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Abstract. – Starting from embryonic (protoconch-ammonitella) and early juvenile shells, which are indistinguishable at

the species level, growth curves of Osperleioceras from the Reynesi Subzone (Upper Toarcian) of the Causses Basin

(Aveyron, France) show a continuous radiating range of correlated variation in dimensional and ornamental characters,

such as involution, whorl compression, rib strength and rib density. This covariation pattern can be observed among

single-horizon assemblages, as well as during individual ontogenetic development.

The existence of a continuous intergradational series of shells, ranging from stout coarsely ribbed to smooth

suboxycone morphologies, rules out functional or ecological selectivity to explain this non-random variability pattern.

The complex interdependence of shape and sculpture can be simulated by a model in which sculpture intensity depends

on mantle curvature [Guex, 1999].

The expression of covariation in subadult specimens since the base of Upper Toarcian reveals a rise in variability,

concomitant with a size decrease, both contemporaneous with environmental instability. It developed in successive

bursts from a fairly long low variability period spanning the whole Middle Toarcian.

Ontogenèse et covariation chez le genre toarcien Osperleioceras (Ammonoidea)

Mots clés. – Covariation, Ornementation, Ontogenèse, Variabilité morphologique, Stress environnemental, Toarcien, Ammonoidea

Résumé. – Les courbes de croissance des Osperleioceras de la sous-zone à Reynesi (Toarcien supérieur) du bassin des

Causses (Aveyron, France) sont toutes confondues du stade de la protoconque et de l’ammonitelle, jusqu’à un diamètre

de 7-8 mm. Elles forment ensuite un éventail de trajectoires résultant en un continuum morphologique allant de formes

évolutes à tours larges et ornementation forte (O. reynesi) jusqu’à des formes involutes, comprimées et faiblement or-

nées (O. lapparenti). La covariation de divers paramètres morphologiques et ornementaux est observable tant au sein

d’assemblages provenant d’horizons uniques qu’au cours des développements ontogénétiques individuels.

Il n’est pas possible d’interpréter cette série continue et contemporaine, passant insensiblement des morphologies

de type reynesi à celles de type lapparenti, comme étant une tendance évolutive due à des contraintes fonctionnelles ou

à des adaptations différentielles. L’interdépendance complexe de la forme de la coquille (involution, section du tour) et

de son ornementation (force, densité et flexuosité de la costulation) peut être simulée par un modèle où l’intensité de

l’ornementation dépend de la courbure du manteau [Guex, 1999].

La covariation observée chez les Osperleioceras dès la base du Toarcien supérieur trahit une augmentation de va-

riabilité, concomitante d’une réduction de taille, suite à des instabilités environnementales. Elle se fait en plusieurs

poussées à partir d’un stock de formes ayant très peu varié au cours du Toarcien moyen.

INTRODUCTION

First observed by Buckman in Sonninia and Amaltheus

[Buckman, 1887-1907] and addressed later by Westermann

[Westermann, 1966], covariation was originally described

as follows : “Roughly speaking, inclusion of the whorls cor-

relate with the amount of ornament – the most ornate spe-

cies being the more evolute [= loosely coiled] and having

almost circular whorls...” (two such covariation series are

illustrated in figure 1). It is now known that covariation de-

pends on internal shell geometry, namely the lateral and

ventral curvature of the shell which controls the thickness

of the mantle and the concentration of morphogens present

in that shell-secreting epithelium [Guex, 1999 ; 2001a]. The

most salient ornamentation is present where the whorls are

the most curved. Shells with slight angular bulges are often

spinose or carinate whereas flat ones are almost smooth.

These observations have recently been tested by André

Koch [in Guex et al., 2003] within the conceptual frame-

work of Meinhardt’s reaction-diffusion models [Meinhardt,

1995]. Koch simulated the distribution of morphogens in a

triangular body chamber and demonstrated that morphogen

maxima are located in those parts of the mantle situated in

the angular parts of the shell.

Covariation patterns linking evolute, wide-whorl,

strongly ornate to involute, compressed, smooth shells,

through all intermediate and intergradational forms have

been found in many Mesozoic groups (table I). Ornamental

covariation has scarcely been reported in Paleozoic

ammonoids [Kaplan, 1999], although morphological parame-

ters may covary.
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The Toarcian genus Osperleioceras KRIMHOLZ &

TAZIKHIN, 1957 serves as a striking example to illustrate

ontogenetic and phylogenetic aspects in the development of

such non- r andom con t inuous va r i ab i l i t y th rough

morphometric comparisons, both in terms of shape and

sculpture.

MATERIAL AND METHODS

The wealth of well-preserved, finely pyritized, ammonites

of the Middle to Upper Toarcian from the Causses Basin

(Aveyron, France), is particularly well suited for studies of

early growth stages. However, most of the material (mainly

internal moulds) consist of incomplete phragmocones, or

shells of indeterminate developmental stage, with the body

chamber marked either as a flattened impression in the

marly sediment, or as a bloated concretion at the end of the

phragmocone. A number of criteria (septal approximation,

ornamental differentiation, change in coiling parameters)

tend to indicate a subadult stage at a shell diameter of

15-20 mm or more. In spite of the lack of indisputable adult

morphologies, much information can be gained with simple

meticulous preparation techniques.

The samples were gathered from the Reynesi Subzone

[Guex, 1973] (approximately equivalent to the Gruneri

Subzone [Elmi et al., 1997]), as this period of time corre-

sponds to the largest range of morphological diversity at-

tained by Osperleioceras [Mattei, 1969 ; Guex, 1975 ;

Guex, 1992]. Indeed, the first representatives of this genus

– mainly Osperleioceras bicarinatum (ZIETEN) – remained

remarkably stable during the Middle Toarcian, before a first

increase in variability at the base of the Upper Toarcian (O.

beauliziense and O. rivierense). A further radiation oc-

curred in at least two distinct bursts, although each succes-

sive horizon displays a continuous range of intergradational

and overlapping morphologies. The Speciosum Subzone

[Guex, 1973] (approximately equivalent to the Insigne

Subzone [Elmi et al., 1997]) is characterised by O. wunstorfi

Bull. Soc. géol. Fr., 2003, n
o
6

608 A. MORARD AND J. GUEX

FIG.1. – Two examples of covariation in ammonoid shells from the Causses Basin (all specimens are of equivalent size) : (a) Domerian Amaltheids (see

also plate 1 in Mattei [1985] for a similar series of intergradational forms) ; (b) Upper Toarcian Osperleioceras species.

FIG.1. – Exemples de covariation chez deux genres d’ammonites du bassin des Causses (spécimens de tailles équivalentes) : (a) Amaltheus du Domérien ;

(b) Osperleioceras du Toarcien supérieur.

TABLE I. – Examples of covariation patterns in ammonoids of various ages. The spectrum of variability is more or less wide and its exact morphological

expression depends on specific characteristics.

TABL. I. – Quelques exemples de covariation chez les ammonites au cours des temps géologiques.



(MONESTIER) variants (O. subcostulatum, O. alternans)

with widely spaced ribs in juvenile forms. Contemporane-

ous involute finely ribbed morphotypes are also found (O.

carezi and O. pervinquieri). The following Reynesi

Subzone represents the final diversification of the genus

with an evolute pole (O. reynesi) coexisting with involute

forms (O. authelini, O. lapparenti and less commonly O.

suessi) [Guex, 1992]. It should be noted here that O.

bicarinatum and O. beauliziense-rivierense specimens are

larger on average than later representatives.

We prepared and measured about 300 Osperleioceras

specimens. The internal structures were not always pre-

served and some material was also broken during prepara-

tion, which left us with 48 polished sagital sections and 28

dissected protoconchs adequately preserved. The parame-

ters, measured either directly with an unequal-branch calli-

per or on accurate camera-lucida drawings, are defined on

corresponding illustrations.

We concentrated our measurements on extreme

morphotypes so that possible differences would appear

more clearly. However, preparations were also made on in-

termediate forms in order to constrain the range and the

continuity of the variation pattern. Moreover, a few speci-

mens were also prepared from successive stratigraphically

allocated assemblages spanning the evolutionary radiation

of the genus.

Measurements were initially made in order to test a hy-

pothetical correlation between the size and proportions of

the protoconch and the coiling, involution or whorl propor-

tion of the subterminal phragmocone. As no significative
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FIG. 2. – (a) Comparison of growth curves based on three orthogonal morphological parameters in the early stages of Osperleioceras specimens from the

Reynesi horizon (Upper Toarcian). Evolute (reynesi), midvolute (authelini) and involute (lapparenti) morphotypes have indistinguishable protoconch and

ammonitella sizes. The respective proportions (dp/d and e/d) do not show any significant differences either. Note the constant shell width from the proto-

conch to the ammonitella. The regression curves were drawn from measurements on later stages only. (b) Correlation between protoconch and ammonitel-

la sizes could not be statistically confirmed from our data. However, our measurements lie close to published regression curves calculated from

comparisons of several ammonoid orders [Shigeta 1993 ; Tanabé and Ohtsuka 1985].

FIG. 2. – (a) Comparaison des courbes de croissance pour les stades précoces d’Osperleioceras de l’horizon à Reynesi. La taille et la forme des protocon-

ques et ammonitelles sont indistingables. (b) Corrélation entre les tailles de la protoconque et de l’ammonitelle d’après les courbes de Shigeta 1993 ; Ta-

nabé and Ohtsuka 1985.



differences could be ascertained [Morard, 1997], we carried

our investigations further on with a few complete individual

growth curves of representative morphotypes.

TAXONOMIC REMARK

We refer to Monestier [1921], Mattei [1969] and Guex

[1973, 1975] for taxonomic descriptions. The results ob-

tained here accord fairly well with Monestier’s initial “spe-

cific” nomenclature, although his types were originally

distributed among several different genera. Moreover, he al-

ready acknowledged a certain amount of variability, giving

two or three illustrations of each group, spanning the range

of variability he considered of specific value. Although a re-

vision of the genus in the light of new population and

morphometric data might be undertaken, we believe it

would change neither the stratigraphical resolution, nor the

phylogenetic inferences dramatically. Furthermore, a popu-

lation approach would probably result in the grouping of all

intergradational morphologies from a single level into only

one "species” [see discussion in Callomon, 1963].

RESULTS

Three major growth stages were recognised in the develop-

ment of Osperleioceras individuals, on grounds of

allometric parameters and ornamental changes.

Protoconch, ammonitella, early juvenile

When breaking down specimens of different Osperleioceras

morphotypes, it rapidly became apparent that early growth

stages tended to be almost indistinguishable for shells of

less than 5 mm diameter. The first whorls are little overlap-

ping and subcircular in section. Ornamentation is not yet

pe r cep t i b l e . Th i s impre s s ion was con f i rmed by

morphometric measurements, as the growth curves are all

superimposed whatever the later morphology of the shell

(figures 2 and 3).

The comparison of protoconch data belonging to ex-

treme morphotypes did not show any significant differ-

ences, either in size (diameter, width), or in shape (lateral

and frontal projections). The ammonitellas are identical as

well, corresponding approximately to one whorl. Though
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FIG. 3. – (a) Growth curves for umbilical diameter in function of ventral diameter. Early growth stages are rather evolute and do not show any significant

differences (see also fig. 2). But from 7-8 mm ventral diameter, a continuous fan of divergent morphologies develops. Two major trends are outlined by li-

nes of equal involution : o/d = 15-25 % for involute shells ; o/d = 30-40 % for evolute ones. Intermediate (midvolute) shells are numerous and group toge-

ther authelini morphotypes, as well as specimens attributed to either reynesi or lapparenti morphotypes on ground of ribbing pattern and/or whorl section.

(b) Histogram for the involution of specimens larger than 15mm diameter. Although some taphonomical and methodological selection inevitably occurred,

this represents quite well the predominance of reynesi-authelini morphologies in these levels, with a non-negligible proportion of more involute and com-

pressed shells (lapparenti) and some very evolute reynesi variants with stout equidimensional whorl section.

FIG. 3 – (a) Courbes de croissance du diamètre ombilical en fonction du diamètre ventral. Deux trajectoires extrêmes sont soulignées au sein d’un spectre

continu. (b) Histogramme du degré d’involution pour des spécimens de plus de 15mm de diamètre.



scarce, our measurements fall close to the regression lines

obtained on a bivar ia te plot of protoconch versus

ammonitella sizes when comparing species from different

ammonoid orders (fig. 2) [Tanabe and Ohtsuka, 1985 ;

Shigeta, 1993]. This large-scale correlation of ammonitella

and protoconch sizes was interpreted in terms of buoyancy

of the newly-hatched ammonite and seems to indicate a ju-

venile planktic mode of life [see Landman et al., 1996 for a

review].

In addition, note that from the protoconch to the first

(nepionic) constriction there is no increase in width (paral-

lel to the coiling axis). This constant embryonic shell width

seems to be common among ammonites [see for example

the curves in Zell et al., 1979 ; other references in Landman

et al., 1996]. Moreover, the umbilicus is geometrically un-

defined until the end of the first whorl.

The subsequent whorl is still qualitatively and quantita-

tively similar in all morphotypes, resulting in a shell of ap-

proximately 5 mm diameter (fig. 3). From this stage

onwards the divergence of growth trajectories becomes

more and more visible, simultaneously with the inception of

ribbing. However it should be noted that there is no definite

turning point, but rather a transition period of 1/2 whorl

from 3-8 mm diameter. This change in growth parameters is

both progressive in individual trajectories and slightly vari-

able between individuals.

First divergence and inception of ornamentation

The increasing range of variability is difficult to separate ob-

jectively in the following stage as a complete intergradation

of forms is observed.

The divergence of growth trajectories is particularly

visible on a graph with umbilical diameter represented as a

function of ventral diameter (fig. 3). Not only does the um-

bilical spiral expand more slowly in involute than in evolute

shells (o/d ≈ 20 %, respectively 30 %), but the ventral spi-
ral is also slightly more openly coiled (W = 2.58 and 2.34

respectively, table II). The difference in whorl width is

much smaller.

In the meantime, ornamentation starts as low rounded

undulations rapidly gaining in strength in evolute forms,

whereas they remain faint tending to become finer and

denser on involute shells. Involute and evolute forms are

thus rapidly distinct, though variability is huge and all tran-

sitions can be observed in many traits (rib density, sinuos-

ity, and strength ; involution, whorl proportions, flank

profile).

Almost all shells tend to increased involution, compres-

sion and development of more flexuous, denser and finer

ribs during ontogeny. However, evolute shells soon attain an

overall stable morphology (subisometric growth). In con-

trast, involute shells continue to change shape as they grow.

Subadult differentiation : (d 15-20 mm)

Within the reynesi-authelini-lapparenti series, juvenile

representatives are difficult to classify, as the range of vari-

ability does not show any clear-cut discontinuity. However,

the morphotypes defined by Monestier [1921] represent a

few typical morphologies judiciously selected to describe

this range of variability. Some of their diagnostic characters

may be due to subadult maturation.
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FIG. 4. – Simultaneous changes in flank curvature, venter profile and rib

type in Osperleioceras bicarinatum (ZIETEN) from the Middle Toarcian of

the Causses Basin (France). The acquisition of a typical tabulate whorl

section is concomitant to the development of flat-topped ribs bridging two

asymmetrically spaced single ribs.

FIG. 4. – Changements simultanés entre la courbure des flancs, le profil

ventral et l’ornementation chez Osperleioceras bicarinatum (ZIETEN).

TABLE II. – Parameters for spiral growth of representative specimens. Shell parameters were measured every 15o for diameter (d), umbilicus (o) and whorl

height (h), every 180o for whorl width. When expressed in function of polar angle, the best fits for growth curves is obtained with exponential equations.

TABL. II. – Paramètres de croissance pour deux spécimens représentatifs. En coordonnées polaires, les mesures peuvent être approximées par une équation

exponentielle.



Though extreme morphologies diverge already at

3-8 mm diameter, a further differentiation occurs in some

midvolute to involute morphologies. This fairly rapid orna-

mental transition (“alternance”) occurs between 15-20 mm

shell diameter. Ribbing becomes markedly denser, finer and

slightly more flexuous, with possible intercalation of pe-

ripheral ribs in the upper half of the flanks.

A close correspondence exists between the modification

of the ribbing pattern and the adoption of a tabulate whorl

section. A noticeable rise in rib density appears quite sud-

denly (spanning 1/4 whorl) together with a decrease in

strength and an increase in flexuosity. This is most visible

among Osperleioceras wunstorfi variants (sucostulatum-

alternans particularly). The appearance of flat-topped ribbing in

Osperleioceras bicarinatum corresponds to the same change in

whorl section (fig. 4). This peculiar pattern is due to the junc-

tion of pairs of asymmetrically spaced flexuous ribs.

SYNTHESIS OF GROWTH TRAJECTORIES

Whereas “stout reynesi” morphotypes tend to grow almost

isometrically, keeping their overall proportions and ribbing

pattern as they grow, all other variants tend to increased in-

volution, compression of the whorl and development of

denser and finer ribs.

A smooth phase was observed up to the third whorl, fol-

lowed by a wide diversification (4
th
-5
th
whorls) and a final

convergence by sculptural weakening in the last half whorl.

Amaltheids also show these three stages in ontogeny : iden-

tical almost unornamented embryonic stages, an explosive

burst of juvenile variability, and a final parallelism by com-

pression of the whorl and development of finer, denser ribs.

It would be tempting to interpret the subadult differentia-

tion as a case of sexual dimorphism (or another kind of dis-

crete polymorphism) were it not for the clear absence of any

bimodal size repartition and the perfectly continuous vari-

ability in both magnitude and timing of these changes.

We can somewhat arbitrarily separate a few typical

morphotypes in the stratigraphically successive popula-

tions. Typical coiling parameters are given in table II for

“average” reynesi and lapparenti morphotypes.

CHARACTER COVARIATIONS

Extreme morphotypes differ in a large number of charac-

ters. However, these do not vary independently from one an-

other. Covariation patterns, as defined in the introduction,

are observed both among adult morphologies and in

ontogenetic series.

Bull. Soc. géol. Fr., 2003, n
o
6

612 A. MORARD AND J. GUEX

FIG. 5 – Interdimensional covariation of involution and whorl proportions for shells larger than 15 mm. Involute shells are relatively more compressed than

evolute ones. This is partly due to the inverse relationship between whorl height and umbilical diameter, as they are interdependently defined. Ventral dia-

meter and whorl width show less differences between extreme morphotypes during growth, although involute shells tend to be slightly more openly coiled.

Selected specimens forming an ideal series of intergradational forms of equal size (d= 18 mm) are also represented.

FIG. 5 – Covariation interdimensionnelle entre le degré d’involution et les proportions du tour pour des spécimens de plus de 15 mm.



Interdimensional covariation (fig. 5 ; involution-com-

pression)

In Osperleioceras, involute shells are relatively more com-

pressed than evolute ones (fig. 5). This is mainly due to the

inverse relationship between whorl height and umbilical

diameter, as they are interdependently defined, whereas

whorl width shows but little difference between extreme

morphotypes during growth. Involute shells also tend to be

slightly more openly coiled, which means that growth rate

of the ventral diameter [W as defined in Raup, 1967] is

somewhat greater (table II).

Sculpture-whorl shape covariation (fig. 6)

Several methodological difficulties arise when considering

the relation between whorl shape and rib strength.

In the first place, the prominence of the ribs will influ-

ence the measurement of whorl proportions, even on inter-

na l mou lds . Fo r p rac t i c a l r ea sons , whor l w id th

measurements included rib relief. Although inter-rib width

would have been more appropriate, this would have implied

inextricable practical complications. However rib promi-

nence does not suffice to explain the covariation patterns

observed, as can be proved from similar measurements in

Amaltheus that displays a greater range of rib variability

(from stoutly spinose to almost smoothly and densely flexu-

ous ; fig. 1). In this genus, whorl proportions can be mea-

sured between ribs. Sculpture prominence clearly adds to

and reinforces existing differences in whorl proportions.

In the second place, simple whorl proportions do not

precisely describe flank curvature. Indeed one can easily

imagine different whorl outlines inscribed in the same rect-

angle. However, in Osperleioceras, whorl section can be

roughly approximated to a semi-ellipse whose short and

long axes correspond to whorl width and half whorl height

respectively. At equal whorl width, mean flank curvature in-

creases with a decrease in whorl height, whereas ventral

curvature decreases concomitantly.

In spite of these methodological limitations, a signifi-

cant covariation appears qualitatively between rib strength

and whorl section. Now, as rib strength is also difficult to

quantify, we measured rib density (number of ribs per half

whorl) and plotted it in relation to involution, a measure-

ment not directly influenced by sculpture pattern (fig. 6).

The correlation is clearly visible. Extreme morphologies do

not overlap, although no discontinuity can be viewed when

considering the whole range of variability. The only percep-

tible differences occur in the uneven frequency distribution

of characters (fig. 3).
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FIG. 6 – Shape-sculpture covariation of involution and rib density for shells larger than 15 mm. Involute shells are more densely ribbed. Their ornamenta-

tion is also less prominent and more flexuous. As in figure 4, the same series of intergradational forms of equal size (d=18 mm) was used to illustrate the

continuous range of variability.

FIG. 6 – Covariation entre forme et ornementation pour des spécimens de plus de 15 mm.



Suture-whorl shape covariation

Fractal analyses of suture lines have shown that sutural

complexity correlates on a large scale with shell geometry

[Oloriz et al., 1999]. Only qualitative differences were ob-

served in Osperleioceras : sutural elements tend to be more

finely fringed in involute morphotypes. In these shells the

lateral saddle also lies proportionally a little lower on the

flanks (fig. 6).

It should be noted that sculpture probably does not in-

fluence suture complexity directly, even though there is

some internal irregularities to accommodate in the shell

tube. We rather think that sculptural and sutural elements

both depend on a common third factor, namely whorl shape

[Guex, 1999, 2001b].

DISCUSSION

Though data on embryonic shells are quite numerous, few

authors have studied their variability within a single species

or genus. The identity of the protoconch both in absolute

size and relative proportions in Osperleioceras has also

been observed in Amaltheus species [Zell et al., 1979]. Sig-

nificant differences in protoconchs only appear at the order

or family level [Drushchits and Doguzhaeva, 1974 ;

Zakharov, 1974]. The functional correlation between

protoconch and ammonitella sizes [Tanabe and Ohtsuka,

1985 ; Shigeta, 1993] could not be ascertained within

Osperleioceras due to a much more restricted range of vari-

ation. A further limitation should be taken into consider-

ation : the imprecision on the measurements at such small

sizes is far from negligible. Although the use of a scan-

ning-electron microscope could improve the magnification

factor and thus lessen the problem, imprecision in the orien-

tation or sagital position of the section (respectively projec-

tion of dissected specimens) will remain.

Growth curves display remarkable ontogenetic changes,

particularly visible in involution, whorl compression and

ornamentation. These characters show significant correla-

tions, producing a morphological spectrum ranging from

evolute shells with strong regular ornamentation to involute,

densely and finely ribbed conchs, through a continuous se-

ries of intermediate forms. The rise in variability observed

since the transition from Middle to Upper Toarcian in

Osperleioceras developed in successive bursts from a fairly

long low variability period spanning the whole Middle

Toarcian. Environmental instability, documented in the

Causses Basin by sedimentary changes interpreted in terms

of sea-level fluctuations, favoured a stress-induced rise in

variability [Guex, 1992], concomitant with size decrease.

Competition for ecological niches was also partly lessened,

since few platycone to oxycone ammonite genera survived

up to the Reynesi subzone. However, no ecological selecti-

vity for particular morphotypes could be ascertained as the

whole covariation series occurs in the same beds.

In summary, we noted a conspicuous relation between

shell shape and ribbing pattern (fig. 6). This covariation can

be explained by an integrated model of shell secretion, com-

bining both local geometrical constraints on the shape of

the shell and a dynamic reaction/diffusion regulation of or-

namental production [Guex, 1999, 2001a]. Starting from

Meinhardt’s work on colour patterns in molluscan shells

[Meinhardt, 1995], Hammer and Bucher proposed a reac-

tion/diffusion process to simulate ammonoid rib trajectory

[Hammer and Bucher, 1999]. However, wrapping these 2D

patterns on the surface of 3D shells implies more complex

interactions between morphogen concentration and mantle

curvature [Guex, 1999]. This local expression, controlled

by geometrical and biological interactions, does not imply

genomic integration of numerous minute controls [Kaplan,

1999], but rather a single genetic signal followed by

epigenetic mechanistic consequences [Hammer and Bucher,

1999]. As sculpture is formed by shell undulations and/or

thickening, pattern formation is definitely very tightly con-

nected to shell secretion mechanisms. This is a case of de-

velopmental integration [Klingenberg and Zaklan, 2000] in

the sense that the relationships between shell shape and or-

namentation result from a common developmental process.

Interdimensional covariation tends to support a com-

plex dynamic interdependence, probably under construc-

tional (geometrical constraints, shell secreting mechanisms)

and metabolic controls (resource availability and alloca-

tion). In that sense, it would be very interesting to test if

both extreme morphologies imply similar energetic de-

mands for shell building. Considering the number of para-

meters that intervene in such calculations, this question

could not be resolved in this study. However, the investiga-

tion of the relations between linear, surface and volumetric

parameters [Guex, 2001b] shows that at a constant ventral

growth rate, similar septal spacing, and a given volume, the

more involutely coiled shells will have more compressed

whorls. As a corollary, phyletic size increase in spirally

coiled organisms might be concealed by coiling modifica-

tions [Guex, 2001b]. The problem is to know which param-

eters are of most significance.

Covariation in ammonoids should not be viewed as a

strict compliance to genetic determinants but rather as a

conformation to a general building plan in response to com-

plex and dynamic metabolic interactions under hereditary

and/or environmental controls. While its morphological ex-

pression is modulated by the basic characteristics of the

studied taxon (table I), the overall pattern observed will be

the same.
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