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Resumo 
 

 O fabrico aditivo é uma tecnologia que está a revolucionar a industria da manufatura. 

Apesar de não ser uma tecnologia recente, apenas nos últimos anos tem havido investimento de 

modo a desenvolver este tipo de fabrico. 

O processo de sinterização direta por laser de metais (DMLS do inglês Direct Metal 

Laser Sintering) é um novo sistema capaz de produzir componentes de grande porte ou 

estruturas complexas próximas da forma final através da tecnologia de fabrico aditivo de forma 

totalmente automática, sem necessidade de ferramentas e diretamente baseado num modelo 

CAD 3D. 

 Nesta dissertação o desenvolveu-se um sistema para testar micro amostras à fadiga. As 

amostras têm dimensões de 3 mm x 250 µm x 250 µm (comprimento x largura x altura), 

produzidas por DMLS a partir de uma máquina EOS e cortadas utilizando Electric Discharge 

Machining (EDM). 

 A solução proposta nesta dissertação utiliza um atuador piezoelétrico para produzir a 

força necessária, uma célula de carga, garras capazes de suportar uma micro amostra num teste 

de fadiga tensão-tensão. O sistema é controlado em anel aberto por um programa de LabVIEW, 

desenvolvido para esta aplicação. Foi ainda ligado a um sistema de Digital Image Correlation 

(DIC) de modo a medir a deformação da amostra, bem como a formação e propagação de 

fraturas. 

 O sistema foi desenvolvido com sucesso, cumprindo os objetivos previamente 

definidos, nomeadamente aplicar alternadamente dois níveis de tensão até à fratura da amostra. 

O sistema permite ensaios de fadiga do tipo tensão-tensão, onde o tempo de ciclo varia entre os 

6 e 10 segundos, dependendo da amplitude do teste. O overshoot é mantido dentro dos 2% dos 

limites máximo e mínimo de tensão desejada. Este sistema permite fazer ensaios até uma tensão 

máxima de 800 MPa, para as amostras descritas previamente. 
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Abstract 
 

 Additive Manufacturing (AM) is a technology that is revolutionizing the industry. Even 

though it is not a new technology, only in recent years investment was made towards developing 

this type of manufacturing.  

 Direct Metal Laser Sintering (DMLS) is an innovative system that explores the near-net 

shaping of large components and net shaping of small complex structures by means of AM - 

fully automatically, without tools and based directly on three-dimensional CAD 3D design data. 

 This research provides a new tool to mechanically characterize AM parts. With the goal 

to create a fatigue testing system capable of testing microsamples with overall dimensions of 3 

mm x 250 µm x 250 µm (length x width x height), made by DMLS from an EOS machine and 

cut using wire Electric Discharge Machining (EDM). 

 The solution proposed in this dissertation uses a piezoelectric actuator to achieve the 

load needed, a load cell to monitor the stress values, special grips capable of holding a 

microsample and to perform a tension-tension fatigue test. The system is controlled by open 

loop LabVIEW program, coded especially for this application. A Digital Image Correlation 

(DIC) system was incorporated, in order to study sample strain, and crack growth and formation 

as well. 

 The system was successfully developed, achieving the planed goals, which translates to 

applying two stress values until sample failure. The system allows to perform tension-tension 

fatigue testing, with a cycle time is between 6 and 10 seconds, depending on the stress 

amplitude. The overshoot is kept at 2% of the desired stress limits. The maximum stress the 

system is able to perform is 800 MPa, using the samples mentioned previously. 
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1   Introduction 
 

The present dissertation was developed and submitted to the Faculdade de Engenharia 

da Universidade do Porto (FEUP) in partial fulfillment of the requirements for the degree of 

Master of Science in Mechanical Engineering. The research project was developed at the 

University of Maryland Baltimore County (UMBC). 

 

1.1 Motivation 

 

While the rapid evolution of Additive Manufacturing (AM) has promoted numerous 

innovative processes and machines, AM has grown with minimal understanding of the impact 

of processing parameters on global part properties making it difficult for industry to take full 

advantage of the technology. The layer-by-layer approach used by almost all AM machines to 

build these novel parts has direct definite ramifications for the microstructures and mechanical 

properties of these parts.  Despite the recent interest in additive manufacturing, the property 

variations are still not fully known neither understood.  This is because conventional mechanical 

characterization techniques usually measure an average property and cannot resolve the 

important variations tied to specific microstructural features present in the sample nor are 

capable to differentiate the anisotropic properties of this type of parts. 

 

1.2 Aims and Scope 

 

The aim of this work is to develop a system for fatigue and fatigue life characterization 

in small samples built by AM. Microtensile testing, conducted at UMBC, allows one to 

accurately and effectively probe the mechanical properties of materials of interest on the local 

level.  Microtensile specimens with overall dimensions of 3mm x 1mm with ~0.30 mm square 

gage section can be extracted from microstructural areas of interest in the additively 

manufactured materials.   
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Aiming to expand the testing capabilities available at the micromaterials laboratory at 

UMBC, in this project, the scope is to build a microtensile tester to operate in fatigue. The 

machine will be composed of wedge grips, a load cell, a piezoelectric stack and correspondent 

controller. A LabVIEW user interface should be developed to monitor and control the system, 

where it is possible to control the frequency of testing, upper and lower load limits, and all 

safety controls and user interface as well.   Each component of the testing system will meet the 

unique challenges of microsample testing. The novel testing system will be utilized to 

characterize newly additively manufactured alloys, specifically AlSi10Mg aluminum alloy 

manufactured using direct metal laser sintering from an Electro Optical Systems (EOS) 

machine. 

 

1.3 Thesis Overview 

 

Chapter 2 consists of a review of relevant studies important to frame this work. In the 

review, a brief introduction to the Additive Manufacturing (AM) process will be made, in which 

different systems will be mentioned, with special attention to the Direct Metal Laser Sintering 

system. Afterwards, metal characterization is explained, with focus on fatigue, Digital Image 

Correlation and microsamples, all based on peer-reviewed published papers. 

Chapter 3 discusses the methods used, requirements and expectations for this dissertation. 

Chapter 4 presents the system built, including equipment setup and LabVIEW code written, 

while explaining the process behind it. 

Chapter 5 is the discussion of the solution, how components work with each other, the logic 

behind the program and how problems were overcome. 

Finally, chapter 6 discusses the conclusions that can be drawn and the future work to 

continue the research forward. 
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2 Literature review 
 

2.1 Additive Manufacturing (AM) 

  

 AM is defined by the American Society for Testing and Materials (ASTM) as the 

“…process of joining materials to make objects from 3D model data, usually layer upon layer, 

as opposed to subtractive manufacturing methodologies…” [1]. It is also known as additive 

fabrication, additive process, additive technique, rapid manufacturing and 3D printing [1]. 

 Originally called rapid prototyping, AM was developed as a cost-effective and time-

efficient way to produce a prototype for design. However, due to the driving force from industry 

to seek for innovation in materials and processes, AM has changed from prototype production 

to rapid manufacturing. Since its inception in the mid-1980s, AM has evolved and blossomed 

into a whole range of processes, those are summed up in Table 1 [2].  

  

2.1.1 Working Principle of Additive Manufacturing 

 

AM technology follows a different path when compared with subtractive 

manufacturing, the AM process includes the following steps as shown in Figure 1. 
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The steps 1, 2 and 5 are common to subtractive processes based on Computer Numerical 

Control (CNC). The STL file (originally created by 3D Systems Inc. when they first developed 

the stereolithography) that is used vastly in CNC fabrication, “…converts the continuous 

geometry in the CAD file into a header, small triangles or coordinates triplet list of x, y and z 

coordinates and the normal vector to the triangles…” [3]. 

 A piece manufactured by AM is built layer upon layer, so it is needed to convert the 

solid geometry of a CAD file into layers. For the slicing step, a flowchart, shown in Figure 2, 

was designed to generate the best slice’s orientation and the way the part is going to be built. 

 

 

 

 

 

 

Figure 1 - AM process sequence [8]. 
. 
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 After the slicing process, a slice file is generated, as shown in Figure 3. 

  

 

Figure 2 - Flowchart of the slicing algorithm [23]. 

 . 

Figure 3 - Left: STL file; Right: Resulting slices [23]. 
. 
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 After obtaining the slices file, the next step is building the part in the selected AM 

system. Many processes are available (Table 1), each one with different properties, suitable for 

different materials and geometries. The system of interest for this project is explained on the 

sub-chapter 2.1.2 AM system (Direct Metal Laser Sintering). 

 In metal AM technology, parts are not ready for end-use applications directly out of a 

machine, so the step 5 of Figure 1 as to be performed. There are many steps that are typically 

used to prepare an as-fabricated part into an end-use part, including excess powder removal, 

build substrate and support structures removal, thermal treatments to improve mechanical 

behaviour, and surface finishing to achieve desired geometrical tolerance and surface finish [4]. 

After a part is done, excess powder, support structures and substrate material must be removed 

and stress relief must be performed. Stress relief involves recovery. Atomic diffusion increases 

at elevated temperatures, and atoms in regions of high stress can move to regions of lower 

stress, which results in the relief of internal strain energy. SLM and DMD parts are usually 

annealed to remove residual stress, commonly prior to substrate removal [4]. 
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Table 1 - AM processes and equipment manufacturers [2]. 

Process Category Process/Technology  Material Manufacturer(s) 

Vat photopolymerization SLA (Stereolithography) UV curable resins 

 

 

 

Waxes 

Ceramics 

Asiga 

3D Systems 

Envision TEC 

Rapidshape 

DWS 

Lithoz 

Material jetting MJM (Multi-Jet Modeling) UV curable resins 

 

Waxes 

3D Systems 

Stratasys 

Solidscape 

Binder jetting 3DP (3D printing) Composites 

Polymers,Ceramics 

Metals 

3D Systems 

Voxjet 

ExOne 

Material Extrusion FDM (Fused Deposition 

Modeling) 

Thermoplastics 

 

 

 

 

 

 

 

Waxes 

Stratasys 

MakerBot 

RepRap 

Bits from Bytes 

Fabbster 

Delta Micro Factory 
Corporation 

Beijing Tiertime 

ChocEdge 

Essential Dynamics 

Fab@Home 

Powder bed fusion SLS (Selective Laser Sintering) 

 

 

 

 

SLM (Selective Laser Melting) 

 

 

 

 

EBM (Electron Beam Melting) 

Thermoplastics 

 

 

Metals 

 

 

Metals 

 

 

 

 

 

Metals 

EOS 

Blueprinter 

3D Systems 

3Geometry 

Matsuura 

3D Systems 

EOS 

SLM Solutions 

Concept Laser 

3D Systems 

Realizer 

Renishaw 

Arcam 

Sciaky 

Sheet lamination LOM (Laminated Object 
Manufacturing) 

Paper 

Metals 

Thermoplastics 

Mcor Technologies 

Fabrisonic 

Solido 

Direct energy deposition LMD/LENS (Laser Metal 
Deposition) 

 

EBAM (Electron Beam AM) 

Metals 

 

 

Metals 

Optomec 

Dm3D 

Irepa Laser 

Sciaky 
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2.1.2 AM system (Direct Metal Laser Sintering) 

 

As mention in the previous section, there are numerous solutions to manufacture a part. 

In this sub-chapter, it will be explained the system used to produce the parts which the samples 

will be taken from.   

 Direct Metal Laser Sintering (DMLS) is a type of powder bed fusion system developed 

by EOS. Metal powder bed fusion AM system, represented in Figure 4, is “an additive 

manufacturing process in which the thermal energy selectively fuses regions of a powder bed” 

[5]. In this type of metal AM process, thin layers of powder are applied to a build plate and an 

energy source (laser or electron beam) is used to fuse the powder contained in a bed [5]. The 

system is composed of a powder delivery system, an energy delivery system and two beds of 

powder: one where the part is built and one holding the reserve powder. The powder delivery 

system comprises a feeding system, a spreader, and a piston. The energy delivery system is 

made up of a laser and a scanner system that enables the delivery of a focused spot to all points 

of the build platform [5, 6]. 

 

 

 

 

 

 

 

Figure 4 - Schematic of the DMLS/SLM process [2]. 
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2.1.3 Advantages and applications of AM 

 

 AM has been developed since the 1980’s, due to its economic advantages and a wide 

range of applications. 

 Economically, being an additive technology, it is possible to get a Buy-to-Fly ratio(1) 

close to 1 and as a direct consequence, the waste is reduced to 10-20%, which results in a 

decrease of the part cost by 50% [8]. On the technical side, AM allows the design of complex 

parts with intricate geometries, that with conventional methods of manufacturing would not be 

possible [3, 6]. Also, AM allows a level of mass customization, meaning it is possible to 

produce a somewhat large quantity of products, different from each other. For large quantities, 

it is still more profitable to use more standard manufacturing methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) Buy-to-Fly ratio is the ratio between the weight of the raw material and the weight of the finalized part. 

Figure 5 - Advantages overview [8]. 
. 
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 Thanks to all the advantages discussed previously, a vast set of areas are interested in 

this technology. For example, the aerospace industry is a sector that it is known for the complex 

forms and geometries, made of advanced materials. As seen in Figure 6 (top left), AM allows 

the fabrication of voids in a part, for example, cavities to allow airflow inside a turbine. 

The automotive industry is another big market for AM, as shown in Figure 6 (bottom). 

Another sector with direct impact on people’s lives is the biomedical area. Laser-Based Metal 

Deposition (LBDM) “LBMD processes are a subset of additive manufacturing processes that 

enable the deposition of various metal powders onto substrate geometries” [9], this allows the 

combination of different alloys in specific areas, and as a consequence have localized 

mechanical properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 - Top left: turbine with cooling cavities [24]. Top right: “Optical micrograph of a CoCrMo LBMD deposit 

on a wrought substrate illustrating a refined carbide structure in the deposit and a small heat affected zone (HAZ)” 

[9]. Bottom: engine radiator [25]. 
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2.2 Metal characterization 

 

2.2.1 Introduction 

“Many materials, when in service, are subjected to forces or loads; examples include the 

aluminum alloy from which an airplane wing is constructed and the steel in an automobile axle. 

In such situations, it is necessary to know the characteristics of the material (…) The mechanical 

behavior of a material reflects the relationship between its response or deformation to an applied 

load or force.” [10]. Mechanical properties are a set of data that allows the user to comprehend 

the behavior of a material. 

 “The mechanical properties of materials are ascertained by performing carefully 

designed laboratory experiments that replicate as nearly as possible the service conditions. 

Factors to be considered include the nature of the applied load and its duration, as well as the 

environmental conditions.” [10]. 

 Metal characterization is the process to determinate, through various tests, the 

mechanical properties of the metal, properties such as tensile/compressive stress, strain, elastic 

properties, yield strength, hardness and fatigue life. 

 

2.2.2 Fatigue 

 “Fatigue is a form of failure that occurs in structures subjected to dynamic and 

fluctuating stresses (…). Under these circumstances, it is possible for failure to occur at a stress 

level considerably lower than the tensile or yield strength for a static load.” [10]. 

 Fatigue is the largest cause of failure in metals, estimated to comprise approximately 

90% of all metallic failures [10], and occurs suddenly and without warning. Fatigue failure is 

brittlelike in nature, which means that there is very little, or none, plastic deformation associated 

with failure [10]. 

 Fatigue testing consists of applying a cyclic stress (axial/flexural/torsional) to a sample 

until it breaks (fails). The majority of tests apply one of three stress cycles, see Figure 7. 
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 In this project, a fourth stress cycle will be applied, Figure 8. This one is called 

tension/tension cycle, this means throughout the cycle, only tension is applied, σmin > 0. From 

this graph, we obtain the ratio R = σmin/ σmax, R will be a requirement in Chapter 3. 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Variation of stress with time. (a) Reversed stress cycle, in which the stress alternates from a maximum tensile 

stress (+) to a maximum compressive stress (-) of equal magnitude. (b) Repeated stress cycle, in which maximum and 

minimum stresses are asymmetrical relative to the zero-stress level. (c) Random stress cycle [10] 

.  

Figure 8 – Tension/tension cycle graph [26]. 
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2.2.3 Digital Image Correlation (DIC) 

 

 “Digital Image Correlation (DIC) is an innovative non-contact optical technique for 

measuring strain and displacement. DIC is simple to use and cost-effective compared to other 

techniques (…). DIC works by comparing digital photographs of a component or test piece at 

different stages of deformation. By tracking blocks of pixels, the system can measure surface 

displacement and build up full field 2D and 3D deformation vector fields and strain maps.” 

[11]. 

 This system (Figure 11) is easy to operate and can be controlled using a LabVIEW 

program. It is used to study crack tip and crack propagation. 

 DIC is a tool to characterize a material, to better understand its behavior under certain 

conditions. At the micromaterials lab, this technique is used with microsample tensile testing 

and can be adapted to the fatigue testing system. 

 The results of using this tool can be seen in Figure 9 and Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 - Concrete sample, one big crack visible [11]. 

Figure 10 - Concrete sample with DIC, multiple cracks visible [11]. 
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2.3 Testing systems 

 To determine a mechanical property, a sample of the material as to be subjected to a test 

in a controlled environment and with repeatable/controllable test parameters.  

2.3.1 Microsamples and microtensile testing 

Conventional mechanical characterization techniques usually measure an average 

property and cannot resolve the important variations tied to specific microstructural features 

present in the sample. In order to get a more local analysis, resorting to testing microsamples 

can help to understand the local mechanical properties. 

The small-scale samples are prepared by slicing the material to a thickness of 1 mm, 

using wire electric discharged (EDM) [12]. After EDM, each slice is polished to mitigate any 

machining effects [12]. To get the mechanical test samples, sinking EDM with graphite 

electrode is used to extract the microsamples (3 mm x 1 mm footprint with a 250 µm x 250 µm 

gage area) (Figure 12 and Figure 13) [12]. 

Figure 11 - DIC system. 
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This sample geometry has a proven effect on measuring the mechanical properties of a 

variety of materials [12–14]. 

At the micromaterials lab at UMBC, microtensile testing is currently being done to 

evaluate the mechanical properties of several metal alloys made using AM technology. 

 

2.3.2 Fatigue testing systems 

 

 There is a wide range of commercial fatigue testing systems, all-electric, hydraulic or 

servo-electric are just a few of the options. These systems are comprised of a hydraulic piston 

or electric motor, grips made for the standard round or flat samples (Figure 19), load cells and 

control panels. 

 

Figure 12 - Schematic of weld showing transverse cross-section and longitudinal slices [12]. 

Figure 13 - Microsample locations within the weld plan view slice [12]. 
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In Figure 14, two examples are shown. What both commercial systems available have 

in common is the high dynamic linear force capacity (1 kN for the Instron system and 50 kN 

for the Zwick/Roell) and the long linear stroke (minimum 60 mm for the Instron system). This 

means that commercial systems are aimed at macro testing and therefore not suitable for micro 

testing. 

In order to answer to the need of localized mechanical characterization that has arisen 

from the interest in AM technology, microsamples testing systems were developed thus the 

goal of this dissertation. 

Another system, that is able to test at high frequencies is the cantilever loading of a 

rotating beam (Figure 15). 

 

 

 

 

In this system, a beam rotates using a motor, while a constant load is being applied at 

one end, this means that a section of the sample is constantly alternating between tension and 

compression (R value of -1). The central section of a sample (Figure 16) is under an alternating 

stress of constant amplitude (Figure 7a), the amplitude is controlled by the value of the mass 

hanging at the end of the sample. The advantage of this system is the high frequency. 

Figure 14- Left:Zwick/Roell HA series servo-hydraulic fatigue testing machine [27]; Right: Instron 

E1000 electric fatigue testing machine [28]. 

Figure 15 - Cantilever load of a rotating beam [29]. 
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 Trying to adapt a system of this kind to microsample testing requires analysing this 

solution mathematically, to try understanding what values of load are in play to reach the 

desired stress. 

 In a standard cantilever type machine (Figure 17), the stress in the sample is given by 

equation 2.1, and simplifying it to the shape of a sample as the one in Figure 16, the result is 

equation 2.2. 

 

 

 

 

 

 

 Defining the microsample with 3 mm in length and 250 µm in diameter, the point of 

maximum stress is the middle of the sample (x = 1.5 mm) and applying this values to equation 

2.2, the load results are represented in Table 2. 

Table 2 - Stress/load values for cantilever testing. 

Stress [MPa] Load [N] Mass [g] 

100 0.205 20.8 

150 0.307 31.3 

200 0.409 41.7 

250 0.511 52.1 

300 0.614 62.5 

 

Figure 16 - Sample for cantilever load of rotating beam [30]. 

Figure 17 - Cantilever type machine [31]. 
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 Another type of rotating machine uses the 4-point bending method (Figure 18). In this 

machine, the bending moment is given by equation 2.3. 

 

 

 

 

 

 

 

 

 

Defining the microsample with 13 mm (5 mm between main and loading bearing) in 

length and 250 µm in diameter and applying this values to equation 2.4, the load results are the 

represented in Table 3. 

Table 3 - Stress/load values for 4-point testing. 

Stress [MPa] Load [N] Mass [g] 

100 0.12 12.5 

150 0.18 18.8 

200 0.25 25.0 

250 0.31 31.3 

300 0.37 37.5 

 

Granted that some considerations regarding the shape and the size of the sample were 

made, the load values are possible to achieve but many times greater than the weight of the 

sample. The problem with rotating testing being the size of the sample comparing to the system 

another problem related to a system that could perform this test would be the requirement of a 

lot of custom parts. Also, producing a cylindrical micro sample would require high precision 

machining and as results, the cost would increase considerably while using wire EDM to 

produce the flat samples that are already being used only requires polishing post-processing 

that can be done at the micromaterials lab.  

Figure 18 – 4-point fatigue testing [31]. 
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Looking at what is currently available in the market, a system capable of performing the 

type of testing desired was not found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 - Configurations and 

dimensions of exemplary fatigue 

samples [32]. 

Figure 20 - Standard sample mounted 

on test machine[27]. 
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𝜎 =
𝑀𝑓×𝑦

𝐼
       (2.1) 

Where: 

σ, is stress 

Mf, is bending moment 

y, is the distance of a point to the neutral axis 

I, is the polar momentum of inertia 

 

𝜎 =
𝑊×(𝑙−𝑥)×

ⅆ

2
𝜋×ⅆ4

32

    (2.2) 

Where: 

W, is applied load 

l, is the length of the sample 

x, is the distance from the load to the point desired 

d, is the diameter 

 

𝑀𝑓
′ = 𝑊 × 𝑎     (2.3) 

Therefore: 

𝜎 =
𝑊×𝑎×

ⅆ

2
𝜋×ⅆ4

32

     (2.4) 

Where: 

Mf
’, is the bending moment in the test piece 

W, is applied load 

a, is the distance between the main bearing and the load bearing next to it 
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3 Materials and Methods 
 

3.1 Introduction 

 

This section is dedicated to presenting the problem at study, explaining what is required 

and what is available to work with and the system specifications as well. 

 

3.2 Fatigue standards 

 

 Depending on the type of control desired for the testing there is a respective ASTM 

standard. The movement is controlled using the stress variable set point, according to the ASTM 

E466-15 “Standard Practice for Conducting Force Controlled Constant Amplitude Axial 

Fatigue Tests of Metallic Materials” (ISO 1099:2017 “Metallic materials - Fatigue testing - 

Axial force-controlled method”). The available standard is E466-96 (which is the previous 

version of the E466-15) and can be used as a guideline for this project. This standard [15] also 

specifies specimen design, specimen preparation, but for this project the sections that matter 

are equipment characteristics and test termination. 

 

3.2.1 Equipment characteristics 

 

 Following the E466-96 standard, it is explained that the test machines should have a 

force-monitoring system and the test forces should be monitored continuously in the early stage 

of the test and periodically, thereafter [15]. In this case, the force transducer is the load cell 

mentioned in section 3.4.2 Load cell. Regarding the stress amplitude, it should be maintained 

at all times within 2% of the desired test value [15]. The test Frequency is typically in the regime 

of 10-2 to 10+2 Hz but fatigue strength is generally unaffected (by the test frequency) for most 

metallic engineering materials [15]. 
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3.2.2 Test termination 

 

 The test should be finalized either if the specimen failure criteria are attained, or if a 

predetermined number of cycles has been applied to the specimen [15]. 

 

3.3 Requirements 

 

The requirements for the system are first and foremost reliability, this means that the 

program must run uninterrupted until the test termination parameters (section 3.2.2 Test 

termination) are obtained. Other requirements are further explained in the next sections. 

 

3.3.1 Stress control 

 

Stress control means that constant displacement is applied, while force is monitored, to 

the sample until it reaches the maximum stress value selected by the user, and then applies 

constant displacement until the minimum stress value selected by the user is reached and 

repeating until the test termination parameters are achieved. 

 

3.3.2 Frequency 

 

The frequency requirement, based on the ASTM standards (section 3.2.1 Equipment 

characteristics) is between 10-2 and 10+2 Hz, although the testing frequency should be such that 

the overshoot is reduced to the minimum value possible. 

 

3.3.3 Control panel 

 

 The control panel is the user interface, as such must have value inputs 

(maximum/minimum stress values, maximum number of cycles, cross-sectional area), outputs 

(stress graph, stress value display, cycles complete value display, sample failure indicator, 

maximum number of cycles reached indicator) and control buttons (preload stage, start test, 

reset piezo actuator and stop), plus any others that may be necessary. 
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3.3.3 Range and type of movement 

 

A starting point to decide what type of actuator to choose is to perform an analysis of 

the movement required to create the stress desired on the sample. 

It has been established in the section 2.3.2 Fatigue testing systems, that rotating 

cantilever is not possible to use with the type of samples in the study, therefore linear movement 

is required.  

High cycle fatigue is the type of fatigue that will be determined with this system. This 

type of fatigue is characterized by performance in the elastic region (as opposed to low cycle 

fatigue that performs in the plastic region [16]) and with a high value of cycles reached [17]. 

With this in mind, it is possible to determine the displacement required by performing a tensile 

test on a microsample and find the yield point and correspondent strain value. 

  

 Looking at the two examples of Figure 21, it can be noted that the yield strain value is 

below 0.5%. Both samples were 3 mm in length, therefore the maximum displacement was 15 

µm. 

 

 

 

 

 

Figure 21 - Microsamples stress/strain curves (a) generic steel [33]; (b): Ti-5111 welded [12]. 

(a) (b) 
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3.4 Equipment 

 

As said previously, the system is composed of a piezoelectric actuator, a load cell, grips, 

following the system architecture shown in Figure 22. 

 

 

 

 

 

 

 

 

 

 

 

3.4.1 Piezoelectric actuator 

 

 The piezoelectric actuator is a linear actuator based on the inverse piezoelectric effect 

[18]. “In longitudinal piezo actuators, the electric field in the ceramic layer is applied parallel 

to the direction of polarization. This induces a strain or displacement in the direction of 

polarization. Individual layers give relatively small displacements. In order to achieve 

technically useful displacement values, stack actuators are constructed, where many individual 

layers are mechanically connected in series and electrically connected in parallel.” [18] (Figure 

24). 

“Longitudinal stack actuators are excellently suited for highly dynamic operation due to 

their high resonant frequencies.” [18], therefore the piezoelectric actuator available at the 

micromaterials lab is ideal for the system. 

The actuator available is a Physik Instrumente (PI) P-239.90 (Figure 23), it is a longitudinal 

stack actuator with the following specifications [19]: 

  

Figure 22 - System architeture. 
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• Travel range to 180 µm; 

• Pushing/Pulling forces of 4500/500 N; 

• Sub-ms response; 

• Open loop resolution 1.80 nm; 

This piezo actuator is paired with an amplifier in this case, is the E-508.00 piezo 

amplifier module (Figure 25). This module as an output voltage of 1100 V and allows the piezo 

actuator to be controlled by a computer using an I/O board that outputs 0-10V DC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 - Longitudinal displacement 

(top) and polarization of the individual 

layers (bottom) of a stack actuator [18]. 

   

Figure 23 - Example of a piezo stack actuator (1 Case, 

consisting of: 1a: Base with wrench flat 1b: Case 

tube; 2 Moving pusher with wrench flat and M8 

internal thread; 3 Cable exit for piezo voltage; 4 

Protective earth connection) [18]. 
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 To justify why the piezoelectric actuator is the best option, it is needed to look at what 

is available in the market. 

 One option is pneumatic actuators (Figure 26 a), even though short stroke actuators are 

available, precision positioning is not the main goal of these actuators, being optimized to move 

to each stroke end. Hydraulic actuators (Figure 26 b) are design to heavy duty operations and 

require an intricate system of hydraulic pump and electric motor therefore not suitable for this 

application. 

 Another solution is electric driven actuators. There are a few types of actuators powered 

by electric motors such as rod-style, screw-driven, magnetic and others. Screw-driven actuators 

are designed to move moderate to heavy loads and therefore not optimize for the type of 

application in this system. Traditional rod-style actuators have strokes inappropriate for small-

scale movement.  

 Piezoelectric actuators gather the specifications that are adequate for testing a 

microsample, such as a microscale stroke, nanoscale resolution and the fastest response time. 

Figure 25 - E-508.00 amplifier module [18]. 

Figure 26 – (a): Festo short stroke actuator [34]; (b) Voith hydraulic actuator system [35]; (c) Tolomatic rod-style linear actuator [36]. 

(a) (b) (c) 
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3.4.2 Load cell 

 

 The load cell available is the MLP-25 of Transducer Techniques. This is a mini low 

profile load cell for tension or compression with a capacity range of 25 lbs (111.2 N) [20]. 

 This load cell is built with 4 strain gauges mounted in a Wheatstone bridge (Figure 27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The load cell specifications are the following [20]: 

• Capacity range: 25 lbf/111.2 N; 

• Rated Output (R.O.): 2mV/V nominal; 

• Nonlinearity: 0.1% of R.O.; 

• Hysteresis: 0.1% of R.O.; 

• Excitation voltage: 10V DC; 

• Deflection (at 111.2 N): 76.2 µm; 

 

The load cell is connected to a DPM-3 load cell meter (Figure 28), this instrument 

provides the excitation voltage that the load cell needs and read the signal coming from the load 

cell. Also, it allows connecting easily to the I/O board, through a 0-10V analogic output. 

 

 

 

 

 

 

 

Figure 27 - Wheatstone bridge with load cell wiring [20]. 

Figure 28 - DPM-3 Digital Panel Mount Load Cell Meter [20]. 
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3.4.3 I/O board 

 

 The National Instruments USB-6211 (Figure 29) is the I/O device used in this project. 

It has 16 analog inputs (16-Bit, 250 kS/s), 2 analog outputs (250 kS/s), 4 digital inputs and 4 

digital outputs. 

 

 

 

 

 

 

 

 

 

 

 

 This type of device allows an easy USB connection and therefore control the system 

using a computer and LabVIEW. 

 

3.4.4 Extra equipment 

 

 In order to help with the sample mounting and aligning, the system is equipped with a 

stage controlled by a picomotor (Figure 30a), this allows small linear displacement.  

 

 

  

 

 

 

 

 

 

Figure 29 - National Instruments USB-6211 I/O device [37]. 

(a) (b) 

Figure 30 - (a) Newport picomotor [38]; (b) Linear stage. 
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To allow friction free movement of the structure connected to the piezo actuator an air 

bearing (Figure 31) was incorporated in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Compressed air allows the inner metal bar to float, reducing to friction near to zero. 

 Comparing to a mechanical bearing means that “there is minimal vibration, hysteresis 

or reversal error, making it highly repeatable (…). Stiction is virtually eliminated, improving 

resolution capabilities (…).” [18]. More importantly “Air bearings are virtually frictionless, 

which means when they are coupled with a direct drive motor or voice coil, they are ideal for 

micro- and nano-Newton force control applications.” [18], in the particular case of this project 

means that there is no influence whatsoever of friction inertia, and being this a small scale 

testing system, having a resistance from a mechanical bearing could compromise the system. 

 

 

 

 

 

 

 

 

 

  

Figure 31 - Air bearing (Top: ISO view; Bottom: Cross section) [39]. 
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4 Fatigue system 
 

4.1 Introduction 

 

This chapter is dedicated to the developed solution, focusing on the machine itself and the 

LabVIEW program that controls it as well. 

 

 

4.2 Physical system 

 

As explained in Chapter 3.4, the machine part of the system is comprised of the 

piezoelectric actuator, load cell, picomotor, and grips. 

 

 

 

 

 

Actuator 

Load cell 

Air bearing 

Picomotor 

Grips 

Figure 32 - Fatigue testing system (top view). 
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 Few considerations regarding the relative position of each element: 

• The system is placed horizontally (most common assembly is vertical) to allow easy 

manipulation of the samples; 

• Mounting a sample on a horizontal system only requires for it to be dropped in place 

whilst in a vertical system it is a difficult process of holding the sample in place and 

placing the grips; 

• The order of how each element is placed is somewhat natural, having one grip fixed 

(during the test this end is fixed but can be moved with the picomotor to help mount the 

sample) and the other end to be the one that moves. Placing the load cell between the 

piezoelectric actuator translates in only the moving grip structure to be cantilever; 

• With this setup the force transmitted by the piezoelectric actuator is the same value that 

reaches the sample, therefore the force read by the load cell is the one being applied to 

the sample; 

 

  
Figure 34 - Grips with sample (top view). 

Figure 33 - Fatigue testing system (side view). 

6 mm 
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4.3 LabVIEW program 

 

The control program is made of three events: resetting the piezo actuator to the zero 

position, preload stage control, and test phase control. These three structures work 

independently from each other and only one is active at each time  

4.3.1 Piezoelectric actuator reset (first event) 

 This event moves the piezoelectric actuator to the zero position (zero position is when 

the actuator is fully extended). The process of this block is if the button “Reset Piezo” is false 

nothing happens if the same button is true, a Data Acquisition Assistant Express VI is activated. 

This VI sends the desired output (in this case 10 V) to the I/O board. The voltage out of the I/O 

board is then connected to the E-508.00 piezo amplifier module that fully extends the 

piezoelectric actuator. The button has a mechanical action of “latch when released”, which 

means, after being pressed (true value) it returns to false. 

 

4.3.2 Preload stage (second event) 

 

 This structure (Figure 36) loads the sample up to the minimum stress value selected by 

the user. The base of this block is to successively increment the displacement of the piezo 

actuator until the minimum stress value is reached. 

 To achieve this, a while loop creates a integral controller mechanism (repeats itself until 

the stop condition is reached), increasing the output voltage by 0.01 V in each iteration and 

checking if the voltage coming in from the load cell is equal to the voltage value of the minimum 

stress. This conversion is achieved by the load cell properties that can be represented in equation 

4.1. 

Figure 35 - Grips with sample (lateral view). 

3 mm 
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 The block labeled as “Write to measurement File2” is used to save the position of the 

piezoelectric actuator to the next event. This stage is activated by the button labeled “Preload” 

and does not activate while either the preload or the test stage is running. 

𝑉 =
𝜎×𝐴

11.12
        (4.1) 

 

 

Where: 

V, is voltage in Volts 

σ, is stress in Pa 

A, is sample cross-sectional area in m2 
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Figure 36 - Preload stage. 
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4.3.3 Test stage (third event) 

 

 This structure is (Figure 39 and Figure 40) controls the test stage and follows the same 

logic behind the preload stage of successively iterate to reach the desired stress value. It is 

activated by a button in the front panel once the preload stage is complete. 

 In Figure 39 starting from the left, the block labeled “Read From Measurement File” 

gives the position where the preload stage ended and uses this as a starting point of the 

piezoelectric actuator for the test stage. Above, there is a group of blocks for serial 

communication with the DIC program (this will be explained later in this section). 

 Continuing to the right, the block labeled “Reading” reads the voltage outputted by the 

load cell, this is done continuously so it requires defining a sampling frequency and buffer size. 

Then the voltage is converted into force by using equation 4.2. This equation was obtained 

using the data of the load cell and the DPM-3 box and then converted to stress dividing it by 

the cross-sectional area of the sample inputted by the user.  

 To the right, there is a subVI, that selects either to increase or decrease load. This subVI 

is very important and therefore explained in section 4.3.4 Increase/decrease load subVI. 

 Now in Figure 40, on the left, it is the mathematical operation of increasing or 

decreasing the output voltage, by 0.0045 V/loop. Also, it is here that if the user selects to run 

DIC mode, the speed is reduced by changing the increment value to 0.0005 V/loop. 

 Next is a subVI that counts the number of cycles and checks if the maximum number of 

cycles, inputted by the user, was reached. This block is shown in Figure 37. 

 The block “Output” outputs the voltage calculated previously, to the piezoelectric 

actuator. 

 To the right, two write to measurement file blocks creates two files with cycle numbers, 

timestamps and stress values above the maximum stress value and below the minimum stress 

value. At the end is the structure that sends an e-mail when the test is over (either due to sample 

failure, stress value overload, or user selection) with the files created attached. 

 Regarding the DIC, the program runs on another computer and requires a slow 

displacement and the cycle count (in order to identify which cycle corresponds each picture). 

To achieve the slow displacement, it was mentioned previously, that once the user switches the 

DIC button the increment is changed to 0.0005 V/loop until the button is switched off. To 

transmit the cycle count, TCP/IP communication was tested but the requirement of turning on 
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the DIC whenever the user pleases it is not compatible with the need to establish connection 

starting both programs at the same time, characteristic of the TCP/IP communication. 

 The solution was to switch to serial communication. To establish serial communication, 

LabVIEW offers a pallet of easy to use blocks, requiring an open communication, a write or 

read depending if it’s on the fatigue testing program or the DIC program, and a close 

communication block. The port, baud rate, and parity can be hardcoded (Figure 39), only 

requiring the parity and baud rate to be the same on both programs. This solution requires a 

serial cable RS-232 null modem and two adapters to USB port because newer computers don’t 

have serial ports. 

 On the DIC LabVIEW program, the code in Figure 38 is added to receive the data sent 

by the fatigue testing system through serial communication. This code is similar to the serial 

communication write used on the test stage structure, but with a few details. The property node 

“bytes at port” reads how many bytes are being received and sets this number to the reading 

block (this is very important otherwise it’s impossible to read the data). 

 

  

 

 

 

 

 

 

 

 

 

 

 

𝐹 =
111,2

10
× 𝑉      (4.2) 

 

 

 

 

Figure 37 - Max cycles subVI. 
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Figure 38 - Serial communication read code. 
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Figure 39 - Test stage. 
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Figure 40 - Test stage. 
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4.3.4 Increase/decrease load subVI 

 This program (Figure 41) compares the value of the stress coming from the load cell 

with the maximum and minimum stress values inputted by the user. Once the stress value 

reaches either limit a correspondent Boolean variable switch from false to true and changes 

from increment/decrement to decrement/increment by changing the Boolean variable on the 

test stage structure. 

 While testing the program, it was noted that an error occurred. Even though the program 

detected that the stress value was above or below the maximum and minimum stress value, it 

would overshoot the value. This happens due to the load cell deflection. Therefore, it was 

needed to correct this error, this is achieved by “tricking” the program into thinking that the 

stress value read is actually a corrected value. 

 Regarding the load cell deflection, it is easy to calculate what the correction factor is, 

due to the value of the deflection given on the load cell data. The value for the deflection is 76.2 

µm, and as shown in Appendix A: Load cell deflection, the correction factor is 0.004. 

 Regarding other factors that come into play (such as LabVIEW code not being 

optimized) it is harder to determinate the correction factor. It was noted, during testing, that the 

overshoot is a function of increment, limit stress values, sampling frequency and buffer size 

(this is explained in section 5 Results and Discussion). Therefore, through many trials and after 

finding a stable relation between increment, sampling frequency, and buffer size, the SubVI 

shown in Figure 41 was achieved. 
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Figure 41 - Increase/decrease load subVI. 
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4.3.5 Control panel 

 

 The control panel (Figure 42) is divided into two sections (left and right), on the left is 

the e-mail setup section. Here, if the user chooses to, it is possible to configure an e-mail alert 

once the testing is finished. Depending on the service provider, the user inputs the e-mail server, 

port and SSL certificate. Afterwards, the e-mail personal information, e-mail subject and 

message are inserted. Automatically are attached the two files with the test data (one with cycle 

number and time and the other with cycle number and stress overshoot). It was noted that 

Outlook service is the one that works the best. 

 On the right is the test control section. Here is where the user inputs every test parameter, 

it is also possible to input a number to start counting cycles from it. This allows to stop a test 

and restart at a different time. 

 Underneath the input values are the control buttons. The “Reset Piezo” button moves 

the piezoelectric actuator to its fully extended position. The “Preload” button activates the 

preload stage and once the “Preload OK” light is on, the “Start Test” button activates the test 

stage. The “DIC” button turns on/off the DIC mode. 

 Following is a stress-time graph, this is a visual representation of the test. On the right 

of the graph is a set of displays that gives real-time data to the user. The “Stress [MPa]” shows 

the value of stress read by the load cell, it is the same value displayed on the graph. The “Piezo 

Voltage [V]” allows the user to see how much voltage is being outputted to the actuator, this 

value should be 0-10 V. The “Load Cell Voltage [V]” permits the user to see if there is an 

unusual level of voltage coming from the load cell. The max/min stress lights are indicators that 

show if the stress value is above/below the maximum/minimum stress limits.  

 At the bottom are the “Sample Failure” and “Max Stress Overload”, the first one 

indicates that the sample broke, the second one is precautionary of a stress value greater than 

50% of the maximum stress limit. This safety feature was incorporated to prevent sample failure 

due to an unpredictable error. 

 And finally, the “Stop Test” button. 
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Figure 42 - Control panel. 
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4.3.6 Fatigue testing (alternating stress amplitude) 

 

 One extra goal of this dissertation was to provide one separate program that could 

provide the ability to perform fatigue testing with alternating limits of stress. This means, 

performing a set of cycles at one pair of maximum and minimum stress limits and then 

performing another set of the same number of cycles but with a different pair of maximum and 

minimum stress limits. The interest in this type of testing comes from the real world where a 

part is never subjected to the same load amplitude. 

 Based on the original fatigue testing program, a few modifications were required to 

achieve the type of testing desired. 

 The test stage structure is the one that had to be altered, while every other structure 

remained the same. 

 A subVI (Figure 43) divides the current number of cycles by the block size that was 

inputted by the user. Every time the remainder is equal to zero, which means a number of cycles 

equal to the block size have passed, a Boolean variable switch from false to true and as a 

consequence selects, on the main VI, the pair of stress limits that was not activated on the 

previous set of cycles. 

 Regarding the user interface, it is similar to the Figure 42, with the added inputs for 

block size and the 4 stress limits. 

 

 

 

 

 

Figure 43 - Block counter subVI. 
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5 Results and Discussion 
 

 This project was developed to increase the mechanical characterization ability at the 

Micro Materials Characterization lab and as a result take a step forward at better understanding 

AM technology. 

 The main goal of this dissertation is to have a system capable of performing standard 

fatigue testing on a micro sample. To achieve a fatigue system an open loop architecture was 

required, where the load is applied to a sample and a sensor gives feedback information to the 

controller. There are many ways to achieve this, some more expensive and complex, others are 

simpler and cheaper. The approach taken was to choose simple and with room for improvement. 

With the mechanical system composed of a piezoelectric actuator, a load cell, an air bearing, 

sample holder and a linear stage. Assembling the system, the way that it’s shown in Figure 32, 

guarantees that the load cell and actuator are not cantilever, therefore do not affect the sample.   

 The basic logic behind the controller program is to repeat an operation to increase the 

load applied to the sample until the maximum stress limit is reached, then to decrease the load 

applied until the minimum stress limit is reached, repeat until the stop conditions are achieved. 

This logic automatically relates to a while loop in LabVIEW language. To obtain the stress 

value in real-time, data is obtained from the load cell (voltage), therefore data acquisition 

through an I/O board is the best option, through the use of the integrated software and hardware 

from National Instruments. At the same time, to apply the load on the sample, using a 

piezoelectric actuator that requires a 0-10 V input, the solution is again using LabVIEW and an 

I/O board. 

The data acquisition resolution is given by the analogic to digital conversion. With 

device range of ±5 V this means a maximum of 55.6 N and as a result, 889 MPa which is more 

than enough for the materials that are tested. With this range chosen (granted that it can be 

changed at any time), the precision of the data acquisition of the 16-bit NI USB-6211 is 152.6 

µV. 
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 Still related to the data acquisition is the overshoot error. The way the program works, 

it needs to go over the limit values to switch events, this is to prevent errors like hysteresis, any 

undesired movement, and any other unpredictable errors. When the sampling frequency and 

buffer size are set to very high numbers (slow execution speed) the overshoot is close to zero. 

Using the relation mentioned previously, an unacceptable overshoot appears that needs to be 

corrected. The way to do it is explained in section 4.3.4 Increase/decrease load subVI. Due to 

the overshoot being a function of the stress limits it would require many iterations until a 

correction factor that works for any stress amplitude to be found. During testing to overcome 

this error it was noted that if a big correction was made on a cycle with high maximum stress 

(e.g. 186 MPa) when a low maximum stress (e.g. 100 MPa) cycle was being tested it wouldn’t 

reach the limit values, and therefore data would be lost. So, it was decided to have a bigger 

overshoot (around 1 MPa) on cycles with high-stress amplitude to allow on cycles with less 

stress amplitude to run without errors and having a 1 MPa overshoot on a high-stress amplitude 

and high maximum stress limit is not significant. Traditionally, in other positioning systems, a 

PID controller is able to reduce overshoot but, in the case of this system, the intention is not to 

move the actuator between two defined positions, is to increase load successively and check if 

the desired value was reached. Also, a PID controller introduces a slope when approaching the 

goal, and in fatigue testing is important to have constant displacement over time.    

 Regarding the user interface, it was tried to keep it as simple and pragmatic as possible, 

in order to not confuse the user independently if it is familiar with the system or not. Therefore, 

the control panel is organized into two halves, the left setups the e-mail alert and the right are 

the test controls. Labels help to understand how to use the program and a user’s manual was 

written (Appendix B: User’s manual). 

 The ultimate goal of this project was to build a system capable of applying cyclic load 

between two stress values through time until the end condition is reached. That goal was 

achieved as shown in Figure 44, taken from a test of an AlSi10mg sample made by DMLS and 

tested at 90% yield (σmax =186 MPa). 
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 The program itself can run without errors but that doesn’t mean full test runs without 

any error. Due to the system being operated on a computer that runs on Windows 10 operating 

system (and not on a closed system like a commercial machine) some errors might appear. With 

the program running for an extended period, is possible for the computer to lose “focus” on the 

program and start doing background tasks, switching processing memory to other operations 

and as a result, a buffer size error might appear. Some measures to prevent this can be taken, 

such as increasing the LabVIEW priority on the task manager (if it’s set to real-time the 

computer will allocate all of its power to LabVIEW), clear memory by rebooting the computer 

before starting a test. Even if an error of this kind occurs, it is always possible to restart the test 

at the cycle number it stopped, due to the nature of fatigue, the fatigue life is cumulative 

meaning it doesn’t matter if the test is stopped and restarted as long as the limit stress values 

are the same. 

 As for the alternating amplitude request, it required the inclusion of a subVI to perform 

sets of cycles alternating between the two pairs of stress limits defined by the user, as seen in 

Figure 45, a block of three cycles performs with each set of stress limits. 

Figure 44 - Stress/time graph fatigue testing. 
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 During testing, it was noted that the linear stage was not completely immobile, though 

it is not enough to affect test results (it requires a bit more displacement by the actuator) it is 

something to be corrected in the future. 

  Regarding the DIC system, a specialized camera and objective (Figure 11) were 

installed on the fatigue testing system. The system operates from another computer and it 

requires communication between both LabVIEW programs. The first idea to solve this problem 

was using TCP/IP protocol through ethernet but it did not work. It required communication 

between the fatigue testing program and DIC program to be established as soon as the fatigue 

program was started, making it impossible to utilize LabVIEW on the DIC computer while 

fatigue testing hasn’t finished, which can take days). Serial communication using RS-232 null 

modem cable solved this problem. Communication can be established and terminated at any 

time responding to user needs. Using DIC requires the test frequency to be around 1 min per 

cycle, and that is easily achieved by switching the loop increment. 

 

5.1 Fatigue testing results 

 Once this system was proved to work and to be reliable, it was time to start fatigue 

testing. Several samples of AlSi10mg were prepared, from different directions (x,y,z) and tested 

at multiple stress values, shown in Table 4.  

 

 

  

Figure 45 - Stress-time graph of alternating stress amplitude. 



Fatigue testing machine development for microsample testing of Additively Manufactured Metals 

49 

Table 4 - Fatigue testing results. 

Direction Yield strength 

[MPa] 

Min Stress 

[MPa] 

Max Stress 

[MPa] 

Cycles 

Z (surface) Unknown 10 100 13000 

Z34 (core) 207 18.6 186 107109 

Z35 (core) 207 16.5 165 131194 

Z33 (core) 207 12.4 124 177289(1) 

 

 The tests were performed with no major issue, the stress limits were maintained at an 

acceptable level with no unusual peak values. Frequent test control was performed to ensure 

the stability of the program. 

 The samples from core material perform in a “traditional way” following a Wohler’s 

curve, even if at a lower fatigue life when compared to an aluminum of identical yield strength 

([21]), which is expected from an AM part. And as shown in Figure 46 and Figure 47, it appears 

that there is no unusual trait, such as voids, and that can help explain the traditional fatigue 

behaviour. The interesting result is the one from a surface sample, which performed at an 

unusual bad level (low fatigue life for low-stress amplitude), and as shown in Figure 48, there 

is a depression on the bottom right corner. Being this defect near the surface of the sample, it is 

possible that it is responsible for the low fatigue life at such low stress amplitude. Fatigue life 

is affected by defects and surface roughness, even though the samples were polished before 

testing, a defect such as the one in this sample, especially when connected to the right side of 

the sample where it is not possible to polish, and as such the surface roughness is higher, could 

be the cause of failure. 

 

 

 

 

 

 

 

 

(1) Test stopped due to time availability. 
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Figure 46 - Z34 (core) fracture 1000x. 

Figure 47 - Z35 (core) fracture 1000x. 

Figure 48 - Z (skin) fracture 1000x. 
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6 Conclusions 
 The ultimate goal of this project was to build a system capable of applying cyclic load 

between two stress values through time until the end condition is reached. That goal was 

achieved and a simple and reliable system was established. Every requirement was achieved. 

 The proposed solution is able to perform the type of testing desired with no major 

problem. 

 The equipment used to build the machine satisfies the requirements for this type of 

testing, namely, the piezoelectric actuator is the ideal choice regarding the magnitude of 

displacement needed. The load cell is sufficient for this application, and the DPM-3 box when 

unfiltered, constitutes no hindrance to the speed of testing. 

 The LabVIEW program is enough to perform testing at a prototype level, even with the 

adjacent problems of running a machine on an open system. National Instruments provides 

simple and integrated solutions for data acquisition and voltage output, ideal to use on a 

prototype of this kind. 

 The total cost of the system is close 10000$, it is a considerable value but still below 

any commercial machine price which is not capable of performing microsample testing. With 

this price tag, it is possible to build multiple systems to run various tests at the same time. 

 The fatigue tests performed showcase a discrepancy between the fatigue life of surface 

and core materials. The core materials follow a traditional Wohler’s curve whilst the surface 

material failed at a low cycle count while being tested at a low amplitude. This highlights the 

need to further investigate the mechanical behavior of AM parts in order to fully understand 

this technology. 

 This experience was incredible and unexpected in the course of my academic career. 

Besides having the opportunity to travel and getting to know a new country, it was above it all, 

a time of learning not only on the academic (and professional) side but on the personal as well. 

It allowed me to break my routine at FEUP and leave my comfort zone, providing me a new 

understanding to define priorities in my professional future and set personal goals. 
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 I had to learn how to live away from home and family, learn how to deal with day by 

day situations, understand how to connect and speak with people from different cultures and 

backgrounds, and improve my level of English language. 

 UMBC is now my home away from home and I hope to have there a place for future 

projects, allowing me to keep growing not only as an engineer but as a person as well. 

 

6.1 Future development and research 

 

 Even though the system performs as it was intended, there is always room for 

improvement, and some suggestions are summed up next: 

• Determine the sampling frequency and buffer size that best fit this application and 

allows for the fastest loop time; 

• Perfect the LabVIEW code, correcting any misusing of elements and trimming it to run 

smoothly; 

• Fit a capacitance gage to the system to measure displacement; 

• Improve the linear stage to maintain it locked in the same position during testing; 
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Appendix A: Load cell deflection 
 

 In an ideal universe, the load cell would be completely rigid and therefore, would not 

deform. In reality, this doesn’t happen and therefore it is needed to account for this error. The 

best way to explain is to use a stay rod, see Figure 49.  

 “Stay rods are used if major load movement is anticipated, for example in weighbridges 

or vessels with an agitator. Stay rods are installed horizontally and should not transfer any forces 

(…)” [22]. 

 The vertical component of the force can be calculated through: 

 

𝐹𝑝 = 𝐹𝑠 ×
𝑑

𝑙
 

Where: 

Fp, is the vertical component along the principal axis of the load cell 

Fs, is the side force 

d, is the load cell deflection 

l, is the length between the points of contact of the load cell and the system 

 

Applying to the MLP-25 load cell (d = 0.003 inch or 0.0762 mm and l = 0.750 inch or 

1.905 mm): 

 
𝐹𝑝

𝐹𝑠
= 0.004  

 

 

 

 

 

 

 

 

 

 

 

Figure 49 - Stay rod representation [22]. 
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Appendix B: User’s manual 
 

System overview: 
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Testing Setup 

 

1. Turn on system; 

a. Load cell box; 

 

b. Piezo Controller; 

 

 

 

c. Set air to 50 psi; 

d. Open LabVIEW; 
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2. Open LabVIEW Program; 

a. Click run continuously; 

 

b. Click RESET PIEZO button; 
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3. Adjust picomotor stage using the screw; 

a. About specimen length; 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Tare Load cell box; 

a. Third button from the left; 
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5. Drop sample into grips; 

a. Adjust picomotor linear stage with the controller until you reach a non-zero 

value; 

b. Adjust back to zero on load cell; 

 

 

 

Program Set-up 

 

1. Insert cross-sectional area (m2); 

2. Input min and max stress (MPa) and max number of cycles; 

3. Optional: input email; 

a. To receive email when specimen breaks; 

i. Will receive stress, cycles, and time stamp; 

4. Hit PRELOAD; 
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a. Wait until pre-load ok light is lit; 

 

5. Once lit hit START TEST; 
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Running DIC mode 

1. To run DIC mode press the DIC button; 

 

a. Communication is established with the DIC program once that program is 

running; 

i. Serial communication parameters are pre-set and hardcoded on the 

program; 

b. To stop DIC mode press DIC button again; 

 

 

 

 

 

 

 

 

The moving parts of this system constitute no harm to the user. 

Be careful while using, sharp edges present. 

High voltage: some components use high voltage (up to 1000V), please read carefully the user’s 

manual of each component for further safety instructions. 

Air pressure system constitutes a risk of injury, use standard safety rules for this type of 

equipment. 

If any damage is detected, do not turn on the system. 

 

 

 

Safety instructions 
 

https://en.wikiquote.org/wiki/Caution
https://en.wikiquote.org/wiki/Caution
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikiquote.org/wiki/Caution
https://en.wikiquote.org/wiki/Caution
https://creativecommons.org/licenses/by-sa/3.0/

