TL, up to 104 

mm, Gisbert & López 2007). 

With a diet mainly composed of benthic invertebrates from the vegetated intertidal 

saltmarsh, such as small crustaceans and annelids (Baker-Dittus 1978; Kneib 1986, 1997; Kneib 

& Stiven 1978; Prinslow et al. 1974), F. heteroclitus is an opportunistic carnivorous species 

(Kneib 1986; Smith et al. 2002; Valiela et al. 1977). Its diet composition reflects prey 

availability as they appear inside the digestive tracts in proportions similar to their occurrence 

in the environment (Baker-Dittus 1978; Kneib 1986). Furthermore, prey selection and ingestion 

are size-dependent, as fish with higher dimensions are capable of ingesting bigger preys that 

smaller fish cannot (Baker-Dittus 1978; Vince et al. 1976). Along with the small invertebrates, 

fish also ingest detritus and plant particles, which can be found in large amounts in their 

stomachs; in the past, these elements were considered to be part of their diet (Jeffries 1972). 

Following this line of thought, Kneib & Stiven (1978) made a clear distinction between 

individuals smaller than 30 mm which were considered carnivorous, and the ones with larger 

dimensions capable of ingesting bigger plant particles which were thought to be omnivorous. 

However, the nutritive value of detritus and plant particles was proved to be very low, and thus, 

irrelevant to assure their growth or even to maintain their weight (Prinslow et al. 1974).  

Unlike many other fish species, F. heteroclitus life history is closely linked to the 

intertidal saltmarsh (Kneib 1984). This is extremely clear when we consider, for instance, the 

movements related to their feeding habits. Feeding events are connected to the tides, where 

ingestion of a wider range of preys occurs at high tide at the surface of the saltmarsh vegetated 

areas, followed by a return to the tidal creeks as the tide goes out (Butner & Brattstrom 1960; 

Kneib & Stiven 1978; Teo & Able 2003; Weisberg et al. 1981). Butner & Brattstrom (1960) 



11 

 

reported that F. heteroclitus individuals presented empty guts when moving onto the upper 

vegetated areas of the saltmarsh and full guts when returning to tidal creeks at low tide. 

Fundulus heteroclitus presents a diurnal feeding chronology overlapping with the tidal rhythm 

benefitting from the wide range of available prey at the surface during high tide (Weisberg et 

al. 1981). This feeding pattern might not be directly connected to the preys, because when the 

high tides are not sufficient to flood the saltmarsh surface, fish still feed at the lower portions 

of the saltmarsh (Weisberg et al. 1981). Thereby, even though feeding in the subtidal is not 

enough for maintaining population growth at normal densities (Kneib 1986; Weisberg & 

Lotrich 1982), feeding events might be triggered by water volume variation or chemical 

changes linked to the high tides, rather than being correlated to prey abundance (Weisberg et 

al. 1981).  

Considering that these tide-dependent movements to the higher parts of the saltmarsh are 

recognized as an adaptive trait in the life cycle of marine and estuarine species (Taylor et al. 

1979), it is not surprising that this behaviour in F. heteroclitus has also been described related 

to their reproductive strategies (e.g., Able & Castagna 1975; Taylor et al. 1977). Populations 

from Delaware Bay (Figure 1.1) have been observed moving to the marsh surface during night 

high tide at the new or full moon spring tides, where the eggs were deposited on the inner 

surface of the primary leaves of Spartina alterniflora, resulting in exposure to desiccation 

during their development until a new high tide submerged them again (Taylor et al. 1977). 

Fundulus heteroclitus eggs can also be found in intertidal empty shells of the Atlantic Ribbed 

Mussle Geukensia demissa (=Modiolus demissus) which are exposed to periods of desiccation 

and high temperatures for several hours during low tides (e.g., Able & Castagna 1975; Taylor 

& DiMichele 1983). These complex semi-lunar reproductive behaviours not only increase the 

survival of the eggs by avoiding predation during the early-stage development, but also 

decrease the probability of water movements dislodging them to unfavourable locations, 

reducing the potential dispersal of the eggs, but increasing the survival probability (Taylor et 

al. 1977; Teo & Able 2003). 

Unlike adult mummichogs which return to the tidal creeks, the young often remain at the 

saltmarsh surface after the tide recedes, concentrating in residual tidal water pools (Kneib 1984, 

1986) up to 6-8 weeks after hatching (Taylor et al. 1979). Not only it seems to be advantageous 

in terms of refugia from predators as the areas are too shallow for eventual predators (Kneib 

1984, 1987), but also in terms of higher prey abundance throughout the day (Kneib 1984). In 

this case, high densities of young mummichogs might have a strong impact on prey abundance, 

until the next inundating high tide restores natural prey densities (Kneib 1986; Kneib & Stiven 
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1978). This specific behaviour by the young allows one to discount the dispersal during early 

life phases, as it dramatically reduces the dispersal distance (Kneib 1986). Both the adhesive 

properties of the eggs and the fact that they remain in small tidal pools during low tides, reduce 

greatly the risk of being dislodged and dragged to unfavourable locations by strong currents. 

All the movements made between the saltmarsh surface and the tidal creeks for foraging, 

spawning and predator avoidance described above may suggest considerable mobility and 

dispersal, but in fact this species home ranges are relatively short. Bigelow & Schroeder (1953) 

referred to it as one of the most stationary marine species. Chidester (1920) reported that F. 

heteroclitus remained in the tidal creeks throughout the summer while other species moved in 

and out with the tides, and in autumn fish moved into deeper, more saline waters. In a study 

about the species home range during the summer months, Lotrich (1975) observed a range of 

36-38 m in individuals larger than six cm, indicating that most fish remained near the traps 

throughout the study. However, Fritz et al. (1975) reported that individuals travelled up to two 

km upstream during fall and winter months, despite also stating F. heteroclitus may be 

polytypic in its winter behaviour as the results do not concur with Chidester (1920). Sweeney 

et al. (1998) found out they moved up to 650 m from the marking site and Teo & Able (2003) 

calculated a home range of 15 hectares (ha), which corresponds to a linear distance of around 

400 m. Skinner et al. (2005) reported 96.6% of the mummichogs were recaptured within 200 

m of the original point of release. Additionally, even though their results come from allozyme 

frequency analysis, Brown & Chapman (1991) suggested that the F. heteroclitus mean dispersal 

distance at the Chesapeake Bay (Figure 1.1.) must be less than one or two km to maintain the 

allozyme frequency clines in the absence of strong selection. Teo & Able (2003) suggested that 

the variance among home range values from different studies may be due to differences in the 

sampling methods employed which, for instance, may act as a filter trapping fish with a certain 

range of lengths, or due to habitat differences where distances between the saltmarsh surface 

and the tidal creeks vary considerably. Nevertheless, the results mentioned clearly indicate F. 

heteroclitus as species with high site fidelity and short dispersal.  

 

2.2.  Fundulus heteroclitus misidentification 

Before being correctly identified as F. heteroclitus, specimens collected in the past were 

misidentified as Valencia hispanica (Valenciannes, 1846) and Valencia lozanoi (Gómez, Peiró 

& Sánchez, 1984) for almost 15 years. Machado (1857) reported for the first time the presence 

of V. hispanica in the southwestern Iberian Peninsula coast in the Guadalquivir saltmarshes. 
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Decades later, its presence in marshes in Spain (Guadalquivir) and in Portugal (Guadiana) was 

confirmed by Hernando (1975) and Coelho et al. (1976) respectively. Years later, Gomez-

Caruana et al. (1984), after comparing the morphology of the V. hispanica provenient from 

Cádiz and Valencia, described the population from the lower Guadalquivir as a new species, 

Valencia lozanoi, based on their distinct morphologies and large discontinuity between the two 

sites. The appearance of these new species in the literature was followed by controversy 

regarding these populations taxonomic status. Considering their morphological characteristics, 

Fernández-Delgado et al. (1986), supported by Bianco & Miller (1989), suggested that the 

populations of V. hispanica previously identified by Hernando (1975), Coelho et al. (1976) and 

Arias & Drake (1986), and the populations of V. lozanoi described by Gomez-Caruana et al. 

(1984) were in fact members of F. heteroclitus. However, considering F. heteroclitus was 

probably introduced in the southwestern coast of Spain in the early 1970s and that the report 

by Machado (1857) was valid, V. hispanica should have been present in this area until the end 

of the 19th century, where it probably went extinct long before the F. heteroclitus first Iberian 

records (Planelles & Reyna 1996).  

Mitochondrial DNA analysis of specimens from the Guadalquivir River (Lebrija, Sevilla) 

confirmed that these individuals were members of F. heteroclitus supporting what other authors 

had previously concluded based on morphology (Bernardi et al. 1995; Fernández‐Pedrosa et al. 

1996), including the renaming of V. lozanoi (Fernández-Delgado et al. 1986). Comparison of 

samples of F. heteroclitus from the Guadalquivir with V. hispanica from Valencia demonstrated 

clear distinctions between these two species (Fernández‐Pedrosa et al. 1996). Furthermore, 

Bernardi et al. (1995) suggested the F. heteroclitus from the Guadalquivir marshes 

corresponded to the northern populations of F. heteroclitus from North America, supported by 

Fernández‐Pedrosa et al. (1996) who confirmed most of individuals presented an Iberian 

haplotype correspondent to the F. heteroclitus macrolepidotus haplotype previously described 

in the literature (Brown & Chapman 1991; González-Vilaseñor & Powers 1990).  

 

2.3.  The presence of the invasive Fundulus heteroclitus in Iberia 

Recently, Fundulus heteroclitus was found across the Atlantic in the Iberian Peninsula, which 

suggests a human-mediated introduction. Though the date of introduction in the southern coast 

Spanish saltmarshes remains uncertain, it was probably introduced between 1970 and 1973 

(Fernández-Delgado 1989). Although Gutiérrez-Estrada et al. (1998) suggested some 

limitations (see below), they did not exclude the early 1970s as the most likely date of 
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introduction. Almaça (1995) had no suggestion regarding the date of introduction of F. 

heteroclitus in the Portuguese side of the Guadiana saltmarshes because fish research at the 

mouth of the Guadiana only took place after 1975, and thus it could have been present for a 

long time in this region without being reported. By the 1990s it was already well-established in 

the southwestern coast of Spain, where it could be found almost continuously from the mouth 

of the Guadiana until the Barbate marshes (Gutiérrez-Estrada et al. 1998). A decade later, its 

presence was recorded in the Ria Formosa, southern coast of Portugal (at least since 2002 in 

seabird pellets; e.g., Catry et al. 2006; Paiva et al. 2006b) and in the Ebro Delta in the 

Mediterranean Sea, northeastern coast of Spain (Gisbert & López 2007) (Figure 1.1).  

 

2.4.  Fundulus heteroclitus introduction vector 

Despite having been introduced in the Iberian Peninsula four decades ago, consensus on the 

introduction vector responsible for its establishment in the southwestern coast of Iberia is yet 

to be reached. Fernández-Delgado (1989) suggested it was introduced when two other 

American species were intentionally introduced in this area: the large-mouth bass (Micropterus 

salmoides Lacépède) and the crayfish (Procambarus clarki Girard). However, Gutiérrez-

Estrada et al. (1998) concluded that F. heteroclitus introduction continued unknown and could 

have not been associated to the crayfish. The latter was only introduced in the Guadalquivir 

marshes in 1974 (Delibes & Adrián 1987) while adult mummichogs were only collected from 

the Guadalquivir marshes in March 1973 (Hernando 1975). Bernardi et al. (1995) also 

suggested F. heteroclitus was introduced involuntarily without providing further hypotheses. 

Furthermore, its introduction has been linked either to aquarium trade (Elvira & Almodóvar 

2001; García-Llorente et al. 2008; Gozlan 2010; Hernando & Soriguer 1992; Ribeiro et al. 

2008a) or ballast-water (Fernández-Delgado 2010; García-Revillo & Fernández-Delgado 

2009). Additionally, Gozlan (2010) suggested the human-mediated intentional introduction 

could be related not only to aquarium trade but also to biological control. 

Furthermore, Gisbert & López (2007) proposed a human-mediated secondary invasion 

hypothesis to explain F. heteroclitus more recent introduction in the Ebro Delta. They suggested 

establishment in the Ebro happened after live fish were transported by road from the 

southwestern Iberian region, to be used in aquaculture and aquariology purposes, as well as in 

scientific studies. It is known that the Aquaculture Research Centre of the Institute for Food 

and Agriculture (IRTA) located in the Ebro Delta used F. heteroclitus as a biological model 

between 2001 and 2004, undertaking measures to avoid F. heteroclitus accidental escape at all 
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life stages (Gisbert & López 2007). However, considering that individuals were found in the 

vicinity of the research facilities (ca. 2 km away) and that accidental escape has been 

responsible for the spread of other exotic species in the Ebro Delta (e.g., Oriental Weather 

Loach Franch et al. 2008; Maceda-Veiga 2013), this hypothesis cannot be ruled out (Gisbert & 

López 2007).  

 

2.5.  Impacts of the invasive Fundulus heteroclitus on endemic biodiversity 

In the Iberian Peninsula, successful introductions of exotic species such as the mummichog F. 

heteroclitus and the eastern mosquitofish Gambusia holbrooki (Agassiz, 1859) may have a 

negative impact on the coexistent endemics (e.g., Elvira & Almodóvar 2001). The euryhaline 

F. heteroclitus inhabits shallow coastal areas alongside with other small endemic toothcarps, 

such as the Aphanius iberus (Valenciennes, 1846) and V. hispanica in the Mediterranean coast 

of Spain, and the Aphanius baeticus in the southwestern Spanish coast (Doadrio, Carmona & 

Fernández-Delgado, 2002). Aphanius iberus distribution is restricted to eight populations in the 

southwestern Atlantic coast of Spain (Doadrio et al. 2002). Cyprinodontid fish may achieve 

high population densities, hampering a healthy coexistence with other species (Clavero et al. 

2007) and toothcarp densities are subject to a great decrease when they share their habitat with 

exotic invasive species like F. heteroclitus or G. holbrooki (Clavero et al. 2007; Fernández‐

Delgado et al. 1999). Fundulus heteroclitus poses a potential threat by competition and/or 

predation of the endemic species, and may act synergistically with habitat destruction resulting 

in a more profound negative impact (Bernardi et al. 1995; Doadrio et al. 2002; Elvira 1996; 

Elvira & Almodóvar 2001; Fernández-Delgado 1989; García-Berthou et al. 2007; García-

Llorente et al. 2008; Leunda 2010; Oliva-Paterna et al. 2006; Planelles & Reyna 1996). 

Currently, both species of Iberian Aphanius are ranked as endangered (Crivelli 2006a, b) and 

V. hispanica is ranked as critically endangered (Crivelli 2006c).  

 

3. Objectives 

In this study, we aim to unravel the Iberian invasion history of the mummichog (Fundulus 

heteroclitus), in terms of both geographic origins, genetic and demographic processes based on 

a fragment of the mitochondrial DNA cytochrome b gene. Samples covering most of the current 

native distribution of the species were included to infer colonization pathways. 
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4. Research questions and hypotheses 

Have the Fundulus heteroclitus populations from Iberia experienced a founder effect upon 

invasion? 

Where are the invasive Iberian populations original from? 

What is the genetic structure within the F. heteroclitus populations of the Iberian Peninsula? 

Was the range expansion in Iberia due to natural dispersal? 

Which are the most probable introduction vectors for the invasion of F. heteroclitus in Iberia? 

 

Given that F. heteroclitus was first reported in the Iberian Peninsula quite recently (in the early 

1970s, Fernández-Delgado 1989) and is a non-migratory species with limited dispersal (less 

than 2 km, Fritz et al. 1975; Lotrich 1975), we posit the following hypotheses: 

(1) If the recent human-mediated introduction and subsequent invasion of the mummichog 

in Iberia originated on a few founder individuals, then the genetic diversity of the Iberian 

populations must be low and the haplotypes identified in the Iberian populations will be 

traceable to one or multiple locations in North America, identifying the possible 

population sources; 

(2) If the species in Iberia has low genetic diversity and given the short time since the 

invasion, populations are not expected to exhibit high genetic structure; 

(3) If the dispersal between locations was not human-mediated and followed local currents, 

the distribution and frequency of haplotypes will reflect the invasion pathway. 

 

5. Conclusions 

We propose that the genetic diversity and structure from the Iberian F. heteroclitus can be 

explained by a single introduction event carrying a very small number of individuals sharing 

the same haplotype. Furthermore, aquarium trade of F. heteroclitus individuals from their 

native northern range between New York and Nova Scotia seems the most plausible 

introduction vector in Iberia populations. Moreover, we discuss that the F. heteroclitus 

individuals found in the Ebro Delta became established following a secondary human-mediated 

introduction event with individuals from the south of the Iberian Peninsula. Considering the 

high tolerance to salinity and temperature and the significant amount of colonized area in the 

Iberian southern region, the species will most likely keep on expanding its invasive range until 

it faces unfavourable environmental conditions. 
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Abstract 

Human activities such as trade and transport have increased considerably in the last decades, 

greatly facilitating the introduction and spread of non-native species at a global level. In the 

Iberian Peninsula, Fundulus heteroclitus, a small euryhaline coastal fish with short dispersal, 

was found for the first time in the mid-1970s. Since then, F. heteroclitus underwent range 

expansions, colonizing the southern region of Portugal, southwestern coast of Spain and the 

Ebro Delta in the Mediterranean Sea. We analysed mitochondrial DNA cytochrome b 

sequences to elucidate the invasion pathways in Iberia. We sampled three Iberian locations 

(Faro, Cádiz and Ebro Delta) and 13 other locations along F. heteroclitus native range in North 

America. Results revealed a single haplotype, common to all invasive populations, which can 

be traced to the northern region of the species native range. Thus, we suggest the origin of the 

founder individuals to be between New York and Nova Scotia. Additionally, the lack of genetic 

structure within Iberia is consistent with a recent invasion scenario and a strong founder effect. 

We suggest the most probable introduction vector is associated to aquarium trade and we further 
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discuss the hypothesis of a second human mediated introduction responsible for the 

establishment of individuals in the Ebro Delta. Given the high tolerance to salinity and 

temperature, the species will most likely continue to spread geographically, as long as habitat 

requirements remain available. 

 

Introduction  

As a consequence of human activities involving large distance marine transportation and trade, 

worldwide marine biological invasion rates have increased dramatically in the last 30 years 

(Bax et al. 2003; Hulme 2009; Meyerson & Mooney 2007; Perrings et al. 2005). In the 

European seas there are over 850 invasive species, of which 237 along the western European 

margins, 680 in the Mediterranean Sea and the remaining in the Baltic (Galil et al. 2014). 

Marine invasive species pose a significant environmental threat as they are one of the major 

drivers of biodiversity loss (Millennium Ecosystem Assessment 2005), altering ecosystems and 

their dynamics, shifting the community structure and displacing endemic species (Bax et al. 

2003; Molnar et al. 2008; Wallentinus & Nyberg 2007). Negative impacts may also be 

registered at the economic and social levels, affecting fisheries, aquacultures, tourism or human 

health (Bax et al. 2003; Molnar et al. 2008). Invasive species spread and occupy new marine 

and coastal ecosystems through several maritime introduction vectors such as ballast water, 

biofouling of vessels, aquaculture escape or ornamental species trade (see Williams et al. 2013 

and references therein).  

After becoming established, it is almost impossible to completely eradicate invasive non-

native species (Katsanevakis & Crocetta 2014). Thereby, preventing the establishment of new 

invasive species is of extreme importance and probably the best way to avoid the negative 

impacts associated to the spread of non-native species (Katsanevakis & Crocetta 2014; Otero 

et al. 2013). Furthermore, a deep understanding of the invasion pathways and population 

sources is relevant not only to prevent new invasions, but also to aid the development of 

effective conservation measures (Galil et al. 2014; Ghabooli et al. 2013; Handley et al. 2011). 

For instance, information on the ecology of the invasive species within its native range may 

help choosing adequate biological control agents for containment measures (Roderick & 

Navajas 2003). Knowledge on the introduction vectors, population sources and their genetic 

characteristics can be used to create risk maps, which provide useful insights into the potential 

ecological impacts (Kulhanek et al. 2011), predicting the impacts of different routes and the 

probability of occurring new invasions (Hulme 2009; Molnar et al. 2008).  
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However, reconstructing the invasion pathways and identifying the putative source 

populations with historical and contemporary vector records is a difficult task (Estoup & 

Guillemaud 2010; Handley et al. 2011). In this context, molecular genetic data is a powerful 

tool to reconstruct the invasive history by identifying putative source populations and genetic 

bottlenecks (Bock et al. 2015; Cristescu 2015; Estoup & Guillemaud 2010; Handley et al. 

2011). Although genetic data does not always allow for successful identification of these 

processes, there are three conditions which increase the probability of accurate reconstruction 

of the invasive pathway, all fulfilled for Fundulus heteroclitus: extensive sampling along the 

native range to ensure all the putative source populations are known, the presence of genetic 

structure in the native range to narrow down the putative source regions and a short amount 

of time passed since the invasion so that processes such as genetic drift do not increase the 

genetic differentiation between native and invasive populations (Geller et al. 2010).  

The mummichog, Fundulus heteroclitus (Linnaeus, 1766), is a small teleost naturally 

occurring almost continuously in saltmarshes of the North American east coast, from 

Newfoundland to Florida (Hardy Jr 1978). This species is extremely resistant to a wide range 

of salinities and temperatures, and can be found in freshwater, brackish or saltwater, 

inhabiting sheltered coastal areas such as saltmarshes, tidal creeks, estuaries or bays all year-

round (Bigelow & Schroeder 1953; Hardy Jr 1978). Fundulus heteroclitus is one of the most 

stationary marine species (Bigelow & Schroeder 1953), with short dispersal distances (1-2 

km, Fritz et al. 1975; Lotrich 1975), high site fidelity closely related to the saltmarshes (Kneib 

1984) and short home ranges (36-38 m, Lotrich 1975).  

Fundulus heteroclitus is an important model for the study of adaptive genetic clines, 

exhibiting distinct and extensive latitudinal clinal variation in relation to morphological, 

physiological and genetic traits along the North American Atlantic coast, which have been 

thoroughly studied for a long time (e.g., Powers et al. 1986). Geographical analysis of 

morphological traits (Able & Felley 1986; Morin & Able 1983), enzyme-coding loci (Powers 

& Place 1978; Powers et al. 1986; Ropson et al. 1990), mitochondrial DNA (Bernardi et al. 

1993; González-Vilaseñor & Powers 1990; Smith et al. 1998), putative neutral nuclear 

microsatellite loci (Adams et al. 2006; Duvernell et al. 2008), and a variety of nuclear single-

nucleotide polymorphisms (McKenzie et al. 2015, 2016; Strand et al. 2012; Williams et al. 

2010) demonstrated concordance of clinal patterns, which break is placed between the 

meridians 40º and 41º N, along the coast of New Jersey. These studies concur with Morin & 

Able (1983), supporting the division into two subspecies: F. heteroclitus heteroclitus 
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(Linnaeus, 1766) at north of the cline and F. heteroclitus macrolepidotus (Walbaum, 1792) 

at south of the cline.  

In the Iberian Peninsula, F. heteroclitus was first detected in the 1970s, in the 

Guadalquivir and Guadiana saltmarshes from the southwestern coast of Spain (Hernando 

1975) and in the Guadiana Delta (Coelho et al. 1976). More recently, its presence was also 

reported in the Ebro Delta, northeastern coast of Spain (Gisbert & López 2007) and in the Ria 

Formosa, south of Portugal (e.g., Catry et al. 2006; Paiva et al. 2006b). The species was 

probably introduced between 1970 and 1973 in the Spanish saltmarshes (Fernández-Delgado 

1989) either involuntarily via aquarium trade (Bernardi et al. 1995; Elvira & Almodóvar 

2001; Hernando & Soriguer 1992), ballast water (Fernández-Delgado 2010; García-Revillo 

& Fernández-Delgado 2009), or intentionally for purposes of biological control (Gozlan 

2010). The Ebro Delta individuals were probably caught in the Spanish saltmarshes to be used 

in aquaculture and aquarium trade (Gisbert & López 2007) and were later released from 

captivity. Another possibility for the Ebro Delta introduction is an accidental escape from a 

research centre nearby, where this species had already been used as a scientific model (Gisbert 

& López 2007). Two previous studies have analysed the origin of the southwestern Spanish 

populations using mitochondrial DNA (mtDNA), concluding the founder individuals were 

original from the northern native region between Maine and Nova Scotia where the northern 

subspecies F. h. macrolepidotus is distributed (Bernardi et al. 1995; Fernández‐Pedrosa et al. 

1996). 

In the present study, we aim to build on previously published studies on the invasive 

range of Fundulus heteroclitus (Bernardi et al. 1995; Fernández‐Pedrosa et al. 1996) by using 

(1) more sampling locations (one in the Mediterranean Sea and two locations in the eastern 

Atlantic, and thirteen native locations), (2) a significantly larger number of individuals (248 

in total), and (3) a three times larger fragment of the mitochondrial DNA cytochrome b gene; 

and to evaluate the genetic diversity and invasion pathways. Given that the species was 

reported in the Iberian Peninsula very recently and has a limited adult dispersal capability, 

we tested the hypothesis of a human-mediated single Iberian introduction followed by 

dispersal promoted along the main oceanographic currents. This hypothesis leads to the 

expectation of an Iberian invasion based on a few founder individuals, with consequent lower 

genetic diversity than the putative identified source population. Also, the Iberian populations 

are expected to show no evident genetic structure given the short time since invasion. 
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Materials and methods 

Sampling. Samples from a total of 248 F. heteroclitus individuals were obtained from 16 

locations: 13 sites in the western Atlantic, one in the Mediterranean Sea and two locations in the 

eastern Atlantic (Table 2.1 and Figure 2.1), and were stored in 96% ethanol and kept at -20 ºC. 

The populations from the western Atlantic sampled above 40º N are hereafter referred to as 

northern locations (ID 1-8), while the others sampled below are referred to as southern locations 

(ID 9-13). The locations from the Mediterranean and eastern Atlantic are referred to as Iberian 

(ID 14-16). 

 

Table 2.1. Sample location, sample abbreviations and summary statistics for a cytochrome b 

sequence fragment from Fundulus heteroclitus. ID refers to numbers in Figure 2.1.  

Location ID Code Latitude / longitude n nh np 

Bridgewater 1 HV 44°22.0′N / 64°31.0′W 15 2 0 

Chewonki 2 CM 43°57.3′N / 69°43.2′W 15 3 1 

Wells 3 WM 43°19.2′N / 70°34.2′W 15 4 2 

Woods Hole 4 WH 41°31.5′N / 70°40.4′W 16 9 4 

Jerusalem 5 JR 41°23.1′N / 71°31.5′W 15 5 4 

Clinton 6 CC 41°15.3′N / 72°32.8′W 16 7 6 

Newark Bay 7 NB 40°41.2′N / 74°06.7′W 15 8 6 

Red Bank 8 RE 40°20.9′N / 74°05.0′W 15 7 5 

Tuckerton 9 TN 39°32.2′N / 74°19.4′W 15 10 8 

Speace 10 SP 38°09.1′N / 75°17.2′W 15 9 6 

Suffolk 11 CH 36°51.8′N / 76°28.7′W 16 7 3 

Roanoke Island 12 RI 35°53.8′N / 75°36.9′W 15 9 7 

Skidaway Island 13 SI 31°56.8′N / 81°04.2′W 16 11 10 

Faro 14 RF 37°00.3′N / 07°58.0′W 16 1 0 

Cádiz 15 CD 36°31.4′N / 06°11.4′W 17 1 0 

Ebro Delta 16 ED 40°37.38’N / 0°39.44’E 16 1 0 

n, number of individuals; nh, number of haplotypes; np, number of private haplotypes  

 

DNA extraction, PCR amplification and sequencing. Total genomic DNA was extracted 

from caudal fin tissue following a standard Chelex 100 protocol (Walsh et al. 1991). Extraction 

results were checked by electrophoresis in 0.8% agarose gel stained with GelRed. Polymerase 

Chain Reactions (PCR) were conducted in a total volume of 25 µL, with 1X buffer, 10 mM 

dNTPs, 10mM of each primer, 1U Taq Advantage 2 Polymerase mix DNA polymerase 

(CLONTECH-TaKaRa), 2 µL of DNA and Milli-Q water to the final volume. A fragment of 

the cytochrome b (cyt b) gene (1000 base pairs) was amplified with the forward primer 
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Figure 2.1. Distribution map showing the collection localities along the coast of North America (A), and Iberian Peninsula (B). Locations and 

sample details can be found in Table 2.1. Coloured circles display the distribution of the relative proportions of the cyt b haplotypes from each 

location: the four most common haplotypes, the private haplotypes, and all the other shared, but less frequent haplotypes, are represented (C, see 

legend). 
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GludG-L14724 (5’-TGACTTGAARAACCAYCGTTG-3’) (Palumbi et al. 1991) and the 

reverse primer cb6b.h (5’-GGAATTCACCTCTCCGGTTTACAAGAC-3’) (Martin & 

Bermingham 1998). PCR amplification consists of an initial 4 min denaturation step at 95 ºC, 

followed by 40 cycles of 1 min at 94 ºC (denaturation), 1 min at 50 ºC (annealing) and 1.5 min 

at 72 ºC (extension), and a 5 min final extension step. When amplification was not successful 

the following profile was used: initial 3 min denaturation step at 95 ºC, followed by 32 cycles 

of denaturation for 30 s at 95 ºC, annealing for 30 s at 54 ºC and extension for 1 min at 68 ºC, 

and a final extension step for 4 min at 68 ºC. PCR products were checked afterwards by 

electrophoresis in a 1% agarose gel stained with GelRed. Mitochondrial DNA was purified by 

ethanol/sodium acetate precipitation (Sambrook & Russel 2001). Its purity and quantity were 

analysed using a NanoDrop1000 spectrophotometer (Thermo Fisher Scientific, USA). 

Sequencing was performed on an ABI 3130xl capillary sequencer (Applied Biosystems – 

CCMAR, Portugal) using the forward primer from the PCR amplification (GludG-L14724). 

 

Genetic analysis. Cyt b sequences were aligned and manually checked using the software 

Geneious v4.8.2 (Biomatters, Ltd., Auckland, New Zealand). The number of haplotypes (n), 

number of private haplotypes (np), and the haplotype (h) (Nei & Tajima 1981) and nucleotide 

diversities (π) (Nei 1987) were calculated for each location using the DNAsP v5.10.1 (Librado 

& Rozas 2009). To represent the phylogeographic relationships among haplotypes, a haplotype 

network was constructed using the Median Joining algorithm implemented in NETWORK v5.0 

(Bandelt et al. 1999, fluxus-engineering.com). 

We used two approaches to infer the most probable source area of the introduced Iberian 

populations within the native range of F. heteroclitus: (1) the geographical distribution of 

haplotypes in native populations, and (2) the phylogeographical relationships among 

haplotypes.  

 

Results 

A total of 248 specimens from 16 locations were analysed, resulting in cyt b sequences with a 

final length of 700 base pairs (bp), which comprised 77 (11%) polymorphic sites and 32 

(41.6%) parsimony-informative sites. These polymorphisms defined 70 haplotypes, of which 

62 (88.6%) are private haplotypes (present in one location only) and 55 (78.6%) are singletons 

(present in one individual only). Overall haplotype diversity was high (0.74 ± 0.03) ranging 

from null in Iberia (ID 14-16) to 0.93 in Tuckerton (ID 9) and Roanoke Island (ID 12), whereas 
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mean nucleotide diversity was low (0.26% ± 0.06%) ranging from null diversity in Iberia to 

0.91% in Woods Hole (ID 4) (Table 2.1 and Figure 2.2).  

 

Figure 2.2. Haplotype and nucleotide diversity from all sampled locations. Abbreviations in 

the legend are defined in Table 2.1 and colours are the same as in Figure 2.1. 

 

The most abundant haplotype in USA locations is shared by 50.4% (n = 125) of the 

individuals and is present in all northern group locations, in one southern location and in all 

Iberian locations (Figure 2.1.C). This is the only haplotype detected in the invasive range of the 

species (Faro, Cádiz and in the Ebro Delta). The second most frequent haplotype in USA 

locations is shared by 9.7% (n = 24) individuals in six locations, although in higher frequency 

in the southern group locations. Two other haplotypes were found in 3.2% (n = 8) and in 2.4% 

(n = 6) of the individuals from two locations. All other haplotypes were present in five or less 

individuals and in less than three locations (Figure 2.1.C).  

The cyt b based haplotype network (Figure 2.3) displays two haplogroups separated by 9 

mutational steps. One haplogroup is constituted by all eight northern group locations 

(Bridgewater to Red Bank, ID 1-8), two individuals from the southern group (Suffolk, ID 11) 

and by the Iberian locations (Faro to Ebro Delta, ID 14-16). The other haplogroup is formed by 

individuals from all southern locations (Tuckerton to Skidaway Island, ID 9-13) and includes 

eight individuals from northern locations: one from Bridgewater (ID 1) and seven from Woods 

Hole (ID 4). Overall, both haplogroups display star-like configurations with different levels of 

complexity. The northern haplogroup is simpler with 90% of the haplotypes separated by a 

single mutation, while the southern haplogroup is more complex, with 3 mini-stars 
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interconnected by a one mutation each, and haplotypes separated by up to five mutations. The 

haplotype found in the Iberia Peninsula belongs to the northern haplogroup. 

 

Figure 2.3. Median-joining cytochrome b haplotype network for Fundulus heteroclitus. Each 

circle represents a different haplotype with size proportional to the frequency of the haplotype 

within the sample. Line length is proportional to the number of mutations between haplotypes. 

Each colour corresponds to a different location and are the same as in Figure 2.1. Locations 

details can be found in Table 2.1. Black dots represent putative unsampled haplotypes and the 

number in black square shows the number of mutations separating haplogroup A (A) from the 

haplogroup B (B). 

 

Discussion 

The cyt b sequences from the Fundulus heteroclitus invasive populations in Iberia revealed the 

presence of a single haplotype common to all individuals. This haplotype is the predominant 

haplotype in the northern group of the native distribution, and although we cannot determine 

which exact location was at the origin of the introduced individuals, one can identify the 

northern group as the source of the introduction. The lack of genetic diversity is consistent with 

a strong founder effect at the origin of F. heteroclitus in Iberia. Although there is no direct 

evidence for the identification of the introduction vector, we infer that the most likely vector 

was the aquarium trade and that the Ebro Delta colonization followed a human-mediated 
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secondary introduction isolated from the rest of Iberia. We predict that considering the high 

tolerance to salinity and temperature and the significant amount of colonized area in the Iberian 

southern region, F. heteroclitus will most likely keep on expanding its invasive range until it 

faces unfavourable environmental conditions. Before addressing the main interpretations and 

conclusions of these results, one main caveat must be addressed. Successful understanding of 

the invasion pathway relies on (1) comparable genetic data retrieved from an adequate number 

of sampled individuals throughout the entire native range, (2) presence of genetic clines within 

the native populations and (3) the use of adequate molecular markers (Geller et al. 2010). While 

the first two points are fulfilled for F. heteroclitus, the use of a single mitochondrial DNA 

marker constitutes the main caveat of this study. Mitochondrial DNA has been a widely used 

molecular marker in population genetics studies (Ballard & Whitlock 2004). Nevertheless, the 

use of high variable nuclear markers, such as microsatellites, provides an opportunity to 

perform assignment tests based on their multiple-locus genotypes, to test for recent reductions 

in population sizes and to estimate effective population sizes. Single nucleotide polymorphisms 

(SNPs, Morin et al. 2004), extend the previously referred analytical possibilities improving 

their statistical power because of the sheer number of existing loci genome wide. 

 

Genetic diversity 

The presence of a single haplotype common to all F. heteroclitus sampled in Iberia lends 

support to the hypothesis of an extremely recent introduction of the species which has not 

allowed the accumulation of mutations at the mtDNA level, and with a single introduction event 

composed by a very small number of individuals (Roman & Darling 2007). Theoretically, 

invasive species are expected to suffer loss of genetic variation since the new established 

populations are often based on a few individuals, which by definition, are less genetically 

diverse than the native the source populations (Allendorf & Lundquist 2003; Dlugosch & Parker 

2008; Nei et al. 1975). The single-haplotype characteristic can be found in other invasive 

species, such as Equulites elongatus, the slender pony fish (Sakinan et al. 2017); Cercopagis 

pengoi, the fishhook waterflea, a planktonic cladoceran crustacean (Cristescu et al. 2001); 

Corbicula fluminea, the Asian clam (Gomes et al. 2016) and Didemnum perlucidum, a sea 

squirt (Dias et al. 2016). However, many successful invasive species do not display significant 

erosion of genetic diversity (Dlugosch & Parker 2008; Rius et al. 2014; Roman & Darling 

2007). For example, according to Rius et al. (2014), a recent review of the literature on invasion 

genetics from the European seas, while ca. 73% of the studies comparing the genetic diversity 
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between introduced species and their native range reported comparable levels of diversity 

between them, only ca. 23% displayed a reduction in the genetic diversity of introduced species.  

 

Population sources 

We identified a single Iberian haplotype present in all USA northern populations in high 

frequency (between 47 and 93%) and in two individuals in Suffolk, a southern location. 

According to our results, the northern group is the most probable source of the founder 

individuals, which corresponds to the natural range of the subspecies F. h. macrolepidotus. 

However, we cannot definitely exclude Suffolk as a presumptive population source. The 

absence of genetic diversity in Iberia prevents to infer, accurately, the putative source 

population. The low spatial resolution of our data arises from the lack of genetic variability in 

the invasive range, rather than insufficient sampling of F. heteroclitus individuals in the Iberian 

Peninsula or in its native range (Muirhead et al. 2008).  

Nevertheless, our findings are consistent with two previous studies on the origin of 

invasive individuals found in the Guadalquivir. First, based on mtDNA restriction fragment 

length polymorphisms (RFLP) Fernández‐Pedrosa et al. (1996) reported the presence of two 

haplotypes: the most abundant corresponding to the northern haplotype 1, dominant between 

Maine and Nova Scotia in North America; the other haplotype did not match any of the sampled 

native haplotypes and we found no evidence of its presence in the present study, using a larger 

number of individuals. It was previously suggested to be either a native unsampled haplotype 

or an endemic haplotype from Iberia, which is rather unlikely due to its recent invasion 

(Fernández‐Pedrosa et al. 1996) and total absence of records in the area. Although there are no 

reports of hybridization between F. heteroclitus and any of the Spanish endemic species, the 

presence of a new haplotype could nonetheless be due hybridization (Rius et al. 2014). 

Secondly, a study based on cyt b sequences (Bernardi et al. 1995) concluded the individuals 

from the Guadalquivir originated in the region between Maine and Nova Scotia. Although our 

results are congruent with this proposed origin, we show that source populations could come 

from lower latitudes (40° N), even if only the northern group is considered. 

 

Introduction vector 

Since it was first recorded in Iberian saltmarshes, several studies have linked F. heteroclitus 

introduction to different vectors. The aquarium trade has been the most suggested vector 

responsible for the introduction of this species (Elvira & Almodóvar 2001; García-Llorente et 

al. 2008; Gozlan 2010; Hernando & Soriguer 1992; Ribeiro et al. 2008a), followed by ballast 
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water (Fernández-Delgado 2010; García-Revillo & Fernández-Delgado 2009), biological 

control (Gozlan 2010) and unknown origins (Fernández-Delgado 1989; Gutiérrez-Estrada et al. 

1998). We posit that the introduction via aquarium trade is the most probable scenario 

responsible for the establishment of the first individuals in Iberia, given the obtained genetic 

results.  

 It is well known that vessels can transport large numbers of organisms from several 

species at the same time in their ballast water (Carlton 2001; Gollasch 2007). Since there are 

countless vessels active around the world (e.g., Kaluza et al. 2010), ballast water-mediated 

transport potentiates multiple introduction events, each with large groups of individuals (Hulme 

2009). Considering such large groups usually comprise higher genetic diversity than fewer 

individuals alone, the assemblages transported are likely to display levels of genetic diversity 

similar to the levels found within their native range (Dlugosch & Parker 2008; Roman 2006; 

Wilson et al. 2009). Our findings, however, suggest that this was not the introduction vector 

responsible for the spread of the species: in contrast to the expectation of similar levels of 

genetic diversity between the native and invasive range, the Iberian locations display a strong 

founder effect, with all samples sharing a single haplotype. 

Similarly to ballast water, the aquarium and ornamentals trade transport many species at 

a global scale (Padilla & Williams 2004). For instance, at least 19% of the invasive fishes found 

in Iberia were introduced via aquarium trade (Maceda-Veiga et al. 2013). However, there are 

two main differences between introductions that follow ballast water or aquarium trade. First, 

each introduction event after aquarium release is likely to comprise a small number of 

individuals (Duggan et al. 2006; Roman & Darling 2007). Thus, even though this vector may 

be responsible for the establishment of several non-native species (Padilla & Williams 2004), 

multiple introductions would be necessary for an invasive species to display high genetic 

diversity (Facon et al. 2003; Roman & Darling 2007). Secondly, the individuals released by 

aquarists are usually adults of higher fitness, which makes them better adapted to survive in a 

natural environment (Padilla & Williams 2004). Thus, not only the F. heteroclitus invasive 

genetic diversity and structure are consistent with an introduction of a low number of 

individuals via aquarium trade, but it is also plausible that a few resistant individuals would 

manage to survive, reproduce and colonize the environment in which they were released.  

 

Human mediated introduction in the Ebro Delta 

Although the absence of genetic structure within Iberia limits possible insights into the invasion 

pathway, our data support the hypothesis of an human-mediated introduction episode 
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responsible for the establishment of F. heteroclitus in the Ebro Delta, as previously suggested 

by Gisbert & López (2007) based on taxonomic identification. The hypothesis of a long-

distance colonization via natural dispersal is quite unlikely. 

According to a review of the geographical distribution of Cyprinodontiformes along the 

northeastern coast of Spain by García-Berthou & Moreno-Amich (1991), no F. heteroclitus 

individuals were found at the Ebro Delta in 1989; the first record was only registered 16 years 

later by Gisbert & López (2007). Thus, we estimate the date of establishment in the Ebro Delta 

ranges between 12 and 28 years ago. Assuming this estimate is correct, a natural colonization 

hypothesis implies individuals would have taken roughly two decades to travel more than 1000 

km from their southernmost limit located in the Guadalquivir saltmarshes (Gutiérrez-Estrada et 

al. 1998) until the Ebro Delta. However, when compared with the natural colonization of the 

Ria Formosa, this hypothesis seems quite improbable. While F. heteroclitus was never 

collected during sampling events that happened in the Ria Formosa between 1980 and 2006 

(França et al. 2009; Ribeiro et al. 2006; Ribeiro et al. 2008b), analysis of prey remains left by 

Little Terns (Sterna albifrons) in the salt-pans and barriers islands revealed this species was 

present at least since 2002 (Catry et al. 2006; Paiva et al. 2006a). Although this may sound 

contradictory, F. heteroclitus could in fact have been present in the Ria Formosa in specific 

unsampled locations or at extremely low densities, avoiding capture. Nonetheless, assuming 

that colonization happened around 2002, it seems that F. heteroclitus took no more than ca. 20 

years to travel around 50 km from the Guadiana Delta, where it was first detected in 1976 

(Coelho et al. 1976). This estimate indicates that if the Ebro colonization happened via natural 

dispersal, it must have happened 20 times faster than the natural colonization of the Ria 

Formosa. Given that F. heteroclitus has very low dispersal abilities (e.g., Fritz et al. 1975; 

Lotrich 1975), the natural colonization scenario seems unlikely. 

Furthermore, if establishment in the Ebro Delta followed a natural range expansion one 

would expect to find several established populations between the Barbate marshes in the 

Gualdalquivir, its southernmost location (Gutiérrez-Estrada et al. 1998), and the Ebro Delta. 

However, we know that no invasive individuals can be found at the Mar Menor (personal 

communication), a coastal lagoon with suitable conditions for successful establishment 

(Gutiérrez-Estrada et al. 1998; Pérez-Ruzafa et al. 2006), located midway between the 

Guadalquivir and the Ebro Delta (Figure 1.1).  

Finally, the Strait of Gibraltar would represent a barrier to dispersal and gene flow, 

limiting F. heteroclitus natural range expansion towards the Mediterranean Sea (Doadrio et al. 

2002; Fernández-Delgado et al. 1986; Moreno-Amich et al. 1999) because of the strong 
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currents prevailing in the area and the absence of suitable habitats. Although uncertain for F. 

heteroclitus, this has already been documented for two other Iberian toothcarps, where 

restricted gene flow in this region led to speciation of the Aphanius iberus in the Mediterranean 

Iberian coast and Aphanius baeticus in the southwestern Atlantic Spanish coast (Doadrio et al. 

2002; Perdices et al. 2001).  
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