
FIXED SIZE ORDINALLY-FORGETTING ENCODING AND ITS
APPLICATIONS

MINGBIN XU

A THESIS SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE
YORK UNIVERSITY

TORONTO, ONTARIO
2017

R© Mingbin Xu, 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by YorkSpace

https://core.ac.uk/display/154836468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In this thesis, we propose the new Fixed-size Ordinally-Forgetting En-

coding (FOFE) method, which can almost uniquely encode any variable-length

sequence of words into a fixed-size representation. FOFE can model the word or-

der in a sequence using a simple ordinally-forgetting mechanism according to the

positions of words. We address two fundamental problems in natural language pro-

cessing, namely, Language Modeling (LM) and Named Entity Recognition

(NER).

• We have applied FOFE to FeedForward Neural Network Language

Models (FFNN-LMs). Experimental results have shown that without us-

ing any recurrent feedbacks, FOFE-FFNN-LMs significantly outperform not

only the standard fixed-input FFNN-LMs but also some popular Recurrent

Neural Network Language Models (RNN-LMs).

• Instead of treating NER as a sequence labeling problem, we propose a new

local detection approach, which relies on FOFE to fully encode each sentence

ii

fragment and its left/right contexts into a fixed-size representation. This local

detection approach has shown many advantages over the traditional sequence

labeling methods. Our method has yielded pretty strong performance in all

tasks we have examined.

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Hui Jiang,

for his valuable cultivation throughout my study at York University. He is always

patient and helps me tackle myriads of academic problems. His enlightenment

and support are highly appreciated. I am also sincerely grateful to my committee

member, Prof. Aijun An, for reviewing my thesis and providing me with her advice.

Numerous individuals supported my research in various ways.

Special thanks to Jing Huang, the Principal Research Scientist of Visa Research,

who granted me the opportunity to learn from and collaborate with the smartest

brains of Apple’s Siri team. Special thanks to Xiaochuan Niu, the Principal Re-

search Scientist of Apple Siri, who provided me with endless guidance in engineering

and optimization.

I would also like to thank my best friends Yiyun Huang and Chengjie Wang.

I am gratefully indebted to their comments and suggestions on my work. Thank

them for giving different perspectives of my work.

iv

I would also like to acknowledge my senior lab mates Shiliang Zhang and Quan

Liu for sharing their experience and insight with me in the early stage of my re-

search.

Financial support from York University is also heartily acknowledged.

Last but not least, I must express my profound gratitude to my parents and to

my partner for providing me with continuous encouragement throughout my years

of study at York. This accomplishment would not have been possible without them.

Thank you!

v

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents vi

List of Tables x

List of Figures xi

Abbreviations xii

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution and Outline of the Thesis 2

2 Literature Review 5

2.1 Deep Learning . 5

vi

2.1.1 Feed-Forward Neural Network 5

2.1.2 Recurrent Neural Network 7

2.2 Vector Representation of Words . 8

2.2.1 Distributed Word Embedding 8

2.2.2 Character Word Embedding 9

2.3 Two Fundamental Problems in NLP 11

2.3.1 Language Modeling . 11

2.3.2 Named Entity Recognition and Mention Detection 14

3 Fixed-size Ordinally Forgetting Encoding 17

3.1 One-Hot Encoding . 17

3.2 Bag of Words . 18

3.3 Term Frequency - Inverse Document Frequency 19

3.4 Fixed-size Ordinally Forgetting Encoding 19

3.4.1 Definition . 20

3.4.2 Uniqueness . 22

4 FOFE in Language Modeling 25

4.1 FOFE Language Model . 25

4.2 Experiment Results . 29

4.2.1 Penn TreeBank . 30

vii

4.2.2 Large Text Compression Benchmark 35

4.2.3 Google 1 Billion Benchmark 36

5 FOFE in Entity Discovery 39

5.1 Local Detection . 39

5.2 Feature Extraction . 40

5.2.1 Word-level Features . 41

5.2.2 Character-level Features . 42

5.3 Training and Decoding Algorithm 43

5.4 Second-Pass Augmentation . 47

5.5 Experiment Results . 54

5.5.1 CoNLL 2003 NER task . 55

5.5.2 KBP2015 EDL Task . 58

5.5.3 KBP2016 EDL task . 63

6 Conclusion 66

6.1 Conclusion . 66

6.2 Future Works . 67

7 Accomplishment during MSc Study 68

7.1 Publication . 68

7.2 Patents . 70

viii

7.3 Awards . 70

Bibliography 71

ix

List of Tables

3.1 Vocab of Size 7 . 21

3.2 Partial Encoding of w6, w4, w5, w0, w5, w4 21

4.1 PPL on PTB for various LMs. 32

4.2 PPL on LTCB for various LMs . 34

4.3 PPL on GBW on various LMs . 38

5.1 Effect of various FOFE feature combinations on the CoNLL2003 . . 56

5.2 Data distribution of CoNLL2003 . 57

5.3 Comparison between neuro-NER on CoNLL2003 59

5.4 Number of Documents in KBP2015 60

5.5 Evaluation of EDL in KBP2015 . 61

5.6 Official Evaluation of EDL in KBP2016 62

5.7 Number of Documents in KBP2016 63

5.8 English-only Official Performance by Different Dataset Combinations 63

x

List of Figures

4.1 Diagram of 1st-order FOFE-FFNN-LM. 26

4.2 Diagram of 2nd-order FOFE-FFNN-LM. 27

4.3 Effectiveness of Forgetting Factor 31

5.1 Illustration of the local detection approach 40

5.2 Illustration of the 2nd-pass Augmentation 54

xi

Abbreviations

AI Artificial Intelligence

B-LSTM Bidirectional Long Short-Term Memory

BP Back-Propagation

BPTT Back-Propagation Through Time

CNN Convolutional Neural Network

CRF Conditional Random Field

FFNN FeedForward Neural Network

FFNN-LM FeedForward Neural Network Language Model

FOFE Fixed-size Oridinally Forgetting Encoding

FOFE-FFNN-LM FOFE-based FFNN-LM

GBW Google 1 Billion Word benchmark

xii

LM Language Modeling

LSTM Long Short-Term Memory

LTCB Large Text Compression Benchmark

MD Mention Detection

NER Named Entity Recognition

NCE Noise Contrastive Estimation

NLP Natural Language Processing

NN Neural Network

PPL PerPLexity

PTB Penn TreeBank

RNN Recurrent Neural Network

RNN-LM Recurrent Neural Network Language Model

SGD Stochastic Gradient Descent

SGNS SkipGram with Negative Sampling

xiii

1 Introduction

1.1 Motivation

Artificial Intelligence (AI) was born in the 1950s. AI system in the early

stage only involved hard-coded rules crafted by experts, which did not qualify as a

learning process. However, a good set of rules is intractable as the problem grows.

Later, machine learning arose as a sub-field of AI. Machine learning methods excel

at problem where a good set of rules is hard to define. A machine learning system

is trained rather than programmed. It is first presented with many examples,

and then searches for an appropriate statistical structure which fits the presented

examples and generalizes to unseen examples. Machine learning is a general field

encompassing deep learning. Specifically, deep learning emphasizes on learning

layers of increasingly meaningful representations. These layered representations

are learned via a family of models called Neural Network (NN). Due to the

advance in hardware, deep learning quickly becomes the most popular and most

successful field in AI.

1

Natural Language Processing (NLP) is a field that studies how to un-

derstand and produce natural language using computers. Natural languages are

hierarchical in the sense that a word consists of multiple characters, a phrase con-

sists of multiple words, a sentence consists of multiple phrases, and ultimately

sentences convey ideas. Natural languages, albeit compositional, are not intended

to be fit into a finite set mathematically. The way in which characters and words

are combined to form meaningful sentence is infinite and thus is impossible to be

enumerated by rules. Deep learning is the most promising statistic approach by-

pass the rigid rules of natural languages. Once we are able to extract structured

numerical data from natural language, we can take advantage of deep learning and

rely on statistical relationships between characters and words.

The central problem in NLP and deep learning is that of learning useful rep-

resentations of the input data. Such representations should get us closer to the

expected output. In this research, we propose a novel representation of natural

language called Fixed-size Ordinally-Forgetting Encoding (FOFE) and

are interested in solving problems in NLP.

1.2 Contribution and Outline of the Thesis

In this thesis, we explore an alternative approach of sequence modeling. We propose

to use Fixed-size Ordinally Forgetting Encoding (FOFE). We address two

2

fundamental problems in NLP, Language Modeling (LM) and Named Entity

Recognition (NER) & Mention Detection (MD), by applying FOFE. Our

contributions are summarized as follows:

• We propose a novel sequence modeling method, FOFE. FOFE is able to en-

code any sequence of variable length into a fixed-size vector. We addition-

ally prove that FOFE is a lossless representation, which leads to theoretical

guarantees of its modeling power.

• We apply FOFE on LM. Extensive experiments are conducted and the time

performance and scalability are carefully evaluated. It achieves strong perfor-

mance with great parallelism. To the best of our knowledge, this is the first

piece of work of sequence modeling without any recurrent feedback in deep

learning.

• In light of human perception of NER & MD, we also propose a local detection

algorithm for NER & MD. Unlike previous work whose context is limited, our

local detection treats the entire sentence as context. Contextual information

is losslessly encoded by FOFE. It ranked 2nd place and is the best single-

model system in the EDL track of KBP2016 [25] 1.

The rest of the thesis is organized as the following: Chapter 2 reviews the related

1The contest is detailed in Section 5.5.3.

3

work . Chapter 3 presents our novel approach of sequence representation, namely,

Fixed-size Ordinally-Forgetting Encoding (FOFE). Chapter 4 and Chap-

ter 5 demonstrates how FOFE collaborates with deep learning to achieve perfor-

mance on par with state of the art in LM and NER & MD. Chapter 6 concludes

the thesis.

4

2 Literature Review

2.1 Deep Learning

2.1.1 Feed-Forward Neural Network

It is well known that Neural Network (NN) is a universal approximator un-

der certain conditions [23]. A Feed-Forward Neural Network (FFNN) is

a weighted graph with a layered architecture. Each layer is composed of several

nodes. Successive layers are fully connected. Each node applies a function on the

weighted sum of the lower layer. The values of the first layer is user-input. Formally,

let

• Nn be the number of nodes in the n-th layer,

• xn ∈ RNn , where xn,j (1 ≤ j ≤ Nn) denotes the value of the j-th node in the

n-th layer,

• W n ∈ RNn×Nn+1 , where W n
i,j (1 ≤ i ≤ Nn, 1 ≤ j ≤ Nn+1) denotes the weight

of the connection from xn,i to xn+1,j, and

5

• bn ∈ Rn+1 be the bias that shifts the activation function.

Then

zn+1,j =
∑
i

W n
i,jxn,i + bnj (2.1)

xn+1,j = σ (zn+1,j) (2.2)

where σ is the activation function, usually chosen to be sigmoid:

σ(x) =
1

1 + e−x
(2.3)

or Rectified Linear Unit (ReLU) [15]:

σ(x) = max(0, x). (2.4)

For classification tasks, the outputs are normalized into a probability distribution

by the so-called softmax function, where the i-th node is computed as follow:

σ(xi) =
exp(xi)∑
j exp(xj)

. (2.5)

An NN can learn by adjusting its weights in a process called Back-Propagation

(BP). Suppose that we have already calculated the outputs given by an NN for

any input. Let E(y, t) be an error metric that measures how incorrect the output

y is with respect to the expected target output t. For each weight in NN, we may

calculate:
∂E

∂W n
i,j

=
∂E

∂σ

∂σ

∂zn+1,j

∂zn+1,j

∂W n
i,j

=
∂E

∂σ

∂σ

∂zn+1,j

xn,i.

(2.6)

6

Each weight may be adjusted to slowly reduce this error for each training example,

and hence the NN learns to fit the input and the output. This is accomplished by

the following update rule, where α is called the learning rate:

W n
i,j := W n

i,j − α
∂E

∂W n
i,j

(2.7)

The learned NN may be used to generalize and extrapolate to new inputs that

have not been seen during training. All the equations above can be equivalently

expressed in matrix operations for better efficiency:

zn+1 = W nxn + bn

xn+1 = σ(zn+1)

∂E

∂W n
=

∂E

∂zn+1

∂zn+1

∂W n
xn

W n : = W n − α ∂E

∂W n
.

(2.8)

2.1.2 Recurrent Neural Network

The major deficiency of FFNN is its incapability of modeling input of varying size.

For example, sentences in natural language are of arbitrary lengths. Recurrent

Neural Network (RNN) addresses this issue by recurrent connections. Let’s

assume the same notation in Section 2.1.1. The n-th layer, if recurrent, is addi-

tionally equipped with another parameter matrix W n
r , and its input and output are

attached with an timestep, denoted as xtn and xtn+1 for timestep t. The output of

7

such layers is redefined as:

xtn+1 = σ(xtnW
n + xt−1n+1W

n
r + bn) (2.9)

RNNs are learned by an algorithm called Back-Propagation Through Time

(BPTT) [52] due to the internal recurrent feedback cycles. BPTT works by unfold-

ing through time. The unfolded network is acyclic and updated similar to FFNN.

BPTT significantly increases the computational complexity of the learning al-

gorithms and it may cause many problems in learning, such as gradient vanishing

and exploding [4]. More recently, some new architectures have been proposed to

solve these problems. For example, the Long Short-Term Memory (LSTM)

[22] is an enhanced architecture to implement the recurrent feedbacks using various

learnable gates, and it has obtained promising results on handwriting recognition

[19] and sequence modeling [18].

2.2 Vector Representation of Words

2.2.1 Distributed Word Embedding

Curse of dimensionality and lack of semantics demand a compact representation.

The construction of low-dimensional word vectors is inspired by the linguistic con-

cept of distributional hypothesis, which claims that words appear in the similar

context share similar meanings [21]. The most well-known approach of generating

8

such word vectors is introduced by [41], which uses the Skip-Gram model trained

with Stochastic Gradient Descent (SGD) and Negative Sampling (NS),

named as SGNS.

SGNS maintains two matrices, Wword ∈ R|V |×n and Wcontext ∈ R|V |×n, where n

is the desired number of dimension of the compact vectors. The i-th row of Wword

and the i-th row of Wcontext correspond to the i-th word in V . Given a sentence

with N words w1, w2, ..., wN , and a central word wi, 1 ≤ i ≤ N , the rest words

in C = {w1, w2, ..., wi−1} ∪ {wi+1, wi+2, ..., wN} are treated as the context of wi.

SGNS tries to maximize the dot product of Wword[wi] and Wcontext[c] if c ∈ C and

minimize the dot product of Wword[wi] and Wcontext[c] if c ∈ V −C. SGNS iterates

all the observed pairs in the corpus and learns Wword and Wcontext by SGD. Wword

contains the compact word vectors.

2.2.2 Character Word Embedding

Convolutional Neural Networks (CNN) is known to be effective in NLP,

and have been widely used as character-level models [30]. The goal of charac-

ter word embedding is on one hand to alleviate information loss from Out-Of-

Vocabulary (OOV) issue, and on the other hand to take into account internal

structure of words. The latter is especially useful or morphologically rich languages.

Let C denote the set of possible characters, and D denote the dimensionality

9

of character embeddings. A matrix M ∈ R|C|×D is randomly initialized, where the

i-th row denotes the vector representation of the i-th character in C. Given a word

or phrase whose spelling is [c1, c2, c3, ..., cL], a matrix C ∈ RL×D is constructed,

where the j-th row is a copy of the row in M corresponding to cj. C can be viewed

as a single-channel image. Let F ∈ Rh×D be a feature map to be learned, where h

denotes the height of feature maps. D sometimes is called the width of the feature

map. An intermediate vector v of l − h + 1 elements is generated after F sweeps

C. Each component vk in v, is computed as:

vk = σ(Trace(FC[k : k + h])) (2.10)

where σ is either sigmoid (Eq. 2.3) or ReLU (Eq. 2.4). The output y of this feature

map is given by:

y = max(v1, v2, ..., vl−h+1) (2.11)

If there are N groups of feature maps, each of which has n1, n2, n3, ... , n|N | feature

maps respectively, following Eqs. (2.10) and (2.11), the final representation from

the character CNN for this word or fragment is a vector of length
∑|N |

i=1 ni.

10

2.3 Two Fundamental Problems in NLP

2.3.1 Language Modeling

Language Modeling (LM) plays an important role in many applications like

speech recognition, machine translation, information retrieval and nature language

understanding. The goal of LMs is to compute a probability for a sequence of

tokens. Syntactically and semantically sound sentences are assigned high scores

while invalid and silly sentences are given low scores, for example,

P (“The bottle is small””) > P (“The bottle is mall”)

The probability of a sentence with N words w1, w2, ..., wN can be broken apart as:

P (w1, w2, ..., wN) =
N∏
i=1

P (wi|w1, w2, ..., wi−1) (2.12)

where each term is conditioned on all previous words. Estimating P (wi|w1, w2, ..., wi−1)

is difficult. A certain degree of independence is assumed and Markov property [37]

is adopted. That is, each term is conditioned on a window of n previous words

instead:

P (w1, w2, ..., wN) =
N∏
i=1

P (wi|wi−n, wi−n+1, ..., wi−1). (2.13)

A great deal of effort has been devoted to the estimation of P (wi|w1, w2, ..., wi−1)

and P (wi|wi−n, wi−n+1, ..., wi−1). Traditionally, the back-off n-gram models [29, 31]

are the standard approach to LM. Recently, NNs have been successfully applied to

11

LM, yielding the state-of-the-art performance in many tasks. In Neural Net-

work Language Models (NNLM), FFNN and RNN [14] are two popular archi-

tectures. The basic idea of NNLMs is to use word vectors to project discrete words

into a continuous space and estimate word conditional probabilities in this space,

which may be smoother to better generalize to unseen contexts. Feed-Forward

Neural Network Language Models (FFNN-LM) [2, 3] usually use a limited

history within a fixed-size context window to predict the next word. Recurrent

Neural Network Language Models (RNN-LM) [39, 42] adopt a time-delayed

recursive architecture for the hidden layers to memorize the long-term dependency

in language. Therefore, it is widely reported that RNN-LMs outperform FFNN-

LMs in LM.

The most commonly used metric to evaluate the performance of LM is Per-

PLexity (PPL) over unseen sentences. Give a corpus c of n words w1, w2, ..., wn,

a language model m assign a probability to each word in the corpus. PPL of m is

defined as

PPL(m, c) = 2

− 1
n

n∑
i=1

log2m(wi)

(2.14)

A lower PPL in general indicates a better fit. A good language model assigns high

probabilities to the patterns in the corpus, reflecting the language usage of the

corpus.

NNLM can be unbearably slow because of softmax. Noise Contrastive Es-

12

timation (NCE) [20] is a self-normalized approach that approximates softmax

over large vocabulary efficiently. NCE reduces probability estimation to binary

classification. Let’s assume the following notations:

• pθ(w, c): probability of word w given the context c, modeled by parameter

set θ, and

• puni(w): unigram probability of word w, i.e.,
count(w)

#words
.

If a word w is sampled from the corpus with auxiliary label D = 1, and k other

words are sampled from puni with auxiliary label D = 0. The probability of D is a

mixture of pθ(w, c) and puni(w):

p(D = 0|c, w) =
k × puni(w)

pθ(w, c) + k × puni(w)

p(D = 1|c, w) =
pθ(w, c)

pθ(w, c) + k × puni(w)

(2.15)

NCE further assumes that when θ is large enough, the summation term of softmax

can be estimated by a scalar constant Z. The choice of Z varies on different corpus.

The binary classification problem shares the same parameters θ with the LM that

we desired. It is trained to maximize the log-likelihood of D with k negative noises.

LNCEk
=

∑
(w,c)∈corpus

(log p(D = 0|c, w) + kEwlog p(D = 0|c, w))

≈
∑

(w,c)∈corpus

(log p(D = 0|c, w) +
k∑
log p(D = 0|c, w))

(2.16)

The expectation term in Equation 2.16 is replaced by its Monte Carlo approxima-

tion.

13

2.3.2 Named Entity Recognition and Mention Detection

Named Entity Recognition (NER) and Mention Detection (MD) are very

challenging tasks in NLP, laying the foundation of almost every NLP application.

NER and MD are tasks of identifying entities (named and/or nominal) from raw

text, and classifying the detected entities into one of the pre-defined categories such

as person (PER), organization (ORG), location (LOC), etc. Some tasks focus on

named entities only, for example,

[S.E.C.]ORG chief [Mary Shapiro]PER left [Washington]LOC in December .

while the others also detect nominal mentions. which are important for other NLP

tasks such as co-reference resolution.

[Mark]PER and his closest [friend]PER N [Scarlet]PER, a cello [player]PER N ,
joined the same music [company]ORG N .

Moreover, nested mentions may need to be extracted too. For example,

He used to study in [University of [Toronto]LOC]ORG.

where Toronto is a LOC entity, embedded in another longer ORG entity University

of Toronto.

Similar to many other NLP problems, NER and MD are formulated as a se-

quence labeling problem, where a tag is sequentially assigned to each word in the

input sentence. It has been extensively studied in the NLP community [5]. The

core problem is to model the conditional probability of an output sequence given

14

an arbitrary input sequence. Many hand-crafted features are combined with sta-

tistical models, such as Conditional Random Fields (CRFs) [43], to compute

conditional probabilities. More recently, some popular NNs, including CNNs and

RNNs, are proposed to solve sequence labeling problems. In the inference stage,

the learned models compute the conditional probabilities and the output sequence

is generated by the Viterbi decoding algorithm [51].

It has been a long history of research involving NN. The success of word em-

bedding [41, 35] encourages researchers to focus on machine-learned representation

instead of heavy feature engineering in NLP. Using word vectors as the typical fea-

ture representation for words, NNs become competitive to traditional approaches in

NER. Many NLP tasks, such as NER, chunking and part-of-speech (POS) tagging

can be formulated as sequence labeling tasks. In [9], deep CNN and CRF are used

to infer NER labels at a sentence level, where they still use many hand-crafted

features to improve performance, such as capitalization features explicitly defined

based on first-letter capital, non-initial capital and so on.

Recently, RNNs have demonstrated the ability in modeling sequences [17].

Huang [24] built on the previous CNN-CRF approach by replacing CNNs with

Bidirectional Long Short-Term Memory (B-LSTM). Though they have re-

ported improved performance, they employ heavy feature engineering in that work,

most of which is language-specific. There is a similar attempt in [46] with full-rank

15

CRF. CNNs are used to extract character-level features automatically in [13].

Gazetteer is a list of names grouped by the pre-defined categories. Gazetteer

is shown to be one of the most effective external knowledge sources to improve

NER performance [47]. Thus, gazetteer is widely used in many NER systems. In

[8], state-of-the-art performance on a popular NER task, i.e., CoNLL2003 2, is

achieved by incorporating a large gazetteer. Different from previous ways to use a

set of bits to indicate whether a word is in gazetteer or not, they have encoded a

match in BIOES (Begin, Inside, Outside, End, Single) annotation, which captures

positional information.

The quality of a NER system is measured by F1 score, the balanced harmonic

mean of precision and recall:

F1 =
2 · precision · recall
precision+ recall

. (2.17)

Precision is the ratio of the number of system-predicted entities that match the

ground truth to the number of system prediction. Recall is similarly the number

of system-predicted entities that match the ground truth to the number of entities

from ground truth. Only exact span constitutes matches. Wrong span with correct

predicted type and correct span with wrong predicted type are not given partial

credits, and thus don’t contribute to F1.

2See Section 5.5.1 for more details

16

3 Fixed-size Ordinally Forgetting Encoding

In order to plug in statistical tools, characters and words must be encoded into

a vector space. Let’s exemplify this at word level in English. It could be easily

generalized to character and phrase. Suppose that we are interested in the most

representative subset V for words in English, usually chosen according to frequency.

3.1 One-Hot Encoding

Words build sentences. A representation of words lays the foundation of represent-

ing sentences. One-hot vector is the most straightforward representation. A fixed

integer id is assigned to each word occurring in the corpus. Each word is an R1×|V |

vector with all 0s and one 1 at the index of the word in V . Word vectors in this

17

type of encoding could appear as following:

“the” = [1, 0, 0, 0, ..., 0, 0]

“, ” = [0, 1, 0, 0, ..., 0, 0]

“.” = [0, 0, 1, 0, ..., 0, 0]

“to” = [0, 0, 0, 1, ..., 0, 0]

...

“rereleased” = [0, 0, 0, 0, ..., 1, 0]

“unearths” = [0, 0, 0, 0, ..., 0, 1]

They are sparse vectors suffering from the curse of dimensionality [1]. Each addi-

tional dimension doubles the computational power required. Each word is treated

as an independent entity. As a result, the semantics behind words is lost. This

representation does not capture the similarity between words.

3.2 Bag of Words

The most intuitive way of building the representation of a sentence or a word

sequence is to add up the one-hot encoding of the words of which it composed.

Effectively, it counts the number of times each word appears. This approach is

called Bag of Words (BoW). BoW simplifies the problem at the cost of ignoring

the context of words. It may fail badly in specific cases. For example, consider the

18

sentences “I love apple but not banana” and “I love banana but not apple”. They

express the opposite preferences to fruits while sharing the same BoW representa-

tion.

3.3 Term Frequency - Inverse Document Frequency

In natural language, some words are significantly more present than the others,

(e.g. “the”, “a” in English), and thus not very informative. If the direct count from

BoW is used, those frequent terms will shadow the importance of rare but more

interesting terms. Term Frequency - Inverse Document Frequency (TF-

IDF) is an algorithm that re-weights importance. TF-IDF weights each word by it

frequency in the sentence and the logarithm of the reciprocal of its frequency in the

corpus. Similar to BoW, it assumes word counts provide independent importance

and therefore does not respect the semantics between words.

3.4 Fixed-size Ordinally Forgetting Encoding

FFNN is a powerful computation model. However, it requires fixed-size inputs

and lacks the ability of capturing long-term dependency. Because most NLP prob-

lems involves variable-length sequences of words, RNNs/LSTMs are more pop-

ular than FFNNs in dealing with these problems. The Fixed-size Ordinally-

19

Forgetting Encoding (FOFE), originally proposed in [55, 56], nicely overcomes

the limitations of FFNNs. The intuition behind this idea is that the closer words

are more related to local decisions. FOFE adopts this concept and re-weights each

word in the history from new to old in a exponentially decaying fashion. More im-

portantly, it can uniquely and losslessly encode a variable-length sequence of words

into a fixed-size representation.

3.4.1 Definition

Give a vocabulary V , each word can be represented by a one-hot vector. FOFE

mimics bag-of-words (BOW) but incorporates a forgetting factor to capture posi-

tional information. It encodes any sequence of variable length composed by words

in V . Let S = w1, w2, w3, ..., wT denote a sequence of T words from V , and et be

the one-hot vector of the t-th word in S, where 1 ≤ t ≤ T . The FOFE of each

partial sequence zt from the first word to the t-th word is recursively defined as:

zt =

0, if t = 0

α · zt−1 + et, otherwise

(3.1)

where the constant α is called forgetting factor, and it is picked between 0 and 1 ex-

clusively. Obviously, the size of zt is |V |, and it is irrelevant to the length of original

sequence T . An example is included in Table 3.1 and Table 3.2 of how to encode the

sequence [w6, w4, w5, w0, w5, w4] with the vocabulary {w1, w2, w3, w4, w5, w6, w7}.

20

WORD 1-HOT

w0 1000000

w1 0100000

w2 0010000

w3 0001000

w4 0000100

w5 0000010

w6 0000001

Table 3.1: Vocab of Size 7

PARTIAL SEQUENCE FOFE

w6 0, 0, 0, 0, 0, 0, 1

w6, w4 0, 0, 0, 0, 1, 0, α

w6, w4, w5 0, 0, 0, 0, α, 1, α2

w6, w4, w5, w0 1, 0, 0, 0, α2, α, α3

w6, w4, w5, w0, w5 α, 0, 0, 0, α3, 1 + α2, α4

w6, w4, w5, w0, w5, w4 α2, 0, 0, 0, 1 + α4, α + α3, α5

Table 3.2: Partial Encoding of w6, w4, w5, w0, w5, w4

21

3.4.2 Uniqueness

The word sequences can be unequivocally recovered from their FOFE representa-

tions [55, 56]. The uniqueness of FOFE representation is theoretically guaranteed

by the following lemma and theorems:

Lemma 1. If the forgetting factor α satisfies 0 < α ≤ 0.5, there exists exactly one

element in the vector s.t. its value is no less than 1, and that element correspond

to the last symbol in the sequence.

Proof. The symbol at position t is raised to αT−t, where t ∈ {Z|1 ≤ x ≤ n}. For

any symbol w in the sequence s.t. w 6= wT , its value must follow

value(w) ≤
T−1∑
n=1

αn < 1

Theorem 2. For 0 < α ≤ 0.5, FOFE is unique for any countable vocabulary V

and any finite value T .

Proof. Assume that there are two different sequences S1 = [w1
1, w

1
2, ..., w

1
T1] and

S2 = [w2
1, w

2
2, ..., w

2
T2]. Denote the encoding at each time step as e1t1 and e2t2 respec-

tively, where 1 ≤ t1 ≤ T1 and 1 ≤ t2 ≤ T2. To prove it by contradiction, we

further assume that e1T1 = e2T2.

22

Case 1 T1 = T2. By Lemma 1, w1
T1 = w2

T2. By definition, e1T1 = α × e1T1−1 +

oneHot(w1
T1). Because both multiplication and addition are bijective, e1T1−1 =

(e1T1−oneHot(w1
T1))/α, and thus e1T1−1 = e2T2−1. By induction, both sequences

share the same word at the same position, which contradicts our assumption.

Case 2 T1 > T2. Applying the induction in Case 1, the last T2 symbols of S1

are identical to S2, and the first T2− T1 symbols of S1 has an encoding

of e1T1−T2 = e2T2−T2 = 0. However, the first T2− T1 symbols of S1 is a

non-empty sequence whose encoding cannot be 0, which is a contradiction.

Case 3 T1 < T2. By symmetry, it leads to the same contradiction as in Case 2.

Theorem 3. For 0.5 < α < 1, given any finite value T and any countable vocab-

ulary V , FOFE is unique almost everywhere, except only a finite set of countable

choices of α.

Proof. Ambiguity happens when at least one symbol whose value can be composed

by two disjoint sets of αt−1, where t ∈ {Z|1 ≤ t ≤ n}. The choice of α must satisfy

at least one of the follow polynomial equations in order to bring up ambiguity:

T∑
t=1

ξt · αt−1 = 0. (3.2)

The positive terms in Eq 3.2 represent one possible way of composition while the

negative terms represent the other. Each equation is of order T , which implies at

23

most T − 1 real roots for α. There are at most 3T equations in the same form as

Eq 3.2. Therefore, it totals no more than (T − 1) · 3T choices of α that lead to

ambiguity. 3

Though in theory uniqueness is not guaranteed when α is chosen from 0.5 to 1,

in practice the chance of hitting such scenarios is extremely slim, almost impossi-

ble due to quantization errors in the system. Furthermore, in natural languages,

normally a word does not appear repeatedly within a near context. Simply put,

FOFE is capable of uniquely encoding any sequence of arbitrary length, serving as

a fixed-size but theoretically lossless representation for any sequence.

3The actual possible number of equations is less than 3T because some of them overlap after
simplification. The actual possible number of α is much smaller. Since one symbol’s value
composition affect other symbol’s, this proof does not give a tight upper bound.

24

4 FOFE in Language Modeling

4.1 FOFE Language Model

The architecture of a FOFE-based neural network language model (FOFE-FFNN-

LM) is shown in Figure 4.1. It is similar to regular bigram FFNN-LMs except that

it feeds a FOFE into neural network LM at each time. Moreover, the FOFE can

be easily scaled to higher orders like n-gram NNLMs. For example, Figure 4.2 is

an illustration of a second order FOFE-FFNN-LM.

FOFE is a simple recursive encoding method but a direct sequential implemen-

tation may not be efficient for the parallel computation platform like GPUs. In this

section, we will show that the FOFE computation can be efficiently implemented as

sentence-by-sentence matrix multiplications, which are suitable for the mini-batch

based SGD method running on GPUs.

Given a sentence, S = {w1, w2, · · · , wT}, where each word is represented by a

1-of-K code as et (1 ≤ t ≤ T). The FOFE codes for all partial sequences in S can

25

Figure 4.1: Diagram of 1st-order FOFE-FFNN-LM.

26

Figure 4.2: Diagram of 2nd-order FOFE-FFNN-LM.

27

be computed based on the following matrix multiplication:

S =

1

α 1

α2 α 1

...
. . . 1

αT−1 · · · α 1

e1

e2

e3

...

eT

= MV (4.1)

where V is a matrix arranging all 1-of-K codes of the words in the sentence row by

row, and M is a T -th order lower triangular matrix. Each row vector of S represents

a FOFE code of the partial sequence up to each position in the sentence.

This matrix formulation can be easily extended to a mini-batch consisting of

several sentences. Assume that a mini-batch is composed of N sequences, L =

{S1 S2 · · ·SN}, we can compute the FOFE codes for all sentences in the mini-batch

as follows:

S̄ =

M1

M2

. . .

MN

V1

V2

...

VN

= M̄V̄. (4.2)

When feeding the FOFE codes to FFNN as shown in Figure 4.1, we can compute

all the histories in S projected by word embedding as follow:

(MV)U = M(VU) (4.3)

28

where U denotes the word embedding matrix that projects the word indices onto a

continuous low-dimensional continuous space. As above, VU can be done efficiently

by looking up the embedding matrix. Therefore, for the computational efficiency

purpose, we may apply FOFE to the word embedding vectors instead of the orig-

inal high-dimensional one-hot vectors. In the backward pass, we can calculate the

gradients with the standard BP algorithm rather than BPTT. As a result, FOFE-

FFNN-LMs are the same as the standard FFNN-LMs in terms of computational

complexity in training, which is much more efficient than RNN-LMs.

4.2 Experiment Results

In order to evaluate the performance of FOFE-FFNN-LM, we have selected 3 pop-

ular data sets, namely Penn TreeBank, Large Text Compression Benchmark and

Google Billion Word. Each line in these corpora is a single sentence, so history

does not cross sentence boundary.

We will compared the proposed model with traditional back-off n-gram LMs

and the state-of-ther-art performance obtained by NNLMs. We apply the following

setting by default:

• End-of-sentence symbol </s> is appended to the end of each sentence, and it

is included during training and evaluation. Begin-of-sentence symbol <s> is

padded to the input when history is shorter than the order of the FFNN-LM.

29

• When NNLM is involved, model parameters are randomly initialized by a uni-

form distribution between −
√

6
fanIn+fanOut

and
√

6
fanIn+fanOut

, where fanIn

and fanOut are the input and the output dimensions respectively [15].

• The learning rate lr is frozen until the first non-improving epoch e. lr is

halved from the eth epoch on. We use the best learning rate chosen from

{0.512, 0.256, 0.128, 0.064, 0.032} by validation set.

4.2.1 Penn TreeBank

The Penn TreeBank (PTB) protion of the WSJ corpus has been used extensively

in LM community. In our experiment, we follow the same training/validation/test

split as in other researches [40]. PTB is a small corpus. There are 930k, 74k, 82k

words in training, validation and test respectively. The vocabulary is restricted to

the 10k most frequent words. The rest are mapped to a special token <unk>.

PTB is relatively small. Overfitting is very likely if the model is not carefully

regularized. We train using momentum [45] of 0.9 and weight decay (L2 penalty) of

0.0004. We found that the additional time and space consumption from momentum

and weight decay are negligible because of PTB’s size. It also turns out that the

same level of performance is not reachable with plain SGD.

In table 4.3, we study how the forgetting factor α affects performance. Through

out this set of experiments, hyper-parameters except forgetting factor and order are

30

Figure 4.3: PPL of FOFE-FNNLM as a function of the forgetting factor.

31

Model PPL

KN 5-gram [40] 141

FNNLM [42] 140

RNNLM [40] 123

LSTM [18] 117

bigram FFNN-LM 176

trigram FFNN-LM 131

4-gram FFNN-LM 118

5-gram FFNN-LM 114

6-gram FFNN-LM 113

1st-order FOFE-FNNLM 116

2nd-order FOFE-FNNLM 108

Table 4.1: PPL on PTB for various LMs.

32

frozen, i.e. all experiments are with 100-dimension word embedding and 2 hidden

layers of 400 nodes. We have examine α ∈ {0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1}. When

α = 0, it is equivalent to bigram-FFNN-LM. We observed that when α lies between

0.5 and 0.7, FOFE-FFNN-LM yields best performance. Therefore, we chose α = 0.7

for experiments afterwards.

We have built several baseline n-gram FFNN-LMs. Meanwhile, we have com-

pared our results with known solutions in the literature. In Table 4.1, we have

summarized the PPL on the PTB test set for various models. The proposed FOFE-

FNNLMs significantly outperform the baseline FFNN-LMs with the same architec-

ture. Moreover, the FOFE-FNNLMs even overtake a well-trained RNNLM (400

hidden units) in [40] and an LSTM in [18], which indicates that FOFE-FFNN-

LMs can effectively model the long-term dependency in language without using

any recurrent feedback. At last, the 2nd-order FOFE-FFNN-LM improves further,

yielding the PPL of 108 on PTB. It also outperforms all higher-order FFNN-LM

counterparts (4-gram, 5-gram and 6-gram), which are bigger in terms of parameter

number. To our best knowledge, this is one of the best reported results on PTB

without dropout [50] and model combination.

33

Model Architecture Test PPL

KN 3-gram - 156

KN 5-gram - 132

[1*200]-400-400-80k 241

[2*200]-400-400-80k 155

FFNN-LM [2*200]-600-600-80k 150

[3*200]-400-400-80k 131

[4*200]-400-400-80k 125

RNN-LM [1*600]-600-80k 112

[1*200]-400-400-80k 120

FOFE [1*200]-600-600-80k 115

FFNN-LM [2*200]-400-400-80k 112

[2*200]-600-600-80k 107

Table 4.2: PPL on LTCB for various LMs. [M*N] denotes the sizes of the input

context window and projection layer.

34

4.2.2 Large Text Compression Benchmark

We have further examined the modeling power of FOFE-FFNN-LMs on a larger

text corpus, i.e. Large Text Compression Benchmark (LTCB) [36], which

contains the first 109 bytes of the English version of Wikipedia dumped in March

3, 2006. The corpus is converted to lowercase. The most frequent 80k are kept and

the rest are similarly mapped to <unk>. We have trained several baseline systems:

• two n-gram LMs (3-gram and 5-gram) using the modified Kneser-Ney smooth-

ing without count cutoffs,

• several traditional FFNN-LMs with different model sizes and input context

windows (bigram, trigram, 4-gram and 5-gram), and

• an RNN-LM with one hidden layer of 600 nodes using the toolkit in [39], in

which we have further used a spliced sentence batch in [7] to speed up the

training on GPUs.

Moreover, we have examined four FOFE-FFNN-LMs with various model sizes and

input window sizes (two 1st-order FOFE models and two 2nd-order ones). For

all NNLMs, we have used an output layer of the full vocabulary (80k words). In

these experiments, we have used an initial learning rate of 0.1, and a bigger mini-

batch of 500 for FFNN-LMMs and FOFE-FFNN-LMs, and of 256 sentences for

the RNN-LMs. Since forgetting factor of 0.7 demonstrates best performance in

35

PTB, it is used throughout the experiments in LCTB. Overfitting seldom hap-

pens when the dataset is sufficiently large. We pick SGD as our optimizer for all

NNLMs without regularization. Experimental results in Table 4.2 have shown that

the FOFE-FFNN-LMs significantly outperform the baseline FFNN-LMs (including

some larger higher-order models) and also slightly overtake the popular RNN-LMs,

yielding the best result (perplexity of 107) on the test set.

4.2.3 Google 1 Billion Benchmark

The Google Billion Word dataset [6] is one of the largest benchmark for

LM with almost one billion words. Its vocabulary size is over 800k. In order to

fairly compare FOFE with known solutions, we follow the same preprocessing in [6],

replacing words that occur less than 3 times with <unk>, and removing duplicated

sentences.

Because computing softmax over such big vocabulary in a large scale is almost

impossible, we estimate it by NCE. We have trained a medium-size and a large-

size FOFE-FFNN-LMs (shown in Table 4.3). The former and the latter sample

2048 and 4096 noise examples respectively. We have tried several options of the

normalization constant Z. e (base of the natural logarithm) shows the fastest

convergence in the first 100 mini-batches, so we stick to this value throughout all

experiments.

36

General speaking, the rule of thumb is that the larger the model, the better per-

formance. Because of a huge vocabulary size, word embedding and NCE account for

95% of the model size. However, only a tiny portion has non-zero gradients within

a mini-batch. Optimizers such as momentum and Adam [12] significantly increase

time complexity and space complexity in the sense that their auxiliary data struc-

ture doubles or triples memory usage and renders the sparse parameter update of

word embedding and NCE impossible. It in turn prevents larger model. Therefore,

we pick SGD instead of other fancy optimizers. We employ a word embedding of

256 dimensions, 3 hidden layers of {2048, 4096} neurons, and a compression layer of

{640, 720} neurons, totaling {0.73B, 0.78B} parameters, which is the biggest model

that fits in a GeForce GTX TITAN X (Maxwell) of 12 GB memory.

The results are presented in Table 4.3 along with the performance reported

in the community. FOFE-FFNN-LM achieves similar performance with greater

efficiency and less computational resources. FOFE-FFNN-LM is competitive to

[28] with fewer number of parameters. However, [28] imposes demanding constraint

on hardware. [12] and [28] sidestep the parameter number disaster introduced by

word embedding and Softmax output by working at character level rather than

word level. However, character CNN is known to be computationally expensive.

37

Model Test PPL #param Hardware Time

Sigmoid-RNN-2048 [27] 68.34 4.1B 1 CPU 175 hours

Interpolated KN 5-gram & 1.1B n-grams [6] 67.6 1.8B 100 CPUs 3 hours

Sparse Non-Negative Matrix LM [49] 52.9 33B - -

RNN-1024 + MaxEnt 9-gram [6] 51.3 20B 24 GPUs 10 days

LSTM-1024-512 [28] 48.2 0.82B 40 GPUs 10 hours

LSTM-2048-512 [28] 43.7 0.83B 40 GPUs 10 hours

LSTM + CNN input [28] 30.0 1.04B 40 GPUs 3 weeks

GCNN-13 [12] 38.1 1 GPU 2 weeks

FOFE-FFNN-LM 3x256-2048-2048-2048-640 45.4 0.73B 1 GPU 6 days

FOFE-FFNN-LM 3x256-4096-4096-4096-720 43.5 0.73B 1 GPU 12 days

Table 4.3: PPL on GBW on various LMs. Some cells are blank because they are

not reported.

38

5 FOFE in Entity Discovery

5.1 Local Detection

Our FOFE-based local detection approach for NER, called FOFE-NER hereafter,

is motivated by the way how human actually infers whether a word segment in text

is an entity or mention, where the entity types of the other entities in the same

sentence is not a must. Particularly, the dependency between adjacent entities is

fairly weak in NER. Whether a fragment is an entity or not, and what class it may

belong to, largely depend on the internal structure of the fragment itself as well as

the left and right contexts in which it appears. To a large extent, the meaning and

spelling of the underlying fragment are informative to distinguish named entities

from the rest of the text. Contexts play a very important role in NER or MD when

it involves multi-sense words/phrases or out-of-vocabulary (OOV) words.

As shown in Figure 5.1, our proposed FOFE-NER method will examine all

possible fragments in text (up to a certain length) one by one. For each fragment,

it uses the FOFE method to fully encode the underlying fragment itself, its left

39

Figure 5.1: FOFE codes are fed into a FFNN. The window currently examines the

fragment of Toronto Maple Leafs. The window will scan and scrutinize all fragments

up to K words.

context and right context into some fixed-size representations, which are in turn

fed to an FFNN to predict whether the current fragment is NOT a valid entity

mention (NONE), or its correct entity type (PER, LOC, ORG and so on) if it is

a valid mention. This method is appealing because the FOFE codes serves as a

theoretically lossless representation of the hypothesis and its full contexts. FFNN

is used as a universal approximator to map from text to the entity labels.

5.2 Feature Extraction

In this work, we use FOFE to explore both word-level and character-level features

for each fragment and its contexts.

40

5.2.1 Word-level Features

FOFE-NER generates several word-level features for each fragment hypothesis

and its left and right contexts as follows:

• Bag-of-word (BoW) of the fragment, e.g. bag-of-word vector of ‘Toronto’,

‘Maple’ and ‘Leafs’ in Figure 5.1.

• FOFE code for left context including the fragment, e.g. FOFE code of the

word sequence of “... puck from space for the Toronto Maple Leafs” in Figure

5.1.

• FOFE code for left context excluding the fragment, e.g. the FOFE code of

the word sequence of “... puck from space for the” in Figure 5.1..

• FOFE code for right context including the fragment, e.g. the FOFE code

of the word sequence of “... against opener home ’ Leafs Maple Toronto” in

Figure 5.1.

• FOFE code for right context excluding the fragment, e.g. the FOFE code of

the word sequence of “... against opener home ” in Figure 5.1.

Moreover, all of the above word features are computed for both case-sensitive

words in raw text as well as case-insensitive words in normalized lower-case text.

These FOFE codes are projected to lower-dimension dense vectors based on two

41

word embedding matrices, Ws and Wi, for case-sensitive and case-insensitive FOFE

codes respectively. These two projection matrices are initialized by word embed-

dings trained by word2vec, and fine-tuned during the learning of the neural net-

works.

Due to the recursive computation of FOFE codes in eq.(3.1), all of the above

FOFE codes can be jointly computed for one sentence or document in a very efficient

manner.

5.2.2 Character-level Features

On top of the above word-level features, we also augment character-level features

for the underlying segment hypothesis to further model its morphological structure.

The aforementioned FOFE method can be easily extended to model character-level

feature in NLP. Any word, phrase or fragment can be viewed as a sequence of

characters. In this way, based on a pre-defined set of all possible characters, we

may apply the same FOFE method to encode the sequence of characters. This

always leads to a fixed-size representation, irrelevant to the number of characters

in question. For the example in Figure 5.1, the current fragment, Toronto Maple

Leafs, is considered as a sequence of case-sensitive characters, i.e. “{‘T’, ‘o’, ..., ‘f’

, ‘s’ }”, we then add the following character-level features for this fragment:

• Left-to-right FOFE code of the character sequence of the underlying fragment.

42

That is the FOFE code of the sequence, [‘T’, ‘o’, ..., ‘f ’ , ‘s’].

• Right-to-left FOFE code of the character sequence of the underlying fragment.

That is the FOFE code of the sequence, [‘s’ , ‘f ’ , ..., ‘o’, ‘T’].

These case-sensitive character FOFE codes are also projected by another charac-

ter embedding matrix, which is randomly initialized and fine-tuned during model

training.

5.3 Training and Decoding Algorithm

Obviously, the above FOFE-NER model will take each sentence of words, S =

[w1, w2, w3, ..., wm], as input, and examine all continuous sub-sequences [wi, wi+1, wi+2, ..., wj]

up to n words in S for possible entity types. All sub-sequences longer than n words

are considered as non-entities in this work.

When we train the model, based on the entity labels of all sentences in the

training set, we will generate many sentence fragments up to n words. These

fragments fall into three categories:

• Exact-match with an entity label, e.g., the fragment “Toronto Maple Leafs”

in the previous example.

• Partial-overlap with an entity label, e.g., “for the Toronto”.

43

• Disjoint with all entity label, e.g. “from space for”.

For all exact-matched fragments, we generate the corresponding outputs based

on the types of the matched entities in the training set. For both partial-overlap

and disjoint fragments, we introduce a new output label, NONE, to indicate that

these fragments are not a valid entity. Therefore, the output nodes in the neural

networks contain all entity types plus a rejection option denoted as NONE.

During training, we implement a producer-consumer software design such that

a thread fetches training examples, computes all FOFE codes and packs them as

a mini-batch while the other thread feeds the mini-batches to neural networks and

adjusts the model parameters and all projection matrices. Since “partial-overlap”

and “disjoint” significantly outnumber “exact-match”, they are down-sampled so

as to balance the data set. The training procedure is illustrated in Algorithm 1.

During inference, all fragments not longer than n words are all fed to FOFE-

NER to compute their scores over all entity types. In practice, these fragments

can be packed as one mini-batch so that we can compute them in parallel on GPUs.

As the NER result, the FOFE-NER model will return a subset of fragments only

if: i) they are recognized as a valid entity type (not NONE); AND ii) their NN

scores exceed a global pruning threshold.

Occasionally, some partially-overlapped or nested fragments may occur in the

above pruned prediction results. We can use one of the following simple post-

44

Algorithm 1 FOFE-NER TRAINING algorithm

1: procedure train(S, o, d, n)

. S: labeled sentence set

. n: maximum ner length

. o: overlap sample rate

. d: disjoint sample rate

2: data← {}

3: for [w1, w2, ..., wl] in S do

4: for i← 1...l do

5: for j ← i,min(l, i+ n− 1) do

6: f ← feature([wi, ..., wj])

7: t← label([wi, ..., wj])

8: if overlap([wi, ..., wj]) and rand(0, 1) > o then

9: continue

10: end if

11: if disjoint([wi, ..., wj]) and rand(0, 1) > d then

12: continue

13: end if

45

14: data← data ∪ {(f, t)}

15: end for

16: end for

17: end for

18: for minibatch in data do

19: DNNfofe.train(minibatch)

20: end for

21: end procedure

processing methods to remove overlappings from the final results:

1. highest-first: We check every word in a sentence. If it is contained by more

than one fragment in the pruned results, we only keep the one with the

maximum NN score and discard the rest. It is listed in Algorithm 4.

2. longest-first: We check every word in a sentence. If it is contained by more

than one fragment in the pruned results, we only keep the longest fragment

and discard the rest. It is listed in Algorithm 5.

Either of these strategies leads to a collection of non-nested, non-overlapping, non-

NONE entity labels.

In some tasks, it may require to label all nested entities. This has imposed a big

challenge to the sequence labeling methods. However, the above post-processing

46

can be slightly modified to generate nested entities’ labels. In this case, we first

run either highest-first or longest-first to generate the first round result. For every

entity survived in this round, we will recursively run either highest-first or longest-

first on all entities in the original set, which are completely contained by it. The

decoding precedure is detailed in Algorithm 2 and Algorithm 3. This will generate

more prediction results. This process may continue to allow any levels of nesting.

For example, for a sentence of “w1 w2 w3 w4 w5”, if the model first generates the

prediction results after the global pruning, as [“w2w3”, PER, 0.7], [“w3w4”, LOC,

0.8], [“w1w2w3w4”, ORG, 0.9], if we choose to run highest-first, it will generate the

first entity label as [“w1w2w3w4”, ORG, 0.9]. Secondly, we will run highest-first

on the two fragments that are completely contained by the first one, i.e., [“w2w3”,

PER, 0.7], [“w3w4”, LOC, 0.8], then we will generate the second nested entity label

as [“w3w4”, LOC, 0.8]. Fortunately, in any real NER and MD tasks, it is pretty rare

to have overlapped predictions in the NN outputs. Therefore, the extra expense to

run this recursive post-processing method is minimal.

5.4 Second-Pass Augmentation

As we know, CRF brings marginal performance gain to all taggers (but not limited

to NER) because of the dependencies (though fairly weak) between entity types.

We may easily add this level of information to our model by introducing another

47

Algorithm 2 ELIMINATE OVERLAP algorithm

1: procedure del recur(scores, [algo1, algo2, ..., algox], [t1, t2, ..., tx])

. x: desired level of nested mention

. [t1, t2, ..., tx]: threshold at each nested level

. scores: (i, j, labeli,j, scorei,j) tuples

. n: maximum ner length

2: assert algo1 ∈ { highest–first, longest–first}

3: candidates← {(i, j, labeli,j, scorei,j)|

(i, j, labeli,j, scorei,j) ∈ scores and scorei,j ≥ t1}

4: result← algo1(candidates)

5: nested← {}

6: for (i, j, labeli,j, scorei,j) ∈ result do

7: sub← {(x, y, labelx,y, scorex,y)|

(x, y, labelx,y, scorex,y) ∈ scores and (i ≤ x ≤ y < j or i < x ≤ y ≤ j)}

8: nested← nested ∪ DEL RECUR(sub, [algo2, algo3, ..., algox], [t2, t3, ..., tx])

9: end for

10: return result ∪ nested

11: end procedure

48

Algorithm 3 FOFE-NER DECODING algorithm

1: procedure decode([w1, w2, ..., wl],

[algo1, algo2, ..., algox], [t1, t2, ..., tx], n)

. [w1, w2, ..., wl]: a sentence

. n: maximum ner length

. x: level of desired nested mention to detect

. [t1, t2, ..., tx]: threshold at each nested level

. [algo1, algo2, ..., algox]: algorithms used to eliminate overlapping of each

nested level

2: r ← {} . r: temporary results

3: for i← 1...l do

4: for j ← i...min(l, i+ n− 1) do

5: f ← feature([wi, ..., wj])

6: labeli,j, scorei,j ← DNNfofe.eval(f)

7: if labeli,j 6= NONE then

8: r ← r ∪ {(i, j, labeli,j, scorei,j)}

9: end if

10: end for

11: end for

12: end procedure

49

Algorithm 4 HIGHEST-FIRST DECODING algorithm

1: function highest1st(scores, l)

. scores: (i, j, labeli,j, scorei,j) tuples

. l: sentence length

2: for k ← 1...l do

3: removed← {}

4: candidates← {(i, j, labeli,j, scorei,j)|

(i, j, labeli,j, scorei,j) ∈ scores and i ≤ k ≤ j}

5: candidates← sortByScore(candidates)

6: if |candidates| > 0 then

7: candidates← removeHighestScore(candidates)

8: end if

9: removed← removed ∪ candidates

10: end for

11: estimate← sortByStartIdx(scores− removed)

12: estimate← mergeAdjacientOfSameType(estimate)

13: return estimate

14: end function

50

Algorithm 5 LONGEST-FIRST DECODING algorithm

1: function longest1st(scores, l)

. scores: (i, j, labeli,j, scorei,j) tuples

. l: sentence length

2: best← createEmptyList()

3: candidate← createHashedMap()

4: for (i, j, labeli,j, scorei,j) ∈ scores do candidate[(i, j)]← labeli,j

5: end for

6: for i← 1...l do

7: cur ← createEmptyList()

8: if (1, i) ∈ candidate then

9: cur.insert((1, i))

10: best.insert((1, cur))

11: else

12: best.insert((0, cur))

13: end if

14: for j ← 1...i do

15: newLen← best[j][0] + i− j + 1

16: if (j, i) ∈ candidate and newLen > head(lastOf(best)) then

17: best.pop()

51

18: best.insert((newLen, (j + 1, i+ 1))

19: end if

20: end for

21: last, secondLast← lastOf(best), secondLastOf(best)

22: if i > 1 and head(last) > head(secondLast) then

23: best.pop()

24: best.insert(secondLast)

25: end if

26: end for

27: estimate← mergeAdjacientOfSameType(estimate)

28: return estimate

29: end function

52

pass of FOFE-NER. We call it 2nd-pass FOFE-NER.

In 2nd-pass FOFE-NER, another set of model is trained on outputs from the

first-pass FOFE-NER, including all predicted entities. For example, given a sen-

tence

S = [w1, w2, ...wi, ...wj, ...wn]

and an underlying word segment [wi, ..., wj] in the second pass, every predicted

entity outside this segment is substituted by its entity type predicted from the first

pass. For example, in the first pass, a sentence like “Google has also recruited Fei-

Fei Li, director of the AI lab at Stanford University.” is predicted as: “<ORG>

has also recruited Fei-Fei Li, director of the AI lab at <ORG>.” In 2nd-pass

FOFE-NER, when examining the segment “Fei-Fei Li”, the predicted entity types

<ORG> are used to replace the actual named entities. The 2nd-pass FOFE-NER

model is trained on the outputs of the first pass, where all detected entities are

replaced by their predicted types as above. The training process is depicted in

Figure 5.2.

During inference, the results returned by the 1st-pass model are substituted in

the same way. The scores for each hypothesis from 1st-pass model and 2nd-pass

model are linear interpolated and then decoded by either highest-first or longest-first

to generate the final results of 2nd-pass FOFE-NER.

Obviously, 2nd-pass FOFE-NER may capture the semantic roles of other en-

53

Figure 5.2: Illustration of the 2nd-pass Augmentation

tities while filtering out unwanted constructs and sparse combinations. On the

other hand, it enables longer context expansion, since FOFE memorizes contextual

information in an unselective decaying fashion.

5.5 Experiment Results

In this section, we evaluate the effectiveness of our proposed methods on several

popular NER and MD tasks, including CoNLL 2003 NER task and TAC-KBP2015

54

and TAC-KBP2016 Tri-lingual Entity Discovery and Linking (EDL) tasks. 5

5.5.1 CoNLL 2003 NER task

The CoNLL2003 dataset [47] consists of newswire from the Reuters RCV1 corpus

tagged with four types of non-nested named entities: location (LOC), organiza-

tion (ORG), person (PER), and miscellaneous (MISC). Table 5.2 shows the data

distribution of CoNLL2003 dataset.

The top 100,000 words, are kept as vocabulary, including punctuations. For the

case-sensitive embedding, an OOV is mapped to<unk>; if it contains no upper-case

letter and <UNK>; otherwise. We perform grid search on several hyper-parameters

using a held-out dev set. Here we summarize the set of hyper-parameters used in

our experiments:

• Learning rate: initially set to 0.128 and is multiplied by a decay factor each

epoch so that it reaches 1/16 of the initial value at the end of the training;

• Network structure: 3 fully-connected layers of 512 nodes with ReLU activa-

tion, randomly initialized based on a uniform distribution between −
√

6
Ni+No

and
√

6
Ni+No

[15];

• Character embeddings: 64 dimensions, randomly initialized between -1 and 1.

5We have made our codes available at https://github.com/xmb-cipher/fofe-ner for read-
ers to reproduce the results in this paper.

55

FEATURE P R F1

word-level

case-insensitive

context FOFE incl. word fragment 86.64 77.04 81.56

context FOFE excl. word fragment 53.98 42.17 47.35

BoW of word fragment 82.92 71.85 76.99

case-sensitive

context FOFE incl. word fragment 88.88 79.83 84.12

context FOFE excl. word fragment 50.91 42.46 46.30

BoW of word fragment 85.41 74.95 79.84

char-level
Char FOFE of word fragment 67.67 52.78 59.31

Char CNN of word fragment 78.93 69.49 73.91

all case-insensitive features 90.11 82.75 86.28

all case-sensitive features 90.26 86.63 88.41

all word-level features 92.03 86.08 88.96

all word-level & Char FOFE features 91.68 88.54 90.08

all word-level & Char CNN features 91.80 88.58 90.16

all word-level & all char-level features 93.29 88.27 90.71

Table 5.1: Effect of various FOFE feature combinations on the CoNLL2003

56

Articles Sentences Tokens LOC MISC ORG PER

train 946 14,987 203,621 7,140 3,438 6,321 6,600

dev 216 3,466 51,362 1,837 922 1,341 1,842

test 231 3,684 46,435 1,668 702 1,661 1,617

Table 5.2: Data distribution of CoNLL2003

• mini-batch: 512;

• Dropout Rate: initially set to 0.4, slowly decreased during training until it

reaches 0.1 at the end.

• Number of Epochs: 128;

• Word Embedding: case-sensitive and case-insensitive word embeddings of 256

dimensions, trained from Reuters RCV1;

• We stick to the official data train-dev-test partition.

• Forgetting Factor: α = 0.5. 6

• Character CNN: The same method in Section 2.2.2 is applied. 8 sets of kernels

are used, whose heights range from 2 to 9. Each set of kernels of depth 16.

6The choice of the forgetting factor α is empirical. We’ve evaluated α = 0.5, 0.6, 0.7, 0.8 on a
development set in some early experiments. It turns out that α = 0.5 is the best. As a result,
α = 0.5 is used for all NER/MD tasks throughout this paper.

57

The character embedding is not shared with FOFE character embedding but

initialized in the same way.

We have investigated the performance of our method on the CoNLL-2003 dataset

by using different combinations of the FOFE features (both word-level and character-

level). The detailed comparison results are shown in Table 5.1. In Table 5.3, we

have compared our best performance with some top-performing neural network sys-

tems on this task. As we can see from Table 5.3, our system (highest-first decoding)

yields very strong performance (90.85 in F1 score) in this task, outperforming most

of neural network models reported on this dataset. More importantly, we have not

used any hand-crafted features in our systems, and all features (either word or char

level) are automatically derived from the data. Highest-first and longest-first per-

form similarly. In [8]7, a slightly better performance (91.62 in F1 score) is reported

but a customized gazetteer is used in theirs.

5.5.2 KBP2015 EDL Task

Given a document collection in three languages (English, Chinese and Spanish),

the KBP2015 tri-lingual EDL task [26] requires to automatically identify entities

(including nested entities) from a source collection of textual documents in

7In their work, they have used a combination of training-set and dev-set to train the model,
differing from all other systems (including ours) in Table 5.3.

58

algorithm word char gaz cap pos F1

CNN-BLSTM-CRF [9] 3 7 3 3 7 89.59

BLSTM-CRF [24] 3 3 3 3 3 90.10

BLSTM-CRF [46] 3 7 3 3 3 89.28

BLSTM-CRF, char-CNN [8] 3 3 3 7 7 91.62

Stack-LSTM-CRF, char-LSTM [32] 3 3 7 7 7 90.94

FOFE-NER

3 3 7 7 7

90.71

FOFE-NER + dev-set 90.92

FOFE-NER + 2nd-pass 90.85

FOFE-NER + dev-set + 2nd-pass 91.17

Table 5.3: Performance (F1 score) comparison among various neural models re-

ported on the CoNLL2003 dataset, and the different features used in these meth-

ods.

59

English Chinese Spanish ALL

Train 168 147 129 444

Eval 167 167 166 500

Table 5.4: Number of Documents in KBP2015

multiple languages as in Table 5.4, and classify them into one of the following

pre-defined five types: Person (PER), Geo-political Entity (GPE), Organization

(ORG), Location (LOC) and Facility (FAC). The corpus consists of news articles

and discussion forum posts published in recent years, related but non-parallel across

languages.

Three models are trained and evaluated independently. Unless explicitly listed,

hyperparameters follow those used for CoNLL2003 as described in section 5.5.1 and

2nd-pass model is not used. Three sets of word embeddings of 128 dimensions are

derived from English Gigaword [44], Chinese Gigaword [16] and Spanish Gigaword

[38] respectively. Some language-specific modifications are made:

• Chinese: Because Chinese segmentation is not reliable, we label Chinese at

character level. The analogous roles of case-sensitive word-embedding and

case-sensitive word-embedding are played by character embedding and word-

embedding in which the character appears. Neither Char FOFE features nor

Char CNN features are used for Chinese.

60

2015 track best ours

P R F1 P R F1

Trilingual 75.9 69.3 72.4 78.3 69.9 73.9

English 79.2 66.7 72.4 77.1 67.8 72.2

Chinese 79.2 74.8 76.9 79.3 71.7 75.3

Spanish 78.4 72.2 75.2 79.9 71.8 75.6

Table 5.5: Entity Discovery Performance of our method on the KBP2015 EDL eval-

uation data, with comparison to the best systems in KBP2015 official evaluation.

• Spanish: Character set of Spanish is a super set of that of English. When

building character-level features, we use the mod function to hash each charac-

ter’s UTF8 encoding into a number between 0 (inclusive) and 128 (exclusive).

As shown in Table 5.5, our FOFE-based local detection method has obtained

fairly strong performance in the KBP2015 dataset. The overall trilingual entity

discovery performance is slightly better than the best systems participated in the

official KBP2015 evaluation, with 73.9 vs. 72.4 as measured by F1 scores. Outer

and inner decodings are longest-first and highest-first respectively.

61

LANG
OVERALL 2016 BEST

P R F1 P R F1

ENG 0.836 0.680 0.750 0.846 0.710 0.772

CMN 0.789 0.625 0.698 0.789 0.737 0.762

SPA 0.835 0.602 0.700 0.839 0.656 0.736

ALL 0.819 0.639 0.718 0.802 0.704 0.756

Table 5.6: Official entity discovery performance of our methods on KBP2016 trilin-

gual EDL track. Neither KBP2015 nor in-house data labels nominal mentions.

Nominal mentions in Spanish are totally ignored since no training data is found for

them.

62

English Chinese Spanish ALL

Eval 167 168 168 503

Table 5.7: Number of Documents in KBP2016

5.5.3 KBP2016 EDL task

In KBP2016, the trilingual EDL task is extended to detect nominal mentions of

all 5 entity types for all three languages. In our experiments, for simplicity, we

treat nominal mention types as some extra entity types and detect them along

with named entities together with a single model.

training data P R F1

KBP2015 0.836 0.598 0.697

KBP2015 + WIKI 0.837 0.628 0.718

KBP2015 + in-house 0.836 0.680 0.750

Table 5.8: Our entity discovery official performance (English only) in KBP2016 is

shown as a comparison of three models trained by different combinations of training

data sets.

63

5.5.3.1 Data Description

No official training set is provided in KBP2016. We make use of three sets of

training data:

• Training and evaluation data in KBP2015: as described in 5.5.2

• Machine-labeled Wikipedia (WIKI): When terms or names are first

mentioned in a Wikipedia article they are often linked to the corresponding

Wikipedia page by hyperlinks, which clearly highlights the possible named en-

tities with well-defined boundary in the text. We have developed a program

to automatically map these hyperlinks into KBP annotations by exploring

the infobox (if existing) of the destination page and/or examining the corre-

sponding Freebase types. In this way, we have created a fairly large amount of

weakly-supervised trilingual training data for the KBP2016 EDL task. Mean-

while, a gazeteer is created and used in KBP2016.

• In-house dataset: A set of 10,000 English and Chinese documents is manu-

ally labeled using some annotation rules similar to the KBP 2016 guidelines.

We split the available data into training, validation and evaluation sets in a

ratio of 90:5:5. The models are trained for 256 epochs if the in-house data is not

used, and 64 epochs otherwise.

64

5.5.3.2 Effect of various training data

In our first set of experiments, we investigate the effect of different training data sets

on the final entity discovery performance. Different training runs are conducted on

different combinations of the aforementioned data sources. In Table 5.8, we have

summarized the official English entity discovery results from several systems we

submitted to KBP2016 EDL evaluation round I and II. The first system, using

only the KBP2015 data to train the model, has achieved 0.697 in F1 score in the

official KBP2016 English evaluation data. After adding the weakly labeled data,

WIKI, we can see the entity discovery performance is improved to 0.718 in F1 score.

Moreover, we can see that it yields even better performance by using the KBP2015

data and the in-house data sets to train our models, giving 0.750 in F1 score.

5.5.3.3 The official trilingual EDL performance in KBP2016

The official best results of our system are summarized in Table 5.6. We have bro-

ken down the system performance according to different languages and categories

of entities (named or nominal). Our system, achieving 0.718 in F1 score in the

KBP2016 trilingual EDL track, ranks second among all participants. Note that

our result is produced by a single system while the top system is a combination of

two different models, each of which is based on 5-fold cross-validation [33].

65

6 Conclusion

6.1 Conclusion

In this thesis, we propose to use Fixed-size Ordinally Forgetting Encoding

(FOFE), which demonstrates powerful modeling ability and great computational

efficiency. Unique encoding is theoretically guaranteed. Any sequence of variable

length can be encoded into a fixed-size vector. Dimensionality depends on vocabu-

lary size only. It is much more friendly to machine learning algorithms that requires

fixed-size input, such as FeedForward Neural Network (FFNN).

By applying FOFE, we nicely address two fundamental problems in NLP, Lan-

guage Modeling (LM) and Named Entity Recognition (NER). Extensive

experiments are conducted and the efficiency is evaluated in detail. To the best of

our knowledge, this is the first piece of work of sequence modeling without any re-

current feedback in deep learning, which obtains great parallelism while maintains

strong performance.

Inspired by the way how human finds and classifies, we also propose a local de-

66

tection algorithm for NER. Contextual information is losslessly encoded by FOFE.

Our local decision is made by global information. It ranked 2nd place and is the

best single-model system in the EDL track of KBP2016 [25].

6.2 Future Works

There are several possible improvements, which could be done in the future. We

divide them into three directions:

Language Modeling Since character FOFE is shown to be beneficial in NER,

it is worth investigating whether character FOFE is a good complement or

replacement of word embedding. Complicated network structures such as

residual network seem to be good candidates of avoiding gradient vanishing.

We may plug FOFE into other hidden layers.

Named Entity Recognition Chinese is currently modeled at character level.

However, character can be further decomposed into radicals. The analogous

role of character embedding in English could be played by radical embedding

in Chinese.

Other Applications FOFE is a general approach for sequence modeling. We

would like to explore other tasks requiring sequence modeling, such as Ques-

tion Answering (QA) and Word Sense Disambiguation (WSD).

67

7 Accomplishment during MSc Study

The author of this work has the following publications accomplished during his MSc

Study. This thesis is the extension of some of them.

7.1 Publication

• A Local Detection Approach for Named Entity Recognition and

Mention Detection [53].

In this paper, a novel approach for named entity recognition (NER) and

mention detection (MD) in natural language processing (NLP) is investigated.

It was accepted in the Conference of Association of Computational Linguistics

ACL2017, and was awarded as one of the 22 outstanding papers.

• Word Embeddings based on Fixed-Size Ordinally Forgetting En-

coding [48].

In this paper, the authors propose to learn word embeddings based on the

recent fixed-size ordinally forgetting encoding (FOFE) method. It was ac-

68

cepted in Conference on Empirical Methods in Natural Language Processing

(EMNLP2017)

• The YorkNRM Systems for Trilingual EDL Tasks at TAC KBP

2016 [54].

This paper describes the YorkNRM systems submitted to the Trilingual En-

tity Detection and Linking (EDL) track in 2016 TAC Knowledge Base Pop-

ulation (KBP) contests.

• The Fixed-Size Ordinally-Forgetting Encoding Method for Neural

Network Language Models [56].

In this paper, the new fixed-size ordinally-forgetting encoding (FOFE) method

is proposed, which can almost uniquely encode any variable-length sequence

of words into a fixed-size representation. It was accepted in ACL2015.

• Cardinality Estimation Using Neural Networks [34].

This paper presents a novel approach using neural networks to learn and

approximate selectivity functions that take a bounded range on each column

as input, effectively estimating selectivities for all relational operators. It was

accepted in Center for Advanced Studies Conference (CASCON) organized

by IBM in 2015. It was awarded the best student paper in the conference.

69

7.2 Patents

• Cardinality estimation Using Artificial Neural Networks [10, 11].

This invention generates an artificial neural network to estimate the selectivity

of one or more predicates in database management system (DBMS), which in

turn benefits query optimization.

7.3 Awards

• 2nd Place of EDL in KBP2016 [25].

The author submitted a system to the Entity Discover and Linking

(EDL) track in Knowledge Base Population (KBP) contest organized

by NIST. The submitted system ranked second place even though it was the

author’s first participation. It was also the best single-model system among

all participants.

70

Bibliography

[1] R. E. Bellman. Adaptive control processes: a guided tour. Princeton university

press, 2015.

[2] Y. Bengio and R. Ducharme. A neural probabilistic language model. Proceeding

of NIPS, 13, 2001.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilis-

tic language model. Journal of machine learning research, 3(Feb):1137–1155,

2003.

[4] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–

166, mar 1994.

[5] A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman. Exploiting diverse

knowledge sources via maximum entropy in named entity recognition. In Proc.

of the Sixth Workshop on Very Large Corpora, volume 182, 1998.

71

[6] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robin-

son. One billion word benchmark for measuring progress in statistical language

modeling. arXiv preprint arXiv:1312.3005, 2013.

[7] X. Chen, Y. Wang, X. Liu, M. J. Gales, and P. C. Woodland. Efficient gpu-

based training of recurrent neural network language models using spliced sen-

tence bunch. In Interspeech, volume 14, pages 641–645, 2014.

[8] J. P. C. Chiu and E. Nichols. Named entity recognition with bidirectional

LSTM-CNNs. Transactions of the Association for Computational Linguistics,

4:357–370, 2016.

[9] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.

Natural language processing (almost) from scratch. Journal of Machine Learn-

ing Research, 12(Aug):2493–2537, 2011.

[10] V. Corvinelli, H. Liu, M. Xu, Z. Yu, and C. P. Zuzarte. Cardinality estimation

using artificial neural networks, Mar. 5 2015. US Patent App. 14/639,157.

[11] V. Corvinelli, H. Liu, M. Xu, Z. Yu, and C. P. Zuzarte. Cardinality estimation

using artificial neural networks, Mar. 23 2016. US Patent App. 15/078,302.

[12] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with

gated convolutional networks. arXiv preprint arXiv:1612.08083, 2016.

72

[13] C. dos Santos, V. Guimaraes, R. Niterói, and R. de Janeiro. Boosting named

entity recognition with neural character embeddings. In Proceedings of NEWS

2015 The Fifth Named Entities Workshop, page 25. Association for Computa-

tional Linguistics (ACL), 2015.

[14] J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, mar

1990.

[15] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks.

In International Conference on Artificial Intelligence and Statistics. JMLR

W&CP:, volume 15, pages 315–323, 2011.

[16] D. Graff and K. Chen. Chinese gigaword. LDC Catalog No.: LDC2003T09,

ISBN, 1:58563–58230, 2005.

[17] A. Graves. Neural networks. In Supervised Sequence Labelling with Recurrent

Neural Networks, pages 15–35. Springer, 2012.

[18] A. Graves. Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850, 2013.

[19] A. Graves and J. Schmidhuber. Offline handwriting recognition with mul-

tidimensional recurrent neural networks. In Advances in neural information

processing systems, pages 545–552, 2009.

73

[20] M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new esti-

mation principle for unnormalized statistical models. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics,

pages 297–304, 2010.

[21] Z. S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[22] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[23] K. Hornik. Approximation capabilities of multilayer feedforward networks.

Neural Networks, 4(2):251–257, jan 1991.

[24] Z. Huang, W. Xu, and K. Yu. Bidirectional LSTM-CRF models for sequence

tagging. arXiv preprint arXiv:1508.01991, 2015.

[25] H. Ji, J. Nothman, and H. T. Dang. Overview of tac-kbp2016 tri-lingual

EDL and its impact on end-to-end cold-start. In Proceedings of Text Analysis

Conference (TAC2016), 2016.

[26] H. Ji, J. Nothman, and B. Hachey. Overview of tac-kbp2015 tri-lingual entity

discovery and linking. In Proceedings of Text Analysis Conference (TAC2015),

2015.

74

[27] S. Ji, S. Vishwanathan, N. Satish, M. J. Anderson, and P. Dubey. Black-

out: Speeding up recurrent neural network language models with very large

vocabularies. arXiv preprint arXiv:1511.06909, 2015.

[28] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the

limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

[29] S. Katz. Estimation of probabilities from sparse data for the language model

component of a speech recognizer. IEEE Transactions on Acoustics, Speech,

and Signal Processing, 35(3):400–401, mar 1987.

[30] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. Character-aware neural

language models. In AAAI. Citeseer, 2016.

[31] R. Kneser and H. Ney. Improved backing-off for m-gram language modeling.

In 1995 International Conference on Acoustics, Speech, and Signal Processing.

IEEE.

[32] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer.

Neural architectures for named entity recognition. arXiv preprint

arXiv:1603.01360, 2016.

[33] D. Liu, W. Lin, S. Zhang, S. Wei, and H. Jiang. Neural networks models for

entity discovery and linking. arXiv preprint arXiv:1611.03558, 2016.

75

[34] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. Cardinality estimation

using neural networks. In Proceedings of the 25th Annual International Confer-

ence on Computer Science and Software Engineering, pages 53–59. IBM Corp.,

2015.

[35] Q. Liu, H. Jiang, S. Wei, Z.-H. Ling, and Y. Hu. Learning semantic word

embeddings based on ordinal knowledge constraints. In Proceedings of the

53rd Annual Meeting of the Association for Computational Linguistics and the

7th International Joint Conference on Natural Language Processing (Volume

1: Long Papers), pages 1501–1511, Beijing, China, July 2015. Association for

Computational Linguistics.

[36] M. Mahoney. Large text compression benchmark, 2011.

[37] A. A. Markov. Theory of algorithms. 1957.

[38] A. Mendonca, D. A. Graff, and D. DiPersio. Spanish gigaword second edition.

Linguistic Data Consortium, 2009.

[39] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent

neural network based language model. In Interspeech, volume 2, page 3, 2010.

[40] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur. Exten-

sions of recurrent neural network language model. In 2011 IEEE International

76

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, may

2011.

[41] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed

representations of words and phrases and their compositionality. In Advances

in neural information processing systems, pages 3111–3119, 2013.

[42] T. Mikolov and G. Zweig. Context dependent recurrent neural network lan-

guage model. In 2012 IEEE Spoken Language Technology Workshop (SLT).

IEEE, dec 2012.

[43] T.-V. T. Nguyen, A. Moschitti, and G. Riccardi. Kernel-based reranking for

named-entity extraction. In Proceedings of the 23rd International Conference

on Computational Linguistics: Posters, pages 901–909. Association for Com-

putational Linguistics, 2010.

[44] R. Parker, D. Graff, J. Kong, K. Chen, and K. Maeda. English gigaword.

Linguistic Data Consortium, 2011.

[45] B. T. Polyak. Some methods of speeding up the convergence of iteration meth-

ods. USSR Computational Mathematics and Mathematical Physics, 4(5):1–17,

1964.

77

[46] M.-A. Rondeau and Y. Su. LSTM-based NeuroCRFs for named entity recogni-

tion. In Interspeech 2016, pages 665–669. International Speech Communication

Association, sep 2016.

[47] E. F. T. K. Sang and F. D. Meulder. Introduction to the conll-2003 shared task:

Language independent named entity recognition. In Proceedings of the Sev-

enth Conference on Natural Language Learning at HLT-NAACL 2003,, page

142147, 2003.

[48] J. Sanu, M. Xu, H. Jiang, and Q. Liu. Word embeddings based on fixed-size

ordinally forgetting encoding. In Proceedings of the 2017 Conference on Em-

pirical Methods in Natural Language Processing, pages 310–315. Association

for Computational Linguistics, 2017.

[49] N. Shazeer, J. Pelemans, and C. Chelba. Sparse non-negative matrix language

modeling for skip-grams. In Proceedings Interspeech 2015, pages 1428–1432,

2015.

[50] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. Journal

of machine learning research, 15(1):1929–1958, 2014.

78

[51] A. Viterbi. Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm. IEEE Transactions on Information Theory,

13(2):260–269, apr 1967.

[52] P. Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990.

[53] M. Xu, H. Jiang, and S. Watcharawittayakul. A local detection approach for

named entity recognition and mention detection. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics. Association

for Computational Linguistics (ACL), 2017.

[54] M. Xu, F. Wei, S. Watcharawittayakul, Y. Kang, and H. Jiang. The yorknrm

systems for trilingual edl tasks at tac kbp 2016. In Proceedings of the 9th Text

Analysis Conference (TAC2016), 2016.

[55] S. Zhang, H. Jiang, M. Xu, J. Hou, and L. Dai. A fixed-size encoding method

for variable-length sequences with its application to neural network language

models. arXiv preprint arXiv:1505.01504., 2015.

[56] S. Zhang, H. Jiang, M. Xu, J. Hou, and L. Dai. The fixed-size ordinally-

forgetting encoding method for neural network language models. In Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics

79

and the 7th International Joint Conference on Natural Language Processing

(Volume 2: Short Papers). Association for Computational Linguistics (ACL),

2015.

80

