
RELOAD/CoAP Architecture with Resource
Aggregation/Disaggregation Service

L. Rodrigues, J. Guerreiro and N. Correia
CEOT, FCT, University of Algarve

8005-139 Faro, Portugal
Emails: {lrodrig,jdguerreiro,ncorreia}@ualg.pt

Abstract—M2M communication is expected to occur
at a global level and for this reason federations of
device networks are also expected. In such large scale
environments, a critical issue is how to discover the
available resources in a scalable manner. For this
purpose CoAP Usage for RELOAD, a generic self-
organizing P2P overlay network service, has been
proposed to be used as a lookup service, to store
available resources and as a cache for sensor data.
However, such approach alone does not allow building
an aggregate resource hierarchy, a very relevant issue
for an efficient organization of data in future IoT
applications. Here we address this issue and propose
an architecture incorporating a resource aggrega-
tion/disaggregation service.

Keywords—RELOAD, CoAP, CoAP Usage, M2M, Ag-
gregation/Disaggregation.

I. INTRODUCTION

The idea behind the Internet of Things (IoT) is
for everyday objects to be connected, IP-addressable
and integrated into the Internet [1]. The IoT has been
boosted by the availability of more affordable wire-
less modules, making this technology very attractive
for many applications, and in future scenarios such
small sensing devices are expected to interconnect
over large geographical areas for Machine-to-Machine
(M2M) communication. For such devices to interact ef-
fectively new solutions are needed, which may involve
the federation of device/sensor networks.

In the context of wide-area sensor networks, and
federated networks, some open Internet standards be-
come important. For IP-based communications, the In-
ternet Engineering Task Force (IETF) defined the IPv6
over Low-Power Wireless Area Networks (6LoWPAN)
standard that enabled IPv6 over very constrained
networks [2]. The IP protocol emerges, therefore, as
the glue to interconnect heterogeneous devices. Also
withing IETF, the Constrained RESTful Environments
(CoRE) working group has focused on the develop-
ment of Constraint Application Protocol (CoAP), a
Web application transfer protocol intended to provide
RESTful services in constrained nodes and networks
[3]. More recently, a CoAP Usage for REsource LOca-
tion And Discovery (RELOAD) base protocol has been
proposed [4], [5]. RELOAD provides a generic self-
organizing Peer-to-Peer (P2P) overlay network service,
and CoAP Usage for RELOAD allows CoAP nodes to

store resources in a RELOAD P2P overlay network.
More specifically, the proxy nodes of federated con-
strained sensor networks, with enough capacity to run
RELOAD, could form a P2P overlay/virtual network
themselves to announce resources and for clients to be
able to discover the available resources. More specifi-
cally, the overlay network would be used:

• as a lookup service

• to store resources (e.g. sensor, controller)

• as a cache for sensor data

Although constrained devices will be heterogeneous
regarding their radio layer (e.g. long range modules:
2G, 3G, 4G; short range modules: xbee, zigbee), CoAP
is expected to be a common application layer proto-
col. For this reason a CoAP Usage for RELOAD has
been proposed, allowing P2P overlay networks to be
built and sensor networks to be federated. Although
being a standard-based scalable architecture, a de-
sirable feature when millions of objects of all kinds
are expected to be integrated into the IoT, we believe
that such approach alone can not completely address
another quite important issue. An efficient lookup of
resources. More specifically, it does not allow resource
aggregates to be hierarchically organized, a relevant
issue for IoT resources to be well organized, as ex-
plained in more detail in Section IV. Here we propose a
RELOAD/CoAP architecture with a resource aggrega-
tion/disaggregation service to overcome this limitation.

The remainder of this article is organized as follows.
In Section II the CoRE and CoAP related standards
are introduced, while the RELOAD framework and
the CoAP Usage are discussed in Section III. The
architecture being proposed is presented in Section IV,
and its advantages are discussed, and Section V makes
a scenario analysis for a better understanding of the
proposal. Finally, in Section VI some conclusions and
future work are drawn.

II. COAP AND CORE

The CoRE realizes the REST architecture for more
constrained nodes. In such environments, the possi-
bility of discovering resources, hosted by constrained
nodes, is important for applications to run without
human intervention and for flexible interfaces to be

c©2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
Paper is available online at http://ieeexplore.ieee.org. DOI: 10.1109/PIMRC.2016.7794607

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sapientia

https://core.ac.uk/display/154852505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


provided. Web discovery and linking was initially spec-
ified for Hypertext Transfer Protocol (HTTP) in [6], [7].
In the context of constrained nodes, the discovery of
resources, their attributes and relations is referred to
as CoRE Resource Discovery [8].

A. CoAP

While CoRE aims at realizing the REST architec-
ture in a suitable form for constrained nodes and net-
works, CoAP emerges as the Web application transfer
protocol that has been designed for the special require-
ments of these constrained environments, especially
considering energy, building automation and M2M ap-
plications [3]. CoAP provides a request/response in-
teraction model between application endpoints. The
”coap” and ”coaps” URI schemes are used to identify
CoAP resources and the path prefix ”/.well-known”
is supported for clients to be able to discover re-
sources available at the host, or discover any pol-
icy/information about the host, before requesting for
resource values/notifications [7].

For clients to continuously observe resources, and
keep representations updated over time, the Observe
extension to CoAP has been proposed in [9]. After
discovering a resource the observer/client can obtain
the resource values by sending an extended GET re-
quest either to the server, having such resource in
its namespace, or to a proxy to be used as an inter-
mediate [10], [11]. The server, or proxy, will register
the client as an observer, so that the client starts to
receive notifications, and responds with an extended
response. Extended requests/responses are CoAP re-
quests/responses with an Observe option. Notifications
can be kept in cache until they do not expire, which is
controlled by the max-age CoAP option.

B. The CoRE Link Format

When a discovery is done, the URIs for the re-
sources hosted by the server, attributes of resources
and link relations are provided. In CoRE such a link
collection is also a resource1. The format of the links
is specified in [8] and is called CoRE Link Format. An
Internet media type is assigned for CoRE Link Format
payloads (”application/link-format”).

The CoRE Link Format extends the HTTP Link
Header field specified in [6], but it is a serialization
of typed links and it is fairly compact (no special XML
parsing is required, for example). Therefore, conver-
sion between HTTP Link Header field and this link
format is easily done. A resource will have:

• Multiple link descriptions separated by comma;

• Each link description includes ”<” + URI-
Reference + ”>” plus a set of parameters (”rt”,
”if ”, ...), all separated by semicolons.

An example of a resource hosted by a CoAP server is:

1Either a single or multiple links can be seen as a resource.

</sensors/temp-1>;rt="temperature-c";if="sensor",
</sensors/temp-2>;rt="temperature-c";if="sensor"

An application-specific semantic type can be
assigned to a resource using the ”rt” parameter,
either by indicating values/names (e.g. ”temperature”)
directly, separated by a space, or by indicating an
URI referencing a specific concept in an ontology (e.g.
”http://sweet.jpl.nasa.gov/2.0/phys.owl#temperature”).

The ”if ” parameter is used to specify an interface
definition used to interact with the resource. This may
include values/names (e.g. ”sensor”) directly, separated
by a space, or an URI defining the interface (e.g.
”http://www.example.org/myapp.wadl#sensor”). This
way every resource, method, request and response is
formally and precisely described.

C. CoRE Resource Directory

As previously said, CoAP provides a
request/response interaction model between endpoints,
supporting discovery of resources, and the use of Web
linking for description and discovery of resources,
hosted by constrained servers, is specified by the
CoRE Link Format in [8]. However, direct discovery
of resources may not be practical because nodes may
go to sleep mode, and for this reason the use of a
Resource Directory (RD) entity can be used, which
has been specified in [12]. Such Web entity would
host descriptions of resources held on other servers,
allowing lookups from others. For more details on RD
see [12].

More recently, an alternative to this centralized
resource directory approach has been proposed that is
based on RELOAD. Such approach, discussed in the
following section, can be seen as a distributed RD.

III. RELOAD

RELOAD is a generic P2P framework for the man-
agement of self-organizing P2P overlay networks and
pluggable application layers (Usages) can be incorpo-
rated in it [4]. Nodes can route messages to other
nodes and store/retrieve data in the overlay when
using RELOAD. Important features of RELOAD in-
clude security, Usage model, NAT traversal, optimized
routing and overlay algorithm extension capability.

RELOAD can support several applications by the
use of Usages, which specify application related data
types, and rules for how to use services provided by
RELOAD. That is, Usages describe specific data Kinds
and behaviour related to the Usage (e.g. access poli-
cies). Recently, a SIP Usage for RELOAD has been
defined in [13]. In [5], a CoAP Usage has also been
proposed that defines a pluggable application layer for
constrained networks. This CoAP Usage allows a P2P
overlay network to be built, where devices would store
their available resources, allowing federation of sensor
networks.



Fig. 1. Overlay topology when using CoAP Usage for RELOAD.

A. CoAP Usage

The CoAP Usage allows CoAP-based devices to
store resources in a RELOAD P2P overlay, provides
a lookup service and allows the use of RELOAD over-
lay as a cache for sensor data. This implementation,
illustrated in Figure 1, avoids the use of centralized
servers.

The CoAP nodes capable of using the RELOAD
data storage functionality, usually proxies, will
store/register mappings from their CoAP URI to their
NodeID in the overlay. These CoAP nodes can be
clients or peers in the overlay (see [4] for difference
between client and peers) but both have NodeIDs. If
a CoAP proxy node in overlay ”overlay1.com”, and
using NodeID ”9996172”, wants to register sensors
to URI ”coap://overlay-1.com/proxy-1/.well-known/”,
the following mapping would be used:

Resource-ID=h("coap://overlay-1.com/proxy-1/.well-
known/")

KEY=9996172
VALUE=[

</sensors/temp-1>; rt="temperature-c"; if="sensor",
...
]

where ”h(...)” is the hash over the URI, because the
key spaces for storage in the overlay must be numeric.
Any node performing a lookup for URI ”coap://overlay-
1.com/proxy-1/.well-known/” receives the information
that the RELOAD node (proxy) responsible for the
resource has NodeID ”9996172”, together with the sen-
sors and paths. Then, a direct connection (AppAttach)
to the NodeID obtained can be performed for CoAP
instruction exchange. That is, after AppAttach negoti-
ation the requesting node can access the values of the
constrained nodes at the RELOAD node to which it is
connected (e.g. GET /sensors/temp-1). At CoAP Usage,
the CoAP-Registration data Kind definition states that
the KindID is the CoAP URI and that the data model
used is the dictionary (dictionary key is the NodeID).

B. ReDir-based Service Discovery

In P2P overlay networks, like RELOAD overlay
instances, peers share their resources to provide the
service to which they were designed for [14]. For
this system to work some peers may also provide
services to other peers, and peers may request such
available services (e.g. TURN relay service to assist
in the traversal of NATs or firewalls) [4], [15], [16].
Therefore, peers face the problem of finding the set
of peers providing that service. Although RELOAD
specifies particular discovery mechanisms, for TURN
for example, a generic service discovery mechanism
is not part of the base protocol. For this reason the
ReDiR service discovery mechanism has been applied
to RELOAD overlays in [14] in order to provide a
generic service discovery mechanism.

A naive storing solution would be store Node-IDs
of nodes providing a certain service, under some key
k. This, however, will overload the node responsible
for the service identified by key k. Such node not only
might end up storing a large number of Node-IDs but
also must answer all service lookup requests for that
service. The ReDiR-based service discovery mechanism
proposed for RELOAD avoids this ensuring that the
load related with a certain service is distributed among
the nodes providing the service [14].

IV. PROPOSED ARCHITECTURE FOR FEDERATION
OF SENSOR NETWORKS

A. Motivation

Millions of objects of all kinds are expected to be
part of the IoT. In order to support such growth,
open and standard-based network architecture solu-
tions are required for interoperability between the
various ecosystems [1]. Another quite important issue
is the lookup of resources. In order to be efficient,
such lookup should allow resources to be part of an
aggregate resource hierarchy, a relevant issue for fu-
ture IoT data to be well organized. The architecture
proposed next addresses this issue by incorporating an
extra resource aggregation/disaggregation service into
a RELOAD/CoAP base architecture.

The RELOAD, together with the CoAP Usage, pro-
vides a rendezvous system for the lookup of resources
and CoAP nodes storing these resources. This allows
one to find which resources are served by a RELOAD
node, by making a fetching using the hash of the cor-
responding URI. Besides this, resources from multiple
RELOAD nodes can be fetched if these nodes perform a
store to the same resource [5]. This is possible because
the data model being used is dictionary. In the follow-
ing example the resources from two RELOAD nodes,
with KEY=9996172 and KEY=9996173, are available
under the resource ”temperature”:

Resource-ID = h(coap://overlay-1.com/temperature
/.well-known/)

KEY = 9996172,
VALUE = [



</sensors/temp-1>;rt="temperature-c";if="sensor",
</sensors/temp-2>;rt="temperature-c";if="sensor"

]

KEY = 9996173,
VALUE = [

</sensors/temp-a>;rt="temperature-c";if="sensor",
</sensors/temp-b>;rt="temperature-c";if="sensor"

]

Consider now a new resource wrapping up ”tem-
perature” together with another resource. For example,
the new resource ”heat-related illness” including ”tem-
perature” plus the following ”co2” resource entry:

Resource-ID = h(coap://overlay-1.com/co2/.well-
known/)

KEY = 9996172,
VALUE = [

</sensors/co2-1>;rt="co2";if="sensor"
]

To make such new resource available, one possibility
is to join sensor entries under the ”heat-related illness”
resource as follows:

Resource-ID = h(coap://overlay-1.com/heat-related-
illness/.well-known/)

KEY = 9996172,
VALUE = [

</sensors/temp-1>;rt="temperature-c";if="sensor",
</sensors/temp-2>;rt="temperature-c";if="sensor",
</sensors/co2-1>;rt="co2";if="sensor"

]

KEY = 9996173,
VALUE = [

</sensors/temp-a>;rt="temperature-c";if="sensor",
</sensors/temp-b>;rt="temperature-c";if="sensor"

]

This approach, however, is not efficient since
information is being duplicated. More specifically,
”h(coap://overlay-1.com/temperature/.well-
known/)” and ”h(coap://overlay-1.com/heat-related-
illness/.well-known/)” have sensor entries in common,
hindering future information management like
updates and removals. Thus, updating temperature
sensor entries, for example, requires changing
multiple resources. This is particular relevant if
many aggregates are built on top of ”temperature”.
Besides this disadvantage, resources can become quite
populated with sensor entries making it difficult to
visualize the types of sensors included in a resource.
Note that the data model is a dictionary and only a
single entry per peer is allowed, meaning that we
could not have the ”temperature” and ”co2” entries
separated in the ”heat-related-illness” resource, as
they would require the same key.

B. Architecture and Aggregate Building Model

Due to the just mentioned limitations, we believe
that resource announcement should include the possi-
bility of referring to aggregates. That is, resources of

the same type, or with similar characteristics, should
be announced under a single resource and then new
resources would be built using these aggregates. Note
that this way of organizing data is expected to be very
relevant in future IoT applications. Considering the
previous example, the ”heat-related illness” resource
should be able to include ”temperature” and ”co2” re-
sources. However, the ”temperature” resource does not
have a single peer NodeID associated with it to be used
as key in the dictionary. To overcome this we propose
a RELOAD/CoAP based architecture with an extra
resource aggregation/disaggregation (A&D) service. In
this architecture:

• Storage/search of CoAP resources is to be done
through A&D servers, which provide such ser-
vice to the RELOAD overlay network.

• A discovery mechanism, like ReDiR, can be
used to find A&D servers, so that overload is
distributed among servers.

• Aggregates are registered in the RELOAD over-
lay network having as key the NodeID of a
resource A&D server. Non aggregate resources
are registered in the RELOAD overlay network
having as key the NodeID of the peer RELOAD
node responsible for the resource.

For the previous example the ”heat-related illness”
resource would have the following format:

Resource-ID = h(coap://overlay-1.com/heat-related-
illness/.well-known/)

KEY = 1116140,
VALUE = [

</overlay-1.com/temperature>;if="aggregate",
</overlay-1.com/co2>;if="aggregate"

]

where RELOAD node 1116140 relates to an A&D
server. In the following section this ”heat-related ill-
ness” resource scenario is used to analyse this archi-
tecture and time diagram of its operation.

1) Aggregate Building Model: In order to determine
the best way to build resources, an aggregate building
model is defined. Let us assume a set of resources R
that need to be available in the overlay network. A
resource r ∈ R includes a set of (KEY,VALUE) entries,
denoted by Vr and each vr ∈ Vr includes a set of
sensor entries denoted by Evr . The job of A&D servers,
regarding storage operations, should be to replace the
(KEY,VALUE) entries Vr, ∀r ∈ R, by a new set of
(KEY,VALUE) entries V ′

r where sensor entries Ev′
r

are
resources that are available. That is, Ev′

r
⊂ R. The

resources after replacements should be

R′(R) = {(V ′
r, Ev′

r
)| ∪v′

r∈V′
r
Ev′

r
= ∪vr∈Vr

Evr
∧

∧
∑

v′
r∈V′

r

|Ev′
r
| = minv′′

r ∈V′′
r
{|Ev′′

r
|} (1)



Fig. 2. RELOAD/CoAP overlay topology with A&D service.

Fig. 3. Time diagram for scenario under analysis.

This means that the replacement should be made
such that fetches to resources return the same sensor
entries and the smallest number of entries exists.

V. SCENARIO ANALYSIS

The architecture being proposed is shown in Fig-
ure 2 considering the ”heat-related illness” resource
scenario previously mentioned. In this Figure, besides
the constrained environments we can see two A&D
RELOAD nodes to which storage/fetches are sent. The
RELOAD node 1116140 is responsible for the ”heat-
related illness” resource.

In this architecture the resource A&D servers be-
come intermediates for the storage of resources and
make the required disaggregation upon fetch opera-
tions by clients. More specifically, and as illustrated
in the time diagram in Figure 3, a client instead
of directly fetching the overlay for ”h(coap://overlay-
1.com/heat-related-illness/.well-known/)”, it makes a
fetching request directed to an A&D server (obtained
using ReDir) asking for ”h(coap://overlay-1.com/heat-
related-illness/.well-known/)” to be solved. Such
server fetches the overlay for that resource, obtain-
ing an entry saying that RELOAD Node 1116140

is responsible for ”/overlay-1.com/temperature” and
”/overlay-1.com/co2” included in such resource. The
server sends fetch requests to RELOAD Node 1116140,
to get resources ”/overlay-1.com/temperature” and
”/overlay-1.com/co2”, and after obtaining the an-
swers the server sends the final disaggregated con-
tent (containing sensor entries) to the client. The in-
terface ”aggregate” indicates that the resource is an
aggregate, meaning that the aggregate server with
”NodeID=1116140” will be responsible for further steps
towards disaggregation. Note that any updates to sen-
sor entries would result into the update of final el-
ements of aggregates (sensor node entries) avoiding
having to search for all entries including such sensor
node entries.

Note that fetch operations must be done through
the A&D servers because special interfaces for correct
disaggregation are needed. For example, all collected
entries must be incorporated into an answer with
sets of sensor entries associated with each node/proxy,
using a dictionary as defined by CoAP Usage in order
not to violate the standards.

As a final remark it is possible to state that this
solution is fully scalable since the ReDir service discov-
ery mechanism is assumed for the discovery of peers
providing the A&D service. ReDir works on top of
RELOAD overlays, and peers can become A&D servers
at any time, meaning that there are no scaling prob-
lems.

VI. CONCLUSIONS AND FUTURE WORK

In this article a RELOAD/CoAP based architec-
ture including a resource aggregation/disaggregation
service is proposed that allows efficient organization
of M2M sensor data in P2P overlay networks since
resource aggregates can be hierarchically organized.
A scenario is analysed and aggregation/disaggregation
operations are discussed together with the aggregate
building model. From the analysis done we believe that
this approach can successfully help on the efficient
storage of available resource in federated device net-
works. We are currently working on effective heuristic
algorithms for the aggregate building model that at-
tempt to minimize the number of required fetches.

ACKNOWLEDGMENT

This work was supported by FCT (Foundation for
Science and Technology) from Portugal within CEOT
(Center for Electronic, Optoelectronic and Telecommu-
nications) and UID/MULTI/00631/2013 project.

REFERENCES

[1] Jouni Mäenpää, Jaime Jiménez Bolonio and Salvatore Loreto:
”Using RELOAD and CoAP for wide area sensor and actuator
networking”, EURASIP Journal on Wireless Communications
and Networking, 2012:121, 2012.

[2] N. Kushalnagar, G. Montenegro, and C. Schumacher: IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPANs):
Overview, Assumptions, Problem Statement, and Goals, RFC
4919, August 2007.



[3] Z. Shelby etal: ”The Constrained Application Protocol (CoAP)”,
RFC 7252, 2014.

[4] C. Jennings et al: ”REsource LOcation And Discovery
(RELOAD) Base Protocol”, RFC 6940, 2014.

[5] J. Jimenez et al: ”A Constrained Application Protocol (CoAP)
Usage for REsource LOcation And Discovery (RELOAD)”, RFC
7650, 2015.

[6] M. Nottingham: ”Web Linking”, RFC 5988, 2010.
[7] M. Nottingham and E. Hammer-Lahav: ”Defining Well-Known

Uniform Resource Identifiers (URIs)”, RFC 5785, 2010.
[8] Z. Shelby: ”Constrained RESTful Environments (CoRE) Link

Format”, RFC 6690, 2012.
[9] K. Hartke: Observing Resources in CoAP, draft-ietf-core-

observe-16, IETF, 2014.
[10] N. Correia, D. Sacramento and G. Schütz: ”Dynamic Aggrega-

tion and Scheduling in CoAP/Observe Based Wireless Sensor
Networks”, IEEE Internet of Things, Vol. PP, No. 99, 2016.

[11] A. Ludovici, E. Garcia X. Gimeno and A. Calveras Auge:
Adding QoS support for timeliness to the observe extension
of CoAP, IEEE Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), October 2012.

[12] Z. Shelby: ”CoRE Resource Directory”, draft-ietf-core-resource-
directory-05, 2015.

[13] C. Jennings et al: ”A SIP Usage for RELOAD”, draft-ietf-
p2psip-sip-15, 2015.

[14] J. Maenpaa and G. Camarillo: ”Service Discovery Usage for
REsource LOcation And Discovery (RELOAD)”, RFC 7374,
2014.

[15] J. Rosenberg: ”Interactive Connectivity Establishment (ICE):
A Protocol for Network Address Translator (NAT) Traversal for
Offer/Answer Protocols”, RFC 5245, 2010.

[16] R. Mahy, P. Matthews and J. Rosenberg: ”Traversal Using Re-
lays around NAT (TURN): Relay Extensions to Session Traver-
sal Utilities for NAT (STUN)”, RFC 5766, 2010.


