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Abstract

In this research, I focus on I) the mean field analysis of algorithms for scale-free networks
in molecular biology and II) the analysis of biological networks using random walks and
related algorithms.

I: Many systems in nature and society are described by means of complex networks.
Research indicates that these complex networks exhibit scale-free properties. Studying the
organizing principles of scale-free networks has significant implications in different fields
including developing better drugs, defending the internet from hackers, halting the spread
of deadly epidemics, developing marketing strategies, etc.

The sampling of scale-free networks in molecular biology is usually achieved by grow-
ing networks from a seed using recursive algorithms with elementary moves which include
the addition and deletion of nodes and bonds. These algorithms include the Barabasi-
Albert algorithm [1]. Later algorithms, such as the Duplication-Divergence algorithm
[27,29], the Solé algorithm [25, 26] and the iSite algorithm [15, 16], were inspired by biologi-
cal processes underlying the evolution of protein networks, and the networks they produce
differ essentially from networks grown by the Barabasi-Albert algorithm. The mean field
analysis of these algorithms is reconsidered, and extended to variant and modified imple-
mentations of the algorithms.

II: The second part of this research focuses on improving biological networks using
random walks and related algorithms.
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I use different algorithms with the goal of finding highly connected hubs and clusters
of proteins which are closely related to one another. This is done by building up protein-
protein interaction networks and miRNA-gene interaction networks which are then sub-
jected to the action of two algorithms.

The first algorithm used is the random walk with resistance algorithm. As an alter-
native, I am proposing solving the lattice laplacian on a network as a method to discover
clusters of biologically related genes. These approaches seek to find ways of solving com-
plex pathway membership problems in protein interaction databases. The clusters obtained
provide more biological insight as opposed to a process of local pairwise comparison be-
tween interacting proteins. They may also predict new members in functional pathways or
clusters. Underlying these algorithms are simulated biased random walks on the network

for determining membership of proteins in given clusters.
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Chapter 1

Introduction

This dissertation consists of two parts: A) Mean field analysis of algorithms for scale-free
networks in molecular biology and B) Analysis of biological networks using random walks
and related algorithms.

The contributions in this dissertation consist in modifying algorithms (modified Barabasi-
Albert, modified Duplication-Divergence and iSite algorithms) to create denser networks
and developing their mean field analyses in ways not done before in the literature. The
contributions in the second part of the dissertation include introducing and implementing
the lattice laplacian algorithm as an alternative to the random walk algorithm with the
goal of improving biological networks, finding clusters of biologically related proteins and
suggesting new targets of miRNAs.

A. Mean field analysis of algorithms for scale-free networks in molecular biology
Many systems in nature and society are described by means of complex networks [9]. Some

of these systems include the cell [19], chemical reactions [17], the world wide web [6], social



interactions [7], etc. It is generally found that many systems, though different in nature,
produce networks which are scale-free and exhibit similar properties [1, 3].

Knowledge about scale-free networks is important for understanding the spread of com-
puter viruses, diseases and providing pharmaceutical researchers with new strategies for
selecting drug targets, potentially leading to cures that would kill only harmful cells or
bacteria by selectively targeting their hubs, while leaving healthy tissue unaffected [83].

The main property of scale-free networks is that their degree distribution decays as a
power law [1, 4] — this shows that there is no characteristic scale for the degrees, which is
why the networks are called scale-free. The average degree of a scale-free network offers
little insight into the real topology of the network [3] since most nodes have degrees which
are far away from the average degree of the network. Nodes of high degree are called hubs
and though small in number for realistic networks, they are statistically overrepresented
compared to the number of hubs in random networks. These hubs play an important role
in dynamical processes which occur in scale-free networks.

For example, hubs are important in social networks. The fact that biological viruses
spread in social networks, which in many cases appear to be scale-free, suggests that sci-
entists should take a second look at the interplay of network topology and epidemics. In a
scale-free network, the traditional public health approach of random immunization could
easily fail because it would very likely neglect a number of the hubs [83].

A vaccination for measles, for instance, must reach 90% of the population to be effec-
tive. Instead of random immunizations, though, what if doctors targeted the hubs, or the

most connected individuals? Research in scale-free networks indicates that this alternative



approach could be effective even if the immunizations reached only a small fraction of the
overall population, provided that the fraction contained the hubs. Targeting hubs could
be a solution for distribution of vaccines in countries and regions that do not have the
resources to treat the entire population [83].

Dezso and Barabasi [84] studied the diffusion and spreading of viruses on a scale-
free network, including both biological and computer based viruses. Methods designed
to eradicate viruses usually aim at reducing the spreading rate of the virus. Even when
the virus has a zero epidemic threshold, there is little guarantee that it will eradicate it
[84]. This is because in scale-free networks, the hubs are in contact with a large number
of nodes, and are therefore easily infected. Once the hubs are infected, they pass the virus
to a significant fraction of nodes in the system. Thus even weakly infectious viruses can
spread and prevail on a scale-free network. This negates what diffusion studies used to
believe prior to the scale-free network theory that viruses whose spreading rate exceeds a
critical threshold will persist, while those under the threshold will die out shortly. Dezso
and Barabasi argued that hub-biased curing policies (curing with higher probability the
hubs than the less connected nodes) can restore the epidemic threshold, which can stop the
virus spreading [84].

Hubs are important in marketing techniques as well. Popular influencer marketing
techniques (closely related to word-of-mouth or viral marketing), are based on the premise
that a large number of people are connected to everyone else through a small number of
hubs. Thus, identifying and focusing marketing activities around these hubs could increase

the likelihood of initiating a cascading adoption of products or services- a type of social



epidemic [85].

Determining if a network is scale-free is important in understanding the system’s be-
haviour, but it is not the only parameter which deserves attention [83]. The knowledge
of a network’s general topology is only one aspect in understanding the overall character-
istics and behaviour of such systems. When it comes to social interactions, even though
the networks that model these interactions are scale-free, ties between household members
are much stronger than connections to casual acquaintances, so diseases are more likely to
spread through such linkages. In the case of biological networks, the strength of the interac-
tion between molecules does affect the network’s dynamical behaviour as well. Therefore,
the nature of the nodes and their interactions plays an important role in the behaviour of
the systems.

Unexplained by previous network theories, hubs offer convincing proof that various
complex systems have a strict architecture, ruled by fundamental laws, laws that appear
to apply equally to cells, computers, languages and society [83]. Furthermore, these orga-
nizing principles have significant implications for developing better drugs, defending the
internet from hackers, and halting the spread of deadly epidemics [84].

Scale-free networks also exhibit an unexpected degree of robustness - this is the prop-
erty that such networks maintain their dynamic properties even when many nodes and
bonds fail to transmit signals (suffer high failure rates) [9]. In the case of protein-protein
interaction networks, it is difficult to disrupt the network: despite a high level of random
mutations being introduced, the remaining proteins will continue to work together.

However, these networks remain vulnerable to failure of hub nodes, since these nodes



play a significant role in maintaining the network’s connectivity. The presence of scale-free
emerging properties in many real-world networks provides initial evidence that these self-
organizing phenomena do not only depend on the characteristics of individual systems, but
are general laws of evolving networks [83]. The responsible mechanisms for the emergence
of scale-free networks are important in understanding why different systems converge to
networks with similar architecture [4].

In the first part of this research I describe four evolutionary algorithms able to generate
scale-free networks in molecular biology, with a focus on their mean field analysis. These
algorithms are the Barabasi-Albert [1], Duplication-Divergence [27, 29], Solé [25, 26] and
iSite [15, 16] algorithms.

The Duplication-Divergence, Solé and iSite algorithms were inspired by modelling net-
works in biological models of protein-protein interaction evolution, and all these algorithms
are based in one way or another on two ideas: growth by preferential attachment [12], and
growth and changes (mutations) in networks induced by the duplication, deletion or re-
placement of nodes or bonds (these are elementary moves which mutate the network by
adding, deleting or moving some of its bonds or nodes).

Growth by preferential attachment is implemented by adding bonds preferentially to
nodes of high degree. This increases the probability that a node will grow to be a hub
in the network, and the resulting network has an increased probability that it will contain
hubs [4]. The Barabasi-Albert algorithm uses preferential attachment to grow scale-free
networks by attaching bonds to nodes with a probability which is proportional to the

degrees of nodes [1]. A mean field analysis of the Barabasi-Albert algorithm was done in



reference [5].

The Duplication-Divergence algorithm [27, 29] generates scale-free networks by imple-
menting elementary moves which mutate and grow the network. These are duplication (the
duplication of existing nodes and bonds) and divergence (local changes made to existing
bonds and nodes) elementary moves. These moves model processes which are thought
to underlie the evolutionary mechanisms by which protein interaction networks evolve
[25, 27, 29]: The duplication of genes is a mechanism which generates genes coding for new
proteins during evolution and the divergence step is a model for the mutation of duplicated
genes. After a duplication of a gene, two genes (one the progenitor gene, the other the
progeny gene) coding for the same protein are obtained, and these mutate over time to drift
away from one another in gene space, giving rise to modified proteins when translated
by cellular machinery [25]. Biologically, the duplication step may result in a new protein
interaction between two mutating copies of the same gene (this is called heteromerization),
and the divergence step is a model of subfunctionalization (a process whereby interactions
between proteins are lost).

Closely related to the Duplication-Divergence algorithm is the Solé algorithm [25, 26].
This algorithm grows networks by duplication of nodes, and mutates the network by
rewiring it (this algorithm does not implement the heteromerization of the duplicated
genes) [6]. It then implements a process of deleting some bonds on the duplicated nodes
(modelling evolutionary changes due to subfunctionalization).

The iSite algorithm [15, 16] is a refinement of the Duplication-Divergence and Solé algo-

rithms. This algorithm introduces more complex nodes which each contain interaction sites



as models of protein and protein complexes with localized interaction sites where the inter-
actions with other proteins take place. These localized interaction sites are iSites. Such iSites
may be involved in many interactions, but each interaction is related to only two iSites, one
on each of the proteins involved. That is, iSites are models of the concept of domains on
protein surfaces where the actual interactions take place between two proteins. The imple-
mentation of the algorithm on nodes containing iSites proceeds by duplication of nodes,
and the mutation of iSites through subfunctionalization and heteromerization (namely, the
subfunctionalization of iSites leading to loss of protein interactions, and heteromerization
where new interactions are introduced between existing iSites). In this model the subfunc-
tionalization is of iSites, leading to the loss of all bonds incident with the iSite (contrary to
the situation in other algorithms, for example the Duplication-Divergence algorithm, where
subfunctionalization leads to the loss of bonds, rather than nodes).

The first part of this dissertation is organized as follows. 1 first consider the general
properties of scale-free networks, including their scaling and connectivity properties. These
ideas are then applied to the analysis of particular algorithms. The Barabasi-Albert model
is considered first together with a modified version of the algorithm, and a variant of the
algorithm. Mean field theory for the modified and variant algorithms is developed, giving
mean field values for the scaling exponent <. These results are compared to numerical
results obtained by generating networks using implementations of the algorithms.

The Duplication-Divergence algorithm and networks generated by it are considered
next. The algorithm is also modified, and mean field theory is developed to find mean

tield values for the scaling exponent. The mean field predictions are then compared to



numerical results generated by implementing the algorithm and sampling networks.

A similar approach is followed for the Solé algorithm. However, in this model the degree
distribution may not be integrable, and our results indicate that the networks generated by
this algorithm are not scale-free. Modifying the distribution of degrees gives a testable
scaling hypothesis for Solé networks, which is tested numerically by generating networks
and examining their scaling, as well as by computing the connectivity of Solé networks and
comparing it to the mean field predictions. This shows that the size of Solé networks of
order n is O(n?), while the connectivity is O(n) — this implies that Solé networks are dense.

Finally, the iSite algorithm is presented and examined developing a mean field approach
to determine its scaling properties. The algorithm is also modified, and the resulting mean
tield results are tested numerically.

The first part of the research is completed in section 4.5, where our main results are
briefly considered and reviewed.

B. Analysis of biological networks using random walks and related algorithms.

The second part of this dissertation focuses on improving the analysis of biological
networks using random walks and related algorithms. Algorithms in molecular biology
are used to predict new interactions between molecules, assign functions to previously
unknown molecules, discover clusters of molecules which are closely related to one another,
or predict new targets of a molecule. We study two important biological networks, protein-
protein interaction networks (PINs) and microRNA-gene interaction networks (MGINS).

MicroRNAs (miRNAs) are small noncoding RNAs which are involved in post tran-

scriptional regulation of gene expression usually through cleavage of messenger RNA [66].



MiRNAs are involved in diverse cellular functions such as development, differentiation,
proliferation, apoptosis and metabolism. The input data used in this research was pro-
vided as microarray data by the Peng Lab [37] at York University. In addition we have
downloaded miRNA-protein and protein-protein interaction data from the miRTarBase [39]
and the STRING [38] databases.

Two network topology-based algorithms are presented with the goal of discovering
pathways in protein-protein interaction networks and to suggest new targets of miRNAs in
miRNA-gene interaction networks. The underlying idea in network based analysis is the
discovery of cluster structures (of complexes and pathways) in PINs and MGINs. These
structures give information on biologically related proteins and their functions. The key
idea is that two proteins sharing higher “topological” similarities are likely interacting with
each other and might belong to the same protein complex and cluster in the network. We
test two algorithms. The first is to estimate similarities of the proteins in a network by using
a Random Walk with Resistance (RWR) algorithm [36]. The second algorithm is to solve the
Lattice Laplacian with Resistance (LLR) on a network, or its modifications, namely Weighted
Lattice Laplacian with Resistance (WLLR) and Double Weighted Lattice Laplacian with Resistance
(DWLLR) algorithms as an alternative to RWR.

Using data on upregulated and downregulated genes by the human miRNA hsa-miR-
218-5p provided by the Peng lab [37], PINs were constructed by examining the environment
of the genes in the STRING [38] database of protein-protein interactions. The structure
of the networks was discovered with the RWR and LL algorithms, and visualized using

Cytoscape [11]. Protein clusters are discovered by joining two proteins in a network when



there is a higher value of the Pearson correlation coefficient between their corresponding
columns in the RWR probability matrix, or the LL solution matrix.

The algorithms do not produce identical networks, but both show similar networks of
biologically related clustered proteins. Clusters can be examined individually by RWR and
LL algorithms to predict novel protein functions and reaction pathways. The clusters corre-
spond to complexes of functionally related proteins and in the case of the RWR a reaction
pathway involving protein clusters is revealed. All these algorithms simulate biased ran-
dom walks on the network. This places the algorithms in a class of random walk algorithms
examined in the literature.

The focus of this research is on biological networks of the cell, hence in the next chapter

we are giving a review of the cell structure and function.
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Chapter 2

Cell structure and function

2.1 The structure of a cell

Cells are the basic unit of structure and function in living organisms [51]. Cells contain
tiny compartments called organelles. Each organelle carries out a specific function within
the cell. Cells contain hereditary material and are able to make copies of themselves [51].
Some of the structures and organelles of the cell are:

Cell membrane: The cell membrane is an outer layer that surrounds the cell and con-
trols which substances enter or leave the cell. It is considered to be the security guard of the
cell. It is sometimes called the plasma membrane or the cytoplasmic membrane. It sepa-
rates the interior of the cell from the outside environment. The cell membrane is selectively
permeable to ions and organic molecules. The basic function of the cell membrane is to
protect the cell from its surroundings. It consists of a phospholipid bilayer with embedded

proteins. The cell membrane is involved in a variety of processes such as cell adhesion, ion

11



conductivity and cell signalling [51].

Mitochondria DNA
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Figure 2.1: Cell organelles

The cell consists of the nucleus and the cytoplasm. The cell membrane surrounds the cell. Cytoplasm
contains the organelles and the space between them, called the cytosol. Inside the nucleus are the nucleolus
and the DNA. Some of the organelles in the cell include mitochondria, rough ER, smooth ER, Golgi
apparatus, lysosomes, ribosomes, peroxisomes, etc.

Nucleus: The nucleus contains the hereditary information of a cell. It provides chemical
instructions that direct all the cell’s activities. It serves as the cell’s command centre, send-
ing directions to the cell to grow, mature, divide, or die. It houses DNA (deoxyribonucleic
acid), the cells” hereditary material. It is surrounded by a membrane called the nuclear
membrane or the nuclear envelope. The membrane protects the DNA and separates the
nucleus from the cytoplasm. It contains most of the cell’s genetic material, but not all of it.
The genetic material is organized as multiple long linear DNA molecules in combination

with a large variety of proteins such as histones. DNA in combination with proteins forms

the chromosomes. The genes within these chromosomes form the cell’s nuclear genome.
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The function of the nucleus is to maintain the integrity of the genes and to control the cell
activity by regulating gene expression [51].

Cytoplasm: The cytoplasm is the region between the cell membrane and the nucleus. In
organisms without a nuclear membrane, it is the region located inside the cell membrane. It
is made up of a jelly-liked fluid, called the cytosol which contains other structures outside
the nucleus. The cytoplasm is composed of about 80% water and it is usually colourless.
Most cellular activities occur within the cytoplasm. The cytoplasm is made up of the inner,
granular mass and the outer, clear and glassy layer. The inner mass is called the endoplasm
and the outer one is called the ectoplasm [51].

Mitochondria: Mitochondria are rod-shaped cell structures that convert the energy in
food molecules to energy that cells can actually use to carry out their functions. Mitochon-
dria are complex organelles and they do have their own genetic material, separate from
the DNA in the nucleus. They can copy themselves. Mitochondria are found in most eu-
karyotic cells and are thought to have been free living organisms which were incorporated
into cells over the evolutionary era. The dimensions of mitochondria range from 0.5 to 1.0
micrometer in diameter. They supply the cell with adenosine triphosphate (ATP), which is
used as a source of chemical energy. Mitochondria are involved in supplying the cellular
energy, signalling, cellular differentiation, cell death, as well as the control of cell cycle and
cell growth. They have been implicated in several human diseases, including mitochon-
drial disorders and cardiac dysfunction. They play a role in the aging process as well. Each
mitochondria is composed of compartments that carry out specialized functions. These

compartments are the outer membrane, the intermembrane space, the inner membrane,
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the cristae and the matrix [51].

Endoplasmic reticulum (ER): There are two different types of the endoplasmic retic-
ulum, the smooth type and the rough type. The smooth endoplasmic reticulum lacks
ribosomes. The rough endoplasmic reticulum contains ribosomes on its surface. The
smooth endoplasmic reticulum is involved in lipid metabolism, carbohydrate metabolism
and detoxification. The rough endoplasmic reticulum is prominent in hepatocytes where
active protein synthesis occurs. The endoplasmic reticulum helps process molecules created
by the cell. It also transports these molecules to their specific destinations inside or out-
side the cell. The endoplasmic reticulum forms an interconnected network of membrane-
enclosed sacs or tubes known as cisternae. The membranes of the endoplasmic reticulum
are a continuation of the outer membrane of the nuclear envelope [51].

Golgi apparatus: Golgi apparatus is composed of stacks of membrane-bound structures
known as cisternae. Each cisterna comprises a flat, membrane enclosed disc that includes
special Golgi enzymes. The functions of Golgi apparatus involve packaging molecules
processed by the endoplasmic reticulum that are meant to be transported out of the cell.
It helps in moving material within the cell and out of the cell. It is found in both animal
and plant cells. The role of Golgi enzymes is to modify cargo proteins that travel through
this organelle depending on where they reside. Golgi apparatus is integral in modifying,
sorting and packaging macromolecules. It is involved in the transport of lipids around the
cell and the creation of lysosomes [51].

Ribosomes: Ribosomes are small crucial organelles that process the cell’s genetic in-

structions. Ribosomes are made of protein and ribosomal RNA. These organelles can float
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freely in the cytoplasm or can be connected to the endoplasmic reticulum. Each cell con-
tains thousands of these organelles. Ribosomes are large and complex molecular machines,
found within all living cells. Ribosomes link amino acids together in the order specified by
messenger RNA. Ribosomes consist of two major components, the small ribosomal subunit
and the large ribosomal subunit. The small ribosomal subunit reads the messenger RNA
and the large subunit joins amino acids to form a polypeptide chain. Each subunit is com-
posed of one or more ribosomal RNA molecules and a variety of proteins. Ribosomes are
part of the translational apparatus. When a ribosome finishes reading an mRNA molecule,
the two subunits of the ribosome split apart. The ribosomal RNA performs the catalytic
peptidil transferase activity that links the amino acids together [51].

Lysosomes: Lysosomes are membrane-bound cell organelles found in animal cells. They
are spherical vesicles that contain hydrolytic enzymes. These enzymes are capable of break-
ing down all kinds of biomolecules, including proteins, nucleic acids, carbohydrates and
lipids. These organelles are the recycling center of the cell. They digest foreign bacteria that
invade the cell. They rid the cell of toxic substances and recycle worn-out cell components.
Lysosomes contain around 50 different enzymes which are active at an acidic environment
of about pH 5. They act as waste disposal systems of the cell. They digest unwanted mate-
rial in the cytoplasm. Lysosomes are responsible for cellular homeostasis because of their
involvement in secretion, cell signalling, energy metabolism and plasma membrane repair
[51].

Peroxisomes: Peroxisomes are also known as the microbodies. They are found in all

eukaryotic cells. They are involved in the catabolism of very long chain fatty acids. Per-
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oxisomes break down very long chain fatty acids and convert them to medium chain fatty
acids, which are shuttled to mitochondria where they eventually break down to carbon
dioxide and water [51].

Cytoskeleton: The cytoskeleton is a network of fibres that make up the cell’s structural
framework. It is a dynamic system, parts of which are constantly destroyed, renewed or
newly constructed. The cytoskeleton has three major elements. These elements are micro-
tilaments, microtubules and intermediate filaments. Microfilaments are composed of the
protein actin. Microtubules are composed of the protein tubulin and the intermediate fila-
ments consist of more than 60 different building block proteins. The cytoskeleton gives the
cell shape and mechanical resistance to deformation. The contraction of the cytoskeleton
allows the cell to deform and migrate. It also provides a track-like system that directs the
movement of organelles and other substances within the cell. The structure, function and
dynamic behaviour of the cytoskeleton depends on the organism and cell type. The struc-
ture and function of cytoskeleton changes depending on its association with other proteins

[51].

2.2 Inside the nucleus

The nucleus is the largest organelle in animals. It occupies around 10% of the total volume
of the cell. The viscous liquid within the nucleus is called the nucleoplasm and is similar

in composition with the cytosol. The nucleus appears as a dense spherical organelle.
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Figure 2.2: Cell nucleus

The nucleus is made of the nuclear envelope, the nucleolus, the nucleoplasm and the chromatin. The nuclear
envelope separates the nucleus from the cytosol. The nuclear envelope contains pores through which different
molecules get in and out of the nucleus.

The nucleus consists of the nuclear envelope, the nucleolus, the nucleoplasm and the
chromatin or chromosomes.

The nuclear envelope is otherwise known as the nuclear membrane. It consists of two
cellular membranes, the inner and the outer membrane. They are parallel to one another
with a space of 10 to 50 nanometers in between. The nuclear envelope completely encloses
the nucleus and separates the genetic material from the cytoplasm. It serves as a barrier to
prevent macromolecules from diffusing freely between the nucleoplasm and the cytoplasm.
The outer nucleus membrane is continuous with the membrane of the rough endoplasmic
reticulum, and is similarly embedded with ribosomes. The space between the membranes

is called the perinuclear space and is continuous with the rough endoplasmic reticulum lu-
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men. The nuclear envelope has many nuclear pores in it. They provide aqueous channels
through the envelope. The nuclear pores are made of multiple proteins and are referred
to as nucleoporins. They consist of approximately several hundred proteins in vertebrates.
Their diameter is about 100 nanometer. However, the gap in nuclear pores through which
molecules diffuse freely is about 9 nanometer wide due to the presence of regulatory sys-
tems within the center of the pores. These pores allow small water-soluble molecules to
pass through them. They prevent large molecules, such as nucleic acids and larger proteins
from inappropriately entering or exiting the nucleus. These large molecules can only be
actively transported into the nucleus [51].

The nucleolus is a densely stained structure. It doesn’t have a membrane around it. The
main function of the nucleolus is to synthesize ribosomal RNA and assemble ribosomes
[51].

The nuclear lamina consists of two networks of intermediate filaments. It provides the
nucleus with mechanical support. The nuclear lamina forms an organized meshwork on
the internal face of the envelope. If forms a less organized support on the cytosolic face
of the envelope. It provides structural support for the nuclear envelope and anchoring
sites for nuclear pores and chromosomes. The nuclear lamina is composed mostly of lamin
proteins. These proteins are synthesized in the cytoplasm and after transported to the
interior of nucleus [51].

Chromosomes are structures made of DNA, protein and RNA. The chromosome is a
single piece of coiled DNA containing many genes, regulatory elements and other nu-

cleotide sequences. Chromosomes contain DNA-bound proteins, which package the DNA
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and control its functions. The DNA in chromosomes encodes most or all of the genetic
information in an organism. Each human cell contains roughly two meters of DNA. Most
of the cell cycle, the DNA is in the form of a DNA-protein complex known as chromatin.
During cell division the chromatin forms well-defined structures called chromosomes. A
small fraction of the genes is located in the mitochondria. There are two types of chro-
matin, the euchromatin and the heterochromatin. The euchromatin is the less compact
DNA form and contains genes that are expressed by the cell. The heterochromatin is the
more compact form and contains DNA that is infrequently transcribed. During interphase
both types of chromatin can be distinguished. The interphase is the period of the cell cycle
where the cell is not dividing [51]. Chromosomes in humans can be divided into two types:
autosomes and sex chromosomes. Human cells have 22 pairs of autosomes and one pair of
sex chromosomes giving a total of 46 chromosomes per cell. Sequencing of human genome
has provided a great deal of information about each chromosome. Each chromosome has
one centromere and one or two arms projecting from the centromere. The centromere is
the part of the chromosome that links sister chromatids [51].

Deoxyribonucleic acid (DNA) is a molecule that encodes the genetic information. DNA
is a nucleic acid. The three major molecules essential for all forms of life are nucleic acids,
proteins and carbohydrates. Most DNA molecules consist of two biopolymer strands coiled
around each other to form a double helix. The DNA strands are known as polynucleotides.
The units from which they are formed are called nucleotides. Each nucleotide is composed
of a nitrogen-containing nucleobase, a monosaccaride sugar and a phosphate group [51].

The nucleobase linked to a sugar is called a nucleoside. The nucleobase linked to a
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Figure 2.3: Double helix DNA

Double helix DNA structure. It contains two strands of DNA which are hybridized together. Hybridization
is the process of complementary base pairs binding to form a double helix. The nitrogenous bases of the two
separate polynucleotide strands are bound together, according to base pairing rules (A with T, and C with G),
with hydrogen bonds to make double-stranded DNA.

sugar and one or more phosphate groups is called a nucleotide. There are four nitrogen-
containing nucleobases: guanine (G), adenine (A), thymine (T), and cytosine (C). The
monosaccharide sugar is called deoxyribose. The sugar is a pentose (five carbon sugar).
The sugars are joined together by phosphate groups that form phosphodiester bonds be-
tween the third and fifth carbon atoms that are in two adjacent sugar rings. The nucleotides
are joined to one another by means of covalent bonds. The covalent bonds are formed be-
tween the sugar of one nucleotide and the phosphate group of the other giving so an
alternating sugar-phosphate backbone. These asymmetric bonds make the strands of DNA
have a direction. The direction of the nucleotides in one strand is opposite to their direc-
tion in the other strand. The strands are antiparallel. The asymmetric ends of the DNA are
called the 5" end and the 3’ end. The 5" end has a terminal phosphate group and the 3’ end

has a terminal hydroxyl group [51].
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Figure 2.4: DNA structure

The two DNA strands (polynucleotides) are composed of monomer units called nucleotides. Each nucleotide
is composed of one of four nitrogen-containing nucleobases - cytosine (C), guanine (G), adenine (A), or
thymine (T) - a sugar called deoxyribose, and a phosphate group. The nucleotides are joined to one another in
a chain by covalent bonds between the sugar of one nucleotide and the phosphate of the next, resulting in an
alternating sugar-phosphate backbone. The nitrogenous bases of the two separate polynucleotide strands are
bound together, according to base pairing rules (A with T, and C with G), with hydrogen bonds to make
double-stranded DNA.

The nitrogenous bases of two nucleotides in the two separate polynucleotide strands
are bound together by means of hydrogen bonds. This forms the double-stranded DNA.
Adenine is bounded to thymine through 2 hydrogen bonds and guanine is bounded to
cytosine through 3 hydrogen bonds [51].

The DNA backbone is resistant to cleavage. Both strands of the double-stranded struc-
ture store the same biological information. The two strands are separated when the bi-
ological information is replicated. 98% of DNA is noncoding, which means these parts
of DNA don’t encode proteins. The two strands run in opposite directions to each other,

therefore antiparallel. One strand is in the 3’-5" direction, while the other strand is in the
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5’-3” direction. The nucleobases are attached to each sugar. It is the sequence of these four
nucleobases that encodes biological information [51].

Ribonucleic acid (RNA) is a family of large biological molecules that perform multiple
vital roles in the coding, regulation and expression of genes. There are different types of
RNAs. There are messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA),
microRNA (miRNA), small nuclear RNA (snRNA), etc. RNA is a polynucleotide strand.
It contains a ribose sugar, a base and a phosphate group. The differences between DNA
and RNA are: First, DNA is a double stranded helix, while the RNA molecule consists of
one polynucleotide strand only. The sugar in DNA is a deoxyribose sugar, while in RNA
is a ribose sugar. RNA has the same nitrogen nucleobase as DNA with the exception of
thymine being replaced by uracil (U). Adenine and guanine are purines. Cytosine and
uracil are pyrimidines. A phosphate group is attached to the 3" position of one ribose and
the 5" position of the next. The phosphate groups have a negative charge, making RNA a
charged molecule [51].

Messenger RNA conveys genetic information from DNA to the ribosome, where they
specify the amino acid sequence of the protein products. The genetic information in the
messenger RNA is in the sequence of nucleotides. The nucleotides are arranged in codons
consisting of three bases each. Each codon encodes for a specific amino acid, except the
stop codons, which terminate the protein synthesis. Messenger RNA is a single stranded
molecule that is complementary to one of the DNA strands of a gene. It is an RNA version
of the gene that leaves the cell nucleus and moves to the cytoplasm where proteins are

made. During protein synthesis, the ribosome moves along the mRNA, reads its base se-
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quence, and uses the genetic code to translate each three-base triplet, into its corresponding
amino acid [51].

Transfer RNA is an RNA molecule usually 73 to 79 nucleotides in length. It serves
as a physical link between the nucleotide sequence in messenger RNA and the amino acid
sequence in the protein. It carries an amino acid to the ribosome as directed by the codon
in the messenger RNA. Thus transfer RNAs are crucial components in protein translation.
The codon in mRNA specifies which amino acid is incorporated into the protein product
of the gene from which mRNA is transcribed. The role of transfer RNA is to specify which
sequence from the genetic code corresponds to which amino acid. One end of the transfer
RNA is called the anticodon. It matches the codon in the messenger RNA. The other end
of the tRNA is a covalent attachment to the amino acid that corresponds to the anticodon
sequence. Each type of transfer RNA can be attached to only one type of amino acid. Thus
there are many types of transfer RNA in each organism [51].

Ribosomal RNA is the RNA component of the ribosomes. Ribosomes are cell or-
ganelles made of proteins and ribosomal RNA. Ribosomes contain 60% ribosomal RNA
and 40% protein in weight. They contain two major ribosomal RNAs and 50 different
types of proteins. The ribosomal RNAs form two subunits, the large subunit and the small
subunit. The large subunit acts as a ribozyme. It catalyses the peptide bond formation in
proteins. The messenger RNA is sandwiched between the large and the small subunits of

the ribosome [51].
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2.21 Transcription and translation

Transcription is the process in which segments of DNA are copied into RNA by the enzyme
RNA polymerase. It is the first step of gene expression. A gene is a stretch of DNA that
encodes information.

There is a particular region in DNA that helps initiating the transcription process. This
region of DNA is called the promoter. It is located near the transcription start site of a gene,
towards the 5" region of the sense strand. The sense strand is the segment of the double-
stranded DNA that runs from the 5" to 3’ direction. The antisense strand of DNA is the
strand that runs in the 3’ to 5’ direction. The enzyme that produces the primary transcript
of messenger RNA is called RNA polymerase. In eukaryotes transcription is done by
three different RNA polymerases. RNA polymerase II is responsible for transcription of
protein coding genes and some other noncoding RNAs, like miRNAs. RNA polymerase
creates a transcription bubble. It separates the two strands of the DNA helix. This is
done by breaking the hydrogen bonds between complementary DNA nucleotides. RNA
polymerase adds matching RNA nucleotides to the complementary nucleotides of the DNA
strand. RNA polymerase forms the sugar-phosphate backbone in the newly created RNA
strand. The hydrogen bonds of the untwisted RNA-DNA helix break and in this way the
newly synthesized RNA strand is released. The primary transcript of RNA undergoes other
processes like polyadenylation, capping and splicing. The RNA strand exits the nucleus
through the nuclear pore complex. The part of DNA transcribed into an RNA is called a

transcription unit. It encodes at least one gene. If the gene transcribed encodes a protein,

24



the RNA formed is called messenger RNA. The transcribed gene, if not coding for a protein,
will encode for a non-coding RNA like miRNA, ribosomal RNA, transfer RNA, or other

ribozymes.

RNA Polymerase

Template strand

Mew RNA strand created

Figure 2.5: Transcription

Transcription is the first step of gene expression. A particular segment of DNA is copied into RNA by the
enzyme RNA polymerase. Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a
complementary language. During transcription, a DNA sequence is read by an RNA polymerase, which
produces a complementary, antiparallel RNA strand. RNA polymerase creates a transcription bubble, which
separates the two strands of the DNA helix. This is done by breaking the hydrogen bonds between
complementary DNA nucleotides.

The primary transcript produced by RNA polymerase II is called the pre-mRNA, which
undergoes several modifications to become mature mRNA. These include 5’capping which
is a set of enzymatic reactions that add 7-methylguanosine to the 5" end of the pre-mRNA.
It protects the RNA from degradation of exonucleases. This G cap is then bounded to a cap
binding complex. Another modification done is the polyadenylation at the 3" end of the

pre-mRNA. This occurs if the polyadenylation signal sequence (5'-AAUAAA-3’) is present

in the pre-mRNA. This signal is usually in between protein-coding sequence and termina-
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tor. The pre-mRNA is first cleaved and after around 200 adenines A are added to form
the poly(A) tail, which protects RNA from degrading. Another modification of pre-mRNA
is RNA splicing. The majority of pre-mRNAs are made up of alternating segments called
exons and introns. During splicing, spliceosomes, which are RNA-protein catalytic com-
plexes, catalyze two transesterification reactions. They remove and release an intron and
splice neighbouring exons together. Sometimes introns and exons can be either removed or
retained in mature mRNA, called alternative splicing creating series of different transcripts

originating from a single gene [51].
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Figure 2.6: Transcription and translation

In most eukaryotic genes, coding regions (exons) are interrupted by noncoding regions (introns). During
transcription, the entire gene is copied into a pre-mRNA, which includes exons and introns. During the
process of RNA splicing, introns are removed and exons joined to form a coding sequence. This “mature”
mRNA is ready for translation into proteins.

Translation is the process where messenger RNA is read and translated into a string of
amino acids. This process takes place at ribosomes. Ribosomes are organelles in the cyto-

plasm. Some of them are attached to the endoplasmic reticulum and some stand freely in

the cytoplasm. Ribosomes bind and slide along the messenger RNA and serve as a frame-
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work for translating the genetic message. As each triplet is read, a transfer RNA molecule
brings a specific amino acid to the ribosome. This amino acid is then chemically joined to
the previous amino acid by a peptide bond. These tRNA molecules are like waiters. Each
is trained to take a specific order from a certain codon. One arm of the tRNA contains
an anticodon loop containing the complementary triplet codon. For example, if the codon
in the messenger RNA is ACG, the corresponding anticodon in the transfer RNA will be
UGC. On another arm is an acceptor stem that attaches to the amino acid corresponding to
the triplet codon. After the transfer RNA delivers its amino acid to the translation complex,
it floats away to carry another amino acid. The enzyme aminoacyl-tRNA synthetase (ARS),
recognizes both the anticodon loop and the acceptor stem of tRNAs. This enzyme attaches
the corresponding amino acid to the transfer RNA. These aminoacyl-tRNA synthetase en-
sure that the transfer RNAs pick up the right amino acids [51].

Translation involves three stages: initiation, elongation, and termination.

Initiation of translation. The start codon that initiates translation is the codon AUG.
The region between the start codon and the first codon that is being translated is called
the untranslated region or the UTR. The purpose of the untranslated region is important
since it contains a ribosome binding site. The translation process begins after the formation
of a complex structure. Three initiation factor proteins known as IF1, IF2, and IF3 bind
to the small subunit of the ribosome. The pre-initiation complex and a transfer RNA
carrying methionine bind to the messenger RNA, near the AUG start codon. This forms
the initiation complex. Methionine is always the first amino acid incorporated into any

protein but it is not always the first amino acid in mature proteins. It is removed after
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translation. Once the initiation complex is formed the large subunit of the ribosome binds
to this complex. This causes the release of the initiation factors. The large subunit of
the ribosome has three sites where transfer RNA can bind. The A site, or amino acid
site is where aminoacyl-tRNA anticodon base pairs up with the messenger RNA codon.
This ensures that the correct amino acid is added to the growing polypeptide chain. The
polypeptide site, or the P site is where the amino acid is transferred from its transfer RNA
to the growing polypeptide chain. The third site is the exit site or the E site. It is the
location where the empty tRNA sits before it is released back into the cytoplasm. The only
transfer RNA that can bind in the P site of the ribosome, is the methionine -tRNA. The A
site is aligned with the second codon of messenger RNA. The ribosome is ready to bind
the second aminoacyl-tRNA at the A site. This amino acid will be joined to the initiator
methionine by the first peptide bond [51].

Elongation of translation. The next phase is the elongation phase. The ribosome moves
along the messenger RNA in the 5 to 3’ direction. The ribosome shifts or translocates
leaving the A site empty for the second amino acid. The transfer RNA that corresponds to
the second codon, can after bind to the A site of the ribosome. A peptide bond is formed
between the first and the second amino acid. The peptidyl transferase activity that ensures
the bonding between the amino acids is a catalytic activity of the ribosome. After the
peptide bond is formed, the ribosome shifts, or translocates again. The tRNA occupies the
exit site. Then the tRNA is released in the cytoplasm to pick up another amino acid. The A
site of the ribosome is empty and ready to receive the next tRNA for the next codon. This

process is repeated till all the codons in the messenger RNA are been read by transfer RNA.
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The amino acids are linked together in the growing polypeptide chain in the proper order.
After all codons are read, translation is terminated and the polypeptide chain is released

from the messenger RNA and ribosome [51].
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Figure 2.7: Ttranslation

Translation is the process in which ribosomes create proteins, following transcription of DNA to RNA in the
cell’s nucleus. In translation, messenger RNA (mRNA) is decoded by a ribosome, outside the nucleus, to
produce a specific amino acid chain, or polypeptide. The ribosome facilitates decoding by inducing the
binding of complementary tRNA anticodon sequences to mRNA codons. Ribosomes contain the small
subunit, which reads the RNA, and the large subunit, which joins amino acids to form a polypeptide chain.
The tRNAs carry specific amino acids that are chained together into a polypeptide as the mRNA passes
through and is “read” by the ribosome.

Termination of translation. There are three terminating codons in the messenger RNA.
They are UAA, UAG and UGA. No transfer RNAs recognize these three codons. Thus,
instead of the tRNA, it’s one of the several proteins, called release factors, which binds
and facilitate release of the messenger RNA from the ribosome and the dissociation of the

ribosome [51].
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Chapter 3

Network Classification and Properties

3.1 Network Classification

Network biology provides a description of networks that characterize different biological
systems [20]. Complex networks are compared using some basic network measures. These
measures include, but are not limited to, average degree, degree distribution, shortest path
length and clustering coefficient.

The degree of a node is defined as the number of bonds connected to each node. The
number of nodes in a network is called the network order and the number of bonds is called
the network size. The average degree of a network is defined by (k) = %, where L is the
total number of bonds in the network and N is the number of nodes in the network. In the
network shown in figure 3.1, the degree of node i is 7 since it is adjacent to 7 other nodes.
The order of the network is 9 since there are 9 nodes and the size of the network is 14 since

there are 14 bonds. The average degree of the network can be computed: (k) = % =3.1.
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Figure 3.1: Network

The degree distribution of a network P(k) is the probability distribution of the degrees
of the nodes over the whole network. The degree distribution is calculated by counting the
number of nodes with 0,1,2,3... bonds and dividing it by the total number of nodes. The
degree distribution of the network shown in figure 3.1 is [0, 0, g, %, 0,0,0, %] since there are
no nodes of degree 0, no nodes of degree 1, 3 nodes of degree 2, 5 nodes of degree 3, no
nodes of degrees 4, 5 or 6 and one node of degree 7.

Two nodes can be connected to each other through different paths. A shortest path is
one that involves the fewest number of bonds between any two given nodes. The mean
path length is calculated as the average over shortest paths between all pairs of nodes.

The clustering coefficient for a particular node i is defined as (c;) = kl(i%l), where n; is
the number of neighbours of i that are adjacent to each other and k; is the degree of node

i. Taking the average of these individual clustering coefficients over all nodes i gives the
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average clustering coefficient. The clustering coefficient of node i in the network shown in
figure 3.1 can be calculated as (c;) = % = 0.24 since five neighbours of node i are linked
to each other as well. In other words, there are five triangles formed with i being one of
the vertices of these triangles. The denominator in the clustering coefficient formula gives
the maximum possible number of triangles formed if all neighbours of node i were linked
to each other. Thus Iw(le) gives the possible number of triangles formed around node i.
An alternative way of measuring the average clustering coefficient is by using the formula

(C) = %, where T is the total number of triangles present in the network and Nj is the

3

number of connected triplets. Connected triplets are paths of length 2.

Networks can be classified as follows:

Random Networks are networks in which the node degree distribution follows a bino-
mial distribution with probability distribution: P(k) ~ (", ")p*(1 — p)"~17k. In this case
each of n nodes is connected (or not) with independent probability p (or 1-p) (Bernoulli

random networks). If n is large the degree distribution of random networks is given by:

P(k) = : (16:;),161%(1_”)", where A = —log(1 — p) (Poisson distribution). Nodes with large

~3

degrees are very rare. Random networks are also called exponential, because the probabil-
ity that a node is connected to k other nodes decreases exponentially for large k.

The clustering coefficient of random networks does not depend on the nodes” degrees.
Thus, the graph that expresses the relationship between C(k) and k is a horizontal line.
Random networks also exhibit the small world property: They are characterized by a small
average path length between nodes. The average path length is given by (/) ~ log N, where

N is the order of the network [20].
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The degree distribution P(k) of scale-free networks decays as a powerlaw. That is, the
probability that a node is connected to k other nodes in the network is given by P(k) ~ k™7
where 7 is the scale-free exponent. This means nodes of large degree are over-represented
in scale-free networks. Nodes of large degrees are called hubs and are adjacent to many
other nodes (while the majority of nodes have only a few bonds attached to them). The
average degree of the network is not a significant indicator of the network topology since
most nodes have degrees which vary considerably from the average degree. On a log - log
scale, power law distributions are straight lines. Scale-free networks are also characterized
by the small world property: Their average path length is given by (I) ~ loglog N, thus

much smaller than log N, which characterizes average path lengths in random networks.

3.2 Scale-free networks

Scale-free networks of order n are characterized by degree sequences {dy} which follow a
power law distribution (where dj is the number of nodes of degree k and %dk is the fraction
of nodes of degree k).

If (dy) is the average degree distribution over randomly generated scale-free networks,
then 1(d;) is proportional to the probability P(k) that a node has degree k. In scale-free

networks, the probability P(k) decays like a powerlaw with exponent 7:

P(k) ~C,lk. (3.1)
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Here, 7y is the scale-free network exponent. The constant C, is a normalization constant given
by
Co =) P(k). (3.2)

As n — o0, it is necessary that v > 1 for P(k) to be summable (and C, < o0). In this case C,
converges to a constant as n — co. Thus, if v > 1 then the network is said to be integrable
with scaling exponent vy (in this event equation (3.1) is the scaling of the limiting degree
distribution with C, > 0 finite and P(k) — 0 as k — o).

The case that v = 1 gives rise to a logarithmic correction. Since Y}, k=1 ~ logn, this

gives the distribution

P(k) ~ k! (3.3)

™~ Togn

for networks of (large) order n. This network is said to be not integrable, but for asymptotic
values and fixed values of n the decay of P(k) will appear to be proportional to k1.

Since P(k) is the probability that a node in a network has degree k, the average degree
sequence {(dy),} over randomly generated networks of order # is given approximately by
(dg) ~ nP(k), for n large. It is not known that the degree sequence is self-averaging (that
is, that the degree sequence {dy} has asymptotic distribution dy ~ nP(k) as n — oo for a
single randomly generated scale-free network).

The powerlaw decay of degree sequences shows that nodes of large degree (that is,
for large k) are more common in scale-free networks (compared to randomly generated
networks, where they are exponentially rare). These nodes of large degree are called hubs.

A precise definition of a hub in a network is somewhat arbitrary, but for the purpose of this
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research, a “hub” in a network of order n is defined as a node of degree bigger or equal to
V).

The exponent 7y can be estimated from numerical data by computing the average degree
sequence {(dy)} and then plotting log P(k)/logk against 1/ logk (for networks of order
n > k). Extrapolating the data to k = oo using a linear or a quadratic regression gives the
value of v as the y-intercept of the graph. This method works well if P(k) scales with k as
in equation (3.1). However, strong corrections to the powerlaw behaviour may make the
extrapolation difficult or inaccurate.

A second method to estimate 7 is to note that if v > 1 and if equation (3.1) holds, then

for a fixed value of « > 0,

¢(k) =logP(ak) —log P(k) = —yloga +o(1). (34)

Experimentation with numerical data shows that by plotting (k) against %logk good re-
sults are obtained, and linear or quadratic regressions of (k) against % log k can be used to
estimate 7.

If it is assumed that P(k) is well approximated by equation (3.1) for all k > 1, then the

average connectivity of a network of order n with average degree distribution proportional
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to P(k) = Cok™7 is given by

_ Y kP(k) o [ kP(R)dk (=1 p7 i
o = Z%ijW) - }flwkym - (7—2) n7—n

(35)m 7, if1<y<2

(:;—:;) ify > 2.

Observe that the asymptotic estimate is very poor if v ~ 2, and if n is small.

The cases ¥ = 1 and v = 2 can also be determined; this gives

_n_
logn’

if y=1;
(kY ~
logn, if y=2.

(3.5)

(3.6)

The coefficient % may be modifed if P(k) is not well approximated by the powerlaw

decay for smaller values of k in equation (3.1). These results, however, do show that the

connectivity is a constant independent of n (for large n) if v > 2.

The expected number of bonds in the network is given by

21'(1)?, ify=1,
71 3— ; .
(m)?’l r)/’ 1f1<')’<2,
E, =
nlogn, if v =2;

\(2&—__12)>n, if v > 2.
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Of course, if 7 < 1, then E, = ®(n?) and since a complete network has 37(n — 1) bonds,
this implies that these networks are dense in the sense that liminf;, e %En > 0. For all
values of 7y > 1 the above shows that limsup,,_, %En = 0, and the networks are sparse.

These results are useful in examining numerical data for scale-free networks. For exam-
ple, v can be estimated by examining degree sequences averaged over randomly sampled
networks (from equation (3.1)), or alternatively by using equation (3.4). The connectivity
(k)n approaches a constant if y > 2 (as in equation (3.5)) or grows as a powerlaw with 7 if
v < 2, and with logarithmic corrections if v = 1 or v = 2 (as in equation (3.6)). Alterna-
tively, the average size E, (the number of bonds in a network of order 1) can be considered,

using the results in equation (3.7).

3.3 Protein-protein Interaction Networks (PINs)

Proteins are large, complex molecules that play many critical roles in the body. They do
most of the work in cells and are required for the structure, function, and regulation of the
body’s tissues and organs. Proteins are made up of hundreds or thousands of smaller units
called amino acids, which are attached to one another in long chains. There are 20 different
types of amino acids that can be combined to make a protein. The sequence of amino
acids determines each protein’s unique 3-dimensional structure and its specific function.
Proteins function as antibodies, enzymes, structural components, messenger molecules, etc.

Physical and chemical processes in the molecular biology of living cells are largely con-

trolled by proteins. Some proteins function independently, but most of them interact with
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each other in order to perform biological activities. These interactions are very complex for
even the simplest organisms. Knowing the interactions between proteins may help deter-
mine the functions of certain proteins which were unknown before. Since the majority of
proteins interact with each other, their functions should be studied in the context of these
interactions to fully understand their role in the cell. The bonds that keep the proteins
together are hydrophobic bonding, van der Waals forces and salt bridges at particular do-
mains on each protein. The binding domains differ in size. They can be a few peptides
long or consist of hundreds of amino acids. The size of the binding domains have a direct
impact on the strength of interactions.

Protein-protein interactions can be physical interactions or functional associations. Pro-
teins interact physically, meaning they can bind in specific ways and sites, and this binding
can produce changes in those same proteins (like conformational changes), which alter
their properties.

Two proteins are physically interacting if some of their residues are in physical contact
at some point in time. The physical contacts between proteins are specific, occur between
defined binding regions in the proteins, and have a particular biological meaning (i.e.,
they serve a specific function). Often a conformational change in a protein induced by
an interaction with another protein activates or inactivates it. For example, an interaction
can create a conformational change that enables (activates) or disables (inactivates) the
protein to catalyze a given reaction, and so the referred interaction plays an important
function in regulating the protein’s activity. The results of a physical interaction between

two proteins can be diverse. They involve altering the kinetic properties of enzymes (due to
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subtle changes in substrate binding), creating new binding sites, inactivating or destroying
a protein, changing the specificity of a protein for its substrate through the interaction with
different binding partners (demonstrating a new function that neither protein can exhibit
alone).

Functional associations do not require physical contact between the associated proteins.
Assume that protein A activates protein B at time T1, separates from protein B at time T2
and protein B regulates protein C at time T3. Proteins A and C do not interact, instead,
they are associated (functional association). Even for T1 = T2 and the three proteins form a
somehow stable complex, proteins A and C are still considered to functionally (not phys-
ically) interact. Protein B can undergo conformational changes after its interaction with
protein A which are necessary for its interaction with protein C. Therefore, proteins A and
C even though not physically interacting are functionally associated with each other.

Protein-protein interactions (PPIs) can be visualized using networks. Protein-protein
interaction networks (PINs) are mathematical representations of the physical/functional
interactions between proteins in the cell.

The data currently available indicate that protein interaction networks are characterized
by degree heterogeneity, the small-world property, and modularity [82]. The first two prop-
erties imply the resilience of the network to random disruptions of proteins or interactions
due to mutations. They also imply the fragility of these networks to the disruption of hub
proteins. The modularity is thought to be both the cause and effect of evolution [82]. The
modules represent protein complexes, signaling cascades, and other cell components that

evolve partially independently.
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The average connectivity in protein interaction networks is small. The networks exhibit
the small world property meaning it takes only a handful of links to get from one node
to another. The connectivity of different nodes varies considerably. While there are plenty
of nodes with very low degree, there is a handful of super connected hubs that have very
many connections.

Protein interaction network evolution models based on the concept of gene duplication
and divergence provide a good explanation to the observed network properties. Thus,
rather than unexpected, the three properties mentioned above are the natural outcome of

evolution [82].

3.3.1 Degree distributions of PINs

If protein-protein interaction networks are scale-free, then their degree distribution follows
a power law distribution, namely P(k) ~ Ck~7. We use data downloaded from the STRING
[38] database to show that protein-protein interaction networks are scale-free networks.

STRING stands for search tool for the retrieval of interacting genes/proteins. It contains
known and predicted protein-protein interactions. STRING aims to provide a critical as-
sessment and integration of protein-protein interactions, including direct (physical) as well
as indirect (functional) associations [38].

The files downloaded on the STRING database were: “protein.links.v9.1.txt.gz” and
“protein.links.v10.txt.gz”. These files consist of three columns. The first two columns are
the identifiers of the two interactors and the third one is the confidence score. Confidence
scores show the probability that there is an interaction between the two proteins. Those
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probabilities are multiplied by 1,000. If the confidence score is above 700, it means there’s
high confidence that the two proteins interact with each other. If the confidence score is
between 300 and 700, it shows a medium confidence and a score below 300 is an indicator
of a low confidence that there is an interaction between the two proteins.

The degree sequences {(dy)} of the proteins in each of the files were computed and
then log P(k)/ logk against 1/ logk was plotted. Extrapolating the data to k = co using a
linear or a quadratic regression gives the value of 7 as the y-intercept of the graph. This
method works well if P(k) scales with k as in equation (3.1). However, strong corrections

to the powerlaw behaviour may make the extrapolation difficult or inaccurate.

log P(k) ~ C —ylogk (3.8)

e%cﬂ) = %[(C — ylogk) — log P(k)]? (3.9)
logP(k) C

ok~ T logk (3.10)

First, interactions in the “proteins.links.v9.1.txt.gz” file downloaded from the STRING [38]
database were considered (figure 3.2). Extrapolating the data to k = oo using a quadratic
regression gives the value of v = 2.7 as the y-intercept of the graph. Next, interactions
in the ”proteins.links.v10.txt.gz” file downloaded from the STRING [38] database were
considered (figure 3.3). Extrapolating the data to k = oo using a quadratic regression gives

the value of y = 2.5 as the y-intercept of the graph.
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Figure 3.2: log P(k)/logk wvs 1/logk for protein-protein interactions on "pro-

teins.links.v9.1.txt.gz” file
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Figure 3.3: log P(k)/logk wvs 1/logk for protein-protein interactions on "pro-
teins.links.v10.txt.gz” file

The scaling exponent v is greater than 2 in both the above networks. Comparing these
results with equations (3.5) and (3.7), indicates that the connectivity of the protein-protein
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interaction networks is a constant independent of n for large n. The expected number
of bonds in these networks should grow linearly in n for large n. This indicates protein-
protein interaction networks are sparse networks. They are characterized by a large number
of false negatives, meaning missing interactions which are not yet predicted or experimen-

tally verified.
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Chapter 4

Mean Field Analysis of Algorithms for

Scale-free Networks in Molecular Biology

The scale-free networks model is considered a significant discovery because it has been suc-
cessfully applied to many complex real-world networks and proved valid. The successful
application of this model deemed the other model, the random network model, question-
able. The presence of scale-free emerging properties in many real-world networks provides
initial evidence that these self-organizing phenomena do not only depend on the character-
istics of individual systems, but are general laws of evolving networks [83]. The responsible
mechanisms for the emergence of scale-free networks are important in understanding why
different systems converge to networks with similar architecture [4].

Four evolutionary algorithms able to generate scale-free networks are described below,

with a focus on their mean field analysis.
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4.1 Barabasi-Albert networks and the Barabasi-Albert algo-

rithm

The Barabasi-Albert algorithm is a recursive algorithm which grows networks (or clusters
of nodes and bonds) from a seed node. This algorithm was introduced in reference [4]
and reviewed in 2002 in a seminal paper [1], and its elementary move was inspired by
processes underlying the (presumed) evolution of scale-free networks seen in the physical
world. The elementary move is a preferential attachment of new nodes (and bonds) to hubs
(nodes of high degree) in the network. Thus the two main ideas of the model are growth and
preferential attachment. Growth means that the number of nodes in the network increases in
time. Preferential attachment means that new nodes have a tendency to connect to nodes
with high degree.

A social network modelled by the Barabasi-Albert model is the co-authorship network of
scientists. Barabasi-Albert captured the dynamic and the structural mechanisms that gov-
ern the evolution and topology of this complex system by mapping the electronic database
containing all relevant journals in mathematics and neuroscience for an 8-year period (1991-
98). Each node in the network represents an author and a bond between two nodes means
those authors have published together. The network constantly expands by the addition
of new authors to the database and the addition of new internal links representing pa-
pers co-authored by authors that were part of the database, as well as external links, links
representing papers for authors that were not in the database.

The two main ideas that underlie the evolution of the co-authorship network are growth
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and preferential attachment. The network continuously grows as new authors publish their
papers. For a new author, who appears for the first time on a publication, preferential
attachment has a simple meaning: it is more likely that the first paper will be co-authored
with somebody that already has a large number of co-authors (links) than with somebody
less connected. As a result old authors with more bonds will increase their number of
co-authors at a higher rate than those with fewer bonds [1]. A large number of new links
appear between old nodes as the network evolves, representing papers written by authors
that were part of the network, but did not collaborate before. Such internal links are known
to effect both the topology and dynamics of the network [5]. These internal links are also

subject to preferential attachment.

The Barabasi-Albert Algorithm is described below. The algorithm is initiated by a single
node, and then new nodes and bonds are recursively attached, with new bonds preferen-
tially attached to existing nodes of large degree.

A Barabasi-Albert network of order N nodes is grown as follows:

Barabasi-Albert algorithm:
1. Initiate the network with one node x;
2. Suppose that the network consists of nodes {xo, x1, ..., x,_1} of degrees {ko, k1, ..., k,_1};
3. Append a new node x, by executing step (a) or step (b):

(@) With probability p: Select x; uniformly and attach x, to it by inserting the bond

(xj~xn);
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(b) With default probability 1 — p: Attach x, by adding bonds (xj~x,) indepen-

dently with probability Zk_]k] ;
/

4. Repeat step 3 until a network of order N is grown.

Step 3(a) is a random attachment of a node and bond, and step 3(b) attaches a node with
bonds preferentially to existing nodes of high degree. The algorithm has a single parameter
p. If p = 1 then the algorithm grows acyclic (and connected) networks of order N (these
are random trees).

On the other hand, if p = 0, then step 3(b) is executed on each iteration. New bonds
are created with probabilities q; = % forj =0,1,...,n — 1 when the n-th node is added.
This shows that the expected number of bonds added in this step is on average ) ;q; = 1.
That is, on average 1 bond is added in each iteration, and the average sum of degrees } ; k;
should be equal to 2n by handshaking after n iterations. This suggests that the algorithm
grows a sparse graph with increasing n. However, since bonds are appended preferentially
on growing hubs, the largest clusters in the network should be dominated by growing
hubs.

For values of p € (0,1) the algorithm adds either (with probability p) a single bond
randomly, or it adds a collection of bonds (on average one bond) preferentially. This grows

simple networks of order N and size N — 1, typically not connected unless acyclic.
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Figure 4.1: Barabasi-Albert networks with p = 0:

The network on the left was grown to order n = 122. It has 5 hubs of degrees {12,17,18,19,31} exceeding
V/122. The network on the right was grown to order n = 380. This network has 3 hubs of degrees
{29,47,63} exceeding \/380. The arrangement of nodes and bonds in these networks was created using the
prefuse force directed layout in Cytoscape 3.4.0 [11].

In figure 4.1 an example of a Barbasi-Albert network of order 122 with p = 0 is shown
(left) and the right is a network of size 380. The appearance of hubs in these networks is
clearly seen: In the network on the left there are 5 nodes of degrees exceeding /122, the
largest of degree 31, and in the network on the right there are 3 hubs of degrees exceeding

V380, the largest of degree 63.

4.1.1 Modified Barbasi-Albert networks

Barabasi-Albert networks are relatively sparse networks. A modification of the algorithm

can be introduced to grow denser networks. For example, one may replace step 3(b) by

3(b). With default probability 1 — p: Attach x, by adding bonds (xj~x,) with prob-

ability q; = min{)\g%%, 1} (where A and A are non-negative parameters of the
/)
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algorithm);

Since k; < )W kj in Barabasi-Albert networks, one may assume that Ak; + A < Y k; for
values of A and A which are not too large (and so g; < 1).

In the modifed Barabasi-Albert Model, the effect of the parameter A is to increase the
density of the network if A > 1 and decrease it otherwise. Every node has an initial
attractiveness A. This means even the isolated nodes will have a chance to connect to the
new nodes entering the system. In the Barabasi-Albert Model, the isolated nodes were not
able to receive any new links during the growth process and remained isolated regardless

the growth of the network.

Figure 4.2: Modified Barabasi-Albert networks:

The network on the left was grown with A = 0.5 to order n = 201. It has two hubs of degrees {15,17}
which exceed \/201. The network on the right was grown with A = 2 to order n = 172. This network
contains hubs of degrees {15,15,16,17,19,27,33} exceeding V/172. In both cases the algorithm was

implemented with p = 0. The arrangement of nodes and bonds in these networks was created using the

prefuse force directed layout in Cytoscape 3.4.0 [11].
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In figure 4.2 two examples of Modified Barabasi-Albert networks are shown, one a
sparse network with A = 0.5, A = 0 and p = 0, and the second a denser network with
A =20,A=0and p = 0. In both cases the algorithm was iterated 200 times; the sparse
network has order 201 and two hubs of degrees {15,17}, and the dense network has order

172 with seven hubs of degrees {15,15,16,17,19,27,33}.

4.1.2 Variant Barbasi-Albert networks

A variant Barbasi-Albert algorithm can be introduced by changing step 3(b) in the Barbasi-

Albert algorithm to

3(b). With default probability 1 — p: Attach x, by adding bonds (x;~x,) with prob-
k¥+A
ability g; = min{%, 1}, (where « and A are non-negative parameters of the
/

algorithm);

The effect of the parameter « is to increase the probability of adding bonds to the hubs
of the network if « > 1, and to decrease this probability if & < 1.

In the variant Barabasi-Albert Model every node has an initial attractiveness A. This
means even the isolated nodes will have a chance to connect to the new nodes entering
the system. In the Barabasi-Albert Model, the isolated nodes were not able to receive any
new links during the growth process and remained isolated regardless the growth of the
network.

In the case that & > 1 networks dominated by a single very large hub are obtained (see

tigure 4.3 (right network)), while networks with & < 1 are more sparse and not dominated
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by a few hubs (see figure 4.3 (left network)). The left network in figure 4.3 was grown by
putting &« = 0.15 and A = 0 and has order 327. None of the nodes in this network has
degree which exceeds v/327, and so none qualify as hubs. A denser network is obtained
if « = 1.15 and A = 0, as shown in figure 4.3 on the right. This network is dominated by

hubs of degrees {22,24,26,42,43,116} and has order 351.

Figure 4.3: Variant Barabasi-Albert networks:

The network on the left was grown using & = 0.15 and A = 0 to a total of n = 327 nodes. This graph is
very sparse, and none of its nodes qualify as hubs. The network on the right was grown to order n = 351
with « = 1.15 and A = 0. This is a dense network with several nodes qualifying as hubs of degrees
{22,24,26,42,43,116}. The arrangement of nodes and bonds in these networks was created using the
prefuse force directed layout in Cytoscape 3.4.0 [11].

4.1.3 Maean field theory for Modified Barabasi-Albert networks

Let kj(n) be the degree of node j after n iterations of the modified Barabasi-Albert algo-

rithm. A mean field calculation of k;(n) is done by assuming that k;(n) is equal to its
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expected value for each n; that is, kj(n) = (kj(n)) for each j and n.

The modified Barabasi-Albert algorithm appends bonds to a network of order n as
follows: Step 3(a) is executed with probability p, and a bond (and the (n + 1)-th node) is
appended with uniform probability on one of the n existing nodes. The probability that
node j gets a bond in this way is £ and on average one bond is attached with probability p.

If step 3(b) is done instead, then the expected number of bonds added in the mean field

is approximately ) ; % =1+ Zﬁi—f(n) The total number of bonds in the network is
2E, =) kj(n) (4.1)
j

by handshaking. Thus, the increment in the number of bonds when the next node is
appended is

AE, =p+(1—pA+(1-p)ha. (4.2)

Approximate this by a differential equation
2EuhEn = 2(p+ (1 — p)A)En + (1 — p)nA. 4.3)

This can be solved to obtain

En = 3((p+ (1= p)A) +/(p+ (1= p)A)? +2(1 - p)A) = Cn, (4.4
where C is a function of (p, A, A) defined by this expression. Notice that E, grows approx-
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imately linearly in 7, so that modified Barabasi-Albert networks will be necessarily sparse
as n — oo (and by equation (3.7) the scaling exponent is 7y > 2).
To determine the value of 7, a recurrence for k;(n) can be written. With each iteration

the mean field value of k;(n) (the degree of the j-th node after 7 iterations) increments by

(1-p)(Akj(n)+A)
since 2E, = ¥ J k]-(n) = 2Cn, and since the probabilty of adding a bond to node j is A

This can again be approximated by a differential equation: Take n — ¢, a continuous time

variable, and let k;(n) — k;(t), the continuous mean field degree of node j. Then

1—p) (Ak;(H)+A
dpt) =L 4 ( P)(ZC]t() ) (4.6)

The initial condition is to assume that node j is added at time ¢;. Putting A =0and A =1

gives C = 1 and the equation
t
ry0) = £ LB @7

which was also derived in reference [5]. In this event the solution is (assuming the initial

condition k;(t;) = 1):

ki(t) = b (e/8) 07072 — 2 (4.8)
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More generally, equation (4.6) can be cast in the general form

£+ Prir) 4.9)

S~
tax
—.
—~
—~
~—
I

where Q = p + % and P = %, with solution

Ki(f) = (1 + %) (t/t)P =8 (4.10)

using again the initial condition k;(t;) = 1.
The mean field degree distribution can be determined from this solution. The probabil-
ity that node j has degree k;(t) smaller than « at time ¢t is denoted by P[k;(t) < «]. Since

k](t) < x if

, p+x) ~L/P
(1+3) (t/t)" = <x orequivalently, t; >t (Pgp)

.. o Q/P+x —1/p . .
this is also the probability P |(t;/t) > (W) . If the node ¢; is chosen uniformly

from the n available, then

~1/P /P4x\ ~1/P
Pl <xl = [t > (25%) ] =1 (%5) . e
The mean field degree distribution is the derivative of this to «:

1/pP
P() = Plk;(t) = «] = L£Plk;(t) < ] = %. (4.12)



For large « this shows that the modified Barbasi-Albert network is scale-free with expo-

nent

; - . (4.13)

This is the mean field exponent of a modified Barabasi-Albert network. Putting A = 0
gives the exponent

=3+ gy (4.14)

For small A < 1 the exponent is large, indicating a network with few nodes (if any) of high
degree. For large A > 1, v N\, 3". This is a lower bound on 1y for modified Barabasi-Albert
networks.

If A =1, then the exponent 7 is given by

1+2(1-p)A

_ 1

7 (4.15)

In this model one similarly finds that v > 3, and in fact, if p = 0, then v = 2 + /1 + 2A.
The parameter A may be used to tune the exponent -y for any given p.
If both A =1 and A = 0, then the known expression for 7 for Barabasi-Albert networks

is recovered, namely

37
v =1L (4.16)
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Notice that v > 3 and that v = 3 if p = 0 [5].

The connectivity of modified Barabasi-Albert networks is given by

N 1 k P(k) dk N 2C
b = [{'P(k)ydk — 2C— (1 —p)\’ (4.17)

where 2C = ((p+ (1 —p)A) +/(p+ (1 —p)A)2+2(1 — p)A). Since2 —y =1 — 3,
equation (3.5) gives (k), ~ =

7—p- Inserting the value of P gives the result above as well.
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Figure 4.4: Scaling of Barabasi-Albert networks with p = 0:

Data on networks generated by the Barabasi-Albert algorithm with p = 0. In each case 100 networks were

grown and the average degree sequence P, (k) computed. The curves above are plots of log P,(k)/log(k + 1)
against 1/ log(k + 1) for n € {6250, 12500,25000, - - - ,200000}. Least squares fit to the data using a

quadratic model gives the y-intercepts which averages to 3.026. This is very close to the value iy = 3
predicted for the scaling exponent in this model by the mean field approach.
In figure 4.4, the probability P(k), the normalized degree distribution, with the probability

that the degree of a node is equal to k, is examined by plotting log P(k) / log(k + 1) against

1/ log(k + 1) where P(k) was estimated for values n € {6250, 12500,25000, 50000, 100000,
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200000} and for p = 0. The curves should intersect the vertical axis at —. Least squares fit
of the data to quadratic curves gives 6 estimates for y, which average to v = 3.026 & 0.076,
very close to the theoretical value y = 3 (see equation (4.14) for p =0 and A = 1).

Data collected for the same values of n and for p = 0.5 cannot be successfully analyzed
by regressions with quadratic curves, but cubic curves give the average value y = 5.161 +
0.068, which is not equal to but still fairly well approximated by v = 5 prediced by equation
(4.14) for p =05 and v = 1.

When p = 0.8 the plots are strongly curved and extrapolation to estimate 7y is more

difficult. In this case a different approach is needed. Putting o = % in equation (3.4) gives

log P(k) —log P(3k) = —ylog2+ O(1) (4.18)

so that a plot of (k) = (log P(k) —log P(k))/log2 — —v as k — co. That is, plotting
(k) against % gives a curve with y-intercept equal to —y. Better results are obtained when
plotting against %log k. In this case a linear extrapolation gives v = 11.67 £ 0.41 and a
quadratic extrapolation gives v = 11.6 & 2.6. These results are close to the mean field
prediction v = 11 for p = 0.8. Incidentally, if p = 0.5 then this kind of analysis shows
that v = 5.47 £ 0.14 (linear extrapolation) or v = 4.4 £ 1.0 (quadratic extrapolation), and
if p = 0, then the results are y = 3.088 £ 0.022 (linear extrapolation) and y = 2.86 +0.18
(quadratic extrapolation).

If A =2and p = A = 0 then the algorithm grows modified Barabasi-Albert networks

with v = 3 (the mean field estimate given by equation (4.13)). Estimating < by plotting
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¢(k) against %logk gives the estimate v = 3.019 £ 0.098 (linear extrapolation) and ¢ =
2.62 £+ 0.33 (quadratic extrapolation).

The connectivity of Modified Barabasi-Albert networks should converge quickly to a
constant with increasing n (by equation (3.5)) since ¢y > 2. Computing it for Barabasi-
Albert networks (with A = 1 and A = 0) gives (k), ~ 3.16 for p =0, (k), ~ 2.28 for p = 0.5

and (k), ~ 2.08 for p = 0.8, and for n = 12500. Increasing n does not change these results.

4.1.4 Mean field theory for Variant Barabasi-Albert networks

In this model the increment in the number of bonds when the (1 4 1)-th node is appended

is given by
1—p)(Z; (ki(n))*+A
AE, = p+ TPHEGIIEA) (419)
Approximating this with a differential equation gives
2B LEy = 2pEs+ (1 — p)nA+ (1—p) Y (kj(n))". (4.20)
j

The right hand side can be approximated as follows: For a > 1 the algorithm should grow
dense networks with nodes of high degree. Assuming that k;(n) ~ k,(n) for all £ shows
that Y;(kj(n))* =~ n(k;j(n))* ~ n (% ) kj(n))a = n'=*(2E,)*. Using this approximation
gives

2Ey fiEp ~ 2pEq + (1 — p)nA + (1 — p)n'~(2E,)". 4.21)
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If A = p = 0, then the differential equation can be solved directly to obtain E, =~
2(a=1)/ (2_"‘)71, provided that « > 1. This shows that E, is linear in n, which may be ex-
pected if « is not too much larger than 1.

Numerical experimentation shows that E, grows linearly in n for values of a not too
much larger than 1. For example, if p = 0.5, A = 1 and & = 1 then %En — 1.207..., if
x = 1.5 then %En — 1.539..., but if « = 2 then %En increases slowly with n. Similarly,
if p=0,and A = 1, then, if « = 1, 1E, — 1.366..., and if & = 1.5, 1E, — 2.399...,
but if « = 2 then %En increases slowly with n and for even larger values of n this growth
accelerates.

The recurrence for the degree of the j-th node may be approximated by a differential
equation similar to equation (4.6): Assuming that E, = Dnf, replacing n — t (a continuous

time variable), gives the recurrence

(1—p)((ki(£))*+A)

ki(t+1) =ki(t) + B+ TN (4.22)
This can be approximated by the differential equation
d _p A=p)(ki()*+A)
arki(t) = § + i (4.23)

If « =1 and B = 1 then the solution of this equation gives the Barabasi-Albert case with

v = 3. Proceed by considering the case A = p = 0 and the initial condition k;(t;) = 1.
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Assume that « = 1 + €. Then the equation becomes
Lki(t) = (kj(£))°. (4.24)

A perturbative approach for small € can be done by expanding (k;(t))€ = exp(elogk;(t)) =
1+ elogk;(t) + Je2log?k;(t) + - - -. Truncating this at O(e?) and putting g(t) = logk;(t)

gives the differential equation
2DtPdo(t) =1+ eg(t) + 1e?g(t). (4.25)

Using the initial condition g(t;) = logk;(t;) = 0 the solution of this equation is

—1+ tan (%—k%log(f)), if B =1;
eg(t) = J (4.26)

1— _ .
—1+tan<%+m(tj b_p ﬁ)), if g > 1.

In the case B > 1 suppose that 6 = B — 1 and that J is small. Then approximate
1- 1— —dlogt; -4l —_ 2 ) 3
t; P_f1=p — p=0logti _, 8! ~ 5log (%) — 16 log <%> log (ttj) + O(8°).

With this approximation the solution for g(¢) above can be expanded in € and J to give the

60



tirst order approximations

1 t t .
@log(g)%—#logz t_j’ lfﬁ = 1;

1 t t o ,
Elog(t—j) + 8%log2 Ty (Dlogz(fj) +logt; log(tij)> , B >1.

Proceed by solving the above quadratics for log(tij) in terms of g(¢). Expand the solution

in € and  and keep only the first few terms. In the case that g = 1 this gives
1og(tij) ~ 2D g(t) — eD g2(t). (4.27)
Since g(t) = logk;(t), the probability that k;(t) < « is given by
Plkj(t) <x] =P {% > KeDlog“D] ~ 1 — xeDlogr=2D (4.28)
Taking the derivative with respect to x gives the distribution function in the case that g = 1:
P(k) ~ D(2 — Delogk) k~172D+De logk, (4.29)

These networks are not scale-free. For small values of k the log k terms are slowly varying,
and the networks will appear to be scale-free with v = 1 +2D. However, with increasing k
the exponent reduces in value and the connectivity of the network will become dependent
on k in the way seen in equation (3.5) for small values of 7.

Notice that if D = 1 and € = 0 (or « = 1), then the above reduces to P(k) ~ k3, as
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expected for Barabasi-Albert networks.
If B > 1, then a similar approach to the above may be considered. Solving the

expression for ¢(t) above for log(+) and keeping only terms to O(e) and O(d) gives
% 8 8 z pmg only g

log(tij) ~ 2D g(t) —eD g*(t) + 6(2D?*¢*(t) + g(t) log ti). (4.30)
This shows that

P(k](t) < K) —p <t?] > KEDlogK—ZD—ZDzélogK—(Slogtj)

~1— KEDlogK—ZD—ZDzélogK—élogtk

This shows that
p(k) ~ (ZD(l 4 2D§10gk . elogk)) k—1—2D—(5logt]-—D(2D5—e) logk. (4.31)

This gives an effective exponent 7y = 1+ 2D + dlogt; + D(2Dd — €) log k which decreases
in size if 2DJ — € < 0 and increases in size if 2DJ —€ > 0. Sinced = f—1lande =a —1,and
for small @ numerical simulations show that g ~ 1, it is normally the case that 2DJ — e < 0.
This means that the networks will first appear scale-free with constant connectivity until k

becomes large enough in which case the connectivity will increase with k, as seen above.
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4.1.5 Numerical results on Variant Barabasi-Albert networks

e 1 = 200000
= o 1o = 100000
0000
25000
& = o n = 12500
o 1 = G250

Figure 4.5: Variant Barabasi-Albert networks with p = 0:

Data on networks generated by the variant Barabasi-Albert algorithm with p = 0 and « = 1.1 (red curves)
and o = 0.5 (blue curves). In each case 100 networks were grown and the average degree sequence Py (k)
computed. The curves above are plots of log P,(k)/ log(k + 1) against 1/ log(k + 1) for
n € {6250, 12500,25000, - - - ,200000}.

In figure 4.5 data for networks with p = 0 and « = 1.1 and & = 0.5 is shown. Since
« = 1.1 is still very close to 1, the results above show that these networks should still
appear scale-free, and with connectivity a constant. This is indeed the case. For n = 6250
the data gives (k), = 3.149, and increasing n to n = 200000 gives (k), = 3.176. That is,
the connectivity of the networks is insensitive to n over this range. Least squares fits to the
curves with quadratic polynomials in order to determinate the value of 7y give the average
v = 2.857 £ 0.068. This result is consistent with a constant value of the connectivity of

networks of these size ranges. With increasing 7, it is expected that -y will decrease in value

(that is, the value given here is an effective value), and eventually, the connectivity will
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start to increase.

Networks generated with p = 0 and a = 0.5 turned out to be sparse with low connec-
tivity. For example, for n = 100000, the connectivity is (k), = 1.036 and this decreases even
further for n = 200000, where (k), = 1.020. Attempts to extract an exponent y from the
data for these networks were not successful, the regressions did not settle on a value, but
are strongly dependent on n. Notice that the mean field analysis above does not apply to
networks with & < 1.

Putting « = 2 gives networks with average connectivity which increases with n. For
example, if n = 100, then (k), = 43, for n = 500, (k),, = 260 and for n = 1000, (k), = 527.
On the other hand, if « = %, then (k), = 3.08 if n = 100, (k), = 3.27 if n = 500, and
(k), = 3.31 if n = 1000, and it appears that for small values of n the connectivity does not

change quickly with increasing n.

4.2 Duplication-Divergence networks

Biological models of protein evolution are usually presented in terms of two processes,
namely (1) a duplication event involving a gene sequence in DNA, and (2) a (random) mu-
tation of duplicated genes which then drift from one another in genetic space [8, 18, 32].
The mutations of duplicated and mutated genes change the proteome and the network of
protein interactions: If the protein is self-interacting, then the duplicated proteins interact,
and the mutated genes code for proteins with altered interactions (some gained, others

weakened or lost) with other proteins.
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The Duplication-Divergence algorithm models these processes in order to grow a net-
work, and was used to estimate the rates of duplication and mutation in the protein in-
teraction networks [29]. There is a rich and large literature reporting on modeling protein
interaction networks using models which include processes of duplication and divergence
[14, 21, 24, 28].

Since proteomic networks appear to be scale-free [13, 22], it seems likely that duplica-
tion and divergence processes should grow scale-free networks and that this should also
be seen in computer algorithms which grow networks using duplication and divergence
elementary moves. Duplication can be implemented by selecting nodes and duplicating
them, and their incident bonds, in a network. Divergence is implemented by altering the
bonds incident on particular nodes, namely either by deleting, adding or moving bonds.

In the Duplication-Divergence algorithm these moves are implemented by selecting
nodes uniformly for duplication to progenitor-progeny pairs, and by deleting bonds in-
cident to either the progenitor node or its progeny. Notice that since nodes of high degree
have a larger probability of being adjacent to a node selected for duplication, these nodes
have a larger probability of receiving new bonds in the duplication process — in this way
there are events of preferential attachment in this algorithm [12, 25].

The basic elementary moves of the Duplication-Divergence algorithm (duplication and

divergence) are illustrated in figure 4.6.
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3 3 3
Figure 4.6: The Duplication-Divergence algorithm:
Duplication-Divergence iterations: A node i and its incident bonds are duplicated to create a node j

with its incident bonds. The bond (i~j) is added with probability p. In the divergence step one of
the pair of bonds ({(i~m), (j~mY)) is deleted with probability q, for each value of m € {1,2,3}.

The algorithm is implemented as follows:
Duplication-Divergence algorithm:
1. Initiate the network with one node xy and apply the following steps iteratively;
2. Duplication: Choose a node v uniformly and duplicate by creating node v’;
3. For all bonds (w~v) incident with v, add the bonds (w~v’);
4. With probability p add the bond (v~v');

5. Divergence: delete one bond of the pair {(w~v), (w~v’)} incident with v or with its
duplicated node v" with probability g (for each w adjacent to both v and v’ indepen-

dently);

6. Stop the algorithm when a network of order N is grown.
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The algorithm has two parameters (p,q). The parameter p is the probability that the
protein corresponding to the progenitor node v is self-interacting. If it is (with probability
p) then the bond (v~v') is added to the network and it represents the interaction between
vand v

The parameter g controls the divergence in this algorithm. As v and v’ diverge from
one another, one bond in each pair of bonds incident with v and v’ is lost independently,
with probability gq. The result is that the network mutates as bonds (interactions) are lost
(while they are created by the duplication process).

A slightly modified algorithm is found by changing step 5 in the algorithm to find
a modification of the Duplication-Divergence algorithm which assumes that one of the

duplicated pair mutates, while the other remains stable.

5. Divergence: Consider all bonds (w~v’) incident with the duplicated node v’ and

delete these independently with probability 4.

The Duplication-Divergence algorithm tends to grow disconnected networks, while the
Modified Duplication-Divergence algorithm is more likely to grow networks with a single

component (that is, connected networks).

4.2.1 Maean field theory for Duplication-Divergence networks

Let kj(n) be the degree of node j after n iterations. The algorithm appends nodes by
duplicating them (the probability that a node v is duplicated in a network of order n is

1), adds bonds by inserting a bond between a node and its duplicate with probability p,
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and removes bonds by selecting one bond between node-duplicate pairs and other nodes
independently and deleting it with probability 9. Let 2E, = ) ;k(n) be twice the total
number of bonds after n iterations. Then, if k;(n) is the degree of node j at time 1, and

node j is duplicated, the number of bonds in the network E,, increases in the mean field by

Evi1=En+p+ki(n) —qki(n). (4.32)

This follows since k;(1) bonds are created in the duplication move in the mean field, and
another bond is created between the j-th node and its duplicate with probability p. The
number of deleted bonds in the mean field is g k;(n).

Notice that 2E, = }_; kj(n) = na, where a, = (k;(n)) is the average degree. In the mean
field approximation one substitutes k;(n) in the recurrence (4.32) by its network average ay,.

Then equation (4.32) can be casted as a recurrence for a,:

(n+1)ay1 =na,+2p+2(1—9q)an. (4.33)

Let n — t, where t is a continuous time variable, and approximate this recurrence by the
differential equation

tday = 2p+ (1—2q)ay. (4.34)

The initial condition is a; = 1, and this has solution

_ 122(9-p) 129 _ 2p
ay — Wt 7 — m (435)
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Since E, ~ %n a,, it follows that

_ 1-2(q—p) 2(1- pn
En = m n (1-q) _ 1-27° (436)

Comparison to equation (3.7) shows that, if g < %,
y=1+2q. (4.37)

In this case E, = O(n%(1=9)) 4 O(n) and that while 2(1 — q) > 1, the term O(n) is a strong
correction to the growth in E, for even large values of n. In other words, the degree
distribution P(k) of the network will be strongly corrected from the powerlaw distribution
in equation (3.1).

If g = %, then by solving equation (4.34), a; = 1+ 2plogt (so that a; = 1). Since

E, = %n a,, this shows that
E, = %n +pnlogn, ifqg= % (4.38)

In this case v = 2 by equation (3.7), but notice the subtle domination by the nlogn term.

In numerical work this will be very hard to see.

The case q > 3 is considered by noting that a; ~ 2;—61 as t — oo. This shows that

E, ~ zgfl, ifg > 1. (4.39)

69



This shows that v > 2 by equation (3.7).

Putting the above together gives

=1+2q, ifqg<};
¢! (4.40)

> 2, ifg >3

IN

with a logarithmic correction if g = %

Comparing the coefficient in equation (3.7) with equation (4.39) gives a refined estimate
vy=1+ HZZ% > 2, provided that 2q < 1+ 2p. For example, if g = 0.75 then p > 0.25.
However, numerical work shows this estimate to be too small, and estimating -y in this
regime for this model remains an open question.

The power law decrease in P(k) in equation (3.1) is only asymptotic for this algorithm;
and there should be corrections in particular for g < 3. From the results above the average

connectivity can be computed: Since E, = n (kj(n)),

1-2(q—p) 1- 2p 1.
1-2g i — T2 4<%

(k) ~ 2plogn +1, if g = %; (4.41)
Constant, if g > 1.

\

From these results P(k) can be calculated. Since (k), ~ [} k P(k) dk, it follows that 4 (k), =
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n P(n). Thus, using this approach gives

/

(1-2(q—p)k 172, ifg<y

P(k) ~ 2]9 k—2/ if q= (4.42)

7

NI—

Cok™, if g > 1,
\

where the case g > 3 is unknown since the dependence of the exponent 7 on the parameters
(p,q) is not known. Notice the change in behaviour at the critical value g = %; this was
already observed numerically in reference [29].

The modified Duplication-Divergence algorithm has the same recurrence (4.35), and
so the values for o and relations for (k), and P(k) remain unchanged for this algorithm.
Notice that this implementation preserves the degree of the selected node, and tends to
give a duplicated node with lower degree (while the (unmodified) implementation tends
to lower the degrees of both the selected and duplicated nodes). As a result, networks
generated with the modified algorithm have, on average, more nodes of degree equal to

one (and so appear more tree-like).

4.2.2 Numerical results on Duplication-Divergence networks

In figure 4.7 two networks grown with the Duplication-Divergence algorithm are shown.
Both networks were grown with p = 1 and have order 300. The network on the left was
grown with divergence parameter q = 0.4, and that on the right, with the higher mutation

rate g = 0.6.
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Figure 4.7: Duplication-Divergence network:

The network on the left is a network generated with p = 1 and q = 0.40. It has order 300 and it has 114
nodes with degrees exceeding /300 and so qualify as hubs. The largest few of these hubs have degrees
{43,45,47,47,50}. The network on the right is similarly a network generated with p = 1 and g = 0.60. It
is more extended but has only three nodes of degree equal to one. Its order is 300, and it has 5 nodes of
degrees {18,18,19, 20,23} which qualify as hubs. Networks generated with the Modified
Duplication-Divergence algorithm have a similar appearance, with the exception that more nodes of degree 1
are seen. The arrangement of nodes and bonds in these networks was created using the prefuse force directed
layout in Cytoscape 3.4.0 [11].

In figure 4.8 data for networks grown with p = 0.75 and g4 = 0.4 are shown. The curves
on the right were obtained by plotting log P(k)/ log(k + 1) averaged over 100 networks of
sizes {3125, 6250, 12500, 25000, 50000, 100000, 200000} against 1/ log(k + 1). The mean field
value of vy is denoted by the bullet on the left-hand axis. These data show that convergence

to this value is very slow — this indicates strong corrections to scaling arising in equation

(4.36), and noted after equation (4.37).
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Duplication-Divergence p = 0.75 and g = 0.40

1 1/ boglk +1)

—6 -
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~12 <

Figure 4.8: The distribution of degrees in Duplication-Divergence networks with p = 0.75 and
g = 0.40:

Data on networks generated by the Duplication-Divergence algorithm. In each case 100 networks were
grown and the average degree sequence P, (k) computed. The curves on the right are plots of
log P,(k)/ log(k + 1) against 1/ log(k + 1) for n € {3125,6250, 12500, - - - ,200000}, while those on the
left are plots of (log P(2k) — log P(k))/ log?2 as a function of log(k + 1) /k. The mean field estimate for the
exponent 7y is marked at —y = —1.8 on the left hand axis. The strong correction to scaling evident in these
curves makes it difficult to extrapolate to the mean field value for 7.

An alternative approach is to estimate 7 by plotting ¢ (k) = (log P(2k) —log P(k))/ log2
as a function of log(k + 1) /k (see equation (3.4) with « = 2). The results are also strongly
curved data (left in figure 4.8), and while the results are not inconsistent with the mean
tield value v ~ 1.8 in this model, however, it seems difficult to extrapolate these curves
to a limiting value of 7. 2). The turnover of the curves around large k happens when k

approaches 7 in these figures.

If g = 0.60 > 1 then the results in figure 4.9 are seen.
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Duplication-Divergence p = 0.75 and g = 0.60

0.5 log(k +1)/k 1 1/ loglh + 1)
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Figure 4.9: The distribution of degrees in Duplication-Divergence networks with p = 0.75
and q = 0.60:

Data on networks generated by the Duplication-Divergence algorithm. In each case 100 networks were
grown and the average degree sequence Py, (k) computed. The curves on the right are plots of
log P,(k)/ log(k 4+ 1) against 1/ log(k + 1) for n € {3125,6250, 12500, - - - ,200000}, while those on the
left are plots of (log P(2k) —log P(k))/ log?2 as a function of log(k + 1) /k. Each of these curves can be
extrapolated by a quadratic least squares fit to obtain estimates of vy. This gives the estimates vy, for
n=3125x2! for t =0,1,2,...,6.

The curves of {(k) = (log P(2k) —logP(k))/log?2 as a function of log(k + 1)/k have
straightened considerably, and each can be extrapolated by a quadratic least squares to
obtain an estimate -y, for each value of n = 3125 x 2t (for ¢ =0,1,2,...,6). This gives
estimates {9.68,8.52,7.99,7.95,7.82,7.58,7.05} which can be extrapolated by a least squares
tit of v, = v+ A/logn, giving the estimate v ~ 2.87, which is slightly larger than the

. . 2 .
value predicted by the mean field formula v = 1 + % (see the paragraph following
equation (4.40)). This suggests that the approach to limiting behaviour in this model is
quite slow, consistent with the remarks after equation (4.40) in the previous section.

The average connectivity (k), is expected to behave according to equation (4.41). In
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table 4.1 (k),, is listed for p = 0.75 and q = 0.40, g = 0.50 and g = 0.60.

Table 4.1: Connectivity data for Duplication-Divergence Networks.

n g=04 g=05 g=06
3125 259 11.4 5.93
6250 31.3 12.6 6.14
12500 37.3 13.6 6.33
25000 448 14.4 6.55
50000 51.9 15.5 6.64
100000  60.1 16.8 6.75
200000  70.3 17.7 6.88

If ¢ = 0.4, then equation (4.41) suggests that (k), ~ 8.51n°2. Computing (k), x n=02

from the data in table 4.1 gives {5.18,5.45,5.65,5.91,5.96,6.01,6.12}. Plotting these results
against 1/ logn and then linearly extrapolating as n — oo gives 7.98, close to the value of
8.5 predicted in equation (4.41).

If 4 = 0.5, then equation (4.41) suggests that (k), ~ 1.5logn since p = 0.75. Dividing the
results in table 4.1 by log n for each value of n gives the results {1.42,1.44,1.44,1.42,1.43,
1.46,1,45}. The average of this is close to the predicted value of 1.5.

Finally, if g = 0.6 then the data appear to approach a constant. Extrapolating these
results using the model A + B/ logn gives the estimated limiting value 8.72. By equation
(3.5) this indicates that v = 2.13, a value which is quite close to 2.15, the value predicted

by the formula v =1 + HZZ% in the paragraph following equation (4.40).

75



4.3 Solé evolutionary networks

The Solé model [25, 26] modifies the Duplication-Divergence model by using duplication
and network rewiring as the basic elementary moves. As before, the duplication of nodes
is an implementation of gene duplication, and the network rewiring is based on the loss
and gain of protein interactions in the bulk of the network [6]. Thus, the algorithm grows
networks based on a model of gene duplication and the rewiring of protein interactions;
both these processes drive the evolution of the interactome.

The elementary move of the algorithm is as follows: A node in the network is chosen
uniformly and randomly, and duplicated to form a progenitor-progeny pair. The progeny
will have the same interactions as the progenitor. This network is updated in the rewiring
step which has two parts: Bonds incident with the progeny protein are deleted with prob-
ability J, and new bonds, added in the network between nodes (excluding the progenitor
protein) are created with probability a. This implementation differs in two ways from the
Duplication-Divergence algorithm. In the Solé model there are no self-interacting nodes,
and the formation of new bonds in the rewiring steps only occurs in the Solé model.

The basic iterative step of the Solé algorithm is shown in figure 4.10 and a Solé evolu-

tionary network of order N nodes is grown as follows:

Solé evolutionary algorithm:
1. Initiate the network with one node xy and apply the following steps iteratively;

2. Choose a node v uniformly and duplicate it to a new node v’;
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3. For each bond (w~v) incident with the chosen node v, add the bond (w~v') incident

with the duplicated node v’;
4. Delete each bond (w~v') added in step 3 with probability § independently;

5. For all nodes u not adjacent to the chosen node v, create the bond (u~v’) with prob-

ability «;

6. Stop the algorithm when a network of order N is grown.

duplication deletion
B —_—

w

Figure 4.10: The Solé evolutionary algorithm:

The duplication-deletion-creation iterations of the Solé algorithm. A node is duplicated, some bonds incident
on it are deleted with probability 6 and new bonds incident on it are created with probability .

The algorithm has two parameters (J,«). If § = 0 and a = 1 then the algorithm grows

complete simple networks. More generally, if « > 0 then on average roughly «N bonds

are added to a network of order N. This shows that the algorithm grows networks of size

O(N?) - that is, Solé networks are dense.
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4.3.1 Mean field theory for Solé networks

Let E;, be the total number of bonds in a Solé network after n iterations of the algorithm,
and let (k), be the connectivity of the network (that is, the average degree of nodes) after n
iterations (so that 2 E, = n(k),). In the mean field approximation the node in step 2 of the
algorithm has degree (k),, and this number of bonds is added in step 3, while, in a similar
way, d(k), bonds are removed in step 4. In step 5 there are n — (k), choices in the mean
field for the node u not adjacent to v’ and each bond (u~v’) is added with probability
«. This shows that the number of bonds after n + 1 iterations is given by the recurrence

relation

Enir = En+ (1= 6) (k) + (1 — (k))- (4.43)

Since 2 E,, = n(k), this becomes
Eni1—En=an+2(1—6—a)Ey, (4.44)

which is a mean field recurrence relation for E,.

Taking n — t, a continuous time variable, and approximating E, by E;, and approx-
imating the finite difference as a derivative, gives the following differential equation for
E.:

dE =at+2(1—a—0)Es. (4.45)

Solving this equation and letting t — n again gives the approximate mean field solution
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for E,:

E a2 (oc+2§)n2(1"""5)
n

™ 2(a+6) 2(a+9) (4.46)

2 5o that networks

Equation (4.46) shows that the number of bonds is proportional to an
created by this algorithm are dense, except when & = 0 and 6 — 0. Comparison to equation
(3.7) suggests that ¢ < 1 in this model if « > 0. Notice that there is no logarithmic factor
in the denominator, and that E, = ©®(n?). This is consistent with a mean field value

v < 1 (and this requires that P,(k) be modified so that it is a normalizable probability

distribution). With these results, it is reasonable to expect that, in the mean field,
r=1 (4.47)
If « = 0 then equation (4.46) gives E, ~ n?>~2° and comparison to equation (3.7) gives
y=1+25, ifa=0 (4.48)
since the algorithm grows clusters which are not O(n?) in this case.

4.3.2 Numerical results for Solé networks

Similar to Barabasi-Albert and Duplication-Divergence networks, Solé networks can be
grown numerically by implementing the algorithm as given above, using sparse matrix
routines to efficiently store the adjacency matrix of the network. The larger size of networks

makes these more difficult to grow, and our algorithms sampled efficiently to networks of
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size 51,200 bonds.

Solé networks are rich in bonds. This is seen, for example, in equation (4.46), which
shows that E,, « n? if & > 0. In figure 4.11 two examples of networks generated by the Solé
algorithm are shown. If 6 < 0.5, then the networks have a dense appearance dominated
by a few hubs. If § > 0.5, then the networks appear more extended, often with no nodes
qualifying as hubs under the definition that the degree of a hub in a network of order # is
at least | /n]. The networks in figure 4.11 were generated with « = 0.005, and increasing

the value of a quickly increases the number of bonds.

Figure 4.11: Solé evolutionary networks:

The network on the left was generated with 6 = 0.25 and a = 0.005. Its has order 279 and has 47 nodes
with degrees exceeding /279 and so qualify as hubs. The largest few of these hubs have degrees
{40,41,62,80}. This algorithm creates dense networks as seen here, even for small values of a. Increasing
the value of & gives more extended networks. The network on the right was generated with § = 0.75 and
« = 0.005 and grown to order 230. None of its nodes qualify as hubs. The arrangement of nodes and bonds
in these networks was created using the prefuse force directed layout in Cytoscape 3.4.0 [11].

The mean field result that v < 1 has implications for the scaling of Solé networks. In
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particular, P, (k) in equation (3.1) is not normalizable for infinite networks if v < 1 and so
is not a valid candidate degree distribution in this model. The degree distribution can be

modified to

P(k) ~ C, k™ "D(n"%k) (4.49)

where D(x) is a function of the combined (or scaled) variable x = n~?k. That is, as n — oo,
k is rescaled by n~¢ and k7 P(k) approaches a limiting distribution proportional to D(x).

This can be tested numerically by plotting k7 P(k) as a function of x = n~%k. For the
proper choices of ¢ and ¢ it is expected that k7P(k) ~ C,D(x) for a wide range of values
of n (that is, the data should approach a limiting curve as n — o). The result is shown in
figure 4.12 for (6 = 0.25,& = 0.005) and (6 = 0.75,« = 0.005). These are plots on the same
graph for n = 100 x 2" for n € {6,7,8,9} (other curves at smaller values of N are left away
to give a clearer picture).

The data for 6 = 0.75 are the cluster of peaks to the left (blue curves), rescaled by
choosing ¢ = 1 and y = 3, while the cluster of peaks to the right is for § = 0.25 with
¢ =1and ¢y = % With increasing n the data appear to approach a single underlying
curve if ¢ = % in the one instance, and v = % in the other instance. Both these values are
consistent with the mean field expectation that oy < 1 in this model. Further refinements
in this scaling assumption may be necessary, since the curves are still becoming narrower
with increasing n. It is not clear that these approach a limiting curve as n — oo, although
the data for 6 = 0.75 suggest this to be the case. In these cases the curves are sharply

peaked with a mean of about 0.02 if § = 0.25 and about 0.007 if § = 0.75.

81



Scaling of Solé Clusters
d =10.25
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Figure 4.12: Scaling of Solé evolutionary networks:

Plotting k7 Py (k) against N~k for networks generated by the Solé Evolutionary algorithm gives the
distributions above. On the left the results are shown for networks grown with 6 = 0.75 and « = 0.005. The
choices vy = 1/2 and ¢ = 1 uncovers a distribution as shown where the order of the networks are
N =100 x 2" for n = 6,7,8,9. A similar distribution, but with v = 2/3 and ¢ = 1, is seen when
networks are grown with 6 = 0.25 and a = 0.005. It is not known that the value of -y changes
discontinuously as 6 increases from 0.25 to 0.75.

Since the curve D(x) is sharply peaked at a constant value c, of the rescaled variable x,
the connectivity of Solé networks is estimated by treating D(x) as concentrated at ¢, and
then (assuming that ¢ = 1 and approximating the connectivity)

Jo K1 "D(k/n?)dk  (n9)2—7
Jo k="D(k/n?)dk  (n?)1=7

(k) ~ n?. (4.50)

In other words, the connectivity of Solé networks should increase linearly with n? (and
since ¢ = 1, linearly with n). In table 4.2 the connectivities of Solé networks for 6 = 0.25

and § = 0.75 (with « = 0.005) are listed.
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Table 4.2: Connectivity data for Solé Networks.

n 0=025 6=075
100 2.95 1.50
200 4.46 1.94
400 7.59 2.94

800 14.75 5.36
1600 30.46 10.64
3200 59.94 21.26
6400 122.78 45.57
12800  245.35 85.18
25600 496.87 170.35
51200 994.54 340.76

Non-linear least squares fits to the data show that ¢ = 1.01 when J = 0.25
and ¢ = 0.99 when § = 0.75. That is, these results are consistent with the value ¢ =1

seen above.

4.4 The iSite model of network evolution

Protein interaction networks evolve by mutations in proteins which change the interactions
of the proteins in the network. In the Duplication-Divergence algorithm, a mutated protein
loses its interactions randomly. This random deletion of interactions is a good first order
approximation to the evolution of networks. The iSite model refines this by giving structure
to nodes in the network by introducing iSites on nodes as localities of the interaction sites on
a protein [15, 16]. Subfunctionalization of interaction sites in the iSite model is implemented
by silencing iSites, and adding interactions with reduced probability if the iSite is not
silenced.

The implementation of the iSite algorithm relies in the first place on duplication of
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nodes, and then subfunctionalization of iSites on the nodes. The subfunctionalization of
iSites is implemented by randomly deleting of bonds incident to duplicated iSites, and by
the silencing of iSites by turning them off. These processes are models of random mutations
which cause the loss of information in the genome (and leave behind non-coding remnants
of genes). A process of spontaneously creating new iSites is not in the iSites algorithm,
although this is a possible refinement which may be introduced. The elementary move of

the iSite algorithm is illustrated schematically in figure 4.13.

progenitor

iSite

progeny

lir:ar e) !

Figure 4.13: The iSite evolutionary algorithm:

The duplication-deletion iterations of the iSite algorithm. A node together with its iSites is duplicated, and
some bonds incident with the duplicated iSites are deleted with probability r. New bonds between a
self-interacting iSite and its duplicate are inserted with probability p, and iSites are silenced with probability

q.
A uniformly chosen node is duplicated into a progenitor-progeny pair (and so also
duplicating the iSites of the progenitor onto the progeny). If the duplicated iSite is self-
interacting, then bonds are added between the iSite on the progenitor and the duplicated

iSite on the progeny with probability p — this allows for subfunctionalization of the dupli-
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cated iSites. Bonds incident with the iSites on the progenitor are duplicated with reduced
probability 1 — r, and iSites on the progenitor or progeny nodes are silenced with proba-
bility g. If an iSite is silenced, then all bonds incident with it are deleted. Notice that sub-
functionalization enters in several ways, both in the duplication of self-interacting iSites, in

the duplication of bonds, and in the silencing of iSites.

iSite evolutionary algorithm:

1. Initiate the network with one node xy with [ active iSites (each of which is self-

interacting with probability p) and iterate the following steps;

2. Choose a progenitor protein v uniformly in the network and duplicate it, and its

associated iSites A, to a successor protein v’ with duplicated iSites A’;
(@) A duplicated iSite A’ € v’ is active with probability 1 — g if it is duplicated from
an active iSite on A € v, and silenced otherwise;

(b) An active duplicated iSite A" € v’ is self-interacting with probability p if it is du-

plicated from a self-interacting iSite on A € v, and not self-interacting otherwise;

(c) If a silenced iSite A is duplicated to iSite A, then A’ is also silenced;
3. Add bonds as follows:

(a) If iSite A € v is self-interacting and A is duplicated to iSite A’ € v/, then add the

bond (A~A’) if A’ is not silenced;

(b) If (A~B) is a bond incident with iSite A on the progenitor v, and A is dupli-
cated to iSite A’ on the duplicate v/, then (A~B) is duplicated to (A’~B) with
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probability 1 — r provided that A’ is not silenced;

4. Iterate the algorithm from step (2) and stop the iterations when a network of order N

is grown.

441 Mean field theory for the iSite model

Let nodes in the network correspond to proteins, and let i;(1) be the number of active iSites
on node j after n iterations of the algorithm. Denote the degree of node j by k;(n) (that
is the total number of bonds with one end-point in node j), and let E,, be the number of
bonds of the network. Then 2E, = ), k;(n).

The average number of active iSites per node isi(n) = 1 Y_;1j(n). With each iteration i(n)
iSites are created, of which gi(n) are silenced, in the mean field. This gives the following

recurrence relation for i(n):
(n+1)i(n+1)=ni(n)+ (1 —gq)i(n). (4.51)

The exact solution of this recurrence is

i(n) = —i(o,z!rr((lf,q; ") 4.52)

where T is the gamma function with the property that I'(x +1) = xI'(x) and T(1) = 1.

Notice that i(0) = I, where I is the number of iSites on the source node x.
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For large n the I'-function and the factorial have well known asymptotics (namely the

Stirling approximation [31]), so that

i(n) ~ rf(fjfﬂ. (4.53)

This shows that with increasing n the total number of iSites grows proportionally to n!™.
If g = 0O, then this is linear in 7 since no iSites become silenced, and if 4 = 1, then the
number approaches a constant.

The total number of bonds in the network increases after n iterations by the recurrence

Enir = Eu+ 220, 4 pi(n), (4.54)

since there are on average %En bonds incident to each node, and the probability that each
one of them is duplicated is 1 — 7, and there are on average i(n) iSites per node, and the
probability that each of these is self-interacting is p.

Using the asymptotic solution for i(n) and approximating this recurrence by a differen-

tial equation gives

_ 201
f

pl _
Bt gyt " (4.55)

This equation can be solved, and using the initial condition E; = 0, the result is

I Lo A
B = sy (07 1) (4.56)
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Thus, the average degree of a node is equal to %En, so that the connectivity of iSite evolu-

tionary networks is given by

2pl IV
()0 = Ty (7 =) @57

in the mean field. This shows that the large n value of (k), is dominated by the larger of —g
and 1 — 2r. In particular, if r < 3(1+q), then (k), ~ n!=2". If r > 3(1+¢), then (k), ~ n1.

By equation (3.7) one may determine the mean field value of < for this model:

1+2r, ifr<3(1+gq);
v = (4.58)

24¢q, ifr>3(1+9).

If 2r = 1 + g, then a different solution is obtained, namely

I —
Et = Iﬂ(lr;iq) tl ”/logt. (459)

This shows that v = 2 4 g in this case as well, but there is also a logarithmic correction to

the growth of E(t), and so there is a logarithmic factor in the expression for (k).

4.4.2 Modified iSite evolutionary algorithm

The subfunctionalization of proteins can be refined by introducing in the iSite algorithm the
probability of creating new iSites on the progeny node with a probability s. This changes

the algorithm as follows.

88



Modified iSite evolutionary algorithm: Implement the algorithm as above but introduce
the parameter s and create new active iSites by replacing step 2 in the iSite evolutionary

algorithm by

2. Choose a progenitor node v uniformly in the network and duplicate it, and its asso-

ciated iSites A, to a progeny node v” with duplicated iSites A’;
(@) A duplicated iSite A’ € v/ is active with probability 1 — g if it is duplicated from
an active iSite on A € v, and silenced otherwise;
(b) An active duplicated iSite A’ € v’ is self-interacting with probability p if it is du-
plicated from a self-interacting iSite on A € v, and not self-interacting otherwise;
(c) If a silenced iSite A is duplicated to iSite A’, then A’ is also silenced;

(d) With probability s create an active iSite C on the progeny node v/, where C is

self-interacting with probability p.

The recurrence for the average number of active iSites per node i(n) (see equation (4.52))
is modified to

(n+1)i(n+1)=ni(n)+ (1+s—gq)i(n) (4.60)

in the Modified iSite evolutionary algorithm. The exact solution is obtained by replacing gq

by g — s in equation (4.52), and the asymptotic approximation of the solution is given by

i(n) ~ r(lli—:q) (4.61)

as seen in equation (4.53).

89



The total number of bonds in the network, E,, still satisfies equation (4.54), and so it

follows from equations (4.56), (4.57) and (4.58), that for the modified iSite evolutionary

algorithm (notice the condition that g < r + s):

— pl 2-2r _ 14s—q
En = (1+g—s—2r)T(14+s—q) (n n > )

This shows that the connectivity of Modified iSite networks is given by

- 2pl 1-2 _
(kyn =~ (1+q—s—2r)T(1+s—q) <n T q) :

The value of the scaling exponent is seen from above to be given by

1+ 2r, ifr<3(l44g-—s);
"}/:
24q—s, ifr>i1+q-5)

with a correction factor in the expression for (k), if 2r = (1+¢q —s).

4.4.3 Numerical results for iSite networks

(4.62)

(4.63)

(4.64)

The iSite algorithm was coded and networks were grown to compute averaged statistics.

Examples of iSite networks generated by the algorithm are shown in figure 4.14.
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Figure 4.14: iSite evolutionary networks:

The network on the left was generated with 4 iSites per node, p = 0.5, ¢ = 0.1 and r = 0.8, and the network
on the right was generated with 2 iSites per node, and with p = 0.5, ¢ = 0.1 and r = 0.8. The order of the
network on the left is 501 and on the right, 491. The network on the left has two nodes qualifying as hubs, of
degrees {23,25}, while the network on the right has none. The arrangement of nodes and bonds in these

networks was created using the prefuse force directed layout in Cytoscape 3.4.0 [11].

The algorithm was then used to sample networks of order up to 200,000. The connec-
tivity (k), of iSite networks for I = 3 iSites per node, and with p = 0.5, = 0.4 and r = 0.3,

is shown in table 4.3. By equation (3.5), log(k) ~ log % + (2 — ) log n. Least squares fit

to the data in Column 2 gives log % ~ 1.0211, and (2 — ) = 0.258. Solving for 7 gives in

the first instance v = 1.735 and in the second 7y = 1.742. Since 2r < 1 + g in this case, the

mean field value of ¢ is v = 1 + 2r = 1.6, close to these estimated values.
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Table 4.3: Connectivity data for iSite Networks.

n Column 2 Column 3 Column 4 Column 5
3125 22.385 20.701 4.756 6.648
6250 26.524 25.752 4.770 6.556
12500 31.395 29.137 4.677 6.579
25000 37.808 35.308 4.733 6.358
50000 45.931 42.244 4.579 6.299
100000 54.830 50.035 4.584 6.204
200000 64.668 59.284 4.649 6.071

Column2: I=3,p=05 g=04,r=03
Column3: I=5p=05 g=04r=03
Column4: [1=3,p=05 ¢g=0.05r=038
Columnb5: I=5p=05 ¢g=0.057r=038

Data for I = 5 and with the same values of (p,q,7) = (0.5,0.4,0.3) are shown in table
4.3 as well. Changing the value of I (the number of iSites per node) should not change the
value of 7, and this appears to be the case here. A least squares fit to the data in Column 3
and determining <y as above gives v = 1.737 and -y = 1.7498, very close to the values above.

If p =05 g =0.05and r = 0.8, then 2r > 1+ g, and in this case v = 2+ 4. If the
number of iSites per node is I = 3, then the data in table 4.3 gives a constant value for (k),
and for I = 5 a slightly decreasing numerical estimate. The mean field value of -y in these
cases is 2.05, and a least squares fit gives v ~ 2.009 if I = 3 and y ~ 2.022 if I = 5 (where
the coefficient of log 7 in the least squares fit is 2 — 7). These results are consistent with the
mean field results obtained above, since it shows that the value of 7 is close to 2 + g.

Data on networks generated by the iSite evolutionary algorithm with parameters I =
3, p=05, qg=04, r =023 were collected. In each case 500 networks were grown and the

average degree sequence P, (k) computed.
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iSite [ =3, p=10.5, 9 =04 and r = 0.3
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Figure 4.15: iSite evolutionary networks with I =3, p = 0.5, g = 0.4 and r = 0.3:

Data on networks generated by the iSite evolutionary algorithm. In each case 500 networks were grown and

the average degree sequence Py, (k) computed. The curves are plots of log P, (k) / log(k + 1) against
1/ log(k+1) for n € {3125,6250, 12500, - - - ,200000}. As k — oo, then the curves are expected to pass

through —y on the y-axis, and its mean field value is -y = 1 4 2r = 1.6 — this value is marked on the y-axis.
The curves in figure 4.15, are plots of log P, (k)/log(k + 1) against 1/log(k + 1) for

n € {3125,6250,12500, - - - ,200000}. As k — oo, then the curves are expected to pass

through —v on the y-axis, and its mean field value is vy = 1+ 2r = 1.6 — this value is

marked on the y-axis. As seen from the graph, the curves are approaching well to the

mean field v degree exponent. This indicates good agreement between the mean field

analysis and numerical results for the iSite evolutionary algorithm.
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4.5 Conclusions

In this research a number of algorithms used for generating networks in molecular biology
were examined. Mean field theory for the algorithms was in some cases reviewed, and
in other cases (Modified Barabasi-Albert, Modified Duplication-Difergence, iSite) newly
presented, and also refined. The algorithms include the Barabasi-Albert [1], Duplication-
Divergence [27], Solé [26] and iSite algorithms [15, 16], and these were in some cases mod-
ified by the introduction of more general elementary moves.

The efficient implementation of these algorithms was also examined, and sparse matrix
routines (or, more general, hash-coding; see for example reference [23]) were used to opti-
mize the implementation. This gives computer algorithms which can generate very large
networks efficiently, and networks of order 200,000 nodes were routinely sampled. We
also explored even larger networks, up to order 3 million, but did not use those in our data
analysis.

The adjacency matrix of a network of size E bonds can be stored (using sparse matrix
routines) in an array of size O(E). This means that the implementation of these network
growth algorithms has average case space complexity O(E).

Hash coding allows for the efficient implementation of routines which search, insert or
delete entries in arrays storing the networks. These routines have average time complexity
O(1) [10], (and worst case time complexity O(E) for searches, inserting and deleting bonds,
due to collisions if a hash table is densely populated).

Generally, the time complexity of algorithms should grow as O(ET) if networks of size
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E are grown (where T is an exponent dependent on the particular algorithm). For exam-
ple, networks of size E bonds can be generated using O(E) computer memory, and the
Duplication-Divergence and iSite algorithms can be implemented with O(n") time com-
plexity to grow networks of order n nodes (and where n < E). An examination of these
algorithms (the Duplication-Divergence and iSite algorithms) suggests that an optimal im-
plementation will have T ~ 1 (if the size of the hash tables is much larger than n).

The Barabasi-Albert and Solé algorithms (with their modified and variant implemen-
tations) should have average time complexity of O(n?) for growing networks of order n
nodes. This follows because each iteration of the algorithms has to explore all nodes in the
current network for the possible insertion of new bonds. Data on the time complexity of

the algorithms are shown in table 4.4.

Table 4.4: Computational Time Complexity of Implemented Algorithms.

Algorithm n=6250 n=12500 n =25000 n = 50000 T
Bar-Alb (p = 0) 0.602 2.51 9.03 38.0 1.97
Mod Bar-Alb (A =2, p=A =0) 0.618 2.55 10.1 36.3 1.96
Var Bar-Alb (¢« =2,a =0) 1.35 4.46 16.4 —— ——
Dupl-Div (p =1, 9 = 0.4) 0.349 0.862 2.04 5.01 1.28
Dupl-Div (p =1, 4 = 0.6) 0.155 0.319 0.635 1.31 1.02
Mod Dupl-Div (p =1, g = 0.4) 0.340 0.891 245 7.09 1.46
Mod Dupl-Div (p =1, g = 0.6) 0.165 0.338 0.699 1.44 1.04
Solé (6 = 0.25, « = 0.005) 4.84 20.5 91.0 436.0 2.16
Solé (6 = 0.75, « = 0.005) 6.10 20.0 79.5 323.2 1.92
iSite (p =0.5,4 =0.01,» =08, 1 =1) 0.114 0.234 0.454 0.925 1.00
iSite (p = 0.5, 4 =0.01,r = 0.8, [ =2) 0.110 0.216 0.458 0.878 1.01
iSite (p = 0.5, 4 =0.01, = 0.8, [ = 3) 0.106 0.217 0.432 0.857 1.00
iSite (p = 0.5, 4 =0.01,» = 0.8, [ = 4) 0.107 0.231 0.422 0.848 0.98
iSite (p = 0.25,7 =0.01,r = 0.8, = 4) 0.104 0.249 0.415 0.844 0.98
iSite (p =0.75, ¢ =0.01,r =08, [ = 4) 0.108 0.216 0.437 0.867 1.00
Mod iSite (p = 05,9 =0.1,r=08,5s=0.1,1=4) 0.288 0.560 1.102 2.53 1.04

The data displayed are the average time T to grow one network of order n. Assuming
that T = Cyon™ and fitting log T to logn, least squares estimates of T can be obtained. For
example, it is expected that T = 2 for the Barabasi-Albert algorithm, while the estimate
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obtained in the table is T ~ 1.97. This is consistent with the expectation that the time
complexity of the algorithm is O(n?) in an optimal implementation. This is similarly seen
for the modified and variant implementation of the Barabasi-Albert algorithm, and for the
Solé algorithm. The time complexity of the remaining algorithms is O(#), and this is found
consistently, except for the Duplication-Divergence algorithm for p = 1 and 4 = 0.4 (and
also for the modified implementation of this algorithm). In these cases the algorithm sam-
ples denser networks (see figure 4.7) which takes up larger amounts of memory, making
the implementation less efficient.

The results in this research raise some questions about the sampling of scale-free net-

works by random iterative growth algorithms:

* In some cases, see for example reference [29], the parameters of the algorithms were
set to grow networks with properties similar to that of real protein interaction net-
work. The values of the parameters are then used to estimate the rate of subfunction-
alization (or mutation) in the genome. The results are dependent on the algorithm,
and so further refinement of algorithms may be needed before useful estimates can

be made.

e The mean field approaches are useful in some models (for example the Barabasi-
Albert algorithm, and the iSite algorithm), but are poorer approximations in other
models (the variant Barabasi-Albert algorithm, the Duplication-Divergence algorithm
and its modification, and the Solé algorithm). Can the mean field approach be im-

proved to give a better approximation to these algorithms?
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¢ Investigation of some numerical properties of the networks (for example the con-
nectivity) suggests that the algorithms may be self-averaging. That is, networks are
generated with properties which converge to the statistical averages of these prop-
erties over a sample of networks generated by the algorithm. This is, for example,
illustrated in figure 4.16 for the connectivity of Barabasi-Albert networks. As the net-
work is grown, its connectivity appears to approach the average connectivity over a

large sample of networks.
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Figure 4.16: Self-averaging of the connectivity of Barabasi-Albert networks:

The connectivity of a single network grown with the Barabasi-Albert algorithm with p = 0.6 as a function of
the size of the network is given by the noisy red curve as the network is grown to order n = 10000. The blue
curve is the average connectivity of Barabasi-Albert networks, plotted as a function of n. Notice that the red
data appear to converge, with increasing n to the average, so that the connectivity of a randomly grown
Barabasi-Albert network appears to converge to its average.

¢ In this research some algorithms were modified in ways not done before in the litera-

ture (this includes the modified Barabasi-Albert, the Duplication-Divergence, the Solé
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and iSite models). Exploring the properties of these modified algorithms, including
their usefulness as models of networks in molecular biology, will be the subject of

future investigation.

Lastly, these algorithms grow networks using a probabilistic set of rules to implement
an elementary move. Each realized network N, of order n is obtained with some proba-
bility p(Ny), so that the function p(N,) is a probability distribution over networks of order
n. Determining p(N,,) for any of the algorithms presented here seems difficult, and gen-
eral properties of p(N,) remain unknown (other than averages of network properties over

p(N,) are scale-free if the algorithm grows scale-free networks).
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Chapter 5

MicroRNAs and microRNA-gene

interaction networks

The study of the presence of molecules and their interactions at the cellular and sub-cellular
level is the focus of molecular biology. Different algorithms and tools are developed to
model these interactions. Their goal is to predict yet unobserved interactions, assign func-
tions to unknown molecules using their relations with known molecules or simply build
up biological knowledge in a structured way. These algorithms can be applied to solve a
particular biological problem, such as predicting protein interaction/complex formation,
but also to derive systems behaviour by breaking down networks into modules or motifs
with certain characteristics.

I use different algorithms in this research with the goal of finding highly connected
hubs and clusters of genes which are closely related to one another. I start by building

up protein-protein interaction networks and miRNA-gene interaction networks which are
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then subjected to the action of two algorithms. The first algorithm is the random walk
with resistance algorithm on a network. As an alternative, I am proposing the lattice
laplacian on a network as a method to discover clusters of biologically related proteins.
These approaches seek to find ways of solving complex pathway membership problems
in protein interaction databases. The clusters obtained provide more biological insight as
opposed to a process of local pairwise comparison between interacting proteins. They may
also predict new members in functional pathways or clusters. These algorithms simulate
biased random walks on the network for determining membership of proteins in given
clusters.

The biological network I am considering is the protein-protein interaction environment

of miRNA hsa-miR-218-5p.

5.1 Hsa-miR-218-5p

MicroRNAs (miRNAs) are small RNA molecules involved in various important biological
processes inside the cell. They control the expression of many genes both directly and
indirectly. There are over 1,000 miRNAs coded by the human genome [39]. MiRNAs
are implicated in numerous disease states and various miRNNAs based therapies are being
investigated [55].

Hsa-miR-218-5p is a small non-coding RNA that regulates gene expression by antisense
binding. Hsa-miR-218-5p appears to be a vertebrate specific miRNA and has now been

predicted and experimentally confirmed in a wide range of vertebrate species. Hsa-miR-
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218-5p plays key roles in tumor metastasis. It inhibits invasion and metastasis of gastric
cancer [33]. Hsa-miR-218-5p inhibits cancer cell proliferation in lung cancer [34]. Hsa-miR-
218-5p, along with hsa-miR-585, has been found to be silenced by DNA methylation in oral
squamous cell carcinoma [46]. It is downregulated in nasopharyngeal carcinoma [48], with
artificially-induced expression serving to slow tumour growth. Hsa-miR-218-5p has been

found to be implicated in epilepsy [49].

5.2 MicroRNAs structure and function

A miRNA is a small, non-coding RNA molecule containing around 22 nucleotides [52].
It is found in plants, animals and some viruses. The human genome encodes over 1,000
miRNAs [39] which target about 60% of the genes. A given miRNA may have hundred
different messenger RNA targets and a given target may be regulated by multiple miRNAs

[52].

Active mature Passenger strand
microRNA sequences

Figure 5.1: MiRNA hairpin structure

After transcription into a single stranded miRNA molecule in the nucleus, the miRNA will fold around itself
and form a hairpin loop structure.
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MiRNAs are first transcribed to pri-miRNAs [53]. The transcripts then undergo several
processing steps like endonucleolytic cleavage [66], nuclear export and a strand selection
procedure, to yield the single stranded mature miRNA product [54]. Transcription and
processing of miRNAs determine the abundance and sequence of mature miRNAs and
have important implications for their functions. MiRNAs’ genes encode for long hairpin
structure RN As [54]. When processed by a series of RNase III enzymes (Drosha and Dicer),
they form a miRNA duplex of 22 nucleotides with 2 nucleotides overhangs on the 3" end
[58]. Only one strand of this duplex is incorporated in a protein complex that includes a
member of Argonaute family of proteins [62]. MiRNA functions as a guide for this complex
to the target messenger RNA. It accelerates messenger RNA deadenylation which causes
messenger RNA degradation and translation repression.

Transcription of miRNAs takes place in the nucleus [53]. The primary transcripts of
miRNAs are generally long (more than 1kb) and contain a 5" 7methyl guanosine cap and
a 3’ poly A tail [60]. The enzyme that transcribes the information from the genes to the
miRNA is RNA polymerase II [53]. It is the same polymerase that transcribes messenger
RNA [53]. The promoters that direct the miRNA transcription also bear the hallmark of
Polymerase II promoters. Most miRNAs are products of Polymerase II, although RNA
Polymerase III may also be involved. MiRNAs diverge in their expression levels since
Polymerase II promoters are highly regulated and can vary greatly in strength. Since
50% of mammalian miRNAs are located within the intronic regions of protein coding or
nonprotein-coding genes, these miRNAs could use their host gene transcripts as carriers

[53]. Another possibility is that some will be transcribed separately using internal promot-
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Figure 5.2: MiRNA processing

MIiRNA is first transcribed in a single stranded miRNA by means of RNA polymerase II. The single
stranded miRNA folds around itself to form a pri-miRNA around 120 nucleotides long. The partial
complementarity between the base pairs in the pri-miRNA cause the formation of miRNA hairpin structure.
The pri-miRNA undergoes the cleavage of the endounuclease Drosha in the nucleus and a pre-miRNA
around 70 nucleotides long is formed. Pre-miRNA is exported outside the nucleus in the cytosol by means of
Exportin 5 Ran-GTP. GTP is hydrolyzed to GDP and Exp 5/Ran-GTP releases its cargo in the cytosol. In
the cytosol the pre-miRNA undergoes a second cleavage by the Dicer enzyme. A miRNA-miRNA* duplex
with around 22 nucleotides is formed. Dicer, PACT and TRBP form the RISC complex (RNA induced
silencing complex). Mature miRNAs are transferred to Argonaute proteins. One strand is released in the
cytosol as a passenger strand and the other one serves as a guiding strand. The guiding strand is the one
which will interact with messenger RNA and control its translation into proteins.

From a primary miRNA transcript with more than 1kb, to a mature miRNA with ap-
proximately 22 nucleotides, the miRNA must go through a series of processing steps. The
tirst step of processing of the miRNA in animal cells is the production of a miRNA approx-

imately 70 nucleotides long inside the nucleus called the precursor miRNA or pre-miRNA

[60]. The precursor is excised from the primary transcript by Drosha enzyme [56]. Drosha
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is a RNase III type endonuclease which produces duplex RNA containing a 5’- phosphate
and a 3’ -OH, with a 2 nucleotide overhang at the 3’ end. Drosha by itself doesn’t have any
enzymatic activity [56]. It requires a subunit called DGCR8 in humans or Pasha in flies.
DGCRS contains two double-stranded RNA-binding domains that help the Drosha subunit
to recognize the correct substrate [56]. An extension of several base-paired residues is re-
quired beyond the final pre-miRNA product. A flanking, single stranded RNA is required
for efficient processing and at the other end of the hairpin a large terminal loop is preferred
by Drosha. Drosha recognizes the local structure of a relevant hairpin, but doesn’t utilize
the property of a 5 7-methyl guanosine cap or a 3’ polyA tail [56]. Thus the processing of
miRNA might happen before the primary transcript is completely synthesized.

Pre-miRNAs are produced in the nucleus, and afterwards Exportin 5 and its Ran-
guanosine triphosphate (GTP) cofactor transport them from the nucleus to the cytoplasm.
Exportin 5 binds to a minihelix containing RNAs with a 3" overhang. The Exportin 5/Ran-
GTP complex has a very high affinity for pre-miRNAs [57]. In the cytoplasm, GTP is
hydrolyzed to GDP and Exp 5/Ran-GDP releases its cargo [57].

After being exported to the cytoplasm, pre-miRNAs are processed to mature miRNAs
by means of the endonuclease Dicer [58]. Dicer also initiates the formation of the RISC
(RNA induced silencing complex) composed of the Argonaute proteins [63]. Dicer is an-
other RNase III type enzyme and it cleaves pre-miRNAs in the cytoplasm. Dicer proteins
have a PAZ domain approximately 130 amino acids long [58]. It binds to single-stranded 3’
ends of double stranded RNAs [59]. As a pre-miRNA generated by Drosha [56], it already

contains a 2 nucleotide 3" overhang. Dicer recognizes the 3’ overhang via its PAZ domain
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and cleaves the double-stranded region approximately 20 nucleotides away [59]. This pro-
duces a miRNA duplex containing approximately 2 nucleotide 3" overhangs at both ends.
Dicer acts as a ruler to cleave double stranded RNA substrates at a set distance from one
end [59]. Proteins like TRBP and PACT in humans bind to Dicer and contribute to its func-
tion. TRBP is the transactivation response RNA binding protein [64]. PACT is the protein
kinase RNA activator [65]. They enhance the affinity of Dicer for RNAs and participate in
the selection of mature miRNA strands and/or the transfer of miRNAs to their final stop,
the Argonaute proteins [63]. PACT, TRBP and Dicer form the RISC (RNA induced silenc-
ing complex) complex [61]. Dicer produces a miRNA duplex intermediate [59]. One of
the two strands can be detected in cells. The strand with the less stable hydrogen bonding
at its 5" end within the original duplex is stabilized and becomes the mature miRNA. The
other complementary strand is lost. Many miRNAs have a U residue at their 5’ends. These
miRNAs have the highest chance of being selected, since a U:G base pair is less stable than
a U:A pair, which in turn is less stable than a G:C pair.

Dicer interacts with a family of conserved proteins called Argonautes. Mature miRNAs
are eventually transferred to Argonaute proteins and serve as guides in RNA silencing
[63]. The transcription of miRNAs is the same as that of pre-messenger RNA [53], and
the differential expression pattern of miRNAs mirrors that of mRNAs. Different cell types
produce some but not the entire miRNA repertoire encoded by the same genome. The pro-
cessing of a small number of miRNAs may be under the control of specific RNA-binding
proteins. These proteins can block or allow processing until an appropriate time, or mod-

ulate cleavage sites to influence strand selection. Drosha is a key determinant of which
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part of a primary transcript will become the mature miRNA [56]. The cleavage sites chosen
by Drosha dictate where Dicer will cleave and hence, after strand selection, which RNA
strand remains as the final product [58]. Understanding where Drosha and Dicer cleave
is important. First, the cleavage sites determine the sequence of mature miRNAs. Second,

the cleavage sites directly impact the function of miRNAs.
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Figure 5.3: Protein synthesis inhibition by miRNA

After the transcription process, messenger RNA is translated into proteins in the ribosomes. When miRNA
binds to messenger RNA through complementary base pairing, the translation of messenger RNA into
proteins is blocked.

The functions of miRNA include: RNA silencing and post-transcriptional regulation of
gene expression. MiRNAs are encoded by nuclear DNA and they function via base-pairing
with complementary sequences within messenger RNA molecules. MiRNAs silence the
expression of mRNAs through one or more of the following processes [54]: 1) cleavage of
the mRNAs strand into two pieces [66] 2) destabilization of the mRNAs through shortening
its poly-A tail 3) decreasing the translation efficiency of mRNAs into proteins by ribosomes.
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MiRNAs control the expression of thousands of target mRNAs [67]. Each messenger
RNA is believed to be targeted by multiple miRNAs. There is a sub cellular structure called
the PB (processing bodies) which is linked to the miRNA pathway in down-regulating the
target mRNA [77]. MiRNAs production is altered in cancer cells [67]. This suggests an
impact that miRNAs might have in causing cancer. MiRNAs might form another strand
of the regulatory system that exists in the cell. MiRNAs, when perfectly base-paired to
their target messenger RNA, direct cleavage of a single phosphodiester bond in the target
messenger RNA. This cleavage is the result of the Slicer activity of the RISC (RNA-induced

silencing complex) [63].

Functions of microRNA
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Figure 5.4: MiRNA and translation

In animal cells the match ups between mRNA and miRNA are not perfect. Depending on the level of
complementarity between the nucleotides on the positions 2-7 on the 5" end of the miRNA and the 3" end of
the UTR region on the mRNA, either mRNA degradation (left) or destabilization and blocking of translation

(right) occurs.

MiRNAs control gene expression. MiRNNAs are complementary to part of one or more
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messenger RNAs. If the base pairing between miRNA and messenger RNA is perfect or
almost perfect then cleavage of messenger RNA is promoted. This is the main way plant
miRNAs function [69]. In animal cells the match ups are not perfect. For these miRNAs, in
order to recognize the messenger RNA it’s important that nucleotides 2-7 still be perfectly
complementary [68].

Animal miRNAs action by inhibiting the translation of messenger RNAs into proteins.
MiRNAs that are partially complementary to a target can speed up deadenylation causing
messenger RNA to degrade sooner [60]. Depending on the level of complementarity be-
tween the nucleotides on the positions 2-7 of the 5" end of the miRNA and the 3’ end of the
UTR region on the messenger RNA either messenger RNA destabilization or degradation
of the messenger RNA can occur [68]. Animal miRNAs have a diverse set of target genes.
But genes involved in common functions such as gene expression have fewer miRNA target
sites and seem to be under selection to avoid targeting by miRNAs [70].

Micro RNAs and diseases
MiRNAs bind to messenger RNAs before they are translated to proteins. They might turn
the translation machinery off, blocking the production of proteins [67]. Several miRNAs
have been found to have influence in some types of cancer [71].

MiRNAs are related to heart disease. The expression of miRNAs in diseased human
hearts is altered. Several studies have indicated that miRNAs play a role not only in heart
disease but in its development as well [72]. MiRNAs regulate important factors of car-
diogenesis and cardiac conductance [73]. MiRNAs are involved in kidney diseases [74].

They appear to regulate the development and function of nervous systems [75]. MiRNAs
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play crucial roles in the regulation of stem cell progenitors differentiating into adipocytes,

having an impact on obesity [76].

5.3 Graphical Representation of MicroRNA-Gene Interac-

tions

The graphs in this section are created using Cytoscape. Cytoscape is an open source soft-
ware which can be used to visualize the interactions between different proteins [11].

The input data used in this research was provided by the Peng Lab [37] at York Uni-
versity. Figures 5.5 and 5.6 show pictures of part of the microarray data provided by the
lab, including data on upregulated and downregulated proteins. The entire microarray
data is included at the end of this dissertation as an appendix. The microarray contains
hsa-miRNA-218-5p along with the upregulated and downregulated messenger RNAs by
hsa-miR-218-5p. Changes in messenger RNA levels reflect changes in the protein levels. If
a protein has increased expression in the presence of hsa-miR-218-5p, then we say it is “up-
regulated” (i.e. the mRNA transcript of the gene coding for that protein is upregulated). If
a protein’s expression decreases in the presence of hsa-miR-218-5p, then we say it is “down-
regulated” (i.e. the mRNA transcript of the gene coding for that protein is downregulated).
Despite the actual interactions seen in the cell are between the miRNA and messenger
RNAs, since messenger RNAs are transcripts (copies) of the genes and the changes in mes-
senger RNA levels are reflected in protein level changes, we will refer to these interactions
as miRNA-protein interactions. Fold change is a measure describing how much a quantity
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changes going from an initial to a final value. Fold changes are defined directly in terms of
ratios [86]. If the initial value of a substance is A and the final value is B, the fold change
is defined as B/A. In genomics, log ratios are often used for analysis and visualization of

fold changes. The log?2 (log with base 2) is most commonly used [86].
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Project: Peng
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Figure 5.5: Microarray data negative fold change

A picture of the microarray data showing the most downregulated gene products (proteins) by
hsa-miR-218-5p (the expression of the genes is decreased in the presence of hsa-miR-218-5p).
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Figure 5.6: Microarray data positive fold change

A picture of the microarray data showing the most upregulated gene products (proteins) by hsa-miR-218-5p
(the expression of the genes is increased in the presence of hsa-miR-218-5p).

Figure 5.7: All gene products (proteins) controlled by hsa-miR-218-5p

All gene products (proteins) controlled by hsa-miR-218 on the microarray data provided by the Peng’s lab at
York University are shown.
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A graphical representation of all proteins controlled by hsa-miR-218-5p is shown in

figure 5.7. Graphs depicting proteins that are downregulated and upregulated by hsa-miR-

218-5p are shown in figures 5.8 and 5.9 respectively.

Figure 5.8: Downregulated gene prod-
ucts (proteins) by hsa-miR-218-5p

All downregulated gene products (proteins)
by hsa-miR-218 on the microarray data pro-
vided by the Peng’s lab at York University
are shown.

Figure 5.9: Upregulated gene products
(protesin) by hsa-miR-218-5p

All upregulated gene products (proteins) by
hsa-miR-218 on the microarray data pro-
vided by the Peng’s lab at York University
are shown.

Next, we are considering separately only those proteins which are the most downregu-

lated or upregulated by hsa-miR-218-5p. We are using a cutoff fold change of 2, meaning

those proteins whose expression is increased twice or more in the presence of hsa-miR-

218-5p or those proteins whose expression is decreased twice or more in the presence of

hsa-miR-218-5p. Using a cutoff value of 2 is large and this may ignore some useful data but



the purpose of choosing this cutoff is to make the networks tractable. These interactions

are shown in figures 5.10 and 5.11. There are 24 proteins which are downregulated and 38

proteins which are upregulated by fold change of 2 or more by hsa-miR-218-5p.

Figure 5.10: The most downregulated
gene products (proteins) by hsa-miR-
218-5p

Gene regulation by hsa-miRNA-218-5p re-
sults in up or downregulation of proteins
in protein interaction networks. 24 most
downregulated gene products (proteins) by
hsa-miR-218 on the microarray data pro-
vided by the Peng’s lab at York University
(fold change of 2 or more) are shown.

Figure 5.11: The most upregulated
gene products (proteins) by hsa-miR-
218-5p

Gene regulation by hsa-miRNA-218-5p re-
sults in up or downregulation of proteins in
protein interaction networks. 38 most up-
regulated gene products (proteins) by hsa-
miR-218 on the microarray data provided
by the Peng’s lab at York University (fold
change of 2 or more) are shown.

Figures 5.12 and 5.13 include data downloaded from the miRTarBase. MiRTarBase [39]

is a database that contains experimentally validated miRNA-target interactions. It contains

more that 50,000 miRNA-target interactions. These interactions are collected by manually

surveying literature. The collected miRNA-target interactions (MTIs) are experimentally

validated by reporter assay, western blot, microarray and next-generation sequencing ex-



periments. For each of the most upregulated (figure 5.13) or downregulated (figure 5.12)
proteins by hsa-miR-218-5p, the set of their interacting miRNAs is downloaded from miR-

TarBase [39] and the networks in figures 5.12 and 5.13 are created using Cytoscape [11].
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Figure 5.12: MiRNAs controlling the most donwnregulated gene products (proteins)

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. For each of the most downregulated gene products (proteins) by hsa-miR-218, the set of the
miRNAs controlling these proteins is downloaded from the miRIarBase database [39] and Cytoscape [11] is
used to create the network. Hsa-miR-218-5p is shown in yellow. The arrangement of nodes and bonds in this
network was created using the prefuse force directed layout in Cytoscape 3.3.0.
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The networks show that one miRNA controls several proteins and one protein is con-
trolled by many miRNAs. In figure 5.12, the proteins which have the most interactions
with miRNAs are: ATP2A2 (15 miRNAs), THBS1 (13 miRNAs) and IER3IP1 (9 miRNAs).
The miRNAs which have the largest number of interacting proteins in figure 5.12 are hsa-

miR-155-5p (4 proteins) and hsa-miR-124-3p (4 proteins) .
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Figure 5.13: MiRNAs controlling the most upregulated gene products (proteins)

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. For each of the most upregulated gene products (proteins) by hsa-miR-218, the set of the miRNAs
controlling these proteins is downloaded from the miRTarBase database [39] and Cytoscape [11] is used to
create the network. Hsa-miR-218-5p is shown in yellow. The arrangement of nodes and bonds in this
network was created using the prefuse force directed layout in Cytoscape 3.3.0.
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In figure 5.13, the proteins which have the most interactions with miRNAs are: CDK6
(31 miRNAs), HIST1H2BK (13 miRNAs) and HISTIH2BK (9 miRNAs). The miRNAs which
have the largest number of interacting proteins are hsa-miR-16-5p (5 proteins), hsa-miR-
335-5p (4 proteins) and hs-miR-1243p (4 proteins).

For each of the proteins controlled by hsa-miR-218-5p with a fold change of 2 or more,
the set of their interacting proteins was downloaded from the STRING [38] database and
networks in figures 5.14, 5.15 and 5.16 were created using Cytoscape [11].

STRING stands for search tool for the retrieval of interacting genes/proteins. It is a
database of known and predicted protein-protein interactions. The interactions described
in STRING [38] include direct (physical) and indirect (functional) interactions. The interac-
tions between proteins are derived from different sources. These sources include genomic
context, high-throughput experiments, conserved gene coexpression and previous knowl-
edge [38]. STRING database currently covers 5,214,234 proteins from 1,133 organisms.
The database aims to simplify access to information about protein associations. The associ-
ations are derived from experimental data, mining of databases and literature and genomic
context analysis. The STRING database is searched up to 2 steps from hsa-miR-218-5p and
the downloaded data was used to create the networks in figures 5.14, 5.15 and 5.16. The
networks were visualized using Cytoscape [11].

Figure 5.14 shows protein interactions of the most downregulated proteins by hsa-miR-
218-5p and figure 5.15 the protein interaction environment of the most upregulated proteins
by hsa-miR-218-5p. In each of the networks, hsa-miR-218-5p is shown in yellow. The

most downregulated proteins are shown in blue in figure 5.14, while the most upregulated
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proteins are shown in green in figure 5.15. A graphical representation of most up and down
regulated proteins combined, controlled by hsa-miR-218-5p, along with their interacting

proteins downloaded from STRING database is presented in figure 5.16.
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Figure 5.14: PPI environment of the downregulated proteins by hsa-miR-218-5p

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The protein-protein interaction environment of proteins downregulated by hsa-miR-218-5p was
downloaded from the STRING database [38] and Cytoscape [11] was used to create the network.
Hsa-miR-218 is shown in yellow and the most downregulated proteins are shown in blue. The arrangement
of nodes and bonds in this network was created using the prefuse force directed layout in Cytoscape 3.3.0.
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Figure 5.15: PPI environment of the upregulated proteins by hsa-miR-218-5p

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The protein-protein interaction environment of proteins upregulated by hsa-miR-218-5p was
downloaded from the STRING database [38] and Cytoscape [11] was used to create the network.
Hsa-miR-218 is shown in yellow and the most upregulated proteins are shown in green. The arrangement of

nodes and bonds in this network was created using the prefuse force directed layout in Cytoscape 3.3.0.
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Figure 5.16: PPI environment of proteins controlled by hsa-miR-218-5p

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The protein-protein interaction environment of proteins controlled by hsa-miR-218-5p was
downloaded from the STRING database [38]. The arrangement of nodes and bonds in this network was
created using the prefuse force directed layout in Cytoscape 3.3.0 [11]. Hsa-miR-218-5p is shown in yellow.

The most upregulated proteins are shown in green and the most downregulated proteins in blue.

The final network in figure 5.16 was subjected to the action of the various algorithms
described in the next chapter. The network in figure 5.16 has 1,112 nodes and 1, 741 bonds.

The most upregulated proteins are shown in green. The most downregulated proteins are
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shown in blue and hsa-miR-218-5p is shown in yellow. When applying different algorithms
on the protein-protein interaction environment of hsa-miR-218-5p, the cutoff value is tuned

so that the reconstructed networks contain roughly the same number of bonds as this

original one (figure 5.16).
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Figure 5.17: PPI environment of proteins controlled by hsa-miR-218-5p (nodes of degree 1 removed)

The nodes of degree 1 are removed from the network in figure 5.16. Hsa-miR-218-5p is shown in yellow. The
upregulated proteins are shown in green and the downregulated ones in blue. The arrangement of nodes and
bonds in this network was created using the prefuse force directed layout in Cytoscape 3.3.0.

From the network in figure 5.16, nodes of degree 1 are removed to clear up the clutter

in the figure and the network in figure 5.17 is created.
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Chapter 6

Analysis of Biological Networks Using

Random Walks and Related Algorithms

Two network topology-based algorithms are presented with the goal of discovering clusters
of closely related proteins in protein-protein interaction networks, and suggesting new
targets of hsa-miR-218-5p. The underlying idea in network based analysis is the discovery
of cluster structures (of complexes and pathways) in protein-protein interaction networks.
These structures give information of biologically related proteins and their functions. The
key idea is that two proteins sharing higher topological similarities are likely interacting
with each other and might belong to the same protein complex and cluster in the network.

I test two algorithms. The first is to estimate similarities of the proteins in a network
using a random walk with resistance [1] (RWR) algorithm. The second algorithm is to
solve the lattice laplacian (LL) on a network, or its modifications WLLR (weighted lattice

laplacian with resistance) and DWLLR (double weighted lattice laplacian with resistance).
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Data on up and downregulated proteins by miRNA hsa-miR-218-5p were provided
by the Peng lab [37]. Protein-protein interaction networks were constructed on these by
examining the environment of these proteins in the STRING [38] database of PINs.

The structure of the networks was discovered with the RWR and LL algorithms, and
visualized using Cytoscape [11]. Protein clusters are discovered by joining two proteins
in a network when there is a higher value of the Pearson correlation coefficient between
their corresponding columns in the RWR probability matrix, or in the LL solution matrix.
The algorithms do not produce identical networks, but both show similar networks of
biologically related clustered proteins. Clusters can be examined individually by RWR and

LL algorithms to predict novel protein functions and reaction pathways.

6.1 Random Walk with Resistance (RWR)

The random walk with resistance algorithm was introduced in reference [36] as a method of
improving protein-protein interaction networks. A random walk on nodes of the network
is a particle stepping on nodes by choosing the next node uniformly at random from the
set of neighbours of that node. Let i be the current node where the random walk is at time
k and denote the probability of the random walk to be at node i at time k by qfk). The
probability of the random walk to take the path from node i to node j is denoted by P;;.

If (i,j) is a bond, then clearly P;; = ﬁ, where d(7) is the degree of node i (the number

of nodes that node i is adjacent to). The probability of a random walk to go from a node i

at time k to a node j at time k 41 is given by:
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ﬂ§k+1) =Y. (6.1)

The probability of the random walk to arrive at a node j is obtained by adding up the
probabilities of random walks to enter node j through all different paths starting at i. This

is:

k k
‘7](- = ZLI,( P,

. (6.2)

i
When applying the random walk approach to a network, probability vectors are gener-
ated for every node in the network. The probability vector for a given node j gives the
probabilities that random walks arrive at node ;.

RAaNDOM WALK WITH RESISTANCE ALGORITHM: RWR Algorithm:

Parameters € = % ,B= |1f| and threshold ¢:

1 : G a network with V =1,2,..., N and M = |E| bonds.

2 : The transition probability matrix is Pij and it is uniform, meaning if (i, j) is a bond,

then P;; = ﬁ where d(i) is the degree of node i (the number of nodes that node i is

adjacent to) and 0 otherwise. The probability of starting at node v and being at node

(k)

iattimekisq,; .

3 : Initiate a random walk at node v at time k = 0. Update qik]) as follows: Compute the
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stepping probabilities fi(jkﬂ) depending on € and f:

(

max(O,q(k)Pi]- —€), if q(k) > 0,

0, v,j

max(O,q(k)Pi]- —e€), if qék) =0

v,i ]

(k+1)
fi = (6.3)
& maxi(q4y Pyj) > B,

0, otherwise.
\
L ity
Update node probabilities qz(Jk]) by: qz(ffl) = W Increment k until the qukj) con-
ij

verges to ¢y ;.

1SN

: Repeat step 3 for nodes v forn =1ton = |V]|.

5 : Construct probability matrix ¥;; with rows g; : ¥;; = [g; ;.

6 : Compute Hj=median j-th column of Y.

7 : Compute © = ¥ — H.

8 : Compute Pearson correlation coefficients C;; between columns i and j of ©.
9 : Join nodes i and j if C;; > t.

Two parameters are introduced, € and B. The probability vectors for each node i are calcu-
lated as in equation (6.3).

First, the algorithm checks if the next node in the random walk is already a node of
the walk. If this is the case, then the probability to get from node i to node j will be equal
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(k)

v,i

to g, ; P;j — €. If this value is negative, the probability is set to 0. If the next node on the
random walk is not a node of the walk already, then the parameter B controls this step:

If there exists a path from the initial node v to a node j such that the probability of the

random walk to take that path is greater than or equal to 3, then node j will be the next

(k)

v,

node of the walk with probability g,/ P;; — €, or 0 if the later is negative. If node j is a new
node in the random walk and there exists no path from the initial node v to node j with
probability greater than or equal to §, then the probability of the random walk to get from
node i to node j will be 0.

The first parameter € is a resistance term which ensures that the random walk stays
close to the initial node. This will ensure that probability vectors will be different for every
different starting node.

The second parameter § of the algorithm makes it difficult for new nodes, which were
never visited by the random walk to be part of it. Those nodes that are new to the walk and
have some sort of connection to the initial node through some paths have a higher chance
to be visited by the random walk than nodes which don’t. This is particularly important
for the hubs in the network. A hub node is a node that is adjacent to many other nodes
in the network. Not all the nodes linked to the hub node can be biologically relevant. By
introducing the B parameter, it is ensured that the random walk travels only from the hub
node to those nodes that are linked to the initial node of the random walk not only through
the hub but also through some other paths.

14

The values of the parameters used in the RWR algorithm are: € = 1P and B = TE["

The probability to start at a node v and arrive at a node j is calculated by adding up the
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probabilities to arrive at that particular node through different paths. The probabilities are
Y fi(]c+1)

normalized so that they sum to 1. Therefore q](.kH) = W
=71

The above procedure is applied to every node of tlrllje network. A probability matrix ¥;;
of dimensions | V | x | V | is generated. The matrix describes the probability of a random
walk to start at node i and be at node j in the network. Each column vector represents
the probabilities of a random walk to start at different nodes i of the network and end at a
node j. The row vector of the matrix represents the probabilities of a random walk to start
at a node i of the network and end at all nodes j of the network. Thus, the column vector
represents the information passed from all the nodes to the current node. The row vector
represents the information passed from a given node to all the other nodes in the network.
The column vector better represents the topological profile of a given node in the network.

To further magnify the difference between the probability vectors, the median vector H;
of the j-th column is generated. H; =median (l/Ji:1N|V|,j). The difference between the ;;
matrix and the median vector H; is taken to obtain the offset matrix ©. ©;; = ¥;; — H;. The
first term of the vector H]- is subtracted from the first column of matrix ©, the second term
of H; is subtracted from the second column of matrix ® and so on.

In the offset matrix ©, the Pearson correlation coefficient is calculated between every
pair of columns. These calculations give the correlation matrix. In the correlation matrix,
nodes with similar topological profiles exceeding a given threshold are deemed to interact
with each other and joined by a bond in the new reconstructed network. This is imple-

mented in steps 5 — 9 in the RWR algorithm.

In 2012, Lei and Ruan in reference [36] introduced and applied the above procedure to
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a yeast protein interaction network. In this study, the original yeast PIN network had 2,708
nodes and 7,123 bonds. After generating the offset matrix ®;;, and the correlation matrix
Cij, the new network is created. The pairs of nodes which have the highest topological
similarity are linked together and a new network with the same number of bonds as the
original network is created by choosing the threshold suitably.

It is found in the study that 40% of the bonds in the new reconstructed network are
new bonds which did not exist in the original network. The new interactions generated in
the reconstructed networks were verified to be more relevant biologically and functionally
compared to the old (removed) bonds in the old network [36]. It was seen that the proteins
which are linked by new bonds/interactions in the new reconstructed network have similar
biological functions. Moreover, if two proteins are interacting with each other and one of
them is (not) an essential protein, then the other one is also expected to be (not) an essential
protein as well. The new interactions in the new reconstructed network share a high degree

of essentiality compared to the proteins in the removed interactions in the old network.

I consider networks generated based on the data provided by the Peng lab [37] at York
University. The data contains hsa-miR-218-5p and the set of proteins which are upregulated
and donwregulated by hsa-miR-218-5p. For each of the upregulated and downregulated
proteins by hsa-miR-218-5p with a fold change of 2 or more, the protein interactions were
downloaded from the STRING [38] database. The network created is shown in figure 5.16.

The network contains 1,112 nodes and 1,741 bonds. It was created using Cytoscape [11]
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and was subjected to the action of different algorithms.
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Figure 6.1: RWR network

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of PPIs of proteins controlled by hsa-miR-218-5p using the random
walk with resistance (RWR) algorithm is shown. The network in figure 5.16 was subjected to the action of
the RWR algorithm. The threshold was chosen to keep the number of bonds at roughly the same value as in
the network in figure 5.16. The network obtained has a clustered structure. The main clusters are labelled
using either the protein of the highest degree in the cluster or the proteins which appear the most in the
cluster. The arrangement of nodes and bonds in this network was created using the prefuse force directed
layout in Cytoscape 3.3.0.
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The random walk with resistance algorithm was applied in the network shown in figure
5.16. A new network is reconstructed retaining roughly the same number of bonds as the
old network. The new reconstructed network is shown in figure 6.1. The new created
network has a clustered structure. The clusters are labelled in the network in figure 6.1.
For each cluster, the labelling was done using either the protein of the highest degree in
the cluster (ALDOC cluster, QPRT cluster, etc), or the proteins which appear the most in

the cluster (histone cluster, cadherins cluster, etc).

6.2 Lattice Laplacian with Resistance (LLR) Algorithm

As an alternative to the random walk with resistance (RWR) algorithm, I am proposing
solving the lattice laplacian with resistance (LLR) algorithms as a method to analyze bio-

logical networks. Laplace’s equation is a second-order partial differential equation.

V?H = 0. (6.4)

Let G = (V,E) be a graph with nodes V and bonds E. Let H : V — R be a function of the

vertices taking values in R. Then the discrete laplacian A acting on H is defined by:

(AH)(@H)= ). (H()—H(j)) =0 (6.5)

j:(i,j)is a bond
Thus, this sum is over the adjacent nodes of the node i. If the graph has weighted bonds

(that is, a weighting function & : E — R), then the discrete laplacian can be defined by:
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(AH)() = Y ag(H() — H(j) =0, (6.6)

j:(i,j)is a bond
where a;; is the weight on the bond (i,j). Similar to the lattice laplacian is the average

operator:

Hi)=+ Y H(). (67)

1 j:(i,j)is a bond

Steps of solving the lattice laplacian in a network:

1. The boundary conditions are specified.

2. Interior points are assigned arbitrary starting potentials H(i) (values of the solution on
the nodes). The potentials H(i) are first guessed at 0 except on one node and fixed at 1
on another. The final solution doesn’t depend on these initial values, but the solution may
converge faster if a good guess is made.

3. The network is swept through, updating the values of the potentials H(i) for every node
in the network iteratively.

4. Repeat step 3 until converged within a specified accuracy. The information received
from the solution of the lattice laplacian is used to reconstruct a new network.

Solving the Lattice Laplacian with Resistance Algorithm (LLR) is described below:

SOLVING LATTICE LAPLACIAN WITH RESISTANCE ALGORITHM: Parameter €:
1 : Network G with N = |V| nodes and M = |E| bonds.

2 : Fix the potential of the node corresponding to hsa-miR-218-5p to be 0.
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3 : Iterate for all nodes i in the network:

3a : Fixy) = 1.
Ly +ey)
3p ;U = T for j # i, for t until converged
- Jj deg j+e 7 J ’ gec

3c : Repeat 3b until all y; are converged.

3d : Putq;(j) = yjforie V.
4 : Collect the potentials g;(j) into rows of matrix Y.
5 : Update network as in steps 6-9 of the RWR algorithm.

If € = 0, then the LL (lattice laplacian) algorithm is recovered. The lattice laplacian al-
gorithm was applied in the protein interactions of proteins controlled by hsa-miR-218-5p
described in the previous section. A new network is reconstructed. The threshold value is
chosen so that the number of bonds is kept at roughly the same value as the number of
bonds in the original network (figure 5.16). The results of implementing the above algo-
rithm for different values of the parameter € are shown in figures 6.2, 6.3 and 6.4. In the
networks in figures 6.2, 6.3 and 6.4, the most upregulated proteins are shown in green and
the most downregulated proteins are shown in blue.

The reconstructed network of protein-protein interactions of proteins controlled by hsa-
miR-218-5p using the lattice laplacian with resistance (LLR) algorithm with € = 0 is shown
in figure 6.2. The network was created using Cytoscape [11]. The network obtained has a
clustered structure. The main clusters are labelled.

In figure 6.3, the value of the parameter € used is —0.1.
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In figure 6.4, the reconstructed network of protein-protein interactions of proteins con-
trolled by hsa-miR-218-5p using the lattice laplacian with resistance (LLR) algorithm with

€ = —0.05 is shown.
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@

Figure 6.2: LLR network with e =0

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of protein-protein interactions of proteins controlled by hsa-miR-218-5p
using the lattice laplacian with resistance (LLR) algorithm with € = 0 is shown. The network in figure 5.16
was subjected to the action of the LLR algorithm with € = 0. The threshold was chosen to keep the number
of bonds at roughly the same value as in the network in figure 5.16. The arrangement of nodes and bonds in
this network was created using the prefuse force directed layout in Cytoscape 3.3.0. The network obtained has
a clustered structure. The main clusters are labelled.
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Figure 6.3: LLR network with e = —0.1

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of protein-protein interactions of proteins controlled by hsa-miR-218-5p
using the lattice laplacian with resistance (LLR) algorithm with € = —0.1 is shown. The network in figure
5.16 was subjected to the action of the LLR algorithm with € = —0.1. The threshold was chosen to keep the
number of bonds at roughly the same value as in the network in figure 5.16. The arrangement of nodes and
bonds in this network was created using the prefuse force directed layout in Cytoscape 3.3.0. The network
obtained has a clustered structure. The main clusters are labelled.
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Figure 6.4: LLR network with e = —0.05

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of protein-protein interactions of proteins controlled by hsa-miR-218-5p
using the lattice laplacian with resistance (LLR) algorithm with € = —0.05 is shown. The network in figure
5.16 was subjected to the action of the LLR algorithm with € = —0.05. The arrangement of nodes and bonds
in this network was created using the prefuse force directed layout in Cytoscape 3.3.0. The network obtained
has a clustered structure. The main clusters are labelled using either the protein of the highest degree in the
cluster or the proteins which appear the most in the cluster.

RWR algorithm produces more clusters compared to the LLR algorithm. In general,

clusters seen in the networks produced by these two algorithms are the same.
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6.3 Weighted Lattice Laplacian with Resistance (WLLR) Al-

gorithm

In this section, I modify the LLR algorithm by assigning weights to the interactions be-
tween hsa-miR-218-5p and the proteins depending on the nature of the interaction between
them. If the protein is upregulated by hsa-miR-218-5p, a weight of +1 is assigned to the
interaction between hsa-miR-218-5p and the protein. If the protein is downregulated by
hsa-miR-218-5p, then a weight of —1 is assigned to the interaction. The purpose of includ-
ing the weights is to refine and improve the LLR algorithm so that better predictions of
protein-protein interactions and miRNA-gene interactions can be obtained.

The weighted lattice laplacian with resistance algorithm (WLLR) works as follows:

WEIGHTED LATTICE LAPLACIAN WITH RESISTANCE ALGORITHM: Parameter €:
1 : Network G with N = |V| nodes and M = |E| bonds.
2 : Fix the potential of the node corresponding to hsa-miR-218-5p to be 0.
3 : Iterate for all nodes i in the network:

3a : Fixy) = 1.
OO
3b - D Ekwk’y" Y
Y - 'kak]‘—‘ré‘
]r\/

, for j # i, for t until converged.
3c : Repeat b until all y; are converged.
3d : Putgq;(j) = yjforie V.

4 : Collect the potentials g;(j) into rows of matrix Y.
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5 : Update network as in steps 6-9 of RWR algorithm.

The case where € = 0 gives the WLL (weighted lattice laplacian algorithm). The results
of implementing the WLLR algorithm for values of the parameter ¢ = 0 and +0.1 are

presented in figures 6.5, 6.6 and 6.7.
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Figure 6.5: WLLR network with € = 0

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of PPIs of proteins controlled by hsa-miR-218-5p using the weighted
lattice laplacian (WLLR) algorithm with € = 0 is shown. The network in figure 5.16 was subjected to the
action of the WLLR algorithm with € = 0. The threshold was chosen to keep the number of bonds at roughly
the same value as in the network in figure 5.16. The arrangement of nodes and bonds in this network was
created using the prefuse force directed layout in Cytoscape 3.3.0. The network obtained has a clustered
structure.
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Figure 6.6: WLLR network with € = 0.1

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of PPIs of proteins controlled by hsa-miR-218-5p using the weighted
lattice laplacian with resistance (WLLR) algorithm with € = 0.1 is shown. The network in figure 5.16 was
subjected to the action of the WLLR algorithm with € = 0.1. The threshold was chosen to keep the number
of bonds at roughly the same value as in the network in figure 5.16. The network obtained has a clustered
structure. The main clusters are labelled. The arrangement of nodes and bonds in this network was created
using the prefuse force directed layout in Cytoscape 3.3.0.
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Figure 6.7: WLLR network with € = —0.1

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of PPIs of proteins controlled by hsa-miR-218-5p using the weighted
lattice laplacian with resistance (WLLR) algorithm with € = —0.1 is shown. The network in figure 5.16 was
subjected to the action of the WLLR algorithm with € = —0.1. The threshold was chosen to keep the number
of bonds at roughly the same value as in the network in figure 5.16. The arrangement of nodes and bonds in
this network was created using the prefuse force directed layout in Cytoscape 3.3.0. The network obtained has
a clustered structure.

Clusters generated are similar in the case of WLLR algorithm as in the network gener-

ated by the RWR algorithm. There are fewer clusters generated by WLLR algorithm than
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by LLR algorithm, which in turn generates fewer clusters than the RWR algorithm.

6.4 Double Weighted Lattice Laplacian with Resistance

(DWLLR) Algorithm

In this section, I modify the WLLR algorithm by assigning weights to both nodes and
bonds in the network and the weighted lattice laplacian with resistance algorithm (WLLR)
is modified to the double weighted lattice laplacian with resistance (DWLLR) algorithm.

Let y; be the potential on node i, w;; be the weight on bond i ~ j and s; be the weight

_1

on node i. The weight s; for each node i is set to be equal to s; = deg (1)

, where deg(i)
is the degree of node i. If the protein is upregulated by hsa-miR-218-5p, a weight of +1
is assigned to the interaction between hsa-miR-218-5p and the protein. If the protein is
downregulated by hsa-miR-218-5p, then a weight of —1 is assigned to the interaction. The
purpose of including weights to both the nodes and bonds in the network is to refine and
improve the WLLR algorithm so that better predictions of protein interactions and miRNA-
gene interactions can be obtained.

The double weighted lattice laplacian with resistance algorithm (DWLLR) works as follows:

DoUBLE WEIGHTED LATTICE LAPLACIAN WITH RESISTANCE ALGORITHM: Parameter €:
1 : Network G with N = |V| nodes and M = |E| bonds.
2 : Fix the potential of the node corresponding to hsa-miR-218-5p to be 0.

3 : Iterate for all nodes i in the network:

139



3a : Fixy? = 1.

() (t)
L Y WkjSktEY;
3b : y](t-i-l) _ j~k

I for j # i, for t until converged.
j~ok

3c : Repeat b until all y; are converged.

3d : Put q;(j) = yjforie V.
4 : Collect the potentials g;(j) into rows of matrix .

5 : Update network as in steps 6-9 of RWR algorithm.

If € = 0, then the DWLL algorithm is recovered. The results of implementing the above
algorithm are presented in figures 6.8, 6.9 and 6.10 for cases: € =0, ¢ = 0.1, and € = —0.1.

The reconstructed network of PPIs of proteins controlled by hsa-miR-218-5p using the
double weighted lattice laplacian with resistance (DWLLR) algorithm with € = 0 is pre-
sented in figure 6.8. The network in figure 5.16 was subjected to the action of the DWLLR
algorithm with € = 0. The threshold was chosen to keep the number of bonds in the newly
reconstructed network at roughly the same value as the number of bonds in the original
network, shown in figure 5.16. The network was created using Cytoscape [11]. The network
obtained has a clustered structure. The main clusters are labelled.

In figure 6.9, the newly reconstructed network is obtained using parameter € = 0.1.

The reconstructed network of PPIs of proteins controlled by hsa-miR-218-5p using the
double weighted lattice laplacian with resistance (DWLLR) algorithm with e = —0.1 is

presented in figure 6.10.
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Figure 6.8: DWLLR network with € = 0

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of PPIs of proteins controlled by hsa-miR-218-5p using the double
weighted lattice laplacian with resistance (DWLLR) algorithm with € = 0 is shown. The network in figure
5.16 was subjected to the action of the DWLLR algorithm with € = 0. The threshold was chosen to keep the
number of bonds at roughly the same value as in the network in figure 5.16. The arrangement of nodes and
bonds in this network was created using the prefuse force directed layout in Cytoscape 3.3.0. The network
obtained has a clustered structure. The main clusters are labelled.
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Figure 6.9: DWLLR network with € = 0.1

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of PPIs of proteins controlled by hsa-miR-218-5p using the double
weighted lattice laplacian with resistance (DWLLR) algorithm with € = 0.1 is shown. The network in figure
5.16 was subjected to the action of the DWLLR algorithm with € = 0.1. The threshold was chosen to keep
the number of bonds at roughly the same value as in the network in figure 5.16. The arrangement of nodes
and bonds in this network was created using the prefuse force directed layout in Cytoscape 3.3.0. The main
clusters are labelled.
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Figure 6.10: DWLLR network with e = —0.1

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of PPIs of proteins controlled by hsa-miR-218-5p using the double
weighted lattice laplacian with resistance (DWLLR) algorithm with € = —0.1 is shown. The network in
figure 5.16 was subjected to the action of the DWLLR algorithm with € = —0.1. The threshold was chosen
to keep the number of bonds at roughly the same value as in the network in figure 5.16. The arrangement of
nodes and bonds in this network was created using the prefuse force directed layout in Cytoscape 3.3.0. The
network obtained has a clustered structure. The main clusters are labelled.

DWLLR algorithm produces more clusters in general compared to WLLR algorithm.
Only the case where € = —0.1 produces the fewest number of clusters amongst all algo-

rithms described above. There are only 5 clusters in that case.
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6.5 Common and sparse clusters

A summary of the most common and sparse clusters seen in the networks generated by
different algorithms is presented in table 6.1. Clusters which appear in 3 or more networks
described above are listed under the “common clusters” and the others under the ”sparse

clusters”.

Table 6.1: Network clusters

Common Clusters (present in 3 or more networks) Sparse Clusters

ALDOC OLR1
Histone FABPS
5518 SPOCK1
GNGI11 IER3P1
QPRT VPS16
KDSR ATP2A2
Cadherines KISS1
CDO1 DSG2
ITGB2 RIOK3
DYSF CD55
FEZ1 MMP1
PCDH7 Retinoblastoma
LXN CKLF
WNT SMADG6
ABI3BP GREM1
MKX ACTA2
THBS1
HERPUD1
LPAR

The most common clusters seen in the networks described in this chapter are clusters of
histones, cadherines, WNT, ITGB2, MKX, PCDH?7, SS18, GNG 11, QPRT, etc. Some of them
share common biological functions. Clusters of WNT, GNG11, IL1B and cadherines have
in common their involvement in signalling pathways which impact cell proliferation and
development. Histones play a central role in transcription regulation, DNA repair, DNA
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replication and chromosomal stability. Clusters like PCDH7 and cadherines are involved
in cell-cell recognition and adhesion processes.

Some of the sparse clusters, share similar biological functions as well. For example,
SMADG6 and LPAR clusters are involved in processes that mediate signaling pathways.
Other sparse clusters like DSG2 cluster, SPOCK1 cluster and THBSI cluster include proteins

that mediate cell-cell interactions.

6.6 Results

6.6.1 BiNGO analysis

The network in figure 5.16 was subjected to the action of the RWR and LL algorithms de-
scribed in the previous sections. The cutoff used for all these algorithms was 0.9. Networks
in figures 6.11, 6.12 and 6.13 were created using Cytoscape [11]. The number of iterations
used in each algorithm was 2,000. All networks created have a clustered structure.
BiNGO [80] analysis in Cytoscape [11] was used to identify the main biological path-
ways and biological processes that proteins in each of the clusters are involved in. BINGO
[80] is a tool to determine which Gene Ontology (GO) [81] categories are statistically over-
represented in a set of genes or a subgraph of a biological network. Gene Ontology (GO)
[81] defines concepts/classes used to describe gene functions. It classifies functions of
genes in three aspects: molecular function (the elemental activities of a gene product at the
molecular level, such as binding or catalysis), cellular component (where gene products are
active) and biological processes (pathways and larger processes made up of the activities of
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multiple gene products).

The percentages given beside each cluster in figures 6.11, 6.12 and 6.13 give the portion
of the proteins in the cluster that have the molecular function or are involved in the bio-
logical process indicated. The top biological processes or molecular functions are given for
every cluster in the networks generated by RWR, LLR and DWLLR algorithms.

A) Random Walk Network
The network in figure 5.16 was subjected to the action of the random walk with resistance
algorithm and the network in figure 6.11 was obtained. The cutoff used was 0.9. The new
network was created using Cytoscape [11] and it has a clustered structure. BiNGO [80]
analysis in Cytoscape [11] was used to identify the main biological pathways and biological
processes that proteins in each of the clusters are involved in.

Top pathways, that clusters in RWR network are involved in, include: cell adhesion,
signaling, G-protein coupled receptor protein signaling pathway, WNT-receptor signaling
pathway, etc. The top enriched biological process terms associated with the proteins were
transcription regulation and nucleic acid metabolism, chromatin organization, regulation
of transcription, regulation of gene expression, response to stimulus, muscle contraction,
protein transport, etc.

B) Lattice laplacian with Resistance, € = 0.1:

The network in figure 5.16 was subjected to the action of the LLR algorithm and the network
in figure 6.12 was generated. The cutoff used was 0.9 and € = 0.1. The number of iterations
performed was 2,000. The new network was created using Cytoscape [11] and it has a

clustered structure. BiINGO [80] analysis in Cytoscape [11] was used to identify the main
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biological pathways and biological processes that genes in each of the clusters are involved
in.

Top pathways, that clusters in LLR network are involved in, include cell adhesion, sig-
naling pathway, cell surface receptor linked signaling pathway, G-protein coupled receptor
protein signaling pathway, WNT-receptor signaling pathway, etc. The top enriched biolog-
ical process terms associated with the proteins were regulation of transcription, regulation
of gene expression, regulation of nucleobase, nucleoside and nucleotide, and nucleic acid
metabolism, chromatin organization, regulation of transcription, regulation of gene expres-
sion, response to stimulus, nervous system development, muscle organ development, etc.

C) Double weighted lattice laplacian with resistance, € = 0.1
The network in figure 5.16 was subjected to the action of the DWLLR algorithm and the
network in figure 6.13 was generated. The cutoff used was 0.9 and € = 0.1. The number of
iterations performed was 2,000. The new network was created using Cytoscape [11] and it
has a clustered structure. BINGO [80] analysis in Cytoscape [11] was used to identify the
main biological pathways and biological processes that proteins in each of the clusters are
involved in.

Top pathways that clusters in DWLLR network are involved in, include: cell adhe-
sion, WNT-receptor signaling pathway, signaling pathways etc. The top enriched biolog-
ical process terms associated with the genes were: nucleoside phosphate metabolic pro-
cesses, nucleobase, nucleoside and nucleotide metabolic processes, chromosome organiza-
tion, chromatin organization, response to chemical stimulus, muscle organ development,

microtubule based process, protein transport, etc.
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Figure 6.11: RWR network (BiNGO analysis)

The network in figure 5.16 was subjected to the action of the random walk with resistance algorithm. The
cutoff used was 0.9. The arrangement of nodes and bonds in this network was created using the prefuse
force directed layout in Cytoscape 3.3.0. BiNGO [80] analysis in Cytoscape was used to identify the main
biological pathways and biological processes that proteins in each of the clusters are involved in. These
analyses revealed that the top pathways in which hsa-miR-218-5p target proteins were involved include: cell
adhesion, G-protein coupled receptor protein signaling pathway, WNT-receptor signaling pathway, etc. Most
of these pathways are cancer related pathways. The top enriched biological process terms associated with
the genes were transcription regqulation and nucleic acid metabolism, chromatin organization, regulation of

transcription, regulation of gene expression, response to stimulus, muscle contraction etc. Most of these
biological processes are related to cancer development.
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Figure 6.12: LLR network with € = 0.1 (BiINGO analysis)

The network in figure 5.16 was subjected to the action of the LLR algorithm. The cutoff used was 0.9 and
€ = 0.1. The number of iterations performed was 2,000. The arrangement of nodes and bonds in this
network was created using the prefuse force directed layout in Cytoscape 3.3.0. BiNGO [80] analysis in
Cytoscape [11] was used to identify the main biological pathways and biological processes that proteins in
each of the clusters are involved in. These analyses revealed that the top pathways in which hsa-miR-218-5p
target proteins were involved include: cell adhesion, signaling pathway, cell surgace receptor linked signaling
pathway, G-protein coupled receptor protein signaling pathway, WNT-receptor signaling pathway, etc. Most
of these pathways are cancer related pathways. The top enriched biological process terms associated with the
proteins were regulation of transcription, regulation of gene expression, regulation of nucleobase, nucleoside
and nucleotide, and nucleic acid metabolism, chromatin organization, regulation of transcription, requlation
of gene expression, response to stimulus, nervous system development, etc. Most of these biological processes

are related to cancer development.
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Figure 6.13: DWLLR network with € = 0.1 (BiNGO analysis)

The network in figure 5.16 was subjected to the action of the DWLLR algorithm. The cutoff used was 0.9 and
€ = 0.1. The arrangement of nodes and bonds in this network was created using the prefuse force directed
layout in Cytoscape 3.3.0. BiNGO [80] analysis in Cytoscape [11] was used to identify the main biological
pathways and biological processes that proteins in each of the clusters are involved in. These analyses revealed
that the top pathways in which hsa-miR-218-5p target proteins were involved include: cell adhesion, WN'T-
receptor signaling pathway, signaling pathways etc. Most of these pathways are cancer related pathways. The
top enriched biological process terms associated with the genes were: nucleoside phosphate metabolic processes,
nucleobase, nucleoside and nucleotide metabolic processes, chromosome organization, chromatin organization,
response to stimulus, muscle organ development, etc. Most of these biological processes are related to cancer

development.
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Although different algorithms do not produce identical networks, they all show similar
networks of biologically related clustered proteins. Most biological processes and pathways
that clusters of proteins are involved in are repeatedly seen in all algorithms analyzed
(RWR, LLR, DWLLR). These analyses revealed that the top pathways in which hsa-miR-
218-5p target proteins were involved included cell adhesion and cancer related pathways.
The top enriched biological process terms associated with the genes were transcription

regulation and nucleic acid metabolism, which are related to cancer development.

6.6.2 The protein-protein interaction environment of hsa-miR-218-5p

The network in figure 5.16 was subjected to the action of the DWLLR algorithm with e = 0.
Some of the most upregulated and downregulated proteins (explained in section 5.3) by
hsa-miR-218-5p were not picked up by the algorithm in the newly reconstructed network.
I reinserted those proteins again in the network presented in figure 6.14. The 24 most
downregulated proteins are shown in red and the 38 most upregulated proteins are shown
in green. Hsa-miR-218-5p is shown in yellow.

Using BiNGO [80] analysis in Cytoscape [11], the main molecular functions and biolog-
ical processes of the proteins in each cluster are identified. If beside a cluster the biological
process indicated is “cell-cell adhesion 40%”, it means, in that particular cluster 40% of the

proteins are involved in cell-cell adhesion processes.
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Figure 6.14: PPI environment of hsa-miR-218-5p

Gene regulation by hsa-miRNA-218-5p results in up or downregulation of proteins in protein interaction
networks. The reconstructed network of PPIs of proteins controlled by hsa-miR-218-5p using the double
weighted lattice laplacian with resistance (DWLLR) algorithm is shown. The network in figure 5.16 was
subjected to the action of the DWLLR algorithm with € = 0. The 24 most downregulated (red) proteins and
38 most upregulated (green) proteins by hsa-miR-218-5p were reinserted again in the network. The network
has 1,128 nodes and 81,524 bonds. The arrangement of nodes and bonds in this network was created using
the prefuse force directed layout in Cytoscape 3.3.0. Hsa-miR-218-5p is shown in yellow. The network
obtained has a clustered structure. Using BINGO [80] analysis in Cytoscape [11], the main biological
functions of the proteins in each cluster were identified. These analyses revealed that the top pathways in
which hsa-miR-218-5p target proteins were involved included cell adhesion and cancer related pathways. The
top enriched biological process terms associated with the proteins were transcription regulation and nucleic

acid metabolism, which are related to cancer development.
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Figure 6.15: PPI environment of hsa-miR-218-5p (clusters removed)

The clusters of proteins in the network in figure 6.14 are removed for better clarity. I am replacing the
clusters of proteins with the corresponding pathways and biological processes that most proteins in the
cluster are involved in. The percentage beside each biological process or pathway shows the percentage of

proteins in the cluster that are involved in that particular function.
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For simplicity, I am replacing the clusters of proteins with the corresponding pathways
and biological processes that most proteins in the cluster are involved in. The percentages
given beside each cluster in figures 6.14 and 6.15 give the portion of the proteins in the
cluster that have the molecular function or are involved in the biological process indicated.

As seen from the networks in figures 6.14 and 6.15, some of the biological pathways
and processes that clusters of proteins in the PPIs of hsa-miR-218-5p are involved in in-
clude cell adhesion, signaling pathways, G-protein coupled receptor signaling pathway;,
WNT-receptor signaling pathway, chromosome organization, response to stress, response
to stimulus, muscle organ development, immune system processes, alcohol metabolic pro-
cesses, membrane lipid metabolic processes, etc.

Finally, we performed the BiINGO analysis in Cytoscape on the entire network in figure
6.14, instead of on individual clusters. The top biological processes (pathways and larger
processes made up of the activities of multiple gene products), molecular functions (the
elemental activities of a gene product at the molecular level) and cellular components (where
gene products are active) of proteins in the PPIs of hsa-miR-218-5p are given in tables 6.2,
6.3 and 6.4.

The results in tables 6.2, 6.3 and 6.4 indicate that signaling pathway was one of the top
pathways identified as a main biological process of proteins in the PPIs of hsa-miR-218-5p.
Protein binding, DNA binding and nucleotide binding were amongst the top molecular
functions of proteins in the PPIs of hsa-miR-218-5p. About 36.8% of proteins in PPIs of
hsa-miR-218-5p perform their biological functions in the organelles of the cell and 38.2% in

the nucleus.
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Table 6.2: Biological processes of proteins in hsa-miR-218-5p PPIs environment

Biological process Percentage of genes in the network
cellular process 82.5%
biological regulation 66.7%
requlation of cellular process 60.9%
multicellular organismal process 47.9%
response to stimulus 47.3%
signaling 45.3%
regulation of metabolic process 40.9%
signaling pathway 38.7%
developmental process 35.9%

Table 6.3: Molecular functions of proteins in hsa-miR-218-5p PPIs environment

Molecular Function Percentage of genes in the network
binding 90.9%
protein binding 70.8%
signal transducer activity 27.4%
molecular transducer activity 27.4%
DNA binding 21.6%
receptor activity 19.1%
nucleotide binding 17.9%

Table 6.4: Cellular components of proteins in hsa-miR-218-5p PPIs environment

Cellular Components Percentage of genes in the network
intracellular part 70.6%
membrane-bounded organelle 55.1%
intracellular membrane-bounded organelle 54.8%
organelle part 38.9%
nucleus 38.2%
cytoplasmic part 36.8%
plasma membrane 35.4%

In conclusion, these analyses revealed that the top processes that hsa-miR-218-5p target
proteins were involved included immune system processes, muscle organ development,

response to stress and cancer development.
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6.6.3 Identifying hubs

The networks described in the previous section were analyzed with the goal of identifying
hubs (proteins of high degrees) in each cluster. These hubs are shown in figures 6.16, 6.17
and 6.18.

The network in figure 5.16 was subjected to the action of the RWR, LLR and DWLLR al-
gorithms. The cutoff used was 0.9. The number of iterations was 2,000. The new networks
were created using Cytoscape [11] and they all show clustered structures. Hubs (nodes of

high degrees) were identified for each cluster. The results are summarized in table 6.5.

Table 6.5: Hubs in PPIs of hsa-miR-218-5p (figures 6.16, 6.17 and 6.18)

Hubs Degrees
NPY 308
GALR2 267
RGS4 267
CXCL1 267
PRGER3 252
GRM3 252
H2AF] 78
HIST2H2B2 78
HIST1H2BK 78
HIST1IH?BDE 76
IL6 27

Some of the identified hubs in the RWR network include: HISTIH2BD (degree 76), HISTIH2BK
(degree 75) and IL6 (degree 27). In the LLR network, some of the hubs identified are:
H2AF] (degree 78), HIST2H2BD (degree 78), HISTIH2BK (degree 78) and ALDOC (degree
46). Identified hubs in the DWLLR network include: NPY (degree 308), GALR2 (degree
267), RGS4 (degree 267), CXCL1 (degree 267), PRGER3 (degree 252) and GRMS3 (degree
252). Out of the above genes, the only one which is already a target of hsa-miR-218-5p in
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miRTarBase [39] is HISTIH2BK. The other genes might be potential targets of hsa-miR-218-

5p.
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Figure 6.16: RWR network (Hubs)

The network in figure 5.16 was subjected to the action of the random walk with resistance algorithm. The
cutoff used was 0.9. The arrangement of nodes and bonds in this network was created using the prefuse force
directed layout in Cytoscape 3.3.0. Hubs (nodes of high degrees) are identified for each cluster. Some of the
hubs are HISTIH2BD (degree76), HISTIH2BK (degree 75), IL6 (degree 27), etc.
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Figure 6.17: LLR network with € = 0.1 (Hubs)

The network in figure 5.16 was subjected to the action of the LLR algorithm. The cutoff used was 0.9 and
€ = 0.1. The number of iterations performed was 2,000. The arrangement of nodes and bonds in this network
was created using the prefuse force directed layout in Cytoscape 3.3.0. Hubs (nodes of high degrees) are
identified for each cluster. Some of the hubs are H2AF] (degree 78), HIST2H2BD (degree 78), HISTIH2BK
(degree 78), ALDOC (degree 46), etc.
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Figure 6.18: DWLLR network with € = 0.1 (Hubs)

The network in figure 5.16 was subjected to the action of the DWLLR algorithm. The cutoff used was 0.9
and € = 0.1. The number of iterations performed was 2,000. The arrangement of nodes and bonds in this
network was created using the prefuse force directed layout in Cytoscape 3.3.0. Hubs (nodes of high degrees)
are identified for each cluster. Some of the hubs are: NPY (degree 308), GALR2 (degree 267), RGS4 (degree
267), CXCL1 (degree 267), PRGER3 (degree 252), GRM3 (degree 252), etc.
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Network analysis in Cytoscape [11] was used to identify important proteins (hubs) in
the PPI environment of hsa-miR-218-5p network in figure 6.14 and the results are shown

in table 6.6.

Table 6.6: Hubs in PPIs of hsa-miR-218-5p (figure 6.14)

Hubs Degrees
RGS4 309
SFRP1 309
MMP1 309
GREM1 309
GNG11 309
DYSF 309
LPAR1 309
CXCL1 309
GALR?2 309
NPY 309
GNAZ 309
GNG1 309
PLD2 308

CTNNBL1 308

The above genes might be potential targets of hsa-miR-218-5p. None of them is a veri-

fied or predicted target of hsa-miR-218-5p in the miRTarBase [39] database.

6.6.4 Hsa-miR-218-5p target genes implicated in diseases

In this case study, the upregulated and downregulated proteins by hsa-miR-218-5p were
taken as source proteins for a search in the STRING [38] database to generate a network
which was then subjected to the action of the algorithms. In general the algorithms above
reveal a clustered structure in the networks. The clusters correspond to complexes of func-

tionally related proteins and in the case of the RWR reveals a reaction pathway involving
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protein clusters.

These approaches seek to find ways of solving complex pathway membership problems
in protein interaction databases. The clusters obtained provide more biological insight as
opposed to a process of local pairwise comparison between interacting proteins. They may
also predict new members in functional pathways or clusters.

Underlying these algorithms are simulated biased random walks on the network for
determining membership of proteins in given clusters. This places the algorithms in a class
of random walk algorithms examined in the literature.

The output consists in many cases of identifiable clusters of functionally related proteins
or pathways. Several of the genes seen in the final network (figure 6.14) were identified
as targets of hsa-miR-218-5p in several studies in the literature (discussed below). These

proteins were implicated in different states of several diseases.

Hsa-miR-218-5p and metastatic bone disease of breast cancer

In 2016, Yu Xin et al [41], found that levels of hsa-miR-218-5p are positively correlated
with the activation of WNT signaling pathway in breast cancer cells. WNT signaling is
implicated in bone formation and activated in breast cancer cells promoting primary and
metastatic tumor growth [41]. The WNT cluster is seen in the networks in figures 6.1 and
6.2.

Hsa-miR-218-5p is highly expressed in bone metastases from breast cancer patients.
Inhibition of this miRNA impaired the growth of bone metastases from breast cancer cells

in the bone microenvironment in vivo [41]. Hsa-miR-218-5p targets the WNT inhibitors

161



Sclerostin (SOST) and sFRP-2, which highly enhance WNT signaling. Contrary, delivery of
antimiR-218-5p decreases WNT activity and the expression of metastasis-related proteins,
including bone sialoprotein (BSP/IBSP), osteopontin (OPN/SPP1) and CXCR-4 [41].

Most of the proteins discussed in the above study, involved in hsa-miR-218-5p action
mechanisms in metastatic bone disease of breast cancer cell like WNT, FRP-2, SSP1, IBSP,
CXCR-4 are also seen in our final networks generated by solving the DWLLR on the PPI
environment of hsa-miR-218-5p (figure 6.14).

A subset of the final network containing the above mentioned proteins is shown in
tigure 6.19. The full network with the marked proteins is shown in figure 6.20. The proteins
shown in green are the ones involved in metastatic bone disease of breast cancer cells.

The WNT cluster of genes consists of structurally related genes which encode secreted
signaling proteins [79]. These proteins have been implicated in oncogenesis and in several
developmental processes, including regulation of cell fate and patterning during embryo-
genesis. They are very conserved in evolution [79].

The CXCR-4 gene encodes a CXC chemokine receptor specific for stromal cell-derived
factor-1. The protein has 7 transmembrane regions and is located on the cell surface. It acts
with the CD4 protein to support HIV entry into cells and is also highly expressed in breast
cancer cells [79].

SPP1 codes for a protein which is involved in the attachment of osteoclasts to the min-
eralized bone matrix. The encoded protein is secreted and binds hydroxyapatite with high
affinity. This protein is also a cytokine that upregulates expression of interferon-gamma

and interleukin-12 [79].
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IBSP encodes a major structural protein of the bone matrix. This protein binds to cal-
cium and hydroxyapatite via its acidic amino acid clusters, and mediates cell attachment
[79].
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Figure 6.19: Hsa-miR-218-5p implications in metastatic bone disease of breast cancer cells

The network is a subset of the network in figure 6.14. The proteins involved in hsa-miR-218-5p action
mechanisms in metastatic bone disease of breast cancer are shown in green. These proteins are WNT, SSP1,
IBSP, CXCR-4.
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Figure 6.20: Hsa-miR-218-5p implications in metastatic bone disease of breast cancer cells (full
network)

The network in figure 6.14 with proteins in figure 6.19 marked. The proteins involved in hsa-miR-218-5p
action mechanisms in metastatic bone disease of breast cancer are shown in green. These proteins are WNT,
SSP1, IBSP, CXCR-4. The arrangement of nodes and bonds in this network was created using the prefuse
force directed layout in Cytoscape 3.3.0.
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Hsa-miR-218-5p and prostate cancer

In 2015, Sanchez et al showed that a group of 19 miRNAs were overexpressed in prostate
cancer [42]. Hsa-miR-218-5p was one of them. The different prostate cancer cell popula-
tions (bulk and cancer stem cells, CSCs) release exosomes that contain miRNAs that could
modify the local or premetastatic niche [42]. The analysis of the differential expression
of miRNAs in exosomes (cell-derived vesicles) allows evaluating the differential biological
effect of both populations in the niche, and the identification of potential biomarkers and
therapeutic targets [42]. 1839 miRNAs were identified in the exosomes. Of these, 990 were
known miRNAs, from which only 19 were significantly differentially expressed: 6 were
overexpressed in CSCs and 13 in bulk cells exosomes [42]. One of the 13 main miRNAs
that is overexposed in bulk cells is hsa-miR-218-5p. One of the effects of the overexpression
of these miRNAs was increased levels of metalloproteinases MMP2, MMP9 and MMP13.
Metalloproteinases are zinc-dependent enzymes capable of cleaving components of the ex-
tracellular matrix and molecules involved in signal transduction [79].

In prostate cancer, secreted frizzled-related protein 1 (SFRP1), TGFB1 and stromal cell-
derived factor 1 (SDF-1/CXCL12) are all candidate molecules for inducing tumourigenicity
[43]. Members of SFRP family of proteins act as soluble modulators of WNT signaling;
silencing of SFRP genes leads to deregulated activation of the WNT-pathway which is
associated with cancer [79]. SDF-1 is a cell adhesion molecule and a member of the im-
munoglobulin superfamily. The receptor for SDF-1 (SDFR-1, or neuroplastin) is expressed
by prostate stem cells 48, indicating that in cancer SDF-1 signaling pathways are likely to

be important. SDF-1 - CXCR4 signaling can induce cancer-like behaviour, such as activa-
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tion of anti-apoptotic pathways 53, motility, homing and adhesion during embryogenesis,
organogenesis and metastasis [43].

The above are two separate studies, one describing the different miRNAs involved in
prostate cancer and the second different proteins which produce candidate molecules for
inducing tumourigenicity in prostate cancer. Some of these genes like SFRP1, CXCR4,
CXCL12, MMP2, MMP9 were also seen in our final PPI environment of hsa-miR-218-5p
network (figure 6.14) generated by applying the DWLLR algorithm on the network in figure
5.16. The subset of this network containing the above proteins is extracted from the full
network and is given in figure 6.21. The proteins involved in prostate cancer are shown in

green. The full network is shown in figure 6.22.

Figure 6.21: Hsa-miR-218-5p implications in prostate cancer

The network is a subset of the network in figure 6.14. Hsa-miR-218-5p target proteins implicated in
metastatic prostate cancer are shown in green. These proteins are SFRP1, CXCR4, CXCL12, MMP2,
MMP9.
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Figure 6.22: Hsa-miR-218-5p implications in prostate cancer (full network)

The network in figure 6.14 with proteins in figure 6.21 marked. The target proteins of hsa-miR-218-5p
implicated in prostate cancer are shown in green. These proteins are SFRP1, CXCR4, CXCL12, MMP2,
MMP9. The arrangement of nodes and bonds in this network was created using the prefuse force directed

layout in Cytoscape 3.3.0.
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Hsa-miR218-5p and gallbladder cancer

Gallbladder cancer is the fifth most frequent gastrointestinal malignancy [41]. Colon
cancer-associated transcript-1 (CCAT1) is a long non-coding RNA [41]. Its expression is
higher in gallblader cancer tissues compared with adjacent normal tissues. CCAT1 over-
expression increased the expression of Bmil, a target gene of hsa-miR-218-5p [41]. The
knockdown (experimental technique by which the expression of one or more of an organ-
ism’s genes are reduced) of CCAT1 inhibited the proliferation of gallbladder cancer cells,
partially through regulation of Bmil and involvement of hsa-miR-218-5p [41].

The Bmil expression interacts with several signaling containing WNT, AKT, NOTCH,
Hedgehog and receptor tyrosine kinase (RTK) pathway [44]. In Ewing sarcoma family of
tumors (ESFT), the knockdown of the Bmil gene would greatly influence the Notch and
WNT signaling pathway which are important for ESFT formation and development [44].

Protein kinase B (PKB), also known as AKT, is a serine/threonine-specific protein ki-
nase. The NOTCH signaling pathway is a highly conserved cell signaling system present in
most multicellular organisms. Mammals possess four different NOTCH receptors, referred
to as NOTCH1, NOTCH2, NOTCHS3, and NOTCH4 [45].

Even though Bmil, the gene overexpressed by hsa-miR-218-5p in gallbladder cancer
is not found in our final graphs, the genes involved in the signaling pathways controlled
by Bmil like AKT, NOTCH and WNT genes are seen on it. The subset of the network
containing these genes is given in figure 6.23. The proteins in green are the ones involved

in the gallbladder cancer. The full network is shown in figure 6.24.
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Figure 6.23: Hsa-miR-218-5p implications in gallbladder cancer

The graph is a subset of the network in figure 6.14. The proteins involved in the signalling pathways
controlled by Bmil in gallbladder cancer are AKT, NOTCH and WNT genes, shown in green.
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Figure 6.24: Hsa-miR-218-5p implications in gallbladder cancer (full network)

The network in figure 6.14 with proteins in figure 6.23 marked. The target proteins of hsa-miR-218-5p

implicated in gallbladder cancer are shown in green. These proteins are AKT, NOTCH and WNT. The

arrangement of nodes and bonds in this network was created using the prefuse force directed layout in
Cytoscape 3.3.0.
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Hsa-miR218-5p and epilepsy

There is increasing evidence that expression of miRNAs is dysregulated in neuronal
disorders, including epilepsy, a chronic neurological disorder characterized by sponta-
neous recurrent seizures [49]. A miRNA screen was performed in hippocampal focal and
non-focal brain tissue samples obtained from the temporal neocortex of Mesial Temporal
Lobe Epilepsy patients. Recent reports from screening studies in animal epilepsy mod-
els and from human specimens of MTLE (mesial temporal lobe epilepsy) patients show
that miRNA expression is also altered in epilepsy [49]. In 2015, Haenisch et al suggested
that differential miRNA expression in neurons could contribute to an altered function of
the transcription factor SOX11 and other proteins in the setting of epilepsy, resulting not
only in impaired neural differentiation, but also in imbalanced neuronal excitability and
accelerated drug export.

After screening genome-wide miRNA expression in hippocampal focal and non-focal
brain tissue from the temporal neocortex of MTLE patients who underwent temporal lobec-
tomy, the interaction between dysregulated miRNAs and predicted target genes potentially
involved in hippocampal cellular remodeling during epileptogenesis was investigated [49].

Hsa-miR-218-5p is amongst the top 40 expressed miRNAs in healthy hippocampus. The
intention underlying this filtering approach was to use the most highly expressed miRNAs
to uncover genes that are more likely to be critical for normal brain function and to result
in crucial functional impairments as a result of altered miRNA expression. The targets of
hsa-miR-218-5p are ADCY1, BSN, MECP2 and SOX11. Only one of these proteins (shown

in figure 6.25), the ADCY]1, is observed in our final network in figure 6.14 generated with
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the DWLLR algorithm. The full network is shown in figure 6.26.

Figure 6.25: Hsa-miR-218-5p implications in epilepsy

The graph is a subset of the network in figure 6.14. One of the target proteins of hsa-miR-218-5p, involved in
epilepsy and also seen in our final graph is ADCY1 (shown in green).
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Figure 6.26: Hsa-miR-218-5p implications in epilepsy (full network)

The network in figure 6.14 with proteins in figure 6.25 marked. The target protein of hsa-miR-218-5p
implicated in epilepsy (ADCY1) is shown in green. The arrangement of nodes and bonds in this network was
created using the prefuse force directed layout in Cytoscape 3.3.0.
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Chapter 7

Discussion and Future Work

7.1 Research Outcomes

7.1.1 Maean field analysis of algorithms for scale-free networks in molec-
ular biology

In this research a number of algorithms used for generating networks in molecular biology
were examined. Mean field theory for the algorithms was in some cases reviewed, and
in other cases newly presented, and also refined. The algorithms include the Barabasi-
Albert [1], Duplication-Divergence [27], Solé [26] and iSite algorithms [15, 16], and these
were in some cases modified by the introduction of more general elementary moves. The
mean field theory was newly presented in the cases of modified Barabasi-Albert, modified
Duplication-Divergence and iSite algorithms. The above work sets a pattern for analyzing

algorithms which generate scale-free networks in molecular biology. The majority of algo-

174



rithms described in this research model evolutionary processes which are thought to be the
underlying mechanisms by which protein-protein interaction networks evolve. The same
framework can be used to analyze other biological algorithms that model these evolution-

ary processes.

7.1.2 Random walk and laplacian analysis of microRNA-protein interac-

tion networks

Analysis of biological networks (hsa-miR-218-5p protein-protein interaction environment)
was considered and two different algorithms (random walk and lattice laplacian) were used
with the goal of finding clusters of biologically related proteins and important genes (hubs)
in the network.

Although different algorithms do not produce identical networks, they all show similar
networks of biologically related clustered proteins. They reveal a cluster structure in the
networks. Most biological processes and pathways that identified clusters of genes are
involved in are repeatedly seen in the networks generated by all algorithms analyzed (RWR,
LLR, WLLR, DWLLR).

Both the random walk and lattice laplacian algorithms are diffusive processes on a
lattice. The RWR algorithm is a method aiming to improve the quality of the protein-protein
interaction networks purely based on the topology of the network, with no additional
biological information involved.

In the lattice laplacian with resistance algorithms, in addition to the basic idea of com-
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paring the topological similarities of the nodes in the network, biological information ob-
tained from the microarray data is involved as well. By including the weights on the bonds,
according to the biological information provided by the microarray data, the aim is to im-
prove the algorithms and provide networks which are biologically more meaningful.

The protein-protein interaction networks are usually sparse. The reconstruction of the
networks relies on the information of the original networks. Since the networks of PPIs
contain many false positive and false negatives, this will affect the completeness and the
accuracy of the networks reconstructed by the algorithms.

The cutoff value we are using in the original data provided as microarray data by the
Peng’s lab is a fold change of 2. This means we are leaving out a large number of genes
which might have important biological relevance and be possible targets of hsa-miR-218-5p.
The size of the networks obtained using this cutoff value is around 2,000 edges. Changing
the cutoff value of the considered proteins beyond 2 will significantly increase the sizes of
the networks obtained.

These analyses revealed that the top pathways in which hsa-miR-218-5p target genes
were involved included cell adhesion and cancer related pathways. The top enriched bio-
logical process terms associated with the genes were transcription regulation and nucleic
acid metabolism, which are related to cancer development.

Some of the genes which seem important in the network (hubs of high degrees) include
HIST1H2BD, HIST1H2BK, IL6, H2AF], ALDOC, NPY, GALR2, RGS54, CXCL1, PRGER3 and
GRM3. Out of the above genes, the only one which is already a target of hsa-miR-218-5p

in miRtaRBase [39] is HISTIH2BK. The other genes might be potential targets of hsa-miR-
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218-5p.

7.2 Future Work

7.2.1 Mean field analysis of algorithms for scale-free networks in molec-
ular biology

The results in this research raise some questions about the sampling of scale-free networks

by random iterative growth algorithms:

* In some cases, see for example reference [29], the parameters of the algorithms were
set to grow networks with properties similar to that of real protein interaction net-
works. The values of the parameters are then used to estimate the rate of subfunction-
alization (or mutation) in the genome. The results are dependent on the algorithm,
and so further refinement of algorithms may be needed before useful estimates can

be made.

¢ The mean field approaches are useful in some models (for example the Barabasi-
Albert algorithm, and the iSite algorithm), but are poorer approximations in other
models (the variant Barabasi-Albert algorithm, the Duplication-Divergence algorithm
and its modification, and the Solé algorithm). Can the mean field approach be im-

proved to give a better approximation to these algorithms?

* Investigation of some numerical properties of the networks (for example the con-
nectivity) suggests that the algorithms may be self-averaging. That is, networks are
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generated with properties which converge to the statistical averages of these prop-
erties over a sample of networks generated by the algorithm. This is, for example,
illustrated in figure 4.16 for the connectivity of Barabasi-Albert networks. As the net-
work is grown, its connectivity appears to approach the average connectivity over a

large sample of networks.

¢ In this research some algorithms were modified in ways not done before in the litera-
ture (this includes the modified Barabasi-Albert, the Duplication-Divergence, the Solé
and iSite models). Exploring the properties of these modified algorithms, including
their usefulness as models of networks in molecular biology, will be the subject of

future investigation.

Lastly, these algorithms grow networks using a probabilistic set of rules to implement an
elementary move. Each realized network N, of order n is obtained with some probabil-
ity p(Ny), so that the function p(Nj) is a probability distribution over networks of order
n. Determining p(N,,) for any of the algorithms presented here seems difficult, and gen-
eral properties of p(N,) remain unknown (other than averages of network properties over

p(N,) are scale-free if the algorithm grows scale-free networks).
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7.2.2 Random walk and laplacian analysis of microRNA-protein interac-
tion networks

Future work regarding MGINSs includes being able to predict functions of miRNAs using
recursive algorithms. Both the random walk and solving the lattice laplacian algorithms are
diffusive processes on a lattice. The random walk algorithm diffuses and looks at proba-
bility of ending somewhere, which is basically the same idea involved in solving the lattice

laplacian on a network. Are there different ways of doing it?

Some of the genes which seem important in the networks generated using the above
algorithms include HIST1H2BD, HIST1H2BK, IL6, H2AF]J, ALDOC, NPY, GALR2, RGS54,
CXCL1, PRGER3, GRM3. Out of the above genes, the only one which is already a target
of hsa-miR-218-5p in miRtaRBase [39] is HISTIH2BK. Are the other genes indeed targets of

hsa-miR-218-5p?
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CCDC45
CDAN1
LOC15834¢
SLC39A10
SLC47A1
IL27RA
MYO5C
INO8OC
GLT8D1
PKP2

None
CYTSB
LOC440731
C13orf23
LOC10012¢
SOX8
AFTPH
IRF2BP2
FGF2
NPR2
PKD2
CISD1
SPIN1
KNTC1
ELFN2
CD3EAP
CXorf26
ZNF7
LOC727761
RDH10
LOC79112C
IMPA2
PLXNB1
CAMK2N1
PARPS
FAM177A1
E2F5
LOC72902C
GNG7
CDC23
C15orf24
TOP2B
SETMAR
FOXF2
GARS
PAPOLA
None
CYB5A
LAMP3
C6orf145
BNC1
LOC33997(C
ARID2
CHPF2
BAT2L
NCOA3
GMPS
FBX022
CTSL2
ZNF791
IFT81
ACPL2
RPS27L
ATP9B
GPT2

NOG
C19orf50
Cborf23
JAM3
LOC730012
LOC85337¢
ZHX1
NOTCH3
RFX5

SON
PAFAH1B1
TRERF1
CSNK2A2
ECT2
DIAPH1
FGFR3
ZNF84
SARM1




SLC6AS
MCART1
COPB2
PIK3CB
HLA-C
WDR21A
CAP2
TMEM151A
C9orfd5
PCDHB3
MIR630
SNAI2
TPM1

FUK

FHL2
COL5A2
NOVA1
ATAD1
CHST10
DYX1C1
HCG18
OLFML2A
SMAD3
SLT™M
LOC10013¢
None
LOCB5418¢
FOXM1
RPP25
LOC642987
FAT1
SPEF2
COLEC12
ACP2

CKB

HPS1
LARGE
PROS1
ANKRD10
ENAH
LOC644464
TMED7
UQCRC1
DUT
LOC73187¢
LOC730994
LCLAT1
MAT2A
PPP2R2C
TSSC1
ARHGEF5
PDXK
PPM1H
CENPK
C14orfd5
WRB
DCAF6
MRPS11
SHC3
PPP3CA
LOC65080:
PTGFRN
LOC64294¢
LOC44092¢
ALDH4A1
BCL10
LDHA
CASC4
LOC388654
MAP3K1
ATP8B1
CAMK1
GMPR2
HIVEP1
NUMA1
TRIM7
SECISBP2L
KIAA1285
FERMT2
ERBB3
DHX15
ZNF621
CHRNAS
YTHDC1
B2M
AP4E1
LOC10012¢
PIK3R4
CAPSL
CENPJ
STAU1
LOC65036¢
CCRK
CSPG4




FAM176A
LRRC16A
ADD3
FAM36A
LOC84597¢
RLTPR
GPX4
CATSPER2
HNRNPH2
RPL39L
DUSPSP
NSA2
ARV1
TACC2

P8
OSBPLS
ALDH1L1
LOC72946€
FKBP3
CAMKK2
ATP1B1
LOC64431¢
DLC1

TPT1

None
TTC33
AP2M1
SSX2IP
INHBE
GLIS3
KCTD6
C2orf25
TNNI3
LOC401321
CMBL
LOC84350¢
C210rf33
ILIRAP
CPEB1
LOC85322¢
RMND1
LOC389141
MOBKL1B
LARP4B
LOC649821
FzZD7
MED7
TMEM126A
LOCB4474%
BEX1
FBXW2
UBE2G1
CES2
RGS7
PLD6
BCCIP
USPIX
CACNA2D2
RICS
PFDN5
UBA3
TGIF1
LOC10012¢
ADARB1
STK33
KIAA0368
ARRDC4
OGFRL1
ATF4
WDR23
POP1
PDGFB

cs

CISD1
FBX03
CDKN2C
MRPL42
IGF1R
LOC85365¢
IT™M2B
RPL32
TPM1
SH2D4A
CNN2
LACTB2
SLC25A36
LOC847302
DSTYK
STX3
OCIAD1
MAN2A1
LOC64563¢
TMEM194A
WDR70




RALGAPA1
HECTD2
ZSWIM6
TMEM151A
SDF4
JMJD1C
SNRNP200
CYC1
LOC100132Z
SIN3A
LOC641367
ISYNA1
MRPS11
JMJD8
CLTC
ACSL3
HOMER1
LOC28645¢
CRELD2
RPS28
C200rf199
RNF8
BCL7C
KCTD3
NNT
LOC100134
GLI2

None
CAMSAP1
GMCL1
GOLIM4
C3orf14
CREBS
TSC22D3
RPS7
SUSD1
SNURF
SHCBP1
PPCS
C6orfd48
CITED4
B3GNT5
MMADHC
MESDC1
C70rf30
CABLES1
MACF1
UHRF1BP1
ADD3
ETFA
CSRP2
LOC10013C
KIAAQ907
EFTUD1
NGLY1
LOC10013C
HMGN1
RAI1
TMSB4X
NR2C1
LOC72869¢
LOC38922:
C3orf64
C6orf192
ARL8B
LOC100131
LOC100132
NGRN
TNK2

D3

RHOU
BHLHB2
GPR124
WARS

I1SL2
BAZ1B
ABHD14A
SPRED1
FGFR10P2
PRRT3
PROC
ZFHX3
LOC64728¢
ADAMTSE
HRAS
APIS
CUL4A
KLHL18
UBE2E1
HIGD1A
RASGRP1
PDCD6IP
NFIL3
CDCS5L




TOR1B
COL8A1
ADARB1
OPA1
PCCA
LOC85308(
MYLIP
None

XCL2
CRYZL1
EFNA1
LOC345041
NPPB
BMP4
NUDT21
DLK2

None
LOC84690C
PRKCE
DAB2
AMOT
C21orf81
ANKRD20A
LOC10012¢
DKK3
ASF1A
PWP1
SLCO3A1
TRIM44
EEF1B2
WDR76
SHROOM3
ANXA1
LOC10013¢
GAS7

ERI3
SDCBP
PTCD2
COMMD10
NUP88
LOC100131
TSEN2
FANCC
MGC72104
KITLG
POLR2H
LAG3
LOC65315¢
PCID2
None
RPS17
GOLGA3
KIAA1545
TRNT1
IFT57
PDE4A
MME
ZNF322A
SLC30A9
HSPA4
TFDP1
SH3BGRL
PUS1
HDACS5
LOCB4954¢
GIN1
LOC65218:
KCTD6
ABCA5
DNAJC2
ZNF346
EAF1
PRKX
POLR1E
SAT2
HOXA10
ABLIM1
ERGIC2
ST5
LOC33984¢
AK3L1
LOC65310¢
RTN4IP1
KIAAQ564
EPAS1
PCBP2
TET1

None

PCK2
LOC73024€
OXTR
JAG2
TMEM206
TSPANS




DPY30
SLMAP
PTGER2
CMTM4
PI3
PGRMC2
CPEB1
FICD
CAST
ZNF711
CDC45L
BAG2
ENOSF1
FBXO3
TYW1B
C9orf119
ADCY1
IL7R
C19orf22
WDR12
NCOA1
PARG
SLC25A17
SPOCK3
PYCARD
SERPINA1
KCNF1
HCLS1
TMEM17
TMEMS50A
OR6&N2
NHEDC2
QSOX2
PDLIM1
RAB7B
DBNDD1
TM4SF19
D4S234E
SLC1A4
LOC388344
RAF1
RPS7
MTMR10
STARDS
ST5
PALM2
LOC644464
AHSA2
APOM
MGC26718
SC4MOL
MCRS1
CSNK1G3
C140rf179
None
SLC25A24
LOC100134
NDUFB5
STOX1
HSPA2
TXNL4A
C14orf43
PRRS

PC
KIAA1683
NIPA2
IL28RA
LOC64223¢
TMED2
ZNF626
ATP6VOE1
IL7R
SH2D5
RNASE4
PCNT
PDESA
PMEPA1
None
PIGH
LOC72841€
CACNGS6
BBS5
GORASP1
CCDC132
ZNF226
LOC643387
TLLY
SLU7
C18orf62
DDX46
LEAP-2
BRWD1
MXD1
CHCHD?7




RRM2
1QCK
AKAP13
F12
DHX30
EHMT1
CMTM7
TMEM189
NT5DC3
METTL6
CARD11
WSB1
RUNDC3A
PDLIMS
RAB15
DUSP1
EMB
C21orf57
PLA2G4B
Cborf24
ACSBG1
BTG3
SULF1
DCLK2
BNIP1
KLHL5
LOC100131
SLC39A8
LOC850157
None
TMEM173
None
RING1
AMD1
LOC64401¢
SLAIN1
PLAU
RPAIN
EIF4E3
ADARB2
NCK1
RBM33
P2RX5
SNORA73A
SERPINB7
S1PR1
ASB9
CREBS
KTELC1
LGALS8
RNASE4
ALPK2
C1orf85
UBASH38
PDHB
OGG1
LOC40158¢
PLS3
SYS1
CENPV
PPP3R1
MTR
SPPL3
ITGAX
TGFB2
U1SNRNPE
SIAH1
LOC653852
PURA
UBE2G2
PLS1
TAP2
CCDC70
RPS6KA2
PCDHB5
C170orf58
KBTBD3
ST3GALS
LOC399804
ARAP3
ST6GALNA
RSBN1L
PARL
NLRP10
KHDRBS3
MYH3
YTHDC1
TAF1C
SDC2
BNIP3L
IFT20
MBLAC2
ZMYND19
PHAX




c
LAPTM4B
ICF45
DNAJB14
E2F7
APOL2
LOC40248:
YWHAQ
DHRS13
COPZ1
LOC44152¢
FAM72D
FREQ
MIR627
NUDCD2
BMPR2
LOC100131
GLRX
ANXABL1
CHST3
TEAD4
SEC14L2
SLC25A23
GLB1
PHLDA1
PDE4B
LOC149134
SLC35A2
SLC7A14
CMTM8
ZNF703
AP
RAB27A
TGM4
GIYD1
FNDC5
LOC10012¢
JAZF1
NPR3
BTF3
PTPN5
ZNF75D
PMPCA
MIR21
ZNF474
TSC22D3
RPA3
INSIG2
SLC25A12
C1orf133
MND1
PPM1M
CXCL16
DKFZp761F
LOC38847¢
C100rf137
LYPD1
KIAA1370
WDR6
NTSE
CTHRC1
ANTXR1
TIGA1
VSTM1
PDE4D
C21orfd5
ZNF295
ITGAV
TIPARP
BMP4
SLC7A1
RAB23
LANCL2
EFEMP2
LRRC16
CABLES2
COL12A1
MRPS25
HSD1788
NDUFAF3
Cborf41
SASH1
LGALS8
SNRNP27
SNRNP70
PDLIM7
EIF1
MN1
DYNLT1
ANTXR1
PDE4B
ZNF32
BSN
BEX4




DPH3
RPS26P10
GUSBL1
EFNB3
CDK2AP2
CHKA
ADAR
DYRK1A
coQ3
C21orf63
LYRM7
KIAA0182
BRPF1
CPLX1
CRLF1
CLIP3
DIABLO
SP110
KRCC1
LOC10012¢
AARS
RPP30
PRPF4
Céorf94
HBA1
DHCR24
CPZ
COPS8
COL18A1
FGF5
LOC644322
LOC100132
LOC100134
TLN2
TPSG1
HNRNPD
PTH2R
C1D
ALG1L
LOC100132
VPS28
THOC7
PSMD6
ZNF252
LOC73031€
CALR
LOC72857¢
CDC6
RAB12
LOC64683%
NUAK1
ZNF395
LOC652844
SLC25A20
VASH1
MRPL42P5
COL4A1
GSTK1
PKIG
NT5C2
PRKDC
CHMP5
GPER
C9orf47
RPRML
SPN
LOC72998¢
LINS1
IFT140
HYAL2
CTDSP2
CCNY
None

CDK2
COL2A1
LOC653264
LOC65257C
FAM8SA
CCDC74A
DALRD3
RYK

GRK®6
RNF40
LOC100132
CCDC51
LOC37476¢
LEREPO4
PPIC
ALDH7A1
DSCR6
RPN1
PWWP2B
GLYCTK
PSMD6




CcDC77
FAM120A0
MRPL18
AQP7P2
C10orf10
EPHAS6
FAM48B1
DSE
SERPINE1
SNHG8
C3orf31
CCDC109B
FLJ12949
PPM1F
APEH
LYPD1
LOC728937
SYVN1
LOC644577
TEX264
DPYSL2
VHL

VHL
PTPRG
ZNF362
SNTB2
PGCP
MLH1
ABHD5
CCPG1
PANX2
DYNLRB1
DSCR3
NXN
LOC854172
RAB5A
NHP2
C50rf13
NTAN1
LOC72812¢
BCCIP
ARL5B
RPESP
SFRS2
NPAS4
None
LOC10012¢
URM1
MPZL2
RYK
CEBPB
TBPL1
NCRNA002
ANKRD52
DOLPP1
PRAGMIN
RPS26P11
NHP2
KDM3B
KCNH2
RAB30
SDHC
GNAI2
RNF130
RPL14
FAR2
EPSTI1
ILVBL
LOC100131
None

MRI1
KCTD21
MELK
LOC642714
CYBRD1
GGPS1
EXOC2
BRI3BP
PPIC

GNL3
AIM1L
LOC643531
CACNGS6
MRPS18C
SEPT4
LOC10012¢
ANKRD36B
EED
LOC44089¢
AXUD1
GABBR2
ZNF226
BNIP1
LOC84680%




C3orf39
ALDH7A1
RNF182
LOC73107¢
RNASEL
FAM83D
ZIC3
LOC72919¢
LOC654042
FEM1A
KLF6
CRBN
E2F6
EIF1B
MCOLN3
LOC72882(
ZNF79
GNL3
TIMELESS
LOC653232
ATP6V1D
GPSM1
LOC853147
SSPN
MCFD2
NRBP1
UBQLN1
ZNF32
LOC72894¢
CRMP1
EAPP
LAMP2
BCL2L1
ROGDI
MIOS
LOC55288¢
NCKIPSD
FRG1
LOC100132Z
STAMBPL1
PCNA
PEMT
SPCS1
PICK1
BUB1

None
KCNQ3
ATP2A2
MRPL35
LOC648211
HLX

GLB1
CACNB3
XRCC4
RARS
TXNDC17
LOC37529¢
LOC64820%
VHL

OXSM
STARD13
LOC73045¢
SDCCAGS8
CYTH3
DPYD
NFKBIA
RAPGEF5
RPIA
CLDN1
SERPINB2
LOC72895¢
LOC100134
LOC65285C
MATR3
LOC72976¢
SAA1
ANXA8
None
SHISAS
SMARCC1
ZBTB20
VCAM1
CCNB1
CLIC4
LOCB4424¢
None
TNFRSF21
C1orf53
LOCT72772¢
TADA3
RASL10A
PGAMS
C12orf52
GOPC




TINP1
LOC64785€
LOC44082¢
ARG2
uacc
ZNHIT6
DCLK2
HAUS4
LOC10013C
LOC642504
PSMD14
DPH3
PIGY
GPD1L
SRF

IP6K1
CYP2S1
BUB3
PLEK2
FBXW11
SEC22C
ERP29
LOC650832
LOC65284¢
GATAD2A
PFKM
LOC39185¢
SLC4A7
ADAM19
C1dorf142
WDR23
C210rf33
WDR41
ALG8
ITPR2
WDR12
CENPM
PHF17
FAT1

NLE1
MTHFD2
PLXND1
C11orf75
COG8
LOC653874
NCOA6IP
LOC72964€
PNKD
PCOLCE2
GGT3
SNORA16A
LOC72828¢
NICN1
GGT5
SPHK2
SEH1L
LOC10012¢
PLRG1
MPST
ADAM23
HIST1H2B(
RNF44
EIF4H
ECHDC2
CFB

HES1
CPNES8
SLC25A19
ATP6VOC
FAMS0AGP
SERPINB2
FAM162A
PODXL
FTH1

DBN1
KLHDC8B
CCDC34
SPRYD4
NROB1
DAZAP2
NR2E3
CPNES8
LOC72963¢
SERPINA1
LOC10013C
AASDH
LOC100131
ATXN1
GABARAPL
PLCG1
SEPT12
ZNF654
CCNYL1
LOC440957




LOC72773¢
DLEU1
SGPL1
BNIP3
DIRAS3
MED16
RNF216
PCGF1
UBE2D4
LOC64558¢€
ANKRD30A
PCNXL2
LOC93622
PHLDB1
LOC10013¢
ZNF654
NOC3L
LOC84700¢
C19orf43
DNAJC17
DISP1
PPP1R3E
LOC85213¢
HRASLS3
DNAJC27
KRTAP1-5
NUDT11
CCNYL1
BAZ1A
ZNF45
OXSR1
ILF2
C9orf127
ANKRD20A
POLE3
STX7
PRCD
C18orf56
TCEA2
QDPR
FXYD2
LOC342531
ATP13A1
LOC85215(C
HEATR7B2
LAMA4
ARHGAP17
SAMD3
SS18L2
LILRBS
NDUFS5
RNF126
LOC400027
ROBO3
IFI16
SYT11
None

HK2
LAMA1
ZFANDS
LOC28441Z
CHN1
TYMS
LOC64312C
LOC64947(C
PTGIS
CDCA3
RABL5
EIF3B
PPRC1
SEC61A1
AFTPH
KIF15
TTTY3B
TMEM111
ZMAT2
PRMT2
SRPX2
VCAM1
MRPL52
SRBD1
FCGBP
CSGALNAC
CLCN6
DIO2
LOC44004:
MYLC2PL
CENPN
HIGD2A
CCT5
IL12RB1
PPAT
TATDN2
DDX42




CMTM7
GPHB5
SCARNA13
TMEM71
MSH5
SETD2
ULBP1
FLJ36070
LOC644907
WDR90
PRR16
QSER1
None
RRP7A
TMEM136
ATRIP
KRTAP2-1
TFRC
LOC65163%
CRTAP
ACAA1
MLF1

PAN3
CTHRC1
FXYD6
ZNF697
ANKRD45
RPUSD3
LOC731314
TMF1
C1orf150
SESTD1
SIX5
C3orf14
MMP3
IFNGR2
HYAL3
LOC65406¢
INPP5D
TRNP1
LOC64251€
RASSF1
TSGA14
LOC100132
LOC54146¢
LOXL3
LOC644412
CcCL20
LSM4
TMEM98
SNRK
SOX7
CDC26
LOC20117%
SMYD4
ALGS8
KHDC1L
LOC646672
HOXC8
SNORD56
PSRC1
NUDCD2
GSDMD
ZCCHC17
SLC13A5
ARF4
AKR1E2
PPP1CC
GJA1

GALT
ZC3HAV1
PLK4
ANXAB
TSKU
KLF16
MYOF
SAR1B
POLR1C
SFRS9
KRTAP4-12
NLGN4X
REXO4
ATP2A2
KLHL21
MGC39900
S100A10
MTERFD1
LOC64516€
SYTL3
ZNF383
FN1
FLJ10374
DCI
C12orf41




TP53INP2
PRKAB1
SERPINB7
BRIP1
RAB23
ZNF207
CCDCg08
ZFYVE20
TRNT1
RPS14
ZNRD1
SPRR2C
LOC10012¢
SLIT2
MIS12
None

CCNI
RRAGD
MYPN
SHISA2
KIAA1191
SUPT4H1
None
LOC730382
LOC10013C
ANO10
CCDC53
LOC72977¢
PABPC1L
TTC4
SLC39A11
LOC84210¢
AP3M2
TIMP1
None
LOC84563(
SULT1A3
LOC644517
HNRNPAB
1SG20
TNFAIP8
C14orf143
TNIK
GAS2L3
SAR1B
FLJ43752
PLCL2
SLC15A3
None

LDLR

None
C12orf76
POU3F2
SAPS1
STX2
AGGF1
C140rf176
NR1I2
PDPN
NHLRC2
TP53BP2
C3orf10
RASSF1
FANK1
SNAPC2
MARCKS
RDM1
ZNF792
JOSD1
LOC732391
KBTBDS8
TBC1D24
C200rf177
CCDC101
C8orf33
FAM71E2
SYTL2
EBP
C19orf48
SLC35F3
LOC22041€
None
ALDH1A2
C1lorf128
NHEDC1
LRSAM1
TBC1D10B
ELF2
TNFAIPSL1
ZCCHC9
HIGD1A
ATP6V0B
LOC84257(
ANGPT2




INSM2
CLCF1
SIK2
SLC41A3
PHF11
NKIRAS1
PPIE
ACAD11
MND1
LDB3
LOC72800z
NANP
FAM133B
COL4A6
DPH3
LOC72925¢
None
FAM86B1
STXBP2
LOC14797¢
RBM15
CARS
RABGAP1
ZCCHC3
LOC283514
FAM84B
None
NR2C2AP
LOCB4657¢
ADA
RADS51C
SEMASA
PECI

SCAP
ZYG11A
LOC64333¢€
TMOD1
LOC72825¢
FGFR10P
CTSH
ELMOD2
SUGT1
SKA2
AGTPBP1
FLJ14100
C11orf70
IP6K1
SLC39A14
RASA1
CRYZL1
LOC10013(C
SEC13
TRPC1
TNFRSF11!
TRIM&0
GPR177
KHDRBS3
PLAUR
NDC80
None
P2RX6
DCBLD2
LOC100134
ADAM21
STAC
TPST1
C2orf56
PARN
EVI2B
LOC441742
Céorf57
ZFP36
DCTN2
CCT4
MOXD1
FER

ITGB5
FAIM3
None
FBLN1
STK39
CRYM
EVI1
ETNK1
COASY
MAD2L2
LOC2573%€
MAPKAP1
SNAPC4
GLTP
TSPAN13
C9orfg5
PPFIBP1
LSM3




SLC25A22
SLC30A1
ERLIN2
ASPSCR1
FERMT1
ST3GAL3
KDELC2
KRT32
SENP5
C17orf68
PSG4
TGFBR3
LRRC3
ETV6
TBCA
LOC14995(C
ANGEL1
HBEGF
LOC67865¢
C19orf12
LOC10012¢
RPL3
RYBP
FAM1008B
MGC45800
ABL2
ANXA2P2
EPHB4
LOC65343¢
TFR2
C3orf75
C14orf145
GLDC
TNRC6B
GPRASP2
SLC39A4
NAV3
SAAL1
SLCY9A6
TUSC4
ARHGEF3
NETO2
C3orf75
MED6
PRDM8
None
C200rf20
Cborf32
LOC124512
NCAPG
TAOK2
XPC
ZDHHC6
None

None
SEPX1
OSBPL&
ZNF784
ZNF788
FBLN1
KIAAO114
LHX3
ADAMTS4
ASB11
C20orf7
LOC100134
RWDD1
NCSTN
LOC441662
Zic2

EHD1
FAM1958
DEPDC1B
UGCG
SKIV2L
CTNNA1
LTB

STS-1
UBE2Z
CTNNA1
LOC72857¢
BNC2
CLTB
STARD13
TCEA3
CDCP1
FAMS0A3
NME1
CRNKL1
LOC64258¢
RRP8
ASCC2
RASSF2
F2R




LOC10012¢
PRPSAP2
ALDH3A2
SCAMP3
LOC100132
MTHFD2
DHX37
CYB561D1
ARCN1
NEK2
UBL3
MED16
GINS2
ANKRD50
RAD51C
UMODL1
C9orf142
SDCCAG1(
IMPDH1
DCAKD
TIMM10
RPS21
HLA-B
RPS25
SUMF2
BLOC1S2
HSPBAP1
CCDC41
ULK1
IFNGR1
ARRB1
LOC651697
EPRS
SNRPD2
MSI2
TRMT11
HBQ1
SLC37A4
STMN3
C170rf85
LDOC1
GOSR2
SLC16A4
C17orfd5
ELL2
Céorf125
PTPN22
HEXB
SGSH
FAM113A
HINFP
COX7A2
AXL
MMP25
LOC644684
KLF2
SNAP47
TIMMBA
LRRC41
IRAK1
ANXAB
PPFIA1
DCTD
FAM167A
STRADA
CSDA

CiR
ZNF701
ATRIP
C19orf60
LIG3
ZNF841
ATPBAP1
PSME4
GPHN
NUP37
TBX15
LOC37439¢
MORGH1
SNORA67
SNORAB5
THOCS
NR2C2
LAMC2
LOC10013C
PLOD3
CMTMé
ccDe21
CCNE1
DNM1L
LOC100127
LOC201651
NASP
LOC339352




DHCR7
ANTXR2
LAMB3
LOC201651
WDR20
LOC10012¢
CAP1
MEIS3
LSS

IRX4
RNFT1
SIX6
AURKA
SNX27
GINS3
PPP1R14B
TMEM138
AKR1D1
NAT10
VDAC3
CDK5RAP1
KIF5B
LOC10013¢
POLR2A
None
ARHGAP18
LDHB
TTF2
Citorf17
AADACL1
ESPL1
SNRPF
SLC2A1
GPSM3
SCG5
ACYP2
MGST1
ALPK1
POLE4
RTN1
SRXN1
CASP1
PTTG1IP
PHYH
CCDC128
PACSIN1
MRPS12
EDC4
S100A4
UBD
TNFSF18
DDX50
PMS2
LRIG1
HSPE1
ELOVL4
F2RL1
FLNC
IMPDH2
SUPT3H
C1orf25
NDUFAF2
HSF2B8P
ZNF654
APLP1
HMGCR
UCHL5
SERTAD1
ANAPC4
TNIP1
ADAMTSL1
DNAH1
ERI1
LOC10012¢
SFRS10
LIX1L
SLC25A5
ZNF133
FOSB
TMEM91
DDT
M6PRBP1
MSRA
RBMS
SCARNAS
DACT3
PEPD
TMEM16A
GTPBP6
C3orf63
LPPR2
SHISA3
SERTAD2
CAMLG




CHAF1B
ANGPTL2
YIPF6
FAU
SNORA57
IERS
PGRMC1
AURKA
HMX2
CSTB
LOC33875¢
SLC26A6
ZP3

None
MED20
SESN1
ATPSE
NHP2L1
CDC37
FTL

HIC2
DPF2
ZNF627
MID1
IFFO1
SPRYD3
RHOJ
JAK1
CSF2
None
SEC31A
CHD4
NCOR2
CEL
ACSL5
C200rfo4
C9orf75
CCDC12
EXO1
LOC442597
SPC25
CDRT4
LOC72776¢
TRAF1
PTGES
CCDC72
ATF2
LOCB5307¢
MRPL24
RAD51C
ULK1
BCAP29
LLPH
RPL23A
LOC64275¢
C14orf19
LOC339804
KCTD5
EMILIN2
CRADD
DUSP14
DAB2
KIAA0174
TIE1
UBAC2
GAK
EXO1
MSI2
PGM1
DBNL
IRF8
C200rf43
GTF28
MTP18
Clorf74
DKK1
RBM18
UBE2M
XRCC8&
CLCA2
None
HYLS1
DNAL1
PARP3
EEF1D
KIAAQ0133
RPS13
HNRPDL
C3orf37
AADAC
HSCB
LOC85389
ZNF35
ESRRA




C14o0rf169
BAPX1
LHX6
ZIK1
DCTNS
CDKN3
KIF5C
OKL38
PREI3
PFKFB3
TSEN34
PPP4R4
SEPT2
GNPDA1
NTSR1
THUMPD2
DDX10
C12orfa7
CDC16
UBE2I
UBE2
KIAA1618
IL1RAPL1
DNAJC22
ATP2B4
FCRLA
TWF2
BEXL1
RAB38
ARPC4
CYP4V2
TIGD7
ZNFX1
DCAF15
LOC73032¢
SNRPB2
MAN1B1
MRRF
None
ALDH18A1
TUBA1C
BOP1
TMEM97
TP53INP1
COG5
PIGF
RPL29
CRKL
GLRX5
KIAA0586
KLF9
WRN
EBF3
SNORD%6A
ODF2
TRAF3IP2
SSH2
C140rf156
MEG3
ZMYND8
None
C19orf56
MRPS18A
C3orf38
EXOSC1
SEC23B
LOC730324
ZNF343
AKT1
TuBB3
APH1B
SNORD36A
XPR1
C12orf10
GULP1
CPVL
SNRPF
UBIAD1
HCST
ATG16L1
ARHGEF6
LBX2
GMPPB
PAFAH1B3
NET1
DARS
INTS1
PDXDC1
CBR3
NPC2
COX8A
NINJ1
TGM2
SPATA7




FLJ10781
LOC10012¢
RSPRY1
UCHL3
ARF1
KIAA1143
SUCLG2
LOC10012¢
FAM1278
SF3B14
NET1
WNK4
LOC72958(
CNO
IGFBP6
TAF6L
LOC196752
LOC44108¢
MRPS33
RAB13
MAP3K11
PMPCB
MUTED
COL4A3BP
UFSP2
CELSR3
RNF14
CKAP5
PAAF1
MARCH3
BCL11A
VKORC1
FNBP1L
LRPPRC
LHPP
CHEK1
GPR177
NCAPD3
LOC25845
PPP1R13B
PANK2
PABPC4L
LZTS1
None
CDC2
SDHB
FARP1
NFX1
KRTAP4-7
ARHGEF18
LEPREL1
ACACA
BCAP29
SPATA20
SLC25A37
RASSF2
AZI1
LOC402694
DUSP22
HSPA4
SEC22C
CENPE
LOC72929¢
MMD
PRCP
RPS6P1
SGCE
PRKRA
ZNF384
CDH10
C3orf19
GPX8
IPO8
RBMS1
ZMYM1
PTGER4
RPS6KB2
AIMP2
GOLT1B
C1orf163
DDRGK1
C1lorf41
CCDC15
TP53INP1
EIF3L
SETD3
ELOVL6
TRIB2
XPR1
FNIP1
CD68
CDC25B
SYNCRIP
RHBDF1




MRPS34
IL24

AK3
CDC16
SLC20A2
COL5A1
PLEKHA4
COLBA2
Céorf41
BARD1
GPR19
RETSAT
ING2
TPCN2
OTOF
DCLK1
YY1AP1
RNF169
GTF3C6
COMT
PDPR
MRE11A
DLL3
TMEMSSL
MCEE
LOC10013¢
LOC73023¢
TBC1D16
NDUFA12
PDE2A
RPS26
SLC2A3
RPL29
PAM
PILRB
KLRAQ1
TFB1M
LOC38878¢
DEF6
LOC389137
ADK
TMEM93
NSF
PRIC285
FAM127A
APOBEC3F
PTPRA
LOC20003(
RNF150
SNHG8
CDT1
EXOSC1
PBRM1
CETN3
None
BAG3
SIPA1
BOLA2
LOC73148¢
ZFAND2A
UBE2L6
RGMB
RHOC
CD248
BSCL2
PMS2L4
MSRB2
GBE1
PIGU
ACYP1
ST3GAL6
RNF24
GPS1
FAM3SE
ACVRL1
P4HA2
NECAP1
LOC88523
P4HA2
MYB
LOC14841¢
SAMD8
SCYL1
LOC39101¢
SFTA1P
RNMTL1
ANKRA2
PRKCD
VAMP8
TSPO
DECR2
CEP192
FXYD5
BAD




LOC39137(
CDH13
CFL1
BUD31
RPRC1
POLR2J2
LOC10012¢
LOC72815¢
FXR2
TFIP11
SFRS13A
EIF4EBP2
FBXW2
ACY1
ATN1
TTLL3
TOMM34
GCA
NOP56
ICAM3
DNLZ
RIN2
CD82
PRDX6
IMP4
E4F1
NRP1
CSNK2A1P
PHYH
TGFA
SNORD3C
NR1H3
TJAP1
TMEM558
AP182
CHMP4B
FIS1
WDFY2
LOC10012¢
RPL12
DLGAP5
ALDH9A1
RPL34
FAMI8A
ITM2C
C21orf69
MTMR11
SNORDS57
HIST1H2B
None
TMEM115
HIST1H2BJ
NSDHL
CECR5
LAMP2
GTF2H5
TCEB3
HSZFP36
C8orf13
WDR68
LMNB2
C17orf49
PRIM2A
CD34
GPR137
MAPKAPK?
MPRIP
SULF2
CDS2
NOP2
RIOK1
PYGL
LRRFIP2
GPX3
GRB14
AVPI1
COX4l1
TMED10P
ASAM
EMG1
BCS1L
ARMC10
NCOA7
FMNL2
ACVR1B
RNU6-1
MRPL17
CCNE2
SLCO4A1
LPCAT3
C20orf46
DNER
BEND4
TTC27




PHCA
ZBEDS
LOC10012¢
TSPAN4
LAGE3
BSG
ASCC1
None
LOC100132Z
PLA2G4C
SAFB
GSTO1
SSFA2
POU4F1
CMC1
TNC
RBCK1
TSPAN17
AEBP2
PARP10
XPO7
LOC44140¢
STRAP
RNU8-15
ACSS2
TMUB2
FDFT1
TXN
CCDC15
LOC72813¢
HIST1H4K
LOC81691
DNM1L
FCRLB
MGAT1
ATP5J
PRNP
DLL1

None
C10orf47
CSTF3
SLC25A28
C11orfd1
LMNA
TAPBP
NAPB
ACOT7
MYLK
TPRG1L
RPS15A
PEX5
CDC25A
PFKFB4
PARP3
BCAS4
FLJ35409
NEDD8
NVL
HMBS
PSG3
CNFN
TST
MEST
NRP1
VARS2
C13orf15
FBN2
C6orfd7
AP1S2
LOC40094¢
IL11RA
LOC72981€
BOLA2
RTKN
BRDY
TXN
WDR51A
ERN1
PSMC1
LOC10012¢
ACCS
PHLDA2
LOC72931C
MT1F
TIAM1
C1dorf2
SHROOM2
NDST2
RPL36A
PLCH2
TUBG2
C21orf58
PMP22
C7orf10




PPPDE2
SBDSP
PEG10
GMDS
PTPRA
ZDHHC16
None
PSME2
C170rf53
LOC653557
CDC20
DNM1L
CDK5RAP2
C1orfgé
DHX29
DUSP6
ATPSI
TNFRSF1A
NCRNAQOO
UQCRB
AP1S81
MARCH3
ATP5G1
UBR2
SEMA3A
LOC55064:%
CCDC56
KLHL35
PAMR1
IQCcC
FAM116B
LOC387841
FAM171B
CDCA8
HLA-H
LOC100134
SDHAF2
LRCH2
AP1B1
HDHD1A
GPN2
CSNK2A1P
Ctorf112
MSMP
None
UROS
PPP1R15A
ASNS
ALDH1A3
SNORAG1
TSPYL2
EFR3A
HJURP
RHOB
PRMT3
MED28
coQ10B
CSTF3
RN5S9
CENPF
SYCE2
RPL13
CD24
MRPL51
TRIP6
UBE2E2
MLF2
DENND3
PSMB10
SH3KBP1
STAT1
RBMS1
MRPS26
Pl4K2B
NRIP3
NP
FAM46A
KRT34
INPP1
ZNF451
KCNK3
PHB
BMS1
CT7orf44
CLDND2
CD70
Ctiorf17
POLR3F
SLC7A5
MOCS1
SIGIRR
CCND1
UBE2L6
SRGN




e

alalala
W W W W
o D

RPL9
PKN1
CD83
CSRP2BP
ACN9
NME2
KIAA0528
FANCG
RPL8
ZNF823
NEURL2
ABCF1
NENF
SPRY4
DYNC1H1
PSMC2
RGS2
EIF5B
BRMS1
C9orf169
0oDZ3
AKR1C3
PPP3CC
RFTN1
NRG1
HPCAL1
C17orfé1
FASTKDS
DUS4L
IFI27L2
GLA
SNORA7B
GTF2E2
GSK3B
VAMP1
COBLL1
LOC647987
SEPT9
LPXN
CRABP2
SNRNP25
BRE
TOM1L2
BRE

DBI

None
ORAOV1
BEX5
ACTG2
FAMS50A
MYOM2
IFI27L2
DOCK5
DCTPP1
WDR33
AOX1
ATP5J
C3orf38
ACYP1
C200rf30
TFPI
KIFAP3
GAMT
LOC64297¢
PEX16
MSN
CACNA2D4
SVEP1
PELO
M6PR
None
TAP1
MKKS
TMEM40
SNORDS83E
MGC39900
PIGK
DEDD2
SLCYA1
SNX5
C200rf29
SQSTM1
None
LNPEP
DGCR6
PTTG1
LRRFIP2
KLC1
NXT1
TNFRSF10!I
E2F2
MARCH4
NSFL1C
MCM7




ADAMTSL1
COL1A1
IDH3B
CUEDC1
S100A6
HIST2H2A/
AADACL1
FGD2
ARL14
MOBKL2C
None

NATS
MKKS
DGCR6
C190rf70
NLRP3
LOC72864C
ATP6V1F
FAM120B
YIF1A
SKAP2
FOXJ2
CGGBP1
CCND3
ATP6V1E1
MT1G
OSTF1
CAPNS
IDH3B
LOC72800€
NSF
KRT17
LOC72970¢
TRAPPC2P
IRF7
TP5313
ALDH1A3
CDKN2D
COL7A1
SLC2A6
SNORD17
COL16A1
MPRIP
EXT1
CCNF
RBCK1
TMTC3
LOC387934
HIST2H2AC
PDLIM3
AP1S81
BCAS4
ZCCHC7
CRABP1
BUB3
FAMB5A
ADORA2B
IFI27L1
ORC5L
MYPOP
BRI3
DNAJC13
LOC64833C
UPP1
POLR2J3
LOC44101¢
SMOX
ATP2B4
NQO1
ACOX2
POLR2J
SOD2
MRPS6
CACYBP
GPR4
ENTPD6
IRF1

WBP5
PSMF1
LOC729887
C2orf49
SLC25A42
SNHG9
LOC388564
PTMS
RRBP1
HES6
LOC72953¢
CENPE
LCP1
BOLA2
ARFGEF2
CYTL1
LOC38782%




SYTL2
CLEC11A
FXYD5
SFRS5
CMAS
MFSD3
HMMR
None
Clorf144
PDE7B
BAIAP2L1
OAF
RPS24
CALU
CALML4
LOC851894
SLC7A2
C6orf153
ADAMTSL1
SNORA18
CFDP1
KIF20A
MRPS33
FZD8
LOC100132Z
ITPA
HADHA
LFNG
EMP1
ASGR1
C200rf30
ATOX1
FEZ1
SEC14L1
LOC644877
SH3KBP1
F2RL1
PLOD1
DARS2
ATP5J2
TMEM171
HHEX
CDCA4
LOC392437
SAMD4A
EFCBP1
None
NFKB1
SNRPB
USP5
CHGB
KIAA1949
GSTT2
TRIM4
ATP5J2
SHFM1
EPS8
CASP3
RARRES3
C12orf57
ARL2
TGFBR2
IRAK2
AMZ2
FRMD&
C16orf35
TNFRSF10I
THY1
MGC39900
NTM

TNC

TPI1
THBS2
GPR56
RPL13A
MIR155HG
LYPD6B
COCH
RAGE
TXNIP
IDS
KIAA1967
CSNK2A1
ALDOA
FLJ25404
IL1A
NATS
LOC39107¢
ZGPAT
ENG
PPP4R4
TGM2
ESPNL
NFKBIE




OLFM1
UBR4
TMEM205
MMPS
C3orf26
ATG7
C20orf27
G6PC3
HMGA1
DHRS4
CYFIP2
CYP27B1
TUBG1
COLBA2
PPARG
UPLP
RGS10
WBP11
FKBP1A
C150rf48
RRBP1
CEACAM1
SNRPB
HEBP1
SNHGS
ING2
CTSC
TRIP11
RGL1
GALNTS
SPSB2
ETFB
RIPK2
APOBEC3C
PYGB
C21orf7
BIRC5
FER1L3
ARHGAP24
ECM1
C11orf1
VASN
TAX1BP3
LOC84170C
PDLIM3
JAG1
PRNP
ITGA2
VPS24
ACN9
CEACAM1
SRGN
VGLL4
C170rf30
PNPO
BATF3
SLC12A9
CPXM1
LAMC3
VPS24
RGS10
COPS7A
SLC16A5
None
SMTN
GRP
HIST2H2A#
QPCT
FAM1298
IFI35
CMAS
MGST1
HIST1H2BL
KLHL36
FKBP1A
SNRPB2
KIF2C
NAMPT
TNFRSF10|
YARS2
EFHD2
TGFBR2
POP7
DDX47
VAMPS
CSsT3
PDGFRL
MT1A
ZNF185
TRIOBP
FKBP1A
CAV1
VGF
HMMR




1
1
1
1
1
1
1
1

.64
.64
.64
.64
.64
.65
.65
.66
1.67
1.67
1.67
1.67

CRLS1
MICB
SLC20A1
IL8

PLAT
SCG2
TMEFF2
CD83
C200rf55
RRAS
ESM1
SHISA3
FST
IGBP1
LHX2
FAM129B
CDKN1A
DTD1
CPSF4
S100A3
IGFBP7
FABP5
EPR1
GPR177
LRWD1
NACC2
LOC64248¢
HERC5
ESM1
ASF1B
COL13A1
ANGPTL4
KHSRP
MT2A
BIRC3
CCNE1
ADRB2
MVP
CTSC
FAM110A
CENPB
DCUN1D3
LOC65388¢
CCM2
CASP4
PLTP

F2R
FAM111A
CAV1
GPR56
MIR1974
SERPINE2
C70rf59
PTCD1
MTE
ARPC1A
SNORD13
LOC10000¢
KRT81
ZNHIT1
BGN
PCNX
CTSC
FBLN2
MT1E
CD14
None
ELOVL6
TFAP2C
BRI3P1
WNTSB
GPRC5A
JUP
TCEAL7
TFAP2C
FAM1078B
SNORD3A
CPA4
IGFBPS
DHRS2
SNORA12
ATL3
NR2F1
NCAPD2
C200rf127
SNORD3D
TRRAP
F8A1
ADAMTS1
DERA
RECQL
PPAP2B
CKAP2L
OLFM1




1.78
1.79
1.80
1.80
1.80
1.81
1.81
1.82
1.82
1.83
1.83
1.85
1.85
1.86
1.86
1.86
1.86
1.87
1.87
1.88
1.88
1.89
1.90
1.90
1.91
1.92
1.94
1.95
1.96
1.97
1.98
2.00
2.00
2.00
2.00
2.01
2.02
2.10
2.10
213
2.14
2.15
217
217
2.18
219
219
220
2.26
227
227
2.28
2.28
2.30
2.30
2.33
2.40
243
2.44
2.52
2.59
2.59
2.73
2.77
2.80
2.90
2.95
297
2.98
3.01
3.07
3.17
3.33
3.42
3.47
3.54
3.61
3.95
3.98
4.05
5.44

IGFBPS
GAL3ST4
DHRS2
SMOX
ARPC1B
FBLN2
IL8

LPHN2
C200rf72
TFPI2
ZCWPW1
VEGFC
EBI3

INA

DUSP6
LOC10013C
KCNMA1
COLBA1
ITGB2
FKBP1A
GREM1
PRKCDBP
COPS6
FABP5L2
CD68
MLPH
TNFAIP3
LOC28601€
FARS2
TMSB15A
HS3ST3A1
MT1X

FEZ1
LOC38928¢
HIST1H2BL
CDH6
DYSF
CD24
ALDOC
SFRP1
LOC100132Z
ALPL

CKLF
G0S2
LPAR1
HIST1H2BK
LOC64295¢
H2AFJ
VPS16
CKLF
MIR1978
ACTA2
ITGB2
KRT86
GNG11
LOC65090¢
SIPA1L2
CDK6

None

TFPI

RGS4
ARHGDIB
SPOCK1
GREM1
CD163L1
KIAA1199
GALR2
FABPS
ECSCR
TMEM200A
TFPI
ABI3BP
CXCL1
LAMB3
KISS1
HIST1H2BkK
M160
FABP5L2
LOC10013Z
IL1B

MMP1
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