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Abstract 

The study of deductive reasoning has been a major research paradigm in psychology 

for decades. Recent additions to this literature have focused heavily on 

neuropsychological evidence. Such a practice is useful for identifying regions 

associated with particular functions, but fails to clearly define the specific interactions 

and timescale of these functions. Computational modelling provides a method for 

creating different cognitive architectures for simulating deductive processes, and 

ultimately determining which architectures are capable of modelling human reasoning. 

This thesis details a computational model for solving categorical syllogisms utilizing a 

fractionated system of brain regions. Lesions are applied to formal and heuristic 

systems to simulate accuracy and reaction time data for bi-lateral parietal and 

frontotemporal patients. The model successfully combines belief-bias and other known 

cognitive biases with a mental models formal approach to recreate the congruency by 

group effect present in the human data. Implications are drawn to major theories of 

reasoning.  
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Introduction 

Reasoning is the cognitive activity of combining and processing given information 

to generate inferences. Inferences take one or more propositional statements 

comprised of the given information (the premises) to provide justification for accepting 

some conclusion. When the given information presents a complete picture of a situation 

this is ideally a deductive reasoning process. Deductive reasoning – sometimes referred 

to as top-down logic – applies general law-like rules to information in order to build 

down to or establish what must be true about a specific instance. In contrast, inductive 

reasoning (bottom-up logic) takes specific instances of information and attempts to build 

up to possible general rules. The conclusions of inductive reasoning are always open 

the possibility of being wrong due to generalization from an incomplete problem space. 

Deductive arguments, however, can be deterministically evaluated in terms of their 

validity. If a deductive argument is valid, the conclusion is a logical entailment of the 

premises which must be true assuming that the premises themselves are true. 

As an example of inductive reasoning, if one has observed a large number 

swans to all be white then one may take these specific experiences to suggest a 

general rule that all swans are white. In deductive reasoning, a general rule may state 

that all swans are white. If a creature is a swan, it logically and unavoidably follows that 

the creature is white. This is true provided that the general rule is actually correct and 

not built from inductive reasoning processes.  

Deductive reasoning possesses a special quality where its inferences are 

separable from its content. We can do this with the above argument by representing 

swans with X and the property of whiteness with Y. If All X are Y, then if some token 

creature Z is X it must also be Y. The ability to separate these conclusions from their 

content is what, according to Goel (2009), makes deductive reasoning a good candidate 

for being a self-contained higher-level cognitive reasoning module. 
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1.1 Single or Multiple Module Reasoning 

Theories regarding the structure of reasoning processes in the brain can invoke 

single deductive reasoning modules, or a collection of modules. Mental logic (Rips, 

1994) and mental models (Bucciarelli & Johnson-Laird, 1999; Johnson-Laird, 1983) 

represent two prominent theories of single deductive reasoning modules. The two 

theories diverge in how they represent information, and the neural networks these 

representations would invoke. Mental logic theories suggest reasoners understand the 

inferential role of logical terms (all, some, no, if, and, or, etc.) and that a linguistic 

representation of these terms is what drives processing. As the procedure for mental 

logic involves rules of inference applied to syntactic strings, it should demonstrate 

engagement of left prefrontal and superior temporal brain regions for language-based 

information processing (Goel, 2009). In contrast, mental model theories suggest we 

build spatially-based mental representations of potential situations to comprehend and 

process logic problems. Results supporting a mental model theory would instead show 

recruitment of a visuospatial (parietal/occipital) network (Barbey & Barsalou, 2009; 

Goel, 2005). 

 If reasoning in the human brain is instead characterized as a collection of 

modules, this collection may cooperate to perform inductive heuristic-based reasoning 

on information present in the problem, as suggested by the simple heuristics 

(Gigerenzer & Todd, 1999) paradigm. However, it may instead be organized so that 

specific modules in the collection to respond to particular cues in a somewhat reflexive 

manner suggested by the massive modularity (Fodor, 1983; Carruthers, 2006) 

paradigm.  

Under the simple heuristics view, all reasoning is performed by an interconnected 

collection of fast and frugal heuristics. Gigerenzer and Todd (1999) specify three sets of 

heuristics which together form a computationally cheap solution for any reasoning 

problem. The first set involves heuristics for guiding the search for alternatives of choice 

and their relevant information. The second involves heuristics for stopping the search 

procedure. The last involves heuristics for actually making the decision from among the 

alternatives found. Simple heuristics appeal to evolution in their genesis; it is said 
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evolution would “seize upon informative environmental dependencies […] and exploit 

them with specific heuristics” (Gigerenzer & Todd, 1999) which may either be new, or 

the result of recombining or nesting old heuristics. 

Massive modularity suggests the reasoning mind is a fractionated collection of 

specialized reasoning modules tuned to specific tasks. Evolutionary psychologists 

supporting a highly modular view of the mind (Cosmides & Tooby, 1992; Pinker 1997; 

Sperber, 1994) suggest evolution incrementally added to this repertoire of reasoning 

modules: this includes modules for  “semantic inference, communicative pragmatics, 

social exchange, intuitive numbers, spatial relations, naïve physics, and biomechanical 

motion” (Barbey & Barsalou, 2009). These modules apply a small number of inputs to a 

limited internal database in the generation of output. In processing only a limited range 

of input such modules are said to be informationally encapsulated. This is bears the 

consequence of cognitive impenetrability, meaning that we are not consciously aware of 

nor able to influence their processing. To exhibit these traits, strong modular views 

predict neural systems of reasoning to be highly localized. 

These two divergent theories arise from a similar desire to overcome the problem 

of computational intractability. Simon (1983; 1991) introduces the notion of bounded 

rationality in stating that finding an optimal solution to decision-making problems (such 

as through pure deduction) is too expensive. We have limited time, memory, and 

processing ability with which to make decisions, and as such we cannot evaluate all 

possible alternatives. If finding the best solution is unfeasible, we must make due with 

approximate methods for quickly finding solutions that are good enough. Combining the 

words “satisfy” and “suffice”, Simon (1955) terms this approach satisficing. This 

represents the idea that once an alternative is found that is appealing enough to meet 

some aspiration level we stop our search and go with that alternative.  

Gigerenzer and Todd (1999) incorporate this satisficing heuristic among others in 

the decision-making process to limit the problem space – the amount of information 

considered – and arrive at cheap yet effective decisions. The massively modular 

approach limits the problem space using specialized modules with limited 

interconnectivity to respond to particular cues and information in a particular way 



4 
 

without analyzing all possible information. However, in an attempt to reduce 

computational complexity and facilitate fast decision-making, these two views have 

seemingly given away the ability to try and find exact solutions altogether – the capacity 

for deductive reasoning. The massively modular account fragments and isolates the 

reasoning mind to the point where deliberate analytical investigation becomes 

insupportable. Meanwhile, a reasoning system built purely from heuristics seems only 

capable of supporting a sense of intuition guided by environmental cues. Whether our 

reasoning is driven by rigid and reflexive responding in a cognitively impenetrable way, 

or through purely inductive intuition, neither of these approaches appear to be coherent 

with our normative views of rationality. Namely, that a rational choice is not simply a 

selection, but a selection for a reason (Bermudez, 2002), which implies reasoning is a 

thoughtful process, unlike that of an eye-blink reflex (Goel, 2009). 
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1.2 Dual-system theory 

Dual-system theory (Evans 2003; Evans & Over, 1996; Stanovich 2004) provides 

space for the collective module approaches under the branding of system 1, and 

deductive reasoning processes like mental models or mental logic under system 2. 

System 1 provides a collection of parallel-processes which have been considered fast, 

automatic, or associative. This system can contain rigid and evolutionarily-specified 

processing modules similar to the informationally encapsulated Fodorian modules. It 

can also encompass the fast and associative heuristics processing system (De Neys, 

2006). Formal rules, stimulus discrimination, and decision-making choices practiced to 

the point of automaticity (Kahneman & Klein, 2009) can also be said to be a part of 

System 1. As such, later clarifications of dual-system theory (Evans & Stanovich, 2013; 

Stanovich 2011) suggest system 1 is considered as a plurality of autonomous systems. 

System 2, by contrast, is a slower serial process that is more often rule-based. It 

is far more limited in its processing capacity in requiring considerable conscious 

thought, effort, and working memory resources. It is through this system that true logic-

based reasoning approaches are executed. The two systems are sometimes supposed 

to have a default-interventionist (Evans 2007) structure, which specifies that System 1’s 

intuitive responses are the default upon which System 2 may or may not intervene. 

Other theorists (Barbey & Sloman, 2007) suggest a parallel-cooperative structure with 

each system providing its input with a following conflict resolution process. The current 

variation in dual-system theory is quite large; in its most explicit state, each system may 

be ascribed numerous attributes including the characterization of system 1 as the 

evolutionarily “old mind”, and system 2 as the “new mind”. At its more conservative side, 

System 1 represents various autonomous processes while System 2 requires 

substantial working memory resources and hypothetical thinking (e.g. thought 

experiments/model building) – the latter demand which Stanovich (2011) calls cognitive 

decoupling. 
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1.3 Current Neuropsychological Data 

 Current neuropsychological findings from brain imaging data (Goel et al., 2000) 

have shown a number of divisions in the networks recruited when reasoning. These 

differences emerge depending upon whether or not the content of problem is familiar to 

reasoners, whether the content is in conflict with held beliefs or not, and differing when 

the reasoning problem is presented in an informationally complete or incomplete 

manner. These findings undermine the acceptance of a single reasoning system like 

mental models or mental logic, and suggest a diverse collection of brain regions 

involved in logical reasoning.   

 Common methodology employed in past research investigating the neural basis 

of reasoning, such as having subjects solve puzzles or perform other tasks while 

undergoing brain imaging, is good at identifying neural systems involved in reasoning, 

but it does little explain the interactions between these systems. A double-dissociation 

in lesion studies can tell us that some brain area is important to some task A but not B, 

and that another area is important to task B but not A; this brings the suggestion that 

these areas support some different underlying mental function (Dunn & Kirsner, 2003) – 

though precisely how an area contributes, or the time-scale or steps of the function 

generally can be difficult to determine. These questions remain open. 

Computational modelling is one way of representing a complex interaction of 

different modules to answer these questions. Different models can more precisely 

describe how these areas may function, and their results can be compared to 

neuropsychological data or the data of other computational models. The present thesis 

provides a computational model of deductive reasoning along the lines indicated by 

imaging data, and tests its predictions by comparing how it performs (in terms of 

accuracy and reaction time) under conditions of simulated lesion with that of archival 

lesion data from the Vietnam head injury study (VHIS).   

 Imaging studies have shown a division in the brain networks recruited depending 

upon whether the material is familiar or not, otherwise known as the content effect (Goel 

et al., 2000). In the cited study, eleven subjects solved categorical syllogisms (a type of 

deductive reasoning problem) by indicating the problems to be valid or invalid; 
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propositional statements possessed familiar and meaningful content (e.g. “All swans are 

white”) or unfamiliar content (e.g. “All X are Y”). A left-lateralized frontal-temporal 

language system (BA 21/22/47) appears to preferentially process familiar and 

conceptually-coherent material (see Figure 1), while a bilateral parietal visuospatial 

system (BA 7/40) processes unfamiliar or content-free material (see Figure 2). In both 

familiar and unfamiliar conditions the left prefrontal cortex is also active, evidencing its 

value to general reasoning process. 

 It has been described that the validity of deductive reasoning problems are 

independent of their content. As the activation patterns in the brain diverge depending 

upon the content of the syllogisms, this suggests purely deductive processes – such as 

through the use of only mental models or mental logic processes – fail to fully describe 

reasoning over these types of problems. Furthermore, while mental models theory 

predicts visuospatial systems to be necessary and sufficient conditions for deductive 

reasoning and mental logic theories predicts linguistic systems to be necessary and 

sufficient, these predictions fail to hold across conditions of familiar and unfamiliar 

content. Dual-system theories thus far would still hold by relegating familiar content 

activations to System 1 heuristic operations and the bi-lateral parietal recruitment to 

System 2 rule-based operations. 

Reasoning with familiar material       Reasoning with unfamiliar material  

 

Figure 1          Figure 2   

 (reproduced from Goel et al., 2000) 
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 Another aspect to the effect of content on logical reasoning is that subject 

performance is significantly higher when the deductive validity of the problem is 

consistent with held beliefs, and considerably lower when it is not. A valid conclusion 

suggesting “All men are mortal” would be congruent with held beliefs, while a valid 

conclusion stating “All men are evil” would, hopefully, contradict held beliefs. Inhibitory 

or incongruent trials, where the validity of the problem does not match held beliefs, 

show different patterns of activation depending upon the success of the subject. When 

conflict between logical inference and belief is detected, belief-bias responding must be 

inhibited and formal reasoning mechanisms are to be given preference. Conflict 

detection is associated with activation of right lateral/dorsal lateral prefrontal cortex (BA 

45, 46) (see Figure 3; Goel & Dolan, 2003), whereas belief-biased responding is 

associated with ventromedial prefrontal cortex activation. 

  

Figure 3 

 The final aspect of the deductive reasoning system to be discussed involves a 

hemispheric asymmetry in reasoning with complete versus incomplete information. Goel 

et al. (2006) utilized a 3-term transitive inference task to test neurological patients with 

focal unilateral frontal lobe lesions. A double dissociation was found where patients with 

lesions to the left prefrontal cortex were selectively impaired on complete (determinate) 

trials, and patients with right prefrontal cortex lesions were impaired in incomplete 

(indeterminate) trials (see Figure 4). Figure 5 displays the behavioural results for this 

study (Goel et al., 2006). This functional dissociation between left and right prefrontal 
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cortex is difficult to reconcile with previously explored theories of deductive reasoning; 

they do not necessitate neuronal system differences depending upon complete or 

incomplete information. 

 

Figure 4 (reproduced Goel et al., 2006) 

 

Figure 5 (reproduced Goel et al., 2006) 

Goel (2009) puts forth a new framework for conceptualizing the deductive 

reasoning system to better explain current neuropsychological data, and break down 

the dichotomous implications of many dual mechanism theories. Termed as a 
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fractionated system of deductive reasoning, it combines a left prefrontal cortex general 

pattern completer with right prefrontal cortex systems for conflict detection and 

uncertainty maintenance; it includes a left frontal-temporal system for heuristic or 

conceptual processing, and a bilateral parietal system for formal operations (see Figure 

6). These divisions may of course not be the complete list of what may be found for the 

deductive reasoning system, but it is a step towards a more dynamic and interactive 

connection of systems than can be provided by any other account – including dual 

mechanism theories. In featuring a number of systems able to inhibit or facilitate the 

activity of others, a much greater degree of variability in performance can be generated. 

This is particularly important for explaining deductive reasoning processes for solving 

categorical syllogisms, as a study by Bucciarelli and Johnson-Laird (1999) found the 

best participant to be correct on 95% of problems, and the worst to be correct only 25% 

of the time. 

  Figure 6 

Categorical syllogisms are the type of reasoning problem for which control and 

patient data will be used to test the computational model. They are one type of 

deductive reasoning problem as they provide an informationally complete picture of the 

problem space. Categorical syllogisms consist of two premises and a conclusion. Each 

premise establishes relations between two terms (x and y) in one four ‘moods’ (A, E, I or 

O) where A = All x are y, E = No x are y, I = Some x are y, and O = Some x are not y. A 
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& E are universal moods describing how all x relate to y, while I & O are particular 

moods describing only how some x relate to y. Each premise must contain one ‘end 

term’ (a or c) and one ‘middle term’ (b), where the middle term is used to logically 

connect the premises so that the conclusion can state some relation between the two 

‘end terms’ using one of the four syllogistic moods. There are also four figures which 

represent the possible orders in which the terms may occur in the premises. This allows 

for a total of 256 distinct forms for the categorical syllogism. In the example below, the 

premises and conclusion are set in the A mood. The middle term (B – the term present 

in both premises) allows us to determine relations between pigeons (C) and flight (A). If 

all birds are capable of flight, and all pigeons are birds, then all pigeons can fly. 

Example Categorical Syllogism:      Abstract Terms 

Premise 1 (Mood A): All birds can fly   All B are A 

Premise 2 (Mood A):  All pigeons are birds  All C are B 

Conclusion (Mood A):  All pigeons can fly   All C are A 

 The goal of this thesis is to create a computational model of this fractionated 

deductive reasoning system for solving categorical syllogisms. Accomplishing this would 

provide some evidence for such a system to be computationally feasible in the 

explanation of human performance. This is done by modelling the performance of 

neurological patients as well as healthy controls on syllogistic tasks. In simulating 

fluctuations of performance due to brain damage or belief-bias it could be argued a 

fractionated reasoning system can support deductive reasoning processes. The 

performance of patients and controls from archival VHIS data and that provided by the 

computational model will be statistically compared on a number of factors.  

Limitations with the patient data restrict the model versus data comparisons to 

control groups, frontotemporal lesion groups (heuristic system), and bilateral parietal 

lesion groups (formal system). Overall differences in accuracy and reaction time due to 

lesion group will be examined. The formal system will employ the mental models 

approach, which bears a strong prediction that single model problems will be solved 

faster and easier than multiple model problems (Johnson-Laird, 1983). This approach 
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will be provided some verification by having the computational model’s estimation of 

which problems are single or multiple model problems tested to see if this distinction 

yields significantly different accuracies and reaction times for model and human data. 

Explaining the difference between the two is difficult without explaining the process, so 

this discussion is reserved for section 4.1. 

As the formal and heuristic systems are the primary focus of this investigation, 

the effects of a conclusion’s validity being congruent or incongruent with held beliefs 

(the congruency effect) is of primary importance. As an example, the proposition ‘Some 

males are children’ would be congruent with a person’s held beliefs, while the statement 

‘All dogs can fly’ would be incongruent with belief. Belief-bias will be examined to see if 

the strength of its effect changes due to lesion grouping.  

Lastly, the wide variability of comparable individuals’ performance on categorical 

syllogisms suggests the possibility of differences in cognitive processing style, with 

some reasoners being slower and more deliberately analytical, while others’ decision-

making is more quickly decided by heuristics and biases. Previous research suggests 

that potential interaction effects of congruency with the dependent variables of accuracy 

and reaction time may be moderated by overall differences in cognitive style between 

participants (Stupple, Ball, Evans, & Kamal-Smith, 2011). Highly logical subjects are 

thought to be more likely to inhibit belief bias effects and take more time to solve belief-

logic conflict problems, especially for problem with conclusions that are believable but 

invalid. The reaction time prediction investigated by Stupple et al. (2011) will be 

investigated for the human data only, as the computational model will provide no 

implementation for differences in cognitive processing style. Programming such a 

device would demand numerous complicated assumptions beyond the scope of the 

present study.  
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1.4 What is 4CAPS 

The computational model presented in this thesis is built on top of 4CAPS and 

written in LISP – a programming language popular for use in the design of artificial 

intelligence systems. The Collaborative Activation-based Production System (CAPS) is 

designed to model high-level cognitive functions at the cortical level. It has been used 

for simulating sentence comprehension, mental rotation, and problem-solving tasks 

such as the Tower of London and the Tower of Hanoi (Just & Varma, 2007; Varma, 

2006). 4CAPS models the cortical constraints of information processing across multiple 

brain areas. It does this using a hybrid symbolic-connectionist architecture. The 

symbolic aspect is apparent in its use of production systems to represent cognitive 

processes. Production systems consist of an ‘if-then’ condition-action pair. If a collection 

of variables are storing particular values, then a number of actions will take place. A 

visual cat-detection module may have conditions that if it is furry, has a tail, and has 

pointed ears, then signal it is a cat. Working memory elements (WMEs) are used by 

4CAPS to store a list of variables to be searched through by productions. When all the 

conditions of a production are satisfied it may modify WMEs or generate new WMEs. All 

productions are fired in parallel, where one check of all productions is considered to be 

one program cycle. Production systems are excellent for performing deductive tasks, 

though on their own there is little room for variability. 

It is the connectionist aspect which provides these additional degrees of freedom. 

Individual WMEs are to be understood as a neural cluster supporting some cognitive 

representation (e.g. a word or object) which possesses its own firing rate. This activity 

level, typically varying from 0 to 1, can be increased or decreased similar to excitation 

and inhibition as a result of modification by conditionally satisfied productions. The 

spreading of activation from one WME to another (or many-to-many, etc.) will often 

have a stronger effect if the initial set of WMEs are at a higher activity level. To continue 

using the example of a cat detection module, the presence of the various cat-like 

features mentioned may have an additive excitatory effect on a cat-detector WME, while 

unlikely features being present (like having a hard shell) would fire productions that 
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inhibit this cat-detector WME. If the sum of these activations were above some minimal 

threshold, another if-then production may signal the presence of a cat (see Figure 7). 

    

 

 

 

 

Figure 7 

How these activation levels change do not depend only upon other working 

memory elements. 4CAPS is intended to model the interaction between multiple brain 

areas to facilitate cognitive functions. That being the case, the total level of activation 

within any particular center cannot exceed the cortical supply or capacity of that area. 

When this capacity is exceeded, the activation level of all WMEs will be scaled down to 

match cortical supply. Since the conditions of productions can include not just the 

content of a WMEs values – it may also require the WMEs be at some minimal 

activation level to be detected – a scaling down of activation may stop some 

productions from firing when they would have otherwise. This is how 4CAPS can 

simulate human errors, forgetting information, or a slowing down of processing under 

cases of computational overload.  

All centers of the brain in a 4CAPS system have their own activation capacity. 

This capacity can be reduced to simulate impairment by a brain lesion. This will result in 

the center having to work harder and be more likely to introduce errors. Different brain 

areas can also share computational resources in situations of high computational 

demand. However, when a different brain center is forced to take on the typical 

computations of another it may not be as efficient in its processing. WMEs can be 

organized under classes where each brain area can have its own specified degree of 

specialization for processing these classes. An area with a specialization level of 0.5 will 

consume twice the activation to perform the same activity as an area with a 1.0 

specialization level. For the sake of simplicity and the avoidance of unwarranted 

assumptions, the modules of this current computational model are functionally distinct. 



15 
 

While the areas certainly influence each other’s processing through excitation and 

inhibition, one region will not attempt to take on the functional role of another if it 

becomes overloaded. 

In summary, 4CAPS is a cognitive neuro-architecture for modelling cortical 

constraints on information processing. Its mechanisms combine deterministic production 

systems with analog activation levels. Group differences can be represented by 

variations in the processing capacities of brain areas and the effectiveness of their 

intercommunication. These differences alter the connection weights between nodes with 

the result that WMEs may fail to reach critical thresholds. This architecture allows 

4CAPS to simulate human error under cases of computational overload (Varma, 2014). 
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Methods 

2.1 Study Population 

 The human data for this thesis comes from archival data collected from male 

patients and controls as part of the Vietnam head injury study (VHIS – for more detail 

see Raymont, Salazar, Krueger, & Grafman, 2011). All patients received penetrating 

head injuries during service at Vietnam in the 1960s. To be included in the selection for 

the patient groups subjects needed to be above a minimal threshold of damage in key 

Brodmann areas (BA) identified by previous research; demonstrating a 10% proportion 

of damage in a single critical BA, or combined across the few relevant BAs for that 

system (see Appendix A). To be included in a particular functional grouping, patients 

were also required not to possess significant damage in another key functional system. 

Parietal patients, for example, could not be significantly damaged in key left-

frontotemporal regions. For patient groups requiring damage to only the left 

hemisphere, those with damage to the right hemisphere were excluded. In accordance 

with the findings of Goel et al. (2000) on neural dissociations due to familiar and 

unfamiliar content, the parietal group required damage in either or both hemispheres in 

BA 7 and BA 40 (Goel et al., 2000), while the frontal-temporal group needed to show 

damage in key left-hemisphere areas (BAs 21/22/47).  

The number of patients surviving selection for uncertainty maintenance (BAs 44/47) and 

conflict detection systems (BAs 45/46) was extremely low due to overlapping damage in 

other key areas, this was especially true for damage being present in both of these 

systems as they are close in proximity. Due to these selection difficulties, statistical 

comparisons of performance provided below was restricted to comparisons of the 

formal and heuristic systems with a primary focus on differences between congruent 

and incongruent syllogisms. Patients who did not respond to 33% or more of the 

syllogisms were also excluded. The demographics for the subject groups (see Appendix 

B) concerning age, level of education, and measures of memory and intelligence 

showed no significant differences among subject groupings. Figures 8 and 9 show 

overlay images illustrating the areas of damage for the final frontotemporal and parietal 
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groups, where lighter colored regions show areas of greater damage overlap across 

patients.  

 

 Figure 8 Bilateral Parietal Lesion Group

 

 Figure 9 Left Frontotemporal Lesion Group 
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2.2 Original Task 

In the task relevant to this study, brain damaged patients and healthy controls 

solved 19 content-free and content-imbued categorical syllogisms. While the responses 

in the content-free conditions were used in adjusting parameters of the model, the 

thesis focuses on belief-bias, and as such the subsequent analyses only concern the 

content-imbued data. Participants were instructed to determine whether or not the given 

conclusion followed logically from the two premises (i.e. if it was logically valid) with the 

assumption that the premises are true. Participants were told to press the ‘C’ key if they 

believed the conclusion to be valid, and the ‘M’ key if they thought it to be invalid. For 

each trial, the premises and conclusion were presented simultaneously, and they 

remained on screen until a response was indicated, which advanced them to the next 

syllogism. There was no limit to the amount of allowed time for a particular trial. Two 

blocks of problems were presented, one consisting of syllogisms and the other an equal 

number of operators (which are not syllogisms), where the trials within each block were 

randomized to prevent order effects. Afterwards, ratings indicating the general 

believability of the conclusions solely on the basis of their content were also collected 

on a scale from 1 (very unbelievable) to 5 (very believable). 

  



19 
 

Human Data 

3.1 Human Data Results 

 In an initial analysis of the data, two separate one-way ANOVAs were conducted 

to examine the basic relationship between lesion group (IV) and one of the two 

dependent variables: these variables consisted of reaction time measured in 

milliseconds, and accuracy as a proportion ranging from zero to one. The arcsine 

transformation [arcsine(√x)] was applied to all accuracy data in this study; this 

transformation is one method for addressing the problems associated with proportions 

over count based data, particularly those where values may fall below 0.3 or above 0.7. 

Where such extreme values may occur, in a variable bounded between zero and one, 

problems may emerge such as in the interpretation of confidence intervals, which may 

extend beyond this range and become meaningless. This transformation pulls out the 

ends of the distribution and provides a new range of π; it also provides correction for the 

occasionally observed departures from homogeneity of variance in the untransformed 

accuracy data. Key statistics such as F ratios or their associated p-values are derived 

from transformed variables, though graphs and descriptive statistics such as means or 

standard errors are expressed in untransformed terms for ease of interpretation. 

 The preliminary one-way ANOVA tests investigated the effect of membership to a 

lesion group on performance. Lesion group was divided into three levels: the control 

group, those with bilateral parietal lobe lesions, and those with left frontotemporal 

lesions. These one-way ANOVAs were performed on all syllogisms- across congruence 

for content-imbued syllogisms. The accuracies of subjects did not differ significantly due 

to lesion group, F(2, 69) = 0.59, p = .56. The effect of group membership on reaction 

time was marginally significant, F(2, 69) = 2.67, p = .077, ηp2 = .07. This effect showed 

a trend of increased reaction time for the frontotemporal lesion group (M = 24904, SE = 

2033) compared to the control group (M = 19658, SE = 1206).  

The results of the initial task by group analyses are graphically summarized by 

figures 10 and 11 using untransformed values. Other known factors may obscure 

differences, such as variation in a syllogism’s representational complexity, and the 

effects of congruence (or incongruence) between belief and a syllogism’s deductive 
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validity. Therefore, despite limited results at a coarse level of analysis, differences due 

to lesion group are probed further. 

 Figure 10

 Figure 11     

 Two-factor 2x3 repeated measures ANOVAs were conducted; this consisted of a 

between-subjects IV of lesion group with the same three levels, and a within-subjects 

factor of model complexity. Model complexity consisted of two levels, single or multiple 

modelling, where single model problems can typically be solved from an immediate 

evaluation of the premises, and multiple model problems typically require representation 

of a number of alternate situations to properly evaluate a conclusion’s deductive validity. 

Determining whether a problem was a single or multiple model problem was decided by 

the computational model’s representational output for the task syllogisms.  
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 The first two-factor ANOVA, for the dependent variable of accuracy, 

demonstrated a significant main effect of model complexity on problem accuracy, F(1, 

69) = 45.21, p < .001, ηp2 = .40. Humans were more accurate with single-model 

problems (M = .78, SE = .01), than for multiple-model problems (M = .63, SE = .02). The 

second two-factor ANOVA, conducted for the dependent variable of reaction time, also 

showed a significant main effect of model complexity on reaction time, F(1, 69) = 8.57, p 

= .005, ηp2 = .11. Humans took less time to solve single-model problems (M = 21072, 

SE = 962), than they needed to solve multiple-model problems (M = 23219, SE = 1150).  

 Figure 12

 Figure 13     

 The next set of analyses investigated the relationship between congruency (IV) 

and lesion group (IV), on accuracy and reaction time (DVs) in two sets of 2x3 two-factor 

repeated measures ANOVAs. For the two levels of congruency, congruent and 

incongruent syllogisms, a problem is congruent in one of two cases: if the conclusion is 
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believable and deductively valid, or the conclusion is unbelievable and deductively 

invalid. On the contrary, a problem is incongruent when the believability of the 

conclusion and its deductive validity are in disagreement. 

 The first 2x3 two-factor repeated measures ANOVA investigates the DV of 

accuracy. A significant main effect of congruency on problem accuracy was observed, 

F(1, 69) = 86.96, p < .001, ηp2 = .56. Subjects demonstrated higher accuracy levels with 

congruent syllogisms (M = .85, SE = .02) than with incongruent syllogisms (M = .61, SE 

= .03). A significant interaction between congruency and group on accuracy was 

observed, F(2, 69) = 3.23, p = .046. Finding the source of this interaction was difficult, 

so post-hoc analysis using the LSD test was used to find the group differences most 

likely to account for the interaction. The frontotemporal group showed the strongest 

differences for the congruent condition, displaying mean accuracies which trended 

lower than the parietal lesion group (p = .18), and the control group (p = .094). The 

frontotemporal group appears to be impaired on congruent syllogisms (M = .80, SE 

= .03) compared to the control group (M = .87, SE = .02), and the parietal lesion group 

(M = .89, SE = .03). For the incongruent condition, the parietal lesion group (M = .54, 

SE = .05) showed a trend of impaired performance compared to frontotemporal group 

(M = .65, SE = .05, p = .15), and the control group (M = .62, SE = .04, p = .18) in terms 

of accuracy. Figure 14 provides a depiction of this interaction for the human data. 

  Figure 14 
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 The second two-factor repeated measures ANOVA, utilizing the DV of reaction 

time, displayed a significant main effect of congruency on reaction time, F(1, 69) = 

19.75, p < .001, ηp2 = .22. Belief-congruent syllogisms were solved faster (M = 20115, 

SE = 1004) than belief-incongruent syllogisms (M = 23429, SE = 1080). No significant 

interaction was found between congruency and lesion group for the DV of reaction time, 

F(2, 69) = 1.07, p = .349. 

 Figure 15

 Figure 16 

 The final set of ANOVAs are defined by a finer breakdown of the congruency 

factor, which consists of a relationship between conclusion believability and its 

deductive validity. These 2x2x3 three-factor repeated measures ANOVAs consist of the 

within-subject IVs of believability (believable/unbelievable), validity (valid/invalid), and 

the same between-subject IV of lesion group. Unfortunately, separation of groups at 

such a fine grain resulted in a failure to satisfy the assumption of homogeneity of 
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variance for reaction time data. For the human data, the invalid-believable group had a 

significant result for Levene’s test (F(2, 69) = 3.48, p = .036). After using the log10(√x) 

transformation, this unfortunate significant result disappeared (F(2, 69) = 1.79, p = .17).  

 The three-way ANOVA for human data concerning the DV of accuracy showed 

significant main effects for believability F(1, 69) = 32.26, p < .001, ηp2 = .32, and for 

validity F(1, 69) = 8.53, p = .005, ηp2 = .11. Humans were more accurate with 

unbelievable syllogisms (M = .80, SE = .02) than believable syllogisms (M = .68, SE 

= .02). Humans were also more accurate with valid problems (M = .78, SE = .03) than 

they were for invalid problems (M = .69, SE = .02). A strong interaction between 

believability and validity was present, F(2, 69) = 64.88, p < .001, ηp2 = .49, though as 

this essentially represents the congruency effect investigated previously, it warrants no 

further attention. 

The identical format ANOVA investigating the DV of reaction time for human data 

showed a significant main effect of validity on reaction time, F(1, 69) = 6.39, p = .014, 

ηp2 = .09. Deductively valid problems are solved faster (M = 20388, SE = 1072) than 

invalid problems (M = 22756, SE = 1072). A significant interaction between believability 

and validity on reaction time is observed, F(1, 69) = 19.42, p < .001, ηp2 = .22. This 

known effect (Stupple et al., 2011) is the result of incongruent syllogisms which are 

believable but invalid taking significantly more time to process than any other type (see 

Figure 17). 

 Figure 17 
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 To investigate these reaction time differences further, the human data was 

probed in a manner similar to the study by Stupple et al. (2011), whom investigated the 

relationship between believability and validity on reaction time by dividing patients 

according to high and low logical ability. A similar index was formed by measuring the 

difference between an individual’s acceptance of valid and invalid conclusions. Unlike in 

the previous study, two groups (high and low logic) were formed rather than three; this 

was done due to the fact that the present subject pool (71) is much smaller than the 130 

used by Stupple et al. (2011). Ten subjects located in the exact center of the logic index 

were discarded, leaving 32 subjects in the high-logic condition, and 30 subjects in the 

low-logic condition. 

   A three-factor 2x2x2 mixed design ANOVA was conducted to examine the 

relationship between logic-group, believability, and validity. A comparative lack of power 

failed to produce significant interactions involving group, though the main effect of group 

was marginally significant (F(1, 60) = 2.69, p = .11, ηp2 = .04); the trend showed the 

high-logic group to take more time solving syllogisms (M = 22040, SE = 1391), than the 

low-logic group (M = 18760, SE = 1437). As particular interest is placed on believable-

invalid syllogisms, a simple independent samples t-test was produced to probe this 

difference, which was found to be significant, F(60) = 3.71, p = .020, d = .61. The high-

logic group spent significantly more time solving believable-invalid syllogisms (M = 

26427, SE = 1795), than spent by the low-logic group (M = 20278, SE = 1854). 
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3.2 Human Results Discussion 

 The results of the human data is generally in line with previously discussed 

neuroimaging data and scientific literature on deductive reasoning. At the broad level of 

analysis, task by lesion group, the frontotemporal lesion group showed the largest 

increases in reaction time. This makes sense considering that, by impairing the network 

supporting belief-based responding, this makes early termination of problem-solving 

more difficult, and increases the demand for more time-consuming formal procedures. 

The frontotemporal lesion group also demonstrates some overlapping damage into 

more general left prefrontal cortex areas thought to support general reasoning abilities 

(Goel et al., 2006). All subject groups responded as predicted by literature supporting a 

mental models approach to formal reasoning (Bucciarelli & Johnson-Laird, 1999) such 

that single model problems were solved faster and with greater accuracy than multiple 

model problems. 

  The congruency effect on logical reasoning, well-known in reasoning literature 

(Evans, Barston, Pollard, 1983), was confirmed across all groups in a broad manner; 

syllogisms with conclusions whose deductive validity matches the beliefs of the subjects 

are solved with greater accuracy and speed than those demonstrating incongruence. 

Further, the results importantly justified the neuroanatomical distinctions drawn by Goel 

(2009) when accuracy effects were broken down by group. Belief-bias facilitates correct 

responding in the congruent condition, and the frontotemporal lesion group, employing a 

network thought to be important to these content effects, showed lower accuracies than 

control or bilateral parietal patient groups. Incongruent problems are thought to rely on 

formal reasoning processes, supported by the bilateral parietal network, intervening with 

belief-biased processes. Human data seems to support this neuroanatomical distinction 

as the bilateral parietal group displayed lower problem accuracies than control or 

frontotemporal lesion groups. 

 The interactions between believability and validity in the human data also 

conform to reasoning literature. Studies have found humans to be more successful at 

engaging logical reasoning for syllogisms with unbelievable conclusions than believable 

ones (Evans et al., 1983; Klauer, Musch, & Naumer, 2000; Stupple & Ball, 2011). An 
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implication of this is such that believable-invalid problems are particularly difficult, and 

consume the most time to complete. These theoretical suggestions agree with the 

results of the present human data. The final interesting result in the human data agrees 

with research by Stupple and Ball (2011) suggesting that the most logical responders 

(the best performers) take exceptionally longer time to solve believable-invalid problems 

than the lower performers who are much more apt to quickly solve the problem through 

incorrect belief-biased responding. 
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The Computational Model 

4.1 Model design 

 Prior to discussing the results of the modelling data, it is necessary to explain the 

computational model in depth; including how it operates and what known cognitive 

biases it attempts to implement. Performance data from VHIS control subjects dealing 

with syllogisms that contained meaningful content and content-free forms were used for 

the initial design and calibration of the computational model. The content condition 

guided the implementation of the heuristic system’s belief-bias effect, while the content-

free condition played a greater role in the design and calibration of the effects of other 

prominent cognitive biases in categorical syllogism literature. Beyond this point, 

adjustments were made for the implementation of lesions to allow the model’s 

performance to be measured against human controls and patients. This enables one 

potential framework of a fractionated deductive reasoning system to be empirically 

tested. 

 There are five main components in the computational model. The general pattern 

completer (left PFC) breaks down and distributes the propositions of the categorical 

syllogism to the heuristic and formal reasoning systems. It receives feedback from 

various centers and completes the patterns of information in these signals to arrive at a 

validity judgement. The formal system (bi-lateral parietal network) evaluates the 

syllogism in accordance with mental model theory. The heuristic system (left 

frontal/temporal) influences decision-making through the belief-bias effect. The conflict 

detector monitors these two processing networks for logical conflict and belief-logic 

conflict. The uncertainty maintenance system attempts to inhibit belief-bias during 

complicated logical representations, though its ability to do so is impaired under 

situations of strong belief.  

 The general pattern completer starts by identifying the syntactic role of the 

components of the premises. These include quantifiers (all/no/some) copular terms 

(are/is/have/can/etc.) and the negation ‘not’. The original full sentences are broken 

down and a new WME has its variables filled with these relevant syntactic elements. At 

this point a check is performed to see if a premise conversion error is performed (based 
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upon elements to be discussed later) – involving a switch of the two terms in a particular 

premise (or conclusion). Following this, the pattern completer simultaneously passes 

the syllogism on to the formal and heuristic systems for evaluation. The pattern 

completer will receive feedback from the other parts of the deductive reasoning system 

as it attempts to reach a decision about the validity of the conclusion. To arrive at a 

decision, the activation level of two WMEs, representing a valid or invalid choice, will 

increase until it exceeds some critical firing rate threshold in a first-past-the-post 

decision-making paradigm.  

 The heuristic system primarily provides a mechanism for belief bias, which has 

shown a highly robust effect on the processing of syllogisms (Evans, Barston, & Pollard, 

1983). For this effect, performance on syllogisms is improved when the conclusion is 

consistent with the beliefs of the subject compared to when it is inconsistent. The 

conclusion ‘all men are smokers’ is an example of a conclusion incongruent with human 

beliefs, while the conclusion ‘some mushrooms are not poisonous’ would be congruent 

with human beliefs. The computational model introduces this effect by increasing the 

pattern completer’s validity judgement (valid/invalid) WME activation depending upon 

the belief held and the strength to which it is held. As previous research indicates 

believable conclusions provoke stronger levels of belief-bias than for unbelievable 

conclusions (Evans et al., 1983), believable conclusions have a stronger influence over 

the pattern completer’s valid signal than unbelievable conclusions do over the invalid 

signal.  

The rates with which the model believes a particular conclusion to be true or 

false are set by conclusion endorsement rates gathered from the controls in the 

Vietnam Head Injury study. The strength and direction of the belief is randomly 

generated from the proportion of responses indicating a particular belief rating; if 10% of 

responses indicated strong disbelief in the conclusion (rating of 1), then there is a 10% 

chance the belief generated will be strong disbelief. A valid belief increases the pattern 

completer’s decision-valid WME activation level, and an invalid one increases the 

decision-invalid activation level, where a stronger belief (or disbelief) will introduce a 

stronger activation boost. This change also depends upon the health of the heuristic 
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system, for if it is lesioned it will have less of an influence over the pattern completer’s 

decision signals. 

 The formal system is the most computationally intense aspect of the program. It 

generates evaluations of categorical syllogisms in accordance with mental model 

theory. Mental model theory (Johnson-Laird, 1983) suggests the relationships between 

the terms of categorical syllogisms are represented by a finite set of mental tokens. 

These tokens are arranged to represent the two premises and integrated to form an 

initial model of the situation. Reasoners will attempt to derive conclusions from this 

model, following this, they may or may not perform a number of manipulations to the 

model to search for counterexamples and refute these conclusions. The data used for 

this thesis involves syllogisms where the subject is provided conclusions, rather than 

asked to generate their own from the premises as is done in the computational model 

explained by Bucciarelli and Johnson-Laird (1999). While this required some departures 

in the evaluation of models and the search for alternate models, the overall process is 

highly similar. The original mental model program would not generate negative 

conclusion for premises lacking negations; therefore if a negative conclusion is provided 

for such a set of premises, the program is forced to proceed with operations it would 

use as if negative tokens were present in order to falsify such a conclusion. 

 The four possible syllogistic moods are represented by four mental models (see 

Figure 18). Square brackets are used to show that the token has been exhaustively 

represented, as is the case with the two universal moods, where we have a full account 

of this token so that no more instances of it will be added to the model in the search for 

alternatives. Before we can combine premises the models must be arranged so that the 

middle terms line up. As mentioned previously, there are four different figures for 

categorical syllogisms which represent the different orders in which the terms may 

occur. For the first figure (see Figure 19) the middle term (B) is already in the middle, so 

no change is necessary. For the second figure the order of the premises is switched. 

The third and fourth figure require that the terms are swapped in the second premise 

and in the first premise, respectively before integration can occur. An inspection-time 

analysis (Espino, Santamaria, & Garcia-Madruga, 2000) indicates that this additional 
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effort, for figures other than the first, slightly increases the time it takes to integrate the 

premises, but has no effect on the accuracy of subjects in solving syllogisms. 

 Figure 18 

[X] Y  [X] -Y  X Y  X -Y  

[X] Y  [X] -Y  X   X -Y 

 Y   Y   Y   Y    

    Y      Y 

All X are Y  No X are Y  Some X are Y Some X are not Y 

universal  universal  particular  particular 

affirmative  negative  affirmative  negative 

 Figure 19 

First Figure  Second Figure Third Figure  Fourth Figure 

A B  B A  A B  B A  

B C  C B  C B  B C 

 To unite the two models, we find the middle terms for both models and move the 

end-term attached to the middle term in the second model so that it is now beside the 

middle term in the first model. If during this move the middle term is exhausted in either 

model it becomes exhausted in the integrated model. Once all of these moves are 

completed any remaining free tokens are appended to the end of the integrated model 

(see Figure 20).  

 Figure 20 

Premise 1  Premise 2    

Some A are B All B are C   Integrated model 

A B  [B] C   A [B] C 

A   [B] C   A 

 B       [B] C 
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 To evaluate this integrated model the end tokens are read bi-directionally, from 

left to right and from right to left, to see if a particular conclusion holds true across all 

lines. If the conclusion to be tested here was that ‘Some A are not C’ this would appear 

to be true as in the second line we have an A but no C. To see if that can be falsified 

additional models are created. For positive models (ones lacking negatives no/not in the 

premises or conclusion) model creation functions add-affirmative, move, and break may 

be executed. For add-affirmative, new lines can be created containing end tokens that 

are not exhaustively represented. Move will move ‘free end-tokens’ into empty spaces. 

Break will divides a line with unexhausted middle terms into two lines. For negative 

models (which have a negation in a premise or conclusion) also utilize the move and 

break operations, though their method for adding tokens is different, here non-

exhausted tokens are added to empty spaces to falsify conclusions (see Figure 21). 

These new models will be tested and the process repeated until an invalid case is 

found, or the general pattern completer arrives at a validity judgement. Figure 22 

provides a flow diagram of the mental model procedure, where dashed-line arrows to 

output represent stages of tentative output to the general pattern completer regarding 

the likely validity of the tested conclusion. 

 Figure 21 

ADD operation     MOVE operation 

A [B] C     A [B] -C   

A   Add C (add-negative)  A    2) move here 

 [B] C      [B] -C 

   Add C (add-affirmative)    [C] 

BREAK operation       [C]  1) move token  

A B C    A B 

       B C 
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Figure 22 

The deductive validity of a single-model problem will be immediately obvious 

after the integration of the information of both premises. For multiple model problems, 

the appropriate deductive decision is ambiguous at this step, and requires the 

formulation of additional potential scenarios to determine the validity of the conclusion.  

If we use a previous example syllogism, 

Premise 1 All birds can fly   All B are A  Premise 1 Premise 2 

Premise 2 All pigeons are birds  All C are B  [B] A [C] B 

Conclusion: All pigeons can fly  All C are A  [B] A [C] B 

 upon integrating the models of these two premises we arrive the following model: 

[C] [B] A 

[C] [B] A 

When we evaluate the conclusion “All C are A” we see C to be exhaustively 

represented, and it always has an A on the other side of its line, confirming this 

conclusion to be deductively valid. If we instead turn to a multiple-model syllogism, 

         Premise 1 Premise 2 

Premise 1 No coffee contains nicotine No A are B  [A] -B [B] -C 

Premise 2 No nicotine contains tea No B are C  [A] -B [B] -C 

Conclusion: No tea contains coffee No C are A   B  C 

          B  C 

then this is the resultant integrated model: 
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[A] -B 

[A] -B 

 [B] -C 

 [B] -C 

  C 

  C  

If we try to observe whether “No C are A” is valid, we are unsure, as the only instances 

of C have no token at the other end after integration. It is a possible case that no C 

come with A due to this blank space, but we are not sure if there are other possible 

cases where this is false. To be deductively valid, there must be no cases where C can 

be followed by A. To confirm or disconfirm this conclusion we must tweak this model. By 

moving the C token up into the blank spaces above it (see below), we create an 

alternate scenario where “No C are A” is false, demonstrating this conclusion to be 

deductively invalid. For a multiple model problem, the initial integrated model may 

suggest a conclusion to be valid, but there remains uncertainty regarding other 

possibilities. This is why these problems should take longer, and are more difficult to 

accurately solve. 

[A] -B C 

[A] -B C 

 [B] -C 

 [B] -C 

The formal system will provide its first indications to the pattern completer 

concerning potential judgments at the conclusion evaluation stage. A seemingly valid 

conclusion will result in a mild boost of decision-valid activation levels. An invalid 

conclusion will impose a strong change in activation, though it is often not enough on its 

own to completely and immediately determine the pattern completer’s decision. If the 

conflict detection system is not heavily taxed this invalid signal will be more powerful, 

and it will be repeated until the pattern completer arrives at a final decision and signals 

other systems to cease operations. A valid conclusion will necessitate the construction 
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of additional models (if possible) and a continuation of this process until a final validity 

decision is reached. 

The conflict detection system consumes activation when the formal reasoning 

system is checking for logical inconsistencies. This system ‘works harder’ and 

consumes more activation depending upon the number of lines the current model takes 

to represent. Universal affirmative moods (All X are Y) are the easiest to represent, 

while models containing negative premises are more complicated – they typically 

require more lines in their representation. Thus, different combinations of premises 

induce different levels of strain on conflict detection; and having to monitor for 

consistency with belief adds even more burden. The greater the burden on the system, 

the weaker the effect the formal system has in identifying an invalid conclusion to the 

general pattern completer. When an invalid conclusion is not picked up, the formal 

system may continue to attempt to derive additional models after an invalid case has 

been generated. These new derivations may either change the logical interpretation of 

the syllogism, or they may simply delay finding the correct solution long enough for 

belief-bias to induce the wrong decision for incongruent problems. Higher levels of 

strain on the conflict detection system also decreases the inhibition this system is able 

to apply to the heuristic system to reduce belief-bias effects when there is a conflict 

between logic and belief.  

 The uncertainty maintenance system alerts the general pattern completer of 

indeterminate or ambiguous situations. It activates or refreshes its activation during the 

creation of alternate models, which are taken to represent more ambiguous situations. 

In these cases, the uncertainty maintenance system will also inhibit the belief bias 

response. When belief levels are at their strongest (5 or 1) it is hypothesized in the 

current model that there is less uncertainty in the situation due to these particularly 

potent beliefs. To represent this, the heuristic system will also have inhibitory 

connections onto the uncertainty maintenance system. Its inhibition will be stronger 

when the beliefs are stronger, and weaker if the heuristic system is lesioned.  
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5.2 Cognitive Biases 

 Beyond the functional division (and interaction) of processing among the 5 brain-

based modules, the computational model also incorporates functions for introducing a 

number of well-known cognitive biases in the literature concerning the categorical 

syllogism. These biases include the atmosphere effect, matching bias, and premise 

conversion errors. The effects of these biases in the system were primarily configured 

using the content-free data, as without the belief-bias effect from content these 

additional biases remain as the primary sources of error. The biases take their effect by 

influencing the general pattern completer’s judgement decision, or by transforming the 

implications of the premises prior to being passed on from the pattern completer.  

The atmosphere effect (Woodworth & Sells, 1935) is an example of an inductive 

or probabilistic reasoning process where the presence of negative items – as found in 

the propositions ‘No X are Y’ or ‘Some X are not Y’ – or the presence of the particular 

quantifier some in the premises of a syllogism have implications for the likelihood of a 

conclusion being valid. Associative heuristics may be employed where if at least one 

premise is negative the conclusion is more likely to be negative, and if at least one 

premise is particular the conclusion is more likely to be particular.  

If one of these matches exist between the moods of the premises and 

conclusion, the model acts on this by having the general pattern completer raise the 

activation level of the conclusion-valid WME. If there is a negative or particular premise 

(or both) and the conclusion does not match, the activation of the conclusion-invalid 

WME increases. The increase is even greater for valid (or invalid) WMEs if both 

conditions are (un-)satisfied. Another logical extension of this relationship is that if 

neither premise is negative the conclusion should be affirmative (‘All X are Y’ or ‘Some 

X are Y’), and if neither premise is particular the conclusion should be universal (‘All X 

are Y’ or ‘No X are Y’). Bucciarelli and Laird (1999) have an alternative explanation of 

the atmosphere effect using mental model theory. It is stated that conclusions derived 

from an initial model of the premises will also match the mood of at least one premise, 

similar to a superficial matching of verbal forms. In an effort to appeal to both 
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interpretations, judgements concerning the validity of a conclusion as derived from the 

initial model will have stronger weight than those of subsequent models. 

The matching bias is similar to the atmosphere effect as it involves heuristics 

operating on the quantifiers of the syllogism. Wetherick (1989) suggests that when the 

validity of a situation is not immediately obvious (suggesting its deployment in multiple 

model problems) additional heuristics may provide estimates of validity. When all 

premises are the same it suggests conclusions identical to the atmosphere effect. When 

they are different, the matching bias is said to prefer conclusions that match the more 

conservative premise (Wetherick & Golhooly, 1990). When one premise contains the 

quantifier ‘All’, matching bias selects the form of the other premise. When one premise 

is of the form ‘Some X are Y’, and the other is of the form ‘No X are Y’, matching prefers 

a ‘No X are Y’ conclusion. If a match is found, the general pattern completer’s 

conclusion-valid WME activation increases. 

 The remaining cognitive biases involve a misrepresentation of the information 

provided by the premises prior to creating a formal model of the situation. Faulty logical 

implications (Rips, 1994) arise from a common-sense (mis-)understanding of the 

premises based upon communicative norms. The premise ‘Some X are Y’ is taken to 

imply that there are also some X which are not Y, because if this was not the case it is 

assumed the stronger premise ‘All X are Y’ would be provided instead. Similarly, ‘Some 

X are not Y’ is taken to imply there are also some X which are Y, as otherwise the 

premise ‘No X are Y’ would be present. Inferring more information from premises than 

they actually present, in accordance with logical norms, leads reasoners to build faulty 

initial models of situations that lend themselves to faulty conclusions. 

Faulty implications are said to be, in part, based upon communicative norms 

because a speaker generally would not provide the weaker relationship between two 

terms if a stronger one were true. However, the premises of syllogisms present 

relationship-knowledge assumed to be true rather than what might be actually true. In 

certain cases where a faulty implication makes strong intuitive sense, the likelihood of 

these conversions increase. For example, if one premise states that ‘some Olympic 

athletes are smokers’, the likelihood of this also implying ‘some Olympic athletes are not 
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smokers’ is even greater than when presented in an abstract token form. Information on 

the believability of premises was not collected, let alone information concerning the 

believability of alternate forms of premises, so this is an assumption of the model 

estimated to improve its fit with data by increasing the potential for error. Implementing 

this change within mental models is relatively easy, as it basically involves adding 

positive or negative tokens to the premise models depending on the additional 

implication applied. 

  The final bias to be implemented are conversion errors (Chapman & Chapman, 

1959). In this type of error, the terms of a premise are switched, causing the reasoner to 

incorrectly infer the inverse of a proposition. All X are Y is taken to imply All Y are X, 

and Some X are not Y is taken to mean Some Y are not X. In the former situation, we 

do not have any information about what logically follows given Y; we only know what is 

true when given X. In the latter situation, while Some X are not Y, it is possible that in all 

the cases where X leads to Y that these are all the instances where Y occurs; this 

means that the inverse (Some Y are not X) is incorrect as instead ‘All Y are X’ is true. 

Conversion errors are implemented relatively easily by the pattern completer sometimes 

accidentally switching the terms before passing the information elsewhere. As with the 

faulty implications bias, the rate of this occurring increases if the inverse of a proposition 

is more intuitively appealing in content conditions, which again is an assumption of the 

model. 

 To generate data for statistical comparison of model performance against human 

performance, sets of thirty simulated subjects were generated for the various lesion 

groups. This number was chosen so that it would not be so high as to make every result 

significant by artificially inflating the degrees of freedom. The groups were large enough 

so that these equal samples would be more robust against violations of heterogeneity of 

variance. Lesions were applied to the formal and heuristic systems by approximately 

halving the activation capacity of these centers. Accuracy and reaction time data was 

organized for simulated subjects under a number of different categories. These 

categories included distinctions between single and multiple models, congruent and 

incongruent problems, and all combinations of believability and validity: believable-valid, 

believable-invalid, unbelievable-valid, and unbelievable-invalid.  
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5.3 Model Data Results 

Two separate one-way ANOVAs were conducted to examine the basic 

relationship between lesion group (IV) and the dependent variables of reaction time and 

accuracy on model performance. There was no significant main effect of lesion group 

on accuracy, F(2, 87) = 2.10, p = .129. The effect of lesion group on reaction time for 

the computational model was significant, F(2, 87) = 29.59, p < .001, ηp2 = .41.  Post-hoc 

analysis using the Sidak correction showed the simulated control group to perform 

faster than other lesion groups (all p < .001).  

  Figure 23 

 Figure 24 

 Two-factor 2x3 repeated measures ANOVAs were conducted on model data for 

accuracy and reaction time DVs; this consisted of a between-subjects IV of lesion group 

with the same three levels, and a within-subjects factor of model complexity (single or 

multiple models). Accuracy significantly differed depending upon model complexity, F(1, 

87) = 196.84, p < .001, ηp2 = .69; single-model problems generated higher accuracy 
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scores (M = .83, SE = .009), than multiple-model problems (M = .56, SE = .016). 

Reaction time significantly differed depending upon model complexity, F(1, 87) = 67.81, 

p < .001, ηp2 = .44; single-model problems took less time to solve, (M = 19455, SE = 

67.96) than multiple-model problems (M = 21349, SE = 1150.49).  

 Figure 25

 Figure 26 

The next set of analyses investigated the relationship between congruency (IV) 

and lesion group (IV), on accuracy and reaction time (DVs) in two sets of 2x3 two-factor 

repeated measures ANOVAs. The model data investigation of accuracy demonstrated a 

significant effect of congruency on problem accuracy, F(1, 87) = 343.08, p < .001, ηp2 

= .80. Higher accuracy levels are generated for congruent syllogisms (M = .90, SE 

= .01), than for incongruent syllogisms (M = .55, SE = .01). A significant interaction 

between congruency and group on problem accuracy is again observed, (F(2, 87) = 

10.94, p < .001, ηp2 = .20). A stronger interaction effect and increased power allowed 

for tighter control over error rate than the human data when performing a post-hoc 
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analysis. The conservative Bonferroni correction showed the frontotemporal group to be 

significantly impaired (p = .01) on congruent syllogisms (M = .87, SE = .02), compared 

to the parietal lesion group (M = .93, SE = .02). The same correction applied to the 

incongruent condition showed the parietal group (M = .46, SE = .03) to be impaired 

compared to the frontotemporal group (M = .60, SE = .03, p = .002), and the control 

group (M = .60, SE = .03, p = .001). Figure 27 provides a visual representation of this 

interaction for the computational model. 

 Figure 27 

 A two-factor repeated measures ANOVA investigating the DV of reaction time 

shows a significant main effect of congruency on reaction time, F(1, 87) = 60.46, p 

< .001, ηp2 = .41. Congruent syllogisms are solved significantly faster (M = 19484, SE = 

132.67), than incongruent syllogisms (M =20955, SE = 125.98). A significant interaction 

between congruency and group on reaction time (F(2, 87) = 4.64, p = .012, ηp2 = .10) is 

found only for the computational model. This result reflects the reaction time increase, 

moving from the congruent to the incongruent condition, being sharper for the parietal 

lesion group than other groups. Figures 28 and 29 summaries the general effects of 

congruency for this section of the data analysis. 
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 Figure 28

 Figure 29 

The three-way ANOVA investigating the relationship between believability, 

validity, and group on the DV of accuracy for the model showed a significant main effect 

of believability on accuracy, F(1, 87) = 94.66, p < .001, ηp2 = .52. Simulated reasoners 

are more accurate with unbelievable problems (M = 0.84, SE = 0.01) than they are with 

believable problems (M = 0.67, SE = 0.01). Unlike for the human data, the main effect of 

validity was not significant: F(1, 87) = 0.40, p = .53, ηp2 = .01. A significant interaction 

between believability and validity on problem accuracy, again representing the 

congruency effect, was found: F(1, 87) = 239.82, p < .001, ηp2 = .73.  

 Prior to analyzing the reaction time results, the RT values for the model data 

were transformed using the log10(√x) transformation. This is in part motivated by the 

fact that the model violated Levene’s test for homogeneity of variance for the invalid-

unbelievable grouping, F(2, 87) = 6.19, p = .003. While this transformation may not 

typically be necessary as the model data is more robust to violations of homogeneity, 

due to having a larger sample with equal numbers of subjects in each group, because 
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the human data for this variable was transformed it seemed appropriate to do this for 

the model data as well.  

The three-way ANOVA analysing the DV of reaction time for the model data 

shows differences in its effects compared to the significant effects of the human data. 

While no significant reaction time difference was found between problems with 

believable and unbelievable conclusions in the human data (p = .97), for the 

computational model unbelievable problems take slightly longer (M = 21116, SE = 

124.27) than believable ones (M = 19836, SE = 130.30), demonstrating an F ratio of 

F(1, 87) = 45.54, p < .001, ηp2 = .34. Furthermore, while invalid problems took 

significantly longer for the human data (p = .003), valid problems showed slightly 

increased reaction times (M = 20924, SE = 138.41) compared to invalid problems (M 

=20028, SE = 100.65). The difference in means is extremely small, and only finds 

significance (F(1, 87) = 18.94, p < .001, ηp2 = .179) in the fact that standard errors for 

model reaction time are exceptionally low. The differences between human and model 

data on reaction time, for these factors, are largely captured by the significant 

interaction between believability and validity on reaction time. While the significant 

difference for the human data (p < .001) was accounted for by believable-invalid 

problems taking the longest amount of time, the significant interaction for model data 

(F(1, 87) = 120.15, p < .001, ηp2 = .58) is the result of believable-invalid incongruent 

syllogisms taking the most time. This systemic difference in reaction time is of interest 

for future model building efforts. 
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 Figure 30   

 To directly compare the performance of the computational model to that of the 

human subjects, the Pearson correlation is used to compare accuracy and reaction time 

values across the nineteen syllogisms utilized (see Appendix C for a list of the 

syllogisms). Highly significant values were obtained for all correlations of accuracy 

comparing human and model data: the control groups (r(19) = .88, p < .001), the 

frontotemporal group (r(19) = .72, p < .001), and bilateral parietal group (r(19) = .75, p 

< .001) were all significantly correlated. For reaction time, due to the wide variance 

present in the human data not being reflected in the model data the correlations were 

much weaker. This is particularly true for the control group r(19) = .01, p = .98, even 

though their overall means were highly similar (for humans M = 19516, SD = 3927; for 

the model M = 19433, SD = 1751). The comparisons of the parietal groups were more 

promising (r(19) = .31, p = .19), and the correlations between the frontotemporal groups 

was significant: r(19) = .41, p = .08. Graphs depicting the fit for accuracy and reaction 

time for each syllogism used are provided in Appendix D. 
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5.4 Model Results Discussion 

 Results of the modelling data largely agree with human subject data, where the 

departures that are observed have reasonable explanations. The coarse task by group 

analysis showed no significant accuracy differences for either the human or the model 

data depending upon lesion group. In terms of reaction time, the human data displayed 

a trend of increase (p = .077) in reaction time for the frontotemporal group compared to 

the control group. For the model data, the control group performed significantly faster 

than both of the lesion groups. The frontotemporal group for the human data may be 

impacted slightly more in its processing time as it is noted the left prefrontal cortex, 

correlated with general reasoning ability, possesses some overlapping lesions for which 

no equivalent general impairment is employed in the computational model. On top of 

this, the computational model employs lesions by halving the processing capacity of 

brain areas, which is possibly more dramatic than the human impairments, though it is 

necessary to provide meaningful differences in a more deterministic and less variable 

computational system. 

 Significant reduction in accuracy and reaction time for the computational model 

when dealing with multiple models as opposed to single models is replicates the effects 

found in human data. The main effects of congruency on these DVs are also the same; 

where congruent problems are easier and solved faster than incongruent problems. The 

interaction between lesion group and congruency for the dependent variable of 

accuracy also agrees with the human data; frontotemporal lesions impair the model on 

congruent syllogisms and bilateral parietal lesions impair the model on incongruent 

syllogisms.  

Aside from the main effects, congruency by lesion group interactions were 

insignificant for the human reaction time data. The model displayed one additional result 

where the bilateral parietal lesion group was more sharply impaired in terms of reaction 

time than was seen in the human data. This is explainable for much the same reasons 

as the differences in reaction time between humans and the model in the coarse task by 

group analysis; namely, a more strongly impaired deterministic system with less 

variability (low standard error) compared to human performance. 
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 For the last set of analyses, breaking down congruency into an examination of 

interactions between believability and validity, results are again highly similar (with 

some systematic differences). Both the model and human data showed unbelievable 

problems to be solved more successfully than believable problems. The key difference 

between human and model data lies in the interaction between believability and validity 

for reaction time data. For human data, believable-invalid problems consumed the most 

time, while for the model data unbelievable-valid problems took the longest to solve. 

Stupple et al. (2011) highlight the fact that the most logical reasoners spend large 

amounts of time on believable-valid problems. The computational model did not employ 

any differences in cognitive style as it utilized a single operation profile that was 

adjusted by introducing lesions. Future modelling efforts could attempt to include 

simulated high-logic individuals who respond differently to believable-invalid problems, 

and therefore bring results more in line with human data. 
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Discussion 

6.1 Results Discussion 

 We now summarize the most pertinent results of the project. The most direct 

evidence supporting a fractionated deductive reasoning system, and the only piece 

which ties a kind of functioning (heuristic or formal) to a specific brain area, comes from 

the significant interaction (p = .046) of congruency and group in terms of accuracy in 

solving categorical syllogisms for human data. Those with frontotemporal lesions, an 

area associated with belief-biased responding, were impaired on congruent syllogisms 

where belief-bias would have more easily led reasoners to the correct conclusion. In 

congruent syllogisms, belief-bias improves subject accuracy as past knowledge 

provides an intuitive bias leading them towards a judgement that coincidentally agrees 

with the formal validity of the syllogism. On more challenging multiple-model problems, 

or problems more prone to errors of conversion (misrepresentation of the premises), 

where the formal system would have more difficulty arriving at the correct conclusion, 

the heuristic system can influence the judgment process towards the correct solution. 

With this benefit removed, frontotemporal patients showed impairment in accuracy on 

congruent syllogisms. 

Patients with bilateral parietal lesions, associated with formal reasoning through 

manipulation of spatial representations (Goel et al., 2000), were impaired on 

incongruent syllogisms where more deliberate and formal reasoning processes could 

have been used to oppose – pre-potent and incorrect - belief-biased responding 

patterns. It is implied that those with damage to the bilateral parietal areas are less 

capable of applying formal reasoning through methods, like mental models theory, to 

solve categorical syllogisms. This congruency effect on reasoning was successfully 

replicated in the computational model using these separate but interacting formal and 

heuristic mechanisms; this replication was done in a way such that the accuracy of 

responses generated was highly correlated to the human data. 

 Incongruent syllogisms were more difficult and took longer to solve than 

congruent syllogisms for both model and human data (all ps < .001) demonstrating that 

syllogistic processing is not entirely driven by beliefs. Multiple-model syllogisms were 
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also more difficult and took longer to solve than single-model syllogisms. These results 

provides necessary, though not sufficient, evidence for formal representational 

reasoning processes in human brains. Syllogisms with unbelievable conclusions also 

more frequently evoked these formal reasoning processes by demonstrating 

significantly increased mean accuracies in model and human data than is seen for 

syllogisms with believable conclusions.  

The interacting effects of belief and validity on accuracy seen in the human and 

model data is in compliance with the frequently cited results of Evans, Barston, and 

Pollard (1983) and other studies replicating these results (Klauer, Musch, & Naumer, 

2000; Stupple & Ball, 2008). Evans et al. (1983) observed the lowest accuracy (29%) for 

invalid-believable incongruent syllogisms, moderate accuracy (56%) for valid-

unbelievable incongruent problems, high accuracy (89%) for valid-believable congruent 

problems, and the highest accuracy (90%) for invalid-unbelievable congruent problems. 

This pattern is reflected in the human and model data for this set of syllogisms, and the 

values found for each are highly similar (see Figure 35).  

 Figure 31 

 Model data which is in agreement with human data and past research is very 

appealing, though one must speak to the divergences in performance as well. If these 

divergences cannot be explained, it brings into question the viability of a fractionated 

deductive reasoning system, arranged in this way, for being a potential model of true 

human performance. The main divergence between the model and human data lies in 

the different interpretations of the significant believability by validity interaction for 
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reaction time. For the model data, unbelievable-valid incongruent problems were the 

slowest, while believable-invalid incongruent problems were slowest for human data, 

which agrees with typical findings in past research (Stupple et al., 2011). Stupple et al. 

suggest a sub-group of individuals more frequently understand the underlying logic of 

these problems, and attempt to resist fallacious conclusions through formal reasoning. 

This requires processing effort above and beyond that of other problems in order to 

resist the belief-bias effect – found to be stronger for syllogisms with believable 

conclusions. These high-logic individuals typically take longer to solve syllogisms 

overall, but this is especially true for believable-invalid problems. 

 Attempting to repeat the results of Stupple et al. (2011) showed only marginally 

success at reproducing a reaction time difference across all syllogisms between the 

high and low logic groups (p = .110) in the human data. However, the human high-logic 

group was significantly slower on believable-invalid problems (p = .020) as predicted by 

past research. For the computational model, the initial parameters of subjects mostly 

vary in the application of lesion damage. There is no distinction made for those with a 

more logical cognitive style which is more apt to resist belief-bias. If such a distinction 

were added, it would become possible for an increase in reaction time to emerge for 

believable-invalid problems. This would also be one part of the remedy for increasing 

the low variability, in terms of standard errors, found for the model data compared to 

human data for reaction time results. 

 The final part of the remedy for this problem of low variability in reaction time for 

model data comes from the deterministic nature of the formal mental model system in 

the construction of alternate models. Experiments by Bucciarelli and Johnson-Laird 

(1999) had participants construct alternate models of premises to refute conclusions to 

categorical syllogisms using cut-out shapes or pen and paper methods. While 

participants did search for counter-examples in ways that utilized the major operations 

of the mental model program – adding or moving tokens and breaking entities in two – 

they varied considerably from one another in what they did, and even the same 

participant could vary when encountering a similar problem twice. Construction of a 

grammar with alternate rules allowing for alternate ways to modify or represent 
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problems would add more variability to the model generation process. It could add a 

greater potential for occasionally largely increased reaction times that is presently 

lacking. For example, the current computational model will add all tokens it can possibly 

add at once during the add-token operation; the number of tokens added and the order 

in which this is done could vary.  

The high versus low logic distinction could also generate differences in model 

formulation, and adjust the degree to which finding a model that agrees with a belief 

influences decision-making. Low-logic individuals could apply more “satisficing” (Evans, 

2007) searches which look for a single model that supports a belief, and if it is found, 

decide that their belief is correct. High-logic individuals in contrast could be more apt to 

employ more exhaustive and analytical approaches which require a conclusion to be 

true in all models to be valid. One major concern highlighted by Bucciarelli and 

Johnson-Laird (1999) in their computational model, that reasoners do not adopt fixed 

interpretations for each kind of premise, is already employed in this model through 

errors of conversion and faulty implications. One final difference was noted in this paper 

that was not implemented in the current model. Reasoners demonstrated a marked 

difference in understanding what constituted a proper refutation of an O-type conclusion 

(‘Some X are not Y’) often using a model showing ‘Some X are Y’ as a refutation; they 

were far less successful at refuting syllogisms in this mood (35% accuracy) compared to 

other moods: A-type (‘All X are Y’) 72%, I-type (‘Some X are Y’) 66%, E-type (‘No X are 

Y’) 82%. The computational model as-is can recognize correct refutations with relatively 

equal ability. A more complete discussion of possible modifications to the falsification 

process are beyond the scope of this topic, though their investigation would prove 

useful for ensuring stronger correlations between simulated and human performance 

measures. 

 The computational model displays highly significant accuracy correlations to 

human data across all lesion groups. The significant congruency by group interaction for 

accuracy provides a link for distinct analytical and heuristic reasoning strategies to 

different areas of the brain. Frontotemporal areas support belief-driven responses, while 

bilateral parietal areas support spatial manipulation of models for formal analytical 
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procedures. The performance measures for human and model data show a high degree 

of coherence between each other, and with previous research. The model itself is able 

to incorporate cognitive biases like the atmosphere and congruency effect into one 

system, and provide an account for systematic errors in misrepresenting premises. 

Other explanations of human reasoning over syllogisms can provide piece-wise theories 

or models of aspects of reasoning, but few can demonstrate such a wide variety of 

coherence all at once. Adding distinctions in performance due to cognitive style, a 

differential preference for heuristic or analytical search, may improve the fit to human 

data; though what has been demonstrated presently provides compelling evidence for a 

fractionated deductive reasoning system which involves different but interactive 

reasoning strategies. 
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6.2 Theoretical Discussion 

 Returning to the discussion of theories of the structure of the reasoning mind, a 

fractionated system of deductive reasoning appears to be in the strongest position to 

account for our intuitions of rational behaviour, neuropsychological evidence, and 

behavioural evidence of deductive reasoning. Massive modularity suggests a diverse 

and isolated network of evolutionarily specified modules which quickly and reactively 

respond to environmental stimuli, similar to that of a reflex arc. Similar to reflexes, these 

modules would tend to exhibit a trait of cognitive impenetrability – meaning we are 

unable to be consciously aware of nor influence the activity of these reasoning modules 

– though this contrasts with our intuitive understanding of what rational behaviour is. 

Rational choices are thought to be selected for a reason: to provide reasoned means for 

satisfying the goals we choose to pursue. Rational actions should demonstrate a gap 

between stimulus and response for some degree of decision-making or weighing of 

alternatives to occur. Environmental conditions should not be sufficient for rational 

action as it would be for reflexive action. Cognitively impenetrable modules supporting 

reasoning would ultimately deny that deliberate reasoning even occurs. Furthermore, 

rigid and evolutionarily specified modules supporting reasoning would be unable to 

exhibit the vast variability in performance between participants, or even for a single 

participant on similar syllogisms as noted by Bucciarelli and Johnson-Laird (1999). 

A simple heuristics account which suggests multiple modules supporting only an 

inductive-heuristic reasoning system also fails to account for neuropsychological 

evidence. Reasoning with familiar material often recruits a frontotemporal network, and 

unfamiliar or content-free material recruits a bi-lateral parietal network. If a fractionated 

heuristics system explained all reasoning, it is difficult to explain how linguistic or 

spatially relevant networks could be preferentially recruited depending upon content. 

The probabilistic heuristics model (PHM) proposed by Chater and Oaksford (1999) does 

make an attempt to explain activation of the conflict detection system as a result of 

conflicts among heuristics suggesting different conclusions. However, it is unclear how 

they would justify this distinction between linguistic and spatial network recruitment, as 
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their decision heuristics largely appear to draw upon linguistic inferences concerning the 

likely meanings of specific terms. 

 If we suggest that heuristics, or even rigid modules, are the primary driver of 

reasoning behaviour, we are also left with the difficult task of explaining how deliberate 

reasoning can take place at all. Bucciarelli and Johnson-Laird (1999) had participants 

manipulate cut-out shapes or use pen and paper to create their own models of 

situations as they tried to reason, with little instruction beyond to try and construct a 

picture of the premises to see which of the provided conclusions held. Use of operations 

similar to the mental models program were observed by subjects in these experiments. 

Bucciarelli and Johnson-Liard (1999) suggest these participants are not merely 

generating conclusions in accordance with atmosphere, nor are they selecting 

conclusions that match least informative premises like with the matching bias of PHM. 

Without a system supporting styles of reasoning other than intuitive assumptions from 

probable linguistic inferences, it is difficult to imagine how this task is accomplished by 

untrained individuals. Unless one is prepared to suggest that construction of models for 

reasoning is epiphenomenal and bears no impact on judgements. 

 Furthermore, the participants of the Vietnam Head Injury study, as well as the 

study by Stupple et al. (2011), showed a distinction between high and low logic 

individuals. High logic individuals took more time and showed a greater resistance to 

belief-bias heuristics to ensure greater performance – particularly for believable-invalid 

problems. Differences in the cognitive style of reasoning, and the brain networks 

recruited for different methods of approach, pose problems for many theories of logical 

reasoning. Simple heuristics or massive modularity have limited ability to explain this 

wide variation. A pure mental models or mental logic approach fails to account for 

belief-bias effects of reasoning, and why networks not related to their approach may be 

engaged; such as how mental logic explains visuospatial engagement, or how mental 

models explain linguistic network engagement. 

 A pure mental logic approach is constrained by the formal rules of logic. The 

inferential roles of logical terms completely determines a course of action which is 

unable to support the congruency effect. It lacks an explainable method for introducing 
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differences due to belief into the logical calculus, or why syllogisms with unbelievable 

conclusions would tend to be subject to a more rigorous degree of analysis than those 

with believable conclusions. Mental logic would have little methods for interaction with 

belief, and would have to be completely disregarded and overridden by a belief-heuristic 

system.  

A pure mental models approach is also similarly constrained by logical rules, 

though a belief-bias system can be introduced to interfere with the search for alternate 

models. In a less pure version of mental model theory, belief-bias may cause an early 

termination in logical procedure if the initial model agrees with held beliefs. When 

attempting to construct alternate models, individuals may have increased difficulty in 

constructing models that are implausible to held beliefs. The application of formal rules 

through mental logic does not have the benefit of this affordance. As is explained in 

more detail by Johnson-Laird (2010) logic is monotonic, and as more premises are 

added the number of potentially valid conclusions increases, including a large number 

of silly but logically valid assertions. Humans are instead agents exhibiting rationality 

bounded by the constraints of time and limited cognitive resources. Creation of a 

problem space with incremental alterations in the form of alternate mental models 

provides a more time-optimized solution to deductive reasoning problems. Constraining 

this problem space further through a belief-bias system conserves costly cognitive 

resources, and allows effects like the congruency effect to surface.  

 As an example of what would happen to our results with a more pure logic 

system, the computational model was run on the syllogisms while excluding the 

heuristic system from participating. While this represents a pure mental models 

approach, its adherence to formal rules extends its implications to a pure mental logic 

approach as well. Occasional errors through mispresenting or converting premises was 

maintained in the general pattern completer in this simulation. As the results in Figure 

36 demonstrate – with a pure mental model system employed on the left – the lines 

representing the accuracies of syllogisms with believable or unbelievable conclusions 

across valid and invalid problems becomes much more parallel, which effectively 

eliminates the congruency effect due to belief-bias. This demonstrates the necessity of 
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providing some plausible method for including a belief-driven heuristic system in the 

explanation of human deductive reasoning. 

 Figure 32 

 As the current investigation was contained largely to the formal and heuristic 

systems, the architecture demonstrated here does not deeply diverge from less 

assumptive (and more conservative) dual-mechanism theories. It bears the closest 

resemblance to parallel-cooperative (Barbey & Sloman, 2007) dual-mechanism theory, 

which proposes formal and heuristic systems operate in parallel and provide input to 

some conflict resolution process. Further research into the operation of the uncertainty 

maintenance system, or other future proposed systems, may help distinguish a 

fractionated deductive reasoning system of reasoning from conservative dual-

mechanism theories. 

 Behavioural evidence can suggest particular modes of reasoning, and 

neurological investigations can tie these modes or functions to particular brain areas. 

Computational modelling, however, provides a means for testing different methods of 

organizing these system components to create better approximations of how these 

components interact. The computational model suggested here has successfully 

provided significant correlations with the accuracies of a number of human lesion 

groups. It has done so by incorporating various published biases of belief and 

atmosphere into a number of interacting systems: the formal system supported by a bi-

lateral parietal network, the heuristic system through the frontotemporal network, the 
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prefrontal cortex general pattern completer, and uncertainty and conflict detection 

mechanisms. It has done so even without a highly flexible and variable alternate model 

generation process. Limitations with the subject pool prevented a deeper examination of 

these last two systems, though working within these limitations has still provided 

evidence for a fractionated system supporting deductive reasoning. 

 



57 
 

References 

Ball, L . J., Phillips, P., Wade, C. N., & Quayle, J. D. (2006). Effects of belief and logic 

 on syllogistic  reasoning: Eye-movement evidence for selective processing 

 models. Experimental Psychology, 53, 77-86. 

Barbey, A. K., & Barsalou, L. W. (2009). Reasoning and problem solving: models. 

 Encyclopedia of neuroscience, 8, 35-43. 

Barkow, J. H., Cosmides, L., & Tooby, J. (Eds.). (1995). The adapted mind: 

 Evolutionary psychology and the generation of culture. Oxford University Press. 

Bermudez. J. L. (2002). Rationality and psychological explanation without language. In 

 J. L. Bermudez & A. Millar (Eds.), Reason and nature: essays in the theory of 

 rationality, 233–264. New York, NY: Oxford University Press. 

Bucciarelli, M., & Johnson-Laird, P. N. (1999). Strategies in syllogistic reasoning. 

 Cognitive Science,  23(3), 247-303. 

Carruthers, P. (2006). Simple heuristics meet massive modularity. The innate mind, 2, 

 181-98. 

Cosmides, L., & Tooby, J. (1992). Cognitive adaptations for social exchange. The 

 adapted mind, 163- 228. 

De Neys, W. (2006). Automatic-heuristic and executive-analytic processing during 

 reasoning: Chronometric and dualtask considerations. Quarterly Journal of 

 Experimental Psychology, 59, 1070–1100. 

Dunn, J. C., & Kirsner, K. (2003). What can we infer from double dissociations?. Cortex, 

 39(1), 1-7. 

Espino, O., Santamaría, C., & García-Madruga, J. A. (2000). Figure and difficulty in 

 syllogistic reasoning. Cahiers de Psychologie Cognitive/Current Psychology of 

 Cognition. 

Evans, J. S. B. T., Barston, J. L., & Pollard, P. (1983). On the conflict between logic and 

 belief in syllogistic reasoning. Memory & Cognition, 11, 295-306. 



58 
 

Evans, J. S. B. T., Newstead, S. E., Allen, J. L., & Pollard, P. (1994). Debiasing by 

 instruction: The case of belief bias. European Journal of Cognitive Psychology, 

 61, 263-285. 

Evans, J. S. B., Over D. E. (1996). Rationality and reasoning. Psychology, New York 

Evans, J. S. B. (2003). In two minds: dual-process accounts of reasoning. Trends in 

 cognitive sciences, 7(10), 454-459. 

Evans, J. S. B. (2006). The heuristic-analytic theory of reasoning: Extension and 

 evaluation. Psychonomic Bulletin & Review, 13(3), 378-395. 

Evans, J. S. B. (2007). On the resolution of conflict in dual process theories of 

 reasoning. Thinking & Reasoning, 13(4), 321-339. 

Evans, J. S. B., & Stanovich, K. E. (2013). Dual-process theories of higher cognition 

 advancing the debate. Perspectives on psychological science, 8(3), 223-241. 

Fodor, J. (1983). The Modularity of Mind. MIT Press. 

Gigerenzer, G., & Todd, P. M. (1999). Fast and frugal heuristics: The adaptive toolbox. 

 In Simple heuristics that make us smart, 3-34. Oxford University Press. 

Goel V., Buchel C., Frith C., & Dolan R. J. (2000). Dissociation of mechanisms 

 underlying syllogistic reasoning. Neuroimage 12(5):504–514. 

Goel V., Shuren J., Sheesley L., & Grafman J. (2004). Asymmetrical involvement of 

 frontal lobes in social reasoning. Brain 127(4):783–790. 

Goel V., Tierney M., Sheesley L., Bartolo A., Vartanian O., & Grafman J. (2006). 

Hemispheric specialization in human prefrontal cortex for resolving certain and 

uncertain inferences. Cereb Cortex 17, 2245–2250. 

Goel, V., Tierney, M., Sheesley, L., Bartolo, A., Vartanian, O., & Grafman, J. (2007). 

Hemispheric specialization in human prefrontal cortex for resolving certain and 

uncertain inferences. Cerebral cortex, 17(10), 2245-2250. 

Goel, V. (2009). Fractionating the system of deductive reasoning. In Neural correlates of 

thinking (pp. 203-218). Springer Berlin Heidelberg. 



59 
 

Johnson-Laird, P.N. (1983). Mental models: towards a cognitive science of language, 

 inference, and consciousness. Harvard University Press, Cambridge. 

Johnson-Laird, P. N. (2010). Mental models and human reasoning. Proceedings of the 

 National Academy of Sciences, 107(43), 18243-18250. 

Just, M. A., & Varma, S. (2007). The organization of thinking: What functional brain 

 imaging reveals about the neuroarchitecture of complex cognition. Cognitive, 

 Affective, & Behavioral Neuroscience, 7(3), 153-191. 

Kahneman, D., & Klein, G. (2009). Conditions for intuitive expertise: A failure to 

disagree. American Psychologist, 80, 237–251 

Klauer, K. C., Musch, J., & Naumer, B. (2000). On belief bias in syllogistic reasoning. 

 Psychological Review, 107, 852-884. 

Newman, S. D., Carpenter, P. A., Varma, S., & Just, M. A. (2003). Frontal and parietal 

participation in problem solving in the Tower of London: fMRI and computational 

modeling of planning and high-level perception. Neuropsychologia, 41(12), 1668-

1682. 

Newstead, S. E., Pollard, P., Evans, J. S. B. T., & Allen, J. L. (1992). The source of 

 belief bias effects in syllogistic reasoning. Cognition, 45, 257-284. 

Pinker, S., (1997). How the Mind Works, New York: W. W. Norton & Company. 

Raymont, V., Salazar, A. M., Krueger, F., & Grafman, J. (2011). “Studying injured 

 minds” – the  Vietnam Head Injury study and 40 years of brain injury research. 

 Frontiers in Neurology, 2(15), 1 - 13. 

Rips L.J. (1994). The psychology of proof: deductive reasoning in human thinking. MIT 

 Press, Cambridge. 

Sperber, D., (1994). The modularity of thought and the epidemiology of representations. 

 In L. A. Hirschfeld and S. A. Gelman (eds.), Mapping the Mind, Cambridge: 

 Cambridge University Press, 39–67. 

Stanovich, K. (2004). The robot’s rebellion: finding meaning in the age of Darwin. 

 University of Chicago Press, Chicago 



60 
 

Stanovich, K. E. (2011). Rationality and the reflective mind. New York, NY: Oxford 

 University Press. 

Simon, H.A. (1955). A behavioral model of rational choice. Quarterly Journal of 

 Economics, 69, 99– 118. 

Simon H.A. (1983). Reason in human affairs. Stanford University Press, Stanford 

Simon, H. A. (1991). Bounded rationality and organizational learning. Organization 

 science, 2(1), 125- 134. 

Shynkaruk, J. M., & Thompson, V. A. (2006). Confidence and accuracy in deductive 

 reasoning. Memory & Cognition, 34(3), 619-632. 

Stupple, E. J., & Ball, L. J. (2008). Belief–logic conflict resolution in syllogistic reasoning: 

 Inspection-time evidence for a parallel-process model. Thinking & Reasoning, 

 14(2), 168-181. 

Stupple, E. J., Ball, L. J., Evans, J. S. B., & Kamal-Smith, E. (2011). When logic and 

 belief collide: Individual differences in reasoning times support a selective 

 processing model. Journal of Cognitive Psychology, 23(8), 931-941. 

Varma, S. (2006). A computational model of Tower of Hanoi problem solving (Doctoral 

 dissertation,  Vanderbilt University). 

Varma, S. (2014). The CAPS family of cognitive architectures. In S. E. F. Chipman 

 (Ed.), The Oxford Handbook of Cognitive Science. Oxford University Press. 

Wetherick, N. E. (1989). Psychology and syllogistic reasoning. Philosophical 

 Psychology, 2(1), 111-124. 

Wetherick, N. E., & Gilhooly, K. J. (1990). Syllogistic reasoning: Effects of premise 

 order. Lines  of thinking, 1, 99-108. 

 

  



61 
 

Appendix A: Patient Group Lesions 

Bilateral Parietal Patients    
Patient 
ID 

BA 7 
(right) 

BA 40 
(right) BA 7 (left) 

BA 40 
(left) Total 

230 0.24 0.00 42.18 4.36 46.78 

408 15.11 8.02 0.00 0.00 23.13 

439 0.65 19.06 0.00 0.00 19.71 

1061 0.02 15.44 0.00 0.00 15.46 

1298 0.00 22.95 0.00 0.00 22.95 

1324 7.73 56.65 0.00 0.00 64.38 

1341 11.17 0.00 51.42 1.73 64.32 

1366 0.00 20.86 0.00 0.00 20.86 

1434 30.50 0.00 0.00 0.00 30.50 

1443 0.00 33.61 0.00 0.00 33.61 

1461 17.01 12.47 0.00 0.00 29.48 

1510 0.00 0.00 1.09 27.18 28.27 

1621 0.00 0.00 20.82 6.84 27.66 

2005 16.48 0.19 3.38 0.00 20.05 

2028 10.33 27.27 0.42 0.04 38.06 

2116 29.54 33.48 22.20 32.17 117.39 

2341 0.00 0.04 32.75 17.09 49.88 

3081 57.57 0.21 0.00 0.00 57.78 

* damage in a BA is represented as a % proportion of that area  
 

Frontotemporal Patients (left hemisphere)  
Patient 
ID 

BA 21 
(left) 

BA 22 
(left) 

BA 47 
(left) Total 

5 10.44 2.49 11.61 24.54 

103 7.83 24.05 0.00 31.88 

181 12.30 23.06 0.20 35.56 

182 0.00 1.24 26.02 27.26 

318 0.00 0.00 10.64 10.64 

473 25.06 11.73 9.80 46.59 

495 19.63 18.05 0.00 37.68 

528 0.00 5.90 6.89 12.79 

1003 17.74 17.42 3.62 38.78 

1127 1.02 9.88 10.13 21.03 

1433 9.76 30.29 0.00 40.05 

1561 0.04 0.00 9.96 10.00 

1715 19.71 19.42 0.00 39.13 

2135 0.00 0.10 23.08 23.18 

2146 1.44 0.25 10.85 12.54 

2288 3.11 24.86 0.00 27.97 

2386 0.00 4.36 25.24 29.60 
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Appendix B: Human Demographics 

Measure 

Controls  

(N = 37) 

Parietal Patients  

(N = 18) 

Frontotemporal 

Patients  

(N = 17) 

Age (years) 59.27 (3.78) 58.11 (3.32) 58.89 (3.53) 

Education (years) 14.49 (4.29) 14.68 (4.36) 14.42 (4.00) 

CT Total  

Volume Loss (cm3) 0 29.05 (22.43) 30.24 (22.37) 

WAIS Verbal IQ 110.41 (12.28) 103.47 (13.00) 108.47 (16.17) 

WAIS Performance IQ 111.86 (12.25) 99.28 (14.85) 103.16 (16.75) 

WAIS Full IQ 111.92 (11.65) 102.67 (12.06) 106.63 (17.06) 

WAIS Working Memory 106.19 (12.74) 92.83 (12.28) 100.63 (19.15) 

WMS Working Memory 106.84 (13.36) 98.00 (12.94) 101.32 (16.18) 

WMS General Memory 107.62 (12.96) 102.05 (16.92) 94.32 (15.40) 
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Appendix C: Categorical Syllogisms 

LEGEND 

Bel = Believable conclusion 

Unbel = Unbelievable conclusion 

Con. = Conclusion congruent with belief 

Incon. = Conclusion incongruent with belief 

V = Conclusion Logically Valid 

NV = Conclusion Logically Invalid 

SM = Single-model problem 

MM = Multiple-model problem 

[1] all fruit are pears   

all bananas are fruit 

no bananas are pears 

 Bel-NV   Incon. SM 

[2] all cars have four wheels  

no scooters have four wheels 

no scooters are cars 

 Bel-V   Con. SM 

[3] all gods are immortals   

no immortals are men 

no men are gods 

 Bel-V Con. SM 

[4] all bikes are red    

some bikes are broken 

no broken bikes are red 

 Unbel-NV Con. SM 

[5] all airplanes can fly   

some boats can not fly 

some boats are not airplanes 

 Bel-V Con. MM 

[6] no liquids are red   

all paints are liquids 

some paints are red 

 Bel-NV Incon. SM 

[7] no cuban cigars are dogs  

no cuban cigars are cats 

no cats are dogs 

 Bel-NV Incon. MM 

[8] no coffee contains nicotine  

no nicotine contains tea 

no tea contains coffee 

 Bel-NV Incon. MM 

 

 

 

[9] no skiers are smokers   

some men are not skiers 

all men are smokers 

 Unbel-NV Con. SM 

[10] no cats have stripes   

some tigers are cats 

Some tigers do not have stripes 

 Unbel-V Incon. MM 

[11] no poisons are sold at the grocers  

some mushrooms are sold at the grocers 

some mushrooms are not poisons    

 Bel-V Con. MM  

[12] no men are children  

some men are girls 

all girls are children 

 Unbel-NV Con. SM 

[13] no olympic runners are smokers  

some smokers are not men 

some men are olympic runners  

 Bel-NV Incon. SM 

[14] some felines have gills 

all felines are cats 

some cats have gills 

 Unbel-V Incon. SM 

[15] some apples are sweet fruit 

all sweet fruit are grapes 

some grapes are apples 

 Unbel-V Incon. SM 

[16] no fruit are blue 

some apples are fruit 

all apples are blue 

 Unbel-NV Con. SM 

[17] some dogs do not have ears  

all dogs are german sheperds 

some german sheperds do not have ears 

 Unbel-V Incon. MM 

[18] some italians are not martians  

no french are Italians 

some french are martians 

 Unbel-NV Con. SM 

[19] some mice are not rabbits  

some cats are not mice 

some cats are not rabbits 

 Bel-NV Incon. MM 

  



64 
 

Appendix D: Correlation Graphs 
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