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A B S T R A C T

Ascariasis is considered a common parasitosis of swine worldwide. The disease causes significant economic
losses due to its effect on feed conversion ratio and liver condemnations at slaughter (liver milk spots).

This study aimed to characterise the between-farm and spatial variance in porcine ascariasis in England and
to assess the association between the percentage of infected animals and potential environmental risk factors,
including production system, socioeconomic deprivation, soil characteristics (pH, topsoil bulk density, topsoil
organic matter, topsoil texture class, soil water regime, topsoil available water capacity, and elevation), and
climatic conditions (relative humidity, air temperature, and rainfall) before slaughter.

Post-mortem inspection results were provided by the Food Standards Agency and comprised information about
the number of rejected livers, the number of animals sent to slaughter and the production system. All farms were
georeferenced based on the postcode, which allowed the assessment of the area index of socioeconomic de-
privation and the extraction of soil and climatic characteristics available in different online databases. Under a
multilevel framework with adjustment for spatial autocorrelation, a standard linear mixed model was fitted to
estimate the association between these determinants and the percentage of infected animals.

From 2,513,973 English farmed pigs included in the study, 4.3% had their livers rejected due to milk spots.
The percentage of infected pigs per batch ranged from 0% to 100%. The highest percentages were found in
Surrey, East and West Sussex (8.9%) and lowest in Leicestershire, Rutland and Northamptonshire (2.0%).
Significant associations were found at multivariable analysis between the proportion of infection and the number
of animals sent to slaughter (β=−0.005; 95%CI = −0.005, −0.004), soil texture (peat compared to coarse
textured soils; β= −0.516; 95%CI =−1.010, −0.063), relative humidity (β= 0.011; 95%CI = 0.006,
0.015), mean temperature (β = 0.007; 95%CI = 0.003, 0.012), and rainfall (β= 0.022; 95%CI = 0.004,
0.037).

In conclusion, our findings suggest that ascariasis can be influenced by a complex network of environmental
factors. Future research needs to acknowledge these intermingled relationships to guide the development and
application of control measures by the industry.

1. Introduction

Ascariasis is the most common parasitosis of swine worldwide and is
mainly caused by the helminth Ascaris suum (Stewart and Hoyt, 2013).
The striking feature of this nematodiasis is the migration of the parasite
through the liver, which affects animal welfare and productivity
(Stewart and Hoyt, 2013). The pathological consequence is a chronic
multifocal interstitial hepatitis that is usually asymptomatic. However,
at post-mortem inspection, the liver will show multiple, spherical, and
whitish foci, which are frequently named “milk spots,” rendering it

unfit for human consumption (Yoshihara et al., 1983). The detection of
milk spots has been used as an indicator of Ascaris suum infection
(Sanchez-Vazquez et al., 2012). According to Bernardo et al. (1990) the
absence of milk spots is a reliable indicator of the absence of an es-
tablished Ascaris infection. The authors reported the following char-
acteristics for the use of milk spots as an indicator of the faecal eva-
cuation of A. suum eggs: – sensitivity, 95.8%; – specificity, 23.8%; –
positive predictive value, 36.7%; and, – negative predictive value,
92.5%.

According to Roepstorff and Nansen (1994), a small percentage of
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farms are free of the disease. Specific characteristics of the parasite may
contribute to its ubiquity: (i) A. suum is a direct life cycle parasite, i.e., it
does not involve an intermediate host; (ii) the adult female parasite is
highly fecund (laying 1 million eggs, or more, daily); and, (iii) the eggs
are especially resistant to environmental factors because of their com-
plex and thick shell layers (Stewart and Hoyt, 2013).

A multi-national research study conducted in the Nordic countries
found that 21.5% of the fatteners were infected (Roepstorff and Nansen,
1998). In Germany, ten out of 144 (7%) swine farms randomly selected
for a cross-sectional survey revealed ascariasis in sows (Gerwert et al.,
2004). In England, a five-year monitoring programme found evidence
of A. suum infection at slaughter (through the detection of milk spots) in
4.2% of 34,168 pigs inspected (Sanchez-Vazquez et al., 2012).

Production and management systems are known determinants of A.
suum infection. The intensification of swine production systems has
been linked to an overall increase in the prevalence of milk spots
(Menzies et al., 1994). However, no differences in the prevalence of A.
suum in pigs between intensive and extensive production systems have
also been reported (Lai et al., 2011).

Since sanitation and improvement of hygiene practices represent
the best methods to prevent and control the dissemination of infection
in both humans and pigs, socioeconomic factors are also major de-
terminants of the disease. The burden of human infection by A. lum-
bricoides is concentrated in low-income countries, where sanitation is
poor, and the populations are more socioeconomically deprived
(Brooker et al., 2006). For instance, (i) having less than four years of
education, (ii) drinking untreated water, (iii) living in highly dense
households, and (iv) having a salary below the minimum wage were
associated with increased risk of human infection by A. lumbricoides in
Brazil (Valencia et al., 2005). So, we must consider the possibility that
these factors may play a role in the epidemiology of ascariasis in pigs.
To the authors’ knowledge, this has never been studied before.

In England and other countries, strong spatial inequalities in the
distribution of swine ascariasis were observed, which suggests that the
geographical location may act as a latent variable encapsulating several
biogeophysical and socioeconomic factors (Roepstorff and Nansen,
1998; Sanchez-Vazquez et al., 2010). Accumulated evidence suggests
that climatic and soil characteristics might also be possible determi-
nants of the disease (Beaver, 1953; Arene, 1986; Kim et al., 2012;
Schüle et al., 2014). For instance, it has been accepted for a long time
that A. suum eggs do not develop under the temperature of 5 °C and the
optimum temperature for cleavage seems to be between 25 and 30 °C
(Arene, 1986; Kim et al., 2012), which might explain the comparatively
higher incidence of the disease in summer months (Sanchez-Vazquez
et al., 2012; McCormick et al., 2013; Neumann et al., 2014). Water and
oxygen availability also seem to influence the Ascaris life cycle and,
consequently, the occurrence of the disease. A cross-sectional study that
analysed the environmental determinants of A. lumbricoides infection in
humans in Tanzania using remotely sensed data found a significant
association between the level of rainfall and the prevalence of disease
(Schüle et al., 2014). Previously, another study concluded that the
“number of wet days” (rain days) could also be used as a predictor of
Ascaris infection in humans (Gunawardena et al., 2004). In addition to
the atmospheric conditions, several physicochemical characteristics of
the soil, where part of the life cycle takes place, seem to play a role.
Beaver (1953) showed that larvae in direct contact with sunlight and
those unable to migrate vertically in compact soils, die quickly. A strong
association between soil pH and the frequency of infective forms of
intestinal parasites in topsoil samples collected from public squares has
also been reported. Using Yule’s Q coefficient, Sánchez Thevenet et al.
(2004) found that the presence of intestinal parasites was relatively
more common in soils with pH values between 7 and 9.

The purpose of this study was then to characterise the between-farm
and spatial variation in porcine ascariasis in England and to assess the
association between the percentage of infection and previously men-
tioned potential environmental risk factors. These included (i) farming

features (production system and size of the farm), (ii) the neighbour-
hood socioeconomic context (deprivation); and, (iii) the soil and cli-
matic conditions (relative humidity, air temperature, rainfall, and soil
characteristics – soil pH, topsoil bulk density, topsoil organic matter,
topsoil texture class, soil water regime, topsoil available water capacity,
and elevation).

2. Material and methods

2.1. Post-mortem inspection data

The number of infected animals was estimated using results of post-
mortem inspection. The post-mortem inspection data was provided by the
Food Standards Agency (FSA), the non-ministerial body that enforces
food safety regulations in food establishments across the United
Kingdom. The data included post-mortem inspection results of 2014 (1st

January–31st December 2014) from 12 pig abattoirs located in different
geographical regions across England. These abattoirs were chosen to
provide a nationwide representation of farming settlements in England,
as done by other authors (Sanchez-Vazquez et al., 2010; Sanchez-
Vazquez et al., 2011; Sanchez-Vazquez et al., 2012).

The dataset included the following variables: producer information
(e.g. internal identification number, county parish holding (CPH), and
address), the slapmark/herdmark (i.e., a permanent ink mark with the
herd number, applied to each shoulder of the pigs), the type of animals
(fattening or cull pigs), the production system (born and reared under
controlled housing conditions; born outdoors and reared under con-
trolled housing conditions since weaning; and, born and reared out-
doors), the date of slaughter, the number of pigs slaughtered per batch
(throughput), and the number of livers rejected per batch due to milk
spots. A total number of 21,895 registers, each corresponding to a batch
of animals, was available.

A set of selection criteria was applied to meet the requirements of
the study, clean the database from missing or misleading data, and
improve the representativeness of the sample. The data entries were
excluded if (1) the postcode was absent or poor in quality (n = 1895
batches), (2) the batches were from Irish, Scottish or Welsh farms
(n = 652), (3) less than five pigs per batch were sent to slaughter
(n = 276), (4) the batch was mixed (from markets and different farm
origins) (n = 712), (5) the batch was composed of cull pigs (n = 472),
and, (6) the producer CPH was absent or incorrect (n = 738). This
process resulted in a database comprising 1463 farms, 17,150 batches,
and 2,513,973 pigs. Throughout the selection process, no significant
spatial differences were observed; except when excluding farms that
were located in Northern Ireland, Scotland, and Wales.

Farms were georeferenced based on the postcode of the CPH using
ArcGIS (version 10.4.1 – ESRI, Redlands, CA), which then allowed us to
characterise geographic patterns and attribute a set of contextual
variables (described ahead) to each farm.

2.2. Covariates

We included covariates from three key groups of determinants –
farm production and management practices, soil characteristics, and
climatic conditions before slaughter.

2.2.1. Production and management conditions of the farm and socioeconomic
context

Although a variable about the production system of each farm was
available (born and reared under controlled housing conditions; born
outdoors and reared under controlled housing conditions since
weaning; and, born and reared outdoors), it was incomplete in 70.9% of
the registers. Thus, in the absence of detailed and complete information
about production and management conditions, the throughput (number
of animals sent to slaughter) was used as a representation of farm size.

The characterisation of the socioeconomic context of the farm’s
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geographical area was based on the 2015 English Index of Multiple
Deprivation (EIMD15). The EIMD15 is the official measure of relative
deprivation in England and ranks every small area from 1 (most de-
prived area) to 32,844 (least deprived area). It was produced con-
sidering seven different domains with respective weights (income
−22.5%; employment−22.5%; education, skills and training−13.5%;
health and disability −13.5%; crime −9.3%; barriers to housing and
services −9.3%; and, living environment −9.3%). The methodology
used to construct the EIMD15 is fully described in its technical report
(Department for Communities and Local Government, 2015). The
ranked areas were those defined by the 2011 Lower layer Super Output
Area (LSOA) boundaries, which delimitate small homogenous areas of
relatively equal size containing approximately 1500 people (Office for
National Statistics, 2011). A categorisation of the deciles was made for
further statistical analysis as follows: – deciles 1–4 (most deprived); –
deciles 5 and 6 (medium deprived); and, – deciles 7–10 (least deprived).

2.2.2. Soil characteristics
The soil characteristics (soil pH, topsoil bulk density, topsoil organic

matter, topsoil texture class, soil water regime, topsoil available water
capacity, and elevation above sea level) were retrieved from several
open data services. The metadata for each biogeophysical variable is
provided in Table 1.

The soil pH measures the acidity or alkalinity level of the soil. It
reflects several physical and chemical conditions of the environment
and corresponds to the negative decimal logarithm of the hydrogen ion
(H+) concentration in soil solution (Chesworth, 2007).

The topsoil bulk density, a measure of the compaction of the first
30 cm of soil depth, is the quotient of the soil mass and its total volume
(Shukla, 2013). The more porous the soil, the lower the value of bulk
density.

The topsoil organic matter is a measure of the amount of organic
matter in the soil, which is mostly produced by vegetation death and
decomposition by soil microorganisms (Lal, 2006).

Texture conveys an idea of the physical properties of the soil ac-
cording to the proportion of three fractions (sand, silt and clay). Soil
texture is always expressed into classes that reflect the relative amount
of each fraction. Specifically, the topsoil texture class is the result of the
proportion of sand (2–0.02 mm), silt (0.02–0.002 mm) and clay

(< 0.002 mm) on the soil, as follows: – coarse (18%< clay and>65%
sand); – medium (18%<clay< 35% and ≥15% sand, or 18%<clay
and 15%< sand<65%); – medium fine (< 35% clay and<15%
sand); – fine (35%<clay< 60%); – very fine (clay> 60%); and, – no
mineral texture (peat soils).

The soil water regime indicates the amount of the water kept in the
soil. It is an annual estimation of the moisture conditions prevailing in
the soil profile (Lal, 2006), as follows: – not wet within 80 cm for over 3
months, nor wet within 40 cm for over 1 month (“dry”); – wet within
80 cm for 3–6 months, but not wet within 40 cm for over 1 month
(“least wet”); – wet within 80 cm for over 6 months, but not wet within
40 cm for over 11 months (“moderately wet”); and, – wet within 40 cm
depth for over 11 months (“most wet”). The topsoil available water
capacity measures the amount of water (in millimetres of water per
metre of soil depth) retained by the soil profile and has been classified
as follows: – low (< 100 mm/m); – medium (100–140 mm/m); – high
(140–190 mm/m); and, – very high (> 190 mm/m). Finally, the ele-
vation is a measure of the height above sea level, in metres.

2.2.3. Climate conditions before slaughter
The climatic data for 2014 (monthly relative humidity; daily air tem-

peratures−minimum andmaximum; and, daily rainfall totals) was acquired
from the Met Office, the United Kingdom's national weather service. This
database comprised 5 km grid squares masked to the UK, and further clipped
to England. The values were cell-centred estimations and were imported by
the authors as ASCII files into ArcGIS. Then, these variables were averaged
for the 44 days before slaughter at each farm location because this is the
period with the potential influence on the post-mortem inspection findings
(Stewart and Hoyt, 2013). The life cycle of A. suum includes (i) a period of
approximately 30 days when embryonated eggs are excreted into the en-
vironment, develop into L2 (second stage larvae) and L3 (infective and third
stage larvae), and, (ii) a period of nearly seven days when L3 are ingested,
hatch in the stomach, reach the intestine, penetrate the intestinal mucosa,
and migrate to the liver where milk spots develop (Stewart and Hoyt, 2013).
Another seven days were added to reflect as much exposure of the animals to
potential infective larvae as possible. The number of days with (i) minimum
air temperature below 5 °C (Stewart and Hoyt, 2013) and (ii) recorded
rainfall (“wet days”) were also computed to assess the influence of potential
thresholds (Gunawardena et al., 2004).

Table 1
Metadata for biogeophysical variables.

Product name Variable Unit Format Version/ release date Resolution Projection Original geographical coverage

Soil pH in Europea Soil pH N/A Raster (.tif) 2010 1 km ETRS89 EU–25 + Norway, Switzerland, Croatia,
Albania

EFSA Data and PERSAM
software toolb

Topsoil bulk density kg/m3 Raster
(ASCII)

Nov 2012 1 km ETRS89 EU–27 + Balkan countries, Switzerland and
NorwayTopsoil organic matter %

Topsoil texture class N/A
European Soil Databasec Soil water regime N/A Raster (.tif) V2.0, 2006 1 km ETRS89 EU–27 + Balkan countries, Switzerland,

Norway, Ukraine and RussiaTopsoil available water
capacity

25 Sep 2001

OS Terrain 50d Elevation m Raster
(ASCII)

Jul 2015 50 m BNG Great Britain

UKCP09e Air temperatures °C Raster
(ASCII)

Data for 2014 released
on 18 Dec 2015

5 km, daily BNG United Kingdom
Rainfall totals mm 5 km, daily
Relative humidity % 5 km, monthly

EU-25: Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, United Kingdom, Austria, Finland, Sweden, Cyprus, Czech Republic,
Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia, and Slovenia; EU-27: EU-25 plus Bulgaria and Romania; Balkan countries (non-EU): Albania, Macedonia, Serbia,
Montenegro, and Bosnia-Herzegovina; ASCII: American Standard Code for Information Interchange; .tif: tagged image file format; BNG: British National Grid; ETRS89: Lambert Azimuthal
Equal Area; N/A: non-applicable.

a European Soil Data Centre (ESDAC) (2010). Soil pH in Europe. Retrieved from http://esdac.jrc.ec.europa.eu/content/soil-ph-europe on 25th February 2016.
b European Soil Data Centre (ESDAC) (2012). European Food Safety Authority (EFSA) Data and PERSAM software tool. Retrieved from http://esdac.jrc.ec.europa.eu/content/

european-food-safety-authority-efsa-data-persam-software-tool on 25th February 2016.
c European Soil Data Centre (ESDAC) (2001). European Soil Database v2.0 (vector and attribute data). Retrieved from http://esdac.jrc.ec.europa.eu/content/european-soil-database-

v20-vector-and-attribute-data on 25th February 2016.
d Ordnance Survey (2015). OS Terrain 50. Retrieved from https://www.ordnancesurvey.co.uk/business-and-government/products/terrain-50.html on 12th November 2015.
e Met Office (2015). UKCP09: Daily data sets. Obtained under service request on 5th December 2015.
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2.3. Statistical analysis

The proportion of infected animals per batch was calculated di-
viding the number of rejected livers (due to the presence of milk spots)
by the number of livers inspected per batch. The proportion of infected
batches (number of batches with at least one liver rejected due to milk
spots divided by the total number of batches inspected) and farms
(number of farms with at least one batch infected divided by the total
number of farms) were also calculated. Descriptive statistics were cal-
culated for categorical (counts and proportions) and numerical vari-
ables (median and interquartile range, IQR). The assessment of nor-
mality, homoscedasticity, collinearity and spatial autocorrelation was
performed as part of the modelling assumptions and baseline building
tests.

Choropleth maps were built for spatial visualisation of the propor-
tion of infected animals per farm. This procedure only included areas of
NUTSII (level two of the Nomenclature of Territorial Units for
Statistics) with at least five farms to minimise the random fluctuations
associated with dealing with small numbers.

The assessment of associations between the suggested risk factors
and the percentage of infected animals was performed using a standard
Gaussian multilevel linear mixed model (LMM) with non-parametric
spatial terms (smoothing splines for the longitude and latitude of the
farm). Since the distribution of the percentage of infected pigs per batch
was right-skewed, a log-transformation was applied. A three-level
structure of data was also considered, i.e. the inspected batches (first
level) were nested within the farm of provenance (second level) and
further nested within each abattoir (third level), where specific official
protocols might have had some influence on inspection results. A
stepwise procedure was conducted as follows: i) firstly, an univariable
multilevel LMM analysis, with spatial non-parametric terms and
random effects, was performed to evaluate the association between
each risk determinant and the percentage of porcine ascariasis per
batch; ii) secondly, three successive models were built from a random
effects and spatial effects model (model 0), adding production and
management practices (block 1), soil characteristics (block 2), and
climatic conditions before slaughter (block 3). So, the null model
(model 0) was the starting point and included only spatial non-para-
metric terms and random effects, the model 1 consisted of the null
model plus production and management practices, the model 2 con-
sisted of the model 1 plus soil characteristics, and the model 3 consisted
of the model 2 plus climatic conditions before slaughter. The workflow
of data analysis is shown in Fig. 1. The variables that showed strong and
significant autocorrelation (Spearman's rho larger than 0.8) were ex-
cluded from the stepwise model building procedure. We kept those with
smaller p-value and that yield better model fitting. Thus, the organic
matter content of the soil, the water capacity, and the climatic variables
other than mean temperature, relative humidity and rainfall were
omitted from the multivariable models. Complementary, we computed
the intraclass correlation coefficient (ICC), a measure of clustering
correlation that expresses the proportion of the total variance occurring
at each level (Merlo et al., 2005). Furthermore, this modelling sequence
allowed the assessment of the proportional change in variance caused
by the inclusion of each batch of covariates using the previous model
variance as a reference.

The multi-level analysis was conducted in R (package lme4; Bates
et al., 2015) and an ordinary nonparametric bootstrap with 500 boot-
strap replicates was used to compute confidence intervals of LMM es-
timates, including variance components (package boot; Canty and
Ripley, 2016). The significance level was set at 0.05.

2.4. Ethics statement

The present study used official information in accordance with
FSA’s Privacy Statement and the exemption in section 31 of the Data
Protection Act (1998). The data supplied by FSA operations group was

extracted exclusively from the INNOVA system. The authors were
aware of and have undertaken to comply with the requirements of the
Data Protection Act (1998), Freedom of Information Act (2000), and
Environmental Information Regulations (2004). The results of this re-
search study were to be published in such a way that information relating to
any particular land, business or person could not be inferred from it.

3. Results

3.1. Descriptive statistics: spatial distribution and differences between farms
and abattoirs

From the 2,513,973 pigs slaughtered, 108,667 (4.3%) had their li-
vers rejected due to milk spots. The median percentage of infected pigs
per batch was 1.3% (IQR = 0.5–4.0), ranging from zero (n = 2448) to
100% (n = 56). The median percentage of infected pigs per farm was
1.6% (IQR = 0.9–3.7), ranging from zero (n = 161) to 100% (n = 7).

The distribution of the percentage of infected animals per NUTSII is
shown in Fig. 2. Among the areas with, at least, five farms assessed
(n = 23), the proportion of rejected livers ranged from 2.0% in Lei-
cestershire, Rutland and Northamptonshire, where 1085 livers were
rejected from 54,736 pigs (30 farms) to 8.9% in Surrey and Sussex (East
and West), where 233 livers were rejected from 2609 pigs (7 farms).

The proportion of rejected livers per batch was not independent of
the abattoir. Table 2 shows the proportion of infected pigs per abattoir.
In 11 out of 12 abattoirs, the percentage of swine ascariasis ranged from
2.2% (abattoir J and K) to 8.5% (abattoir G). In abattoir I, this per-
centage was significantly higher (21.1%). This abattoir was also the
smallest one, with fewer pigs slaughtered (11,490), while the abattoir B
had the highest throughput (814,313).

The data selection procedure did not affect these results greatly as
only 17.36% of the animals included in the initial database were ex-
cluded. Through this process, the percentage of livers with milk spots
decreased from 4.56 to 4.32. The abattoirs where a higher proportion of
animals were excluded were the G (77.86%) and I (50.84%). The
abattoir G slaughters a great proportion of cull pigs. At the abattoir I,
20% and 19% of the slaughtered batches had a missing postcode and
comprised less than five pigs, respectively.

3.2. Descriptive statistics: frequency of infection according to covariates

The distribution of the inspected animals and infected animals ac-
cording to the variables related to production and management prac-
tices, soil characteristics and climatic conditions before slaughter is
shown in Table 3. We observed that the proportion of infected animals
varied significantly according to the levels (tertiles) of the covariates
considered. For instance, the proportion of infected animals was higher
in smaller batches, produced indoors, from farms located in more de-
prived areas, more elevated areas, in areas of higher relative humidity,
and rainfall, of lower soil pH, of lower percentage of soil organic
matter, and of higher soil bulk density.

The spatial distribution of the most important covariates is shown in
Figs. S1–S10 (Supplementary material).

3.3. Statistical modelling: associations between the percentage of infected
animals and the covariates

3.3.1. Univariable analysis
At univariable analysis, the proportion of porcine ascariasis per batch was

significantly associated with the throughput, area socioeconomic deprivation,
soil texture, water capacity, relative humidity, and rainfall. No association
was observed with the water regime, pH, bulk density, elevation, organic
matter content, mean temperature, minimum temperature, maximum tem-
perature, number of days with minimum temperature below 5 °C, and “wet
days”. With an increase in the number of animals sent to slaughter, the
proportion of porcine ascariasis decreased significantly (β=−0.005;
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95%CI=−0.005, −0.004). The farms located in areas with the best ranks
of socioeconomic deprivation had a significantly lower proportion of porcine
ascariasis (least deprived compared to most deprived areas; β=−0.210;
95%CI=−0.417,−0.030). The farms located in coarse soils appear to have

a significantly higher percentage of infected animals compared to those lo-
cated in medium texture class (β=−0.187; 95%CI=−0.359, −0.018)
and peat soils (β=−0.451; 95%CI=−0.897, −0.030). Finally, we ob-
served a positive association between the percentage of infected animals per

Fig. 1. Workflow of data analysis.
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batch and both the relative humidity (β=0.007; 95%CI= 0.003, 0.010)
and rainfall (β=0.024; 95%CI= 0.008, 0.041) (Table 4).

3.3.2. Multivariable analysis
The stepwise inclusion of production and management practices

(model 1), soil characteristics (model 2), and climatic conditions

(model 3) to the null model kept most of the associations observed at
univariable analysis. However, the significant relationship observed
between the area socioeconomic deprivation and the percentage of
infected animals per batch was lost when the variable throughput was
added. This association would be kept significant in the final model if
the spatial structure of the data had not been considered (model A;
β = −0.220; 95%CI = −0.425, −0.020). The impact of soil texture
was also attenuated when the model was adjusted for the remaining
variables of block 1 and 2. Though, peat soils seemed to be associated
with a lower percentage of disease when compared with coarse soils
(β = −0.525; 95%CI =−1.022, −0.056). Finally, the third model,
with the three building blocks, revealed a significant association with
the mean air temperature. Warmer periods pre-slaughter were asso-
ciated with higher percentage of infected animals per batch (β = 0.007;
95%CI = 0.003, 0.012) (Table 4). A choropleth map showing the pre-
dicted spatial distribution of porcine ascariasis according to the model 3
is available in Fig. S11 (Supplementary material).

The variance components of the models are shown in Table 5. The
between-farm and between-abattoir variances observed were 1.420
(95%CI = 1.297, 1.525) and 0.394 (95%CI = 0.127, 0.779), respec-
tively. The ICC revealed that 55.7% (95%CI = 49.9, 60.5) and 15.4%
(95%CI = 5.9, 25.5) of the variance was at farm and abattoir level,
respectively. We observed that 6.0% (95%CI = 5.3, 7.3) of the total
between-farm variance and 35.3% (95%CI = 27.3, 41.5) of the total

Fig. 2. Choropleth map showing the spatial distribution
of porcine ascariasis according to the percentage of re-
jected livers due to milk spots per geographic area. ©
EuroGeographics for the administrative boundaries,
Eurostat. Legend: 1. Northumberland and Tyne and
Wear; 2. Cumbria; 3. Tees Valley and Durham; 4. North
Yorkshire; 5. Lancashire; 6. East Riding and North
Lincolnshire; 7. West Yorkshire; 8. Merseyside; 9. Greater
Manchester; 10. South Yorkshire; 11. Cheshire; 12.
Derbyshire and Nottinghamshire; 13. Lincolnshire; 14.
Shropshire and Staffordshire; 15. East Anglia; 16.
Leicestershire, Rutland and Northamptonshire; 17. West
Midlands; 18. Herefordshire, Worcestershire and
Warwickshire; 19. Bedfordshire and Hertfordshire; 20.
Berkshire, Buckinghamshire and Oxfordshire; 21. Essex;
22. Gloucestershire, Wiltshire and North Somerset; 23.
Outer London; 24. Inner London; 25. Kent; 26. Surrey,
East and West Sussex; 27. Hampshire and Isle of Wight;
28. Dorset and Somerset; 29. Devon; and, 30. Cornwall
and Isles of Scilly.

Table 2
Descriptive statistics of the outcome variable.

Variable Count (%)

Infected pigs 108,667 (4.3)
Infected batches 14,724 (85.9)
Infected farms 1302 (89.0)
Infected pigs by abattoir A 9118 (5.9)

B 31,554 (3.9)
C 6740 (2.5)
D 4694 (6.5)
E 1488 (4.4)
F 12,983 (4.9)
G 3017 (8.5)
H 21,188 (7.2)
I 2426 (21.1)
J 4811 (2.2)
K 2926 (2.3)
L 7722 (3.5)
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between-abattoir variance was explained by the block 1 (production
and management practices – throughput and area socioeconomic de-
privation). Adding the block 2 (soils characteristics; model 2) and 3
(climatic conditions; model 3) did not affect the variance components
significantly.

4. Discussion

4.1. Study findings

This study was carried out to characterise the between-farm and
spatial variation in porcine ascariasis in England and to assess the as-
sociation between the percentage of infection and potential environ-
mental risk factors, including biogeophysical (relative humidity, air
temperature, rainfall, and soil characteristics – pH, topsoil bulk density,
topsoil organic matter, elevation, topsoil texture class, soil water re-
gime, and topsoil available water capacity) and farming conditions
(production system, size of the farm, and area socioeconomic context).

The overall percentage of liver milk spots in 2,513,973 pigs
slaughtered was 4.3%. This result is similar to the 4.2% observed by
Sanchez-Vazquez et al. (2012), who conducted a five-year monitoring
programme involving 34,168 pigs in England. Previously, Sanchez-
Vazquez et al. (2010) had reported a prevalence of 4.4% of porcine milk
spots while investigating the effects of husbandry practices, geo-
graphical locations and seasonal patterns in Great Britain. According to
these authors, the risk of milk spots was significantly higher in pigs
farmed in the north (northeast and northwest England, York and the
Humber) and southwest (west Midlands, Wales and southwest England)
of Great Britain, compared to those farmed in the southeast (east
Midlands, east and southeast England). In our study, using this regional
classification, we also observed a higher percentage of milk spot livers
in pigs farmed in the southwest (4.8%; n = 305,742; Wales not in-
cluded) compared to the southeast (4.4%; n = 867,017), but a lower
percentage in the north (4.2%; n = 1,341,214).

From the 1463 farms enrolled in this study, 1302 (89.0%) had at
least one liver rejected due to milk spots. This result seems to corro-
borate what had been acknowledged by Roepstorff and Nansen (1994):
a small percentage of farms are free of the disease. However, our

Table 3
Number and percentage of animals inspected and infected according to the variables
related to production and management practices, soil characteristics and climatic con-
ditions before slaughter.

Variable No. animals (%) No. infected animals (%)

Production and management practices
Production system
Outdoors 782 (0.0) 16 (2.0)
Mixed 18,775 (0.7) 778 (4.1)
Indoors 658,165 (26.2) 34,784 (5.3)
Missing 1,836,251 (73.0) 73,089 (4.0)

Throughput
5–118 449,183 (17.9) 34,513 (7.7)
119–174 510,496 (20.3) 23,528 (4.6)
175–661 1,554,294 (61.8) 50,626 (3.3)

Area socioeconomic deprivation
Least deprived 901,033 (35.8) 26,304 (2.9)
Medium deprived 1,129,541 (44.9) 56,504 (5.0)
Most deprived 483,399 (19.2) 25,859 (5.3)

Soil characteristics
Texture
Coarse 648,898 (25.8) 32,992 (5.1)
Medium 1,320,653 (52.5) 51,495 (3.9)
Medium fine 256,036 (10.2) 13,424 (5.2)
Fine 228,929 (9.1) 9700 (4.2)
Peat soils 59,457 (2.4) 1056 (1.8)

Water regime
Dry 1,121,439 (44.6) 51,957 (4.6)
Least wet 2881 (0.1) 86 (3.0)
Moderately wet 696,567 (27.7) 34,628 (5.0)
Most wet 663,255 (26.4) 21,383 (3.2)
Missing 29,831 (1.2) 613 (2.1)

Water capacity
Medium 587,128 (23.4) 29,433 (5.0)
High 1,581,521 (62.9) 64,141 (4.1)
Very high 256,036 (10.2) 13,424 (5.2)
Missing 89,288 (3.6) 1669 (1.9)

Soil pH
3.56–4.69 943,984 (37.5) 39,274 (4.2)
4.70–5.20 678,270 (27.0) 38,241 (5.6)
5.21–6.25 835,232 (33.2) 30,209 (3.6)

Missing 56,487 (2.2) 943 (1.7)

Bulk density (kg/m3)
217–1165 916,545 (36.5) 38,514 (4.2)
1169–1299 584,453 (23.2) 23,863 (4.1)
1300–1503 1,012,975 (40.3) 46,290 (4.6)

Organic matter (%)
1–2 727,318 (28.9) 35,589 (4.9)
3–6 1,279,847 (50.9) 53,152 (4.2)
7–72 506,808 (20.2) 19,926 (3.9)

Elevation (m)
−8–43 1,103,908 (43.9) 46,314 (4.2)
44–97 733,409 (29.2) 25,922 (3.5)
99–415 633,211 (25.2) 35,493 (5.6)
Missing 43,445 (1.7) 938 (2.2)

Climatic conditions before slaughter
Relative humidity (%)
70.8–80.7 961,937 (38.3) 38,503 (4.0)
80.8–84.4 616,251 (24.5) 26,180 (4,2)
84.5–95.6 935,580 (37.2) 43,984 (4.7)
Missing 205 (0.0) 0 (0.0)

Minimum temperature (°C)
0.45–5.23 956,876 (38.1) 41,775 (4.4)
5.25–8.14 485,629 (19.3) 20,948 (4.3)
8.16–14.43 1,070,166 (42.6) 45,942 (4.3)
Missing 1302 (0.1) 2 (0.2)

Maximum temperature (°C)
4.36–12.45 930,024 (37.0) 42,218 (4.5)
12.48–16.50 591,738 (23.5) 23,956 (4.0)
16.52–23.77 990,909 (39.4) 42,491 (4.3)
Missing 1302 (0.1) 2 (0.2)

Table 3 (continued)

Variable No. animals (%) No. infected animals (%)

Mean temperature (°C)
2.48–8.85 942,856 (37.5) 41,997 (4.5)
8.86–12.31 541,080 (21.5) 22,458 (4.2)
12.32–18.74 1,028,735 (40.9) 44,210 (4.3)
Missing 1302 (0.1) 2 (0.2)

Number of days with minimum temperature (°C) < 5
0–8 1,240,647 (49.4) 53,654 (4.3)
9–20 405,486 (16.1) 16,787 (4.1)
21–44 866,538 (34.5) 38,224 (4.4)
Missing 1302 (0.1) 2 (0.2)

Rainfall (mm)
0.2–1.5 849,361 (33.8) 33,959 (4.0)
1.6–2.3 1,009,652 (40.2) 46,283 (4.6)
2.4–10.4 653,658 (26.0) 28,423 (4.3)
Missing 1302 (0.1) 2 (0.2)

Days with rain (“wet days”)
3–14 906,035 (36.0) 38,012 (4.2)
15–19 907,882 (36.1) 39,820 (4.4)
20–43 698,754 (27.8) 30,833 (4.4)
Missing 1302 (0.1) 2 (0.2)

Note: continuous variables are categorised into tertiles. The p-value of the chi-square test
is lower than 0.05 for all the covariates considered. The percentage on the column “No.
animals (%)” has the total number of animals inspected as denominator. The percentage
on the column “No. infected animals (%)” has the number of animals inspected on each
category as denominator.
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estimate of the between-farm prevalence was higher than described by
Sanchez-Vazquez et al. (2010), who observed that 67.0% of the farms
were infected. Note that the work carried out by Sanchez-Vazquez et al.
is based on abattoir data collected by trained swine veterinarians who
inspect every other pig on the slaughter line from a representative
sample of each batch of pigs. Not every batch of pigs is eligible, only
those that belong to the British abattoir monitoring health Schemes −
Wholesome Pigs Scotland (WPS) and British Pig Health Scheme (BPHS).
This feature may explain some of the differences between their results
and those of the present study.

We observed that the farms that showed some evidence of having a
more intensified production system, according to the higher number of
animals sent to slaughter, were at reduced risk of milk spots. These
farms most likely have the protective housing conditions (e.g. floor
type) and management practices (e.g. cleaning and disinfection proce-
dures). According to Sanchez-Vazquez et al. (2010) the farms that (i)
have buildings with solid floor and use bedding, (ii) have a dry feeding
system, (iii) are just finishing units (not registered as breeding herds as
well), and, (iv) have outdoor production stages are at increased risk
compared with the opposite factors.

The inclusion of a socioeconomic indicator was helpful in com-
plementing the scarce information regarding the farming conditions,
which are critical in the epidemiology of the disease (Alban et al.,
2015). It was hypothesised that more socioeconomically deprived
farmers (i) may be less likely to apply preventive and control strategies
to tackle the disease, (ii) may have weaker biosecurity structures and
procedures in place, (iii) may produce pigs in conditions that better
reflect external environmental pressures, (iv) may be less prone to seek
veterinary advice, and (v) may be less likely to engage with major
multi-company organisations. The use of a socioeconomic index to as-
sign a particular deprivation level to the farms is not free of bias;
however, it is reasonable to consider that the social context in which the
farms are run (e.g. the level of education of the workers who provide
assistance or the sanitary welfare of the neighbourhood) may have
some effect. Curiously, a higher risk of milk spots among the farms
located in poorer areas was observed at univariable analysis as well as
at multivariable analysis without spatial non-parametric terms. This
association became non-significant at the final model with spatial ad-
justment, which may be related to the high level of socio-spatial seg-
regation existing in England (Musterd, 2005), i.e., EIMD15 is highly
spatially autocorrelated. Thus, any adjustment for unmeasured spatial
confounding (through the inclusion of smoothing splines for the long-
itude and latitude of the farm) inevitably leads to an attenuation of the
effect of area socioeconomic deprivation.

This study also found interesting and new results regarding the

influence of the type of soil on the proportion of livers rejected due to
milk spots. According to the final model, the frequency of the disease is
lower in peat soils, compared to coarse soils. Peat is a hydrogeomorphic
soil that results from the decomposition of plants and mosses under wet
conditions (Andriesse, 1988). In England, the hydrogeomorphic soils
can occur in the form of hill or acid peat (formed in areas of high
rainfall – e.g. the Pennine Chain) and fen or basin peat (formed in areas
with excessive ground water – e.g. Yorkshire, Lincolnshire, and Norfolk)
(Shirlaw, 2013). Coarse-textured soils (18%< clay and> 65% sand)
are characterised by low total pore space compared to fine-textured
soils (35%<clay< 60%). Under experimental conditions, soils that
allow migration of the larvae appear to allow the geohelminths to find
the best conditions of moisture and oxygenation (Beaver, 1953). Ad-
ditionally, it has been reported that A. suum eggs survive longer when
buried in soils that retain moisture, as it is the case of fine-textured soils
(Mizgajska, 1993). The same has been suggested for A. lumbricoides:
“clay soils favour Ascaris survival by retaining water around coated eggs
and allowing them to withstand desiccation (…) and eggs mixed with clay
adhere better to persons and clothing, increasing the chances for ingestion”
(Spittell and Volpé, 1986;). Contrarily, our results do not suggest any
biological advantage of A. suum in fine-textured soils and, indeed, re-
veal the limited impact of soil characteristics on the epidemiology of
the disease.

Although extremely resistant in the environment, the eggs of A.
suum do not develop at temperatures below 5 °C and its life cycle is
highly dependent on humidity (Arene, 1986; Kim et al., 2012). This has
been suggested as a possible reason for seasonal patterns of milk spots.
Slow or no embryonation of eggs is common when they are excreted in
the late autumn/winter until spring (Connan, 1977). Indeed, we ob-
served a positive association between relative humidity, mean air
temperature, and rainfall and the proportion of liver rejections due to
milk spots. These results demonstrate the inherent effect of climatic
conditions in swine production, even though it has become a highly
industrialised sector.

The computation of variance components for the LMM showed that
most of the variance occurs at farm level; this stresses the influence that
farm-related factors have on the prevalence of the infection. The abattoir
level also has a significant contribution but with much lower impact than
the previous level, suggesting that differences in inspection procedures at
the abattoir level could have a low impact on the prevalence estimates. That
contribution was attenuated by the inclusion of block 1 (production and
management practices – throughput and area socioeconomic deprivation),
which highlights the relevance of stockmanship in the epidemiology of the
disease. Soils characteristics and climatic conditions proved to be less re-
levant factors compared to the farm conditions.

Table 5
Variance components at the farm and abattoir level of the four fitted models (n = 17,150).

Model 0 Model 1 Model 2 Model 3

Variance
Farm level 1.420 (1.297, 1.525) 1.334 (1.243, 1.458) 1.335 (1.226, 1.448) 1.329 (1.220, 1.454)
Abattoir level 0.394 (0.127, 0.779) 0.255 (0.086, 0.564) 0.244 (0.081, 0.491) 0.247 (0.080, 0.524)
Residual 0.737 (0.720, 0.755) 0.707 (0.690, 0.723) 0.709 (0.693, 0.727) 0.707 (0.691, 0.723)

Intraclass correlation coefficient (%)
Farm level 55.7 (49.9, 60.5) 58.1 (51.9, 58.7) 58.3 (52.4, 58.1) 58.2 (52.4, 58.6)
Abattoir level 15.4 (5.9, 25.5) 11.1 (7.3, 15.4) 10.7 (8.4, 15.2) 10.8 (7.9, 14.7)

Proportional change in variance (%)
Farm level – 6.0 (5.3, 7.3) 0.0 (−0.5, 0.8) 0.4 (0.2, 0.7)
Abattoir level – 35.3 (27.3, 41.5) 4.0 (1.7, 6.2) −0.9 (−2.3, 1.6)
Residual – 4.0 (3.2, 5.0) −0.2 (−0.7, 0.2) 0.2 (0.0, 0.3)

The values enclosed by parentheses express the 95% confidence interval.
Model 0 = only spatial non-parametric terms and random effects.
Model 1 = Model 0 + Production and management practices.
Model 2 = Model 1 + Soil characteristics.
Model 3 = Model 2 + Climatic conditions before slaughter.
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4.2. Study strengths and limitations

This study analysed the results of post-mortem inspection of
2,513,973 pigs from 1463 farms, which corresponds to approximately
29.5% of the total number of pigs slaughtered in 2014 in England
(n = 8,517,000) and 14.6% of all British pig farms (n = 10,000)
(Department for Environment, Food and Rural Affairs, 2016). Ac-
cording to data from the Agriculture and Horticulture Development
Board, 92% of the production comes from about 1600 farms, including
ten corporate companies which account for 35% of breeding sows
(AHDB, 2016). Although this study enrolled a considerable number of
these farms (and pigs), the extent to which the results of this study can
be generalised to the population of English farms is unknown.

The methodology used in this study has never been used in the
context of porcine ascariasis, and it has a great potential to be applied
in other conditions diagnosed at post-mortem inspection. In addition to
the novelty of the methodology, we provide an update on the pre-
valence and spatial distribution of porcine ascariasis in England.
Sanchez-Vazquez et al. had published the last prevalence results in
2012, when his team investigated the trend of milk spot lesions from
July 2005 to December 2010. Their study used Pig Health Scheme re-
cords collected by trained veterinarians who inspect every second pig in
a batch (up to fifty pigs assessed). In our study, we used official in-
formation gathered by meat inspectors who, working on behalf of the
Food Standards Agency, inspect all the pigs slaughtered. While the five-
year monitoring programme found evidence of A. suum infection at
slaughter in 4.2% of 34,168 pigs inspected, our study did it in 4.3% of
2,513,973 pigs slaughtered in 2014.

This study is a pioneer in identifying a possible association between
the socioeconomic profile of the farm’s neighbourhood and the burden
of swine ascariasis, highlighting the complex influence of social factors
on the epidemiology of animal diseases.

The epidemiology of the disease is also remarkably related to en-
vironmental factors, in particular, the climatic conditions. However,
farming related features should not be neglected because, as shown by
the variance components analysis, they constitute the core of the stu-
died epidemiological model. Thus, the fact that the majority of the
farms had an unknown production system in place represents one of the
most important caveats of the study.

We also observed that a significant proportion of the variance in the
percentage of milk spots per batch was at abattoir level (approximately
15%). This result shows that official post-mortem inspection results need
to be treated cautiously. The influence of (i) the geographical position
of the premises, (ii) the specificities of the industry, and (iii) the stan-
dards of meat inspection are reasonable sources of bias. In a study that
intended to assess the validity of traditional post-mortem inspection
procedures for the detection of a chronic pathology in pigs, Enoe et al.
(2003) argued that this kind of data should be carefully validated with
double-classification of samples because the sensitivity of the tradi-
tional method was significantly lower than the extended one (designed
for that specific purpose). This is, of course, another caveat of the
present study, but it should also be stressed that we used information
collected by fully qualified meat inspectors that follow the highest
standards and state of the art procedures. Any inaccuracy that resulted
in misclassification is unlikely and non-differential. This means that, in
case of inaccuracy, the effect on risk estimates might have been diluted.

Although we added splines to account for the spatial dependency of
observations, our approach might not capture subtle small-area varia-
tions in the outcome. For that, spatial Bayesian models would be more
suitable (Dasgupta et al., 2014). Nevertheless, at NUT level, we found
that observed and predicted values were very similar, suggesting that
our approach is adequate to model this outcome at regional level.

Finally, the relevance of the postcode should be addressed carefully.
Note that this was the unique parameter used for georeferencing the
farms and this step may have added some information bias. First of all,
compared to urban areas, rural areas (where farms are usually located)

are less accurately georeferenced by postcode because each postcode
unit comprises a larger territory. Secondly, providing a correct post-
code, or even having a knowledge of it, may be more frequent among
the farmers that have a higher education level, comply with the best
farming practices and, thus, have fewer animals infected by A. suum.

5. Conclusion

Ascariasis is still an endemic disease of English farmed pigs.
Although the number of animals infected per herd is relatively small,
few farms are entirely free. The epidemiology of the disease is sub-
stantially related to environmental factors, including geohydrological
characteristics of the soil as well as climatic features. However, stock-
manship related issues should not be neglected because they constitute
the core of the studied epidemiological model. Acknowledging these
intermingled factors may support the development of new strategies to
control the disease and guide the application of intervention measures
by the industry.
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