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ABSTRACT 
 

When one wishes to show that there are no meaningful differences between two or more groups, 

equivalence tests should be used, as a nonsignificant test of mean difference does not provide 

evidence regarding the equivalence of groups. When conducting all possible post-hoc pairwise 

comparisons, C, Caffo, Lauzon and Rohmel (2013) suggested dividing the alpha level by a 

correction of k2/4, where k is the number of groups to be compared, however this procedure can 

be conservative in some situations. This research proposes two modified stepwise procedures, 

based on this correction of k2/4, for controlling the familywise Type I error rate. Using a Monte 

Carlo simulation method, we show that, across a variety of conditions, adopting a stepwise 

procedure increases power, particularity when a configuration of means has greater than C - k2/4 

power comparisons, while maintaining the familywise error rate at or below α. Implications for 

psychological research and directions for future study are discussed.  
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A More Powerful Familywise Error Controlling  

Procedure for Evaluating Mean Equivalence 

By far the most common way of reporting empirical psychological findings is through the 

calculation of p-values for difference-based statistical tests. These tests involve assessing a 

research hypothesis of a significant relationship, such as a difference between two means, against 

a null hypothesis of no relationship. However, the results of these tests do not always provide the 

proper evidence to support researchers’ claims. For example, when the research hypothesis of 

interest is one of equivalence or a lack of association, traditional difference-based null hypothesis 

significance testing (NHST) cannot provide evidence of a lack of relationship (i.e., NHST cannot 

be used in support of the null being true). Recall that an absence of evidence for a difference 

does not mean there is evidence for an absence of an effect (Altman & Bland, 1995). NHST is 

based on the probability of a test statistic given that the null hypothesis is true, so researchers’ 

null and alternative hypotheses must properly align with the research questions they wish to 

answer.  

If proper hypotheses are not being evaluated several consequences are possible, including 

implications for statistical power of the test(s). For example, if a researcher is interested in 

demonstrating a lack of association but uses a traditional difference-based test, a larger sample 

size will decrease the probability of detecting the negligible relationship, because H0 will be 

more likely to be rejected. Additionally, it is unlikely that the true effect is zero (as is specified 

by the null hypothesis of a traditional difference-based hypothesis), but rather that it is too small 

to be practically significant in their area of research. This means that researchers’ goals should 

not be to demonstrate a zero effect, but rather that an effect is too small to be considered 
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meaningful in a practical sense. Thus, alternative procedures known as equivalence tests have 

been developed to properly address these types of research questions.  

Equivalence Testing 

Equivalence tests were developed in the biopharmaceutical field for researchers wishing 

to compare the bioavailability of two drugs (Westlake, 1976; Anderson & Hauck, 1983; 

Schuirmann, 1987). Researchers needed a way to determine whether a new generic drug was 

similar enough to an existing brand-name version that it could be prescribed in the place of its 

more expensive counterpart. This is an example of a research hypothesis of equivalence rather 

than difference. Equivalence testing is a family of procedures with the goal of detecting a lack of 

association (e.g., mean equivalence, negligible correlation, lack of interaction). Thus, the null 

and alternate hypotheses for equivalence tests are effectively the opposite of traditional 

difference-based hypothesis tests: the null hypothesis states that there is some meaningful 

relationship among the variables of interest, while the alternative hypothesis states that there is 

no meaningful relationship. Thus, in equivalence testing a Type I error occurs when one 

erroneously concludes that there is no meaningful relationship between variables, whereas a 

Type II error occurs when one erroneously concludes that a relationship is too large to be 

considered inconsequential. In clinical psychology, for example, researchers often wish to 

determine whether a treatment group is functionally equivalent to a normal population after the 

administration of a therapy or drug treatment (Cribbie & Arpin-Cribbie, 2009; Kendall, Marrs-

Garcia, Nath & Sheldrick, 1999). These research questions lead to a research hypothesis of 

equivalence, testing against a null hypothesis that the groups are too different to be considered 

equivalent. Other possible applications in psychology include evaluating whether two or more 

experimental groups are equivalent at baseline, whether multiple cultural groups perform 
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equivalently on some standardized test, whether males and females have equivalent attitudes 

towards a target, or whether there is a lack of association between two theoretically unrelated 

predictors in a model.  

The two one-sided tests (TOST; Schuirmann, 1987) or confidence interval approach to 

equivalence testing was introduced to psychology researchers by Rogers, Howard and Vessey 

(1993), and later by Seaman and Serlin (1998). This approach is the simplest form of 

equivalence testing and can be used, for example, to determine whether the difference between 

two population means is small enough that they can be considered equivalent. Evaluating 

whether means are equivalent using this approach involves first determining the smallest 

meaningful difference in their area of study, often denoted by 𝛿. Any difference equal to or 

larger than |𝛿| indicates that there is a meaningful difference among the groups, whereas any 

difference smaller than |𝛿| indicates that the difference is too small to be considered meaningful. 

Because the value δ is meant to quantify what is practically meaningful, researchers choose a 

value that is theoretically relevant to their research question (Rogers et al., 1993). This can take 

on the form of a standardized effect size (e.g., Cohen’s d, Pearson’s r), a percentage mean 

difference, or a raw score difference on a well known measure (e.g., some predetermined point 

difference on the Beck Depression Inventory; Beck, Steer, Bal & Ranieri, 1996). Importantly, 

this decision must be made a priori. Once researchers have determined an appropriate value for 

𝛿, they conduct two one-sided t-tests with null hypotheses: 

𝐻#$:	𝜇$ −	𝜇) 	≥ 	𝛿;		𝐻#):	𝜇$ −	𝜇) 	≤ 	−𝛿, 

where 𝜇$ −	𝜇) is the difference between the population means of the two independent groups, to 

determine whether this observed difference is both smaller than 𝛿 and larger than –𝛿. If the null 

hypothesis is rejected for both tests, then the researchers can conclude that the groups are 
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equivalent. Stated differently, both null hypotheses are also rejected if the 1-α confidence 

interval about the mean difference falls within the equivalence interval, –𝛿 to 𝛿. If not, then the 

researcher does not have evidence to conclude equivalence. Similar to traditional difference-

based NHST, the non-rejection of the TOST cannot be taken as evidence supporting the null 

hypothesis of difference (Rogers et al., 1993). 

One-way Tests of Equivalence 

Since their introduction to psychological researchers, equivalence tests have been adapted 

to fit with different kinds of statistical tests commonly conducted in psychology research. One 

such example includes tests for comparing multiple independent groups. Wellek (2003) proposed 

a one-way F test to compare three or more group means in an equivalence testing framework, 

which Cribbie, Arpin-Cribbie and Gruman (2009) showed to be more powerful than the common 

alternative of conducting all pairwise comparisons and concluding that all groups are equivalent 

if all pairwise means are declared equivalent. One important thing to note is that one-way F-

tests, in both a difference and an equivalence framework, can at most tell us that our research 

hypotheses are partly supported. A significant F-statistic from a difference-based ANOVA (i.e., 

with evidence that supports the research hypothesis) tells us that at least two group means differ 

from one another, but gives no information regarding which means differ. A non-significant F-

statistic in a one-way equivalence test (i.e., with evidence that does not support the research 

hypothesis) tells us that not all of the groups are equivalent; this could mean that none of the 

groups are similar enough to be deemed equivalent, or that some groups are similar enough while 

others are not. If one obtains a significant result from a difference-based F-test, or a non-

significant result from an equivalence-based F-test, they must then conduct multiple pairwise 

comparisons across all of the groups. These comparisons can be made with traditional t-tests to 
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follow up a significant difference-based ANOVA, or using the TOST procedure to follow up a 

non-significant equivalence-based one-way F test. It is important to recognize that, theoretically, 

rejection of the null hypothesis associated with the omnibus equivalence test provides evidence 

that all groups are equivalent and hence there is no need to conduct follow-up pairwise multiple 

comparisons. However, questions have been raised regarding the validity of omnibus tests in 

equivalence testing (e.g., Cribbie, Ragoonan, & Counsell, 2016) as well as difference-based 

testing (e.g. Games, 1971; Hancock & Klockars, 1996), and hence we have chosen not to focus 

on the one-way test of equivalence first, and instead we only discuss the pairwise comparisons. 

Familywise Error Rate and Pairwise Comparisons 

The problem with conducting post-hoc pairwise tests, each with a Type I error rate α, is 

that the potential to make a Type I error (i.e., the likelihood of rejecting the null hypothesis when 

it is in fact true) increases as the number of tests increases. Thus, procedures to maintain the 

familywise error rate (FWER; αFW), or likelihood of making at least one Type I error across a set 

of tests, at α have been developed. The simplest method of controlling FWER is the Bonferroni 

correction (Dunn, 1961), in which the nominal α level is adjusted by the total number of 

comparisons to be made (e.g., C = .
)  for pairwise comparisons, where C is the total number of 

pairwise comparisons to be made, and k is the number of groups to be compared). This type of 

correction can either be applied by multiplying each p-value by C, or dividing αFW by C for each 

comparison such that 𝛼01 = 	
345
6

. However, this procedure can be overly conservative, 

increasing the chance of making a Type II error (i.e., the likelihood of failing to reject the null 

hypothesis when it is in fact false). Thus, stepwise adaptations of this procedure were developed 

to decrease the Type II error rate while still maintaining Type I error control below α. Holm’s 

step-down Bonferroni procedure (Holm, 1979), in which p-values are arranged in descending 
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order and the factor by which the nominal α level (αPT) is adjusted decreases after each 

significant pairwise comparison, and Hochberg’s step-up Bonferroni procedure (Hochberg, 

1988), in which p-values are arranged in ascending order and the factor by which the nominal α 

level is adjusted increases after each non-significant pairwise comparison, are examples of such 

procedures. The rationale of these procedures is that they are less conservative by correcting αPT 

by a smaller factor each step, while maintaining the FWER at or below α.  

As with all equivalence tests, pairwise comparisons require different considerations from 

an equivalence framework than a difference framework. One important difference is that 

researchers conducting equivalence tests only need to control for potentially problematic Type I 

errors (Lauzon & Caffo, 2009; Rohmel, 2011). Any two means that are far enough apart that 

they would be very unlikely to be mistaken for equivalent (i.e., when a Type I error is highly 

unlikely) are considered non-problematic and are not controlled for. For example, in a 

difference-based framework if there was no difference between two means in the population and 

from our data we conclude that there was a statistically significant difference, then we made a 

Type I error and any mean difference greater than or less than zero is a problem. However, in an 

equivalence-based framework, a Type I error is made when one concludes that there is no 

meaningful difference when in fact there is a meaningful difference. If the true difference in the 

population has a Cohen’s d, for example, equal to three, then it is highly unlikely that we would 

ever conclude that the means are equivalent. However, if the true difference in the population has 

a Cohen’s d closer to zero, but the difference is still greater than δ, then we have a greater chance 

of erroneously concluding that the means are equivalent (i.e., making a Type I error).  Only 

controlling for problematic Type I errors provides more power, thus reducing the chance of 

making a Type II error. Researchers (e.g., Rohmel, 2011) have defined the area from the 



 7 

equivalence interval up to twice the equivalence interval (i.e., |δ ≤ µ1 - µ1 < 2𝛿|) as a region of 

problematic Type I errors. As they discussed, any difference in a pair of means falling above this 

interval is large enough that falsely rejecting the null hypothesis would be highly unlikely. Recall 

that any difference in a pair of means falling outside of the lower bound of this interval is outside 

of the boundary of the null hypothesis of [-δ, δ], and is instead an instance of statistical power.  

	

 

 

 

Figure 1: Regions of equivalence and potentially problematic Type I errors 

Researchers have attempted to use this region of potentially problematic Type I errors to 

develop a more powerful FWER control procedure for equivalence tests. Lauzon and Caffo 

(2009) proposed a Bonferroni-type correction to αPT. According to their proposal, scaling the 

nominal Type I error rate by a factor of (k – 1), where k is the number of independent groups 

being evaluated, provides sufficient Type I error control while resulting in a much less 

conservative rule than a traditional Bonferroni correction of C (i.e., the total number of possible 

pairwise comparisons). They believe that this factor of (k – 1) only corrects for potentially 

problematic Type I errors (i.e., those pairs of means with a difference of |𝛿 < 2𝛿|), resulting in a 

more powerful test. The authors noted that the attractiveness of this correction comes with its 

ease of application, and that it may not be an optimal solution. Rohmel (2011) later showed that 

while Lauzon and Caffo’s correction of (k – 1) works for k = 3 (although for reasons Lauzon and 

Caffo did not consider), it is too liberal for k ≥ 4. Through a series of proofs, Rohmel showed 

that a correction of α/2 is sufficient to control the FWER for k = 3, but that a correction of α/4 is 
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needed to control the FWER for k = 4, and a correction of α/6 is needed to control the FWER for 

k = 5.  

Building on these two articles, Caffo, Lauzon and Rohmel (2013) proposed a Bonferroni-

type correction of αPT = αFW/(k2/4), where αPT is the per-test alpha level. k2/4 represents the 

maximum number of comparisons, with	k groups, falling in the problematic region of |δ ≤ µ1 - µ1 

< 2𝛿|. They found that this is a less conservative adjustment than a traditional Bonferroni 

correction of αPT = αFW /C, but still provides adequate FWER control. While this procedure has 

been shown to control the FWER at approximately α, research on multiple comparisons in a 

traditional difference-based framework shows that adopting a stepwise approach makes such a 

test even more powerful while still providing sufficient FWER control (e.g., Holm, 1979; 

Hochberg, 1998; Keselman, Cribbie & Holland, 2002). This study aims to improve the power of 

Caffo, Lauzon and Rohmel’s correction of k2/4 by adopting a stepwise FWER-controlling 

procedure.  

Current Study 

We propose to use a stepwise multiple comparison procedure to provide researchers with 

a more powerful version of Caffo and colleagues’ Bonferroni-type correction (CB), while still 

controlling the Type I error rate for potentially problematic comparisons. Following the logic of 

Holm’s (1979) step-down procedure or Hochberg’s (1988) step-up procedure may provide more 

power while still maintaining strong control of αFW.  

Holm’s step-down procedure controls the familywise error rate by adjusting the rejection 

criteria for each comparison. Let H1, …, HC be a family of hypotheses and P1, …, PC be their 

corresponding p-values, with the p-values ordered from smallest to largest. For a given nominal 

significance level 𝛼01, let j be the minimal value where  



 9 

𝑃= > 	
?@A

6B$C=
.                                                                   (1) 

Researchers reject the null hypotheses H1, …, H(j-1) and fail to reject the null hypotheses Hj, …, 

HC, where j = 1, …, C. If j = 1, researchers do not reject any of the null hypotheses. If no value 

of j satisfies the above equation, then researchers reject all of the null hypotheses. In other words, 

hypotheses are sequentially compared to a decreasingly adjusted 𝛼 level until the nominal 𝛼 

level is no longer greater than the observed p-value, at which point no further null hypotheses are 

rejected.  

Recall that k2/4 is the maximum number of potentially problematic comparisons with 

regards to Type I error (Caffo et al., 2013). In our adjusted Holm procedure (HM), we will test 

the first C – k2/4 comparisons using a per-test α level of αPT = αFW / (k2/4). This means that at the 

test’s most conservative level it will only be correcting for the potentially problematic Type I 

error comparisons that fall within the problematic region of |δ ≤ µ1 - µ1 < 2𝛿|. We will then test 

the remaining k2/4 comparisons using Holm’s step-down procedure. This combination of a 

stepwise procedure with Caffo and colleagues’ maximum correction of k2/4 should provide more 

power than a simple Bonferroni correction of k2/4, while still providing sufficient Type I error 

control.  

Hochberg’s step-up procedure follows the same logic but proceeds in the opposite 

direction. Here, researchers let H1, …, HC be a family of hypotheses and P1, …, PC be their 

corresponding p-values, with the p-values ordered from largest to smallest. For a given nominal 

significance level 𝛼, let j be the minimal value where  

𝑃= ≤ 	
3

6B$C=
.                                                             (2) 

Researchers reject the null hypotheses Hj, …, HC and fail to reject the null hypotheses H(j-1), …, 

H1. If j = 1, researchers reject all of the null hypotheses. If no value of j satisfies the above 
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equation, then researchers do not reject any of the null hypotheses. In other words, hypotheses 

are sequentially compared to an increasingly adjusted 𝛼 level until the nominal 𝛼 level is greater 

than the observed p-value, at which point the null hypotheses associated with all remaining 

(smaller) p-values are rejected. 

In our adjusted Hochberg procedure (HB), we will test the first C - k2/4 comparisons 

using Hochberg’s step-up procedure, then test the remaining k2/4 comparisons using a per-test α 

level of αPT = αFW / (k2/4). In other words, the maximum correction factor in our procedure will 

again be k2/4, only correcting for comparisons that fall within the problematic region of |δ ≤ µ1 - 

µ1 < 2𝛿|, reflecting the need to only correct for potentially problematic Type I errors. As with 

HM, HB’s combination of a stepwise procedure with Caffo and colleagues’ maximum correction 

of k2/4 will hopefully provide significantly more power than CB while providing sufficient Type 

I error control. For an example of how these different procedures affect the conclusions of a test 

(i.e., how each procedure changes the critical αPT for each comparison), see Table 1. Recall that 

dividing αPT by a given value and comparing the corresponding p-value to this corrected αPT is 

equivalent to multiplying that p-value by the same value and comparing the corrected p-value to 

the original αPT. For example, a Bonferroni-type correction can either be applied by multiplying 

each p-value by the correction factor, or dividing αPT by the correction factor for each 

comparison. For ease of explanation, we frame our example in terms of corrections to αPT. 
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Simulation Study  

This study used Monte Carlo simulations to evaluate the Type I error rates and power of 

the FWER correction procedures. Using simulations, we compared the CB correction with our 

proposed HM and HB stepwise procedures, as well as a traditional Bonferroni correction (BF; 

αPT = αFW / C), and no correction for multiplicity (NC; αPT = αFW). The 𝛿 for all tests was held 

constant at 20. Although we could have explored alternative values for δ, increasing or 

decreasing δ has the predictable effect of increasing or decreasing power, respectively. 5000 

simulations were conducted for each condition using R version 3.3.1 (R Core Team, 2016), with 

all pairwise TOSTs being conducted using the equivalencetests package (Cribbie, 2016). A 

familywise α level of .05 was set for all tests. For each test, FWERs, as well per-pair power rates 

(the average power across all non-null pairwise comparisons) and all-pairs power rates (the 

proportion of tests in which all pairs of equivalent means are correctly detected), were computed.  

Conditions 

 We manipulated the number of groups (k), average sample size per group (n), sample size 

equality/inequality, and population mean configuration. We assessed the effectiveness of these 

tests using k = 4, 7, and 10 independent groups, numbers meant to capture what is typically seen 

in psychological research. We used average sample sizes of 25 and 50 per cell, representing 

typical small and moderate per-cell sample sizes in psychology. Group sample sizes were either 

equal or unequal, with unequal sample sizes either arranged in descending or ascending order. 

Across conditions, the population within-cell error variance (σ2) was set at 20. Details regarding 

the manipulated parameters used in the simulation study are provided in Table 2. 

 Population mean configurations were chosen to represent various possible combinations 

of problematic Type I error, non-problematic Type I error and power scenarios.  These 
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configurations include three pure power conditions (i.e., all means falling within the equivalence 

interval), three conditions with a mix of Type I error and power scenarios, including a “worst 

case scenario” condition (i.e., the maximum possible problematic Type I error scenarios for the 

given number of groups), and a pure Type I error condition (i.e., where all means all separated 

from all other means by ≥ 𝛿). See Table 3 for a list of all population mean configurations for 

each number of independent groups. All mean configurations were crossed with all other 

variables, resulting in 126 total conditions.  

 To better understand the worst case scenarios for Type I error rates (i.e., the situation in 

which the most Type I errors in possible for a given number of groups), let’s look at an example. 

When k = 7, C = 21 [i.e., C = 72 ]. One might be tempted to think that the worst case scenario 

occurs with the greatest number of Type I error scenarios, or in other words, when the difference 

between all means is ≥ 𝛿 (e.g., 0, 20, 40, 60, 80, 100, 120). However, because the difference 

between many of the pairs of means is < |2𝛿|), these comparisons are no longer problematic. In 

this scenario, only 6 out of 21 total pairwise comparisons fall in the region of potentially 

problematic comparisons. The worst case scenario in terms of Type I errors occurs when the 

maximum number of comparisons are potentially problematic. This occurs, in this situation, 

when approximately half of the means are 𝛿 greater than the other half (e.g., 0, 0, 0, 0, 20, 20, 

20). In this scenario, the differences between 12 out of 21 pairs of means fall in the problematic 

region of |δ ≤ µ1 - µ2 < 2𝛿|,	meaning that more than half of the total pairwise comparisons are 

potentially problematic.  
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Results 

 Complete results of the Monte Carlo simulations for all conditions are presented in 

Tables 4-12 Similar patterns of results (i.e., power and Type I error rates) emerged across levels 

of equality of sample size (equal or unequal), so they will be discussed together here.  

Pure Type I Error Conditions 

 These mean configurations contained groups that were all separated from each other by ≥

𝛿. FWERs were maintained below α = .05 with all three k2/4 correction procedures (CB, HM and 

HB), with CB, HM and HB producing identical Type I error rates ranging from .01 - .04. In 

comparison, FWER for the BF ranged from .01 - .03, and for the uncorrected tests ranged from 

.14 - .28.  

Worst Case Scenario Conditions 

Type I Error 

 These mean configurations contained the maximum number of potentially problematic 

Type I error scenarios possible for the given number of groups, k. With k = 4, there is a 

maximum of 4 problematic Type I error scenarios out of a total of C = 6 pairwise comparisons, 

when k = 7 there is a maximum of 12 problematic Type I error scenarios out of C = 21 pairwise 

comparisons, and when k = 10 there is a maximum of 25 problematic Type I error scenarios out 

of C = 45 pairwise comparisons. As expected, these configurations produced the greatest FWER, 

particularly when the number of groups was large, however across all conditions, CB, HM and 

HB maintained FWER below α = .05. This result not only confirms the research of Caffo and 

colleagues, it also demonstrates that the FWER of the proposed HM and HB do not exceed α. 

Meanwhile, FWER ranged from .02 - .03 for the BF correction, and from .15 - .50 for the NC 

comparisons.  
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Power 

In these mean configurations, HM and HB showed consistent but very slight per-pair and 

any-pairs power advantages over CB (i.e., < 1%). Per-pairs power rates ranged from .38 - .99 for 

the CB, HM and HB procedures, from .26 - .99 for the BF procedure, and from .93 – 1 for the 

NC tests. All-pairs power rates ranged from 0 - .99 for the CB, HM and HB procedures, from 0 - 

.97 for the BF procedure, and from .39 – 1 for the NC tests, with the highest rates seen when k = 

4 and n = 50.  

Partial Power Conditions 

 Type I Error 

 These mean configurations contained some comparisons with mean differences ≥ 𝛿 and 

some comparisons with mean differences < 𝛿. In these configurations, FWER was maintained 

below α = .05 (between .01 and .04) for the three k2/4 correction procedures (CB, HM, HB). In 

comparison, Type I error rates for the BF correction ranged from .001 - .02, and for the 

uncorrected tests ranged from .09 - .29.  

 Power 

Per-pair power rates showed small but consistent increases from the CB correction to the 

HM and HB corrections. Rates for the HM and HB corrections ranged from .16 – 1, with HB 

consistently providing slightly more power than HM. As expected, the highest rates were seen 

when k = 4 and n = 50. Power advantages over the CB correction ranged from 0 – .03 for both 

the HB and HM procedures, corresponding to 1 - 1.03 times the power. In comparison, per-pair 

power rates ranged from .11 – .99 with the BF correction, and from .57 – 1 for the NC tests.  

 All-pairs power rates also showed consistent increases from the CB correction to the HM 

and HB corrections. Rates for the HM and HB corrections ranged from 0 - .99, with again, as 
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expected, the highest rates seen when k = 4 and n = 50. Increases over the CB correction ranged 

from 0 – .22, corresponding to 1 to 16 times the power for the HM, and 1 to 25 times the power 

for the HB. In comparison, all-pairs power rates ranged from 0 – .98 with the BF correction, and 

from 0 – 1 with the NC comparisons.  

In these mean configurations, the greatest increases in power, particularly all-pairs power, 

over the CB procedure were seen when the number of groups was large (i.e., k = 10). For 

example, with means = 0, 0, 0, 0, 0, 0, 0, 0, 0, 20 and n = 50, the CB procedure produced an all-

pairs power rate of .39, while the HM and HB procedures produced rates of .61. This 

corresponds to an increase of .22, or 1.57 times the power. In comparison, the BF correction 

produced an all-pairs power rate of .26, while the NC test produced a rate of .96 (however recall 

that the FWER for NC was > α).  

Pure Power Conditions 

These mean configurations consisted of means that all fell within the equivalence 

interval. The HM and HB corrections showed the greatest advantage over the CB correction 

when all means fell between 0 and 𝛿. Per-pair power rates showed significant variability, ranging 

from a low of .21 with the BF correction when k = 10, n = 25 and the means are further apart 

(i.e., ranging from 0 – 18), to a high of .98 with the NC tests when k = 10, n = 50 and the means 

are closer together (i.e., ranging from 0 – 9). For per-pairs power, the HM and HB corrections 

consistently produced slightly higher rates than the CB correction, with advantages of up to .12 

over CB when k = 10, n = 50 and the means are closer together.  

The greatest power advantage of the HM/HB over the CB were seen for all-pairs power 

rates. The CB, HM and HB corrections produced maximum all-pairs power rates of .59, .81 and 

.82, respectively, with the highest rates seen when k = 4, n = 50 and the means are closer 
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together. In comparison, maximum all-pairs power rates approached .52 for the BF procedure 

and .82 for the NC tests under the same conditions. Here, as expected, the HB correction showed 

identical power rates to NC tests across all conditions (since for the Hochberg to reject all 

hypotheses the first comparison, using αPT = αFW, must be significant which matches the αPT used 

for the uncorrected procedure), corresponding to power advantages of up to .56 over the CB 

correction, or in other words, up to 474 times the power of the CB procedure. The HM procedure 

produced advantages in all-pairs power of up to .46 over the CB procedure, corresponding to 

about 176 times the power.  

For example, with means = 0, 1.5, 3, 4.5, 6, 7.5, 9 and n = 50, the CB procedure produced 

an all-pairs power rate of .20, while the HM procedure produced a rate of .66 and the HB 

procedure produced a rate of .71. This corresponds to respective increases of .47 and .57, or 3.34 

or 3.58 times the power. In comparison, the BF correction produced an all-pairs power rate of 

.14, while the NC test produced a rate of .71 (however recall that the FWER for NC was > α). 

Overall Summary 

As expected, across all 126 conditions, NC had the highest power rates, followed by 

(respectively) the HB correction, the HM correction, the CB correction, and finally BF. Overall, 

as expected, the highest all-pairs power rates were seen when the number of groups was small 

(i.e., k = 4), the sample size per cell was large (i.e., n = 50) and the means were close together 

(i.e., the mean configuration with the smallest variability for each value of k). The highest per-

pair power rates were also seen when the average sample size per cell was large and the means 

were close together, but there was no consistent pattern with regards to number of groups. 
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Discussion 

 Pairwise comparisons from an equivalence testing framework require different 

considerations than pairwise comparisons from a traditional difference-based framework. 

Making a Type I error in an equivalence test involves concluding two means are similar enough 

to be considered equivalent when they are in fact meaningfully different. Although the difference 

between means can increase to infinity, in practice we only need to control for comparisons in 

which we have a reasonable chance of making a Type I error. Recall that Rohmel (2011) defined 

the region of potentially problematic Type I errors as the area from the equivalence interval up to 

twice the equivalence interval (i.e., |δ ≤ µ1 - µ2 < 2𝛿|). Along with Caffo and Lauzon (2013), he 

showed that by only controlling for differences between means that fall within this region, 

equivalence tests have the ability to be more powerful than if they controlled for all differences 

in means, while still maintaining FWER control at or below α.  

 This study aimed to further increase power by utilizing Holm- and Hochberg-type 

stepwise correction procedures, while maintaining FWER closer to α. Our results showed that 

adding a stepwise algorithm increased power over the CB correction while maintaining 

familywise Type I error rates below α in all configurations. The configurations that showed the 

most improvement in power fall into two main categories: configurations in which all means are 

in fact equivalent, and configurations in which some means are equivalent and there are a 

proportionately large number of equivalent means.  

 More specifically, our modified stepwise procedures show improved power when the 

total number of power comparisons (i.e., pairs of means that are in fact equivalent) is greater 

than (C - k2/4). This is due to the nature of our modifications of the stepwise procedures, which 

makes the maximum correction k2/4. Instead of stepping down from C to 1 in a Holm-type 
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procedure or stepping up from 1 to C in a Hochberg-type procedure, our procedure involves 

stepping down from k2/4 to 1 in the HM procedure and stepping up from 1 to k2/4 in the HB 

procedure. This means that only the largest (k2/4 – 1) p-values are gaining power over Caffo and 

colleagues’ CB procedure, while the remaining (C – [k2/4 – 1]) are being corrected by the same 

factor of k2/4. This is different than the traditional Holm or Hochberg correction procedures in a 

difference-based framework, where all but the smallest p-value are being corrected by a smaller 

factor than with a Bonferroni correction. By this logic, a configuration of means must have 

greater than (C - k2/4) power comparisons in order for the HM or HB correction to provide 

increased power over the CB correction.  

In practical terms, this fact manifests itself in two ways. First, if not all means are in fact 

equivalent, the number of groups, k, must be greater than seven for our HM and HB corrections 

to provide more power than the CB correction. This is the minimum number of groups with 

which there can be more than (C - k2/4) power comparisons without all means falling within the 

equivalence interval. As our results show, the greatest increases in power over the CB procedure 

when not all means were equivalent were seen with 10 groups. While all-pairs power rates are 

generally lower with a large number of groups - as k increases, so does C, so it becomes harder 

to detect equivalence between all pairwise comparisons - these configurations provided the 

greatest opportunity for the HM and HB stepwise procedures to increase power over the 

traditional Bonferroni-type CB procedure.  

Second, our HM and HB corrections are always more powerful than the CB correction 

when all means are in fact equivalent. This is because when all means are equivalent, (k2/4 – 1) 

out of C total comparisons will be adjusted by a more liberal factor with a stepwise correction 

than with a Bonferroni-type correction such as the CB. With our HB correction, all-pairs power 
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rates are as high as with no correction at all, while still maintaining Type I error rates below - 

and close to - α, which is an extremely meaningful benefit to using a stepwise procedure. That 

being said, if the means are in fact equivalent and one conducts an omnibus equivalence test as a 

gatekeeper before conducting pairwise comparisons, the omnibus test will likely be rejected and 

pairwise comparisons will therefore be unnecessary, stopping the analytic process before a 

Holm- or Hochberg-type procedure has a chance to show its greatest benefit. However, there is 

research to suggest that using an omnibus test as a gatekeeper is unwise. Cribbie, Arpin-Cribbie 

and Gruman (2009) concluded that a one-way F test (e.g. Wellek, 2003) is recommended over 

conducting all pairwise comparisons in an equivalence framework because existing approaches 

to conducting all pairwise comparisons were overly conservative. However, as mentioned earlier, 

Cribbie, Ragoonanan and Counsell (2016) explain that the omnibus test can sometimes be 

incoherent with pairwise comparisons, allowing lower-order (e.g., pairwise) differences larger 

than 𝛿 to be declared equivalent. That being said, if all pairwise comparisons are significant, the 

omnibus test will be too. As Hancock and Klockars (1996) point out, the omnibus test is rarely of 

substantive interest and serves instead to provide Type I error control, which makes this test 

redundant if a pairwise comparison procedure exists which provides equivalent familywise error 

control. For these reasons, the development of a more powerful pairwise comparison procedure 

that still controls FWER near α, such as HM or HB, makes it possible and preferable to only 

conduct all pairwise comparisons. Future research should directly compare the existing one-way 

F tests of equivalence (e.g., Welleck, 2003) with these stepwise procedures to definitively show 

that conducting controlled pairwise comparisons is sufficiently powerful, while still not allowing 

differences ≥ 𝛿 to be declared equivalent.  
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While both modified stepwise procedures provide increased power over the CB 

correction, the HB procedure provides the most power, with rates as high as an uncorrected test 

in some cases, while still consistently maintaining the Type I error rate below α. However, a 

Hochberg procedure requires positive dependence of p-values (i.e., when detecting a significant 

difference (or equivalence) in one pair of means increases the chances of detecting a significant 

difference (or equivalence) in another; see Lehman, 1966, Benjamini & Yekutieli, 2001). For 

this reason, Holm-type correction like the HM may be preferable to researchers who cannot 

guarantee this type of association.      

One limitation of the present simulation study is that the conclusions made are based on a 

finite number of conditions that have been tested. We cannot comment on how these tests will 

compare under different mean configurations, numbers of groups or sample sizes. However, the 

conditions for this study were chosen to simulate what is most commonly seen in psychological 

research. Thus while the results are only applicable to the conditions presented here, we have 

worked to ensure that the results we collected would reflect what researchers can anticipate to 

see in their own research as much as possible. Note that to simplify the presentation of the novel 

methods, we have assumed that all assumptions are satisfied. Since the assumptions of normality 

and variance homogeneity are regularly violated, we encourage researchers to use robust 

statistics such as trimmed means with Welch-based test statistics (Cribbie, Fiksenbaum, Wilcox, 

& Keselman, 2012). 

In summary, the present study sought to improve the statistical power of Caffo and 

colleagues’ Bonferroni-type correction of k2/4 when conducting all pairwise comparisons in 

equivalence testing. By simulating data with a number of different mean configurations, mean 

sample sizes, sample size configurations and numbers of groups to be compared, we were able to 
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show that adopting a stepwise procedure (specifically a Holm-type step-down procedure, HM, or 

a Hochberg-type step-up procedure, HB) provides substantial additional power when the number 

of pairs of equivalent means is greater than (C - k2/4), a situation that we believe is common, 

while still maintaining familywise Type I error rates below α. The results of this study provide 

psychology researchers with a more powerful tool to assess mean equivalence with three or more 

groups, and offers an alternative to potentially problematic omnibus tests.  
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Appendix A: Tables 
Table 1: Adjusted αPT for αFW = .05, where k = 4, C = 6 and k2/4 = 4 
 
Correction Procedure p-values (smallest – largest) Correction Factor αPT 
Adjusted Bonferroni  p

1
 4 .0125 

(CB; Caffo, Lauzo p
2
 4 .0125 

and Rohmel, 2013) p
3
 4 .0125 

 p
4
 4 .0125 

 p
5
 4 .0125 

 p
6
 4 .0125 

Adjusted Holm  p
1
 4 .0125 

(HM) p
2
 4 .0125 

 p
3
 4 .0125 

 p
4
 3 .0167 

 p
5
 2 .025 

 p
6
 1 .05 

Adjusted Hochberg p
1
 4 .0125 

(HB) p
2
 4 .0125 

 p
3
 4 .0125 

 p
4
 3 .0167 

 p
5
 2 .025 

 p
6
 1 .05 

Traditional  p
1
 6 .0083 

Bonferroni (BF; p
2
 6 .0083 

Dunn, 1961) p
3
 6 .0083 

 p
4
 6 .0083 

 p
5
 6 .0083 

 p
6
 6 .0083 

No correction (NC) p
1
 1 .05 

 p
2
 1 .05 

 p
3
 1 .05 

 p
4
 1 .05 

 p
5
 1 .05 

 p
6
 1 .05 

k = number of groups; n = sample size per cell; αPT = per test α level; αFW = familywise error rate  
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Table 2: Simulations conditions for k = 4, k = 7 and k = 10  

k Average n n 
4 25 25, 25, 25, 25 

  20, 25, 25, 30 

  30, 25, 25, 20 

 50 50, 50, 50, 50 

  40, 50, 50, 60 

  60, 50, 50, 40 

7 25 25, 25, 25, 25, 25, 25, 25 

  19, 21, 23, 25, 27, 29, 31 

  31, 29, 27, 25, 23, 21, 19 

 50 50, 50, 50, 50, 50, 50, 50 

  38, 42, 46, 50, 54, 58, 62 

  62, 58, 54, 50, 46, 42, 38 

10 25 25, 25, 25, 25, 25, 25, 25, 25, 25, 25 

  21, 22, 23, 24, 25, 25, 26, 27, 28, 29 

  29, 28, 27, 26, 25, 25, 24, 23, 22, 21 

 50 50, 50, 50, 50, 50, 50, 50, 50, 50, 50 

  42, 44, 46, 48, 50, 50, 52, 54, 56, 58 

  58, 56, 54, 52, 50, 50, 48, 46, 44, 42 

 k = number of groups; n = sample size per cell 
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Table 3: Mean configurations for k = 4, k = 7 and k = 10  

k C k2/4 Population mean configuration 

4 6 4 0, 3, 6, 9a 

   0, 4, 8, 12a 

   0, 5, 10, 15a 

   0, 0, 20, 20b 

   0, 0, 0, 20c 

   0, 10, 20, 30c 

   0, 20, 40, 60d 

    

7 21 12 0, 1.5, 3, 4.5, 6, 7.5 ,9a 

   0, 2, 4, 6, 8, 10, 12a 

   0, 2.5, 5, 7.5, 10, 12.5, 15a 

   0, 0, 0, 20, 20, 20, 20b 

   0, 0, 0, 0, 0, 20, 20c 

   0, 5, 10, 15, 20, 25, 30c 

   0, 20, 40, 60, 80, 100, 120d  

10 45 25 0, 1, 2, 3, 4, 5, 6, 7, 8, 9a 

   0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5, 12, 13.5a 

   0, 2, 4, 6, 8, 10, 12, 14, 16, 18a 

   0, 0, 0, 0, 0, 20, 20, 20, 20, 20b 

   0, 0, 0, 0, 0, 0, 0, 0, 0, 20c 

   0, 3, 6, 9, 12, 15, 18, 21, 24, 27c 

   0, 20, 40, 60, 80, 100, 120, 140, 160, 180d 

C = total number of pairwise comparisons; a = pure power; b = worse case scenario; c = partial 
power; d = pure Type I error 
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Table 4: Type I error rates for pure Type I error, partial power and worst case scenario mean 
configurations for k = 4 
 
Mean Configuration n n config.  CB HM HB BF NC 
Pure Type I Error        
0,20,40,60 25 eq 0.039 0.039 0.039 0.027 0.148 
0,20,40,60 25 dc 0.041 0.041 0.041 0.029 0.160 
0,20,40,60 25 ac 0.037 0.037 0.037 0.025 0.155 
0,20,40,60 50 eq 0.039 0.039 0.039 0.027 0.146 
0,20,40,60 50 dc 0.037 0.037 0.037 0.024 0.143 
0,20,40,60 50 ac 0.039 0.039 0.039 0.027 0.152 
Partial Power        
0,0,0,20 25 ac 0.029 0.032 0.033 0.021 0.112 
0,0,0,20 50 eq 0.036 0.046 0.048 0.023 0.118 
0,0,0,20  25 eq 0.032 0.035 0.037 0.022 0.110 
0,0,0,20  25 dc 0.033 0.037 0.040 0.021 0.113 
0,0,0,20  50 dc 0.031 0.039 0.041 0.021 0.108 
0,0,0,20  50 ac 0.034 0.043 0.045 0.024 0.117 
0,10,20,30 25 eq 0.026 0.026 0.026 0.019 0.101 
0,10,20,30 25 dc 0.022 0.022 0.022 0.016 0.098 
0,10,20,30 25 ac 0.028 0.028 0.028 0.019 0.100 
0,10,20,30 50 eq 0.021 0.021 0.022 0.014 0.096 
0,10,20,30 50 dc 0.025 0.026 0.026 0.016 0.098 
0,10,20,30 50 ac 0.023 0.023 0.024 0.017 0.096 
Worst Case Scenario        
0,0,20,20 25 eq 0.041 0.041 0.041 0.028 0.148 
0,0,20,20 25 dc 0.044 0.044 0.044 0.030 0.158 
0,0,20,20 25 ac 0.043 0.043 0.043 0.028 0.153 
0,0,20,20 50 eq 0.041 0.041 0.041 0.027 0.159 
0,0,20,20 50 dc 0.042 0.042 0.043 0.030 0.146 
0,0,20,20 50 ac 0.041 0.041 0.042 0.027 0.153 
eq = equal sample sizes, ac = ascending sample sizes, dc = descending sample sizes 
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Table 5: Type I error rates for pure Type I error, partial power and worst case scenario mean 
configurations for k = 7 
 
Mean Configuration n n config. CB HM HB BF NC 
Pure Type I Error        
0,20,…,120 25 eq 0.021 0.021 0.021 0.012 0.278 
0,20,…,120 25 dc 0.026 0.026 0.026 0.016 0.274 
0,20,…,120 25 ac 0.021 0.021 0.021 0.012 0.275 
0,20,…,120 50 eq 0.019 0.019 0.019 0.013 0.269 
0,20,…,120 50 dc 0.025 0.025 0.025 0.017 0.275 
0,20,…,120 50 ac 0.029 0.029 0.029 0.016 0.274 
Partial Power        
0,0,0,0,0,20,20 25 eq 0.034 0.034 0.034 0.020 0.279 
0,0,0,0,0,20,20 25 dc 0.030 0.030 0.030 0.019 0.259 
0,0,0,0,0,20,20 25 ac 0.033 0.033 0.033 0.023 0.286 
0,0,0,0,0,20,20 50 eq 0.030 0.033 0.034 0.018 0.284 
0,0,0,0,0,20,20 50 dc 0.030 0.034 0.034 0.017 0.272 
0,0,0,0,0,20,20 50 ac 0.037 0.043 0.043 0.024 0.286 
0,5,…,30 25 eq 0.011 0.011 0.011 0.007 0.137 
0,5,…,30 25 dc 0.014 0.014 0.014 0.008 0.155 
0,5,…,30 25 ac 0.009 0.009 0.009 0.004 0.140 
0,5,…,30 50 eq 0.012 0.013 0.013 0.007 0.139 
0,5,…,30 50 dc 0.010 0.011 0.011 0.005 0.141 
0,5,…,30 50 ac 0.011 0.012 0.012 0.007 0.149 
Worst Case Scenario        
0,0,0,20,20,20,20 25 eq 0.041 0.044 0.044 0.021 0.322 
0,0,0,20,20,20,20 25 dc 0.035 0.035 0.035 0.021 0.331 
0,0,0,20,20,20,20 25 ac 0.037 0.037 0.037 0.022 0.311 
0,0,0,20,20,20,20 50 eq 0.041 0.042 0.042 0.026 0.328 
0,0,0,20,20,20,20 50 dc 0.037 0.037 0.037 0.022 0.316 
0,0,0,20,20,20,20 50 ac 0.033 0.034 0.034 0.023 0.313 
eq = equal sample sizes, ac = ascending sample sizes, dc = descending sample sizes 
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Table 6: Type I error rates for pure Type I error, partial power and worst case scenario mean 
configurations for k = 10 
 
Mean Configuration n n config. CB HM HB BF NC 
Pure Type I Error        
0,20,…,180 25 eq 0.015 0.015 0.015 0.009 0.373 
0,20,…,180 25 dc 0.014 0.014 0.014 0.006 0.374 
0,20,…,180 25 ac 0.018 0.018 0.018 0.010 0.389 
0,20,…,180 50 eq 0.019 0.019 0.019 0.008 0.381 
0,20,…,180 50 dc 0.019 0.019 0.019 0.012 0.383 
0,20,…,180 50 ac 0.019 0.019 0.019 0.012 0.393 
Partial Power        
0,0,0,0,0,0,0,0,0,20 25 eq 0.018 0.018 0.018 0.009 0.231 
0,0,0,0,0,0,0,0,0,20 25 dc 0.014 0.014 0.014 0.007 0.226 
0,0,0,0,0,0,0,0,0,20 25 ac 0.016 0.016 0.016 0.009 0.253 
0,0,0,0,0,0,0,0,0,20 50 eq 0.010 0.028 0.029 0.006 0.217 
0,0,0,0,0,0,0,0,0,20 50 dc 0.015 0.030 0.030 0.008 0.215 
0,0,0,0,0,0,0,0,0,20 50 ac 0.016 0.032 0.033 0.010 0.258 
0,3,…,27 25 eq 0.004 0.004 0.004 0.002 0.109 
0,3,…,27 25 dc 0.004 0.004 0.004 0.002 0.104 
0,3,…,27 25 ac 0.003 0.003 0.003 0.001 0.106 
0,3,…,27 50 eq 0.002 0.002 0.002 0.001 0.090 
0,3,…,27 50 dc 0.002 0.003 0.003 0.001 0.089 
0,3,…,27 50 ac 0.005 0.005 0.006 0.002 0.094 
Worst Case Scenario        
0,0,0,0,0,20,20,20,20,20 25 eq 0.040 0.040 0.040 0.023 0.479 
0,0,0,0,0,20,20,20,20,20 25 dc 0.036 0.036 0.036 0.019 0.484 
0,0,0,0,0,20,20,20,20,20 25 ac 0.039 0.039 0.039 0.021 0.486 
0,0,0,0,0,20,20,20,20,20 50 eq 0.042 0.042 0.042 0.024 0.495 
0,0,0,0,0,20,20,20,20,20 50 dc 0.035 0.035 0.035 0.020 0.475 
0,0,0,0,0,20,20,20,20,20 50 ac 0.039 0.039 0.039 0.022 0.486 
eq = equal sample sizes, ac = ascending sample sizes, dc = descending sample sizes 
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Table 7: Per-pair power rates for pure power, partial power and worst case scenario mean 
configurations for k = 4 
 
Mean Configuration n n config. CB HM HB BF NC 
Pure Power        
0,3,6,9 25 eq 0.597 0.672 0.706 0.527 0.812 
0,3,6,9 25 dc 0.586 0.586 0.696 0.515 0.804 
0,3,6,9 25 ac 0.588 0.658 0.691 0.518 0.801 
0,3,6,9 50 eq 0.870 0.947 0.953 0.870 0.963 
0,3,6,9 50 dc 0.889 0.943 0.949 0.861 0.960 
0,3,6,9 50 ac 0.886 0.941 0.947 0.858 0.960 
0,4,8,12 25 eq 0.503 0.557 0.587 0.439 0.724 
0,4,8,12 25 dc 0.494 0.543 0.574 0.430 0.716 
0,4,8,12 25 ac 0.498 0.549 0.578 0.432 0.718 
0,4,8,12 50 eq 0.799 0.868 0.877 0.763 0.905 
0,4,8,12 50 dc 0.789 0.856 0.865 0.753 0.896 
0,4,8,12 50 ac 0.786 0.854 0.865 0.749 0.896 
0,5,10,15 25 eq 0.418 0.448 0.469 0.362 0.631 
0,5,10,15 25 dc 0.415 0.446 0.464 0.356 0.628 
0,5,10,15 25 ac 0.410 0.441 0.460 0.529 0.625 
0,5,10,15 50 eq 0.686 0.746 0.756 0.647 0.813 
0,5,10,15 50 dc 0.676 0.735 0.746 0.637 0.805 
0,5,10,15 50 ac 0.681 0.740 0.750 0.639 0.809 
Partial Power        
0,0,0,20  25 eq 0.768 0.769 0.769 0.694 0.931 
0,0,0,20  25 dc 0.807 0.807 0.808 0.743 0.951 
0,0,0,20  25 ac 0.707 0.708 0.708 0.625 0.907 
0,0,0,20 50 eq 0.994 0.995 0.995 0.899 0.999 
0,0,0,20  50 dc 0.996 0.996 0.996 0.993 0.999 
0,0,0,20  50 ac 0.986 0.986 0.987 0.980 0.999 
0,10,20,30  25 eq 0.304 0.304 0.304 0.250 0.539 
0,10,20,30  25 dc 0.299 0.299 0.299 0.245 0.537 
0,10,20,30  25 ac 0.294 0.294 0.294 0.240 0.534 
0,10,20,30  50 eq 0.591 0.591 0.591 0.529 0.802 
0,10,20,30  50 dc 0.583 0.584 0.584 0.521 0.797 
0,10,20,30  50 ac 0.584 0.585 0.585 0.522 0.792 
Worst Case Scenario        
0,0,20,20 25 eq 0.769 0.769 0.769 0.699 0.934 
0,0,20,20 25 dc 0.744 0.744 0.744 0.673 0.919 
0,0,20,20 25 ac 0.755 0.755 0.755 0.678 0.926 
0,0,20,20 50 eq 0.993 0.993 0.993 0.987 0.999 
0,0,20,20 50 dc 0.989 0.989 0.989 0.984 0.998 
0,0,20,20 50 ac 0.992 0.992 0.992 0.986 0.999 
eq = equal sample sizes, ac = ascending sample sizes, dc = descending sample sizes 
Note: Power rates for NC tests cannot be compared to other power rates as this procedure was 
unable to control FWER within a reasonable margin of error of α.   
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Table 8: Per-pair power rates for pure power, partial power and worst case scenario mean 
configurations for k = 7 
 
Mean Configuration n n config. CB HM HB BF NC 
Pure Power        
0,1.5,…,9 25 eq 0.442 0.487 0.537 0.339 0.846 
0,1.5,…,9 25 dc 0.457 0.504 0.557 0.357 0.851 
0,1.5,…,9 25 ac 0.426 0.464 0.519 0.325 0.837 
0,1.5,…,9 50 eq 0.864 0.944 0.954 0.826 0.976 
0,1.5,…,9 50 dc 0.854 0.935 0.947 0.814 0.973 
0,1.5,…,9 50 ac 0.850 0.934 0.946 0.808 0.973 
0,2,…,12  25 eq 0.386 0.408 0.438 0.294 0.787 
0,2,…,12  25 dc 0.397 0.421 0.452 0.308 0.789 
0,2,…,12  25 ac 0.368 0.387 0.417 0.277 0.776 
0,2,…,12  50 eq 0.779 0.866 0.883 0.734 0.942 
0,2,…,12  50 dc 0.763 0.846 0.864 0.716 0.933 
0,2,…,12  50 ac 0.762 0.848 0.865 0.716 0.934 
0,2.5,…,15 25 eq 0.330 0.339 0.351 0.250 0.710 
0,2.5,…,15 25 dc 0.344 0.353 0.367 0.265 0.722 
0,2.5,…,15 25 ac 0.319 0.327 0.339 0.241 0.705 
0,2.5,…,15 50 eq 0.684 0.751 0.765 0.637 0.881 
0,2.5,…,15 50 dc 0.670 0.733 0.748 0.623 0.873 
0,2.5,…,15 50 ac 0.672 0.737 0.752 0.623 0.875 
Partial Power        
0,0,0,0,0,20,20  25 eq 0.559 0.560 0.560 0.436 0.938 
0,0,0,0,0,20,20  25 dc 0.619 0.620 0.620 0.508 0.949 
0,0,0,0,0,20,20 25 ac 0.465 0.465 0.465 0.344 0.908 
0,0,0,0,0,20,20  50 eq 0.976 0.977 0.977 0.961 0.999 
0,0,0,0,0,20,20 50 dc 0.978 0.979 0.980 0.964 0.999 
0,0,0,0,0,20,20 50 ac 0.957 0.959 0.959 0.934 0.998 
0,5,…,30 25 eq 0.227 0.227 0.227 0.168 0.569 
0,5,…,30 25 dc 0.240 0.240 0.240 0.182 0.578 
0,5,…,30 25 ac 0.223 0.223 0.223 0.164 0.565 
0,5,…,30 50 eq 0.500 0.501 0.501 0.453 0.749 
0,5,…,30 50 dc 0.497 0.498 0.498 0.448 0.747 
0,5,…,30 50 ac 0.494 0.495 0.495 0.446 0.745 
Worst Case Scenario        
0,0,0,20,20,20,20 25 eq 0.552 0.552 0.552 0.425 0.934 
0,0,0,20,20,20,20 25 dc 0.547 0.547 0.547 0.429 0.931 
0,0,0,20,20,20,20 25 ac 0.557 0.557 0.557 0.446 0.931 
0,0,0,20,20,20,20 50 eq 0.977 0.977 0.977 0.962 0.999 
0,0,0,20,20,20,20 50 dc 0.961 0.961 0.961 0.939 0.998 
0,0,0,20,20,20,20 50 ac 0.970 0.970 0.970 0.953 0.999 
eq = equal sample sizes, ac = ascending sample sizes, dc = descending sample sizes 
Note: Power rates for NC tests cannot be compared to other power rates as this procedure was 
unable to control FWER within a reasonable margin of error of α.   
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Table 9: Per-pair power rates for pure power, partial power and worst case scenario mean 
configurations for k = 10 
 
Mean Configuration n n config. CB HM HB BF NC 
Pure Power        
0,1,…,9 25 eq 0.316 0.324 0.364 0.210 0.859 
0,1,…,9 25 dc 0.306 0.313 0.355 0.205 0.855 
0,1,…,9 25 ac 0.306 0.314 0.357 0.205 0.856 
0,1,…,9 50 eq 0.831 0.927 0.943 0.784 0.981 
0,1,…,9 50 dc 0.821 0.920 0.936 0.772 0.979 
0,1,…,9 50 ac 0.824 0.922 0.939 0.776 0.980 
0,1.5,…,13.5 25 eq 0.256 0.257 0.266 0.168 0.770 
0,1.5,…,13.5 25 dc 0.255 0.256 0.265 0.170 0.769 
0,1.5,…,13.5 25 ac 0.251 0.252 0.260 0.167 0.765 
0,1.5,…,13.5 50 eq 0.698 0.771 0.788 0.646 0.927 
0,1.5,…,13.5 50 dc 0.693 0.766 0.782 0.640 0.926 
0,1.5,…,13.5 50 ac 0.691 0.763 0.779 0.639 0.924 
0,2,…,18 25 eq 0.208 0.208 0.208 0.136 0.672 
0,2,…,18 25 dc 0.205 0.205 0.206 0.136 0.668 
0,2,…,18 25 ac 0.205 0.205 0.206 0.136 0.671 
0,2,…,18 50 eq 0.576 0.606 0.610 0.527 0.836 
0,2,…,18 50 dc 0.570 0.599 0.603 0.520 0.832 
0,2,…,18 50 ac 0.571 0.600 0.604 0.522 0.833 
Partial Power        
0,0,0,0,0,0,0,0,0,20 25 eq 0.388 0.393 0.395 0.260 0.933 
0,0,0,0,0,0,0,0,0,20 25 dc 0.404 0.411 0.413 0.279 0.937 
0,0,0,0,0,0,0,0,0,20 25 ac 0.352 0.355 0.356 0.232 0.924 
0,0,0,0,0,0,0,0,0,20 50 eq 0.956 0.977 0.977 0.931 0.999 
0,0,0,0,0,0,0,0,0,20 50 dc 0.957 0.978 0.978 0.933 0.999 
0,0,0,0,0,0,0,0,0,20 50 ac 0.943 0.968 0.968 0.913 0.999 
0,3,…,27 25 eq 0.165 0.165 0.165 0.107 0.577 
0,3,…,27 25 dc 0.162 0.162 0.162 0.107 0.573 
0,3,…,27 25 ac 0.162 0.162 0.162 0.107 0.575 
0,3,…,27 50 eq 0.462 0.463 0.463 0.416 0.738 
0,3,…,27 50 dc 0.459 0.460 0.460 0.413 0.734 
0,3,…,27 50 ac 0.459 0.460 0.460 0.414 0.734 
Worst Case Scenario        
0,0,0,0,0,20,20,20,20,20 25 eq 0.389 0.389 0.389 0.260 0.935 
0,0,0,0,0,20,20,20,20,20 25 dc 0.377 0.377 0.377 0.260 0.926 
0,0,0,0,0,20,20,20,20,20 25 ac 0.381 0.381 0.381 0.261 0.928 
0,0,0,0,0,20,20,20,20,20 50 eq 0.955 0.956 0.956 0.931 0.999 
0,0,0,0,0,20,20,20,20,20 50 dc 0.947 0.947 0.947 0.918 0.999 
0,0,0,0,0,20,20,20,20,20 50 ac 0.946 0.946 0.946 0.918 0.999 
eq = equal sample sizes, ac = ascending sample sizes, dc = descending sample sizes 
Note: Power rates for NC tests cannot be compared to other power rates as this procedure was 
unable to control FWER within a reasonable margin of error of α. 
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Table 10: All-pairs power rates for pure power, partial power and worst case scenario mean 
configurations for k = 4 
 
Mean Configuration n n config. CB HM HB BF NC 
Pure Power        
0,3,6,9 25 eq 0.144 0.361 0.418 0.097 0.418 
0,3,6,9 25 dc 0.136 0.345 0.412 0.085 0.412 
0,3,6,9 25 ac 0.140 0.349 0.406 0.093 0.406 
0,3,6,9 50 eq 0.591 0.807 0.821 0.517 0.821 
0,3,6,9 50 dc 0.574 0.796 0.809 0.497 0.809 
0,3,6,9 50 ac 0.567 0.794 0.808 0.490 0.808 
0,4,8,12 25 eq 0.066 0.207 0.257 0.041 0.257 
0,4,8,12 25 dc 0.070 0.193 0.239 0.044 0.239 
0,4,8,12 25 ac 0.068 0.199 0.244 0.040 0.244 
0,4,8,12 50 eq 0.312 0.563 0.584 0.249 0.584 
0,4,8,12 50 dc 0.296 0.537 0.556 0.234 0.556 
0,4,8,12 50 ac 0.296 0.535 0.559 0.236 0.559 
0,5,10,15 25 eq 0.023 0.095 0.125 0.012 0.125 
0,5,10,15 25 dc 0.024 0.095 0.122 0.013 0.122 
0,5,10,15 25 ac 0.025 0.093 0.121 0.013 0.121 
0,5,10,15 50 eq 0.113 0.281 0.297 0.080 0.297 
0,5,10,15 50 dc 0.105 0.260 0.280 0.074 0.280 
0,5,10,15 50 ac 0.111 0.275 0.294 0.081 0.294 
Partial Power        
0,0,0,20  25 eq 0.542 0.544 0.545 0.435 0.840 
0,0,0,20  25 dc 0.602 0.604 0.605 0.499 0.885 
0,0,0,20  25 ac 0.456 0.457 0.458 0.352 0.789 
0,0,0,20 50 eq 0.984 0.985 0.985 0.972 0.998 
0,0,0,20  50 dc 0.989 0.989 0.989 0.981 0.998 
0,0,0,20  50 ac 0.962 0.964 0.965 0.948 0.997 
0,10,20,30  25 eq 0.003 0.003 0.003 0.001 0.070 
0,10,20,30  25 dc 0.002 0.002 0.002 0.000 0.073 
0,10,20,30  25 ac 0.001 0.001 0.001 0.002 0.064 
0,10,20,30  50 eq 0.116 0.117 0.117 0.065 0.462 
0,10,20,30  50 dc 0.104 0.104 0.106 0.057 0.452 
0,10,20,30  50 ac 0.109 0.110 0.110 0.062 0.443 
Worst Case Scenario        
0,0,20,20 25 eq 0.592 0.592 0.593 0.490 0.873 
0,0,20,20 25 dc 0.550 0.550 0.550 0.448 0.843 
0,0,20,20 25 ac 0.566 0.566 0.566 0.455 0.857 
0,0,20,20 50 eq 0.986 0.987 0.987 0.975 0.998 
0,0,20,20 50 dc 0.978 0.979 0.979 0.967 0.996 
0,0,20,20 50 ac 0.984 0.984 0.984 0.972 0.997 
eq = equal sample sizes, ac = ascending sample sizes, dc = descending sample sizes 
Note: Power rates for NC tests cannot be compared to other power rates as this procedure was 
unable to control FWER within a reasonable margin of error of α.   
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Table 11: All-pairs power rates for pure power, partial power and worst case scenario mean 
configurations for k = 7 
 
Mean Configuration n n config. CB HM HB BF NC 
Pure Power        
0,1.5,…,9 25 eq 0.002 0.085 0.192 0.000 0.192 
0,1.5,…,9 25 dc 0.002 0.091 0.205 0.001 0.205 
0,1.5,…,9 25 ac 0.000 0.071 0.179 0.000 0.179 
0,1.5,…,9 50 eq 0.199 0.663 0.711 0.135 0.711 
0,1.5,…,9 50 dc 0.191 0.640 0.697 0.122 0.697 
0,1.5,…,9 50 ac 0.175 0.634 0.692 0.113 0.692 
0,2,…,12  25 eq 0.000 0.035 0.095 0.000 0.095 
0,2,…,12  25 dc 0.001 0.038 0.098 0.000 0.098 
0,2,…,12  25 ac 0.004 0.025 0.087 0.000 0.087 
0,2,…,12  50 eq 0.057 0.365 0.433 0.032 0.433 
0,2,…,12  50 dc 0.050 0.332 0.399 0.027 0.399 
0,2,…,12  50 ac 0.050 0.332 0.399 0.027 0.399 
0,2.5,…,15 25 eq 0.000 0.010 0.033 0.000 0.033 
0,2.5,…,15 25 dc 0.000 0.010 0.035 0.000 0.035 
0,2.5,…,15 25 ac 0.000 0.007 0.029 0.000 0.029 
0,2.5,…,15 50 eq 0.009 0.124 0.170 0.005 0.170 
0,2.5,…,15 50 dc 0.008 0.107 0.151 0.004 0.151 
0,2.5,…,15 50 ac 0.009 0.110 0.154 0.003 0.154 
Partial Power        
0,0,0,0,0,20,20  25 eq 0.034 0.042 0.043 0.010 0.627 
0,0,0,0,0,20,20  25 dc 0.045 0.053 0.054 0.013 0.656 
0,0,0,0,0,20,20 25 ac 0.016 0.020 0.021 0.003 0.516 
0,0,0,0,0,20,20  50 eq 0.821 0.835 0.835 0.736 0.991 
0,0,0,0,0,20,20 50 dc 0.812 0.828 0.828 0.722 0.986 
0,0,0,0,0,20,20 50 ac 0.726 0.745 0.745 0.623 0.979 
0,5,…,30 25 eq 0.000 0.000 0.000 0.000 0.000 
0,5,…,30 25 dc 0.000 0.000 0.000 0.000 0.001 
0,5,…,30 25 ac 0.000 0.000 0.000 0.000 0.000 
0,5,…,30 50 eq 0.000 0.000 0.000 0.000 0.006 
0,5,…,30 50 dc 0.000 0.000 0.000 0.000 0.006 
0,5,…,30 50 ac 0.000 0.000 0.000 0.000 0.005 
Worst Case Scenario        
0,0,0,20,20,20,20 25 eq 0.035 0.035 0.035 0.010 0.633 
0,0,0,20,20,20,20 25 dc 0.033 0.033 0.033 0.012 0.629 
0,0,0,20,20,20,20 25 ac 0.022 0.022 0.022 0.560 0.602 
0,0,0,20,20,20,20 50 eq 0.843 0.843 0.843 0.761 0.993 
0,0,0,20,20,20,20 50 dc 0.763 0.763 0.763 0.665 0.983 
0,0,0,20,20,20,20 50 ac 0.794 0.795 0.795 0.699 0.987 
eq = equal sample sizes, ac = ascending sample sizes, dc = descending sample sizes 
Note: Power rates for NC tests cannot be compared to other power rates as this procedure was 
unable to control FWER within a reasonable margin of error of α.   
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Table 12: All-pairs power rates for pure power, partial power and worst case scenario mean 
configurations for k = 10 
 
Mean Configuration n n config. CB HM HB BF NC 
Pure Power        
0,1,…,9 25 eq 0.000 0.009 0.083 0.000 0.083 
0,1,…,9 25 dc 0.000 0.007 0.081 0.000 0.081 
0,1,…,9 25 ac 0.000 0.007 0.084 0.000 0.084 
0,1,…,9 50 eq 0.045 0.509 0.607 0.022 0.607 
0,1,…,9 50 dc 0.040 0.491 0.597 0.017 0.597 
0,1,…,9 50 ac 0.043 0.495 0.601 0.020 0.601 
0,1.5,…,13.5 25 eq 0.000 0.001 0.018 0.000 0.018 
0,1.5,…,13.5 25 dc 0.000 0.001 0.016 0.000 0.016 
0,1.5,…,13.5 25 ac 0.000 0.001 0.014 0.000 0.014 
0,1.5,…,13.5 50 eq 0.001 0.096 0.174 0.000 0.174 
0,1.5,…,13.5 50 dc 0.002 0.095 0.166 0.000 0.166 
0,1.5,…,13.5 50 ac 0.001 0.092 0.162 0.001 0.162 
0,2,…,18 25 eq 0.000 0.000 0.006 0.000 0.006 
0,2,…,18 25 dc 0.000 0.000 0.001 0.000 0.001 
0,2,…,18 25 ac 0.000 0.000 0.002 0.000 0.002 
0,2,…,18 50 eq 0.000 0.003 0.011 0.000 0.011 
0,2,…,18 50 dc 0.000 0.004 0.013 0.000 0.013 
0,2,…,18 50 ac 0.000 0.005 0.015 0.000 0.015 
Partial Power        
0,0,0,0,0,0,0,0,0,20 25 eq 0.000 0.004 0.005 0.000 0.327 
0,0,0,0,0,0,0,0,0,20 25 dc 0.000 0.003 0.005 0.000 0.367 
0,0,0,0,0,0,0,0,0,20 25 ac 0.000 0.002 0.003 0.000 0.308 
0,0,0,0,0,0,0,0,0,20 50 eq 0.466 0.680 0.682 0.330 0.974 
0,0,0,0,0,0,0,0,0,20 50 dc 0.474 0.681 0.683 0.338 0.975 
0,0,0,0,0,0,0,0,0,20 50 ac 0.388 0.605 0.607 0.258 0.960 
0,3,…,27 25 eq 0.000 0.000 0.000 0.000 0.000 
0,3,…,27 25 dc 0.000 0.000 0.000 0.000 0.000 
0,3,…,27 25 ac 0.000 0.000 0.000 0.000 0.000 
0,3,…,27 50 eq 0.000 0.000 0.000 0.000 0.000 
0,3,…,27 50 dc 0.000 0.000 0.000 0.000 0.000 
0,3,…,27 50 ac 0.000 0.000 0.000 0.000 0.000 
Worst Case Scenario        
0,0,0,0,0,20,20,20,20,20 25 eq 0.000 0.000 0.000 0.000 0.434 
0,0,0,0,0,20,20,20,20,20 25 dc 0.000 0.000 0.000 0.000 0.386 
0,0,0,0,0,20,20,20,20,20 25 ac 0.000 0.000 0.000 0.000 0.397 
0,0,0,0,0,20,20,20,20,20 50 eq 0.546 0.546 0.546 0.404 0.982 
0,0,0,0,0,20,20,20,20,20 50 dc 0.490 0.490 0.490 0.346 0.977 
0,0,0,0,0,20,20,20,20,20 50 ac 0.480 0.480 0.480 0.345 0.976 
eq = equal sample sizes, ac = ascending sample sizes, dc = descending sample sizes 
Note: Power rates for NC tests cannot be compared to other power rates as this procedure was 
unable to control FWER within a reasonable margin of error of α. 


