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Abstract	

Recent	advances	in	fabrication	techniques	have	enabled	the	creation	of	novel	materials	with	

enhanced	mechanical	properties	commonly	known	as	metamaterials.	They	refer	to	materials	

consisting	of	a	unit	cell	tessellated	in	three	orthogonal	directions	with	dimensions	scaling	

down	to	the	nanoscale.	The	objective	of	this	research	was	to	describe	the	effective	properties	

of	the	octet‐truss	unit	cell	at	different	lattice	angles	and	loading	directions.	The	research	is	

composed	of	three	consecutive	parts.	The	first	part	addressed	the	analytical	derivation	of	the	

continuum‐based	model	while	including	the	lattice	angle.	The	second	part	demonstrated	the	

impact	 of	 the	 lattice	 angle	 on	 its	 effective	 properties,	 namely	 relative	 density,	 effective	

stiffness,	 and	 effective	 strength.	 Finally,	 potential	 in	 lattice	 structure	 optimization	 is	

demonstrated	 through	 an	 experimental	 study.	 This	 work	 addressed	 optimizing	 the	

structural	configuration	of	the	octet‐truss,	which	when	combined	with	favorable	size	effects,	

would	unlock	the	full	potential	of	mechanical	metamaterials	as	load‐bearing	structures.	
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Notations	

	ߠ Lattice	angle	

	ߩ̅ Relative	density	

	௘௙௙ܧ Macroscopic/effective	elastic	modulus	

	௘௙௙ߪ Macroscopic/effective	strength	

ܼ	 Nodal	connectivity	

	ܮ Base	side	length	of	the	tetrahedron	prism	(section	3.1)	

	 Length	of	square	rod	(section	3.2)	

	௖ܣ Cross‐sectional	area	of	the	tetrahedron	truss	members	

Σ௜௝	 Effective	stress	

	௜௝ܧ Effective	strain	(section	3.1)	

	 Strain	tensor	of	the	bulk	body	(section	3.2)	

	ሺ௞ሻߪ Local	stress	in	member	݇	

	ሺ௞ሻߝ Local	strain	in	member	݇	

	ሺ௞ሻܣ Cross‐sectional	area	of	member	݇	

	ሺ௞ሻܮ Length	of	member	݇	

௩ܸ
ሺ௞ሻ	 Volume	fraction	of	member	݇	

௜ܰ௝
ሺ௞ሻ	 Linear	operator	describing	the	transformation	from	local	to	global	

coordinates	of	member	݇		

݊௜, ௝݊	 Direction	vector	components	of	member	݇	

௦ܧ
ሺ௞ሻ	 Elastic	modulus	of	the	constituent	material	of	member	݇	

	௜௝௞௟ܥ Macroscopic	stiffness	tensor	

௜ܵ௝௞௟	 Macroscopic	compliance	tensor	

ܴ	 Radius	of	circular	solid	rod	

	 Mean	radius	of	circular	hollow	rod	

ܲ	 Tensile	force	
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݀	 Infinitesimal	film	thickness	

	௜௝ߪ Stress	tensor	of	the	bulk	body	

߬௜௝	 Stress	tensor	of	the	surface	

	௜௝ߝ Strain	tensor	of	the	surface	

,ߣ 	ߤ Lame’s	constants	of	the	bulk	body	

,௦ߣ 	௦ߤ Lame’s	constants	of	the	surface	

	௕ܧ Elastic	modulus	of	the	bulk	body	

	௦ܧ Elastic	modulus	of	the	surface	

	௭௭ܧ Uniaxial	bulk	body	strain	in	the	z	direction	

	௭௭ߝ Uniaxial	surface	strain	in	the	z	direction	

݀Ω	 Infinitesimal	cross‐sectional	area	of	the	bulk	body	

	ݏ݀ Infinitesimal	cross‐sectional	area	of	the	surface	

	௙ܧ Effective	elastic	modulus	of	the	homogenous	rod	

ܴ௖	 Critical	radius	of	the	homogenous	rod	

	ݐ Thickness	of	circular	hollow	rod	

	௖ݐ Critical	thickness	of	homogenous	hollow	rod	

ܽ	 Width	of	square	rod	

	ݎ Radius	of	individual	tetrahedron	member	

ଵଵܧ
ᇱᇱ 	 Effective	elastic	modulus	in	a	general	direction	defined	by	ݔᇱᇱ	axis	

ଵܵଵ
ᇱᇱ 	 Effective	compliance	in	a	general	direction	defined	by	ݔᇱᇱ	axis	

ሼߪ௫௬௭ሽ	 Stress	vector	in	ݔ, ,ݕ 	system	coordinate	ݖ

ሼߪ௫௬௭ᇱ ሽ	 Stress	vector	in	ݔᇱ, ,ᇱݕ 	system	coordinate	ᇱݖ

ሼߪ௫௬௭ᇱᇱ ሽ	 Stress	vector	in	ݔᇱᇱ, ,ᇱᇱݕ 	system	coordinate	ᇱᇱݖ

ሾ ଵܶሿ	 First	stress	transformation	matrix	between	ݔ, ,ݕ ,ᇱݔ	and	ݖ ,ᇱݕ 	ᇱݖ

ሾ ଷܶሿ	 Second	stress	transformation	matrix	between	ݔᇱ, ,ᇱݕ ,ᇱᇱݔ	and	ᇱݖ ,ᇱᇱݕ 	ᇱᇱݖ

ሾ ଶܶሿ	 First	strain	transformation	matrix	between	ݔ, ,ݕ ,ᇱݔ	and	ݖ ,ᇱݕ 	ᇱݖ

ሾ ସܶሿ	 Second	strain	transformation	matrix	between	ݔᇱ, ,ᇱݕ ,ᇱᇱݔ	and	ᇱݖ ,ᇱᇱݕ 	ᇱᇱݖ

ሾܵᇱሿ	 Compliance	tensor	in	ݔᇱ, ,ᇱݕ 	system	coordinate	ᇱݖ

ሾܵᇱᇱሿ	 Compliance	tensor	in	ݔᇱᇱ, ,ᇱᇱݕ 	system	coordinate	ᇱᇱݖ
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,ߙ ߶	 Angles	defining	the	general	loading	direction	along	ݔᇱᇱ	axis	

	ܩ Effective	shear	modulus	

	ߥ Effective	Poisson’s	ratio	

	௜̅௝ߝ Effective/macroscopic	strain	

ሾߪതᇱᇱሿ	 General	stress	tensor	applied	through	a	general	direction	along	ݔᇱᇱ	axis	

	୪୧୫ߪ Limit	stress	of	the	constituent	material	of	the	tetrahedron	members	

	ത௠௔௫ߪ Maximum	effective	lattice	strength	

	ത௭௭ߪ Effective	compressive	stress	applied	along	the	ݖ	axis	

	ത௫௭ߪ Effective	shear	stress	applied	along	the	ݔ െ 	plane	ݖ

	ത௫௫ߪ Effective	compressive	stress	applied	along	the	ݔ	axis	

	ത௬௬ߪ Effective	compressive	stress	applied	along	the	ݕ	axis	

	௬ߪ Yield	strength	of	the	constituent	material	of	the	tetrahedron	members	

	௟௔௧௧௜௖௘ܧ Elastic	modulus	of	the	lattice	structure	
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Chapter	1 Introduction	and	Justification	

Summary:	In	this	chapter,	we	define	the	problem,	justify	the	undertaking	of	the	study	and	

outline	the	method	of	approach	adopted	in	achieving	the	intended	objectives.	Furthermore,	

we	provide	a	summary	of	the	layout	of	the	thesis.	

1.1. Structural	Metamaterials	

Architectural	materials	refer	to	materials	consisting	of	a	unit	cell	that	is	tessellated	in	three	

dimensions	to	form	a	lattice	structure.	With	the	advent	of	size	effects	in	the	form	of	different	

mechanical	properties	at	dimensions	on	the	micro	and	nano	lengthscales,	the	new	field	of	

metamaterials	came	to	light.	To	fully	unlock	the	potential	of	mechanical	metamaterials,	size	

effects	need	to	be	combined	with	structural	effects,	which	refer	to	optimally	arranging	the	

individual	members	in	the	best	possible	configuration	to	carry	the	loads.	

Different	 types	 of	 lattice	 structures	 have	 been	 studied	 in	 the	 past	 for	 a	 wide	 range	 of	

applications	 such	 as	 space	 structures	 and	 sandwich	 panels.	 The	 octet‐truss	 is	 one	 of	 the	

favorable	unit	cells	due	to	its	efficient	stretching‐dominated	behavior.	However,	the	previous	

research	 didn’t	 fully	 describe	 its	 properties	 since	 the	 new	 application	 of	 mechanical	

metamaterials	was	not	in	mind.	

1.2. Justification	of	the	Study	

A	number	of	studies	have	been	performed	on	the	octet‐truss	lattice	since	late	1960s.	Most	of	
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the	early	research	had	either	one	of	two	main	applications	in	mind;	large	space	structures	or	

sandwich	panels.	Two	of	the	significant	parameters	impacting	the	effective	properties	of	the	

octet‐truss	lattice	are	the	lattice	angle	parameter	and	the	loading	direction.	Both	of	which	

were	almost	totally	neglected	in	previous	studies	of	the	octet‐truss.	

Current	metamaterials	research	performed	on	the	octet‐truss	focuses	on	traditional	loading	

directions	along	the	ݔ, ,ݕ ߠ	angle	lattice	(i.e.	symmetry	cubic	of	case	the	and	axes ݖ ൌ 45°).	

The	optimal	 stiffness	and	strength	values	doesn’t	 always	align	with	 these	 configurations,	

which	hinders	the	full	utilization	of	lattice	structures	as	load	bearing	structures.	

From	this	aspect,	derivation	of	the	analytical	model	of	the	octet‐truss	lattice	while	including	

the	 lattice	angle	parameter	and	describing	 its	effective	properties	under	different	 loading	

conditions	are	crucial	steps	towards	fully	unlocking	its	potential.	

Metamaterials	have	potential	for	multi‐functional	applications,	for	instance	having	a	certain	

mechanical	 property	 with	 a	 thermal	 or	 electrical	 property	 such	 as	 thermal	 or	 electrical	

conductivity.	Hence,	the	same	material	can	perform	two	applications,	such	as	energy	storage	

and	mechanical	load‐carrying	capacity	[1].		In	addition,	metamaterials	have	the	potential	of	

creating	whole	new	classes	of	materials	with	unprecedented	properties,	such	as	exceptional	

load‐carrying	 capacity	 and	 tailored	 energy	 storage	 characteristics	 for	 mechanical	

metamaterials	[2].		

1.3. Research	Objectives	

This	 thesis	 is	 dedicated	 to	 studying	 the	 effective	 properties	 of	 the	 octet‐truss	 lattice	 at	

different	lattice	angles	and	different	loading	directions.	Specifically,	our	current	efforts	were	
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devoted	to:	

(i) Analytical	derivation	of	the	stiffness/compliance	tensors	of	the	octet‐truss	

lattice	while	including	the	lattice	angle	parameter	ߠ.	

(ii) Mathematically‐modeling	the	size	effects	of	metamaterials	in	the	

stiffness/compliance	tensors	of	the	octet‐truss.	

(iii) Extending	the	relative	density	formula	of	the	octet‐truss	to	include	the	lattice	

angle	parameter	up	to	a	higher‐order	approximation.	

(iv) Describing	the	effective	stiffness	of	the	octet‐truss	lattice	and	illustrating	its	

variation	with	the	lattice	angle	and	loading	direction.	

(v) Studying	the	effective	strength	of	the	octet‐truss	lattice	under	a	general	

loading	condition	and	demonstrating	its	spatial	distribution	using	

tridimensional	representations	and	collapse	surfaces.	

(vi) Demonstrating	the	potential	of	utilizing	the	octet‐truss’s	effective	properties	

in	lattice	structure	optimization	via	a	comparison	with	commercial	

optimization	software.	This	is	a	crucial	step	towards	fully	unlocking	the	

potential	of	metamaterials.	

1.4. Method	of	Approach	

The	first	step	towards	the	achievement	of	the	above‐mentioned	objectives	was	to	derive	the	

continuum‐based	model	of	the	octet‐truss	from	scratch	while	taking	into	account	the	lattice	
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angle	parameter.	This	was	performed	through	employing	symmetry	conditions	to	deduce	

the	 number	 of	 elastic	 constants	 and	 applying	 homogenization	 to	 determine	 their	 values.	

Following	this	step,	the	analytical	model	was	further	used	to	study	the	effective	properties	

of	 the	 octet‐truss.	 Namely;	 (i)	 the	 relative	 density	 formula	 was	 analytically	 extended	 to	

account	for	the	lattice	angle	parameter,	and	further	modified	using	curve	fitting	to	a	higher‐

order	approximation,	(ii)	the	effective	stiffness	behavior	was	studied	against	the	lattice	angle	

through	the	utilization	of	stiffness	tensor	transformations	and	analytical	formulas	describing	

the	maximum	 and	minimum	 as	well	 as	 the	 specific	 elastic	moduli,	 and	 (ii)	 the	 effective	

strength	 formula	 for	 a	 general	 loading	 direction	 was	 developed	 analytically,	 and	

subsequently	used	to	demonstrate	its	behavior	through	tridimensional	representations	and	

collapse	 surface	plots.	 Finally,	 potential	 in	 lattice	 structure	optimization	 is	 demonstrated	

through	a	comparison	with	a	commercial	FEA	software	and	experimentally	verified	through	

3D	printing	and	mechanical	testing.	

1.5. Layout	of	Thesis	

This	thesis	is	divided	into	six	chapters	in	total.	Following	this	brief	introduction,	Chapter	2	

provides	a	critical	and	comprehensive	review	of	the	relevant	work	available	in	literature	on	

the	effective	properties	of	the	octet‐truss	lattice	structure	and	identifies	the	knowledge	gaps.	

Chapter	3	 presents	 the	analytical	derivation	of	 the	 continuum‐based	model	of	 the	octet‐

truss	 while	 taking	 into	 account	 the	 lattice	 angle	 parameter.	 In	 addition,	 a	 mathematical	

representation	of	 the	 size	effects	 is	developed	 to	be	 included	 in	 the	 stiffness/compliance	

tensors.	 In	Chapter	4,	we	describe	the	effective	properties	of	the	octet‐truss	lattice	while	

building	 upon	 the	 previously	 derived	 continuum‐based	 model.	 Namely,	 we	 discuss	 the	
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relative	density,	the	effective	stiffness,	and	the	effective	strength.	In	Chapter	5,	we	address	

the	finite	element	considerations	of	the	octet‐truss	lattice	and	demonstrate	the	potential	of	

the	octet‐truss	 in	 lattice	structure	optimization	 through	a	comparison	with	a	commercial	

software	 followed	 by	 experimental	 testing.	 Finally,	 in	Chapter	6,	 we	 conclude	 the	work	

performed,	identify	the	original	contributions,	and	outline	suggestions	for	future	work.	
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Chapter	2 Literature	Review	

Summary:	 This	 chapter	 is	 dedicated	 to	 reviewing	 the	 existing	 literature	 on	 the	 research	

topic.	 It’s	 divided	 into	 four	 main	 sections:	 (i)	 “Architectural	 Materials”	 provides	 a	 brief	

introduction	 to	 the	 concept	 of	 architectural	 or	 cellular	 materials	 and	 their	 mechanical	

properties.	 (ii)	 “Metamaterials”	 offers	 an	 introduction	 into	 the	 new	 field	 of	 architectural	

materials	 at	 the	 nanoscale,	 the	 main	 observed	 size	 effects,	 and	 the	 common	 fabrication	

techniques.	(iii)	“Constitutive	Modeling	of	the	Octet‐truss”	presents	the	previous	research	

efforts	 in	 developing	 continuum	 models	 of	 the	 unit	 cell	 of	 choice	 (octet‐truss)	 and	

subsequent	studies	of	its	effective	mechanical	properties.	(iv)	“Finite	Element	Modeling	of	

the	 Octet‐truss”	 discusses	 the	 earlier	 attempts	 in	 numerically‐simulating	 the	mechanical	

properties	of	 the	octet‐truss	 lattice.	Throughout	 the	chapter,	potential	 literature	gaps	are	

identified	to	be	addressed	in	subsequent	chapters.	

2.1. Architectural	Materials	

In	 the	 last	 few	 decades	 there	 has	 been	 a	 growing	 interest	 in	 lightweight	 load‐bearing	

structures.	 Inspiration	 from	nature	 can	 be	 found	 in	 natural	 cellular	materials	 like	wood,	

honeycomb,	butterfly	wings	and	foam‐like	structures	such	as	trabecular	bones	and	sponge	

[3].	Architectural	materials	refer	to	materials	consisting	of	a	unit	cell	that	is	tessellated	in	

three	orthogonal	dimensions	to	form	a	lattice	structure.	They	have	been	successfully	used	to	

create	mechanically‐efficient	engineering	structures	such	as	the	Eiffel	Tower	and	the	Garabit	

Viaduct	[4,5].	This	class	of	materials	combines	the	benefits	of	low	density	as	it	only	occupies	
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a	fraction	of	the	monolithic	bulk	solid,	and	strength	by	arranging	its	elements	efficiently	to	

carry	the	loads.	Previous	studies	have	shown	that	the	macroscopic	mechanical	properties	of	

cellular	 materials	 depend	 on	 three	 parameters:	 the	 constituent	 material	 properties,	 the	

deformation	mechanism,	and	the	relative	density	̅ߩ	(defined	as	the	solid	volume	within	the	

unit	 cell	 divided	 by	 the	 volume	 of	 the	 unit	 cell).	 Cellular‐solids	 theory	 predicts	 scaling	

relationships	 between	 the	macroscopic	 stiffness	 	௘௙௙ܧ and	 strength	 	௘௙௙ߪ and	 the	 relative	

density,	namely	ܧ௘௙௙	ߙ	ߩ̅	௠	and	ߪ௘௙௙	ߙ	ߩ̅	௡	respectively,	where	the	dimensionless	parameters	

݉	and	݊	depend	on	the	unit	cell	geometry	[6].	

For	a	3D	structure	to	be	rigid	(i.e.	not	to	collapse	upon	itself),	a	minimum	nodal	connectivity	

of	 ܼ ൌ 6	 is	 required.	 A	 connectivity	 of	 	 ܼ ൌ 12	 categorizes	 the	 structure	 as	 stretching‐

dominated	where	the	lattice	members	deform	by	tension/compression.	Bending‐dominated	

structures	that	deform	through	the	bending	of	their	members	has	a	connectivity	of	6 ൑ ܼ ൏

12	[7,8].	For	stretching‐dominated	structures	such	as	the	octet‐truss	lattice	(Fig.	3.	1a),	these	

scaling	relationships	are	linear.	On	the	other	hand,	for	bending‐dominated	structures	such	

as	honeycombs	and	the	octahedral	lattice,	these	relationships	are	quadratic	or	higher	[1,9].	

2.2. Metamaterials	

Some	classes	of	materials,	when	their	dimensions	are	scaled	down	below	the	micron	length	

scale,	 start	 to	 exhibit	 different	mechanical	 properties	 known	 as	 size	 effects.	 The	 type	 of	

materials	that	combine	both	structural	and	size	effects	are	referred	to	as	metamaterials.	In	

the	 context	 of	 mechanical	 structures,	 metamaterials	 commonly	 refer	 to	 materials	 with	

certain	mechanical	properties	defined	by	their	geometry	rather	than	their	composition	[3].	
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2.2.1. Size	Effects	

An	 example	 of	 these	 size‐dependent	 changes	 is	 the	 observed	 strengthening	 in	 single	

crystalline	metals.	Compressive	experiments	performed	by	Greer	and	Nix	(2005)	on	single	

crystalline	gold	pillars	with	diameters	of	300	– 	7450	݊݉	showed	a	strong	size	effect.	The	

recorded	yield	stresses	were	much	higher	than	the	known	yield	stress	of	gold	at	2%	strain.	

In	addition,	the	measured	flow	stresses	were	found	to	reach	4.5	ܽܲܩ,	a	considerable	fraction	

of	the	theoretical	strength	[10–14].	

Another	 example	 is	 the	 observed	 transition	 from	 brittle	 to	 ductile	 behavior	 in	 metallic	

glasses	and	ceramics.	Jang	and	Greer	(2010)	performed	tension	testing	on	zirconium‐based	

metallic	 glass	 nanopillars	 fabricated	 using	 focused	 ion	 beam	 etching.	 The	 experiments	

showed	 that	 at	 a	 diameter	 of	 100	݊݉,	 a	 yield	 strength	 of	 	ܽܲܩ	2.25 typical	 of	 ceramic	

materials	was	achieved	along	with	a	fracture	ductility	of	25%	typical	of	metallic	alloys.	This	

is	unprecedented	as	high	strength	is	usually	achieved	at	the	expense	of	low	ductility	[15,16].	

A	 third	 example	 of	 size	 effects	 is	 smaller‐is‐weaker	 in	 nanocrystalline	metals.	 Lian	 et	 al.	

(2011)	 performed	 compression	 experiments	 on	 thin‐walled	 nanocrystalline	 Ni	 hollow	

cylinders	of	500	݊݉	and	150	݊݉	thickness	 fabricated	using	electroless	plating	of	vertical	

polymer	 cylinders.	 The	 testing	 results	 showed	 a	 sudden	 brittle	 collapse	 of	 the	 500	݊݉	

sample	 vs	 a	 gradual	 collapse	 of	 the	 150	݊݉	 at	 a	much	 lower	 compressive	 strength	 than	

predicted	 analytically	 [17].	 Further	 experiments	 were	 performed	 on	 nanocrystalline	 Pt	

nanopillars	 by	 Gu	 et	 al.	 (2012).	 They	 fabricated	 and	 compressively‐tested	 nanocylinders	

with	a	grain	size	of	12	݊݉	and	diameter‐to‐grain‐size	ratio	between	5	and	80.	The	testing	

showed	a	sudden	weakening	in	the	compressive	strength	of	samples	below	a	certain	ratio,	
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with	the	larger	samples	having	a	strength	similar	to	the	bulk	material	[18].	

2.2.2. Manufacturing	Techniques	

Recent	advances	in	additive	manufacturing	techniques	have	made	it	possible	to	manufacture	

lattice	structures	with	more	geometrical	and	dimensional	freedom	than	ever.	Metamaterials	

are	 usually	 fabricated	 as	 either	 hollow‐tube	 or	 solid	 lattice	 structures.	 The	 former	 is	

preferable	since	the	size	effects	are	easier	to	exhibit	in	higher	ratios	of	truss	member	free	

perimeter	to	solid	cross‐sectional	area	inherent	in	the	hollow‐tube	case	(see	Section	3.2)	[2].	

Generally,	 fabrication	of	hollow‐tube	micro	and	nanolattices	 follows	these	steps:	 (i)	A	3D	

CAD	model	is	designed	based	on	the	internal	geometry	of	the	hollow‐tube	lattice.	(ii)	The	

model	 is	 fabricated	 in	 polymer	 using	 certain	 AM	 techniques	 like	 self‐propagating	

photopolymer	waveguides	[19–23],	projection	micro	stereolithography	[3],	or	two‐photon	

lithography	[16,2,24–26].	(iii)	A	coating	process	is	applied	to	deposit	the	desired	material	on	

the	 output	 polymer	 scaffold.	 This	 process	 could	 be	 sputtering	 deposition	 for	 metallic	

elements	[2],	atomic	layer	deposition	for	oxides,	nitrides	and	metals	[26,27],	or	electroless	

plating	for	nickel	[3,22].	(iv)	Using	a	milling	technique	(i.e.	focused	ion	beam),	the	internal	

polymer	scaffold	is	exposed	by	removing	one	or	two	sides	of	the	newly	deposited/coated	

material	 [12,25,28].	 (v)	 Finally,	 the	 internal	 polymer	 scaffold	 is	 removed	 using	 thermal	

decomposition	[3]	or	oxygen	plasma	etching	[26–28].	

2.3. Constitutive	Modeling	of	the	Octet‐truss	

Continuum	constitutive	models	have	been	developed	to	describe	the	effective	mechanical	

properties	of	the	octet‐truss	lattice	structure.	A	common	assumption	amongst	these	models	
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is	 that	 the	 lattice	members	 are	 pin‐jointed	 at	 all	 nodes,	 hence	 the	 contribution	 from	 the	

bending	 resistance	 of	 the	 members	 and	 nodes	 can	 be	 neglected	 compared	 to	 the	 axial	

tensile/compressive	 stiffness	 of	 the	 members	 [29].	 Generally,	 symmetry	 considerations	

could	 be	 employed	 to	 deduce	 the	 number	 of	 independent	 constants	 in	 the	macroscopic	

stiffness	 tensor.	 Following	 the	 pin‐jointed	 assumption,	 these	 elastic	 constants	 are	

determined	 either	 by	 carefully‐planned	 finite	 element	 simulations	 or	 by	 analytically	

averaging	the	contribution	from	each	element	to	the	macroscopic	stiffness,	which	is	achieved	

through	3D	coordinate	transformations	[30,31].	

Nayfeh	and	Hefzy	(1978)	derived	a	first	order	approximation	of	the	relative	density	of	the	

octet‐truss	lattice	by	dividing	the	solid	volume	within	the	unit	cell	by	the	total	volume	of	the	

unit	cell.	They	employed	3D	coordinate	transformation	and	volume	averaging	in	order	to	

obtain	the	macroscopic	stiffness	matrix*	[30].	

Lake	(1992)	constructed	a	strength	tensor	by	converting	applied	stresses	to	strains	for	each	

parallel	group	of	members	using	the	macroscopic	compliance	matrix.	Failure	would	occur	in	

a	member	if	its	axial	strain	exceeded	a	critical	value	based	on	an	elastic	buckling	limit.	The	

choice	 of	 elastic	 buckling	 over	 plastic	 yielding	 is	 somehow	 justified	 given	 that	 space	

structures	 usually	 compose	 of	 slender	 members.	 Lake’s	 strength	 tensor	 could	 easily	

accommodate	multiaxial	loading	as	well	as	different	loading	directions	through	coordinate	

																																																								

*	Truss	structures	were	considered	 in	1960s	and	1970s	as	possible	candidates	 for	constructing	 large	space	

structures,	and	most	of	the	early	researchers	of	the	octet‐truss	had	that	specific	application	in	mind.	That	is	

why	most	of	the	work	published	in	that	era	was	in	space‐related	conferences	and	NASA	technical	publications.	
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transformation.	The	author	also	developed	a	3D	Cartesian	plot	of	the	uniaxial	compression	

strength,	from	which	he	concluded	the	direction	and	value	of	the	maximum	strength	of	the	

octet‐truss	lattice	for	the	case	of	cubic	symmetry	where	the	lattice	angle	ߠ	equals	45°	(ߠ	is	

the	angle	between	the	individual	truss	members	and	the	horizontal	midplane	as	shown	in	

Fig.	3.	1)	[32].	

Deshpande	 et	 al.	 (2001)	 investigated	 the	 effective	 properties	 of	 the	 octet‐truss	 lattice	

structure	both	theoretically	and	experimentally.	They	validated	the	analytically‐predicted	

elastic	modulus	and	strength	using	FEM	and	experimental	uniaxial	compression	of	an	octet‐

truss	lattice	made	from	a	casting	aluminum	alloy.	They	also	explored	the	collapse	criteria	of	

two	 competing	mechanisms	 (plastic	 yielding	 and	 elastic	 Euler	 buckling)	 and	 plotted	 the	

collapse	 surfaces	 for	 these	 two	 mechanisms	 under	 different	 loading	 conditions.	 The	

macroscopic	 collapse	 stress	 was	 evaluated	 by	 equating	 the	 external	 work	 for	 the	

kinematically	admissible	modes	of	collapse:	 (i)	 to	 the	plastic	dissipation	 in	stretching	 the	

struts	for	the	case	of	plastic	yielding,	and	(ii)	to	the	internal	work	in	buckling	the	struts	for	

the	case	of	elastic	buckling.	In	addition,	they	proposed	a	third‐order	approximate	formula	

for	 the	 relative	 density	 that	 includes	 a	 parameter	 dependent	 on	 the	 nodes’	 detailed	

geometry.		

It	is	important	to	note	that	the	previous	studies	were	performed	only	for	the	case	of	cubic	

symmetry.	At	this	angle,	the	octet‐truss	is	considered	to	be	at	the	highest	possible	level	of	

symmetry.	 However,	 potential	 applications	 of	 metamaterials	 (e.g.	 thin‐walled	 pressure	

vessels)	necessitates	the	use	of	anisotropic	lattice	structures	in	order	to	achieve	the	optimal	

combination	of	low	density	and	high	direction‐specific	load‐carrying	capacity.	
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2.4. Finite	Element	Modeling	of	the	Octet‐truss	

Deshpande	et	al.	 (2001)	performed	finite	element	simulations	of	 the	octet‐truss	 lattice	 in	

order	to	assess	the	accuracy	of	their	proposed	analytical	expressions	of	the	elastic	moduli.	

The	octahedral	substructure	was	selected	to	be	modeled	using	20‐40	1D	solid	cylindrical	

beam	elements	to	represent	each	truss	member	based	on	its	length,	while	relaxing	the	pin‐

jointed	nodes	assumption.	Boundary	conditions	were	applied	according	 to	 the	symmetry	

considerations	and	also	in	order	to	prevent	rigid	body	motion.	In	addition,	they	considered	

using	three	different	values	for	the	constituent	material	Poisson’s	ratio,	which	was	found	to	

have	negligible	effect	on	the	resultant	elastic	moduli.	Over	a	relative	density	range	of	0.01	to	

0.5,	the	authors	found	excellent	agreement	between	their	analytical	predictions	and	the	FEA	

results,	which	further	supported	the	pin‐jointed	nodes	assumption	[8].	However,	this	work	

considered	only	the	case	of	cubic	symmetry	with	a	lattice	angle	of	ߠ ൌ 45°.	

Wallach	 and	 Gibson	 (2001)	 numerically	 analyzed	 the	 octet‐truss	 lattice	 under	 the	 pin‐

jointed	nodes	assumption	using	two	methods:	(i)	a	truss‐analysis	program	in	Matlab	where	

they	performed	linear	static	analyses	while	modeling	the	truss	members	as	linear	springs,	

and	(ii)	a	finite	element	model	in	Abaqus	where	they	included	nonlinear	effects	such	as	strain	

hardening	and	large	deformations	while	modeling	the	truss	members	as	truss	elements.	The	

FEM	 results	 were	 utilized	 to	 find	 the	 nine	 elastic	 constants	 comprising	 the	 compliance	

matrix.	In	addition,	the	authors	also	plotted	the	variation	of	the	elastic	constants	(Young’s	

moduli,	shear	moduli,	and	Poisson’s	ratios)	as	well	as	the	uniaxial	tensile	and	shear	strengths		

vs	the	aspect	ratio	of	the	unit	cell	(an	alternative	parameter	representing	the	lattice	angle)	

[33].	However,	the	authors	didn’t	take	into	account	the	effect	of	changing	the	truss	member	
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geometry	(e.g.	diameter	to	length	ratio)	on	the	accuracy	of	the	finite	element	predictions.	In	

addition,	the	relative	density	formula	used	in	calculating	the	specific	elastic	constants	was	a	

first‐order	 approximation,	 hence	 not	 accurate	 for	 high‐aspect‐ratio,	 low‐lattice‐angle	

configurations.	

Wallach	and	Gibson	 (2001a)	 also	performed	a	defect	 sensitivity	analysis	 to	 illustrate	 the	

effect	of	removing	random	truss	members	of	the	octet‐truss	lattice	on	the	elastic	constants.	

A	linear	relation	was	proven	to	exist	between	the	modulus	(and	strength)	and	the	fraction	of	

members	 removed.	By	 comparing	 their	 results	 to	 similar	 studies	performed	on	open‐cell	

foams,	the	authors	demonstrated	how	the	octet‐truss	lattice	was	more	tolerant	to	defects	

than	open‐cell	foams	[34].		

Hyun	et	al.	(2003)	utilized	FEM	to	simulate	the	properties	of	Kagomé	and	octet‐truss	under	

shear	and	compression.	It’s	worth	noting	that	the	researchers	had	the	application	of	core	

sandwich	panels	in	mind	while	deciding	on	the	simulation	parameters.	Their	simulation	was	

performed	for	two	different	materials;	Cu	alloy	with	significant	strain	hardening	and	Al	alloy	

with	minor	 hardening.	 The	 unit	 cell	 and	 truss	member	 geometry	was	 selected	 to	 give	 a	

relative	density	of	̅ߩ ൎ 0.02,	a	near‐optimized	value	for	sandwich	panels.	This	precludes	the	

resultant	conclusions	from	being	reliably	extended	to	different	truss	member	geometries	or	

lattice	 angles.	 The	 simulation	 employed	 10‐node	 tetrahedral	 solid	 elements	 and	

displacement	control	using	large	displacement	theory	to	depict	the	softening	upon	reaching	

the	buckling	state.	The	researchers	concluded	the	Kagomé	core	to	have	better	compressive	

strength	 than	 the	 octet‐truss.	 However,	 this	 was	 mainly	 because	 the	 optimum	 loading	

direction	of	the	maximum	compressive	strength	for	the	octet‐truss	wasn’t	simulated.		They	
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also	 demonstrated	 the	 anisotropy	 of	 an	 octet‐truss	 loaded	 in	 shear	 in	 contrast	with	 the	

Kagomé,	with	the	latter	showing	more	isotropy	with	respect	to	shear	loading	[35].	
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Chapter	3 Constitutive	Modeling	of	the	Octet‐truss	Lattice	

Summary:	In	order	to	understand	how	the	octet‐truss	lattice	structure	behaves	as	a	bulk	(i.e.	

effective	 stress	 to	 strain	 relation),	 a	 continuum‐based	 model	 is	 developed	 to	 relate	 the	

effective†	stress‐strain	relation	to	the	local	stress‐strain	relation.	Continuum‐based	models	

have	been	developed	in	previous	work,	however	they	only	addressed	the	cubic	symmetry	

case	where	the	lattice	angle	ߠ ൌ 45°	(defined	as	the	angle	between	the	truss	members	and	

the	horizontal	midplane	as	in	Fig.	3.	1)	[8,32,36–39].	In	the	first	section	of	this	chapter,	we	

intend	 to	 overcome	 this	 limitation	 by	 introducing	 the	 lattice	 angle	 parameter	 into	 the	

stiffness/compliance	tensor.	In	the	second	section,	the	“Gurtin	Murdoch”	linearized	theory	

of	surface	elasticity	is	utilized	to	mathematically	model	size	effects.	By	including	the	resulting	

effective	 elastic	 modulus	 	௙ܧ in	 the	 stiffness	 and	 compliance	 tensors,	 they	 become	 fully	

representative	of	metamaterials	at	all	lengthscales.	

3.1. Continuum‐based	Modeling	

In	order	to	develop	the	model,	we	select	the	least	substructure	that	composes	the	whole	unit	

cell,	 which	 is	 a	 tetrahedron	 as	 shown	 in	 Fig.	 3.	 1a.	 The	 square	 prism	 enclosing	 the	

tetrahedron	 has	 two	 sides	 of	 length	 	ܮ and	 a	 height	 of	 length	 .ܮ 	,ሻߠሺ݊ܽݐ where	 the	 cubic	

																																																								

†	Macroscopic,	effective,	or	global	are	interchangeably	used	to	refer	to	properties	of	the	lattice	structure	as	a	

continuum,	as	opposed	to	local	or	microscopic	which	refer	to	those	of	the	individual	truss	members.	



16	

symmetry	is	achieved	when	the	lattice	angle	ߠ ൌ 45°.	The	tetrahedron	consists	of	six	truss	

members	 of	 the	 same	 cross‐sectional	 area	 	.௖ܣ Metamaterial	 structures	 are	 usually	

manufactured	as	hollow	members	of	circular	or	elliptic	cross	section,	this	is	mainly	due	to	

the	manufacturing	 process	 which	 usually	 includes	 depositing	 a	 thin	 layer	 of	 metallic	 or	

ceramic	alloy	on	a	polymer	scaffold,	then	etching	the	polymer	away	to	produce	a	hollow‐tube	

lattice	structure.	The	elliptic	cross	section	of	the	individual	members	is	a	characteristic	of	the	

two‐photon	lithography	process	(Nanoscribe	GmbH)	[40].	The	hollow	cross	section	of	the	

individual	members	has	a	beneficial	effect	on	the	mechanical	properties	upon	exploiting	the	

size	effects	(see	Section	3.2).	

(a)	 (b)	

Fig.	 3.	 1	 	 	 	 Tetrahedron	 substructure:	 (a)	The	 octet‐truss	 unit	 cell	with	 the	
tetrahedron	 substructure	 shown	 in	 blue,	 (b)	 The	 tetrahedron’s	 six	 truss	
members.	

Since	the	octet‐truss	unit	cell	is	of	the	stretching‐dominated	type,	the	elastic	stiffness	of	the	

lattice	structure	is	directly	related	to	the	elastic	uniaxial	tensile/compressive	stiffness	of	the	

individual	truss	members,	while	neglecting	the	bending	resistance	of	the	members	and	the	
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nodes.	The	assumption	of	pin‐jointed	nodes	is	valid	in	this	case	[39].	

All	tetrahedron	truss	members	are	transformed	from	their	local	coordinates	to	the	global	

coordinates	ሺݔ, ,ݕ 	process	homogenization	A	1.	3.	Table	in	summarized	as	ሻݖ is	applied	to	

relate	 the	 microscopic	 properties	 of	 the	 individual	 truss	 members	 to	 the	 macroscopic	

properties	of	the	lattice.	

Truss	
Member	 ݊ሺଵሻ	 ݊ሺଶሻ ݊ሺଷሻ ݊ሺସሻ ݊ሺହሻ	 ݊ሺ଺ሻ

U
ni
t	D
ir
ec
ti
on
	

Ve
ct
or
s	

݁ଵ	 െ 1
√2
ൗ 	 ሻߠሺݏ݋ܿ 0 1

√2
ൗ 	ሻߠሺݏ݋ܿ 0

݁ଶ	
1
√2
ൗ 	 0 ሻߠሺݏ݋ܿ 1

√2
ൗ 0	 ሻߠሺݏ݋ܿ

݁ଷ	 0	 െ݊݅ݏሺߠሻ െ݊݅ݏሺߠሻ 0 	ሻߠሺ݊݅ݏ ሻߠሺ݊݅ݏ

Length	 √2L	 L
cosሺθሻൗ L

cosሺθሻൗ √2L L
cosሺθሻൗ 	 L

cosሺθሻൗ

Table	3.	1				Unit	vector	components	and	length	of	tetrahedron	members.	

Since	 the	 representative	 volume	 element	 in	 this	 case	 consists	 of	 discrete	 members,	 the	

averaging	procedure	is	simplified	greatly	to	become	a	summation	instead	of	an	integral	(the	

reason	behind	using	“continuum‐based”	term)	[39].	The	relation	between	the	effective	stress	

of	the	lattice	structure	and	the	local	stress	in	the	truss	members	is	given	by:	

௜௝ߑ ൌ
1
ܸ
෍ ሺ௞ሻߪ ௜ܰ௝

ሺ௞ሻܣሺ௞ሻܮሺ௞ሻ
௠

௠ୀଵ

ൌ ෍ ௩ܸ
ሺ௞ሻߪሺ௞ሻ ௜ܰ௝

ሺ௞ሻ
௠

௠ୀଵ

	

where	݇ ൌ 1, 2…6	refers	to	the	truss	member	number	and	݅, ݆ ൌ 1, 2, 3	refer	to	the	direction	

vector	components.	The	local	to	effective	strain	relation	is	given	by:	
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ሺ௞ሻߝ ൌ ௜ܰ௝
ሺ௞ሻܧ௜௝	 	

where	ߑ௜௝, ,ሺ௞ሻߪ	.respectively	strain	effective	and	stress	effective	the	are	௜௝ܧ 	local	the	are	ሺ௞ሻߝ

stress	and	local	strain	in	the	݇௧௛	member	respectively.	ܣሺ௞ሻ, 	area	cross‐sectional	the	are	ሺ௞ሻܮ

and	length	of	the	݇ ௧௛	member	respectively.	ܸ ఔ
ሺ௞ሻ	is	the	volume	fraction	of	the	݇ ௧௛	member	(i.e.	

solid	 volume	 of	 member	 over	 total	 volume	 of	 tetrahedron).	 ௜ܰ௝
ሺ௞ሻ	 is	 the	 linear	 operator	

describing	the	transformation	from	the	local	to	global	coordinates	of	the	݇௧௛	member.	This	

operator	 can	be	 further	 simplified	 to	 the	product	 of	 the	 truss	member’s	 direction	 vector	

components	as	follows	[30]:	

௜ܰ௝
ሺ௞ሻ ൌ ݊௜

ሺ௞ሻ. ௝݊
ሺ௞ሻ	 	

Furthermore,	the	local	stress‐strain	relation	is	given	by:	

ሺ௞ሻߪ ൌ ௦ܧ
ሺ௞ሻߝሺ௞ሻ	 	

By	substituting	from	Eq.	3.2	into	Eq.	3.4,	we	get	the	local	stress	to	global	strain	relation	as	

follows:	

ሺ௞ሻߪ ൌ ௦ܧ
ሺ௞ሻ

௜ܰ௝
ሺ௞ሻܧ௜௝	 	

where	ܧ௦
ሺ௞ሻ	is	the	elastic	modulus	of	the	݇௧௛	member,	this	value	is	constant	for	all	members	

since	the	constituent	material	is	assumed	to	be	homogeneous	and	isotropic.	By	substituting	

from	Eq.	3.5	in	Eq.	3.1,	we	can	determine	the	global	stress‐strain	relation	as	follows:	
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௜௝ߑ ൌ ෍ ௩ܸ
ሺ௞ሻܧ௦

ሺ௞ሻ
௜ܰ௝
ሺ௞ሻ

௞ܰ௟
ሺ௞ሻܧ௞௟

௠

௠ୀଵ

	 	

from	which	we	can	extract	the	macroscopic	stiffness	tensor	components	as	follows:	

௜௝௞௟ܥ ൌ ෍ ௩ܸ
ሺ௞ሻܧ௦

ሺ௞ሻ
௜ܰ௝
ሺ௞ሻ

௞ܰ௟
ሺ௞ሻ

௠

௠ୀଵ

ൌ ෍ ௩ܸ
ሺ௞ሻܧ௦

ሺ௞ሻ݊௜
ሺ௞ሻ

௝݊
ሺ௞ሻ݊௞

ሺ௞ሻ݊௟
ሺ௞ሻ

௠

௠ୀଵ

	

By	substituting	with	values	from	Table	3.	1	in	Eq.	3.7,	we	obtain	the	macroscopic	stiffness	

tensor	as	follows:	

௜௝௞௟ܥ ൌ
௖ܣ௦ܧ
ଶܮ

ൈ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
݉ۍ ൅ 2√2	݉ସ

2√2	݊

݉

2√2 ݊
݉ଶ ∙ ݊ 0 0 0

݉

2√2	݊

݉ ൅ 2√2	݉ସ

2√2	݊
݉ଶ ∙ ݊ 0 0 0

݉ଶ ∙ ݊ ݉ଶ ∙ ݊ 2݊ଷ 0 0 0

0 0 0 ݉ଶ ∙ ݊ 0 0

0 0 0 0 ݉ଶ ∙ ݊ 0

0 0 0 0 0
݉

ے݊	2√2
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	 	

The	compliance	tensor	ܵ	is	obtained	by	inverting	the	stiffness	tensor	as	follows:	

௜ܵ௝௞௟ ൌ
ଶܮ

௖ܣ௦ܧ
ൈ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
݉	ሺ√2݊ۍ

ଷ ൅ 1ሻ
2	݉ସ

݊ሺ√2 ݉ଷ െ 1ሻ
2 ݉ସ

െ݉

√2 ݊
0 0 0

݊ሺ√2	݉ଷ െ 1ሻ
2	݉ସ

݊ሺ√2	݉ଷ ൅ 1ሻ
2	݉ସ

െ݉

√2	݊
0 0 0

െ݉

√2	݊

െ݉

√2	݊

√2	݉ଷ ൅ 1
2	݊ଷ

0 0 0

0 0 0
1

݉ଶ ∙ ݊
0 0

0 0 0 0
1

݉ଶ ∙ ݊
0

0 0 0 0 0
2√2	݊
݉ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	 	

where	݉ ൌ cosሺߠሻ	and	݊ ൌ sinሺߠሻ.	
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It’s	 worth	 noting	 that	 the	 stiffness	 of	 the	 octet‐truss	 lattice	 depends	 on	 four	 main	

parameters:	ܧ௦	the	elastic	modulus	of	the	constituent	material,	ܣ௖	the	cross‐sectional	area	of	

the	truss	members,	ܮ	the	side	length	of	the	tetrahedron	prism,	and	ߠ	the	lattice	angle.		

3.2. Modeling	Size	Effects	in	Metamaterials	

The	 size	 effects	 observed	 as	 a	 change	 in	 the	 mechanical	 properties	 when	 the	 material	

dimensions	 reach	 the	 nanoscale	 can	 be	 modeled	 as	 surface	 effects.	 “Gurtin	 Murdoch”	

linearized‐theory	 of	 surface	 elasticity	 can	 be	 used	 to	 mathematically	 model	 the	 elastic	

behavior	of	solids	at	the	nanoscale	[41].	In	this	theory,	surface	stress	and	surface	energy	can	

be	modeled	as	a	pre‐stretched	elastic	thin	film	perfectly	attached	to	the	external	surface	of	

the	bulk	body.	The	difference	between	 the	 classical	 theory	of	elasticity	and	 this	model	 is	

attributed	to	the	traction	boundary	condition	on	the	external	surface	of	the	bulk	body	[41].	

This	model	can	be	interpreted	physically	as	follows:	the	atoms	at	a	free	surface	experience	a	

different	local	environment	than	do	atoms	in	the	bulk	body.	Hence,	the	energy	associated	

with	surface	atoms	is,	in	general,	different	from	that	of	atoms	in	the	bulk	body.	This	surface	

energy	is	typically	neglected	since	the	volume	occupied	by	these	surface	atoms	is	negligible	

compared	 to	 the	 total	 bulk	 volume,	 however	 in	 nano‐sized	 particles	 this	 value	 becomes	

significant	[42].	

Herein,	this	theory	is	applied	to	a	simple	case	of	1D	circular	rod	under	uniaxial	tension.	This	

case	 can	 be	 further	 extended	 to	 a	 hollow	 rod,	which	 is	 analogous	 to	 an	 individual	 truss	

member.	As	shown	in	Fig.	3.	2a,	a	circular	rod	of	radius	ܴ	is	subjected	to	a	tensile	force	ܲ	

along	its	axis,	the	model	assumes	a	thin	film	of	infinitesimal	thickness	݀	(shown	in	green	in	

Fig.	3.	2)	perfectly	bonded	to	the	bulk	body’s	free	surfaces	[43].	The	constitutive	equations	
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of	the	bulk	body	and	surface	are	respectively:	

௜௝ߪ ൌ ௜௝ߜ	௞௞ܧ	ߣ ൅ ߬௜௝																										௜௝ܧ	ߤ	2 ൌ ௦ߣ ௞௞ߝ ௜௝ߜ ൅ 2 ௦ߤ ௜௝ߝ 	

where	ߪ௜௝, ߬௜௝	are	the	stress	tensors	of	the	bulk	body	and	the	surface	respectively.	ܧ௜௝, 	are	௜௝ߝ

the	strain	tensors	of	the	bulk	body	and	the	surface	respectively.	The	surface	Lame’s	constants	

,௦ߣ μ௦	are	different	from	those	of	the	bulk	body	ߣ, μ.	

(a)	 (b)	

Fig.	3.	2				1D	circular	rod	under	a	uniaxial	tensile	load	ܲ	along	the	ݖ	direction:	
(a)	solid,	(b)	hollow.	

The	stress	tensors	of	the	bulk	body	and	the	surface	are	respectively:	

ߪ ൌ ൥
ଵଵߪ 0 0
0 ଶଶߪ 0
0 0 ଷଷߪ

൩																						 				 			߬ ൌ ൥
߬ଵଵ 0 0
0 ߬ଶଶ 0
0 0 ߬ଷଷ

൩ 	

The	uniaxial	loading	constitutive	equations	can	be	further	simplified	as	follows:	

௭௭ߪ ൌ ߬௭௭																																													௭௭ܧ	௕ܧ ൌ ௦ܧ ௭௭ߝ 	

where	ܧ௕, ,௭௭ܧ	and	respectively,	surface	the	and	body	bulk	the	of	moduli	elastic	the	are	௦ܧ 	௭௭ߝ
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are	the	uniaxial	bulk	body	and	surface	strains	in	the	ݖ	direction	respectively.	

The	equilibrium	condition	of	the	rod	under	the	applied	load	ܲ	is:	

න ߗ݀	௭௭ߪ ൅ න߬௭௭	݀ݏ ൌ ܲ	 	

where	݀ߗ, 	are	ݏ݀ the	 infinitesimal	 cross‐sectional	areas	of	 the	bulk	body	and	 the	surface	

respectively.	Since	the	thin	film	is	assumed	to	be	perfectly	attached	to	the	bulk	body,	they	

both	experience	the	same	strain	for	the	case	of	a	uniaxial	tension	along	the	z	direction.	The	

boundary	condition	can	be	expressed	as	follows:	

௭௭ܧ ൌ ௭௭ߝ ൌ 	ߝ 	

From	Eqs.	3.12	to	3.14,	ܲ	can	be	related	to	the	elastic	moduli	as	follows:	

ܲ ൌ ሾߨ	ܴଶ	ܧ௕ ൅ 	ߝ	௦ሿܧ	݀	ܴ	ߨ2 	

For	a	homogenous	rod	with	effective	elastic	modulus	ܧ௙, ܲ	is	described	as:	

ܲ ൌ 	ߝ	௙ܧ	ଶܴ	ߨ 	

From	Eqs.	3.15	and	3.16,	the	effective	elastic	modulus	ܧ௙	is	related	to	the	moduli	of	the	bulk	

body	and	the	surface	ܧ௕	and	ܧ௦	as	follows:	

௙ܧ ൌ ௕ܧ ൅
2݀
ܴ
	௦ܧ 	

which	can	be	further	simplified	as	follows:	
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௙ܧ
௕ܧ

ൌ 1 ൅
ܴ௖
ܴ
	 	

where	ܴ௖ ൌ 	effect	size	ܴ௖,	approaches	ܴ	radius	rod	the	When	radius.	critical	the	is	௕ܧ/௦ܧ	2݀

starts	to	emerge,	and	for	radii	much	greater	than	this	value	size	effects	are	negligible.	This	

relation	forms	what	is	known	as	a	scaling	law	as	shown	in	Fig.	3.	3.	

	

Fig.	3.	3				Scaling	behavior	for	the	case	of	1D	circular	rod.	

If	we	extend	the	above	case	to	a	1D	hollow	rod	of	mean	radius	ܴ	and	thickness	ݐ.	In	this	case,	

the	thin	film	is	assumed	to	be	attached	to	both	the	internal	and	external	free	surfaces.	Eqs.	

3.15	and	3.16	are	modified	as	follows:	
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ܲ ൌ ሾ2ߨ	ܴ	ݐ	ܧ௕ ൅ 	ߝ	௦ሿܧ	݀	ܴ	ߨ4 	

ܲ ൌ 	ߝ	௙ܧ	ݐ	ܴ	ߨ2 	

where	the	cross‐sectional	area	of	the	hollow	rod	is	approximated	as	2ߨ	ܴ	ݐ.	

Eqs.	3.17	and	3.18	for	this	case	are	as	follows:	

௙ܧ ൌ ௕ܧ ൅
2݀
ݐ
	௦ܧ 	

௙ܧ
௕ܧ

ൌ 1 ൅
௖ݐ
ݐ
	 	

where	ݐ௖ ൌ 	.thickness	critical	the	is	௕ܧ/௦ܧ	2݀

Upon	comparing	ܴ௖	and	ݐ௖	from	the	two	cases	of	solid	and	hollow	rods	made	from	the	same	

constituent	material	(i.e.	have	the	same	݀, 	easily	are	effects	size	that	evident	is	it	௕),ܧ	and	௦,ܧ

triggered	 in	 the	 hollow	 rod	 case	 rather	 than	 in	 the	 solid	 one	 in	 terms	 of	 how	 small	

dimensions	should	be.	The	reason	is:	(i)	for	the	size	effects	to	emerge	in	a	solid	rod,	the	radius	

should	 approach	 double	 the	 film	 thickness	 2݀/ܴ,	 (ii)	while	 in	 the	 hollow	 rod	 case,	 they	

emerge	when	the	thickness	(not	the	radius)	approaches	double	the	film	thickness	2݀/ݐ.	In	

conclusion,	the	emergence	of	size	effects	depends	on	the	ratio	of	the	free	perimeter	to	the	

solid	cross‐sectional	area	perpendicular	to	the	loading	direction.	

In	 order	 for	 the	 previously‐derived	 continuum‐based	 model	 to	 be	 representative	 of	

metamaterials	 at	 all	 lengthscales,	 the	 size	 effects	 can	 be	 included	 in	 the	 stiffness	 and	

compliance	 tensors	 by	 replacing	 the	 constituent	 material	 elastic	 modulus	 	௦ܧ with	 the	

effective	elastic	modulus	ܧ௙	in	Eqs	3.8	and	3.9	respectively.	
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The	 free	 perimeter	 to	 solid	 cross‐sectional	 area	 ratio	 also	 results	 in	 an	 anisotropic	

characteristic	as	evident	from	the	following	discussion.	Consider	a	square	rod	of	side	ܽ	and	

length	ܮ,	under	two	different	loading	cases.	The	first	case	is	a	uniaxial	tensile	load	ܲ	applied	

along	the	ݖ	direction	as	shown	in	Fig.	3.	4.	The	effective	elastic	modulus	is	related	to	the	bulk	

and	surface	moduli	as	follows:	

௙ܧ ൌ ௕ܧ ൅
4݀
ܽ
	௦ܧ 	

The	second	case	is	a	uniaxial	tensile	load	ܲ	applied	along	the	ݕ	direction.	The	elastic	moduli	

relation	is	as	follows:	

௙ܧ ൌ ௕ܧ ൅
2ሺܽ ൅ ݀	ሻܮ

ܮ	ܽ
	௦ܧ 	

	

Fig.	3.	4				Square	rod	under	a	uniaxial	tensile	load	ܲ	in	the	ݖ	direction.	
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Upon	comparing	Eqs.	3.23	and	3.24,	it	can	be	noted	that	a	different	effective	elastic	modulus	

exists	 for	each	 loading	case	depending	on	the	 free	perimeter	to	cross	sectional	area	ratio	

perpendicular	 to	 the	 loading	 direction,	 which	 represents	 an	 anisotropic	 property	 of	 the	

“Gurtin	Murdoch”	surface	elasticity	model.	

	

3.3. Conclusions	

The	constitutive	model	of	the	octet‐truss	lattice	is	extended	to	account	for	the	lattice	angle	

parameter.	 The	 pin‐jointed	 nodes	 assumption	 is	 assumed	 as	 well	 as	 isotropic	 and	

homogeneous	 properties	 of	 the	 constituent	 material.	 The	 procedure	 for	 developing	 the	

continuum‐based	 model	 can	 be	 summarized	 in	 these	 steps:	 (i)	 select	 the	 smallest	

substructure	that	composes	the	whole	unit	cell,	a	tetrahedron	in	this	case,	(ii)	transform	the	

individual	truss	members	from	their	local	coordinates	to	the	unit	cell’s	global	coordinates,	

and	 (iii)	 apply	homogenization	and	averaging	procedures	 to	 relate	 the	 local	 stress‐strain	

relation	 to	 the	 effective	 stress‐strain	 relation.	 The	 resulting	 stiffness/compliance	 tensors	

depend	on	four	main	parameters:	ܧ௦	the	elastic	modulus	of	the	constituent	material,	ܣ௖	the	

cross‐sectional	area	of	the	truss	members,	ܮ	the	side	length	of	the	tetrahedron	prism,	and	ߠ	

the	lattice	angle.	

In	 order	 to	 fully	 represent	 octet‐truss	 metamaterials	 using	 the	 developed	

stiffness/compliance	tensors,	 it	 is	 important	to	 include	a	parameter	representing	the	size	

effects	 in	 the	 tensors.	 “Gurtin	 Murdoch”	 linearized	 theory	 of	 surface	 elasticity	 has	 been	

utilized	to	represent	size	effects	using	the	effective	elastic	modulus	ܧ௙,	which	can	replace	the	

constituent	material	elastic	modulus	ܧ௦	in	the	macroscopic	compliance/stiffness	tensors.	
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Chapter	4 Impact	of	the	Lattice	Angle	on	The	Effective	

Properties	of	The	Octet‐truss	Lattice	Structure	

Summary:	Due	 to	 its	 favorable	 stretching‐dominated	behavior,	 the	octet‐truss	 lattice	 has	

been	 studied	 extensively	 and	 continuum	 constitutive	 models	 have	 been	 developed	 to	

describe	 its	 effective	 mechanical	 properties.	 However,	 previous	 studies	 were	 only	

performed	 for	 the	 case	 of	 cubic	 symmetry	 where	 the	 lattice	 angle	 	ߠ equals	 45°.	 In	 this	

chapter,	we	studied	the	impact	of	the	lattice	angle	on	the	effective	properties	of	the	octet‐

truss	 lattice,	 namely	 the	 relative	 density,	 effective	 stiffness,	 and	 effective	 strength.	 The	

relative	density	formula	is	extended	to	account	for	the	lattice	angle	and	results	are	compared	

with	 actual	 values	 obtained	 from	 CAD	 software.	 Tensor	 transformations	 are	 utilized	 to	

visualize	the	spatial	distribution	of	the	effective	stiffness	at	different	lattice	angles.	Analytical	

formulas	 are	 developed	 to	 obtain	 the	 loading	 direction	 and	 value	 of	 the	 maximum	 and	

minimum	absolute	as	well	as	specific	elastic	moduli	at	different	lattice	angles.	In	addition,	

tridimensional	orientation‐dependent	polar	representations	of	the	macroscopic	strength	of	

the	octet‐truss	lattice	are	plotted	for	different	lattice	angles.	Finally,	collapse	surfaces	due	to	

plastic	 yielding	 are	 introduced	 for	 two	different	 loading	 combinations	 at	 different	 lattice	

angles.	

4.1. Relative	Density	

The	formula	for	the	relative	density	of	the	octet‐truss	lattice	could	be	extended	to	account	
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for	the	lattice	angle	parameter	as	follows:	

	ߩ ൌ
ଶൣ√2ݎߨ ൅ 2 ሻ൧ߠሺܿ݁ݏ

ଶܮ ሻߠሺ݊ܽݐ
െ 39.97 ሻଶߠሺݏ݋ܿ ቀ

ݎ
ܮ
ቁ
ଷ

(4.1)	

where	 	ݎ is	 the	 radius	 of	 the	 individual	 member	 and	 	ܮ is	 the	 base	 side	 length	 of	 the	

tetrahedron	substructure.	The	 first	 term	 in	derived	as	 the	summation	of	 the	 tetrahedron	

truss	members’	solid	volume	divided	by	the	total	tetrahedron	volume.	This	term	does	not	

account	for	the	volume	shared	at	the	nodes,	hence	it’s	only	accurate	for	small	aspect	ratios.		

	

Fig.	4.	1				A	comparison	between	relative	density	values	using	Eq.	4.1	vs	CAD‐
extracted	values	at	different	lattice	angles.	

The	second	term	includes	a	correction	parameter	that	has	been	defined	using	curve	fitting	

of	relative	density	values	extracted	from	a	CAD	model	of	the	octet‐truss	lattice.	It	is	worth	
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noting	that	Eq.	4.1	is	only	valid	for	cylindrical	solid	members.	Developing	a	similar	formula	

for	hollow	members	proves	to	be	more	tedious	because	of	the	three	different	parameters	

existent	in	this	case	(i.e.	aspect	ratio,	lattice	angle,	and	thickness).	Fig.	4.	1	shows	percentage	

errors	of	relative	density	values	using	Eq.	4.1	vs	CAD‐extracted	values	for	different	lattice	

angles.	

4.2. Effective	Elastic	Modulus	

4.2.1. Compliance	Tensor	Transformations	and	Tridimensional	

Representations	

To	obtain	ܧଵଵ
ᇱᇱ ൌ 1/ ଵܵଵ

ᇱᇱ ,	the	effective	elastic	modulus	in	a	general	loading	direction	along	ݔᇱᇱ	

axis	 (defined	 by	 angles	߮	 and	ߙ	 in	 Fig.	 4.	 2),	 two	 successive	 tensor	 transformations	 are	

applied	analytically	[44].	The	transformed	stress	and	strain	vectors	and	compliance	tensor	

are	related	to	the	original	ones	as	follows:	

൛ߪ௫௬௭ൟ ൌ ሾ ଵܶሿ	൛ߪ௫௬௭ᇱ ൟ ൌ ሾ ଵܶሿ	ሾ ଷܶሿ ሼߪ௫௬௭ᇱᇱ ሽ (4.2)	

൛ߝ௫௬௭ൟ ൌ ሾ ଶܶሿ	൛ߝ௫௬௭ᇱ ൟ ൌ ሾ ଶܶሿ	ሾ ସܶሿ ሼߝ௫௬௭ᇱᇱ ሽ (4.3)	

ሾܵᇱᇱሿ ൌ 	 ሾ ସܶሿିଵሾܵᇱሿ	ሾ ଷܶሿ ൌ ሾ ସܶሿିଵ ሾ ଶܶሿିଵ ሾܵሿ ሾ ଵܶሿሾ ଷܶሿ (4.4)	

where	 ଵܶ	and	 ଶܶ	are	the	first	stress	and	strain	transformation	matrices	between	ݔ, ,ݕ 	and	ݖ

,ᇱݔ ,ᇱݕ 	and	ᇱ,ݖ ଷܶ	and	 ସܶ	are	the	second	stress	and	strain	transformation	matrices	between	

,ᇱݔ ,ᇱݕ ,ᇱᇱݔ	and	ᇱݖ ,ᇱᇱݕ 	.ᇱᇱݖ

From	Eq.	4.4,	ܧଵଵ
ᇱᇱ 	can	be	expressed	as	follows:	
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ଵଵܧ
ᇱᇱ ൌ ቈ

ሻଶߙሺݏ݋ܿ ሻଶߙሺ݊݅ݏ

ሻଶߠሺݏ݋ܿ ሻߠሺ݊݅ݏ
െ
ሻଶߙሺ݊݅ݏ ሾܿݏ݋ሺߙሻଶ ൅ 1ሿ

√2 ሻߠሺ݊ܽݐ

൅
ሻସߙሺ݊݅ݏ ൣ√2 ሻߠሺݏ݋ܿ ൅ 1൧

2 ሻଷߠሺ݊݅ݏ

െ
2 ሻସߙሺݏ݋ܿ ሻߠሺ݊݅ݏ ሻଶߚሺݏ݋ܿ ሻଶߚሺ݊݅ݏ ൣ1 െ √2 ሻଷ൧ߠሺݏ݋ܿ

ሻସߠሺݏ݋ܿ

൅
ሻସߙሺݏ݋ܿ ሻߠሺ݊݅ݏ

2 ሻସߠሺݏ݋ܿ
൅
ሻସߙሺݏ݋ܿ ሻߠሺ݊ܽݐ

√2
቉
ିଵ

(4.5)	

	

Fig.	4.	2				The	octet‐truss	unit	cell	with	the	tetrahedron	substructure	geometry	
and	the	transformation	coordinate	systems.	

Tridimensional	orientation‐dependent	polar	plots	have	been	previously	used	to	describe	the	

anisotropy	of	monocrystallines	[45–47].	The	effect	of	the	lattice	angle	on	the	effective	elastic	

modulus	of	the	octet‐truss	lattice	can	be	visualized	by	generating	such	representations	of	ܧଵଵ
ᇱᇱ 	

for	three	different	lattice	angles	as	can	be	seen	in	Fig.	4.	3.	
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(a)	 (b)	

	

(c)	 (d)	

Fig.	4.	3				Tridimensional	orientation‐dependent	polar	representations	of	the	
effective	 elastic	modulus	 for	 different	 lattice	 angles:	 (a)	 Orientation	 of	 the	
octet‐truss	unit	cell,	(b)	For	40°	lattice	angle,	(c)	For	45°	lattice	angle,	(d)	For	
50°	lattice	angle.	

As	 can	 be	 noted,	 for	 the	 case	 of	 cubic	 symmetry	 (i.e.	 lattice	 angle	 ߠ ൌ 45°),	 the	 elastic	

modulus	is	equal	in	ݔ, ,ݕ ߠ	angles	lattice	For	directions.	ݖ ൐ 45°,	the	elastic	modulus	in	the	ݖ	

direction	is	greater	than	those	in	ݔ	and	ݕ	directions	and	the	opposite	is	true	for	lattice	angles	

ߠ ൏ 45°.	
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4.2.2. Elastic	Constants	vs	Lattice	Angle	

The	maximum	elastic	modulus	in	the	case	of	cubic	symmetry	coincides	with	the	േݔ ൌ േݕ ൌ

േݖ	line,	which	is	aligned	with	the	line	connecting	the	tip	of	the	tetrahedron	to	the	octet‐truss	

unit	cell	center.	For	lattice	angles	ߠ ൐ 45°,	the	maximum	elastic	modulus	moves	away	from	

the	ݔ െ ߠ	angles	lattice	for	true	is	opposite	the	and	direction,	ݖ	the	to	closer	and	plane	ݕ ൏

45°.	 It	 can	 also	 be	 noted	 that	 the	 maximum	 elastic	 modulus	 always	 lies	 on	 a	 plane	

perpendicular	to	the	ݔ െ ߮	at	plane	ݕ ൌ ሺ45 ൅ 90݊ሻ°,	where	݊ 	is	an	integer.	This	observation	

can	simplify	 the	analytical	 complexity	of	 finding	 the	value	and	direction	of	 the	maximum	

elastic	modulus.	Instead	of	solving	a	system	of	two	equations	(for	a	3D	surface),	 it	can	be	

simplified	to	one	equation	in	one	variable	(for	a	2D	curve)	by	assuming	߮	 ൌ 	45°	in	Eq.	4.5	

and	differentiating	ܧଵଵ
ᇱᇱ 	by	the	angle	ߙ	as	follows:	

ଵଵܧ߲
ᇱᇱ

ߙ߲
ൌ ൫െ	8 ሻߙሺݏ݋ܿ ሻߙሺ݊݅ݏ ሻଷߠሺ݊݅ݏ ሻߠሺݏ݋ܿ

∗ ൛2 ሻଶߙሺݏ݋ܿ ൅ 2 ሻଶߠሺݏ݋ܿ െ 3 ሻଶߙሺݏ݋ܿ ሻଶߠሺݏ݋ܿ ൅ √2 ሻଷߠሺݏ݋ܿ ሾ2 ሻଶߙሺݏ݋ܿ ൅ 1ሿ

െ 	2√2 ሻଶߙሺݏ݋ܿ ሻߠሺݏ݋ܿ ሾܿݏ݋ሺߠሻସ ൅ 1ሿ െ 1ൟ൯

/൫ܿݏ݋ሺߠሻ ሾ3 ሻସߙሺݏ݋ܿ െ 4 ሻଶߙሺݏ݋ܿ ൅ 1ሿ ൅ √2 ሻସߙሺݏ݋ܿ ሻଶߠሺ݊݅ݏ ሾ2 െ ሻଶሿߠሺݏ݋ܿ

൅ √2 ሻସ൯ߠሺݏ݋ܿ
ଶ
	

(4.6)	

The	second	derivative	can	be	derived	similarly.	To	find	the	angle	ߙ	of	the	maximum	elastic	

modulus,	we	 solve	߲ܧଵଵ
ᇱᇱ ߙ߲/ ൌ 0.	The	 angle	ߙ	 corresponding	 to	 the	maximum	point	 is	 as	

follows:	

ߙ ൌ ଵି	ݏ݋ܿ ቌඨ
√2 ሻଷߠሺݏ݋ܿ ൅ 2 ሻଶߠሺݏ݋ܿ െ 1

√2 ሻହߠሺݏ݋ܿ െ 2√2 ሻଷߠሺݏ݋ܿ ൅ 3 ሻଶߠሺݏ݋ܿ ൅ 2√2 ሻߠሺݏ݋ܿ െ 2
ቍ	 (4.7)	

For	Eq.	4.7	to	yield	real	values	that	correspond	to	the	 local	maximum	value	of	the	elastic	
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modulus,	the	second	derivative	needs	to	be	negative	and	the	expression	within	the	cosine	

inverse	brackets	should	be	a	real	number	within	the	range	of	0	to	1.	By	solving	numerically,	

the	range	of	valid	values	of	ߠ	is	found	to	be	ߠ ൏ 53.59°.	In	Fig.	4.	4,	ܿݏ݋ሺߙሻଶ	is	plotted	against	

the	lattice	angle	ߠ,	from	which	it	can	be	noted	that:	(i)	For	53.59° ൏ ߠ ൏ 67.59°,	Eq.	4.7	yields	

imaginary	 values	 of	 	,ߙ (ii)	 For	 67.59° ൏ 	,ߠ the	 second	derivative	 is	 positive	meaning	 the	

curve	has	no	local	maximum	values,	and	its	two	extremes	must	be	checked.	To	account	for	

all	lattice	angles,	the	angle	ߙ	of	the	maximum	elastic	modulus	can	be	summarized	as	follows:	

ߙ ൌ

ە
ۖ
۔

ۖ
ۓ
ଵିݏ݋ܿ ቌඨ

ሻଷߠሺݏ݋2ܿ√ ൅ 2 ሻଶߠሺݏ݋ܿ െ 1

√2 ሻହߠሺݏ݋ܿ െ 2√2 ሻଷߠሺݏ݋ܿ ൅ 3 ሻଶߠሺݏ݋ܿ ൅ 2√2 ሻߠሺݏ݋ܿ െ 2
ቍ ߠ ൏ 53.59°

90° 53.59° ൑ ߠ	

	 (4.8)	

	

Fig.	4.	4				Behavior	of	ܿݏ݋ሺߙሻଶ	against	the	lattice	angle	ߠ.	



34	

At	the	micro	and	nano	length	scales,	lattice	angles	outside	the	approximate	range	of	30°: 60°	

produce	 complex	 stress	 states	 at	 the	 nodes,	 which	 renders	 the	 mechanical	 behavior	

unpredictable	and	generally	should	be	avoided.	This	was	demonstrated	by	Montemayor	and	

Greer	 (2015)	 for	 hollow	 members	 manufactured	 using	 two‐photon	 lithography	 then	

sputtered	with	gold	[28].	

From	Fig.	4.	3,	it	can	be	also	noted	that	the	loading	direction	of	the	minimum	elastic	modulus	

always	coincides	with	one	or	more	of	the	three	orthogonal	axes	ݔ, ,ݕ 	:follows	as	ݖ

	݂݋	݊݋݅ݐܿ݁ݎ݅݀	݃݊݅݀ܽ݋ܮ
ݏݑ݈ݑ݀݋݉	ܿ݅ݐݏ݈ܽ݁	ݐݏ݁ݓ݋݈	݄݁ݐ

	

ە
ۖ
۔

ۖ
ۓ
ߠ ൐ 45° ݏ݁݀݅ܿ݊݅݋ܿ ݄ݐ݅ݓ ݔ ܽ݊݀ ݕ ݏ݁ݔܽ

ߠ	 ൌ 45° ,ݔ	݄ݐ݅ݓ	ݏ݁݀݅ܿ݊݅݋ܿ ݏ݁ݔܽ	ݖ	݀݊ܽ	ݕ

ߠ ൏ 45° ݏ݁݀݅ܿ݊݅݋ܿ ݄ݐ݅ݓ ݖ ݏ݅ݔܽ

	 (4.9)	

Using	Eq.	4.5,	4.8,	and	4.9,	the	maximum	and	minimum	elastic	moduli	and	those	along	the	

,ݔ ,ݕ 	.5	4.	Fig.	in	shown	as	ߠ	angle	lattice	the	against	plotted	be	can	axes	ݖ

	

Fig.	4.	5				Elastic	modulus	behavior	vs.	the	lattice	angle	ߠ.	
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It	can	be	noted	that	the	maximum	elastic	modulus	is	at	a	minimum	at	the	lattice	angle	ߠ ൌ

53.59°,	and	increases	as	the	lattice	angle	moves	away	from	this	value	in	either	direction.	As	

for	the	minimum	elastic	modulus,	it’s	at	a	maximum	at	ߠ ൌ 45°	and	decreases	as	we	move	

away	from	cubic	symmetry	in	either	direction.	At	ߠ ൌ 45°,	the	octet‐truss	lattice	is	found	to	

be	 at	 the	minimum	possible	 level	 of	 anisotropy,	 in	 other	words	 the	minimum	difference	

between	 the	maximum	 and	minimum	 elastic	moduli	 values.	 It’s	 also	 at	 ߠ ൌ 45°	 that	 the	

elastic	moduli	in	ݔ, ,ݕ 	.symmetry)	cubic	(i.e.	equal	are	directions	ݖ

Another	significant	elastic	constant	is	the	shear	modulus	ܩ.	In	Fig.	4.	6,	the	shear	moduli	in	

ݕ െ ,ݖ ݔ െ ,ݖ ݔ െ 	.ߠ	angle	lattice	the	against	plotted	are	planes	ݕ

	

Fig.	4.	6				Shear	modulus	behavior	vs.	the	lattice	angle	ߠ.	

The	cubic	symmetry	is	achieved	at	ߠ ൌ 45°,	where	the	shear	moduli	are	equal	in	the	three	

orthogonal	planes.	The	ݔ െ ߠ	when	plane	loading	favorable	a	be	to	seems	plane	ݕ ൏ 45°	since	
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the	shear	modulus	in	ݔ െ 	the	as	increase	directions	ݕ	and	ݔ	in	moduli	elastic	the	as	well	as	ݕ

lattice	angle	decreases.	

A	similar	plot	of	Poisson’s	ratio	is	shown	in	Fig.	4.	7.	Similarly,	Poisson’s	ratio	in	the	three	

orthogonal	 planes	 are	 equal	 for	 ߠ ൌ 45°.	 An	 interesting	 observation	 is	 that	 	௫௭ߥ (and	 by	

symmetry	ߥ௬௭)	becomes	greater	than	1	as	the	lattice	angle	decreases	below	roughly	33.8°.	

	

Fig.	4.	7				Poisson’s	ratio	behavior	vs.	the	lattice	angle	ߠ.	

4.2.3. Specific	Stiffness	

For	some	engineering	applications,	specific	stiffness	bears	more	significance	than	absolute	

stiffness.	 The	 maximum	 specific	 stiffness	 is	 obtained	 by	 dividing	 the	 maximum	 elastic	

modulus	 by	 the	 relative	 density.	 The	 minimum	 specific	 stiffness	 is	 another	 significant	

quantity	 that	 helps	 understand	 the	 anisotropy	 level	 of	 the	 structure	 for	 different	 lattice	
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angles	 and	 aspect	 ratios.	 It’s	 is	 obtained	 similarly	 to	 the	 maximum	 specific	 stiffness.	

Fig.	4.	8a	shows	the	change	in	specific	stiffness	and	percentage	relative	density	with	respect	

to	the	lattice	angle	for	two	different	aspect	ratios	ሺܮ/ݎ	 ൌ 	.0.1ሻ	ݏݒ	0.05

(a)	 (b)	

Fig.	4.	8				Specific	stiffnesses	and	percentage	relative	density	of	the	octet‐truss	
lattice:	(a)	With	respect	to	the	lattice	angle	ߠ	for	two	aspect	ratios	r/L ൌ 0.05	
and	0.1,	(b)	With	respect	to	the	aspect	ratio	ܮ/ݎ	for	two	lattice	angles	ߠ ൌ 40°	
and	50°.	

Specific	stiffness	values	are	divided	by	the	constituent	material	elastic	modulus	in	order	to	

be	only	representative	of	the	lattice	geometry.	It	can	be	noted	that	the	cubic	symmetry	case	

at	ߠ ൌ 45°	is	considered	to	be	the	least	anisotropic	for	any	aspect	ratio,	with	the	anisotropy	

level	increasing	as	the	lattice	angle	moves	away	from	cubic	symmetry.	Specific	stiffness	is	

also	noted	to	be	slightly	higher	for	the	greater	aspect	ratio.	An	interesting	observation	is	that	
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the	maximum	stiffness	is	almost	constant	with	respect	to	changes	in	the	lattice	angle	up	till	

roughly	50°	after	which	there	is	a	sharp	increase.	

Fig.	 4.	 8b	 shows	 the	 change	 in	 specific	 stiffnesses	 and	percentage	 relative	density	 vs	 the	

aspect	ratio	ܮ/ݎ	for	two	different	lattice	angles	40°	and	50°.	The	maximum	and	minimum	

specific	stiffnesses	increase	slightly	as	the	aspect	ratio	increases.	

	

4.3. Effective	Strength	

The	macroscopic	strength‡	of	 the	octet‐truss	 lattice	 is	defined	as	the	maximum	stress	the	

lattice	can	sustain	without	any	of	its	members	reaching	a	critical	stress	limit.	This	limit	can	

be	 defined	 according	 to	 two	main	modes	 of	 failure:	 (i)	 yielding	 for	 ductile	 materials	 or	

fracture	 for	 brittle	 materials	 (tensile	 or	 compressive),	 and	 (ii)	 Euler	 beam	 buckling	

(compressive).	An	additional	mode	of	 failure	 for	hollow‐tube	 lattices	 is	 the	shell	buckling	

(compressive).	Dominance	of	either	one	of	these	types	depends	on	the	loading	conditions	

and	the	geometry	of	the	lattice	members,	namely	their	aspect	ratio	and	cross‐section	[27].	

In	order	to	relate	the	effective	strength	of	the	octet‐truss	lattice	to	the	local	strength	of	its	

individual	 members,	 the	 effective	 macroscopic	 strains	 are	 transformed	 from	 the	 global	

coordinates	to	the	local	member	coordinates	as	follows:	

ሺ௞ሻߝ ൌ ௜ܰ௝
ሺ௞ሻ	ߝ௜̅௝ ൌ ݊௜

ሺ௞ሻ
௝݊
ሺ௞ሻ	ߝ௜̅௝	 (4.10)	

																																																								

‡	Macroscopic	stresses	and	strains	are	denoted	by	a	bar	sign	above	the	symbol	as	in	ߪത	and	ߝ	̅respectively.	
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where	ߝሺ௞ሻ	is	the	axial	strain	in	the	݇௧௛	member,	 ௜ܰ௝
ሺ௞ሻ	is	a	linear	transformation	operator	that	

can	be	reduced	to	the	product	of	the	݇ ௧௛	member’s	direction	cosines	݊ ௜
ሺ௞ሻ	and	݊ ௝

ሺ௞ሻ	(Fig.	3.	1b),	

and	ߝ௜̅௝	is	the	macroscopic	strain,	which	can	be	related	to	a	general	stress	tensor	ሾߪതᇱᇱሿ	applied	

through	a	general	direction	defined	by	the	angles	߮ 	and	ߙ	(see	Fig.	4.	2)	through	the	following	

relation:	

൛ߝ௜̅௝ൟ ൌ ሾܵሿ	ሾ ଵܶሿ	ሾ ଷܶሿ	ሼߪതᇱᇱሽ	 (4.11)	

By	 considering	 the	 tetrahedron	 substructure	 selected	 as	 the	 structural	 basis	 in	 the	

continuum‐based	model	of	the	octet‐truss,	the	stress	in	its	six	members	can	be	expressed	as	

follows:	

ሺ௞ሻߪ ൌ ݊௜	௦ܧ
ሺ௞ሻ	 ௝݊

ሺ௞ሻ	ሾܵሿ	ሾ ଵܶሿ	ሾ ଷܶሿ ሼߪതᇱᇱሽ (4.12)	

where	 	ሺ௞ሻߪ is	 a	 stress	 vector	 of	 six	 components,	 one	 for	 each	 of	 the	 tetrahedron’s	 truss	

members,	݇ ൌ 1, 2…6	identifies	the	truss	members,	and	݅, ݆ ൌ 1, 2, 3	refer	to	the	direction	

vector	components.	

4.3.1. Tridimensional	Representations	

Given	a	general	macroscopic	stress	state,	Eq.	4.12	outputs	six	stress	values,	one	for	each	of	

the	 tetrahedron	six	members.	For	a	 safe	 loading	state,	 the	condition	 ൛ߪሺ௞ሻൟ ൏ 	should	௟௜௠ߪ

hold	true.	

Similar	 to	 the	 discussion	 of	 the	 effective	 elastic	 modulus,	 Eq.	 4.12	 can	 be	 employed	 to	

visualize	the	effective	strength	of	the	octet‐truss	under	a	uniaxial	tensile/compressive	stress	

applied	 through	 a	 general	 direction	 defined	 by	 the	 angles	 ߮	 and	 	ߙ using	 tridimensional	
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orientation‐dependent	polar	plots	as	shown	in	Fig.	4.	9.	

(a)	 (b)	

(c)	 (d)	

	

Fig.	4.	9				Tridimensional	orientation‐dependent	polar	representations	of	the	
effective	strength	for	different	lattice	angles:	(a)	Orientation	of	the	octet‐truss	
unit	cell,	(b)	For	40°	lattice	angle,	(c)	For	45°	lattice	angle,	(d)	For	50°	lattice	
angle.	

It	 can	 be	 noted	 that	 the	 direction	 of	 the	 maximum	 lattice	 strength	 	ത௠௔௫ߪ for	 the	 cubic	

symmetry	case	of	ߠ ൌ 45°	aligns	with	േݔ, േݕ, േݖ	axes	in	addition	to	the	line	േݔ ൌ േݕ ൌ േݖ	
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as	can	be	shown	in	Fig.	4.	9c.	As	for	ߠ ൏ 45°,	the	direction	of	ߪത௠௔௫	aligns	with	േݔ	and	േݕ	axes	

only§.	For	ߠ ൐ 45°,	the	direction	of	ߪത௠௔௫	aligns	with	the	േݖ	axis	only.	

4.3.2. Collapse	Surfaces	

The	collapse	surfaces	of	the	octet‐truss	lattice	due	to	plastic	yielding	are	calculated	for	two	

combinations	of	 loading,	namely	 ሺߪത௭௭, 	ത௫௭ሻߪ and	൫ߪത௫௫, 	,ത௬௬൯ߪ for	different	 lattice	 angles.	The	

tetrahedron	substructure	 is	used	 in	 the	analysis	 in	both	cases,	along	with	 the	pin‐jointed	

assumption	employed	in	the	continuum‐based	model	of	the	octet‐truss.	The	collapse	surface	

for	each	combination	of	loads	can	be	categorized	into	a	number	of	modes	depending	on	the	

governing	collapse	equation	and	which	members	would	reach	the	yield	stress	ߪ௬	for	ductile	

materials	(or	fracture	stress	for	brittle	materials)	with	reference	to	Fig.	3.	1b.	

4.3.2.1. Collapse	surface	in	ሺߪത௭௭, 	space	ത௫௭ሻߪ

The	 collapse	 surface	 under	 the	 applied	 loads	 ሺσഥ୸୸, σഥ୶୸ሻ	 is	 shown	 in	 Fig.	 4.	 10	 for	 three	

different	 lattice	angles.	 In	Modes	 Ia	and	 Ib,	member	no.	2	has	 reached	 its	yield	 stress	ߪ௬	

(under	compression	 in	Mode	 Ia	and	 tension	 in	Mode	 Ib).	The	governing	equations	are	as	

follows:	

Mode	Ia:	
ത௫௭ߪ

ଶܮ/௖ܣ௬ߪ
ൌ

1
2 ሻߠሺ݊ܽݐ

∗
ത௭௭ߪ

ଶܮ/௖ܣ௬ߪ
൅ ሻߠሺݏ݋ܿ (4.13)	

																																																								

§	As	can	be	noticed	in	Fig.	4.9b,	the	direction	of	ߪത௠௔௫	doesn’t	perfectly	align	with	ݔ	and	ݕ	axes,	it	occurs	a	few	

degrees	above	and	below	the	x‐y	plane.	For	example,	at	the	lattice	angle	of	ߠ ൌ 40°,	the	angles	of	ߪത௠௔௫	are	߶ ൌ

݊90°	and	ߙ ൌ േ1.92°.	However,	the	difference	between	ߪത௠௔௫	and	ߪത	at	ݔ	and	ݕ	axes	at	ߠ ൌ 40°	is	0.3%.	
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Mode	Ib:	
ത௫௭ߪ

ଶܮ/௖ܣ௬ߪ
ൌ

1
2 ሻߠሺ݊ܽݐ

∗
ത௭௭ߪ

ଶܮ/௖ܣ௬ߪ
െ ሻߠሺݏ݋ܿ (4.14)	

As	for	Modes	IIa	and	IIb,	member	no.	5	has	reached	its	yield	stress	ߪ௬	(under	compression	in	

Mode	IIa	and	tension	in	Mode	IIb).	The	governing	equations	are	as	follows:	

Mode	IIa:	
ത௫௭ߪ

ଶܮ/௖ܣ௬ߪ
ൌ

െ1
2 ሻߠሺ݊ܽݐ

∗
ത௭௭ߪ

ଶܮ/௖ܣ௬ߪ
െ ሻߠሺݏ݋ܿ (4.15)	

Mode	IIb:	
ത௫௭ߪ

ଶܮ/௖ܣ௬ߪ
ൌ

െ1
2 ሻߠሺ݊ܽݐ

∗
ത௭௭ߪ

ଶܮ/௖ܣ௬ߪ
൅ ሻߠሺݏ݋ܿ (4.16)	

	

Fig.	 4.	 10	 	 	 	 Collapse	 surface	 of	 the	 octet‐truss	 due	 to	 plastic	 yielding	 in	
ሺσഥ୸୸, σഥ୶୸ሻ	space.	

For	lattice	angles	ߠ ൏ 45°,	there	exists	two	additional	Modes,	IIIa	and	IIIb,	where	members	
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no.	1	and	4	have	reached	their	yield	stress	ߪ௬	(under	compression	in	Mode	IIIa	and	tension	

in	Mode	IIIb).	The	governing	equations	are	as	follows:	

Mode	IIIa:	
ത௭௭ߪ

ଶܮ/௖ܣ௬ߪ
ൌ ൅√2 ሻߠሺ݊ܽݐ (4.17)	

Mode	IIIb:	
ത௭௭ߪ

ଶܮ/௖ܣ௬ߪ
ൌ െ√2 ሻߠሺ݊ܽݐ (4.18)	

4.3.2.2. Collapse	surface	in	൫ߪത௫௫, 	space	ത௬௬൯ߪ

The	collapse	surface	under	the	applied	loads	൫σഥ୶୶, σഥ୷୷൯	is	shown	in	Fig.	4.	11.	

In	Modes	IVa	and	IVb,	members	no.	2,	3,	5	and	6	have	reached	their	yield	stress	ߪ௬	(albeit	2	

and	5	are	under	tension	and	3	and	6	are	under	compression	in	Mode	IVa	and	the	opposite	in	

Mode	IVb).	

The	governing	equations	are	as	follows:	

Mode	IVa:	
ത௬௬ߪ

ଶܮ/௖ܣ௬ߪ
ൌ

ത௫௫ߪ
ଶܮ/௖ܣ௬ߪ

൅
2 ሻߠሺݏ݋ܿ
ሻߠሺ݊ܽݐ

(4.19)	

Mode	IVb:	
ത௬௬ߪ

ଶܮ/௖ܣ௬ߪ
ൌ

ത௫௫ߪ
ଶܮ/௖ܣ௬ߪ

െ
2 ሻߠሺݏ݋ܿ
ሻߠሺ݊ܽݐ

(4.20)	

As	 for	Modes	Va	and	Vb,	members	no.	1	and	4	have	 reached	 their	yield	 stress	ߪ௬	 (under	

compression	in	Mode	Va	and	under	tension	in	Mode	Vb).	The	governing	equations	are	as	

follows:	

Mode	Va:	
ത௬௬ߪ

ଶܮ/௖ܣ௬ߪ
ൌ

െ	ߪത௫௫
ଶܮ/௖ܣ௬ߪ

െ
√2

ሻߠሺ݊ܽݐ
(4.21)	

Mode	Vb:	
ത௬௬ߪ

ଶܮ/௖ܣ௬ߪ
ൌ

െ	ߪത௫௫
ଶܮ/௖ܣ௬ߪ

൅
√2

ሻߠሺ݊ܽݐ
(4.22)	
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Upon	comparison,	the	collapse	surfaces	at	the	lattice	angle	of	ߠ ൌ 45°	under	the	two	loading	

combinations	of	ሺσഥ୸୸, σഥ୶୸ሻ	and	൫σഥ୶୶, σഥ୷୷൯	clearly	agree	with	those	developed	by	Deshpande	

et	al.	(2001)	in	both	shape	and	value	[8].	

	

Fig.	 4.	 11	 	 	 	 Collapse	 surface	 of	 the	 octet‐truss	 due	 to	 plastic	 yielding	 in	
൫σഥ୶୶, σഥ୷୷൯	space.	

4.4. Conclusions	

The	purpose	of	this	chapter	was	to	investigate	the	effect	of	the	lattice	angle	on	the	effective	

properties	of	the	octet‐truss	lattice	structure.	The	relative	density	formula	of	the	octet‐truss	
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lattice	was	extended	to	account	for	the	lattice	angle	via	curve‐fitting	of	CAD‐extracted	values.	

The	resultant	equation	produced	accurate	results	upon	comparison	with	actual	values	from	

CAD	software.	A	general	expression	for	the	elastic	modulus	of	the	octet‐truss	for	a	general	

loading	 direction	 and	 a	 general	 lattice	 angle	was	 obtained	 using	 tensor	 transformations.	

Tridimensional	 orientation‐dependent	 polar	 representations	 of	 the	 elastic	 modulus	 for	

different	 lattice	 angles	 showed	 the	 loading	 direction	 of	 the	maximum	elastic	modulus	 to	

always	 lie	 in	 a	 plane	 perpendicular	 to	 the	 ݔ െ 	ݕ plane	 at	 ߮	 ൌ 	45°.	 As	 the	 lattice	 angle	

increases,	this	direction	moves	closer	to	the	ݖ	axis.	As	it	decreases,	it	moves	closer	to	the	ݔ െ

	ݕ plane.	 The	 elastic	 modulus	 expression	 was	 used	 to	 obtain	 analytical	 formulas	 for	 the	

loading	 direction	 angles	 of	 the	 maximum	 and	 minimum	 elastic	 moduli.	 A	 plot	 of	 the	

maximum	 and	 minimum	 specific	 stiffnesses	 against	 the	 lattice	 angle	 described	 the	

anisotropic	 behavior	 of	 the	 octet‐truss	 lattice.	 The	 macroscopic	 strength	 behavior	 was	

demonstrated	 through	 tridimensional	 orientation‐dependent	 polar	 representations	 for	 a	

general	loading	direction	at	different	lattice	angles.	Plastic	yielding	collapse	surfaces	were	

developed	 for	 two	different	 loading	 combinations	 along	with	 the	 governing	 equations	 to	

illustrate	the	impact	of	the	lattice	angle	on	the	effective	strength	of	the	octet‐truss	lattice.	
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Chapter	5 Numerical	and	Experimental	Application:	Lattice	

Structure	Optimization 

Summary:	In	the	first	section	of	this	chapter,	finite	element	modeling	of	the	octet‐truss	lattice	

is	performed	in	order	to	identify	the	effects	of	mesh	selection	and	boundary	conditions,	as	

well	 as	 assess	 its	 accuracy	 by	 comparing	 the	 resulting	 elastic	 moduli	 values	 with	 those	

obtained	 using	 the	 continuum‐based	 analytical	 model.	 Due	 to	 the	 high‐symmetry	 of	 the	

octet‐truss	 lattice,	 only	 the	 tetrahedron	 substructure	 is	 considered	 in	 the	 finite	 element	

analyses	 while	 applying	 the	 proper	 symmetry	 conditions.	 The	 lattice	 members’	 cross‐

sectional	area	is	modeled	as	circular	solid	in	the	analyses,	nonetheless	hollow	cross‐sections	

of	any	shape	are	also	valid.	

Recent	advances	in	additive	manufacturing	technologies	have	simplified	the	implementation	

of	lattice	structures	for	different	applications,	such	as	mechanical	load‐carrying	components	

and	energy‐absorption,	among	others.	Hence,	lattice	structure	optimization	(LSO)	is	gaining	

more	 attention	 recently.	 In	 the	 second	 section	 of	 this	 chapter,	 LSO	 in	 the	 commercial	

software	 HyperWorks	 by	 Altair,	 Inc.	 is	 evaluated	 in	 comparison	 to	 a	 continuum‐based	

analytical	model	of	the	octet‐truss	lattice	to	assess	its	optimization	efficiency.	Comparison	

samples	 are	 verified	 using	 finite	 element	 analysis	 and	 further	 validated	 using	

stereolithography‐based	 3D	 printing	 and	 mechanical	 testing.	 Furthermore,	

recommendations	are	made	 for	LSO	 in	HyperWorks	 in	order	 to	 increase	 its	optimization	

efficiency	and	the	user	convenience.	
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5.1. Finite	Element	Model	(3D	vs	1D	elements)	

Three	different	mesh	elements	are	employed:	3D	solid,	1D	beam,	and	1D	truss	elements.	The	

same	parameter	matrix	varying	the	lattice	angle	and	the	aspect	ratio	is	followed	for	every	

mesh	element	type	used.	Aspect	ratios	between	0.02	and	0.12	and	lattice	angles	between	30	

and	60	degrees	were	analyzed.	In	this	context,	the	aspect	ratio	is	defined	as	the	ratio	of	the	

individual	lattice	member	radius	to	its	length	ܮ2√/ݎ.	The	base	side	length	of	the	tetrahedron	

	angle	lattice	the	with	changes	tetrahedron	the	of	height	the	while	fixed,	is	(1b	3.	Fig.	in	ܮ)

and	the	diameter	of	individual	member	is	changed	to	obtain	different	aspect	ratios.		

Firstly,	in	order	to	assess	the	validity	of	the	pin‐jointed	nodes	assumption	(i.e.	neglecting	the	

bending	resistance	of	the	nodes	and	members),	the	octet‐truss	lattice	is	modeled	using	3D	

solid	 elements,	 which	 are	 capable	 of	 capturing	member	 and	 node	 bending	 resistance	 in	

addition	to	the	tensile/compressive	and	torsional	stiffness	of	the	lattice	members.	Secondly,	

1D	beam	elements	were	employed	to	assess	the	effect	of	the	bending	of	the	lattice	members	

on	 the	 macroscopic	 stiffness.	 Finally,	 1D	 truss	 elements	 were	 utilized	 where	 only	 the	

tensile/compression	stiffness	of	the	lattice	members	is	considered.	It’s	worth	noting	that	the	

torsional	stiffness	of	 the	members	 is	only	significant	when	there	exists	asymmetry	at	 the	

common	nodes,	a	possible	phenomenon	in	microfabrication	[16].	

A	 certain	 force	 	ܨ is	 applied	 on	 the	 tetrahedron	 substructure	 along	 the	 z	 axis,	 and	 the	

displacement	is	extracted	from	the	FEA	model.	The	elastic	modulus	is	then	calculated	as	the	

ratio	of	stress	to	strain	per	Eq.	5.1,	where	the	stress	is	the	force	divided	by	the	projected	area	

and	the	strain	is	the	displacement	divided	by	the	original	height.	
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௟௔௧௧௜௖௘ܧ 	ൌ
	ܨ ൈ ݐ݄݃݅݁ܪ	

	ଶܮ ൈ ݐ݈݊݁݉݁ܿܽ݌ݏ݅ܦ	
(5.1)

5.1.1. Mesh	Selection	

For	the	case	of	3D	solid	elements,	a	tetrahedral	mesh	was	generated	using	HyperMesh.	It	was	

manually‐refined	until	 the	displacement	 converged,	with	 a	 final	 average	mesh	density	 of	

roughly	 40,000	 elements	 per	 cubic	 millimeter.	 Various	 quality	 parameters	 need	 to	 be	

checked	to	measure	how	far	these	elements	deviate	from	the	ideal	shape	of	a	tetrahedral	

elements,	 which	 is	 an	 equilateral	 tetrahedron.	 The	 most	 important	 of	 these	 quality	

parameters	is	the	Jacobian,	which	has	an	ideal	value	of	1.0	and	is	recommended	to	be	greater	

than	 0.5.	 The	 Jacobian	 value	 was	 found	 to	 be	 above	 0.5	 for	 more	 than	 99.9%	 of	 the	

tetrahedral	elements,	which	gives	a	proper	indication	of	the	mesh	quality	[48].	

For	 the	 case	 of	 1D	 elements,	 a	 single	 element	 was	 applied	 to	 each	 of	 the	 tetrahedron	

members	since	the	cross‐section	is	constant.	Care	was	given	to	the	orientation	of	the	half‐

cylinder	 cross‐section	 of	 the	 beam	 in	 the	 case	 of	 1D	 beam	 elements	 so	 that	 the	 bending	

resistance	of	the	members	is	correctly	simulated.	

5.1.2. Boundary	Conditions	

Based	on	the	assumption	that	the	only	contribution	to	the	macroscopic	elastic	stiffness	is	

from	the	elastic	uniaxial	tensile/compressive	stiffness	of	the	individual	members,	attention	

should	be	given	to	how	the	boundary	conditions	are	defined	in	each	case	of	the	FEA	model	

[8,30,39,49].	In	the	case	of	3D	solid	elements,	all	the	nodes	on	the	upper	surface	were	linked	

together	 through	 rigid	 elements	 (RBE2)	 with	 the	 compression	 force	 applied	 to	 the	
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independent	node.	The	nodes	on	the	bottom	surface	were	constrained	from	translation	in	ݖ	

direction	and	free	to	move	in	the	ݔ	and	ݕ	directions.	Precautions	were	taken	to	maintain	the	

symmetry	conditions	and	to	prevent	rigid	body	movement	of	the	model.	Fig.	5.	1	shows	the	

original	vs	deformed	shape	of	the	tetrahedron	substructure.	In	the	case	of	1D	elements,	the	

boundary	conditions	are	applied	directly	to	the	individual	nodes.	Fig.	5.	2	shows	the	original	

vs	deformed	shape	of	a	full	octet‐truss	unit	cell	with	1D	truss	elements.	

	

Fig.	5.	1				The	deformed	vs	original	shape	of	the	tetrahedron	model	under	a	
compressive	force	along	the	ݖ	direction.	Colors	represent	displacement	in	the	
	.direction	ݖ

5.1.3. Results	

Elastic	 moduli	 values	 were	 calculated	 per	 the	 continuum‐based	 analytical	 model,	 and	

compared	to	those	obtained	from	the	FEA	for	each	geometrical	configuration.		
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Fig.	 5.	 2	 	 	 	 An	 octet‐truss	 unit	 cell	 before	 and	 after	 deformation	 under	 a	
compressive	 force.	 Yellow	 represents	 the	 unit	 cell	 before	 deformation,	 and	
gradient	colors	represent	the	displacement	value	in	the	z	direction.	

For	the	3D	solid	elements,	elastic	moduli	demonstrated	errors	as	high	as	50%	for	the	0.12	

aspect	ratio,	and	lower	error	values	for	smaller	aspect	ratios.	For	the	case	of	0.02	aspect	ratio	

and	 60°	 lattice	 angle	 the	 error	was	 found	 to	 be	 around	 4%.	 This	 is	mainly	 because	 the	

bending	 contribution	 from	nodes	 and	member	 to	 the	 overall	 stiffness	 of	 the	 structure	 is	

higher	for	large	aspect	ratios	and	small	lattice	angles	(i.e.	more	solid	material	at	the	nodes)	

than	for	small	aspect	ratios	and	large	lattice	angles.	

For	the	case	of	1D	beam	elements,	the	elastic	moduli	values	were	more	consistent	with	a	

maximum	error	of	7%,	which	 is	mainly	due	 to	 the	bending	resistance	of	 the	 tetrahedron	

members.	As	for	the	case	of	1D	truss	elements,	the	simulations	showed	accurate	results	with	

less	than	1%	error.	This	is	because	this	case	completely	aligns	with	the	assumptions	followed	
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in	developing	the	continuum‐based	analytical	model.	

The	 choice	 of	 which	 FEA	 model	 to	 follow	 depends	 on	 the	 nature	 of	 the	 structure	 and	

application.	 For	 space	 structures,	 the	 aspect	 ratio	 is	 usually	 low	 and	 the	 cross‐section	 is	

hollow,	 hence	 using	 the	 1D	 element	 is	 justified.	 This	 is	 also	 the	 case	 for	 mechanical	

metamaterials;	 the	main	differences	 are	 that	 the	dimensions	are	usually	 at	 the	nano	and	

micro	length	scales	and	the	constituent	material’s	mechanical	properties	are	different.	

For	 structural	 geometries	 of	 high	 aspect	 ratio,	 the	 3D	 solid	 elements	 can	 produce	more	

accurate	 results	 albeit	 at	 higher	 computational	 costs.	 	 Altair	 Engineering,	 Inc.	 recently	

included	lattice	structure	optimization	within	their	HyperWorks	software	package.	It	uses	

1D	tapered	beam	elements	to	represent	lattice	structure	elements,	which	can’t	be	reliably	

used	for	high	aspect	ratios.	

It’s	worth	noting	that	the	highest	stresses	are	found	to	be	around	the	nodes.	Although	the	

continuum‐based	model	 can	be	utilized	 to	 investigate	 the	macroscopic	 strength	of	 lattice	

structures,	it	only	considers	the	failure	of	the	members	(elastic	buckling	or	plastic	yielding).	

Hence,	a	correction	parameter	needs	to	be	introduced	to	account	for	the	plastic	yielding	at	

the	nodes.	

In	the	next	section,	we	utilize	the	analytical	model	and	FE	simulation	results	in	assessing	the	

lattice	structure	optimization	efficiency	of	the	commercial	software	HyperWorks.	

5.2. Lattice	Structure	Optimization	in	Altair	HyperWorks	

Lattice	structure	optimization	(LSO)	has	been	introduced	recently	in	the	software	package	
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HyperWorks	by	Altair.	It	enables	the	creation	of	blended	solid	and	lattice	structures	[48].	

HyperWorks	uses	1D	tapered	beam	elements	to	represent	 the	 individual	members	of	 the	

lattice	structure.	LSO	is	inherently	similar	to	topology	optimization,	albeit	the	design	domain	

can	now	include	intermediate	density	elements.	LSO	is	carried	out	in	two	main	phases:	(i)	

Regular	topology	optimization	is	performed	first	with	reduced	penalty	options	in	order	to	

retain	more	intermediate	density	elements	(Fig.	5.	3).	At	the	end	of	phase	I,	these	elements	

are	 replaced	with	 lattice	 structures	 such	 that	 the	volume	 fraction	of	 the	 lattice	 structure	

corresponds	to	the	intermediate	element	density.	(ii)	Size	optimization	is	then	performed	to	

define	the	diameters	of	each	element	so	that	the	homogenized	lattice	properties	correspond	

to	 the	 initial	 intermediate	 element	 stiffness.	 Some	 anisotropy	 is	 integrated	 in	 the	 lattice	

structure	during	phase	II	in	order	to	increase	efficiency.	An	important	remark	about	LSO	in	

HyperWorks	is	that	each	initial	mesh	element	is	replaced	with	a	single	unit	cell,	hence	the	

size,	orientation	and	lattice	angle	are	dependent	upon	the	initial	model	mesh	[48].	

	

Fig.	5.	3	 	 	 	Difference	between	Lattice	Optimization	 (Phase	 I)	and	Topology	
Optimization	(Image	courtesy	of	Altair).	

In	 this	 section	 of	 the	 chapter,	 LSO	 in	 the	 commercial	 software	 Altair’s	 HyperWorks	 is	
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evaluated	in	comparison	to	a	continuum‐based	analytical	model	of	the	octet‐truss	lattice	to	

assess	 its	optimization	efficiency.	 In	 the	next	 subsection,	 the	3D	printing	and	mechanical	

testing	equipment	are	discussed	in	order	to	pinpoint	the	limitations	and	considerations	to	

be	accounted	for	when	defining	the	problem	employed	to	compare	HyperWorks	LSO	to	the	

continuum‐based	analytical	model.	

5.2.1. Experimental	Setup	

Form	2.0,	a	stereolithography‐based	3D	printer	by	Formlabs	Inc.,	was	utilized	to	produce	

sample	lattice	structures	using	a	proprietary	material	called	Tough	with	a	reported	elastic	

modulus	of	1.7	ܽܲܩ	for	the	green	part	without	additional	treatments.	Form	2.0	requires	the	

addition	of	support	material	to	the	manufactured	part,	the	distribution	and	size	of	which	can	

be	controlled	within	their	software	[50].	The	minimum	available	layer	thickness	of	50	݉ߤ	

was	used	to	obtain	the	most	geometrically‐accurate	results.	Sample	octet‐truss	structures	

were	manufactured	using	this	3D	printer	(Fig.	5.	4)	to	check	the	suitable	range	of	member	

diameters	and	support	material	settings.	

In	order	to	check	the	validity	of	this	3D	printer	as	a	manufacturing	platform	for	the	problem	

specimens,	we	needed	to	ensure	the	material	properties	were	consistent	 in	all	directions.		

Hence,	 ASTM	D638‐14	 Type	 IV	 tension	 samples	were	manufactured	 in	 three	 orthogonal	

directions	 [51].	 These	 samples	 were	 subjected	 to	 destructive	 tensile	 tests	 on	 MTS	 C43	

Universal	 Testing	 System.	 Testing	 results	 showed	 inconsistency	 in	 the	 elastic	 modulus	

values	 for	different	directions	 rendering	Form	2.0	unreliable	 for	such	purpose,	albeit	 the	

tensile	strength	showed	more	consistency.	However,	given	the	high	quality	and	the	low	cost	

of	the	printed	samples,	Form	2.0	can	be	used	for	demonstration	purposes.	
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Fig.	5.	4	 	 	 	Octet‐truss	 samples	using	Form	2.0,	unit	 cell	width	15 െ 25݉݉,	
members	 diameter	 2mm,	 lattice	 angle	 45° െ 50°.	 Support	 material	 is	 still	
attached	to	the	leftmost	lattice.	

	

Fig.	5.	5	 	 	 	Octet‐truss	 samples	using	Objet260,	unit	 cell	width	15 െ 25݉݉,	
members	diameter	2݉݉,	lattice	angle	40° െ 45°.	Support	material	is	partially	
removed.	
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Another	3D	printer	was	utilized,	Objet260	Connex3	by	Stratasys.	This	printer	implements	a	

process	 called	 “PolyJet	 3D	 Printing”,	 where	 the	 printer	 head	 jets	 drops	 of	 curable	

photopolymer	 onto	 a	 build	 tray,	 which	 are	 subsequently	 cured	 using	 UV	 radiation.	 A	

proprietary	material	called	Digital	ABS	was	used,	with	a	reported	elastic	modulus	of	2.6 െ

	later	removed	be	could	which	material,	support	of	use	the	requires	Objet260	.[52]	ܽܲܩ	3.0

using	water	jetting.	Similarly	to	Form	2.0,	sample	octet‐truss	structures	were	manufactured	

to	investigate	the	appropriate	settings	that	would	produce	the	highest	quality	(Fig.	5.	5).	

	

Fig.	 5.	 6	 	 	 	 Right:	 Compression	 test	 setup	 on	 MTS	 C43	 showing	 a	 laser	
extensometer,	overhead	light,	and	a	video	camera.	A	close‐up	of	the	cylindrical	
compression	platens	with	the	sample	in	place	is	shown	in	the	top	right	corner.	
Left:	Tension	 test	 setup.	A	 close‐up	of	 the	 tension	grips	with	 the	 sample	 in	
place	is	shown	in	the	top	left	corner.	

ASTM	D638‐14	Type	IV	samples	were	manufactured	in	three	orthogonal	directions.	Tensile	

testing	experiments	showed	consistent	results,	with	a	mean	elastic	modulus	of	2.3	ܽܲܩ	and	

a	standard	deviation	of	0.08	ܽܲܩ	which	 is	within	the	ranges	suggested	 in	ASTM	D638‐14	

[51].	 A	 laser	 extensometer	 was	 utilized	 to	 achieve	 high	 accuracy	 with	 reflective	 tapes	

attached	to	the	top	and	bottom	cylindrical	platens	as	shown	in	the	compression	testing	setup	

in	Fig.	5.	6.	Given	that	this	is	a	compression	test	and	the	polymer	test	material	has	a	much	



56	

lower	 elastic	 modulus	 than	 the	 machine	 building	 materials,	 the	 crosshead	 should	 give	

accurate	 displacement	 readings	 as	 well.	 The	 3D	 printing	 and	 mechanical	 testing	

considerations	 for	 the	problem	definition	can	be	summarized	as	 follows:	 (i)	The	suitable	

member	diameter	 should	be	1.5 െ 3	݉݉	 in	order	 to	obtain	 the	 finest	3D	printing	quality	

without	unnecessary	costs,	and	(ii)	The	sample	compressed	area	should	not	exceed	a	square	

of	20	 ൈ 	20	݉݉.	

5.2.2. Problem	Definition	and	Analytical	Results	

For	HyperWorks,	the	input	geometry	is	a	square	rod	with	dimensions	of	71.5	 ൈ 	20	 ൈ 20	

mm.	These	dimensions	were	selected	to	enable	meshing	with	three	hexahedral	elements	at	

a	lattice	angle	ߠ ൌ 50°.	LSO	was	performed	on	this	sample	to	generate	lattice	structure	that	

would	 achieve	 the	 lowest	 volume	 fraction	 for	 a	 certain	 displacement	ܮ߂	 under	 a	 certain	

compressive	force	ܨ.	The	elastic	modulus	of	the	resultant	lattice	structure	can	be	calculated	

per	Eq.	5.2:	

௟௔௧௧௜௖௘ܧ 	ൌ
	ܨ ൈ 	71.5

	ܮ߂ ൈ 	20	 ൈ 	20
	 (5.2)

The	 resultant	 lattice	 structure	 is	 shown	 in	 Fig.	 5.	 7.	 It’s	 worth	 noting	 that	 HyperWorks	

applied	 fixed	 boundary	 conditions	 (BC’s)	 to	 the	 uppermost	 and	 lowermost	 nodes	 of	 the	

structure	while	leaving	the	middle	nodes	free	to	move	in	all	directions.	To	simulate	these	

BC’s	in	the	compression	experiment,	two	plates	of	2	݉݉	thickness	were	added	at	the	top	and	

bottom	of	the	structure	as	shown	in	Fig.	5.	7.		

The	 compliance	 tensor	 from	 the	 continuum‐based	model	was	 used	 to	 generate	 a	 similar	

lattice	 structure	 for	 comparison.	The	 same	 input	 geometry	and	material	properties	were	
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used	to	obtain	the	elements’	diameter	for	the	same	elastic	modulus	from	LSO.	A	multiplier	

had	to	be	introduced	into	the	compliance	tensor	equation	to	account	for	the	difference	in	

defining	the	BC’s	in	the	analytical	model	(see	Section	5.1.2)	and	HyperWorks.	Similarly,	two	

plates	were	added	at	the	top	and	bottom	of	the	structure	to	simulate	the	same	BC’s	in	the	

compression	test.	

	

Fig.	 5.	 7	 	 	 	 Lattice	 structure	 using	 HyperWorks’	 LSO	 after	 phase	 I	 (left),	
elements’	radii	range	of	0.56‐1.35	mm	after	phase	II	(center),	and	CAD	model	
for	3D	printing	(right).	

5.2.3. Compression	Testing	Results	

The	 volumes	 of	 the	 two	 structures	 (analytical	 model	 vs	 HyperWorks)	 were	 calculated	

through	 SolidWorks	 and	were	 found	 to	 be	 almost	 the	 same.	 Given	 the	 same	 input	mesh	

geometry,	HyperWorks	and	the	analytical	model	can	perform	at	the	same	level	of	efficiency.	

The	two	structures	were	manufactured	using	the	Objet260	3D	printer	as	shown	in	Fig.	5.	8.	
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Fig.	5.	8				Lattice	structures	generated	using	analytical	model	vs	HyperWorks’	
LSO.	Left:	before	removing	support	material	(HyperWorks	is	left).	Right:	after	
removing	support	material	(HyperWorks	is	bottom).	

Cyclic	compression	testing	of	the	two	structures	resulted	in	an	elastic	modulus	of	55.8	ܽܲܯ	

for	HyperWorks	vs.	62.4	ܽܲܯ	for	the	analytical	model,	with	a	percentage	error	of	10.6%.	A	

possible	explanation	for	this	error	could	be	the	size/scaling	effects	in	3D	printed	polymers,	

in	 other	words	 elements	 of	 different	 diameters	 have	 different	mechanical	 properties.	 To	

investigate	this	phenomenon,	a	2 െ ݉݉	diameter	tension	sample	was	manufactured	using	

the	Objet260	and	mechanically	tested.	The	mechanical	behavior	was	significantly	different	

from	 the	 standard	 Type	 IV	 sample	 as	 shown	 in	 Fig.	 5.	 9.	 The	 2 െ ݉݉	 diameter	 sample	

showed	more	ductility	and	strain	hardening,	and	lower	elastic	modulus	and	tensile	strength	

than	the	standard	Type	IV	sample.	Further	extensive	experimentation	 is	required	to	 fully	

characterize	this	phenomenon.	



59	

	

Fig.	5.	9				Mechanical	behavior	of	standard	Type	IV	specimen	vs	2	mm	diameter	
sample	under	tension.	

With	reference	to	the	elastic	modulus	discussion	in	Chapter	4,	it	is	possible	to	obtain	higher	

stiffness	using	the	same	lattice	geometry	(member	geometry	and	lattice	angle)	by	changing	

the	loading	direction.	However,	for	the	sake	of	consistency	the	same	loading	direction	was	

used	 in	 both	 the	 analytical	model	 and	 LSO	 samples.	 Two	main	 recommendations	 can	 be	

made	at	this	stage	concerning	LSO	in	HyperWorks:	(i)	Decoupling	the	lattice	unit	cell	size	

from	the	mesh	element	 size	proves	 to	be	more	efficient.	Mesh	element	 size	 is	dependent	

upon	the	complexity	of	geometry	and	the	degree	of	output	accuracy	required	from	the	FEA.	

On	 the	 other	 hand,	 lattice	 unit	 cell	 size	 depends	 on	 other	 considerations	 such	 as	 the	

limitations	of	the	fabrication	process.	(ii)	Decouple	the	orientation	of	the	lattice	unit	cell	from	

that	of	the	mesh	element.	It	has	been	proven	in	Chapter	4	that	loading	along	the	ݔ, 	ݖ	or	,ݕ
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directions	does	not	guarantee	the	maximum	stiffness,	hence	it	is	essential	that	more	freedom	

be	given	in	selecting	the	optimum	loading	direction	of	the	output	lattice	structure.	

5.3. Conclusions	

5.3.1. Finite	Element	Modeling	

In	 comparison	 with	 the	 continuum‐based	 analytical	 model	 of	 the	 octet‐truss,	 3D	 solid	

elements	along	with	1D	 truss/beam	elements	were	utilized.	The	1D	 truss	elements	were	

found	 to	 be	 the	 most	 accurate	 with	 respect	 to	 the	 macroscopic	 elastic	 modulus	 of	 the	

structure	since	it	completely	aligns	with	the	continuum‐based	model	assumptions.	However,	

for	geometries	with	high	aspect	ratios,	the	analytical	model	tends	to	produce	higher	errors.	

For	 small	 aspect	 ratios,	 it	 is	 advised	 to	 use	 1D	beam/truss	 elements	 to	 represent	 lattice	

structures	 given	 the	 computational	 cost	 saving	 associated	 with	 1D	 over	 3D	 elements.	

Although	both	1D	elements	capture	accurate	displacement	values	(i.e.	structural	stiffness),	

accurate	stress	analysis	can	only	be	performed	using	3D	solid	elements.	

5.3.2. Lattice	Structure	Optimization	

LSO	 in	 HyperWorks	 is	 performed	 in	 two	 phases,	 topology	 optimization	 then	 size	

optimization.	Comparison	between	LSO	in	HyperWorks	with	the	analytical	model	showed	

that	 they	 can	perform	on	 the	 same	 level	 of	 optimization	given	 the	 same	 input	 geometry.	

Decoupling	the	lattice	unit	cell	size	and	orientation	from	those	of	the	initial	mesh	size	could	

potentially	 increase	the	optimization	efficiency	and	the	user	convenience	of	HyperWorks’	

Lattice	 Structure	 Optimization.	 Objet260	 3D	 printed	 samples	 demonstrated	 size/scaling	
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effects,	 different	mechanical	 behavior	 for	 different	 sample	 sizes.	 However,	 the	 analytical	

model	vs	HyperWorks	comparison	still	holds	as	it	was	verified	using	finite	element	analysis.	
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Chapter	6 Conclusions	and	Future	Work	

In	this	chapter,	we	state	the	problem,	identify	the	objectives	of	the	research	and	outline	the	

contributions	resulting	from	the	work.	Furthermore,	a	brief	description	of	potential	future	

work	is	presented.	

6.1. Statement	of	the	Problem	

Architectural	 materials	 refer	 to	 materials	 consisting	 of	 a	 unit	 cell	 tessellated	 in	 three	

orthogonal	directions	to	form	a	network	or	a	lattice	structure.	In	the	last	few	decades,	they	

have	 successfully	 demonstrated	 being	 suitable	 candidates	 for	 lightweight	 load‐carrying	

structures.	With	the	advent	of	size	effects	observed	in	some	classes	of	materials	when	their	

dimensions	are	scaled	down	to	the	micro	and	nano	lengthscales,	the	new	field	of	mechanical	

metamaterials	came	to	light.	

Mechanical	metamaterials	combine	the	benefits	of	 low	density,	as	they	are	fundamentally	

hollow	structures,	with	high	stiffness	and	strength,	via	the	utilization	of	size	effects	combined	

with	structural	effects	(i.e.	the	arrangement	of	their	individual	elements	in	the	best	possible	

configuration	to	carry	the	loads).	One	of	the	best	candidate	unit	cells	for	such	application	is	

the	 octet‐truss.	 Although	 there	 have	 been	 several	 studies	 on	 the	 octet‐truss’s	 effective	

properties,	 they	were	all	performed	 in	early	2000s	and	before.	At	 that	 time,	 applications	

other	than	mechanical	metamaterials	were	is	mind,	such	as	space	structures	and	sandwich	

panels.	 Consequently,	 the	 literature	 ignored	 important	 parameters	 affecting	 the	 effective	
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properties	of	the	octet‐truss	such	as	the	lattice	angle	ߠ	and	the	loading	direction.	With	the	

huge	 potential	 demonstrated	 by	metamaterials,	 it	 is	 imperative	 to	 fully	 characterize	 the	

properties	of	the	octet‐truss	lattice.	Efficiently	optimizing	the	structural	configuration	of	the	

octet‐truss,	 combined	 with	 favorable	 size	 effects,	 would	 unlock	 the	 full	 capacity	 of	

mechanical	 metamaterials	 in	 applications	 such	 as	 mechanical	 structures	 and	 energy	

absorption.	

In	this	study,	the	effective	properties	of	the	octet‐truss	lattice	were	studied	while	accounting	

for	the	different	lattice	angles	and	loading	directions.	

6.2. Objectives	

The	objective	of	this	work	is	to	fully	describe	the	effective	properties	of	the	octet‐truss	lattice	

at	different	lattice	angles.	Special	care	was	given	to:	

(i) Analytical	derivation	of	the	stiffness/compliance	tensors	of	the	octet‐truss	

lattice	while	including	the	lattice	angle	parameter	ߠ.	

(ii) Mathematically‐modeling	the	size	effects	of	metamaterials	in	the	

stiffness/compliance	tensors	of	the	octet‐truss.	

(iii) Extending	the	relative	density	formula	of	the	octet‐truss	to	include	the	lattice	

angle	parameter	up	to	a	higher‐order	approximation.	

(iv) Describing	the	effective	stiffness	of	the	octet‐truss	lattice	and	illustrating	its	

variation	with	the	lattice	angle	and	loading	direction.	In	addition,	analytical	
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formulas	were	derived	to	calculate	the	value	and	direction	of	the	maximum	

and	minimum	elastic	moduli	at	different	lattice	angles.	

(v) Studying	the	effective	strength	of	the	octet‐truss	lattice	under	a	general	

loading	condition	and	demonstrating	spatial	distribution	using	

tridimensional	representations	and	collapse	surfaces.	

(vi) Demonstrating	the	potential	of	utilizing	the	octet‐truss’s	effective	properties	

in	lattice	structure	optimization	via	a	comparison	with	commercial	

optimization	software.	This	is	a	crucial	step	towards	fully	unlocking	the	

potential	of	metamaterials.	

6.3. General	Conclusions	

The	objective	of	this	study	was	to	fully	describe	the	effective	properties	of	the	octet‐truss	

lattice,	and	demonstrate	the	potential	of	utilizing	this	knowledge	in	structurally‐optimizing	

the	lattice	for	different	loading	conditions.	The	general	conclusions	can	be	summarized	as	

follows:	

6.3.1. Derivation	of	the	Stiffness/Compliance	Tensors	

In	this	work,	the	appropriate	steps	were	followed	to	develop	a	continuum‐based	analytical	

model	of	the	octet‐truss	lattice	while	including	the	lattice	angle	parameter	ߠ.	The	output	of	

these	 analytical	 derivations	 were	 the	 stiffness/compliance	 tensors.	 Isotropic	 and	

homogenous	properties	were	assumed	for	the	constituent	material.	The	pin‐jointed	nodes	

assumption	was	assumed	to	simplify	the	derivations,	where	we	only	considered	the	axial	
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compressive/tensile	 stiffness	of	 the	 truss	members	 and	 ignored	 the	nodes	 and	members	

bending	resistance.	This	assumption	aligns	with	the	stretching‐dominated	behavior	of	the	

octet‐truss.	

6.3.2. Effective	Stiffness	

Two	consecutive	tensor	transformations	were	utilized	to	obtain	an	analytical	expression	of	

the	 effective	 stiffness	 from	 a	 general	 loading	 conditions.	 Tridimensional	 orientation‐

dependent	polar	representations	were	employed	to	spatially‐describe	the	distribution	of	the	

octet‐truss’s	effective	stiffness.	Maximum	and	minimum	as	well	as	specific	stiffness	values	

were	 studied	 against	 changes	 in	 the	 lattice	 angle	 and	 aspect	 ratio	 to	 demonstrate	 their	

impact.	

6.3.3. Effective	Strength	

The	effective	strength	of	the	octet‐truss	was	developed	as	the	maximum	stress	the	lattice	can	

sustain	without	any	of	 its	 truss	members	reaching	 the	 limit	stress.	The	effective	strength	

formulations	 were	 later	 utilized	 to	 visualize	 the	 spatial	 strength	 under	 a	 general	

tensile/compressive	 load	 using	 tridimensional	 representations.	 In	 addition,	 collapse	

surfaces	were	plotted	for	different	loading	conditions	along	with	the	governing	equations	

describing	the	failure	criteria	for	each	mode	of	collapse.	

6.3.4. Application:	Lattice	Structure	Optimization	

The	 potential	 of	 utilizing	 the	 octet‐truss’s	 effective	 properties	 in	 lattice	 structure	

optimization	was	demonstrated	via	a	comparison	with	the	commercial	software	OptiStruct	



66	

by	Altair,	Inc.	The	analytical	model	was	employed	to	calculate	the	dimensions	of	a	sample	

with	a	given	elastic	modulus	against	another	sample	generated	by	OptiStruct,	the	weight	of	

the	 sample	 was	 measured	 as	 the	 determining	 factor	 of	 optimization	 efficiency.	 These	

samples	were	later	3D	printed	and	mechanically	tested	to	experimentally	demonstrate	the	

potential	of	lattice	structure	optimization.	

6.4. Future	Work	

The	following	points	lay	the	foundations	for	future	work	on	the	same	topic:	

(i) Assuming	different	cross‐sectional	areas	for	different	groups	of	parallel	

members	could	potentially	provide	higher	optimization	efficiency	as	opposed	

to	assuming	the	same	cross‐sectional	area	for	all	of	the	octet‐truss	members.	

(ii) Developing	a	systematic	approach	for	the	utilization	of	the	octet‐truss	in	

lattice	structure	optimization	instead	of	manually	refining	the	properties	

would	prove	to	be	of	much	use	in	numerical	optimization	solutions.	
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