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Abstract

Current intrusion detection systems are mainly based on signature detection running on top of

highly optimized parallel engines. While other approaches exist, there is no unified intrusion

detection architecture that is able to support them under a unified framework. Given the highly

dynamical nature of networked attacks, there is a growing shift to a multi-disciplinary approach as

a way to uncover novel algorithms, systems and techniques, including but not limited to, symbolic

execution, machine learning and graph mining.

We propose a new intrusion detection and prevention approach capable of preventing unknown

attacks by correlating network traffic with the operating system behavior. We implemented these

concepts in a module extensible framework called Briareos. The Briareos Host Component is

composed of pipelines for traffic processing, whose nodes contain modules. It supports multiple

processing modes: inline, parallel and distributed. We have implemented a distributed system

capable of performing heavy tasks, which can be a plus for detecting unknown attack vectors.

The distributed system is composed of multiple clusters of workers and a broker that receive tasks

using a Least Recently Used (LRU) queue. We also created a worker manager to automatically

start or stop worker instances according to workload metrics.

Each processing mode of the Briareos Distrbuted System has advantages and disadvantages in

terms of transfer rate. The distributed mode is the fastest mode in both low-processing rate and

high-processing rate scenarios. The inline mode was the slowest mode, since it offers prevention

and not just detection. The Briareos Distributed System was capable of adapting to workload

changes. We achieved a superlinear speedup while comparing the performance with an elastic

number of workers and a fixed number of workers. We also have built modules for unknown attack

detection and experimentally tested a subset of vulnerable binaries with real-world vulnerabilities

from Capture The Flag (CTF) security competitions. We detected and prevented 100% of the
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exploitation attempts with a 95% confidence interval of [80%-100%]. Briareos is a disruptive

framework that changes the way intrusion detection and prevention is currently performed. Users

are given full control over the inspection processing flow.
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Resumo

Os sistemas de detecção de intrusões actuais baseiam-se principalmente em técnicas de detecção

através de assinaturas. Estes sistemas usam motores de processamento paralelos extremamente

optimizados. Embora existam outras abordagens, não existe actualmente uma arquitectura de

detecção de intrusões que seja capaz de suportar estes sistemas numa framework unificada. Dada

a natureza dinâmica de ataques realizados ao nível da rede, existe uma necessidade crescente de

usar uma abordagem multi-disciplinar como ponto de partida para descobrir novos algoritmos,

sistemas e técnicas, includindo execução simbólica, machine learning e graph mining.

Propomos uma nova abordagem para detecção e prevensão de intrusões, capaz de prevenir

ataques desconhecidos através da correlação entre o tráfego de rede e o comportamento do

sistema operativo. Implementámos estes conceitos numa framework extensível chamada Briareos.

O Briareos Host Component é composto por pipelines de processamento de tráfego, cujos nós

contêm módulos. Esta framework suporta vários modos de processamento: inline, paralelo e

distribuído. Implementámos um sistema distribuído para tarefas que necessitem de processamento

elevado, o que é uma vantagem em termos de detecção de vectores ataques desconhecidos. O

sistema distribuído é composto por vários clusters com múltiplos workers e um broker que recebe

tarefas através de uma LRU queue. Criámos também um worker manager que permite lançar ou

remover automaticamente instâncias de workers de acordo com determinadas métricas.

Cada modo de processamento do Briareos Distributed System possui vantagens e desvantagens

em termos de taxa de transferência. O modo distribuído foi o mais rápido em dois cenários

de testes diferentes: processamento reduzido e elevado. O modo inline foi o mais lento, o

que era previsível porque oference a capacidade prevenção e não apenas detecção. O sistema

distribuído desenvolvido foi capaz de se adaptar automaticamente a mudanças no workload.

Através da introdução desta funcionalidade elástica, conseguimos obter um speedup super-linear,
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comparandamente a um cenário em que o número de instâncias é fixo. Desenvolvemos módulos

para detecção de ataques desconhecidos e testámos experimentalmente um sub-conjunto de

programas vulneráveis de competições CTF, com vulnerabilidades presentes actualmente em

software. Detectámos e prevenimos com sucesso 100% das tentativas de exploitation com um

intervalo de confiança de 95% de [80% - 100%]. O Briareos revelou ser uma framework inovadora

que muda a forma como a detecção e prevenção de instrusões é realizada actualmente. Os

utilizadores têm controlo total sobre o fluxo de processamente realizado.
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Chapter 1

Introduction

Briareos is a modular framework capable of performing intrusion detection and prevention.

It supports both inline and parallel processing modes, for intrusion prevention and detection,

respectively. Briareos makes possible the detection of both known and unknown attack vectors,

since it provides a framework capable of correlating network traffic with the behavior of the

operating system. It is capable of creating new rules based on an unknown malicious input

that reaches a certain server, by inspecting the correspondent output packets and also based on

the correlation of the operating system behavior with that same input. The level of security is

adjustable with the objective of giving system administrators trade-off control between performance

and the level of security intended for a certain host. It offers users the possibility of building

new modules and creating processing pipelines, allowing much more complex procedures than

traditional rules. Users can define the processing flow and use any function in order to perform

complex tasks, such as machine learning. Heavy tasks, such as packet mining, should be performed

in parallel mode. Modules can analyze the traffic in many different ways, such as inspecting

the behavior of a given service in order to classify a packet as malicious. These modules allow

networks and systems to be increasingly secure over time since they are able to detect unknown

attacks using a module extensible framework to prevent complex intrusions.

Although some intrusion detection systems can use multiple rules and scripting languages to

detect complex attacks, there is no way to effectively prevent unknown attacks. Also, users are

not able to dissect packets in an easy way and they are not able to control how the packets

are processed. Many current solutions do not guarantee the privacy of communications inside

1
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networks since traffic cannot be encrypted while performing Deep Packet Inspection (DPI).

Briareos is a modular extensible framework built for Linux using the Python programming language

aiming to give users total control of the processing flow that is performed over network traffic.

Users can extend Python modules with C and C++ for more performance. The traffic is processed

in pipelines that can be easily built and imported. The security level of Briareos is adjustable

in order to protect both critical and non-critical systems. Encrypted traffic present in some

protocols, such as Hyper Text Transfer Protocol Secure (HTTPS), can be decoded by the host

itself and then inspected without exposing sensitive information in the network. The ability to give

inspection capabilities to the host, which is the primary target, is a plus for detecting unknown

attacks and thus generating new detection patterns automatically. Briareos includes the Briareos

Distributed System for heavy tasks, such as intensive data mining over network traffic. Hosts

send tasks to a broker, which is therefore responsible for the fair distribution of the workload

between workers across one or more clusters. The broker includes a worker manager capable of

starting or removing worker instances according to workload metrics, which allows the Briareos

Distributed System to be elastic.



Chapter 2

State of The Art

2.1 Intrusion Detection Systems

An Intrusion Detection System (IDS) is capable of protecting a network or a computer system by

monitoring traffic and interactions at different levels of abstraction. The main goal is to detect

malicious activities in the system that should be protected, using a layer of defense that monitors

and protects the network and the hosts. An Intrusion Detection and Prevention System (IDPS)

has the ability to block these attacks before they reach the destination, while an IDS, by definition,

just detects malicious patterns and logs incidents. They both differ from a simple firewall, which

usually just inspects the packet headers, but not the payloads, and enforces policies according to

given ports, addresses and protocols.

There are two main types of intrusion detection systems: network-based and host-based. Network-

based intrusion detection systems are widely used for protecting networks by inspecting and

filtering traffic. A host-based IDS solution can offer complementary protection at the operating

system-level by monitoring it is resources and collecting events.

2.1.1 Network-based Intrusion Detection Systems

A Network-based Intrusion Detection System (NIDS) monitors and logs all the packets inside

a network, searching for known events. These systems are capable of disassembling packets,

parsing headers and payload data and identifying protocols correctly without taking the source and

3
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destination port into account. Most of them are able to block intrusions by identifying signatures

in the traffic and then rejecting or allowing packets according to certain rules.

In this section, we cover three well-known systems of this type: Snort, Suricata and Bro. Those

are excellent solutions for detecting intrusions and complex attacks in networks.

2.1.1.1 Snort

Snort is a powerful, lightweight, cross-platform and open source IDPS that was created in 1998

by Martin Roesch and is now maintained by Sourcefire [37] that was founded by him and acquired

by Cisco [40] in 2013. Sourcefire is one of the leaders in this market today. In addition to

other solutions, like malware detection appliances, Sourcefire sells rule subscriptions and tools, to

improve the security offered by Snort and to make its use an easier task, respectively [2].

Snort is capable of both detecting and preventing intrusions by implementing a rule-driven language

which can be used to combine protocol detection, signature-based inspection and anomaly-based

audit methods. Like other IDPS solutions, it performs real-time traffic analysis and logging in

networks in order to prevent and detect intrusions. However, it can be configured to perform

only certain tasks of one or more modes of operation. The three main modes are sniffing, packet

logging, and network intrusion detection [48]. While in detection mode, the traffic passes through

a set of rules which can trigger actions.

The architecture of Snort contains four main components: sniffing, preprocessing, detection and

alerting/logging. It uses Data Acquisition Library (DAQ) [47], an abstraction layer that replaces

direct calls to libpcap functions, which is useful to run Snort in many different types of software

interfaces and hardware. There are different types and modes of packet capture that can be

performed with DAQ, such as passive and inline.

According to Roesch (1999), Snort is focused on performance, simplicity, and flexibility [31]. The

configuration is loaded, rules are parsed and data structures are generated before initialization

of the sniffer module. Roesch work also describes the packet decoder (preprocessing phase),

the detection engine and logging/alerting system. The packet decoder operates from the data

link layer through the transport layer and the application layer. Snort is very efficient since it

preserves packet data pointers for the detection phase. In order to have an efficient detection
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phase, Snort generates a two dimensional linked list from the rules, containing chain headers

and multiple chain options for each chain header. A chain header contains information about

the source and destination IP addresses and ports, while a chain of options contains information

about the payload and flags. If there are multiple rules in use for a given protocol, this is a good

optimization since it improves the detection performance because protocols mostly share the same

ports. Rules can trigger actions, such as alert, log, drop and reject.

Figure 2.1: Snort Architecture.

Snort sells rule subscriptions for both personal and business use, including the ability to submit

false positives and false negatives and receiving new rules immediately upon release. It is also

important to mention that there are also free and commercial third party tools available to interact

with Snort and other IDPS solutions, supporting automatic updates for rules.

2.1.1.2 Suricata

The first stable version of Suricata was released in 2010 and it was developed by the Open

Information Security Foundation (OISF). It is a well-known open source IDPS [39]. In addition to

real-time Network security monitor (NSM), intrusion detection and offline Packet Capture (PCAP)

processing, it implements inline intrusion prevention, i.e., it is capable of both detecting and

preventing known attacks using different mechanisms such as anomaly detection or signature-based
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filtering and dropping the packets before they reach the destination.

Suricata inspects network packets according to certain rules and signature checking procedures but

it also took a step beyond these simple approaches by supporting LUA scripting in order to detect

complex intrusions by defining multiple rules [32]. Suricata also moved up in the Open Systems

Interconnection (OSI) model, since it is capable of analyzing and interpreting application layer

traffic. This new feature can be used to perform advanced Hypertext Transfer Protocol (HTTP)

processing or even detect web server intrusions. It does not just log packets, it is possible to

extract potentially malicious executables, Secure Sockets Layer (SSL) certificates, requests or

queries, file signatures and other objects by automatically detecting protocols, regardless of the

destination port [38]. Among other features, it supports flow tracking, both IPv4 and IPv6, GeoIP,

IP reputation and Domain Name System (DNS) parsing [8].

Figure 2.2: Suricata Architecture.

Suricata is also known for its efficiency and performance since it is a multithreaded solution and

takes advantage of hardware acceleration [32]. According to White, Fitzsimmons & Matthews

(2014), Suricata is better than Snort in terms of performance [50]. The performance of both

systems was compared while scaling the number of Central Processing Unit (CPU) cores and

varying configurations such as using multi-instance Snort. According to Fekolkin (2015), the
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precision of the rules used by Suricata and Snort affects the rate of false negatives and false

positives in terms of threat detection [6]. These rules can trigger actions, just like Snort, after

the packet analysis phase. It is also important to mention that Suricata was mostly based on

Snort, but besides being more modern, it took a step further into achieving a greater scalability,

efficiency and precision.

Suricata can detect malware by analyzing signatures of executables or parts of binaries and then

searches for known signatures, which is sometimes enough to detect common malware. However,

it is a difficult task to detect new malware or new attacks, even for anti-viruses, which also use

signature-based techniques among other methods. Regardless of this limitation, the possibility of

saving malicious executables and other payloads present in the captured traffic for post-processing

is also a plus while studying malware and what kind of attacks are being used against a company

or organization.

Suricata has been included in some distributions such as OPNsense and Security Onion. It can be

easily integrated with management tools or event processing technologies such as Elasticsearch,

Logstash and Kibana developed by Elastic [1].

In short, Suricata is a very reliable and high performance IDS, Intrusion Prevention System (IPS)

and NSM. It is easily scalable through multi-threading.

2.1.1.3 Bro IDS

Bro is an open source framework for network analysis and security monitoring, which can be used

to build a powerful NIDS for UNIX systems. It was created by Vern Paxson in 1995 and it has

been developed by researchers and students of the International Computer Science Institute (ICSI)

[27]. It is a passive traffic analyzer which uses DPI to detect intrusions in the network traffic. It is

also capable of performing tasks not related to security, such as traffic baselining and performance

tests. There are many built-in functionalities: Bro parses application data, extracts files from

Transmission Control Protocol (TCP) streams, identifies outdated versions of software, logs every

event in the network in a well-structured format, which can be externally analyzed by other

software and stored in databases, and much more. However, users can write their own scripts in

order to achieve complex tasks, using a domain-specific, Turing-complete scripting language with

an event-based programming model. [27].
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Figure 2.3: Bro Architecture.

Unlike Snort and Suricata, which are capable of performing intrusion prevention, Bro does not

work in inline mode [19]. It is a policy based IDS that generates logs and also an excellent solution

for intelligence gathering. It uses libpcap in order to filter the captured packets at the kernel level

and reduce the workload by selecting packets needed by the current policy [36].

Bro has two main components: the event engine and the policy script interpreter. Packets are

processed by the event engine, which performs processing task, such as state management and

protocol parsing, and generates a stream of events which are passed to the policy layer [36].

The policy script processes these events with the scripts supplied by users. Users can define

event handlers in these scripts and therefore perform certain actions, working with a high-level

abstraction of the packets. These actions can even launch user-supplied scripts or external

programs in order to trigger an active response to an attack [27].

In terms of scalability, Bro supports clustering for large-scale deployments and is also capable

of performing both offline and real-time analysis. It supports many application layer protocol

analysis, such as DNS, File Transfer Protocol (FTP), HTTP, Internet Relay Chat (IRC), Simple

Mail Transfer Protocol (SMTP), Secure Shell (SSH) and SSL, and also non-application layer
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analysis, which include built-in analyzers that can detect port scanning techniques. It also supports

IPv6 and tunnel detection and further tunnel traffic analysis using decapsulation techniques. Bro

supports alternative backends, such as Elasticsearch, Logstash, and Kibana by Elastic [1], since all

connections, sessions, and application level data are written to a large set of log files [35], which

can be useful to normalize and analyze Bro logs. Signature detection techniques are also support

and Snort rules can also be easily imported.

Bro is a very reliable IDS solution and has a very extensive built-in support to analyze standard

protocols. It is not multithreaded but supports cluster deployment solutions to achieve more

performance.

2.1.2 Host-based Intrusion Detection Systems

A Host-based Intrusion Detection System (HIDS) monitors events inside the host that should

be protected, by gathering logs and inspecting resources. They can operate at the operating-

system-level and application-level. For both classes, there are three main approaches to analyze

the collected data: misuse-based, anomaly-based and specification-based [49]. Misuse-based

techniques consist in analyzing the stream of collected data and matching certain activities against

descriptions or signatures of known attacks. Anomaly-based detection relies on models of the

normal behavior of users and applications, which is efficient to detect unknown attacks although

the number of false positives is high, as expected. Specification-based approaches are based on

static analysis of applications, system call models and interceptions in order to classify them as

malicious or not, according to certain specifications.

In short, HIDSes collect data from system calls, modifications in the file system and login events.

The system log and known application logs are also useful to identify suspicious activities in the

host.

In this section, we cover two well-known systems of this type: OSSEC and Tripwire Open Source.

2.1.2.1 OSSEC

OSSEC is an open source HIDS, created by Daniel B. Cid and now owned by Trend Micro. Like

other HIDSes, OSSEC is capable of detecting intrusions in the host that is being monitored
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by performing log analysis, file and registry integrity checking, time-based alerting and rootkit

detection, among other features [43]. It is a cross-platform solution, but its manager runs only in

UNIX systems. OSSEC can also analyze syslog events from many different firewalls and routers.

The architecture of OSSEC is composed of two main components: manager and agents. The

manager is a server that offers centralized management and it is responsible for receiving, processing

and correlating the information collected by the agents. It stores databases, logs, events and

system auditing entries. Every rule, decoder and major configuration option is stored in this

central component. The agents are installed in all the systems that should be protected. An

agent performs real-time log collecting and does not affect the system performance. It is also

important to mention that the communications between the manager and the agents are encrypted.

Figure 2.4: OSSEC Architecture.

Decoders should interpret the contents of a log entry by parsing, decoding and normalizing data

according to its format [30]. The logs that match certain parameters of the decoder are forwarded

to the rules phase for processing. Then, alerts are generated and actions are taken. Decoders and

rules are written in the Extensible Markup Language (XML) format and it already contains default

decoders that can parse well-known logs from sources such as web servers and SSH. Decoders

and rules can easily be created in order to detect complex incidents.

The active response feature of OSSEC consists in performing actions in the agent or server in

response to certain triggers, such as alerts or alert levels. OSSEC can send alerts via syslog to

Logstash and it is easy to integrate it with Elasticsearch and Kibana, developed by Elastic [1],

which is very useful to visually inspect dashboards and statistics. It can easily be enabled in

OSSIM, a well-known open source Security Information and Event Management (SIEM).
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2.1.2.2 Tripwire Open Source

The open source version of Tripwire is a HIDS. Specifically, it is a security and data integrity

tool useful for monitoring and alerting on specific file changes on a range of systems [14]. It was

created originally by a student, Gene Kim, and a professor, Dr. Eugene Spafford, back in 1992.

The current code is based on a project launched in 2000 by Tripwire, Inc. Tripwire is available

also as an enterprise version.

Figure 2.5: Tripwire Flowchart.

Tripwire runs integrity checks on the host and reports abnormal behavior to the user. It orders to

compare two states, it scans for files and stores the respective hashes in a database [15] and then

it looks systematically for certain file changes, both size and differences in the previously stored

hashes. A potential intrusion is detected if any suspicious changes happen.

Tripwire Enterprise is better in terms of scalability, compliance and automation and is available

for more platforms, such as Linux, Windows, Solaris and AIX. The Tripwire Enterprise Manager

allows users to control a large number of Tripwire instances across multiple hosts. However,

Tripwire Open Source shares many functionalities with the enterprise version [15], such as alerting
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different users and groups based on the nature of the detected changes, assessing the level of

seriousness of compromised file or directories, syslog reporting, among others.

Tripwire Open Source is a good solution for monitoring a small number of Linux servers but if

centralized control, real-time alerts upon intrusion detection and advanced reporting features are

needed, users need to use the enterprise version.

2.1.3 Host-based vs Network-based Intrusion Detection Systems

NIDSes are more portable, but network performance is always very important to the users. There

is always a trade-off between security and usability, which has been overcome by multithreading

and clustering. Using HIDSes is an approach that usually scales better [17] and tries to achieve

the same goal at the host level.

In terms of online intrusion detection and detection, both solutions are good, but only HIDSes

are capable of offline protection. A traditional HIDS does not need additional bandwidth to work

since it operates at the host level. In terms of cross-platform compatibility, NIDSes are better

than HIDSes since they can protect any host, regardless of its operating system. Both systems

usually have good logging mechanisms, but only HIDSes can scan the host for file changes or

registry scans, for example. An NIDS has a higher failure rate than a HIDS and it is a single

point of failure [22].

One of the main advantages of using NIDSes is the possibility of issuing a verdict on a given packet

according to a set of rules and triggering certain actions. Packet inspection and protocol analysis

are also a plus since it is possible to discover complex attacks at the network level, especially in

the application layer. The main advantage of HIDSes is the ability to inspect abnormal behavior

inside the hosts, such as file changes and unauthorized access. The best solution is to use both

NIDSes and HIDSes, since they use different approaches to achieve the same goal: protect a

given computer system from attackers.
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2.2 Distributed Systems

A distributed system is a collection of independent computers appears to its users as a single

coherent system [41]. It is a system in which hardware or software components located at

networked computers communicate and coordinate their actions only by message passing [3].

Distributed systems are connected inside a network and do not need to share memory since they

communicate through messages in order to cooperate together and coordinate actions. These

systems are a plus for intensive processing tasks because more performance can be achieved and

more resources can be easily added.

Figure 2.6: Distributed Systems Overview.

There are clear advantages while using distributed systems. In a non-distributed system, if there is

a failure, the only option is to restart machines, the failure is total and we know that it occurred.

In a distributed system, we should not know that a failure exists. Even if a given failure is

partial, the system can be recovered since these systems implement strategies to handle failures.

Distributed systems are scalable, easy to manage and are a plus in terms of processing and aim

to improve the performance since it is possible to distribute tasks across a network with multiple

systems. There are three main categories of middleware: Remote Procedure Call (RPC), Object

Request Broker (ORB) and Message-oriented Middleware (MOM). Distributed applications use a

common communication middleware to send messages and coordinate tasks. Middleware aims

to provide common services and protocols that can be used by many different applications and

operating systems.
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2.2.1 Message-oriented Middleware

MOM is a software or hardware infrastructure, which allows distributed applications to easily

send and receive messages. Software developers implement communications using a common

Application Programming Interface (API) that supports multiple operating systems and network

interfaces. MOM aims at high-level persistent asynchronous communication through the support

of middleware-level queues [3] and ensures fault tolerance. Instances send each other messages,

which are queued. Senders do not need to wait for an immediate reply. MOM systems ensure

fault tolerance. There are 4 main actions in a MOM system [3]:

• PUT - Appends a message to a given queue

• GET - Block until the specified queue is nonempty and removes the first message

• POLL - Checks a given queue for new messages and removes the first without blocking

• NOTIFY - Install a handler to be called when a message is put into a given queue

Clients make a API to send messages to a given destination and can continue to do other

operations since the communications are asynchronous, opposed to a request-response architecture.

Message queue systems require a message broker, which takes care of application heterogeneity by

transforming messages and acts as an application gateway. In this type of systems, the message

received can be different from the original, since MOM systems can transform messages in order

to match the requirements of the sender or the recipient [4]. Message queues are temporary

storage when the destination is busy or unavailable.

The Advanced Message Queuing Protocol (AMQP) is a open standard application layer protocol

designed for MOM by iMatix [10] back in 2004. This protocol takes care of message orientation,

queuing, routing, reliability and security [25] and is a plus in terms of interoperability since it

defines the protocol and formats used for communication.

2.2.2 ZeroMQ

ZeroMQ is a high-performance asynchronous messaging library, created by iMatix [10] in 2007, that

provides a message queue. It supports message patterns like request-reply, publisher-subscriber,
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push-pull (pipeline) and router-dealer. Unlike MOM, it can be used without a dedicated message

broker. ZeroMQ is written in C++ but provides binding for many libraries, such as Python and

Java. It can be used to easily implement distributed systems in the most common programming

languages.

Figure 2.7: ZeroMQ: Basic Message Patterns.

ZeroMQ includes asynchronous sockets that support both unicast and multicast protocols, including

inproc, Inter-process Communication (IPC), TCP and Pragmatic General Multicast (PGM). The

following example was implemented in Python and implements a publisher-subscriber pattern [9].

The client subscribes a publisher running on localhost, port 5555 and specifies a filter for zip codes.

The publisher generates random temperatures for 3 different zip codes. The client will receive

temperatures only for the zip code 10001, which is specified in the filter using setsockopt.

1 import zmq

2

3 context = zmq.Context()

4 socket = context.socket(zmq.SUB)

5

6 socket.connect("tcp://localhost:5555")

7

8 filter = "10001"

9 socket.setsockopt(zmq.SUBSCRIBE, filter)
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10

11 while True:

12 print(socket.recv())

Listing 2.1: Publisher-subscriber: subscriber.py

1 import zmq

2 import random

3 import time

4

5 context = zmq.Context()

6 socket = context.socket(zmq.PUB)

7 socket.bind("tcp://*:5555")

8

9 zipcodes = [10001, 10002, 1003]

10

11 while True:

12 zipcode = zipcodes[random.randint(0, 2)]

13 socket.send("%d %d" % (zipcode, random.randint(1, 215)))

Listing 2.2: Publisher-subscriber: publisher.py

AMQP provides pre-packaged solutions to common problems whereas ZeroMQ provides tools that

let users solve these problems easily in user-space [11]. ZeroMQ is a better solution compared to

AMQP, with smarter queuing, fewer management costs, less complexity, and significantly better

performance.

2.3 Exploit Detection

Unknown exploits are hard to detect by conventional means, such as IDS solutions. Current

solutions for unknown attack detection and prevention follow both static and dynamic analysis of

network traffic, looking for common payloads, unauthorized shells and shellcode. 0day exploits

usually lead to lethal attacks because they take advantage of previously unknown vulnerabilities.

Some well-known IDSes, such as Snort and Suricata, support rules to detect the outcome of a

successful exploit, such as reverse shells like meterpreter from Metasploit [29]. There is also a
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plugin for Bro IDS that uses the Unicorn Engine to detect shellcode in network traffic [23] and

emulates the instructions, looking for syscalls such as execve.

Some research works also covered and developed techniques to detect exploits. Polychronakis,

M. (2009), developed some techniques to detect previously unknown code injection attacks

through shellcode analysis. Static analysis of shellcode present in incoming packets cannot

handle malicious code that employs advanced obfuscation methods [26]. In order to overcome

this problem, an attack detection system was created, called Nemu, that uses a CPU emulator

to perform dynamic analysis over valid instruction sequences. Some heuristics were developed

that cover common shellcode types, such as self-decrypting and non-self-contained polymorphic

shellcode, plain or metamorphic shellcode and memory-scanning shellcode [26]. This approach

allows the detection of previously unknown attacks and is robust to evasion techniques like indirect

jumps and self-modifying code.

2.3.1 Memory Corruption

2.3.1.1 Background

Memory corruption occurs when a given location of memory is unintentionally accessed or

modified, and therefore violating memory safety. Programming errors are the main cause of

memory corruption vulnerabilities. A deep knowledge of low-level programming languages, such

as C and C++, is required to avoid this type of errors. However, many Common Vulnerabilities

and Exposures (CVE) have been issued due to this type of vulnerabilities and many of them

are actually exploitable, giving attackers the ability of Remote Code Execution (RCE), privilege

escalation or Denial Of Service (DOS), for example.

The most common vulnerability that leads to memory corruption is the buffer overflow, which

happens when the adjacent memory of a buffer is overwritten and its contents are controlled

by a given client or local user. This can happen in any segment of memory where the buffer is

allocated, such as the stack and the heap. Buffers are allocated with a fixed size or variable size,

but if an exploit can bypass the limit checks using other vulnerabilities, such as integer overflows,

or if there no checks at all, memory corruption occurs. In a stack overflow, the saved return

address of the current function and other variables can be overwritten in order to get control over
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the execution flow of a given program.

(a) Intended Behavior. (b) Overwritten Memory.

Figure 2.8: Buffer Overflow in the Stack.

Figure 2.9: Use After Free.

Uninitialized memory and dangling pointers are also a common flaw that can lead to other

vulnerabilities, such as Use After Free (UAF), which also can lead to successful exploitation, since

exploits can control the heap and get control over the execution flow by predicting the heap state

and then overwriting function pointers, for example. UAF is a very common vulnerability in Web

Browsers. More advanced techniques also exist according to the memory allocator implementation.

2.3.1.2 Memory Corruption Mitigations

Many memory corruption mitigations have been introduced in various operating systems in

order to make exploitation harder or even impossible in certain scenarios. These mitigations

were introduced in many Linux distributions, but some also in other operating systems. Other

mitigations that will not be described also exist, such as memory allocator hardening, which is
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very useful to detect the corruption of the heap.

Data Execution Prevention

In the past, exploits could jump to shellcode if they were able to overflow a buffer in the stack.

Basically, the idea was to overwrite the return address of the current function with a stack address

in order to jump to shellcode, i.e., user-supplied assembly instructions, and execute arbitrary code

that was not part of the original program.

Figure 2.10: Data Execution Prevention.

Data Execution Prevention (DEP), also known as NX, XN, XD or WˆX, is a mitigation for this

type of attacks and it was introduced in the Linux kernel 2.6.8 back on August 14th, 2004, 11

days later on Windows and it was implemented later on Mac OSX in the year of 2006. DEP is a

mitigation technique used to ensure that only code segments are ever marked as executable [16].

With this protection, a memory segment cannot be both writable and executable at the same

time. In fact, heap and stack segments do not need to be executable, but only readable and

writable, as shown in the Figure 2.10 (RPISEC MBE - Lecture 7). Every assembly instruction

belongs to the code segment (.text). With this protection, which is enabled by default in many

compilers, such as GNU Compiler Collection (GCC), shellcode cannot be executed in the stack

and the heap as long as these segments are not executable.

https://github.com/RPISEC/MBE
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Stack Canaries

Stack canaries, also known as stack cookies, named for their analogy to canaries in coal mines, can

detect and prevent buffer overflows. This protection works by placing a randomly chosen value

just before the return address of the current function. This value is chosen when the program

starts and is static across functions and also in forked processes. Then, before the function returns,

the canary value is checked for corruption.

Figure 2.11: Stack Canary.

If a buffer overflow occurs and a return address is modified, the canary value will also change

and the program will abort before returning to the new return address with the exception stack

smashing detected. However, attackers can always corrupt other variables in the stack

frame before overwriting the canary value and then use other techniques.

Address Space Layout Randomization

Address Space Layout Randomization (ASLR) was introduced in order to make exploitation harder

in terms predicting target addresses. It was created back in 2001 and is enabled by default in

the Linux kernel since the version 2.6.12, released in June 2005. This protection randomizes

addresses, including stack, heap and libraries. Without ASLR, addresses do not change in different

executions and can be easily predicted. A Position-independent executable (PIE) also randomizes
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the code segment in order to make code-reuse attacks unreliable in terms of address prediction.

For example, if there is a buffer overflow vulnerability in a given program, an attacker, while

trying to exploit it, does not know how to jump to shellcode, since he does not know its location

in memory due to address randomization.

The best implementations of ASLR were included in grsecurity [13] patches for the Linux kernel

and are currently maintained by the PaX Team [45]. ASLR increases the consumption of the

system’s entropy pool since every task creation requires some bits of randomness to determine

the new address space layout [44].

Figure 2.12: Memory Space Mapping with ASLR Disabled.

Figure 2.13: Memory Space Mapping with ASLR Enabled.
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RELRO

RELRO was introduced to harden the data sections of an Executable and Linkable Format (ELF)

binary [21]. The Global Offset Table (GOT) entries contain libc addresses of dynamically linked

functions used by the program in runtime. This mitigation is a response to exploitation techniques

that are dangerous to the GOT, such as overflows in the program data sections and write-what-

where primitives that directly overwrite GOT entries. There are two modes: partial RELRO and

full RELRO. Partial RELRO features:

• ELF sections are reordered - internal data sections, such as .got and .dtors, precede the

non-internal data sections (.data and .bss)

• GOT is writable

• Non-PLT GOT is read-only

Full RELRO includes all the features from partial RELRO but also maps the GOT as read-only.

FORTIFY_SOURCE

The FORTIFY_SOURCE patch was provided by Jakub Jelinek in 2004. This patch supports

buffer overflow detection and prevention of format string exploitation at both compile-time and

runtime. FORTIFY_SOURCE provides an extra layer of validation for some function that can be

a source of buffer overflow flaws [34]. It works by computing the number of bytes remaining to

the end of a destination, which is passed to memory and string functions. If an exploit tries to

copy more bytes from a source to a destination the program will terminate with the exception

buffer overflow detected. It is also important to mention that this patch does not

prevent all buffer overflows, but should prevent many common ones [18]. Users can turn on this

mitigation in GCC compilers using the flag -D_FORTIFY_SOURCE, with both values 1 and 2.

With -D_FORTIFY_SOURCE=2 more checking is added, such as format string checks, but some

programs might fail.

Given this buffer overflow example C code, the following two assembly code snippets are

generated by GCC, each one resulting in activating and deactivating FORTIFY_SOURCE. The

function strcpy(dst, src) was replaced with __strcpy_chk(dst, src, dstlen) in
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the FORTIFY_SOURCE enabled assembly snippet.

1 #include <string.h>

2

3 int main(int argc, char **argv) {

4 char buffer[5];

5 strcpy(buffer, argv[1]);

6 }

Listing 2.3: Buffer Overflow Example.

1 main:

2 ...

3 0x00000000004005bc <+38>: mov rdx,QWORD PTR [rax]

4 0x00000000004005bf <+41>: lea rax,[rbp-0x10]

5 0x00000000004005c3 <+45>: mov rsi,rdx

6 0x00000000004005c6 <+48>: mov rdi,rax

7 0x00000000004005c9 <+51>: call 0x400460 < strcpy@plt >

8 0x00000000004005ce <+56>: mov eax,0x0

9 0x00000000004005d3 <+61>: mov rcx,QWORD PTR [rbp-0x8]

10 0x00000000004005d7 <+65>: xor rcx,QWORD PTR fs:0x28

11 0x00000000004005e0 <+74>: je 0x4005e7 <main+81>

12 0x00000000004005e2 <+76>: call 0x400470 <__stack_chk_fail@plt>

13 0x00000000004005e7 <+81>: leave

14 0x00000000004005e8 <+82>: ret

Listing 2.4: Assembly Code: FORTIFY_SOURCE Disabled.

1 main:

2 0x00000000004004c0 <+0>: sub rsp,0x18

3 0x00000000004004c4 <+4>: mov rsi,QWORD PTR [rsi+0x8]

4 0x00000000004004c8 <+8>: mov edx,0x5 ; dstlen

5 0x00000000004004cd <+13>: mov rdi,rsp

6 0x00000000004004d0 <+16>: mov rax,QWORD PTR fs:0x28

7 0x00000000004004d9 <+25>: mov QWORD PTR [rsp+0x8],rax

8 0x00000000004004de <+30>: xor eax,eax

9 0x00000000004004e0 <+32>: call 0x4004a0 < __strcpy_chk@plt >

10 0x00000000004004e5 <+37>: mov rcx,QWORD PTR [rsp+0x8]
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11 0x00000000004004ea <+42>: xor rcx,QWORD PTR fs:0x28

12 0x00000000004004f3 <+51>: jne 0x4004fc <main+60>

13 0x00000000004004f5 <+53>: xor eax,eax

14 0x00000000004004f7 <+55>: add rsp,0x18

15 0x00000000004004fb <+59>: ret

16 0x00000000004004fc <+60>: call 0x400480 <__stack_chk_fail@plt>

Listing 2.5: Assembly Code: FORTIFY_SOURCE Enabled.

2.3.1.3 Modern Exploitation Techniques

Before trying to build an exploit, researchers can inspect the mitigations present in a given binary.

For Linux, there is a tool named checksec.sh [20] that was created by Tobias Klein and can be

used to perform this task.

Figure 2.14: Checksec.

Bypassing Data Execution Prevention

Modern binary exploits use code-reuse attack techniques to bypass DEP: Return-oriented

Programming (ROP), Jump-oriented Programming (JOP) and return to libc [5]. These techniques

are based on reusing sequential assembly instructions, called gadgets, that are part of the original

program or libraries. Typically, these gadgets can be used in a ROP chain if they end in a ret

instruction. Code-reuse attacks control the call stack and therefore the program flow. ROP and

JOP can be used to modify the stack, overwrite CPU registers and call functions in order to

do unintended operations, such as leaking information or even run arbitrary code. Return to

libc is another technique, found by Alexander Peslyak (Solar Designer), that basically returns

to libc functions, such as system, to run arbitrary code. Overwriting GOT entries is also a
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common technique to perform return to libc attacks: for example, the GOT entry of puts can

be overwritten with the address of system.

Bypassing ASLR and Stack Canaries

One of the first techniques to bypass ASLR was the No-operation (NOP) sled. This technique

works reasonably well on 32-bit systems, since they only have 16 randomized bits. The NOP sled

consists in using a large number of NOPs, followed by shellcode in a payload, in order to massively

increase the probability of returning to a fixed stack address that contains a NOP. NOPs will be

executed and finally the shellcode, whose location in memory is unknown for a remote attacker.

Information leaks are also considered a serious vulnerability since they are the key to bypass

mitigations such as ASLR and stack canaries. Information leaks usually leak memory addresses

that can be later used for offset calculation and therefore defeating ASLR. A stack canary can be

easily bypassed in a buffer overflow scenario if there is a leak of its value. In this case, the exploit

should overflow the buffer and keep the canary value unchanged. Information leaks can happen

by reading contiguous memory, due to the presence of format strings, UAF and pretty much

everything that can be a read-what-where primitive, and can be used to further exploitation.

Other techniques

Generally, if both read-what-where and write-what-where primitives are achieved, the control

flow of the program can be hijacked. The use of one primitive can also lead to the creation of

the other in certain scenarios. This is the reason why a format string is a critical vulnerability

since both primitives are supported by printf if no format is used and contents are controlled by

the attacker. More advanced techniques exist, such as heap exploitation techniques, even for

off-by-one vulnerabilities in the heap [46], that are able to bypass the most recent heap corruption

checks. It is also important to mention that code-reuse attacks can be prevented with Control

Flow Integrity (CFI), there some implementations such as Reuse Attack Protector (RAP) from

grsecurity [42].
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Chapter 3

Architecture

3.1 Overview

Hosts are protected by the Briareos Host Component (BHC) and contribute to the intrusion

knowledge base of the protected network. The BHC receives network traffic and decides if packets

are dropped or accepted, intercepts outgoing traffic and contains processing pipelines where

the traffic is inspected in order to detect intrusions. The inspection of outgoing traffic is also

necessary to detect unknown attacks and prevent leaks of information. It also supports offline

modules, which are useful to detect intrusions inside the Operating System (OS) by monitoring

resources and modifications in sensitive files. The BHC is capable of sharing information with

the Briareos Manager Server (BMS) in order to protect all the other hosts in the network even if

they did not suffer from the same attack. Every host can receive security feeds from the BMS

and then activate new modules or pipelines. Both local and global rules can be propagated to

all the other hosts and the NIDS as well. The NIDS can be any well-known IDS solution, since

Briareos will provide a library to populate rules to some well-known IDSes. Traffic processing can

be also distributed in a parallel mode throughout the Briareos Distributed System (BDS) in order

to reduce the workload of hosts, but this feature does not support inline mode. The Briareos

architecture was designed with unknown attack detection in mind since hosts can observe their

own anomalies and correlate those with the incoming or outgoing traffic.

27
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Figure 3.1: Briareos Architecture.

3.2 Host Component

The BHC has two main components: the network interceptor and the processing engine.

Host Component Requirements

• Interception of incoming and outgoing packets

• Detection and prevention of known and unknown attacks

• Traffic processing in inline and parallel modes

• Support for detection of intrusions at the OS level

• Forwarding traffic to a distributed system for analysis

• Automatic intelligence sharing

• Ability to receive feeds from the BMS

3.2.1 Loading Phase

Initially, BHC loads a configuration file that specifies BMS information, pipelines, mappings

between pipelines and ports. The loading phase initializes the processing engine and the network

interceptor with the given configuration.
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3.2.1.1 Processing Engine

The processing engine loads pipelines, which are stored in hash tables or a similar structure, and

initializes all modules required by the loaded pipelines. It should know how to choose the correct

pipeline to run a given packet. The mapping uses a dictionary defined by the attributes port,

name and type. Multiple pipelines should be supported in a given port. However, the order

of the pipelines has to be specified and the processing will be performed sequentially. When a

pipeline drops a packet, it will not be processed by the next pipelines that are monitoring the

same port.

Advantages Disadvantages

Inline Processing • Sensitive information blocked

before leaving host

• Response delays if heavy

processing is required

• Packets dropped before

reaching services

• Strict security - better for

critical hosts

Parallel Processing • Appropriate for distributing

heavy processing jobs

• Window of intrusion

• Tolerant security - better for

non-critical infrastructures

• Actions are taken a posteriori

• Better performance

Table 3.1: Inline Processing vs Parallel Processing.

(a) Inline Processing.
(b) Parallel Processing.

Figure 3.2: Processing Modes.
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The Table 3.1 shows the advantages and disadvantages of using the inline and parallel processing

modes. While in parallel mode, if an attack is detected the connection can also be terminated and

the client blocked a posteriori, but there is a small time window of intrusion since the beginning

of the processing phase and until the attack detection. A hybrid mode is a mixture of these two

modes, i.e., an input pipeline can run in a different mode than the matching output pipeline. This

flexibility is useful when intrusion prevention is useful just for the input or the output flow of a

given service.

3.2.1.2 Pipelines

A pipeline is a directed graph with the following attributes:

• Type: Pipelines can be attached to input and output chains

• Protocol: Protocols supported by iptables (TCP, UDP, ICMP)

• Interface: An interface can be specified

• Mode: inline or parallel

• IP: source or destination range of IP addresses

• Verdict: The default verdict issued on a packet (accept or drop)

• Modules: Description of the graph. Each node contains a module and specifies the next

nodes

If the pipeline is not acyclic, an input/output matching verification phase occurs in order to verify

if the pipeline is valid, since the output type of each module must match the input type of a

given module that it connects to. It is not mandatory to have a final node in the pipeline because

the original traffic is allowed to pass through by default unless a module blocks it during the

processing phase. A pipeline package installer should be supported in order to automatically

install module requirements.
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3.2.1.3 Network Interception

The Netfilter library for Linux will be used to intercept and issue verdicts on packets. As soon

as the processing engine is ready to receive packets, the interceptor uses the attributes of every

pipeline to automatically create and apply iptables rules

If a rule has been successfully applied, the processing engine maps the pipeline with the current

queue number in order to accelerate the decision of choosing the correct pipeline for a packet.

Then, the interceptor binds to all queues using a dispatcher that stores a handler and a queue

number. The handler function receives the Netfilter packet and the queue number as arguments

and starts the processing phase. This efficient architecture allows the existence of 65537 pipelines

since Netfilter queue numbers must be in the interval [0, 65536], which is not a disadvantage

given the low number of exposed services in a common server.

3.2.2 Processing Phase

The pipeline runs a packet through its modules and returns an action, which is necessary for inline

mode but is ignored in parallel mode. If the pipeline is in inline mode the next packet will be

processed only when the current packet finishes the same procedure. On the other hand, if the

pipeline is running in parallel mode, the packet is queued for further analysis and the pipeline

default action is immediately returned. If the pipeline is running in distributed mode, then its

traffic will be forwarded to the BDS. The pipeline processing uses a Breadth-first Search (BFS)

algorithm with output propagation to next nodes. The following algorithm is in its simplified

form, the actual algorithm should use multithreading for nodes in the same depth in order to

improve the performance. In the case of multiple incidences, modules need to specify its input

mode. In the single input mode, if there are n incident nodes, a given module processes inputs n

times. In the multiple input mode, the module processes all the inputs at once.

The Figure 3.3 illustrates a web server pipeline with Structured Query Language (SQL) injection,

cross-site scripting and local and remote file inclusion detectors. The root node contains an

HTTP decoder and the input of each detector is an HTTP Object. Finally, a handler collects

information, logs incidents and takes actions, such as blocking further connections from the same

client, for example.
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Input: packet

Output: action

action = pipeline.default_verdict

Queue Q;

Q.enqueue((root_node, packet));

while Q is not empty do
current_node, input = Q.dequeue();

output, action, packet = current_node.process(input, packet);

if action.stop == TRUE then
break;

end

for each node n adjacent to current_node do
Q.enqueue((n, output));

end

end
Algorithm 1: BFS With Output Propagation.

Figure 3.3: Example: Input Pipeline of a Web Server.
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3.2.3 Modules

The root module receives the packet as bytes, in order to offer users more control and flexibility,

but any packet parsing library can be used. An option that uses scapy [33] to automatically

parse packets and construct objects should also exist. Modules are classes with one mandatory

process() function and two optional init() and cleanup() functions. The init()

function is called as soon as the module is loaded, which is useful for preloading resources, while

the cleanup() function is called when the BHC service is stopped. Every process() function

should return an output that should match its output type. However, if the module does not

have next nodes, it can return nothing. The packet is always available and can be modified in

every module, including its verdict and the payload itself.

There are four main types of pipeline modules: decoders, detectors, monitors and incident handlers.

Decoders are responsible for parsing and decoding protocols and payloads or extracting any other

information that is not evident in the raw packet. Typically, this type of modules should be

used as the root node of the pipeline. Detectors should use the output of decoders and are

capable of classifying traffic as malicious or not, and therefore blocking or allowing a packet to go

through. Detectors can also be used as the root node of the pipeline if no decoding or parsing is

necessary. Monitors should monitor the OS, such as processes or filesystem modifications and

events. Incident handlers perform actions after the detection phase such as logging, sending

alarms and creating new rules based on the attack that was detected. However, given the flexibility

of module design and the infinite number of possibilities for both input and output types, it is

possible to create modules of any other type.

Briareos should provide a powerful and extensible module library. The verdict of a packet issued

by a given module can be accept or drop and it is possible to make the processing flow stop

from any module. The payload of the packet can also be easily modified in order to filter known

patterns, for example. It should also be possible to automatically get the application data of

a given packet, get the input packet or packets that originated an output packet, create and

populate new rules based on new anomalies detected by both input and output pipelines, among

other features.
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3.3 Intelligence Sharing

Both new local and global detection methods can be propagated to all the other hosts and the

main NIDS, respectively. If a given host is the target of an unknown attack and detects or prevents

it, then all the other hosts will be automatically protected. For example, every BHC can create

new signature-based rules and share them with the other hosts in the network. The BMS is the

component that distributes intelligence through the BHCs and the NIDS.

The BMS is responsible for collecting new rules from hosts and also publishing local rules to

every BHC that subscribes the feed. On the other hand, if a given rule is a global rule, it will be

propagated to the NIDS instead. It is also important to mention that the BDS can also create

new rules and push them to the BMS.

Figure 3.4: Intelligence Sharing.

3.4 Distributed System

The BDS main purpose is to reduce the workload of BHCs if no inline prevention is needed,

allowing heavy processing tasks such as data mining techniques over the network traffic. This

architecture was designed with scalability in mind. The BDS is elastic since it automatically starts
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or stops worker instances inside a cluster or multiple clusters, called ZClusters, according to the

workload stats of the workers reported by ZClusters.

Figure 3.5: Distributed Offloading Architecture.

The BHCs send network traffic to the ZBroker, which will automatically distribute the workload

for every worker in multiple clusters using a LRU queue algorithm (Algorithm 2). Two interfaces

should be used, the backend, i.e., the worker pool, and the frontend for receiving new tasks from

BHCs. This LRU queue will always poll the backend, but it will poll the frontend only if there

is at least one worker ready. When a worker replies, then the task is completed and it will be

queued as ready for new tasks.

ZWorkers are Docker containers [12] with limited, but configurable quota. ZClusters can start

or stop new ZWorker instances upon ZBroker Worker Manager request. The Worker Manager

request usage stats periodically from all available clusters, which are continuously collecting usage

metrics, such as CPU and memory stats, from all worker instances. Then, ZClusters and push
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those stats back to the Worker Manager sink.

The Worker Manager runs a sliding window algorithm and updates average_cpu and

average_memory based on the history of worker usage stats that are received in the sink

(Algorithm 3). At the same time, but in a different thread, the Worker Manager will then chose

a ZCluster based on its overall resource consumption and will decide if a new worker instance

should be started or stopped (Algorithm 4). A new worker should be started if the average CPU

or memory usage is higher than a static upper bound, i.e., if CPU or memory resources are low.

On the other hand, if the average CPU or memory is low and the other one is not high, then a

new worker can be stopped.

Queue available_workers;

while TRUE do

if new message from backend then
worker_id = backend.recv();

available_workers.enqueue(worker_id);
end

if available_workers is not empty then

if new message from frontend then
task = frontend.recv();

worker_id = available_workers.dequeue();

worker = backend.get(worker_id);

worker.send(task);
end

end

end
Algorithm 2: LRU Queue.
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List cpu_values;

List memory_values;

current_time = time();

for stats in worker_stats_history do

for stat in stats do

if current_time - stat.time <= metric_interval then
cpu_values.add(stat.cpu);

memory_values.add(stat.memory);
end

else
stats.remove(stat);

end

end

average_cpu = average(cpu_values);

average_memory = average(memory_values);
end

Algorithm 3: Sliding Windows.
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while TRUE do

if zclusters is not empty then
if average_cpu >= cpu_upper_bound Or average_memory >=

memory_upper_bound then
zcluster = zclusters[0];

for c in zclusters do

if c.overall_usage < zcluster.overall_usage then
zcluster = c;

end

end

zcluster.send(START_NEW_INSTANCE_MSG);
end

else if (average_cpu <= cpu_lower_bound And average_memory <

memory_upper_bound) Or (average_memory <= memory_lower_bound And

average_cpu < cpu_upper_bound) then

if zclusters.length > 1 then
zcluster = zclusters[0];

for c in zclusters do

if c.overall_usage > zcluster.overall_usage then
zcluster = c;

end

end

zcluster.send(STOP_INSTANCE_MSG);
end

end

end

sleep(interval);
end

Algorithm 4: Decision Algorithm.
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Implementation

4.1 Project Overview

Briareos was implemented in Python, but it also uses third-party libraries that are implemented

in low-level languages, such as C and C++. The main idea behind implementing this project

in python was to reduce the development time needed to demonstrate the concept and also to

easily achieve a modular architecture, with modules also written in Python. It is also important

to mention that Python is a very common programming language in the information security

community, which can also be a plus if this project goes open source.

The Figure 4.1 shows the overview of the classes in the current project version. Not all classes

and attributes are shown, but only the most important ones. There are 5 main components, the

BHC, the BMS, the ZCluster, the ZWorker and the ZBroker. Unfortunately, we did not have

time to finish the implementation of the BMS, including rule propagation, and a pipeline package

manager, which are still under development.

4.1.1 Instructions

First of all, users should install all the requirements of this project using the script

install-requirements.sh, which will install all necessary packages on Debian-based

distributions like Ubuntu, including build-essentials, python-dev, python-pip and

libnetfilter-queue-dev, and also Python packages, such as python-graph-core,

39
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Figure 4.1: Class Diagram.
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scapy, netfilterqueue, pyzmq, docker, among others.

1 apt update

2 apt install -y $(cat packages.txt)

3 pip install -r requirements.txt

Listing 4.1: Script: install-requirements.sh

If the user wants to use the BDS, additional steps are required. Docker should be installed

on the operating system. The instructions available on the website https://docs.docker.com/

engine/installation/ are recommended to install Docker Community Edition (CE). The bash script

build-zworker-docker-image.sh builds the ZWorker docker image based on a given

worker JSON config file. In the current version, if any configuration is modified, such as the

ZBroker IP address, users need to rebuild the docker image.

1 docker build -f docker/zworker/Dockerfile -t zworker .

Listing 4.2: Script: build-zworker-docker-image.sh

Three programs are currently provided with Briareos: bhc, zbroker and zcluster.

1 # Run Briareos ZBroker

2 zbroker [-c broker.json]

3

4 # Run Briareos ZCluster

5 zcluster [-c cluster.json]

6

7 #Run Briareos Host Component

8 bhc [-c bhc.json]

Listing 4.3: How To Run Briareos.

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
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Figure 4.2: Running the ZBroker.

Figure 4.3: Running the ZCluster.

Figure 4.4: Running the BHC.
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4.2 Host Component

In the BHC initialization phase, its configuration is loaded and the processing engine, the BDS

interface and the network interceptor are initialized. The start() function starts the previous

components. There is also a stop() function to perform cleanup tasks before quitting.

Figure 4.5: Host Component Class Diagram.

A configuration file specifies which pipelines should be used and ports to apply them. In distributed

mode, the ZBroker address can also be specified.

1 {

2 "pipelines": [

3 {

4 "name": "simple_web_app_firewall",

5 "ports": [80, 8080]

6 },

7 {
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8 "name": "exploit_detection_leaks",

9 "port": 1337

10 }

11 ],

12 "broker": {

13 "ip": "127.0.0.1",

14 "port": 10001

15 }

16 }

Listing 4.4: Example: BHC Configuration File.

4.2.1 Processing Engine

The class dependency of the processing engine is shown in the Figure 4.6. There are two types

of processing engines, the BHC Engine and the Worker Engine. They both extend the class

core.processing.Engine but they differ in some functions. For example, the engine of the

BHC needs to map queues and pipelines based and also know how to run a packet in various

modes, such as inline, parallel and distributed. On the other hand, a worker does not need

to know queue IDs and in only has one mode of operation. The processing engine starts with

pipeline loading, which looks for pipelines in the BHC configuration, and then tries to load pipeline

configurations and the respective modules. A pipeline configuration should specify its type (input

or output), protocol, a network interface, a processing mode (inline, distributed, parallel), the

default verdict (accept or drop) and the directed graph of the modules, as shown in the Listing 4.5.

1 {

2 "type": "output",

3 "protocol": "TCP",

4 "interface": "any",

5 "mode": "inline",

6 "verdict": "accept",

7 "name": "Exploit Detection (Memory Leaks)",

8 "modules": [

9 {
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Figure 4.6: Processing Engine Class Diagram.



FCUP 46
Implementation

10 "name": "pid_fetcher",

11 "next": "leak_detector"

12 }

13 ]

14 }

Listing 4.5: Example: Pipeline Configuration File.

A pipeline contains a digraph from the pygraph library. The loader automatically loads

a pipeline from a configuration file and connects every module to each other. The following

functions handle the connections between nodes. If the input mode of a given module is single

and not multiple, the input type of the target module must match the output type of the source

module. In the single input mode, if a node has n incident nodes, then it will be processed n

times for each input. In the multiple input mode, all the inputs are combined together in a list.

1 def connect_modules(self, source_module, target_module):

2 source_node = None

3 target_node = None

4 for i in range(len(self.nodes)):

5 if self.nodes[i].module.__module__ == source_module:

6 source_node = self.nodes[i]

7 elif self.nodes[i].module.__module__ == target_module:

8 target_node = self.nodes[i]

9

10 if source_node is not None and target_node is not None:

11 if target_node.module.input_mode == SINGLE_INPUT_MODE:

12 output_type = source_node.module.output_type

13 input_type = target_node.module.input_type

14 if input_type != output_type:

15 return False, (input_type, output_type)

16 self._add_connection(source_node, target_node)

17 return True, None

18

19 def add_connection(self, source_node, target_node):
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20 self.graph.add_edge((source_node, target_node))

Listing 4.6: Connecting Functions.

Regardless of the processing mode being inline, distributed or parallel, a pipeline has a run()

function that basically runs the packet through its nodes and implements the Algorithm 1. A

node is a class that contains a module.

1 def run(self, packet_payload):

2 packet = self.packet_class(packet_payload, self.default_verdict)

3

4 queue = [(self.root_node, packet)]

5 output = None

6

7 while len(queue):

8 current_node, obj = queue.pop(0)

9

10 if current_node.input_mode == SINGLE_INPUT_MODE:

11 output = current_node.process(packet, obj)

12 elif current_node.input_mode == MULTIPLE_INPUT_MODE:

13 current_node.inputs.append(obj)

14 if len(current_node.inputs) == \

15 len(self.graph.incidents(current_node)):

16 output = current_node.process(packet,

17 current_node.inputs)

18 current_node.inputs = []

19

20 if packet.is_final_verdict:

21 return packet

22

23 for neighbor_node in self.graph.neighbors(current_node):

24 queue.append((neighbor_node, output))

25

26 return packet

Listing 4.7: Function: Pipeline.run()
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The class utils.network.BPacket is a class that contains the packet payload, the verdict,

the boolean is_final_verdict, which is set to True if no further processing is needed by the

next nodes, the scapy packet object pkt, which is the result of parsing the packet payload. The

packet parsing into a scapy object is purely optional, since it can reduce the performance of the

processing engine. Finally, the BPacket class is currently extended by two classes, TcpPacket

and UdpPacket, which support more functions that can be directly used in modules, such as

is_connection_established() and get_dest_port().

4.2.2 Network Interceptor

The core.network.Interceptor relies on netfilterqueue for network traffic intercep-

tion, issuing verdicts on packets and modifying payloads. The interceptor starts by configuring

iptables, which will apply rules based on the loaded pipelines since the processing engine is loaded

before starting the interceptor. The following example shows a pipeline and the respective iptables

rules.

1 {

2 "type": "output",

3 "protocol": "tcp",

4 "interface": "eth0",

5 "mode": "inline",

6 "ip": "192.168.1.1",

7 "verdict": "accept",

8 "modules": []

9 }

Listing 4.8: Pipeline Configuration File.

1 $ iptables -I OUTPUT -o eth0 -s 192.168.1.1 -p tcp --sport 80 -j NFQUEUE

--queue-num 1 --queue-bypass

Listing 4.9: Iptables Rule Matching the Previous Pipeline.

In this example, outgoing packets sent by the interface eth0 with 192.168.1.1 as the destination

IP address, using the TCP protocol and source port 80 will be processed by queue number 1 that
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is being monitored by the corresponding pipeline. The queue-bypass option is necessary to

avoid dropping packets if no software in the user space is listening to a given queue. The function

configure_iptables() uses a iptables library created exclusively to apply Netfilter rules.

1 def configure_iptables(self):

2 for pipeline in self._processing_engine.pipelines:

3 queue_id = self._get_current_queue_id()

4 if queue_id == -1:

5 logger.warning("Maximum number of queues reached")

6 return

7

8 chain = iptables.CHAIN_INPUT

9 if pipeline.type == OUTPUT_PIPELINE:

10 chain = iptables.CHAIN_OUTPUT

11

12 if iptables.create_nfqueue_rule(queue_id, chain,

13 pipeline.port,

14 pipeline.protocol,

15 pipeline.interface,

16 pipeline.source_ip):

17 self._processing_engine.queue_map[queue_id] = pipeline

18 else:

19 logger.warning("Error configuring iptables "

20 "for pipeline: %s" % pipeline.name)

Listing 4.10: Function: Interceptor.configure_iptables()

Then, the interceptor creates a map of dispatchers, which contain handlers aware of the current

Netfilter queue ID for a given packet. These handler functions call the process() function of

the processing_engine, which automatically runs the network traffic in the pipeline that is

attached to the given queue. These handler functions issue a verdict on the nfpacket and can

also modify payloads, based on the result of processing a given packet.

1 def handler(self, nfpacket, queue_id):

2 packet = self._processing_engine.process(nfpacket.get_payload(),
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queue_id)

3 if packet.verdict == VERDICT_ACCEPT:

4 if packet.payload is not None:

5 nfpacket.set_payload(packet.payload)

6 nfpacket.accept()

7 elif packet.verdict == VERDICT_DROP:

8 nfpacket.drop()

Listing 4.11: Function: Interceptor.handler()

4.2.3 Modules

A module is a class that extends the class utils.modules.Module. Multiple attributes

should be specified, such as name, description, author, version and license. The input mode of a

given module should also be specified, otherwise it will be set to the single input mode by default.

Users need to specify the input type and output type of a given module. The next module is an

example of a module that returns the Process Identification Number (PID) and the application

name of the process that is sending or receiving a packet.

1 from briareos.utils import *

2

3 from procmon import ProcMon

4 import proc

5

6

7 class PidFetcher(Module):

8 name = "PID Fetcher"

9 description = "Returns the PID of a connection"

10 author = "Andre Baptista"

11 version = "1.0"

12

13 output_type = tuple # same as: io = (None, tuple)

14 # input_mode = SINGLE_INPUT_MODE

15

16 def __init__(self):
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17 self.procmon = ProcMon()

18 self.procmon.enable()

19 self.procmon.start()

20

21 def cleanup(self):

22 self.procmon.disable()

23

24 def process(self, packet):

25 source_port = packet.get_source_port()

26 dest_port = packet.get_dest_port()

27 src_ip = packet.get_source_ip()

28 dest_ip = packet.get_dest_ip()

29

30 pid, app_name = \

31 proc.get_pid_by_connection(self.procmon, src_ip,

32 source_port, dest_ip,

33 dest_port, packet.protocol)

34

35 # Other usage examples:

36 # data = packet.get_application_data()

37 # packet.accept()

38 # packet.drop(final=True)

39 # block_ip_address(packet.get_dest_ip())

40

41 return pid, app_name

Listing 4.12: Module Example.

4.3 Distributed System

The BDS was implemented using two main technologies: ZeroMQ and Docker. There are 4

main components in the BDS: the ZClient, the ZBroker, the ZCluster and the ZWorker. The

BDS was implemented in a way that achieves elasticity and performance, taking advantage of

fast communications and workload awareness. The ZClient sends tasks to the ZBroker, which

distributes tasks through workers using a LRU queue. The ZBroker contains a Worker Manager
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that controls the number of workers according to the global workload.

4.3.1 ZClient

The ZClient is part of the BHC and is the interface that sends tasks to the ZBroker. It starts the

ZeroMQ client interface (distributed_zmq.Client) by initializing sockets according to the

given configurations. The processing engine puts tasks in a queue, which are then consumed by

the ZClient. Then, tasks are sent to the ZBroker along with a pipeline identification, since the

workers need to how the right pipeline to run a given packet. The ZClient uses a DEALER socket

and connects to a ROUTER, the ZBroker frontend.

Figure 4.7: ZClient Class Diagram.

1 def init_sockets():

2 self._context = zmq.Context()

3 self.connection = self._context.socket(zmq.DEALER)

4
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5 # Connect to ZBroker

6 def start(self):

7 self.connection.connect(self.broker_address)

8

9 # Send task and pipeline id

10 def process(self, task, pipeline_id):

11 self.connection.send(task, zmq.SNDMORE)

12 self.connection.send(pipeline_id)

Listing 4.13: ZeroMQ: ZClient.

4.3.2 ZBroker

The ZBroker contains two main components, the ZeroMQ broker interface and the Worker

Manager, as shown in the Figure 4.8. The broker configurations are loaded from a configuration

file that specifies the broker frontend and backend ports and also the Worker Manager ports and

the interval for requesting ZWorker stats. The ZeroMQ interface uses two ROUTER sockets, one

for frontend communication and the other for backend communication. The ZBroker follows the

Algorithm 2 to implement the LRU queue.

1 {

2 "broker": {

3 "frontend": {"port": 10001},

4 "backend": {"port": 10002},

5 "worker_manager": {

6 "port": 10003,

7 "sink_port": 10004,

8 "interval": 10

9 }

10 }

11 }

Listing 4.14: Example: ZBroker Configuration File.
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Figure 4.8: ZBroker Class Diagram.

1 def init_sockets():

2 self._context = zmq.Context()

3 self.frontend = self._context.socket(zmq.ROUTER)

4 self.backend = self._context.socket(zmq.ROUTER)

5

6 # Bind sockets

7 def start(self):

8 self.frontend.bind(self.frontend_address)

9 self.backend.bind(self.backend_address)

10 self._poller = zmq.Poller()

11 self._poller.register(self._backend, zmq.POLLIN)

12 self._poller.register(self._frontend, zmq.POLLIN)

13

14 def run(self):

15 # LRU Queue

16 while True:

17 sockets = dict(self._poller.poll())

18 if self.backend in sockets \
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19 and sockets[self.backend] == zmq.POLLIN:

20 worker_id = self.backend.recv()

21 self.available_workers.append(worker_id)

22

23 self.backend.recv() # empty

24 client_id = self.backend.recv()

25

26 if client_id == Worker.ready_msg:

27 logger.info("New worker: %s" % worker_id)

28 else:

29 reply = self.backend.recv()

30

31 if self.available_workers:

32 if self.frontend in sockets \

33 and sockets[self.frontend] == zmq.POLLIN:

34 client_id = self.frontend.recv()

35 task = self.frontend.recv()

36 pipeline_id = self.frontend.recv()

37

38 worker_id = self.available_workers.pop()

39

40 self.backend.send(worker_id, zmq.SNDMORE)

41 self.backend.send("", zmq.SNDMORE)

42 self.backend.send(client_id, zmq.SNDMORE)

43 self.backend.send(task, zmq.SNDMORE)

44 self.backend.send(pipeline_id)

Listing 4.15: ZeroMQ: ZBroker.

The Worker Manager binds two sockets, one PUB socket for the publisher and one PULL socket

for the sink, i.e., to request usage stats from the workers and collect those same stats, respectively.

Three threads are used, one for the publisher, other for the sink and the other for usage calculation

and deciding if one more worker is needed or if the cluster can stop one worker instance. The

Worker manager chooses a cluster according to Algorithm 4 to start a new worker, or it chooses a

worker after choosing a cluster to stop a worker.
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1 def init_sockets(self):

2 self._context = zmq.Context()

3 self.publisher = self._context.socket(zmq.PUB)

4 self.sink = self._context.socket(zmq.PULL)

5

6 def start(self):

7 self.publisher.bind(self.publisher_address)

8 self.sink.bind(self.sink_address)

9 Thread(target=self.run_publisher).start()

10 Thread(target=self.run_sink).start()

11 Thread(target=self.run).start()

12

13 def run_publisher(self):

14 while True:

15 self.publisher.send(USAGE_MSG)

16 time.sleep(self.interval)

17

18 def run_sink(self):

19 while True:

20 cluster_id = self.sink.recv()

21 stats = self.sink.recv_json()

22 self._process_usage_stats(cluster_id, stats)

23

24 def run(self):

25 while True:

26 self._sliding_windows()

27 self._decision_algorithm()

28 time.sleep(self.interval)

29

30 def _start_new_instance(self):

31 self.publisher.send(START_NEW_INSTANCE_MSG)

32

33 # After choosing a worker based on average cluster usage

34 def _stop_instance(self, worker_id)

35 self.publisher.send(STOP_INSTANCE_MSG, zmq.SNDMORE)
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36 self.publisher.send(worker_id)

Listing 4.16: ZeroMQ: Worker Manager.

4.3.3 ZCluster

The ZCluster loads a configuration that specifies the Worker Manager address, which is part of

the ZBroker. It connects to the Worker Manager by subscribing the publisher and after receiving

a usage request, it calculates the CPU and memory usage of all workers and sends back the stats

to the Worker Manager sink.

Figure 4.9: ZCluster Class Diagram.

1 {

2 "cluster": {

3 "worker_manager": {
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4 "ip": "127.0.0.1",

5 "port": 10003,

6 "sink_port": 10004

7 }

8 }

9 }

Listing 4.17: Example: ZCluster Configuration File.

The ZCluster uses a SUB socket to connect to the publisher and a PUSH socket to send results to

the sink. If it receives a start instance message, it uses the Docker client to run a new container.

If it receives a stop instance message, it waits for the worker ID and if the worker ID is one of the

containers, then it stops it using the Docker client.

1 def init_sockets(self):

2 self._context = zmq.Context()

3 self.publisher = self._context.socket(zmq.SUB)

4 self.publisher.setsockopt(zmq.SUBSCRIBE, "")

5 self.sink = self._context.socket(zmq.PUSH)

6 self._docker_client = docker.from_env()

7

8 def start(self):

9 self.start_new_instance()

10 self.publisher.connect(self.worker_manager_address)

11 self.sink.connect(self.sink_address)

12

13 def start_new_instance(self):

14 client = self._docker_client

15 container = client.containers.run(Cluster.docker_image_name,

16 detach=True,

17 network_mode="host",

18 cpu_period=self._cpu_period,

19 cpu_quota=self._cpu_quota)

20 def stop_instance(self, worker_id):

21 if self.containers:

22 container = self._worker_ids[worker_id]
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23 container.stop()

24 self.containers.remove(container)

25

26 def run(self):

27 while True:

28 data = self.publisher.recv()

29 if data == USAGE_MSG:

30 usage_stats = self.get_usage_stats()

31 self.sink.send("%s" % self.id)

32 self.sink.send_json(usage_stats)

33 elif data == START_NEW_INSTANCE_MSG:

34 self.start_new_instance()

35 elif data == STOP_INSTANCE_MSG:

36 worker_id = self.publisher.recv()

37 if worker_id in self._worker_ids:

38 self.stop_instance(worker_id)

Listing 4.18: ZeroMQ: ZCluster.

The function get_usage_stats() returns dictionary with the usage of CPU and memory,

whose values are between 0 and 100. These values are calculated by the ZCluster since it can

watch its containers using the Docker Stats API.

1 def get_usage_stats(self):

2 usage_stats = {}

3 for container in self.containers:

4 container_stats = container.stats(stream=False)

5 container_id = container_stats["id"]

6 memory_usage = self.get_memory_usage(container_stats)

7 cpu_usage = self.get_cpu_usage(container_stats)

8 usage_stats[container_id] = {"memory": memory_usage,

9 "cpu": cpu_usage}

10 return usage_stats

11

12 @staticmethod

13 def get_cpu_usage(container_stats):
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14 cpu_percent = 0.0

15 precpu_stats = container_stats["precpu_stats"]

16 cpu_stats = container_stats["cpu_stats"]

17 cpu_total_usage = cpu_stats["cpu_usage"]["total_usage"]

18 precpu_total_usage = precpu_stats["cpu_usage"]["total_usage"]

19 system_cpu_usage = cpu_stats["system_cpu_usage"]

20 presystem_cpu_usage = precpu_stats["system_cpu_usage"]

21 percpu_usage = cpu_stats["cpu_usage"]["percpu_usage"]

22

23 cpu_delta = cpu_total_usage - precpu_total_usage

24 system_delta = system_cpu_usage - presystem_cpu_usage

25

26 if cpu_delta > 0 and system_delta > 0:

27 cpu_percent = (cpu_delta*1.0 / system_delta) \

28 * len(percpu_usage) * 100.0

29

30 return cpu_percent

31

32 @staticmethod

33 def get_memory_usage(container_stats):

34 memory_stats = container_stats["memory_stats"]

35 usage = memory_stats["usage"]

36 limit = memory_stats["limit"]

37 return usage*100.0/limit

Listing 4.19: Usage calculation with the Docker Stats API.

4.3.4 ZWorker

A ZCluster contains multiple ZWorker instances as Docker containers, but the ZWorker can also

be run as a standalone. If the ZWorker is run as a standalone, it also starts one subworker for

each CPU core, taking advantage of multithreading. It starts the processing engine, which is a

core.processing.WorkerEngine class instance, and a ZeroMQ Worker interface. These

two components must be configurated using a configuration file.
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Figure 4.10: ZWorker Class Diagram.

1 {

2 "worker": {

3 "broker": {

4 "ip": "127.0.0.1",

5 "port": 10002

6 },

7 "worker_manager": {

8 "ip": "127.0.0.1",

9 "port": 10003,

10 "sink_port": 10004

11 },

12 "pipelines": [

13 {

14 "name": "exploit_detection_leaks"

15 },

16 {
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17 "name": "simple_web_app_firewall"

18 }

19 ]

20 }

21 }

Listing 4.20: Example: ZWorker Configuration File.

The class core.distributed_zmq.Worker uses a REQ socket and connects to the ZBroker.

Then it waits for tasks, processes tasks in the processing engine and sends a message to the

ZBroker as soon as the task is completed.

1 def init_sockets(self):

2 self._context = zmq.Context()

3 self.connection = self._context.socket(zmq.REQ)

4

5 def start(self):

6 self.connection.connect(self.broker_address)

7

8 def run(self):

9 self.connection.send(Worker.ready_msg)

10

11 while True:

12 address = self._connection.recv()

13 task = self._connection.recv()

14 pipeline_id = self._connection.recv()

15 self._processing_engine.process(data, pipeline_id)

16 self.connection.send(address, zmq.SNDMORE)

17 self.connection.send(Worker.completed_msg)

Listing 4.21: ZeroMQ: ZWorker.
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Results

5.1 Preliminary Results

With Briareos, it is easy to build a module for pretty much everything. We tried to build a simple

pipeline for a HTTP Web Server that simply drops packets and permanently blocks the client IP

address if a given URL contains unsafe characters.

1 {

2 "type": "input",

3 "protocol": "TCP",

4 "interface": "any",

5 "mode": "inline",

6 "verdict": "accept",

7 "name": "Simple Web App Firewall",

8 "modules": [

9 {

10 "name": "app_data_filter",

11 "next": "simple_http_parser"

12 },

13 {

14 "name": "simple_http_parser",

15 "next": "generic_url_exploit_detector"

16 }

63
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17 ]

18 }

Listing 5.1: Simple Web Application Firewall Configuration File.

Three modules were built: An application data filter, which basically only lets packets to go

further in the pipeline if application data is present, a simple HTTP parser, which parses the

application data into a HTTP object and finally a detector for unsafe URL characters.

1 from briareos.utils import *

2

3

4 class AppDataFilter(Module):

5 name = "Application Data Filter"

6 description = "Filters packets without application data and returns

it otherwise"

7

8 output_type = str

9

10 def process(self, packet):

11 data = packet.get_application_data()

12

13 if data is None:

14 packet.accept(final=True)

15 return None

16

17 return data

Listing 5.2: Module: app_data_filter.py

1 from briareos.utils. Import *

2

3 from http_parser import pyparser

4 from http_object import HttpObject

5

6

7 class HttpParser(Module):
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8 name = "Simple HTTP Parser"

9 description = "Parses application data and returns a Http object"

10

11 io = (str, HttpObject)

12

13 def process(self, packet, data):

14 parser = pyparser.HttpParser()

15 parser.execute(data, len(data))

16

17 method = parser.get_method()

18 status_code = parser.get_status_code()

19 url = parser.get_url()

20 headers = dict(parser.get_headers())

21 body = "".join(parser._body)

22

23 http_object = HttpObject(method, status_code, url,

24 headers, body)

25 return http_object

Listing 5.3: Module: simple_http_parser.py

1 from briareos.utils import *

2

3 from http_object import HttpObject

4 import string

5

6

7 class GenericUrlExploitDetector(Module):

8 name = "Generic URL Exploit Detector"

9 description = "Drops packet and bans client if the URL contains

characters that are not allowed"

10

11 input_type = HttpObject

12

13 def __init__(self):

14 self.whitelist = string.ascii_letters + string.digits \

15 + ":/?#[]@!$&()*+,;=$-_%"
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16

17 def is_bad_url(self, url):

18 for c in url:

19 if c not in self.whitelist:

20 return True

21 return False

22

23 def process(self, packet, http_object):

24 if self.is_bad_url(http_object.url):

25 packet.drop()

26 logger.info("Dropping packet: "

27 "(Endpoint: %s)" % http_object.url)

28 block_ip_address(packet.get_source_ip())

Listing 5.4: Module: generic_url_exploit_detector.py

In fact, this simple pipeline can prevent attacks such as SQL injection payloads that directly use

single quotes, for example, or even some Cross Site Scripting (XSS) payloads.

1 # Simple XSS payload:

2 # http://127.0.0.1/s=<script>alert(1);</script>

3 [*] Dropping packet: (Endpoint: /s=<script>alert(1);</script>)

4

5 # Testing for SQL injection:

6 # http://127.0.0.1/article=’

7 [*] Dropping packet: (Endpoint: /article=’)

Listing 5.5: Testing Pipeline for SQL and XSS.

5.2 Performance Analysis

5.2.1 Setup

For performance analysis, we used 9 clustered virtual machines in total. We used 3 hosts with an

Intel Xeon e5-2630 v2 @2.6 and emulated Sandy Bridge CPUs. We used a virtual machine with
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10 CPU cores and 16 GB of Random-access Memory (RAM), and 8 virtual machines with 4 CPU

cores and 1 GB of RAM, connected to a 10 Gbit/s network. The first machine was used to run

the BHC and the Broker and the other machines were used as clusters of workers. This setup

allowed us to use up to 32 workers with a limit of 4 per cluster since each cluster was running in

a machine with 4 CPU cores.

5.2.2 Host Component

The performance of the BHC was tested by measuring the transfer rate of a Nginx Web Server after

attaching a pipeline to the service using all supported processing modes: inline, distributed and

parallel. The number of concurrent connections was progressively increased in order to compare

the transfer rate of the Web Server in the various processing modes. We used ApacheBench

[7] for benchmarking and therefore measuring the transfer rate. For each number of concurrent

connections (100, 200, 300, 400 and 500) we performed 10 runs of 50,000 HTTP requests. The

machine with 10 CPU cores was used as the server and one of the other machines with 4 CPU

cores was used as a client.

Figure 5.1: Setup for BHC Performance Analysis.

5.2.2.1 Low Processing Rate

For this test, we created a pipeline with one single node, with a simple module that checks

the packet payload for a pattern. This test evaluates the relation between BHC modes and the

transfer rate of the Web Server in a low processing rate scenario.
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According to the Figure 5.2, we can observe that if the pipeline is in distributed mode the BHC

issues a verdict faster than in inline or parallel modes, because it just needs to send a task to the

BDS. The inline and parallel modes are very similar in terms of transfer rate, as expected, due to

the low processing rate needed for each packet.

The overall average loss in terms of performance while using the BHC in this scenario is about

50%.

5.2.2.2 High Processing Rate

For this test, we created a pipeline with two nodes, the first one parses every packet payload into

an object, which is a slow operation, and the second takes the packet object as input and checks

for a pattern in the application data. This test evaluates the relation between BHC modes and

the transfer rate of the Web Server in a high processing rate scenario.

Figure 5.2: Web Server Transfer Rate - Low Processing Rate.
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Figure 5.3: Web Server Transfer Rate - High Processing Rate.

According to the Figure 5.2, we can observe clear differences between the different modes of

operation. First of all, the distributed mode behavior is the same as in the low processing rate

scenario as expected. The inline mode is not so good in terms of transfer rate, since the BHC only

accepts a given packet after the respective heavy task is complete. The parallel mode accepts a

packet as soon as it puts it in a queue for further processing. Since the processing is done at the

same time with high CPU usage, the parallel mode has a lower transfer rate in this scenario while

comparing it with the low processing rate scenario.

5.2.3 Distributed System

We evaluated the performance of the BDS using two tests, one for elasticity and the other

for distributed offload performance with fixed workers. Both tests used a pipeline with one

module that performs 2,000,000 iterations for each packet to simulate a heavy task and increase

significantly the CPU usage. We sent requests to the Nginx Web Server until the number of

tasks executed by the workers was at least 75,000 for elasticity analysis and 25,000 for distributed

offload performance analysis. We measured the number of tasks executed using intervals of 5
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seconds and repeated each test 10 times.

The elasticity of the BDS was evaluated by comparing the performance of 8 workers with the

performance of an elastic number of workers, i.e., starting or stopping instances according to the

workload. The CPU and memory upper bounds were fixed in 90%, i.e., a new worker instance

is started if the global average CPU or memory usage of the workers is above 90%. We used 8

clusters of workers for this test. It is important to mention that the version of Briareos that we

used for these tests starts one worker instance by default as soon as a cluster starts. Thus, the

BDS started with a pool of 8 available workers, one per cluster.

In the Figure 5.4, we can observe that the trace of the 8 workers is linear, i.e., the growth is

constant. On the other hand, the elastic instances trace is superlinear, because it grows much

faster than the trace of the 8 workers. Workers were started in each cluster until 32 workers

became active. This feature allows Briareos to process more tasks in a shorter period of time and

achieve a better performance.

We evaluated the distributed offload performance using a fixed number of workers. We measured

the total number of tasks that were executed by the pool of workers in 5 different scenarios: 2, 4,

8, 16 and 32 workers. The Table 5.1 shows the number of clusters that we used for each scenario.

As expected, the number of executed tasks is proportional to the number of workers, as shown in

the Figure 5.5.

Workers Clusters

2 1

4 1

8 2

16 4

32 8

Table 5.1: Workers per Cluster used for Distributed Offload Performance Analysis.
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Figure 5.4: Distributed System Elasticity.

Figure 5.5: Distributed Offload Performance (Fixed Workers).
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5.3 Exploit Detection Results

As described in the Section 2.3.1.3, modern exploitation techniques are hard to detect and prevent.

However, Briareos can detect such new attack vectors using various traffic inspection techniques

and monitoring services. By searching incoming traffic for code segment .text addresses, it is

possible to automatically prevent code-reuse attacks, for example. Also, it is possible to inspect

outgoing traffic in order to detect memory leaks, among other techniques.

In order to test the advantages of this framework in terms of unknown attack vectors, we built

two pipelines for exploit detection. The first one is an output pipeline and contains a PID fetcher

module, that returns the PID of a given connection, an address leak detector and a shell detector.

The second pipeline is an input pipeline and contains a PID fetcher module, a shellcode detector

and a ROP chain detector.

The address leak detector and ROP chain detectors use the PID of the process that is sending

and receiving data, respectively, to get the memory maps of the process. Then, the network traffic

is inspected in order to detect if any valid memory address is being sent. Naturally, this can lead

to false positives in applications that send data corresponding to valid memory addresses, but

services can use these modules if they do not usually send unprintable characters or random data,

for example. The ROP chain detector leads to a smaller percentage of false positives since the

valid addresses for ROPs belong generally to the .text and libc memory segments. However the

address leak detector can be tuned to look only for libc or heap addresses or stack canary values,

which are very common in modern exploits.

The shellcode detector uses the PID of a given process to get the architecture of the program and

then inspect incoming packets for a minimum number of meaningful assembly instructions, using

the Unicorn Engine [24] for emulation. The shell detector looks for new unintended shells, which

is not the key to detect exploits but is a plus in terms of detecting the outcome of successful

exploitation attempts. Our shell detector can lead to false positives if a given binary uses shell

commands while executing legitimate inputs.

Any module contains three modes of operation: block, replace and allow. The block

mode immediately drops packets and does not let the exploit continue. The replace mode can

be used to confuse the attacker. Finally, the allow mode allows the exploit to run until the
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end and saves all the packets. In the last mode, the shell detector mode can be used to detect

if the exploit is complete and then block further connections and save the packets for exploit

reconstruction.

We obtained binaries and the correspondent working exploits from well-known Security CTF

events, such as DEFCON Qualifiers and Boston Key Party CTF. For the sake of efficiency, we did

not have time to process all binaries using Briareos, we decided to randomly select 20 binaries and

we detected 100% of the exploitations, with a 95% confidence interval of [80%,100%]. Meaning

that for the full set of binaries available from past CTF competitions (n=489 to our knowledge),

we would be able to detect between 80% and 100% of the exploitations with 95% of confidence.

These samples represent the general vulnerabilities present in software nowadays. We tested

exploits for these binaries against our pipelines. These exploits included modern exploitation

techniques, such as code-reuse attacks and various heap exploitation techniques.

Modules Detection

rate

Leak detector 13/20

Leak + shellcode detectors 16/20

Leak + shellcode + ROP chain detectors 17/20

Leak + shellcode + ROP chain + shell detectors 20/20

Table 5.2: Exploit Detection Results.

The leak detector was able to detect 13 exploits. It detected 2 .text leaks in PIEs, 4 stack leaks,

8 heap leaks and 11 libc leaks. Then, we added the shellcode detector and we detected 3 more

exploits. The number increased to 17 with the ROP chain detector. Finally, we used the shell

detection module and achieved 100% detection rate for the 20 samples.



FCUP 74
Results



Chapter 6

Conclusion

Briareos is a disruptive framework that changes the way how intrusion detection and prevention

is performed. Its modular architecture makes possible the detection of unknown attacks by

combining both packet inspection and host monitoring techniques. This flexible design gives users

the ability to easily build their own pipelines and modules according to their needs.

The performance of Briareos is reasonable in any mode, given that it was implemented in Python,

which is likely to be slower than low-level programming languages. However, the BDS has clear

advantages when intrusion prevention is not needed. If a given service is not sensitive, traffic

processing can be distributed throughout multiple clusters in the network in order to adapt

systems to workload changes. We achieved elasticity for efficient processing by starting or stopping

instances, with a superlinear speedup.

Regarding unknown attack detection, we managed to detect and capture exploits that use real-

world vulnerabilities such as use-after-free and buffer overflows in both stack and heap memory

segments. The possibilities are unlimited and many more modules can be built in order to prevent

this kind of attacks. Even machine learning techniques can be applied in order to learn models

to classify a packet as malicious. Such heavy tasks can be performed in the BDS. Briareos has

clear advantages in terms of unknown attack detection due to the ability to observe the operating

system behavior and getting new knowledge from both incoming and outgoing traffic.

Briareos can be used to protect critical infrastructures and make them increasingly secure over

time using novel unknown attack detection mechanisms that learn something new from each
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attack. In fact, the knowledge base of the protected network is very likely to evolve and thus

making systems more secure due to intelligence sharing.

6.1 Future Work

In the future, we are planning to finish the implementation of the BMS, including rule propagation,

and creating a pipeline package manager for easy deployment. We are also planning to add

more utilities to the Briareos module library, including efficient packet parsing modules and

importing external rules, such as Snort rules and also YARA rules [28], for malware and known

exploit detection using signatures. Also, new pipelines are still not being propagated through

the workers of the BDS, unless the ZWorker docker image is rebuilt. We also did not use secure

communications in ZeroMQ, but SSL should be supported in the future. Automatic framework

updates should also be provided. Finally, the Briareos core, including the processing engine and

Netfilter handlers, should be reimplemented in a low-level programming language to improve

performance.
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