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ABSTRACT 

 

The aim of this thesis was the isolation and structure elucidation of secondary 

metabolites from marine-derived fungi, collected from the tropical region, and the 

evaluation of their biological activities. Consequently, we have investigated the 

secondary metabolites produced by the cultures of marine-derived fungi Talaromyces 

helicus KUFA 0063, Neosartorya takakii KUFC 7898, Neosartorya glabra KUFA 0702 

and Eurotium chevalieri KUFA 0006.  

The fungal strain Talaromyces helicus KUFA 0063, isolated from a cauliflower 

coral, Pocillopora verrucosa, which was collected from Angthong National Marine 

Park, Amphur Samui, Suratthani Province, Thailand, produced four previously 

described secondary metabolites: palmitin, acetyl ergosterol 5, 8-endoperoxide, 

glaucanic acid and glauconic acid.  

The ethyl acetate extract of the culture of fungus Neosartorya takakii KUFC 

7898, which was isolated from the marine macro-alga Amphiroa sp., collected from 

the Samaesarn Island, in the Gulf of Thailand, Chonburi Province, Thailand, 

furnished a new meroditerpene sartorenol, a new prenylated indole derivative 

takakiamide  and a new tryptoquivaline analog, tryptoquivaline U, in addition to the 

previously described chevalone B, 6-hydroxymellein, aszonalenin, 

acetylaszonalenin, aszonapyrone A, tryptoquivalines F, H, L and 3′- (4-

oxoquinazolin-3-yl) spiro [1H-indole-3,5′-oxolane]-2, 2′-dione. The three new  
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compounds were evaluated for their antibacterial activity against Gram-positive 

(Staphylococcus aureus ATCC 25923 and Bacillus subtilis ATCC 6633), Gram-

negative (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 

27853) bacteria and multidrug-resistant isolates from the environment as well as for 

their quorum sensing inhibitory activity, and none of them exhibited antibacterial 

activity against the tested organisms (MIC > 256 µg/mL) and any quorum sensing 

inhibition in the screening protocol based on the pigment production 

by Chromobacterium violaceum (ATCC 31532). 

Chromatographic fractionation of the crude ethyl acetate extract of the fungus 

Neosartorya glabra KUFA 0702, isolated from the marine sponge Mycale sp., which 

was collected from the coral reef at Samaesarn Island, in the Gulf of Thailand, 

resulted in isolation of two new cycloteterapeptides: sartoryglabramide A and 

sartoryglabramide B, and a new analog of fellutanine A together with eight known  

compounds including ergosta 4,6,8 (14), 22-tetraen-3-one, ergosterol 5,8-

endoperoxide, aszonalenin, takakiamide, (11aS)-2, 3-dihydro-1H-pyrrolo [2,1-c] [1,4] 

benzodiazepine-5, 11 (10H, 11aH)-dione, helvolic acid, (3R)-3-(1H-indole-3-

ylmethyl)-3, 4-dihydro-1H-1, 4-benzodiazepine-2, 5-dione and fellutanine A. All of the 

compounds were tested for their antibacterial activity against Gram-positive (S. 

aureus ATCC 25923) and Gram-negative (E. coli ATCC 25922) bacteria as well as 

for their antifungal activity against filamentous (Aspergillus fumigatus ATCC 46645), 

dermatophyte (Trichophyton ruburm ATCC FF5) and yeast  
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(Candida albicans ATCC 10231). None of the test compounds exhibited either 

antibacterial activity (MIC> 256 μg/mL) or antifungal activity against (MIC> 512 

μg/mL). 

Additionally, we have also investigated a Thai collection of the endophytic 

fungus Eurotium chevalieri KUFA 0006, which was isolated from the inner twig of the 

mangrove tree Rhizophora mucronata Poir. From the culture of this fungus, five 

previously undescribed secondary metabolites, including  the  anthraquinone 

derivative  acetylquestinol, two prenylated indole 3-carbaldehyde derivatives, an 

anthranilic acid derivative, and an isochrome derivative,  were isolated together with 

eleven known compounds: palmitic acid, ergosterol 5, 8-endoperoxide, emodin, 

physicon, questin, questinol, (11S, 14R)-cyclo (tryptophylvalyl), preechinulin, 

neoechinulin E, echinulin and eurocristatine. All the isolated compounds except 

palmitic acid and ergosterol 5, 8-endoperoxide, were evaluated for their antibacterial 

activity against two Gram-positive (S. aureus ATCC 25923 and Enterococcus 

faecalis ATCC 29212) and two Gram-negative (E. coli ATCC 25922 and P. 

aeruginosa ATCC 27853) bacteria, as well as multidrug-resistant isolates from the 

environment. Only emodin showed antibacterial activity against Gram-positive 

bacteria S. aureus ATCC 25923 and E. faecalis ATCC 29212 with MIC values of 32 

and 64 μg/mL respectively. None of the test compounds were active against either 

Gram-negative bacteria or methicillin-resistant S. aureus (MRSA) and vancomycin-

resistant enterococci (VRE). All the tested compounds showed weak or moderate  
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synergistic association with vancomycin against VRE enterococci. Some of the 

tested compounds exhibited antibiofilm activity, depending on the bacterial strains. 

Emodin not only exhibited antibacterial activity against Gram-positive bacteria but 

also showed strong synergistic association with oxacillin against MRSA 

Staphylococcus aureus. 

Keywords: Neosartorya takakii; Neosartorya glabra; Eurotium chevalieri;   

Talaromyces helices KUFA 0063; meroditerpene; sartorenol; tryptoquivaline U; 

cyclotetrapeptides; sartoryglabramides A and B; fellutanine A epoxide; prenylated 

indoles; isochromone; anthraquinones; diketopiperazines; mangrove-derived fungus; 

antibacterial activity; antibiofilm 
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RESUMO 

 

O objetivo desta tese foi o isolamento e a elucidação da estrutural de 

metabolitos secundários de fungos marinhos e avaliação de suas atividades 

biológicas, nomeadamente produzidos por culturas de Talaromyces helicus KUFA 

0063, Neosartorya takakii KUFC 7898, Neosartorya glabra KUFA 0702 e Eurotium 

chevalieri KUFA 0006. 

Talaromyces helicus KUFA 0063, isolado do coral Pocillopora verrucoso, que 

foi coletada no Parque Marinho Nacional de Angthong, Amphur Samui, Província de 

Suratthani, Tailândia, produziu quatro metabolitos secundários descritos 

anteriormente: palmitina, acetilergosterol 5, 8-endoperóxido, ácido glaucânico e 

ácido glaucónico. 

O extrato de acetato de etilo da cultura do fungo Neosartorya takakii KUFC 

7898, isolado da macroalga marinha Amphiroa sp., coletado na ilha de Samaesarn, 

no Golfo da Tailândia, Província de Chonburi, Tailândia, forneceu um novo 

meroditerpeno sartorenol, um novo derivativo de indol prenilado takakiamida e um 

novo análogo de triptoquivalina (triptoquivalina U), além de chevalona B, 6-

hidroximeleína, aszonalenina, acetilaszonalenina, aszonapirona A, triptoquivalinas 

F, H, L e 3'- (4- oxoquinazolin-3-il) espiro [1H-indol-3,5'-oxolano] -2, 2'-diona. Os três 

novos compostos foram avaliados quanto à sua atividade antibacteriana contra 

bactérias de Gram-positivo (Staphylococcus aureus ATCC 25923 e Bacillus subtilis  
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ATCC 6633), e de Gram-negativo (Escherichia coli ATCC 25922 e Pseudomonas 

aeruginosa ATCC 27853) e também em isolados do ambiente resistentes a 

múltiplos fármacos, bem como para atividade inibidora de quorum sensing. Nenhum 

deles exibiu atividade antibacteriana contra os organismos testados (MIC> 256 µg / 

mL) e nem foi observada qualquer inibição de deteção de quorum sensing no 

protocolo de rastreio com base na produção de pigmento por Chromobacterium 

violaceum (ATCC 31532). 

O fracionamento cromatográfico do extrato bruto de acetato de etilo do 

Neosartorya glabra KUFA 0702, isolado da esponja marinha Mycale sp., que foi 

coletado do recife de coral na ilha de Samaesarn, no Golfo da Tailândia, resultou no 

isolamento de dois novos ciclotetrapeptidos: sartoryglabramida A e 

sartoryglabramida B, e um novo análogo de fellutanina A, juntamente com oito 

compostos conhecidos incluindo ergosta 4,6,8 (14), 22-tetraen-3-ona, ergosterol 5,8-

endoperóxido, aszonalenina, takakiamida, (11aS) -2, 3-di-hidro-1H-pirrolo [2,1-c] 

[1,4] benzodiazepina-5, 11 (10H, 11aH) -diona, ácido helvólico, (3R) -3- (1H-indol- 3-

ilmetil) -3, 4-di-hidro-1H-1, 4-benzodiazepina-2, 5-diona e fellutanina A. Todos os 

compostos foram testados quanto à sua atividade antibacteriana contra 

microrganismos Gram-positivo (S. aureus ATCC 25923) e Gram- negativo (E. coli 

ATCC 25922), bem como para a atividade antifúngica contra o fungo  filamentoso 

(Aspergillus fumigatus ATCC 46645), um dermatófito (Trichophyton ruburm ATCC 

FF5) e leveduras (Candida albicans ATCC 10231). Nenhum dos compostos exibiu  
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atividade antibacteriana (MIC> 256 μg / mL) ou atividade antifúngica (MIC> 512 μg / 

mL). 

Além do referido, também foi investigado o fungo endofítico Eurotium 

chevalieri KUFA 0006, que foi isolado do interior dos galhos da planta do manguezal 

Rhizophora mucronata Poir. A partir da cultura deste fungo, cinco metabolitos 

secundários anteriormente não descritos, incluindo o derivado de antraquinona, 

acetilquestinol, dois derivados de indol-3-carbaldeído prenilados, um derivado de 

ácido antranílico e um derivado de isocromona foram isolados juntamente com onze 

compostos conhecidos: ácido palmítico, ergosterol 5,8-endoperóxido, emodina, 

physicon, questin, questinol, (11S, 14R) - ciclo (triptofilvalyl), preechinulina, 

neoechinulina E, echinulina e eurocristatina. Todos os compostos isolados, exceto o 

ácido palmítico e o ergosterol 5, 8-endoperóxido, foram avaliados quanto à sua 

atividade antibacteriana contra dois microrganismos Gram-positivo (S. aureus ATCC 

25923 e Enterococcus faecalis ATCC 29212) e dois Gram-negativo (E. coli ATCC 

25922 e P. aeruginosa ATCC 27853), multirresistentes isolados do meio ambiente. 

Somente a emodina mostrou atividade antibacteriana contra bactérias Gram-

positivo, S. aureus ATCC 25923 e E. faecalis ATCC 29212, com valores de CIM de 

32 e 64 μg / mL, respetivamente. Nenhum dos compostos testados foi ativo contra 

bactérias de Gram-negativo ou S. aureus resistente à meticilina (MRSA) e 

enterococos resistentes a vancomicina (VRE). Todos os compostos testados 

apresentaram associação sinérgica fraca ou moderada com a vancomicina contra  
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enterococos VRE. Alguns dos compostos testados exibiram atividade antibiofilme, 

dependendo das cepas bacterianas. A emodina não só exibiu atividade 

antibacteriana contra bactérias de Gram-positivo, mas também mostrou forte 

associação sinérgica com a oxacilina contra MRSA Staphylococcus aureus. 

Palavras-chave: Neosartorya takakii; Neosartorya glabra; Eurotium chevalieri; 

Talaromyces helicus KUFA 0063; meroditerpeno; sartorenol; triptoquivalina U; 

ciclotetrapeptidos; sartoryglabramidas A e B; epóxido de fellutanina A; indois 

prenilados; isocromona; antraquinonas; dicetopiperazinas; fungo derivado de 

plantas de manguezal; atividade antibacteriana; antibiofilme. 
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[M+H]+  Pseudo-molecular ion (Positive ion mode)  

[α]20
D  Specific optical rotation at 20 ºC for D (sodium) line  

[α]23
D  Specific optical rotation at 23 ºC for D (sodium) line 

[α]26
D  Specific optical rotation at 26 ºC for D (sodium) line 

® Register or Trademark 

13C NMR Carbon thirteen Nuclear Magnetic Resonance 

1D One-Dimension  

1H NMR Proton Nuclear Magnetic Resonance 

2D Two-Dimension  

Å Angstrom  

A-549 Human lung carcinoma cancer cell line 

Ac Acetyl  

Ac2O Acetic anhydride 

ADC Antibody Drug Conjugate 

AIDS Acquired Immune Deficiency Syndrome  

Ala Alanine 

AMP Ampicillin 



ABBREVIATION AND SYMBOLS 
   

 

xiv 
 

  

amu   Atomic mass unit 

Ara-A 9-β-D-arabinofuranosyladenine 

Ara-C Cytosine Arabinoside 

Arg Arginine 

Asp Aspartic acid 

ATCC   American Type Culture Collection  

BIC Biofilm Inhibitory Concentration 

brd Broad doublet 

brs Broad singlet  

Calcd.   Calculated  

CCDC Cambridge Crystallographic Data Centre 

CD Cluster of Differentiation 

CFU Colony-Forming Unit  

CLSI Clinical Laboratory Standards Institute   

CoA Coenzyme A  

COSY Correlated Spectroscopy 

CTX Cefotaxime  

CYA   Czapek Yeast Autolysate Agar  

Cys Cysteine 
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CZA   Czapek’s Agar 

dd Double doublet  

ddd Double double doublet  

DEPT Distortionless Enhancement by Polarization Transfer 

DMSO Dimethylsulfoxide  

DMSO-d6   Deuterated dimethylsulfoxide 

DMXBA 3-(2,4-Dimethoxybenzylidene)-Anabaseine 

DNA Deoxyribonucleic Acid 

DPPH 2, 2-Diphenylpicrylhydrazyl  

dq double quartet 

dt Double triplet 

ECD Electronic Circular Dichroism 

EGFR Epidermal Growth Factor Receptor 

EMA  European Medicines Agency 

EMEA European Middle Eastern and African 

ESBL Extended Spectrum Beta-Lactamases 

ET Ecteinascidin 

EU European Union  

FDA Food and Drug Administration 
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FIC Fractional Inhibitory Concentration 

FTIR Fourier Transform Infrared Spectroscopy 

g Gram 

GABA Gamma-aminobutyric acid 

GI50 Half maximal growth inhibitory concentration 

Gly Glycine 

HMBC Heteronuclear Multiple Bond Correlation 

HPLC High Performance Liquid Chromatography 

HRESIMS High-Resolution Electrospray Ionization Mass Spectrometry 

HRMS High Resolution Mass Spectrometry  

HSQC Heteronuclear Single Quantum Coherence 

HSV Herpes Simplex Virus 

HUVEC Human Umbilical Vein Endothelial Cells 

Hz Hertz 

IC50   Half maximal inhibitory concentration 

IL-6   Interleukin 6  

IR Infrared  

ITS Internal Transcribed Spacer 

J Coupling constant in Hz  
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KB cell Human oral epidermoid carcinoma cell line 

KKU Khon Kaen University 

KUFA Kasetsart University Fungal Agriculture  

KUFC Kasetsart University Fungal Culture 

LC Liquid Chromatography 

LC-MS Liquid Chromatography coupled with Mass Spectrometry 

Leu Leucine 

LH-60  Human Promyelocytic Leukemia Cell Line  

LN-caP  Prostate Cancer Cell Line  

LPS Lipopolysaccharide  

Lys Lysine 

m Multiplet  

m/z   Mass per charge  

MAO Monoamine Oxidase 

MBC Minimum Bactericidal Concentration 

MCF-7 Human breast carcinoma cell line 

MDA-MB-435  Estrogen-Independent Human Breast Adenocarcinoma Cell Line 

Me Methyl   

MEA Malt Extract Agar  
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Me2CO Acetone 

Met Methionine 

MH Mueller-Hinton Agar  

MeOH Methanol 

MHz Mega hertz  

MIC Minimum Inhibitory Concentration  

mm Millimeter  

MMAE Monomethyl Auristatin E  

MMAF Monomethyl Auristatin F  

mp Melting point in ºC  

MRSA Methicillin-resistant Staphylococcus aureus  

MS Mass Spectrometry  

NA   Not Available  

NAD(P)H   Reduced Nicotinamide Adenine Dinucleotide (Phosphate) 

NCBI National Center for Biotechnology Information 

NCE New Chemical Entities  

NCI National Cancer Institute  

NCI-H460 Non-small cell lung cancer cell line 

NK-1   Human Neurokinin Receptor 1 
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nm   Nanometer  

NMR Nuclear Magnetic Resonance 

NO Nitric oxide  

NOESY Nuclear Overhauser Effect Spectroscopy   

NSCLC Non-Small Cell Lung Cancer 

ºC Degree Celsius 

ORTEP Oak Ridge Thermal Ellipsoid Plot  

OX Oxacillin  

PDA Potato Dextrose Agar 

PDB Protein Data Bank 

PHVD Prevention of head and vascular disease 

PN/NT Protection of neurons/ neurotoxicity 

ppt  Parts per thousand 

PTLC Preparative Thin Layer Chromatography 

q Quartet  

s   Singlet 

S Streptomycin  

SEM Scanning Electron Microscope  

Ser Serine 
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Si gel   Silica gel  

sp.   Species (singular)   

spp.   Species (plural)  

t Triplet 

Thr Threonine 

TLC  Thin Layer Chromatography 

TMV Tobacco Mosaic Virus 

TNF Tumor Necrosis Factor 

Tyr Tyrosine 

UPLC Ultra Performance Liquid Chromatography 

US United States  

UV Ultraviolet 

VAN Vancomycin  

VRE Vancomycin-resistant Enterococcus 

WHO World Health Organization 

δ Chemical shift value in ppm 

ε Molar absorptivity (molar extinction coefficient) 

λ Wavelength in nanometer 
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1. INTRODUCTION  

 

1.1 Natural Products Drug Discovery and Its Current Status 

 

Natural products are chemical compounds derived from living organisms, 

such as plants, animals, insects and microorganisms many of which have been used 

to treat diseases. Plants and microorganisms produce unique bioactive substances, 

providing access to very different types of lead compounds. Natural products have 

long been traditional sources of medicines, and are still nowadays considered the 

most successful supply of potential drug leads with more than one million new 

chemical entities discovered so far (Carter, 2011; Dias et al. 2012). More than 60% 

of the drugs are in the market derived from natural sources (Molinari, 2009).  

Natural products are highly diverse and often provide highly specific biological 

activities, which have been the basic of the treatment of human diseases and a 

major source of new drugs. Many successful drugs in the market today were 

originally synthesized to mimic the action of molecules found in nature (Feher and 

Schmidt, 2003). The World Health Organization (WHO) estimated in 1985 that 

approximately 65% population of the world predominately relied on plant-derived 

traditional medicines for their primary health care, while the plant products also play 

an important, through more indirect role in the health care systems of the remaining 

population who mainly reside in developing countries (Farnsworth et al., 1985). 
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Moreover, Natural Products are the most important part of the armamentarium 

for anticancer and anti-infective agents. More than 60 % of approved and pre-new 

drug application (NDA) candidates are either natural products or related to them, not 

including biological such as vaccines and monoclonal antibodies (Cragg et al., 

1997). Many natural products have reached the market without chemical 

modification, a testimony to the remarkable ability of microorganisms to produce 

small, drug-like molecules (Zhang and Demain, 2005). In the modern drug discovery 

era there are three major sources of new compounds: original natural products, 

compounds derived semi-synthetically from natural products and combinatorial 

synthetic compounds based on natural products models (Cragg et al., 1997; Feher 

and Schmidt, 2003; Newman et al., 2003). Most natural product research today is 

due to several reasons such as (i)-unmet medical needs (ii)-remarkable diversity of 

structures and activities (iii)-utility as biochemical probes, (iv)-novel and sensitive 

assay methods (v)-improvement in isolation, purification and characterization, and 

(vi)-new production methods (Clark, 1996). Natural products are the most successful 

source of drug leads and continue to provide greater structural diversity than 

standard combinational chemistry, and major opportunities for finding novel 

molecules. In the modern area of drug discovery, they will continue to be important 

as targets for production by biotechnological approaches, a source of lead 

compounds of novel chemical structures, and as the active ingredients of useful 

treatment derived from traditional systems of medicine (Harvey, 1993).   
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Many of these natural products have become current drug candidates (Dias et 

al., 2012). They have contributed to identifying and understanding novel chemical 

pathways and proved to make not only valuable drugs available but also essential 

tools in biochemistry and molecular cell biology (Grabley and Sattler, 2003).  

Natural products have provided many effective drugs. Historical example of 

early identified natural compound, commercially important drug morphine (1) from 

Papaver somniferum L. (opium poppy), was first reported in 1803 (Benyhe 1994; Der 

Marderosian and Beutler, 2002). Another important example is the antimalarial drug, 

quinine (2) which formed the basis for the synthesis of the commonly used 

antimalarial drugs chloroquine (3) and mefloquine (4) (Figure 1). It was originally 

isolated in 1820 by French pharmacists Caventou and Pelletier from the bark of 

Cinchona succirubra Pav. ex Klotsh, which had  been used for centuries for the 

treatment of malaria, fever, indigestion, mouth and throat diseases and cancer 

(Kremsner et al., 1994). Arteether (5) introduced in 2000 as Artemotil® is derived 

from artemisinin (6) (introduced in 1987 as Artemisinin) which was isolated from the 

plant Artemisia annua and are both approved antimalrial drugs (Newman and Cragg, 

2007).   
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1 2 3

4 5 6  

 

Figure 1. Structures of morphine (1), quinine (2), chloroquine (3), mefloquine (4), 

arteether (5) and artemisinin (6) 

Another example is paclitaxel (Taxol®) (7) which was originally isolated from 

the bark of the Pacfic yew tree Taxus brevifolia Nutt. (Taxaceae), collected in 

Washington State as part of a random collection program for the NCI by the U.S. 

Department of Agriculture (USDA) (Cragg, 1998; Wani et al., 1971). The structure of 

paclitaxel was elucidated in 1971 and was clinically introduced to the US market in 

the early 1990s, which was significantly active against ovarian cancer, advanced 

breast cancer, small and non-small cell lung cancer (Rowinsky et al., 1992). Other  
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examples of plant-derived anticancer drugs are the bis-indole alkaloids vinblastine 

(VLB) (8) and vincristine (VCR) (9), which were isolated from the Madagascar 

periwinkle Catharanthus roseus. Vinblastine (VLB) and vincristine (VRE) are 

primarily used in combination with other cancer chemotherapeutic drugs for the 

treatment of a variety of cancers such as leukemia, lymphomas, advanced testicular, 

breast and lung cancers, and Kaposi’s sarcoma (Cragg and Newman, 2005b).  

Among the natural sources, the potential of microorganisms in drug discovery 

is recently exploited. Many of the drugs especially the antibiotics currently in the 

pharmaceutical market have been reported from microorganisms. The most famous 

natural product penicillin which was discovered from a fungus Penicillium notatum in 

1928 by Fleming along with its re-isolation and commercialization in 1940 initiated a 

great revolution in drug discovery and research which is often referred to as the 

“Golden Age of Antibiotics”. Penicillin G (10) was first used in a large scale during 

World War II to treat soldiers wounded on battlefields to stave off infections (Hussain 

et al., 2014). Cyclosporine (cyclosporin A, CsA) (11) is a cyclic undecapeptide 

containing a novel amino acid together with several N-methylated amino acids and 

one new amino acid (Petcher et al., 1976; Rüegger et al., 1976; Zhou et al., 2009), 

which was discovered in 1970s from the fungus Tolypocladium inflatum (Kobel and 

Traber, 1982). This compound was found to have effective immunosuppressive 

ability in organ transplantations and successfully marketed as an 

immunosuppressant drug (Borel et al., 1977). In addition, cyclosporines have been  
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established to have anti-inflammatory, antifungal, and antiparasitic properties, and 

reversing potential for multidrug resistance in several types of cancers (Sallam et al., 

2005). All of these compounds or derivatives are still in use as drugs today (Butler, 

2004). 

8  R = CH3�

9  R = CHO

7

10

11

 

 

Figure 2. Structures of paclitaxel (Taxol®) (7), vinblastine (VLB) (8), vincristine 

(VCR) (9), penicillin G (10) and cyclosporine (cyclosporin A, CsA) (11) 
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In 2016, Newman and Cragg reported that 77.5% of the small-molecule new 

chemical entities (NCEs) discovered from 1981 to 2014 were inspired by natural 

products (Figure 3). These include: 6% natural products (N), 26% semi-synthetically 

modified natural products (ND), 5% totally synthetic compounds based on a natural 

product pharmacophore (S*), and 27% synthetic/semisynthetic natural product 

mimics (S*/NM and S/NM). In addition, over 73% of antibacterial and 83% of 

anticancer discovered were based on, or derived from natural products (Newman 

and Cragg, 2016). Moreover, many of the best selling drugs currently on the market 

in various therapeutic fields such as antibacterial, antifungal, antiparasitic, 

anticoagulant, immunosuppressant and anticancer were derived from natural 

products (Newman and Cragg, 2007).   

 

 

 

Figure 3. All small-molecules new chemical entities from 1981 to 2014 (Newman 

and Cragg, 2016) 

6% 

1% 
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Today, pharmaceutical companies are under scrutiny due to the gradual 

decline and pressure to increase the number of new drugs on the market, and as a 

result in the last decade, many pharmaceutical companies have abandoned their 

natural products drug discovery programs (Dickson and Gagnon, 2004; McChesney 

et al., 2007).   

 

1.2 Current Status of Marine Natural Products Research 

 

Over 22,000 structurally diverse secondary metabolites have been isolated 

and characterized from a variety of marine organisms from different marine 

environments over the last fifty years (Blunt et al., 2013; Gerwick and Fenner, 2013; 

Hill, 2013; Hu et al., 2011). In the marine environment, where a different 

transcriptome, proteasome, and finally a different metabolome which allows 

organism to survive, one can speculate that different secondary metabolites might be 

the result of special requirements to adapt to such an extreme environment (Firn and 

Jones, 2000).  

Almost all forms of life in the marine environment have been investigated for 

their natural products content, representing a valuable source of novel compounds 

with great potential such as pharmaceuticals, nutritional supplements, cosmetics, 

agrochemicals and enzymes, many of them with a strong potential market value 

(Blunt et al., 2013; Kijjoa and Sawangwong, 2004). Before the 1980s, marine natural 

products discovered annually were less than 100, however the number of novel  
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marine compounds greatly increased after 1985, and then stabilized at about 500 

per year in the late 1990s (Hu et al., 2015). Figure 4 shows the variation in the 

number of new marine natural products isolated from 1985-2012 as well as the 

proportion of the bioacive and non-active compounds for each year. The same 

authors have also summarized in Figure 5 the activities of the new marine natural 

products isolated during this period into several groups.  It is interesting to observe 

that compounds with anticancer activity constitute a major group (56%), followed by 

antibacterial (13%) and antifungal (5%).  Moreover, the new marine natural products, 

although in small percentage, are also found to have other activities such as pest 

resistance, antiviral, pesticide, prevention of head and vascular diseases, and 

protection of neuron/neurotoxicity (Hu et al., 2015). 

 

 

Figure 4. Variation in number of new marine natural products for 1985-2012 (Hu et 

al., 2015)  
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Figure 5. Bioactivity of new marine natural products (*PHVD: Prevention of head 

and vascular disease, **PN/NT: Protection of neurons/ neutoxicity) (Hu et al., 2015)  

 

Although the percentage of marine natural products that can be developed 

into drugs is still low so far, there are signs that an increasing number of marine 

bioactive compounds will be approved for the treatment of human diseases 

(Haefner, 2003; Liu et al., 2012; Nastrucci et al., 2012). In order to accomplish this 

objective, more interdisciplinary approaches and innovative manipulations are 

urgently needed to improve bioactivity studies. Marine natural products exhibit a 

wide range of biological activities, which play an important role in the discovery of 

leads for the development of drugs for the treatment of human diseases (Newman 

and Cragg, 2012), which had become an established sub-discipline of natural 

products chemistry, and several thousands of compounds have been described 

(Faulkner, 2000a). Due to their bioactivities such as anti-tumor, anti-microtubule,  

56% 
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3% 
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1% 

18% 

Anticancer

Anti-bacteria

Anti-fungus
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anti-proliferative, photoprotective, antibiotic and anti-infective, marine natural 

products are exceptionally interesting high-value ingredients in the pharmaceutical 

industry and more and more companies are investing in this field (Berdy, 2005; 

Mishra and Tiwari, 2011; Molinski et al., 2009; Pettit et al., 1982; Schumacher et al., 

2011; Sudek et al., 2007). 

Approximately 30, 000 structurally diverse natural products with a vast array 

of bioactivities have been discovered from marine organisms including microbes, 

algae and invertebrates (Radjasa et al., 2011; Salomon et al., 2004) and currently 

available commercial drugs for the treatment of various diseases have been derived 

from microorganisms (Cragg and Newman, 2005a; Li and Vederas, 2009). In fact, 

some studies reported that marine organisms provide more bioactive natural 

products than terrestrial organisms. Concerning marine natural products, it is 

interesting to verify that most interest has been directed to marine organisms from 

temperate and tropical areas, while polar organisms are still underexplored (Avila et 

al., 2008; Blunt et al., 2014; Lebar et al., 2007). The majority of novel compounds 

from marine organisms, approximately 75% were isolated from invertebrates mainly 

from the phylum Porifera (sponges) but also from Coelenterate (mostly coral). 

Additionally, algae and microorganisms are also major sources of novel metabolites 

(Hu et al., 2011). Among marine microorganisms, fungi have gained an important 

role as a source of new biologically active secondary metabolites with antitumor, 

antibacterial, antiviral, antifungal, anti-inflammatory and anticancer activities and 

enzyme inhibitor compounds (Gamal-Eldeen et al., 2009; Samuel et al., 2017).   
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1.3 Marine Chemistry and Pharmacology 

 

Marine organisms are producing diverse structural metabolites such as 

polyketides, alkaloids, peptides, proteins, lipids, glycosides, isoprenoids and hybrids 

of those metabolites (Mayer et al., 2011; Rateb and Ebel, 2011). The first biologically 

marine natural products sponge-derived arabinosyl nucleosides spongouridine and 

spongothymidine formally reported in the early 1950s from the Caribbean sponge 

Tethya crypta by Bergmann (Bergmann and Stempien Jr, 1957). In late 1970, it was 

established that marine plants and animals are genetically and biologically unique. 

Around 15,000 natural products have been described and among these 30% were 

from sponges (Murti and Agrawal, 2010). Covering the period from 1981 to 2008, 

around 68% of all the drugs used to curb infection including antibacterial, antiviral, 

antiparasitic and antifungal compounds and 63% of anti-cancer drugs were naturally 

derived (Cragg et al., 2009).  

Currently there are 13 marine derived compounds in the clinical lineup that 

are at different stages of clinical trials, with a very large number of marine-derived 

compounds in the preclinical testing pipeline as well. The three Food and Drug 

Administartion (FDA) approved marine-derived drugs currently used in the United 

States are cytarabine (Cytosar-UW, DepocytW), vidarabine (Vira-AW), and 

ziconotide (PrialtW). Table 1 showed the marine-derived compounds which have 

been approved by FDA and different phases of the clinical pipeline 

http://marinepharmacology.midwestern.edu/clinPipeline.htm (Mayer et al., 2010).   

http://marinepharmacology.midwestern.edu/clinPipeline.htm
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Trabectedin (Yondelis®, ET-743) (12) (Figure 6) is a tetrahydroisoquinoline 

alkaloid, originally isolated from the colonial tunicate Ecteinascidia turbinate. This 

compound was the first anticancer agent approved in the EU for the treatment of 

soft-tissue sarcoma and in relapsed cases of platinum-sensitive ovarian cancer 

(Verweij, 2009; Yap et al., 2009).  

Brentuximab vedotin 63 (Adcetris®) (13) (Figure 6) is an anticancer agent that 

is based on a fully synthetic analog of dolastatin 10 molecule. Dolastatin 10 was 

isolated in 1972 from the sea hare Dolabella auricularia (Pettit et al., 1987). It is 

currently the marine drug that successfully enters into the market and was approved 

for the treatment of Hodgkin and systemic anaplastic large cell lymphoma (Firsova et 

al., 2017).   

Eribulin mesylate (Halaven®) (14) (Figure 6) is a marine-derived microtubule-

targeted agent that was a structurally simplified synthetic analogue of halichondrin B 

which was originally isolated for the first time in 1986 from the marine sponge 

Halichondria okadai and was found to be highly cytotoxic in murine leukemia cells. 

This compound was approved by FDA in 2010 and EMEA’s in 2011, for metastatic 

breast cancer (Dumontet and Jordan, 2010; Huyck et al., 2011). 

Lovaza® (formerly known as omacor) (15) (Figure 6) is the brand name for 

anti-hypertriglyceridemia drug composed of ethyl esters of several omega-3 fatty 

acids isolated from fish oils. Omega-3 fatty acids of marine origin are proven to 

reduce triglycerides and low density cholesterols and to increase high density 
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cholesterols in the blood and are therapeutic in combination with diet and statins 

(Pettit et al., 1987).    

Ziconotide (Prialt®) (16) (Figure 6) is a synthetic version of ω-conotoxin, a 

naturally occurring peptide isolated from the cone snail Conus magus. This 

compound was the first intrathecal analgesic drug to be approved after morphine, 

receiving the FDA approval in 2004 and EMEA approval in 2005 and is currently 

labeled for the management of severe chronic pain patients with cancer or AIDS 

(Rauck et al., 2009; Staats et al., 2004). 

Vidarabine (arabinofuranosyladenine or adenine arabinoside, Ara-A) (17) 

(Figure 6) is a synthetic purine nucleoside which was developed from spongouridine, 

firstly isolated from the Caribbean sponge Tethya crypta (Newman et al., 2009). 

Spongouridine is currently obtained from fermentation of Streptomyces antibioticus 

(Hong et al., 1986). It is approved by FDA for use in recurrent epithelial keratitis 

caused by herpes simplex virus type 1 and 2, acute kerato-conjunctivitis, and also for 

superficial keratitis (Mayer et al., 2010).  

Cytarabine (arabinosyl cytosine or cytosine arabinoside, Ara-C) (18) (Figure 

6) a marine-derived anticancer compound which is a synthetic pyrimidine nucleoside 

developed from spongothymidine which was firstly isolated from a Caribbean sponge 

Tethya crypta (Newman et al., 2009). This compound was approved in 1969 and 

mainly used in different types of leukemia, including acute myelocytic leukemia, 

lymphocytic leukemia, meningeal leukemia and blast crisis phase of chronic 

myelogenous leukemia (Absalon and Smith, 2009; Thomas, 2009). 
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Figure 6. Structures of trabectedin (ET-743) (12), brentuximab vedotin (SGN-35) 

(13), eribulin mesylate (E7389) (14), omega-3-fatty acid ethyl ester (15), ziconotide 

(16), vidarabine (Ara-A) (17) and cytarabine (Ara-C) (18) 
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Table 1. A perspective of pipeline of marine drugs 

(http://marinepharmacology.midwestern.edu/clinPipeline.htm) 

Clinical 

status 

Compound name Marine 

organism 

Chemical class Disease area 

FDA  

Approved 

Trabectedin  

(ET-743) 

Tunicate Alkaloid Cancer 

 Brentuximab vedotin 

(SGN-35) 

Mollusk/ 

cynobacterium 

ADC (MMAE) Cancer, lymphoma 

 Eribulin mesylate 

(E7389) 

Sponge Macrolide Breast cancer 

 Omega-3-fatty acid 

ethyl esters 

Fish Omega-3-fatty acid Hypertriglyceridemia 

 Ziconotide Cone snail Peptide Pain 

 Vidarabine (Ara-A) Sponge Nucleoside Anti-viral 

 Cytarabine (Ara-C) Sponge Nucleoside Cancer 

Phase III Pinabulin 

(NPI-2358) 

Fungus Diketopiperazine Cancer 

 Plitidepsin Tunicate Depsipeptide Cancer 

 Squalamine lactate Dogfish Shark Aminosterol Neovascular 

Diseases 

 Tetrodotoxin Pufferfish Guanidinium 

alkaloid 

Chronic pain 

 Glembatumumab 

vedotin 

Mollusk/cyanoba

cterium 

ADC (MMAE) Chronic pain 
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Table 1. A perspective of pipeline of marine drugs (Cont.) 

(http://marinepharmacology.midwestern.edu/clinPipeline.htm) 

Clinical 
status 

Compound 
name 

Marine organism Chemical 
class 

Disease area 

Phase II ABT-414  
EGFRvIII-MMAF 

Mollusk/cyanobacterium ADC 
(MMAF) 

Cancer 

 DMXBA (GTS-21) Worm Alkaloid Schizophrenia, 
Alzheimer Disease, 
Attention Deficit  
Hyperactivity 
Disorder, 
Endotoxemia, 
Sepsis, Vagal 
Activity 

 SGN-CD19A Mollusk/cyanobacterium ADC 
(MMAF) 

Cancer 

 Lurbinectedin 
(PMO1183) 

Tunicate Alkaloid Cancer 

 AGS-16C3F Mollusk/cyanobacterium ADC 
(MMAF) 

Cancer 

 Lifastuzumab 
vedotin 
(DNIB0600A) 

Mollusk/cyanobacterium ADC 
(MMAF) 

Cancer 

 Pinatuzumab 
vedotin  
(DCDT-2980S) 

Mollusk/cyanobacterium ADC 
(MMAE) 

Non-Hodgkin 
Lymphoma, 
chronic 
lymphocytic 
leukemia 

 Polatuzumab 
vedotin 
(DCDS-4501A) 

Mollusk/cyanobacterium ADC 
(MMAE) 

Cancer 
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Table 1. A perspective of pipeline of marine drugs (Cont.) 

(http://marinepharmacology.midwestern.edu/clinPipeline.htm) 

Clinical 

status 

Compound 

name 

Marine organism Chemical class Disease 

area 

Phase I GSK2857916 Mollusk/cyanobacterium ADC (MMAF) Cancer 
 ABBV-085 Mollusk/cyanobacterium ADC (MMAE) Cancer 
 ABBV-399 Mollusk/cyanobacterium ADC (MMAE) Cancer 
 ABBV-221 Mollusk/cyanobacterium ADC (MMAE) Cancer 
 ABBV-838 Mollusk/cyanobacterium ADC (MMAE) Cancer 
 ASG-67E Mollusk/cyanobacterium ADC (MMAE) Cancer 
 ASG-15ME Mollusk/cyanobacterium ADC (MMAE) Cancer 
 Enfortumab 

Vedotin 

ASG-22ME 

Mollusk/cyanobacterium ADC (MMAE) Cancer 

 Bryostatin  Bryozoa Macrolide lactone Cancer 
 Tisotumab 

Vedotin 

Mollusk/cyanobacterium ADC (MMAE) Cancer 

 Marizomib 

(Salinosporamide 

A; NPI-0052) 

Bacterium Beta-lactone-

gamma lactam 

Cancer 

 MLN-0264 Mollusk/cyanobacterium ADC (MMAE) Cancer 
 PM060184 Sponge Polyketide Cancer 
 SGN-LIV1A Mollusk/cyanobacterium ADC (MMAE) Cancer 

ADC: Antibody Drug Conjugate; Ara-A: 9-β-D-arabinofuranosyladenine; Ara-C: Cytosine Arabinoside; 

DMXBA: 3-(2, 4-Dimethoxybenzylidene)-Anabaseine; ET: Ecteinascidin; EGFR: Epidermal Growth 

Factor Receptor; MMAE: Monomethylauristatin E; MMAF: Monomethylauristatin F 

*http://marinepharmacology.midwestern.edu/clinPipeline.htm with permission from Professor 

Alejandro M.S. Mayer, PhD. (Department of Pharmacology, Chicago College of Osteopathic Medicine 

Midwestern University). 
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1.4 Marine-Derived Fungi  

 

The oceans which cover more than 70% of the earth’s surface and more than 

95% of the earth’s biosphere harbor various marine organisms. Because of the 

special physical and chemical conditions in the marine environment, almost every 

class of marine organism displays a variety of molecules with structurally unique 

features. Currently, thousands of structurally unique and biologically active 

compounds have been reported from marine fungi (Jin et al., 2016).   

The generally accepted ecological definition of marine fungi is, “Obligate 

marine fungi are those which grow and sportulate exclusively in a marine or 

estuarine habitat; facultative marine fungi are those from freshwater or terrestrial 

milieus able to grow and possibly also to sporulate in the marine environment’’ 

(Kohlmeyer and Kohlmeyer, 1979). Marine-derived fungi are known to produce 

structurally unique secondary metabolites due to the adaptation to a very distinct set 

of environmental pressures from marine environment, and since the beginning of the 

1990s, a sharp and exponential increase in the number of reported relevant 

biologically active metabolites occurred (Bhadury et al., 2006; Gomes, 2014). The 

distribution of marine-derived fungi in the tropics has not been explored as 

thoroughly as in the temperate areas (Blunt et al., 2009; Blunt et al., 2005; 

Kohlmeyer, 1984). Nevertheless, inventory data for the marine fungi investigated in 

several tropical countries such as Thailand (Chaeprasert et al., 2010), Palau Islands 

(Chatmala et al., 2004; Kohlmeyer, 1984), Singapore  
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(Lim and Tan, 1986; Sundari, 2010), Brunei (Hyde, 1988), Malaysia (Alias and 

Jones, 2000; Jones and Hyde, 1988; Pang et al., 2010; Zainuddin et al., 2010) and 

Siargao Island, Philippines (Besitulo et al., 2002) are available. However, many 

tropical regions have been still largely unexplored, such as the Indonesia 

archipelago. 

Recently, Jin et al. (2016) reported that about three quarters of all new 

chemical structures from marine fungi are derived from isolation from living matters, 

such as marine animals (30.1%), marine plants (42.5%), while the remaining 

compounds are obtained from non-living sources, most notably sediments (22.9%). 

Within the individual groups, mangrove habitats (25.5%), alga (14.4%) and sponges 

(9.2%) are the predominant sources for fungal diversity (Figure 7). According to 

Bugni and Ireland (2004) marine sponges were the richest source of marine fungi. 

Several cultivation based studies with marine sponges have shown a vast biological 

diversity, yielding the greatest taxonomic diversity in comparison with other marine 

sources. On the other hand, Kelecom (2002) reported that the numbers of compound 

having antitumor and antibacterial activities isolated from bacteria were the same as 

those from fungi. However, fungi are found to be a rich source of anticancer rather 

than antibacterial metabolites. From the number of new compounds published each 

year, it is evident that the number of natural products from marine-derived fungi 

continues to be rapidly increasing and still has not reached its climax (Rateb and 

Ebel, 2011).   
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Figure 7. New compounds from marine-derived fungi divided by sources of the 

fungal strains (Jin et al., 2016)  

 

1.4.1 Marine sponges-associated fungi 

 

Marine invertebrates are one of the major groups of organisms that gave a 

number of secondary metabolites with pharmacological properties and led in the 

formulation of novel drugs. Among marine invertebrates, sponges became the 

dominant source of novel bioactive metabolites (Hu et al., 2011; Perdicaries et al., 

2013). When compared to other marine invertebrates, marine sponges (Porifera) are 

recognized as the richest sources (Mehbub et al., 2014; Taylor et al., 2007). Figure 8 

showed the distribution of new marine natural products from different types of marine 

sources, including microorganisms and phytoplankton discovered from 2001-2010 

(Mehbub et al., 2014).   

 

 

Marine 
animals, 
20.90% 

Sponges, 
9.20% 

Sediments, 
22.90% 

Mangrove, 
25.50% 

Alga , 14.40% 

Sea water, 
4.60% 

Others, 2.60% 
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Figure 8. Total number of new compounds isolated from different types of marine 

sources, 2001-2010 (Mehbub et al., 2014)  

 

In particular, sponge-associated fungi have yielded novel metabolites with 

potent antibacterial and anticancer activities (Jensen and Fenical, 2000). 

Trichoharzin (19), a compound isolated from Trichoderma harzianum associated with 

the sponge Mycale cecilia, was the first novel metabolite from sponge-associated 

fungi (Kobayashi et al., 1993), while gymnastatins A (20a, b), B (21) and C (22) were 

the first novel cytotoxic metabolites from a strain of Gymnasella dankaliensis, which 

was isolated from the sponge Halichondria japonica (Amagata et al., 1998). 

Sorbicillactone A (23) is yet another antileukemic agent produced by Penicillium 

chrysogenum associated with the marine sponge Ircinia fasciculata. Compound 23 

is also known to have antiviral and neuroprotective properties  
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(Bringmann et al., 2007), and due to its antileukemic properties, this compound 

was also qualified for human trials (Thakur and Thakur, 2006). Therefore, marine 

sponges are considered a rich source of chemical diversity and health benefits for 

developing drug candidates, cosmetics, nutritional supplements and molecular 

probes that can be exploited to increase the healthy life span of humans. 

23

19
20a : R1 = OH, R2 = H

20b : R1 = H, R2 = OH

21 22

 

 

Figure 9. Structures of trichoharzin (19), gymnastatins A-C (20-22) and 

sorbicillactone A (23) 
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1.4.2 Marine algae-associated fungi 

 

Algae represent an important source of marine fungi with almost one third of 

all known higher marine fungi are associated with algae (Bugni and Ireland 2004; 

Jones and Pang, 2012; Kohlmeyer and Kohlmeyer, 1979). Additionally, algae are 

one of the most prevalent sources of marine-derived fungi for chemical studies 

(Rateb and Ebel, 2011). A number of studies have demonstrated that algae-

inhabiting fungi were responsible for the production of many bioactive secondary 

metabolites, which were previously attributed to the host (Flewelling et al., 2015; 

Overy et al., 2014). Natural Products isolated from marine algae-derived fungi have 

been the subject of many chemical reports in the past decades especially during 

2002 to mid-2015. A number of new compounds have been isolated and identified, 

with a wide range of biological properties including anticancer, antibiotic, antiviral, 

antioxidative and antikinase activities (Zhang et al., 2016). An example of bioactive 

compound is plinabulin (NPI-2358) (24), which was isolated from a marine alga-

associated Aspergillus sp. CNC-139 (Kanoh et al., 1997). This compound inhibits 

tubulin assembly and acts as a vasculature disrupting agent that destabilizes the 

tumor vascular endothelial architecture and leads to cell damage (Nicholson et al., 

2006). Another examples is the new meroterpene arisugacin K (25), isolated from 

the fungal strain Penicillium echinulatum pt-4, which was isolated from the marine 

red alga Chondrus ocellatus. This compound showed inhibitory activity against 

Escherichia coli with an inhibition diameter 8 mm at 30 µg/disk (Li et al., 2014).  
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A new nitrobenzoyl sequiterpenoid, 6β-9α-dihydroxy-14-p-

nitrobenzoylcinnamolide (26) was isolated from a marine derived fungus Aspergillus 

ochraceus Jcma1F17, which was derived from a marine alga Coelarthrum sp. 

Compound 26 showed significant cytotoxicity against 10 human cancer cell lines 

(K562, H1975, U937, Molt-4, BGC-823, HL60, MCF-7, A549, Hela, and Huh-7) with 

IC50 values ranging from 1.95 µM to 6.35 µM, in addition to the antiviral activity 

against the influenza virus A/Hong Kong/8/68 (H3N2) and the human enterovirus 71 

(EV71) (Fang et al., 2014). Two new oxepine-containing diketopiperazine alkaloids: 

varioloids A (27) and B (28) from the fungus Paecilomyces variotii EN-291, which 

was isolated from the marine red alga Grateloupia turuturu were found to exhibit 

potent inhibitory activity against the pathogenic fungus Fusarium graminearum with 

MIC values of 8 and 4 µg/mL, respectively (Zhang et al., 2015).  

Moreover, a structurally unique 3H-oxepine-containing alkaloid, varioxepine A 

(29), which was isolated from the marine alga-derived endophytic fungus 

Paecilomyces variotii showed antimicrobial activity against several human- and 

aqua-pathogenic bacteria Aeromonas hydrophila, Staphylococcus aureus, Vibrio 

anguillarum, E. coli, Micrococcus luteus, Vibrio harveyi and Vibrio parahemolyticus 

with MIC values ranging from 16 to 64 µg/mL as well as plant pathogenic fungus 

Fusarium graminearum with an MIC value 4 µg/mL (Zhang et al., 2014). Compounds 

24-29 are not well represented in the pipelines of drugs and none of them currently is 

on the market. Only pinabulin (24), a synthetic cyclic peptide analog of halimide, is in 
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phase II clinical trial for treatment of non-small cell lung cancer (Bhatnagar and Kim, 

2010; Jin et al., 2016) 

24 25 26

27 28 29  

 

 

Figure 10. Structures of plinabulin (24), arisugacin K (25), 6β-9α-dihydroxy-14-p-

nitrobenzoylcinnamolide (26), varioloids A and B (27 and 28) and varioxepine A (29) 
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1.4.3 Marine coral-associated fungi 

 

Corals are sessile marine invertebrates which are generally categorized into 

hard, soft or gorgonian type organisms. Marine soft corals are known to produce a 

wide array of secondary metabolites, particularly diterpenoids and steroids, which 

are often characterized by uncommon structural features and potent bioactivities 

(Putra and Murniasih, 2016). The diterpene glycosides pseudopterosins A-D (30-33) 

(Figure 11) isolated from the Caribbean gorgonial coral Pseudopterogorgia 

elisabethae, showed anti-inflammatory activity and are in phase II of clinical trial 

(Faulkner, 2000b; Mayer et al., 2010; Newberger et al., 2006; Newman and Cragg, 

2004; Rouhi, 1995; Yauan et al., 2006). In addition, these compounds are effective in 

preventing sun damage to the skin and have a nourishing property to the skin. Due 

to their excellent anti-inflammatory and analgesic activities, pseudoterosins A-D (30-

33) are currently incorporated into skin care preparations (Pomponi, 1999). 

Interestingly, the presence of the fungi associated with corals suggests that 

beneficial interactions between fungi and corals are accumulating and current 

challenges include the elucidation of the metabolites (Yarden, 2014). The structurally 

unique metabolites with biological and pharmacological activities oxalicumones D 

and E (34 and 35) were isolated from a culture broth of marine gorgonian-associated 

fungus Penicillium oxalicum SCSGAF 0023. Compounds 34 and 35 showed 

significant cytotoxicity against several carcinoma cell lines with IC50 less than 10 µM 

(Bao et al., 2014). The fungal strain Aspergillus terreus SCSGAF0162, which was  
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isolated from the gorgonian coral Echinogorgia aurantiaca produced three lactones 

including the territrem derivativies, territrem D (36), territrem E (37), 11α, 

dehydroxyisoterreulactone A (38) and isobutyrolactone II (39). Compounds 36 and 

37 showed strong inhibitory activity against acetylcholinesterase with IC50 4.2 ± 0.6 

and 4.5 ± 0.6 µM, respectively. While compounds 38 and 39 showed antiviral activity 

towards HSV-1 with IC50 16.4 ± 0.6 and 21.8 ± 0.8 µg/mL, respectively, compound 

36 exhibited potent antifouling activity with EC50 12.9 ± 0.5 µg/mL toward barnacle 

Balanus Amphitrite larvae (Nong et al., 2014). Therefore, numerous compounds 

isolated from different species of marine coral-associated fungi can be exploited in 

various applications due to their different biological and pharmacological properties. 
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34

35
36 R1 = OH, R2 = R3 = OCH3

37 R1 = OCH3, R2 = OH, R3 = H

38 39

30 R1 = R2 = R3 = R4 = H

31 R1 = Ac, R2 = R3 = R4 = H

32 R1 = R3 = R4 = H, R2 = Ac

33 R1 = R2 = R4 = H, R3 = Ac

 

Figure 11. Structures of pseudopterosins A-D (30-33), oxalicumones D and E (34 

and 35), territrems D and E (36 and 37), 11α, dehydroxyisoterreulactone A (38) and 

isobutyrolactone II (39) 
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1.4.4 Mangrove-associated endophytic fungi 

 

Mangroves are tropical and subtropical wetlands forest harboring a great 

diversity of marine fungi (Shearer et al., 2007). Mangrove-derived fungi constitute the 

second largest ecological group of the marine fungi and many of them are new or 

inadequately described species (Sridhar, 2004). Many mangrove-derived fungi are 

found to produce chemicals with novel functions and structures (Kobayashi and 

Tsuda, 2004). Approximately 90% of mangroves are distributed in South-East Asia, 

America and Africa (Shearer et al., 2007). According to Kohlmeyer and Kohlmeyer 

(1979), the marine fungi found in the mangrove habitat live on roots, stems and twigs 

submerged in water while their terrestrial counterparts inhabit on lower stem, 

branches and upper parts of the roots above the water surface. Mangrove-derived 

fungi can be categorized into saprophytic, parasitic and symbiotic fungi (Cheng et al., 

2009; Thatoi et al., 2013). Among the different groups of mangrove-derived fungi, 

mangrove endophytic fungi are considered to have a great potential for applications 

in pharmaceutical and nutraceutical industries to produce antibiotic, antidiabetic, 

antiviral, anti-inflammatory, anticancer, antioxidant and immunosuppressive drugs 

and therapeutic agents (Balagurunathan and Radhakrishnan, 2007). 

More than twenty years after Taxol (paclitaxel) (7) was discovered from the 

bark of Taxus brevifolia, Strobel et al. isolated a novel taxol producing endophytic 

fungus, Taxomyces andreanae, from Taxus brevifolia (Strobel et al., 1993). In the  
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following years, further endophytic fungi such as Pestalotiopsis microspore (Strobel 

et al., 1996), Seimatoantlerium tepuiense (Strobel et al., 1999), Periconia sp. (Li et 

al., 1998), have also been reported to be producers of taxol and their derivatives. A 

quinoline indole alkaloid, camptothecin (CPT) (40), which was commercially 

exploited as an anticancer agent, was first isolated from the bark and stem of 

Camptotheca acuminata, a plant used in traditional medicine. Later on, camptothecin 

and its analogs were found to be produced by the cultures of an endophytic fungus 

of Camptotheca acuminate (Kusari et al., 2009). A new aromatic amine pestalamine 

A (41), isolated from the mangrove-derived endophytic fungus Pestalotiopsis vaccinii 

showed moderate cytotoxic activity against human cancer cell lines MCF-7 (breast 

cancer), HeLa (cervical cancer), and HepG2 (hepatic carcinoma) with IC50 values of 

40.3, 22.0, and 32.8, respectively (Zhou et al., 2014). Moreover, a new aromatic 

butyrolactone, flavipesin A (42), isolated from marine-derived endophytic fungus 

Aspergillus flavipes AIL8, which was isolated from the inner leaves of mangrove 

plant Acanthus ilicifolius, displayed significant antibacterial activity against 

Staphylococcus aureus and Bacillus subtillis with MIC values of 8.0 and 0.25 µg/mL 

respectively, and also showed the unique antibiofilm activity by decreasing the 

number of living cells embed in the biofilm matrix OD values from 390.6 to 97.7 

μg/mL (p<0.01). Compound 42 could penetrate the biofilm matrix and kill the living 

bacteria inside the mature S. aureus biofilm (Bai et al., 2014). Therefore, endophytic 

fungi can represent an interesting source of new lead structures for pharmaceutical 

and agrochemical applications. 
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Figure 12. Structures of camptothecin (40), pestalamine A (41) and flavipesin A (42)   
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1.5 Aim and Scope of the Study 

 

The main goal of this study was to isolate and identify new and bioactive 

natural products from the cultures of marine-derived fungi isolated from marine 

organisms such as corals, sponges and algae as well as mangrove-derived 

endophytic fungi. To achieve this aim four fungal strains belonging to the genera 

Talaromyces, Neosartorya and Eurotium which were isolated from soft coral, marine 

sponge and mangrove, were taxonomically identified and cultured in cooked-rice 

medium to produce secondary metabolites for this study. 

 

1.5.1 Isolation and chemical investigation of selected fungal strains 

 

In order to isolate the secondary metabolites, the crude extracts were 

prepared from the cultures of the marine-associated fungi on solid media (cooked 

rice) and fractionated by column chromatography. The constituents of the extracts 

were isolated and purified by crystallization and also by different chromatographic 

techniques. The structures of the compounds were elucidated by extensive analysis 

of the 1D and 2D NMR spectra, IR and HRMS. The absolute configurations of the 

stereogenic carbons of the new compounds were established by X-ray analysis 

when the compounds were obtained as suitable crystals otherwise the comparison of 

the experimental and calculated ECD spectra or chiral HPLC were used. 
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1.5.2 Biological evaluation of the isolated pure compounds 

 

The pure compounds were evaluated by different bioassays for their biological 

activities. Antibacterial, antifungal and antibiofilm assays were performed using 

Gram-positive and Gram-negative bacteria, as well as multidrug-resistant isolates 

from the environment. 
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2. An Overview of Secondary Metabolites and Biological Activities 

 

The marine-derived fungi selected for the study in this thesis belong to three 

distinct genera, namely Talaromyces (Talaromyces helicus KUFA 0063), 

Neosartorya (Neosartorya takakii KUFC 7898 and Neosartorya glabra KUFA 0702) 

and Eurotium (Eurotium chevalieri KUFA 0006). 

While the genus Talaromyces is a sexual state of Penicillium, the genera 

Neosartorya and Eurotium are sexual state of Aspergillus. According to Visagie et al. 

(2014), Aspergillus, Penicillium and Talaromyces are among the most chemically 

inventive of all fungi, producing a wide array of secondary metabolites.  

Talaromyces species are commonly isolated from soil, indoor environment, 

humans with penicilliosis and food products (Yilmaz et al., 2014). Several bioactive 

secondary metabolites including alkaloids, peptides, lactones, polyketides, and 

compounds with miscellaneous structural types were reported from members of this 

genus (Zhai et al., 2016). On the other hand, Aspergillus sections include many 

important species because they can be pathogenic or allergenic to man as well as 

causing food spoilage and producing mycotoxins. A large number of novel 

compounds, including alkaloids, peptides, polyketides, terpenes, sterols, and 

cerebroside analogues, have been isolated from this genus and most of the 

compounds exhibit interesting biological properties (Lee et al., 2013). Consequently, 
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the following literature review focuses on novel chemical structures reported for 

members of the genera Talaromyces and Aspergillus reported with references to 

their biological activities. 

 

2.1 Talaromyces Species 

 

The genus Talaromyces (Family Trichocomaceae) was introduced by 

Benjamin (1955) as a sexual state of Penicillium that produces soft walled ascomata 

covered with interwoven hyphae, which was re-defined by Stolk and Samson (1972) 

and was restricted to species producing asci borne in chains. The genus 

Talaromyces is an important fungal genus because of its ubiquity and as rich 

sources of biologically active novel compound (Liu et al., 2010). They have a 

worldwide distribution, being recorded from soil, indoor, food, and waste (Pitt and 

Hocking, 1997; Samson and Pitt, 2000). The present review covers the secondary 

metabolites of Talaromyces section which includes five species, namely T. flavus, T. 

wortmannii, T. thailandiasis, T. helicus and T. stipitatus, as well as unspecified 

species. Many of these metabolites showed biological activities.  
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2.1.1 Talaromyces flavus 

 

A new antibiotic, fosfonochlorin (43) (Figure 13) was isolated from the strain 

Talaromyces flavus SANK 15680, which was isolated from a soil sample collected at 

Taga-cho, Inugami-gun, Shiga Prefecture, Japan. Fosfonochlorin (43) was active 

against Proteus mirabilis and Proteus vulgaris and weakly active against Salmonella 

enteritidis, Klebsiella pneumonia and Providencia rettgeri but inactive against other 

bacteria tested at a concentration of 200 µg/mL (Takeuchi et al., 1989). 

Seven new compounds including 4, 6-dihydroxy-5-methylphthalide (44), 

methyl 4-carboxy-5-hydroxyphthalaldehydate (45), 7-hydroxy-2, 5-dimethylchromone 

(46), 3-hydroxymethyl-6, 8-dimethoxycoumarin (47), desmethyldehydroaltenusin 

(48), talaroflavone (49) and deoxytalaroflavone (50) (Figure 13) were isolated from 

the soil fungus T. flavus (Ayer and Racok, 1990). 
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Figure 13. Secondary metabolites isolated from Talaromyces flavus (43-50) 

 

Tabata et al. (1999) reported the isolation of a new azaphilone-type 

metabolite, diazaphilonic acid (51) (Figure 14) was produced by a fermentation of T. 

flavus PF 1195. Compound 51 inhibited DNA amplification by polymerase chain 

reaction (PCR) with DNA polymerase with the IC50 value of 2.6 µg/mL. This  
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compound also inhibited the telomerase activity of human leukemia MT1 showing 

almost complete inhibition at 50 µM. On the contrary, compound 51 displayed no 

antimicrobial activity against Gram positive bacteria Bacillus subtilis ATCC 6633, 

Micrococcus luteus ATCC 9341, Staphylococcus aureus 209P and Gram negative 

bacteria Escherichia coli NIHJ, as well as several kinds of yeast Saccharomyces 

cerevisiae SHY3, Candida albicans M9001, Candida pseudotropicalis M9035, 

Cryptococcus neoformans M9010, Debaryomyces hansenii M9011, Trigonopsis 

variabilis M9031, Schizosacchromyces pombe M9025 and Hansenula schneggi 

IAM4269. 

A novel metabolite, funicone-related compound actofunicone (52) (Figure 14) 

was isolated from the culture broth of T. flavus FKI-0076 which was isolated from the 

soil sample. Compound 52 showed no effect on the growth of Candida albicans up to 

300 µM; however, this compound became inhibitory when administered in 

association with myconazole (Arai et al., 2002). 

Another funicone derivative, 9, 14-epoxy-11-deoxyfunicone (53) (Figure 14) 

was isolated from the ethyl acetate extract of T. flavus IFM52668. Compound (53) 

exhibited the weak antifungal activity against Aspergillus niger with an 10 mm 

inhibition zone at 200 µg/disc (Komai et al., 2004). 
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Figure 14. Structures of diazaphilonic acid (51) actofunicone (52) and 9, 14-epoxy-

11-deoxyfunicone (53) 

 

Four new norsesquiterpene peroxides, talaperoxides A-D (54-57) (Figure 15) 

were isolated from the mangrove endophytic fungus, T. flavus. Compounds 55 and 

57 showed cytotoxic activity against human breast cancer cell lines MCF-7 and 

MDA-MB-435, human hepatoma cell line HepG2, human cervical cancer cell line 

HeLa and human prostatic cancer cell line PC-3 with IC50 values between 0.70 and 

2.78 µg/mL. However, none of the compounds showed antimicrobial activity against 

Staphylococcus aureus ATCC 27154, Escherichia coli ATCC 25922, Sarcina  
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ventriculi ATCC 29068, Pseudomonas aeruginosa ATCC 25668, Candida albicans 

ATCC 10231 or Aspergillus niger ATCC 13496 at a concentration of 50 µg/mL. All 

norsesquiterpene peroxides 54-57 exhibited lethal activity against brine shrimp 

Artemia salina with LD50 < 10 ppm (Li et al., 2011b).   

A new nardosinane-type sesquiterpene, talaflavuterpenoid A (58) (He et al., 

2014a) and two new coumarines, talacoumarins A and B (59 and 60) (He et al., 

2014c) were isolated from the wetland soil-derived fungus T. flavus BYD07-13. 

These three compounds 58-60 exhibited no cytotoxic effects on five human tumor 

cell lines: HL-60 (human myeloid leukemia), SMMC-7721 (hepatocellular 

carcinoma), A-549 (lung cancer), MCF-7 (breast carcinoma) and SW480 (colon 

cancer) with IC50 > 40 µM as compared to cisplatin and also antimicrobial activity 

against Escherichia coli, Staphylococcus aureus, Candida albicans, and Aspergillus 

niger with MIC > 1.0 mg/mL. Compounds 59 and 60 showed moderate anti-Aβ42 

aggregation activity, with relative inhibitory rates of 49.33 ± 3.16 % and 44.99 ± 3.64 

% at the concentration of 100 µM (He et al., 2014a; He et al., 2014c).  
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Figure 15. Structure of talaperoxides A-D (54-57), talaflavuterpenoid A (58) and 

talacoumarins A and B (59 and 60) 

 

Additionally, six new polyesters, talapolyesters A-F (61-66) (Figure 16) were 

obtained from the soil-derived fungus T. flavus BYD07-13. Compound 65 and 66 

exhibited cytotoxic activity against five human tumor cell lines: HL-60 (myeloid 

leukemia), SMMC-7721 (hepatocellular carcinoma), A-549 (lung cancer), MCF-7 

(breast cancer) and SW480 (colon cancer) with IC50 14.81, 18.39, 17.66, 14.59, 

26.62 and 13.62, 15.74, 11.09, 15.96, 15.54 µM, respectively. However, compounds 

61-64 showed no cytotoxic activity against five tumor cell lines with IC50 > 40 µM as 

compared to cisplatin (He et al., 2014b).  
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66

65

61 R1 = H, R2 = OH, R3 = R4 = H

62 R1 = R2 = R3 = H, R4 = OH

63 R1 = CH3, R2 = R3 = H, R4 = OH

64 R1 = CH3, R2 = H, R3 = OH, R4 = H

  

Figure 16. Structures of talapolyesters A-F (61-66) 

 

A wetland soil-derived fungus T. flavus AHK07-3 produced three pairs of new 

isopentenyl dibenzo [b, e] oxepinone enantiomers (+)-(5S)-arugosin K (67), (−)-(5R)-

arugosin K (68), (+)-(5S)-arugosin L (69), (−)-(5R)-arugosin L (70), (+)-(5S) arugosin 

M (71), (−)-(5R)-arugosin M (72) and a new isopentenyl dibenzo [b, e] oxepinone, 

arugosin N (73) (Figure 17) (Sun et al., 2016). Later on, the same authors (Sun et 

al., 2017) have described isolation of four stereoisomers of sequoiatones (74-77) by 

chiral HPLC (Figure 17) from the same fungus. 
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68 R =           OCH3
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70 R =           OCH2CH3

 

Figure 17. Secondary metabolites isolated form Talaromyces flavus AHKO7-3 (67-

77) 
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2.1.2 Talaromyces wortmannii 

 

Talaromyces wortmannii, isolated from a soil sample collected in China’s 

Yunnan province, produced wortmannilactones A-D (78-81) (Figure 18). Compounds 

78-81 exhibited in vitro cytotoxic activity against a panel of human cancer cell lines 

HCT-5 and HCT-115 (colon cancer), A549 (lung cancer), MDA-MB-231 (breast 

cancer) and K562 (leucocythemia) with the IC50 values ranging from 28.7 to 130.5 

µM (Dong et al., 2006). In 2009, four new secondary metabolites, wortmannilactones 

E-H (82-85), (Figure 18) were isolated from the culture of the soil-derived T. 

wormannii. Compounds 82-85 exhibited inhibitory activities against cathepsin B with 

IC50 values of 4.3, 6.5, 13.0 and 6.0 µM, respectively (Dong et al., 2009).  
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Figure 18. Secondary metabolites isolated from Talaromyces wortmannii (78-85) 

 

The entophytic fungus T. wormannii, which was isolated form Aloe vera, 

produced two new cyclic peptides, talaromins A and B (86 and 87) (Bara et al., 

2013b), in addition to, wortmannin B (88) and biemodin (89) (Bara et al., 2013a) 

shown in Figure 19. While talaromins A and B (86-87) showed neither cytotoxicity 

against L5178Y (mouse lymphoma cells) nor antibacterial activity against 

Staphylococcus aureus ATCC 29213, Streptococcus pneumoniae ATCC 49619, 

Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC 27799 up to a  
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concentration of 64 µg/mL, biemodin 89 displayed a strong antibacterial activity 

against Gram positive bacteria Staphylococcus epidermidis, Streptococcus 

pneumonia and Enterococcus faecalis with MIC values of 16 µg/mL, especially 

against Methicillin-resistant Staphylococcus aureus MRSA with MIC values of 8 

µg/mL (Bara et al., 2013a). 

Pro-6

AA-7

89

88

Ile-5
Ala-4

Thr-3

Tyr-2
Val/Ile-1

86 R = H

87 R = CH3

 

Figure 19. Structures of talaromins A and B (86 and 87), wortmannin B (88) and 

biemodin (89) 
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Two previously unreported bisdihydroanthracenones atropodiasteromeric 

pairs, flavomannins A and B (90 and 91), two new unsymmetrical dimers 

flavomannins C-D (92-93) and two new mixed dihydroanthracenone/anthraquinone 

dimers talaromannin A and B (94 and 95) (Figure 20) were isolated from the 

endophytic fungus T. wormannii (Bara et al., 2013c). Compounds 90-95 exhibited 

antibacterial activity against Staphylococcus aureus, including (multi) drug-resistant 

clinical isolates and were predominantly active against Staphylococci with the MIC 

values from 4-8 µg/mL. Reporter gene analyses indicated induction of the SOS 

response for some of the derivatives, suggesting interference with DNA structure or 

metabolism. The compounds 90-95 showed no cytotoxic activity against THP-1 

human leukemic monocyte cells and BALB/3T3 mouse embryonic fibroblast cells, 

encouraging their further evaluation as potential starting points for antibacterial drug 

development.  
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Figure 20. Structures of flavomannins A-D (90-93) and talaromannins A and B (94 

and 95) 

A new furanosteroid, secovironolide (96) and a new epoxide containing 

viridian derivative, epoxyvirone (97) (Figure 21) were isolated from the culture broth 

of an endophytic fungus T. wormannii LGT-4, which was isolated from the Chinese 

medicinal plant Tripterygium wilfordii. Compound 96 was found to possess a weak 

monoamine oxidase MAO inhibitory activity with IC50 91.22 µg/mL. However, the 
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crude extract from the endophytic fungus Talaromyces wortmannii LG-4 inhibited the 

MAO with IC50 50.3 µg/mL (Ding et al., 2015).  

Fu et al. (2016a) have recently isolated two new azaphilones, 

deacetylisowortmin A (98) and deacetylisowortmin B (99) (Figure 21) from T. 

wortmannii LGT-4. Both compounds were evaluated for the monoamine oxidase 

(MAO) and acetylcholinesterase (AChE) activities and they showed neither of these 

activities. Nearly simultaneously, the same group also isolated four new wortmannin 

derivatives, wortmannines A-D (100-103) (Figure 21) together with other previously 

described compounds from the zeistic culture of T. wortmannii LGT-4. At 10 µg/mL 

concentration, compounds 100-103 displayed no cytotoxic activity against anti-HL60 

Human promyelocytic leukemia (Fu et al., 2016b).   
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Figure 21. Structures of secovironolide (96), epoxyvirone (97), deacetylisowortmins 

A and B (98 and 99) and wortmannines A-D (100-103) 
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Liu et al. (2016a) described isolation of four new wortmannilactones 

derivatives, wortmannilactones I-L (104-107) (Figure 22) from the T. wortmannii 

treated with the epigenome regulatory agent suberoylanilide hydroxamic acid. 

Compounds 104-107 showed potent inhibitory activity against NADH-fumarate 

reductase with the IC50 values ranging from 0.84 to 1.35 µM. NADH-fumarate 

reductase is considered as specific target for treating helminthiasis and cancer. 

Using the One strain Many Compounds (OSMAC) strategy, (Liu et al., 2016b) 

were able to isolate three new polyketides, wortmannilactone I1 (108), 

wortmannilactone I2 (109) and wortmannilactone I3 (110) (Figure 22) from the 

culture of T. wortmannii. Compounds 108-110 exhibited selective inhibitory activity 

against NADH-fumarate reductase with IC50 of 8.8, 11 and 13 µM, respectively.  
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Figure 22. Structures of wortmannilactones I-L (104-107) and I1-I3 (108-110) 

 

2.1.3 Talaromyces thailandiasis 

 

Two previously undescribed meroditerpenes, thailandolides A and B (111 and 

112) and 3-methyl-6-hydrohyl-8-methoxy-3, 4-dihydroisocoumarin (113) (Figure 23) 

were isolated from the fungus Talaromyces thailandiasis, which was isolated from a 

soil sample collected in Trat Province, Southern Thailand (Dethoup et al., 2007).   
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Figure 23. Structures of thailandolides A and B (111 and 112) and 3-methyl-6-

hydrohyl-8-methoxy-3, 4-dihydroisocoumarin (113) 

 

2.1.4 Talaromyces helicus 

 

Four chlorinated azaphilones, helicusins A-D (114-117) (Figure 24) were 

isolated from the culture of T. helicus IFM 42241. All of the four compounds (114-

117) showed weak inhibitory effects on monoamine oxidase MAO (Yoshida et al., 

1995).   
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Figure 24. Structures of helicusins A (114), B (115), C (116) and D (117) 

 

2.1.5 Talaromyces stipitatus 

 

Lynn et al. (1982) reported the isolation of a new spiroketal talaromycins 

talaromycins A and B (118 and 119) (Figure 25) from the fungus Talaromyces 

stipitatus, which was isolated from a wood-shavings-based chicken litter. Later on, 

Phillips et al. (1987) have described four novel spiroketal talaromycins, talaromycins 

C-F (120-123) (Figure 25) from the same fungus. Four previously undescribed 

secondary metabolites talaroenamines B-E (124-127) and a new linear polyester,  
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talapolyester G (128) (Figure 25) were isolated from the fungus T. stipitatus 

ATCC10500. Compounds 124-127 were evaluated for their antiplasmodial activity. 

Only compound 126 showed a modest inhibition activity against chloroquine-

resistant Plasmodium falciparum chloroquine-resistant Plasmodium falciparum with 

IC50 19 µM without noticeable toxicity on HeLa and pre-adipose cell lines (Zang et 

al., 2015). 

124 R1 = R2 = H

125 R1 = CH2OH, R2 = H

126 R1 = CHO, R2 = H

127 R1 = OCH3, R2 = OH

120

128

121 122

123

118 R1= H, R2 = CH2OH

119 R1
 = CH2OH, R2 = H

 

 

Figure 25. Structures of talaromycins A-F (118-123), talaroenamines B-E (124-127) 

and tatapolyester G (128) 
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Zang et al. (2016) reported the isolation of four new polyketide-derived 

oligophenalenone dimers, 9a-epi-bacillisporin E (129) and bacillisporins F-H (130-

132), (Figure 26) from the fungus T. stipitatus. Bacillisporin H 132 exhibited 

antimicrobial activity against Staphylococcus aureus with a MIC value of 5.0 µM and 

a modest cytotoxic activity against the HeLa cell line with IC50 > 50 µg/mL. A new 

ergosterol analog, talarosterone (133) and a new bis-anthraquinone derivative, bis 

(1, 4, 5-trihydroxy-7-methylanthraquinone (134) were isolated from the culture of 

marine sponge-associated fungus Talaromyces stipitatus KUFA 0207 (Noinart et al., 

2017).  
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Figure 26. Structures of 9a-epi-bacillisporin E (129), bacillisporins F-H (130-132), 

talarosterone (133) and bis (1, 4, 5-trihydroxy-7-methylanthraquinone (134) 
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2.1.6 Unspecified Talaromyces sp. 

 

NK 374200 (135) (Figure 27) was isolated from the culture broth of the soil-

derived fungus Talaromyces sp. and was found to have the anti-mosquito larval 

activity. However, this compound showed no cytotoxicity against HeLa cell at 100 

µg/mL, and also no acute toxicity with mice at 160 mg/kg (Morino et al., 1995). 

Tomikawa et al. (2000) described isolation of rasfonin (136) (Figure 27) from the 

fermented mycelium of Talaromyces sp. 3656-A1. Rasfonin (136) was shown to 

induce cell death in Ba/F3-V12 cells in an IL-3-free medium containing Dex (2 x 10-7 

M) with IC50 0.16 µg/mL. 

Kimura et al. (2008) isolated two previously undescribed azaphilones which they 

have named kasanosins A and B (137 and 138) (Figure 27) from the cultures of the 

seaweed-derived Talaromyces sp. Both compounds 137 and 138 selectively 

inhibited the activities of eukaryotic DNA polymerases β and λ (pols beta and 

lambda) in family X of pols, kasanosin A (137) was a stronger inhibitor than 

kasanosin B (138). Compounds 137 and 138 showed on the rat pol β with IC50 

values of 27.3 and 60.1 µM and human pol λ with IC50 35.0 and 72.9 µM, 

respectively. A new kasanosin analog, kasanosin C (139) was later isolated from the 

solid fermentation of Talaromyces sp. T1BF which was isolated from the old bast 

tissue of Taxus yunnanensis (Li et al., 2010b).   
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138 R1 = CH2OH, R2 = OH, R3 = OCH3�

139 R1 = CH3, R2 = OCH3, R3 = OH 

135

136

137

 

 

Figure 27. Structures of NK 374200 (135), rasfonin (136), kasanosins A and B (137 

and 138) and kasanosin C (139) 

 

Two new diphenyl ether derivatives, tenelates A and B (140 and 141) (Figure 

28) were isolated from the mangrove endophytic fungus Talaromyces sp. (SBE 14), 

from a South China Sea (Liu et al., 2009). In 2010, two new metabolites 7-

epiaustdiol (142) and 8-O-methylepiaustdiol (143) (Figure 28) were isolated from the  



CHAPTER II. CHEMISTRY OF THE GENERA TALAROMYCES, 

NEOSARTORYA AND EUROTIUM 

   

 

64 
 

 

mangrove-endophytic fungus Talaromyces sp. ZH-154. Compound 142 displayed 

significant inhibitory antimicrobial activity against Pseudomonas aeruginosa ATCC 

25668 with MIC values of 6.25 µg/mL. Compounds 142 and 143 showed moderate 

cytotoxicity against KB and KBv 200 (human epidermoid carcinoma) cell lines with 

IC50 20.04, 19.32 µg/mL and 16.37, 37.16 µg/mL, respectively (Liu et al., 2010).   

140 141

142 R = H

143 R = CH3  

 

Figure 28. Structures of tenelates A and B (140 and 141), 7-epiaustdiol (142) and 8-

O-methylepiaustdiol (143) 
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New meroterpenoids, chrodrimanins C-G (144-148) (Figure 29) were isolated 

from the YO-2 strain of Talaromyces sp. which was isolated form the soil sample. 

However, compounds 145-147 displayed insecticidal activity against silkworms with 

the LD50 values of 20, 10 and 50 µg/g of diet, respectively (Hayashi et al., 2012a, b). 

148

144

147

145 146

 

 

Figure 29. Structures of chrodrimanins C-G (144-148) 
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While, a new xanthone dimer, talaroxanthone (149) (Figure 30) was isolated from 

the endophytic fungus Talaromyces sp. DgCr22.1b  (Koolen et al., 2013), two new 

metabolites (3S, 4aR, 7S)-7, 8-dihydroxy-3-methyl-3, 4, 10, 5, 6, 7-hexahydro-1H-

isochromen-1-one (150) and (1S, 3R, 5R)-3-methyl-2-oxabicyclo [3.3.1] nonan-7-one 

(151) (Figure 30) were isolated from an endophytic fungus, a close relative of 

Talaromyces sp. Compounds 150 and 151 displayed a range of cytotoxicities against 

the human cancer cell lines, HCT-116 (colon carcinoma), A-549 (lung), HEP-1 liver, 

THP-1 (leukemia) and PC-3 (prostatic) at 50 µM and induced apoptosis in HL-60 

cells (Kumar et al., 2013).  

A new penicillic acid derivative, coculnol (152) (Figure 30) was isolated from the 

co-culture broth of Fusarium solani FKI-6853 and Talaromyces sp. FKA-65. Coculnol 

152 displayed anti-influenza virus activity against the strain A/PR/8/34 (H1N1) with 

IC50 values of 283 µg/mL, and weak cytotoxic activity against Madin-Darby canine 

kidney (MDCK) cells with IC50 781 µg/mL (Nonaka et al., 2015). More recently, 

Kaifuchi et al. (2015a) described the isolation of ukulactone C (153) (Figure 30) from 

Talaromyces sp. FKI-6713. Ukulactone C (153) showed an in vitro inhibitory activity 

with the IC50 values of 62 µM against NADH-fumarate reductase of the roundworm 

Ascaris suum. 
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Figure 30. Structures of talaroxanthone (149), (3S, 4aR, 7S)-7, 8-Dihydroxy-3-

methyl-3, 4, 10, 5, 6, 7-hexahydro-1H-isochromen-1-one (150), (1S, 3R, 5R)-3-

Methyl-2-oxabicyclo [3.3.1] nonan-7-one (151), coculnol (152) and ukulactone C 

(153) 
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The diphenyl ether derivatives, talaromycins A-C (154-156) (Figure 31) were 

isolated from a gorgonian-derived fungus, Talaromyces sp. Compounds 154-156 

showed no cytotoxic activity against human cancer cell lines, HepG2 and Hep3B 

(hepatoma), MCF-7/ADR (breast), PC-3 (prostatic) and HCT-116 (colon carcinoma). 

However, compound 156 showed antifouling activity against the larval settlement of 

the barnacle Balanus Amphitrite with EC50 values of 2.8 ± 0.2 µg/mL (Chen et al., 

2015).  

Five new metabolites, including two tricyclic polypeptides: vanitaracins A and 

B (157 and 158), 3, 5-dihydroxy-2-(2-(2-hydroxy-6-methylphenyl)-2-oxoethyl)-4-

methylbenzaldehyde (159), 2-chromone derivatives, 7-hydroxy-5-methyl-2-(2-

oxobutyl)-4H-chromen-4-one (160) and 2, 7-dihydroxy-5-methyl-2-(2-

oxobutyl)chroman-4-one (161) (Figure 31) were isolated from a culture broth of 

Talaromyces sp. Only compound 157 showed the strongest anti-hepatitis B virus 

HBV activity against using HBV-susceptible HepG2-hNTCP-C4 cells with an IC50 

10.5 µM. While compounds 158-161 exhibited weak anti-HBV activity with an IC50 

91.2, 51.4, 72.4 and 52.1 µM, which suggested that the substituents at C-9 in 

compound 157 are likely to be important for its antiviral activity (Matsunaga et al., 

2015).   
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160 161

154 155

156

159

157 R1 = OH, R2 = CH3�

158 R1 = R2 = H

 

Figure 31. Structures of talaromycins A-C (154-156), vanitaracins A-B (157-158), 

3,5-dihydroxy-2-(2-(2-hydroxy-6-methylphenyl)-2-oxoethyl)-4-methylbenzaldehyde 

(159), 7-hydroxy-5-methyl-2-(2-oxobutyl)-4H-chromen-4-one (160) and 2, 7-

dihydroxy-5-methyl-2-(2-oxobutyl)chroman-4-one (161)   
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Two new oxaphenalenone dimers: Talaromycesones A (162) and B (163) and 

a new isopentenyl xanthenone: talaroxanthenone (164) (Figure 32) were isolated 

from the culture broth and mycelia of a marine fungus Talaromyces sp strain LF458. 

Talaromycesones A (162) and B (163) showed antibacterial activity against human 

pathogenic Staphylococcus epidermidis strains with IC50 3.70 and 17.36 µM, while 

compounds 162 and 164 exhibited acetylcholinesterase AchE inhibitory activity with 

IC50 7.49 and 1.61 µM, respectively. Interestingly, compound 164 inhibited 

phosphodiesterase PDE-4B2 with IC50 7.25 µM (Wu et al., 2015).  

162 163 164  

 

Figure 32. Structures of talaromycesones A and B (162 and 163) and 

talaroxanthenone (164) 
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A new unsymmetrical dimeric anthraquinone, 3-demethyl-3-(2-hydroxypropyl)-

skyrin (165) (Figure 33) from the solid-state fermentation extract of an endophytic 

fungal strain Talaromyces sp. YE 3016. Compound 165 showed moderate cytotoxic 

activity against MCF-7 breast adenocarcinoma with IC50 20.76 ± 3.41 µg/mL (Xie et 

al., 2016). A new analog of wortmannin, wortmannolol (166) (Figure 33) was isolated 

from an endophytic fungus Talaromyces sp. LGT-4 of the plant Triptergium wilfordii. 

This compound exhibited weak monoamine oxidase inhibitory activity at the final 

concentration of 25 µg/mL (inhibitory rate was 30%) (Zhi et al., 2016). Moreover, [2-

(S)-hydroxy (phenyl) methyl]-3-methylquinazolin-4(3H)-one (167) and 2-[(R)-hydroxy 

(phenyl) methyl]-3-methylquinazolin-4(3H)-one (168) (Figure 33) were isolated from 

the fungus Talaromyces sp. cf-16. Compounds 167 and 168 showed similar toxicity 

to brine shrimp Artemia salina with LC50 of 97.8 and 106.4 µg/mL but inactive 

antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria 

(Haibin et al., 2016).  
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165 166

167 168  

 

Figure 33. Structures of 3-demethyl-3-(2-hydroxypropyl)-skyrin (165), wortmannolol 

(166), 2-(S)-hydroxy (phenyl) methyl]-3-methylquinazolin-4(3H)-one (167) and 2-(R)-

hydroxy (phenyl) methyl]-3-methylquinazolin-4(3H)-one (168) 
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Kalansuriya et al. (2017) reported the isolation of five new coprogen 

siderophores; talarazines A-E (169-173) (Figure 34) from a mud dauber wasp-

associated fungus, Talaromyces sp. (CMB-W045). Talarazine A (169) and 

talarazines C-E (171-173) displayed no growth inhibition against Gram-positive 

bacteria Staphylococcus aureus ATCC 25923, the Gram-negative bacteria 

Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and the 

fungus Candida albicans ATCC 90028 with IC50 > 30 µM and also no cytotoxic 

activity against human large cell lung carcinoma NCI-H460, human colorectal 

adenocarcinoma SW620 and cervical carcinoma KB3-1 cell lines.  

A cyclic heptapetide, talarolide A (174) was (Figure 34) isolated from an 

Australian marine tunicate-associated fungus, Talaromyces sp. (CMB-TU011). 

Talarolide A 174 showed neither cytotoxic activity against NCI-H460, SW620, KB3-1 

and human hepatocellular carcinoma HepG2cell lines with IC50 > 30 µM nor 

antimicrobial activity against Gram-positive bacteria S. aureus ATCC 25923 and 

ATCC 9144, B. subtilis ATCC 6633 and ATCC 6051 and Gram-negative bacteria E. 

coli ATCC 11775 and P. aeruginosa ATCC 10145, and the fungus C. albicans ATCC 

90028 with IC50 >30 µM (Dewapriya et al., 2017).   
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174

170 R1, R2, R3 = H

171 R1 = OH, R2, R3 = H

172 R1, R2 = OH, R3 = H

173 R1, R2 = OH, R3 = H

169

L-amino acids

D-amino acidsN-OH-Gly

 

 

Figure 34. Structures of talarazines A-E (169-173) and talarolide A (174) 
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2.2 Neosartorya species 

 

Neosartorya species are the sexual state of the Aspergillus species, especially of 

the Fumigati section, which belong to the family Trichocomaceae and are distributed 

in soil worldwide (Samson et al., 2007). Neosartorya species produced both a sexual 

state with ascospores and an asexual state with conidiospores (Frisvad et al., 2009), 

which included many important species because they can be pathogenic or 

allergenic to man (Brakhage and Langfelder, 2002), as well as causing food spoilage 

and producing mycotoxins (Cole and Cox, 1981).   

Many species of Neosartorya produce novel bioactive secondary metabolites, 

which have potential for pharmaceutical (Jayasuriya et al., 2009; Kijjoa et al., 2011)  

and agricultural use including biodegradation, bioinsecticide and bioherbicide 

(Chaillan et al., 2004; Ozoe et al., 2004; Phattanawasin et al., 2007). The present 

literature survey focuses on the novel metabolites from the species of Neosartorya 

reported with their biological activities.  
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2.2.1 Neosartorya fischeri 

 

Three novel metabolites, fiscalins A-C (175-177) (Figure 35) were isolated from 

the culture broth of Neosartorya fischeri, which was isolated from a plant 

rhizosphere. Compounds 175-177 inhibited the binding of 125I-Bolton-Hunter-

substance P ligand to human neurokinin (NK-1) receptor, with Ki values of 57, 174, 

and 68 µM, respectively (Wong et al., 1993).  

Three previously undescribed secondary metabolites, NK372135s A-C (178-180), 

(Figure 35) were isolated from the culture broth of the fungus, N. fischeri var. glabra 

IFO9857. Compounds 178-180 displayed strong in vitro growth antifungal activity 

against Candida albicans with IC50 = 2.12, 0.53 and 0.27 µg/mL. Among them, 

compound 180 showed the most potent antifungal activity (Morino et al., 1994).  

Proksa et al. (1998) reported the isolation of an asymmetric ergochrome, neosartorin 

(181) (Figure 35) from the mycelium of N. fischeri grown on the glucose/glycerol 

medium, while two new cyclopentanone derivatives, isoterrein (182) and terrein 

(183) were isolated from Neosartorya fischeri IFM52672 (Wakana et al., 2006).  

 

 

 

 



CHAPTER II. CHEMISTRY OF THE GENERA TALAROMYCES, 

NEOSARTORYA AND EUROTIUM 

   

 

77 
 

 

176

181
182 R1 = H, R2 = OH

183 R1 = OH, R2 = H

175 R1 = H, R2 = CH3�

177 R1 = R2 = CH3

178 R = H

179 R = OCH3

180 R = OH

 

 

Figure 35. Secondary metabolites isolated from Neosartorya fischeri (175-183) 
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In 2012, Tan et al. reported isolation of fischeacid (184) and fischexanthone 

(185) from the marine-derived fungus Neosartorya strain 1008F1. Compounds 184-

185 displayed no cytotoxic effect on human gastric cancer cell line SGC-7901, 

hepatic cancer cells BEL-7404 and antiphytoviral effect on tobacco mosaic virus 

(TMV) under the concentration of 200 µg/mL (Tan et al., 2012). The activation of the 

polycyclic polyketide prenyltransferases (pcPTase) in transformant T2 N. fischeri 

produced new metabolite, neosartoricin (186) (Figure 36). Compound 186 showed 

neither antibacterial activity against Gram positive and Gram negative bacteria nor 

antifungal activity against yeasts Saccharomyces cerevisiae and Candida albicans (> 

64 µg/mL), however neosartoricin 186 exhibited antiproliferative activity on anti-

CD3/CD28 activated murine spleenic T-cells with IC50 = 2.99 µM but was less 

cytotoxic against human foreskin fibroblast HFF and HeLa cells at the concentration 

up to 50 µM, which suggested its physiological role as an immunosuppressive agent 

(Chooi et al., 2013).  

 

 

 

 

 



CHAPTER II. CHEMISTRY OF THE GENERA TALAROMYCES, 

NEOSARTORYA AND EUROTIUM 

   

 

79 
 

 

184 185

186  

 

Figure 36. Structures of fischeacid (184), fischexanthone (185) and neosartoricin 

(186) 

 

New meroditerpene, sartorypyrone A (187) and a new aszonalenin analogue, 1-

formyl-5-hydroxyaszonalenin (188) were isolated from the soil fungus N. fischeri 

KUFC 6344. Only compound 187 showed an in vitro growth inhibitory activity against 

three human tumor cell lines, A375-C5 melanoma with GI50 21.5 ± 1.9 µM, but less 

activity against MCF-7 breast adenocarcinoma with GI50 46.3 ± 7.6 µM and NCI-

H460 non-small cell lung cancer with GI50 37.3 ± 4.0 µM (Eamvijarn et al., 2013). In 

addition, compound 187 exhibited antibacterial activity against Gram-positive  
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bacteria Staphylococcus aureus and Bacillus subtilis with MIC values of 32 and 64 

µg/mL, respectively and also was found to inhibit the biofilm formation in both 

reference strains S. aureus ATCC 25923, B. subtilis ATCC 6633 and the multi-drug 

resistant isolates S. aureus B1 and E. faecalis W1, at the 2× MIC and MIC (Gomes 

et al., 2014). 

Strain of N. fischeri FO-5897 isolated from a soil sample collected in Funabashi 

city, Chiba, Japan, produced sartorypyrone D (189) (Figue 37). Compound 189 

displayed antibacterial activities against all tested Gram-positive bacteria, Bacillus 

subtilis, Kocuria rhizopila and Mycobacterium smegmatis with IC50 8.0, 9.0 and 10.0 

µg/mL, and also inhibited NADH-fumarate reductase NFRD and mammalian NADH 

oxidase with IC50 1.7 and 3.0 µM, respectively (Kaifuchi et al., 2015b). Shan et al. 

(2014) described isolation of a new aszonalenin analogue, 6-hydroxyaszonalenin 

(190) (Figure 37) from the culture of N. fischeri CGMCC 3.5378, Later on, the new 

prenylated diketopiperazine alkaloids, neofipiperazines A-C (191-193) (Zheng et al., 

2014) and neofipiperazine D (194) (Chen et al., 2014) were isolated from the same 

fungus. Compound 194 was evaluated for cytotoxic activity against four human 

cancer cell lines MCF-7 (breast carcinoma), H1299 (lung carcinoma), HUVEC 

(human umbilical vein endothelial cells), MDA-MB-231 (breast carcinoma) and 

showed no significant activity at the concentration of 20 µM (Chen et al., 2014).   
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188 R1 = OH, R2 = CHO

190 R1 = OH, R2 = H

191 R = α-OH 

192 R = β-OH 193

194

187 R = OAc 

189 R = OH 

 

Figure 37. Structures of sartorypyrone A (187), 1-formyl-5-hydroxyaszonalenin 

(188), sartorypyrone D (189), 6-hydroxyaszonalenin (190), neofipiperazines A-D 

(191-194) 
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2.2.2 Neosartorya quadricincta 

 

A new prenylated dihydroisocoumarin derivative, PF 1223 (195) (Figure 38) 

was isolated from the culture of Neosartorya quadricincta PF 1223. Compound 195 

inhibited [3H] ethynylbicycloorthobenzoate (EBOB) binding by 65% with IC50 2.2 µM 

and inhibited the binding for the insect GABA receptor and proved to be a lead 

compound for the improvement of novel insecticides (Ozoe et al., 2004).  

Prompanya et al. (2016) reported isolation of two new polyketide derivatives, 

quadricinctones A and C (196 and 197), and seven new benzoic acid derivatives 

including quadricinctapyrans A and B (198 and 199), quadricinctoxepine (200) 

quadricinctone B (201), quadricinctafurans A and B (202 and 203) and 

quadricinctone D (204) (Figure 38) from the culture of the marine sponge-associated 

fungus N. quadricincta KUFA 0061. Compounds 196-204 did not exhibit either 

antibacterial activity against Gram-positive and Gram-negative bacteria, as well as 

multidrug-resistant isolates from the environment (MIC > 256 µg/mL), or antifungal 

activity against yeast Candida albicans ATCC 10231, filamentous fungus Aspergillus 

fumigatus ATCC 46645 and dermatophyte Trichophyton rubrum FF5 with MIC > 512 

µg/mL. They also showed no in vitro growth inhibitory activity against MCF-7 breast 

adenocarcinoma, NCI-H460 non-small cell lung cancer and A375-C-5 melanoma cell 

lines (GI50 > 150 µM). 
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204201

197

202 R = H

203 R = OH

196195

200198 R = H

199 R = Ac

 

Figure 38. Secondary metabolites isolated from Neosartorya quadricincta (195-204) 
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2.2.3 Neosartorya pseudofischeri 

 

Three new metabolites, including 1, 4-diacetyl-2, 5-dibenzylpiperazine 

derivatives, 3, 8-diacetyl-4-(3-methoxy-4, 5-methylenedioxy) benzyl-7-phenyl-6-oxa-

3, 8-diazabicyclo [3.2.1] octane (205a, b), a quinazolinone-containing indole 

derivative pseudofischerine (206) and a new ester of 2,4-dihydroxy-6-methylbenzoic 

acid, 3-hydroxy-5-methylphenyl 2, 4-dihydroxy-6-methylbenzoate (207) (Figure 39) 

were isolated form the culture of N. pseudofisheri KUFC 6422. Compounds 205-207 

showed no cytotoxic activity against six human cancer cell lines: Hs683 

(glioblastoma), A549 (non-small cell lung cancer), MCF-7 (breast cancer), OE21 

(esophageal), U373 (glioblastoma) and SKMEL-28 (melomana) at the highest 

concentration tested (IC50 > 100 µM) (Eamvijarn et al., 2012). Masi et al. (2013) 

described isolation of the previously undescribed pyrroloindole terpenoid, 

fischerindoline (208) (Figure 39) from solid and liquid cultures of N. pseudofischeri.  

Fischerindoline (208) showed in vitro growth inhibitory activity against six human 

cancer cell lines: A549 (non-small cell lung cancer), Hs683 (oligodendroglioma), 

MCF-7 (breast cancer), SKMEL28 (melanoma), U373 (glioblastoma) and mouse 

cancer cell lines B16F10 with IC50 29, 32, 25, 32, 37 and 27 µM respectively. 
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207

208206

205a 205b

 

 

Figure 39. Structures of 3, 8-diacetyl-4 (3-methoxy-4, 5-methylenedioxy) benzyl-7-

phenyl-6-oxa-3, 8-diazabicyclo [3.2.1] octane (205a, b), pseudofischerine (206), 3-

hydroxy-5-methylphenyl 2, 4-dihydroxy-6-methylbenzoate (207) and fischerindoline 

(208) 
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The extract from the  GlyPY (glycerol-peptone-yeast extract) and GluPY 

(glucose-peptone-yeast extract) culture broth of the marine-derived fungus N. 

pseudofischeri, which was isolated from the inner tissue of starfish Acanthaster 

planci, furnished two novel diketopiperazines, neosartins A and B (209 and 210) and 

a new alkaloid, neosartin C (211) (Figure 40) (Liang et al., 2014). Compounds 210 

and 211 were evaluated for their antibacterial activity against three multidrug-

resistant bacteria; Gram-positive Staphylococcus aureus ATCC29213, Methicillin-

resistant Staphylococcus aureus R3708 and Gram-negative Escherichia coli 

ATCC25922 but showed no activity against all these tested organisms with MIC > 

256 µg/mL.  

Five new metabolites including deacetylsesquiterpene (212), 5-formyl-6-

hydroxy-8-isopropyl-2-naphthoic acid (213), 6, 8-dihydroxy-3-(1E, 3E)-penta-1, 3-

dien-1-yl) isochroman-1-one (214), 5-olefin phenylpyropene A (215) and 13-

dehydroxylpyripyropene A (216) (Figure 40) were obtained from the mycelium of the 

marine fungus N. pseudofischeri, which was isolated from Acanthaster planci from 

the South China Sea. Compounds 212-216 showed significant cytotoxicity against 

the insect cell line Sf9 (Spodoptera frugiperda) with the cell growth inhibitory rates 

98.68, 90.97, 61.67, 85.24 and 85.37 %, after 48 h of the treatment at the 

concentration of 50 mg/L (Lan et al., 2016).   
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209 R1 = CH3, R2 = OCH3

210 R1 = CH2OH, R2 = OCH3 212

214

216

211

215

213

 

Figure 40. Structures of neosartins A-C (209-211), deacetylsesquiterpene (212), 5-

formyl-6-hydroxy-8-isopropyl-2-naphthoic acid (213), 6, 8-dihydroxy-3-(1E, 3E)-

penta-1, 3-dien-1-yl) isochroman-1-one (214), 5-olefin phenylpyropene A (215) and 

13-dehydroxylpyripyropene A (216) 
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2.2.4 Neosratorya spinosa 

 

Rajachan et al. (2016) reported isolation of two ester epimers, 2S, 4S-spinosate 

(217), 2S, 4R-spinosate (218) and four meroterpenoids, 1-hydroxychevalone C 

(219), 1-acetoxychevalone C (220) 1,11-dihydroxychevalone C (221) and 11-

hydroxychevalone C (222) (Figure 41) from the culture broth of the soil-derived 

fungus Neosartorya spinosa KKU-1NK1. 

Compound 219 showed antimycobacterial activity against Mycobacterium 

tuberculosis with MIC value of 26.5 µM, while compound 220 exhibited weak 

antimalarial activity against Plasmodium falciparum with IC50 values of 6.67 µM. In 

addition compounds 219-221 displayed cytotoxic activity against three human cancer 

cell lines, epidermoid carcinoma KB, breast adenocarcinoma MCF-7 and small cell 

lung cancer NCI-H187 with IC50 values in the range of 32.7-100.7 µM, as well as 

against Vero cell lines with IC50 in the range of 28.9-78.2 µM, respectively (Rajachan 

et al., 2016).   
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219 R = OAc, R1 = OH, R2 = H

220 R = R1 = OAc, R2 = H

221 R = OAc, R1 = R2 = OH

222 R = OAc, R1 = H, R2 = OH

217 218

 

Figure 41. Secondary metabolites isolated from Neosartorya spinosa KKU-1NK1 

(217-222) 

 

2.2.5 Neosartorya siamensis 

 

Seven new indole alkaloids including a new indoloazepinone derivative 

sartorymensin (223), two new quinazolinone derivatives: tryptoquivaline O (224), 3′-

(4-oxoquinazolin-3-yl) spiro [1H-indole-3, 5′-oxolane]-2, 2′-dione (225) and four new 

pyrazinoquinazolinone derivatives: epi-fiscalin A (226), epi-fiscalin C (227), 

neofiscalin A (228) and epi-neofiscalin A (229) (Figure 42) were isolated from the 

previously undescribed soil fungus N. siamensis KUFC 6349. Only compound 223 
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displayed a moderate in vitro growth inhibitory activity against the human U373 and 

Hs683 (glioblastoma), A549 (non-small cell lung cancer), MCF-7 (breast cancer) and 

SKMEL-28 (melanoma) cancer cell lines with IC50 44, 50, 39, 43 and 73 µM 

respectively (Buttachon et al., 2012). 

226 R1 = CH (CH3)2, R2 = R4 = H, R3 = Me

227 R1 = CH (CH3)2, R2 = H, R3 = R4 = Me

228 R1 = R3 = H, R2 = CH (CH3)2, R4 = Me

229 R1 = CH (CH3)2, R2 = R3 = H, R4 = Me

225

223 224

 

Figure 42. Structures of sartorymensin (223), tryptoquivaline O (224), 3′-(4-

oxoquinazolin-3-yl) spiro [1H-indole-3, 5′-oxolane]-2, 2′-dione (225), epi-fiscalin A 

(226), epi-fiscalin C (227), neofiscalin A (228) and epi-neofiscalin A (229) 
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New chevalone derivative, chevalone E (230), two new isocoumarin 

derivatives 6, 8-dihydroxy-3, 7-dimethylisocoumarin (231) and 5-hydroxy-8-methyl-

2H, 6H-pyrano [3,4-g]-chromen-2, 6-dione (232) and a new pyripyropene named 

pyripyropene S (233) (Figure 43) were isolated from the marine sponge-associated 

fungus Aspergillus similanesis KUFA 0013. Compounds 230-233 showed no 

antimicrobial activity against Gram-positive bacteria: Staphylococcus aureus ATCC 

25923, Bacillus subtilis ATCC 6633 and Gram-negative bacteria: Escherichia coli 

ATCC 25922, Pseudomonans aeruginosa ATCC 27853, as well as multidrug-

resistant isolates from the environment with MIC > 256 µg/mL. The compounds also 

did not inhibit an in vitro growth of the yeast Candida albicans ATCC 10231, at the 

highest concentration used. However, chevalone E (230) was found to exhibit 

potential synergy with the antibiotic oxacillin (OX) and ampicillin (AMP) against 

methicillin-resistant Staphylococcus aureus (MRSA) strain (Prompanya et al., 2014).  

Later on, the same authors Prompanya et al. (2015)  have described isolation 

of a new isocoumarin derivative, similanpyrone C (234), a new pyripyropene 

derivative, pyripyropene T (235) and a new cyclohexapeptide similanamide (236),  

(Figure 43) from the same fungus. Compounds 235 and 236 were evaluated for their 

antibacterial and cytotoxic activities. Similanamide (236) exhibited a weak in vitro 

growth inhibitory activity against three human cancer cell lines, MCF-7 (breast 

adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A373 (melanoma) with 

GI50 125 ± 0, 117.50 ± 3.55 and 115 ± 7.07, respectively. However, neither of them 

showed antibacterial activity against four reference strains Staphylococcus aureus  
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ATCC 25923, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922 and 

Pseudomonans aeruginosa ATCC 27853, as well as MRSA and VRE multidrug-

resistant isolates from the environment (MIC > 256 µg/mL). 

234

236

232

233 R = OAc

235 R = OH 

230 231

 

Figure 43. Structures of chevalone E (230), 6, 8-dihydroxy-3, 7-dimethylisocoumarin 

(231), 5-hydroxy-8-methyl-2H, 6H-pyrano [3,4-g]-chromen-2, 6-dione (232), 

pyripyropenes S and T (233 and 235), similanpyrone C (234) and similanamide (236) 
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2.2.6 Neosartorya glabra 

 

Three new bicyclic lactones, glabramycins A-C (237-239) (Figure 44) were 

isolated from a Neosartorya glabra strain, which was isolated from a soil sample 

collected from Candamia, Spain. Compound 239 exhibited strong antibacterial 

activity against Streptococcus pneumonia with MIC 2 µg/mL, modest antibiotic 

activity against Staphylococcus aureus and Bacillus subtilis with MIC 16 µg/mL but 

weak activity against Enterococcus faecalis with MIC > 32 µg/mL. Compounds 237 

and 238 showed weak activity against Streptococcus pneumonia with MIC values of 

32 and 64 µg/mL, respectively (Jayasuriya et al., 2009).  

239

237 238

 

Figure 44. Structures of glabramycins A (237), B (238) and C (239) 
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The culture of N. glabra KUFC 6311 produced the ardeemin analogs, 

sartoryglabrins A-C (240-242) (Figure 45). Compound 240 showed a strong growth 

inhibitory activity against MCF-7 (breast adenocarcinoma) cell line with GI50 27.0 ± 

0.57 µM and a weak activity against NCI-H460 (non-small cell lung cancer) cell line 

with GI50 84.0 ± 2.1 µM but inactive against the A375-C5 (melanoma cell line) at the 

highest concentration tested with GI50 > 150 µM. Compound 241 displayed a 

moderate growth inhibitory activity against MCF-7 cell line with GI50 53.0 ± 4.7 µM 

but inactive against both NCI-H460 and A-375-C5 cell lines with GI50 > 150 µM. 

Compound 242 displayed moderate growth inhibitory activity against MCF-7 cell line 

with GI50 44.0 ± 7.2 µM and weak inhibitory activity against NCI-H460 and A375-C5 

cells with GI50 82.3 ± 5.6 µM and 108.0 ± 7.7 µM respectively (Kijjoa et al., 2011)  

Liu et al. (2015) described isolation of two new polyketides, neosarphenols A-B 

(243-244) (Figure 45) from N. glabra CGMCC 32286 and both of the compounds 

were evaluated for their cytotoxic activity against human breast cancer cells MCF-7, 

MDA-MB-231 and human pancreatic cancer cell PANC-1. Only neosarphenol A 

(243) showed selective but moderate cytotoxic activity against PANC-1 cell line with 

IC50 values of 14.38 µM.  
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242

243

240 R = H

241 R = OH

244  

 

Figure 45. Structures of sartoryglabrins A-C (240-242) and neosarphenols A and B 

(243 and 244) 
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2.2.7 Neosartorya udagawae 

 

Four new quinazoline-containing indole alkaloids, neosartoryadins A and B (245 

and 246) and fiscalins E and F (247 and 248) (Figure 46) were isolated from the 

endophytic fungus Neosartorya udagawae HDN 13-313. Compounds 245-248 

showed no cytotoxic activity against human myeloid leukemia HL-60 cancer cell line 

with IC50 >50 µM. However, compounds 245 and 246 showed antiviral activity 

against influenza virus A (H1N1) with IC50 values of 66 and 58 µM, respectively (Yu 

et al., 2016).   

3

245 R = H

246 R = OH
247 R = OCH3, 3R�

248 R = OCH3, 3S  

 

Figure 46. Structures of neosartoryadins A and B (245 and 246) and fiscalins E and 

F (247 and 248) 
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2.2.8 Neosartorya tsunodae 

 

A new chevalone analog, sartorypyrone B (249) (Figure 47), was isolated 

from the culture of the marine sponge-associated fungus N. tsunodae KUFC 9213. 

Compound 249 showed strong growth inhibitory activity against breast 

adenocarcinoma (MCF-7), non-small cell lung cancer (NCI-H460) and melanoma 

(A375-C5) with GI50 17.8 ± 7.4 µM, 20.5 ± 2.4 µM, and 25.0 ± 4.4 µM, respectively 

(Eamvijarn et al., 2013).  

249  

Figure 47. Structure of sartorypyrone B (249) 

 

2.2.9 Neosartorya paulistensis 

 

A new aszonapyrone analog, sartorypyrone C (250) (Figure 48) was isolated 

from the culture of N. paulistensis KUFC 7897, which was isolated from the marine 

sponge Chondrilla australiensis, collected from the Gulf of Thailand. Compound 

250 displayed no antibacterial activity against four reference strains  
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Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6533, Escherichia 

coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853, as well as the 

environmental multidrug-resistant isolates (Gomes et al., 2014).  

250  

 

Figure 48. Structure of sartorypyrone C (250) 

 

2.3 Eurotium species 

 

The fungal genus Eurotium, which is the teleomorph of Aspergillus, has been 

proved to be a rich source of novel bioactive metabolites (Ishikawa et al., 1984; Li et 

al., 2009; Slack et al., 2009). The genus Eurotium is an important mycotoxin-

producer (Samson and Pitt, 2000), which produces a variety of metabolites, including 

meroterpenoids, sesquiterpene alkaloids, sesquiterpenes, benzaldehyde derivatives, 

phenolic compounds, diketopiperazines, hydraquinone pigments and anthraquinones 

(Al-Julaifi, 2003; Anke et al., 1980; Domsch et al., 1980; Gould and Raistrick, 1934;  
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Kanokmedhakul et al., 2011; Li et al., 2008a; Sáiz-Jiménez and Haider, 1975; Slack 

et al., 2009). 

Only few species of Eurotium have been investigated for their secondary 

metabolites and associated biological activities. The present review covers only new 

secondary metabolites isolated from some Eurotium species and their interesting 

biological activities. 

 

2.3.1 Eurotium cristatum 

 

Four new indole alkaloids cristatumins A-D (251-254) (Figure 49) were 

isolated from the marine-derived entophytic fungus Eurotium cristatum EN-220. 

Compound 251 displayed moderate antibacterial activity against Escherichia coli 

with the MIC 64 µg/mL, while compound 254 exhibited weak activity against 

Staphylococcus aureus with an inhibititon zone of 8 mm at 100 µg/disk. Compound 

252 showed moderate lethal activity against brine shrimp (Artemia salina) with the 

LD50 74.4 µg/mL (Du et al., 2012).  

Gomes et al., (2012) described isolation of eurocristatine, a new 

diketopiperazine dimer (255) (Figure 49) from the culture of the marine sponge-

associated fungus E. cristatum KUFC 7356. Compound 255 showed no in vitro 

growth inhibitory activity against breast adenocarcinoma (MCF-7), non-small lung  
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cancer (NCI-H-460) and melanoma (A375-C5) at the highest concentration tested 

(150 µM). Moreover they did not exhibit either antifungal activity against yeast 

Candida albicans, filamentous fungus Aspergillus fumigatus and dermatophyte 

Trichophyton rubrum or antibacterial activity against Staphylococcus aureus, 

Escherichia coli and Pseudomonas aeruginosa. 

255254253

252251

 

 

Figure 49. Structures of cristatumins A-D (251-254) and eurocristatine (255) 
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A new prenylated indole diketopiperazine alkaloid, cristatumin F (256) (Figure 

50) was isolated from the fungus E. cristatum, which was isolated from a sample of 

fuzhuan brick tea, and cultured on a solid-substrate fermentation. Compound 256 

exhibited a modest radical scavenging activity against DPPH (1, 1-diphenyl-2-

picrylhydrazyl) radical with an IC50 value of 53.6 µM and exhibited marginal cell 

prolification inhibition (20.6 % inhibition) against 3T3L1 pre-adipocytes at 200 µM 

(Zou et al., 2014).  

Marine alga-derived endophytic fungus E. cristatum EN-220 produced a new 

anthraquinone glycoside, 3-O-(α-D-ribofuranosyl) questinol (257) and a new 

orsellinic acid ester, cristatumside A (258) (Figure 50). Compounds 257 and 258 

showed neither antibacterial activity against Staphylococcus aureus and Escherichia 

coli, nor antifungal activities against Physalospora obtuse, Alternaria brassicae, 

Valsa mali, Alternaria solania and Sclerotinia miyabeana. They did not exhibit any 

lethality activity against brine shrimp Artemia salina (Du et al., 2014). 

Four new indolediketopiperazine derivatives, N-(4′-hydroxyprenyl)-cyclo 

(alanyltryptophyl) (259), isovariecolorin I (260), 30-hydroxyechinulin (261) and 29-

hydroxyechinulin (262) (Figure 50) were isolated from the endophytic fungus E. 

cristatum EN-220 which was isolated from the marine alga Sargassum thunbergii. 

Compound 260 showed lethal activity against brine shrimp Artemia salina with  
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LD50 19.4 µg/mL, while compounds 261 and 262 exhibited weak lethal activity with 

LD50 138.1 and 140.6 µg/mL. Compound 260 not only displayed weak nematicidal 

activity against Panagrellus redivivus (nematode) with LD50 110.3 µg/mL but also 

showed a moderate antioxidative activity against DPPH with IC50 20.6 µg/mL. 

However, compounds 259-262 exhibited no antimicrobial activity against six 

pathogenic bacteria Escherichia coli, Staphylococcus aureus, Bacillus subtilis, 

Micrococcus luteus, Salmonella enterica and Bacillus pumilus and nine plant-

pathogenic fungi Alternaria brassicae, Valsa mali, Physalospora obtusa, Alternaria 

solania, Sclerotinia miyabeana, Magnaporthe grisea, Fusarium oxysporum, 

Botryosphaeria dothidea and Colletotrichum gloeosporioides (Du et al., 2017). 
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256

261 R1 = CH3, R2 = CH2OH

262 R1 = CH2OH, R2 = CH3

260

259

257

258

 

Figure 50. Structures of cristatumin F (256), 3-O-(α-D-ribofuranosyl) questinol (257), 

cristatumside A (258), N-(4′-hydroxyprenyl)-cyclo (alanyltryptophyl) (259), 

isovariecolorin I (260), 30-hydroxyechinulin (261) and 29-hydroxyechinulin (262) 
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2.3.2 Eurotium rubrum 

 

Four new benzaldehyde derivatives, eurotirumin (263), 2-(2′, 3-epoxy-1′-

heptenyl)-6-hydroxyl-5-(3′′-methyl-2′′-butenyl) benzaldehyde (264), 2-(1′, 5′-

heptadienyl)-3, 6-dihydroxy-5-(3′′-methyl-2′′-butenyl) benzaldehyde (265) and (E)-6-

hydroxy-7-(3-methyl-2-butenyl)-2-(3-oxobut-1-enyl) chroman-5-carbaldehyde (266) 

(Figure 51) were isolated from the liquid fermentation cultures of an endophytic 

fungus Eurotium rubrum, which was isolated from the inner tissue of stems of the 

mangrove plant Hibiscus tiliaceus (Li et al., 2008a). None of the compounds showed 

cytotoxic activity against any of the four cell lines: mouse leukemai P-388, human 

leukemia K-562, human promyelocytic leukemia HL-60 and human pulmonary 

epithelial A-549 with IC50 > 10 µg/mL (Li et al., 2008a). Later on, the same authors (Li 

et al., 2008b) have described isolation of two new dioxopiperazine derivatives, 

dehydrovariecolorin L (267) and dehydroechinulin (268) from the same fungus. 

Compounds 267 and 268 showed neither 1, 1-diphenyl-2-picrylhydrazyl (DPPH) 

radical-scavenging activity (IC50 > 160 µM) nor cytotoxic activity against three cancer 

cell lines: P-388, HL-60 and A-549. 
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267

266265

263 264

268  

 

Figure 51. Secondary metabolites isolated form Eurotium rubrum (263-268) 
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Marine mangrove plant-derived endophytic fungus Eurotium rubrum produced 

four new metabolites including bisdihydroanthracenone derivative, eurorubrin (269), 

two seco-anthraquinone derivatives, 2-O-methyl-9-dehydroxyeurotinone (270), 2-O-

methyl-4-O-(α-D-ribofuranosyl)-9-dehydroxyeurotinone (271) and anthraquinone 

glycoside, 3-O-(α-D-ribofuranosyl)-questin (272) (Figure 52). Compound 269 showed 

strong DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging activity with IC50 

44.0 µM. However, compounds 270, 271 and 272 showed weak or moderate DPPH 

radical scavenging activity (Li et al., 2009). A new spirocyclic diketopiperazine 

alkaloid, 7-O-methylvariecolortide A (273) was also isolated from the marine 

mangrove-derived endophytic fungus E. rubrum which was isolated from the inner 

tissue of the stems of the mangrove plant Hibiscus tiliaceus (Li et al., 2010a).  

 

 

 

 

 

 

 



CHAPTER II. CHEMISTRY OF THE GENERA TALAROMYCES, 

NEOSARTORYA AND EUROTIUM 

   

 

107 
 

 

272 R = α-D-ribofuranosyl

269 273

270 R1 = R2 = H
271 R1 = α-D-ribofuranosyl  

 

Figure 52. Structures of eurorubrin (269), 2-O-methyl-9-dehydroxyeurotinone (270), 

2-O-methyl-4-O-(α-D-ribofuranosyl)-9-dehydroxyeurotinone (271), 3-O-(α-D-

ribofuranosyl)-questin (272) and 7-O-methylvariecolortide A (273) 
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New diketopiperazine alkaloid, 12-demethyl-12-oxo-eurotechinulin B (274) 

and anthraquinone derivative, 9-dehydroxyeurotinone (275) (Figure 53) were 

isolated from an endophytic fungus E. rubrum. Compound 274 displayed cytotoxic 

activity against human hepatoma cell line SMMC-7721 with the IC50 30 µg/mL, while 

compound 275 showed weak antibacterial activity against Escherichia coli with an 

inhibition zone of 7.0 mm at 100 µg/disk and also showed weak cytotoxic activity 

against human-cholangiocarcinoma cell line SW1990 with IC50 25 µg/mL (Yan et al., 

2012).  

Two new sulfur-containing benzofuran derivatives eurothiocin A and B (276 

and 277) (Figure 53) were isolated from the soft coral-derived fungus E. rubrum SH-

823. Compounds 276-277 exhibited more potent inhibitory effects against α-

glucosidase activity with IC50 17.1 and 42.6 µM than the α-glucosidase inhibitor 

acarbose with IC50 376.7 µM (Liu et al., 2014b).  
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276

275274

277  

 

Figure 53. Structures of 12-demethyl-12-oxo-eurotechinulin B (274), 9-

dehydroxyeurotinone (275) and eurothiocins A and B (276 and 277)  

The strain E. rubrum MA-150 which was isolated form the mangrove-derived 

rhizospheric soil, collected from the Andaman Sea coastline, Thailand produced 

three new indolediketopiperazine alkaloids, rubrumazines A-C (278-280). 

Compounds 278 and 280 displayed moderate activity in brine shrimp lethal activity 

assay against Artemia salina with LD50 29.8 and 16.5 µM, while compound 279 

showed potent lethal activity with LD50 2.4 µM. However, compounds 278-280  
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displayed no antibacterial activity against Escherichia coli, Staphylococcus aureus, 

Micrococcus luteus, Vibrio alginolyticus and Vibro anguillarum (Meng et al., 2015).  

In 2016, Meng et al. (2016) described isolation of a chiral 2-benzofuran-1 

(3H)-one derivative (±)-europhenol A (281) (Figure 54) from the same fungus.  

Compound 281 exhibited potent DPPH radical scavenging activity with IC50 1.23 

µg/mL but weak antibacterial activity against Vibrio anguillarum with MIC 32 µg/mL. 

Recently, Kamauchi et al. (2016) isolated a new dikeopiperazine, isoechinulin D 

(282) (Figure 54) from the marine-derived fungus Eurotium rubrum MPUC136, which 

was cultured on the wheat medium. Compound 282 was found to inhibit 

melanogenesis using theophylline-stimulated B16 melanoma 4A5 cells with IC50 60 

µM. 
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[(-CE)227 nm]-(R) [(+CE)227 nm]-(S)

282

278 R1 = H, R2 = 

280

281

279 R1 = H, R2 = 

 

 

Figure 54. Structures of rubrumazines A-C (278-280), (±)-europhenol A (281) and 

isoechinulin D (282)   
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2.3.3 Eurotium repens 

 

Two new benzyl derivatives, (E)-2-(hept-1-enyl)-3-(hydroxymethyl)-5-(3-

methylbut-2-enyl) benzene-1, 4-diol (283) and (E)-4-(hept-1-enyl)-7-(3-methylbut-2-

enyl)-2, 3-dihydrobenzofuran-2, 5-diol (284) (Figure 55), were isolated from the 

bioassay-guided fractionation of the fungus Eurotium repens. Compounds 283 and 

284 showed good binding affinity for human opioid with IC50 5.4 and 32.4 µM (Gao et 

al., 2011).   

Compound 283 showed both active antibacterial activity against methicillin-

resistant Staphylococcus aureus (MRSA) with IC50 11.97 µg/mL and antifungal 

activity against Candida glabrata with IC50 7.17 µg/mL. Moreover, compound 283 

also exhibited antimalarial activity against both chloroquine-sensitive and 

chloroquine-resistant strains of Plasmodium falciparum with IC50 3.0 and 2.8 µg/mL 

as well as active antileishmanial activity against Leishmania donovani promastigotes 

with IC50 19 µg/mL. However compounds 283 did not show any cytotoxic activity 

against the mammalian kidney fibroblasts VERO cells (Gao et al., 2012).  
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283 284  

Figure 55. Structures of (E)-2-(hept-1-enyl)-3-(hydroxymethyl)-5-(3-methylbut-2-

enyl) benzene-1, 4-diol (283) and (E)-4-(hept-1-enyl)-7-(3-methylbut-2-enyl)-2, 3-

dihydrobenzofuran-2, 5-diol (284) 

 

2.3.4 Eurotium amstelodami  

 

Five new prenylated indole metabolites, including neoechinulins A-E (285-

289), (Figure 56) were isolated from the mycelium of Aspergillus amstelodami 

(Dossena et al., 1974; Dossena et al., 1975; Marchelli et al., 1977). Parshikov et al. 

(2006) described isolation of 5β-hydroxyartemisinin (290), a biotransformation 

product of artemisinin by Eurotium amstelodami. Later on, Yang et al. (2014) 

reported isolation of the anthraquinone derivative, questinol (291) (Figure 56) from 

the marine-derived fungus E. amstelodami. Compound 291 showed no cytotoxic 

activity against lipopolysaccharide (LPS)-stimulated macrophage cell line (RAW 

264.7) at the concentration up to 200 µM. Additionally, compound 291 also 

significantly inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production in a  
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concentration-dependent manner in RAW 264.7 cells, but showed a weak effect on 

the down-regulation of cyclooxygenase (COX-2) at the concentration of 200 µM. 

Interestingly, compound 291 significantly inhibited the production of pro-inflammatory 

cytokines, tumor necrosis factor-α (TNF-α), interleukin (IL-1β) and IL-6 production in 

RAW 264.7 cells (Yang et al., 2014). 

286 R1 = H, R2 = CH2�

287 R1 =                    , R2 = CH2

289 R1 = H, R2 = O 

291290

285 R = H

288 R =  

 

Figure 56. Structures of neoechinulins A-E (285-289), 5β-hydroxyartemisinin (290), 

questinol (291) 
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2.3.5 Eurotium herbariorum 

 

A new pyrrolidinoindoline diketopiperazine dimer, cristatumin E (292) (Figure 57) 

was isolated from the fermentation broth of the algicolous fungus Eurotium 

herbariorum HT-2. Compound 292 displayed moderate cytotoxic activity against 

human leukemic cell line K562 with IC50 8.3 µM but inactive against breast cancer 

cell line MCF-7 with IC50 > 50 µM. This compound also exhibited weak antibacterial 

activity against Bacillus aerogenes and Escherichia coli, both with MIC values 44.0 

µM (Li et al., 2013).   

292  

 

Figure 57. Structure of cristatumin E (292) 
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2.3.6 Eurotium chevalieri 

 

Five new meroterpenoids, chevalones A-D (293-296), aszonapyrone B  (297) and 

a new sequiterpene alkaloid, eurochevalierine (298) (Figure 58), were isolated from 

Eurotium chevalieri, which was collected from rhizosphere soil of para rubber tree at 

Surathari Province, Thailand (Kanokmedhakul et al., 2011). 

Compounds 296 and 298 exhibited antimalarial activity against Plasmodium 

falciparum with IC50 3.1 and 3.4 µg/mL respectively, while compound 295 and 298 

showed antimycobacterial activity against Mycobacterium tuberculosis with IC50 6.3 

and 50.0 µg/mL respectively. Compounds 295, 296 and 298 also showed cytotoxic 

activity against human breast cancer BC1 cell lines with IC50 of 8.7, 7.8 and 5.9 

µg/mL, whereas compound 294 and 298 showed cytotoxicity against two cancer cell 

lines: human epidermoid carcinoma KB and small cell lung cancer NCI-H187. While 

the IC50 values of 294 against KB and NCI-H187 were 2.9 and 9.8 µg/mL, those for 

298 were 3.9 and 9.2 µg/mL, respectively (Kanokmedhakul et al., 2011).   
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293 294
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Figure 58. Structures of chevalones A-D (293-296), aszonapyrone B (297) and 

eurochevalierine (298) 
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3.1 Chemical Investigation of Marine-Derived Fungi and Mangrove-Derived 

Fungus 

 

Chromatographic fractionation, followed by several purification procedures, of 

the crude ethyl acetate of the marine-derived fungus Talaromyces helicus KUFA 

0063, resulted in isolation of four previously reported secondary metabolites: palmitin 

(TH 1), acetyl ergosterol 5, 8-endoperoxide (TH 2), glaucanic acid (TH 3) and 

glauconic acid (TH 4) (Figure 59). 

11

TH 1 TH 2

TH 3 TH 4  

 

Figure 59. Secondary metabolites isolated from Talaromyces helicus KUFA 0063 
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Two marine-derived fungi Neosartorya species were investigated namely, the 

marine alga-assiociated fungus Neosartorya takakii KUFC 7898 and the marine 

sponge-associated fungus Neosartorya glabra KUFA 0702. 

Chromatographic separation of the crude ethyl acetate extract of the marine-

derived fungus N. takakii KUFC 7898, resulted in the isolation of nine known 

compounds: 6-hydroxymellein (NTK 1), aszonalenin (NTK 2), acetylaszonalenin 

(NTK 3), 3′-(4-oxoquinazolin-3-yl) spiro [1H-indole-3, 5′-oxolane]-2, 2′-dione (NTK 

5), tryptoquivaline F (NTK 6), tryptoquivaline H (NTK 7), tryptoquivaline L (NTK 8), 

chevalone B (NTK 10), aszonapyrone A (NTK 11), together with three new 

compounds including takakiamide (NTK 4), tryptoquivaline U (NTK 9) and a new 

meroditerpene sartorenol (NTK 12) (Figure 60). 

Three new secondary metabolites including two new cyclotetrapeptides, 

sartoryglabramide A (NG 8) and sartoryglabramide B (NG 9), and a new analog of 

fellutanine A: fellutanine A 2′, 3′-epoxide (NG 11), were isolated together with eight 

known compounds including ergosta-4, 6, 8 (14), 22-tetraen-3-one (NG 1), 

ergosterol 5, 8-endoperoxide (NG 2), helvolic acid (NG 3), aszonalenin (NG 4), (3R)-

3-(1H-indol-3-ylmethyl)-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (NG 5), 

(11aS)-2,3-dihydro-1H-pyrrolo [2,1-c] [1,4] benzodiazepine-5, 11 (10aH, 11aH)-dione 

(NG 6), takakiamide (NG 7) and fellutanine A (NG 10) from the ethyl acetate extract 

of the culture of the marine sponge-associated fungus N. glabra KUFA 0702 (Figure 

61). 
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NTK 2 : R = H

NTK 3 : R = OAc

NTK 6 : R1 = H, R2
 = H

NTK 7 : R1 = OH, R2 = H

NTK 8 : R1 = OH, R2 = CH3�

NTK 9 : R1 = H, R2 = CH3

NTK 5

NTK 12

NTK 10

NTK 4NTK 1

NTK 11

 

Figure 60. Secondary metabolites isolated from Neosartorya takakii KUFC 7898 
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Figure 61. Secondary metabolites isolated from Neosartorya glabra KUFA 0702 
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The ethyl acetate extract from the culture of the endophytic fungus Eurotium 

chevalieri KUFA 0006 furnished five new metabolites, including a new anthraquinone 

derivative acetylquestinol (EC 7), two prenylated indole 3-carbaldehyde derivatives 

2-(2-methyl-3-en-2yl)-1H-indole-3-carbaldehyde (EC 8), (2, 2-dimethylcyclopropyl)-

1H-indole-3-carbaldehyde (EC 9), an anthranilic acid derivative 2-(2, 2-dimethylbut-

3-enoyl) amino-benzoic acid (EC 10) and an isochromone derivative: 6, 8-dihydroxy-

3-(2R-hydroxypropyl)-7-methyl-1H-isochromen-1-one (EC 11), together with eleven 

known metabolites: palmitic acid (EC 1), ergosterol 5, 8-endoperoxide (EC 2), 

emodin (EC 3), physcion (EC 4), questin (EC 5), questinol (EC 6), (11S, 14R)-3-(1H-

indol-3-ylmethyl)-6-isopropyl-2,5-piperazinedione (EC 12), preechinulin (EC 13), 

neoechinulin E (EC 14), echinulin (EC 15) and eurocristatine (EC 16) (Figure 62). 
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EC 13 : R1 = R2 = R3 = CH3�

EC 14 : R1 = R2 = H, R3 = O

EC 15 : R1 = R2 =                    , R3 = CH3

10

EC 2

EC 3 : R1 = CH3, R2 = R3 = R4 = H

EC 4 : R1 = CH3, R2 = R4 = H, R3 = CH3

EC 5 : R1 = CH3, R2 = R3 = H, R4 = CH3

EC 6 : R1 = CH2OH, R2 = R3 = H, R4 = CH3

EC 7 : R1 = CH2OAc, R2 = R3 = H, R4 = CH3
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EC 12
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Figure 62. Secondary metabolites isolated from Eurotium chevalieri KUFA 0006 
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3.1.1 Structure Elucidation of Fatty Acids 

 

3.1.1.1. Palmitic acid (EC 1) 

 

EC 1 was isolated as a white solid (mp, 62-63 ºC). The 1H and 13C NMR 

spectral feature of EC 1 revealed that it was a fatty acid.  

The 13C NMR, DEPTs and HSQC spectra (Table 2) revealed the signals of 

one carboxyl carbonyl at δC 180.6, the methylene carbons (δC 34.1, 31.9, 24.7 and 

22.7), a cluster of peaks of methylene carbons (δC 29.7, 29.6, 29.4, 29.3 and 29.1) 

and one methyl (δC 14.1) carbons.  

The 1H NMR spectrum (Table 2) showed, in addition to a board singlet of the 

hydroxyl proton at δH 10.81 and a triplet of the methyl protons at δH 0.89 (J = 6.7 Hz), 

a triplet of methylene protons at δH 2.35 (J = 6.7 Hz), a multiplet of methylene 

protons at δH 1.64 and a broad singlet of several methylene protons at δH 1.26. 

Since the (+)-HRESIMS of EC 1 exhibited the [M+H]+ peak at m/z 257.2484 

(calculated 257.2481), corresponding to C16H33O2, the molecular formula of EC 1 

was C16H32O2. Combining the molecular formula and the NMR data, EC 1 was 

identified as palmitic acid (Figure 63).  
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Table 2. 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) assignment for EC 1 

Position δC, type δH, (J in Hz) 

1 180.6, CO - 
2 34.1, CH2 2.35, t (7.5) 
3 24.7, CH2 1.64, m 
4-8 29.7, CH2 1.26, m 
9 29.6, CH2 1.26, m 
10 29.4, CH2 1.26, m 
11 29.3, CH2 1.26, m 
12 29.1, CH2 1.26, m 
13 -, CH2 1.26, m 
14 31.9, CH2 1.26, m 
15 22.7, CH2 1.26, m 
16 14.1, CH3 0.89, t (6.7) 
OH - 10. 81, brs 

 

Palmitic acid has been previously reported from several sources including 

from the root bark of plant Terminalia glaucescens (Barton et al., 1965b; Bulama et 

al., 2014), brown alga Sargussum muticum (Bazes et al., 2009) and marine sponge-

associated fungus Talaromyces stipitatus KUFA 0207, which was collected from 

coral reef at Samaesarn Island in the Gulf of Thailand (Noinart et al., 2017). 

12
314

15

16

4-13  

Figure 63. Structure of palmitic acid (EC 1) 
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3.1.1.2. Palmitin (TH 1) 

 

TH 1 was isolated as a white solid (mp, 65-66 ºC) and the 13C NMR, DEPTs 

and HSQC spectra (Table 3) showed the signals of one ester carbonyl (δC 174.4), 

twelve methylene sp3 (δC 65.1, 63.4, 34.2, 31.9, 29.7, 29.6, 29.5, 29.4, 29.3, 29.1, 

24.9 and 22.7), one oxymethine sp3 (δC 70.2) and one methyl (δC 14.1) carbons.  

The 1H NMR spectrum, in combination with HSQC spectrum, (Table 3) 

showed the presence of three double doublets (one proton each) at δH 4.13 (J = 5.5, 

1.9 Hz), δH 3.67 (J = 11.6, 3.8 Hz), δH 3.56 (J = 11.6, 6.0 Hz), a triplet at δH 2.32 (J = 

7.4 Hz), a broad singlet of several protons at δH 1.23, a multiplet of one methine sp3 

proton at δH 3.90 and triplet of one methyl protons at δH 0.86 (J = 6.4 Hz). 
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Table 3. 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) and HMBC assignment 

for TH 1 

Position δC, type δH, (J in Hz) COSY HMBC 

1a 
  b 

63.4, CH2 3.67, dd (11.6, 3.8) 
3.56, dd (11.6, 6.0) 

H-2 
- 

C-2, 3 
- 

2 70.2, CH 3.90, m H-1, 3 C-3 
3 65.1, CH2 4.13, dd (5.5, 1.9) H-2 C-1, 1′, 2 
1′ 174.4, CO - - - 
2′ 34.2, CH2 2.32, t (7.4) H-3′ C-1′, 3′ 
3′ 24.9, CH2 1.58, m H-2′ - 
4′ 31.9, CH2 1.23, brs - - 
5′ 29.7, CH2 1.23, brs - - 
6′ 29.6, CH2 1.23, brs - - 
7′ 29.5, CH2 1.23, brs - - 
8′ 29.4, CH2 1.23, brs - - 
9′ 29.3, CH2 1.23, brs - - 
10′ 29.1, CH2 1.23, brs - - 
11′ -, CH2 1.23, brs - - 
12′ -, CH2 1.23, brs - - 
13′ -, CH2 1.23, brs - - 
14′ -, CH2 1.23, brs - - 
15′ 22.7, CH2 1.23, brs H-16′ - 
16′ 14.1, CH3 0.86, t (6.4) H-15′ C-15′ 

 

The COSY spectrum (Table 3) showed cross peaks from the multiplet at δH 

3.90 (δC 70.2) to the doublets at δH 4.13 (J = 5.5, 1.9 Hz; δC 65.1), 3.56 (J = 11.6, 6.0 

Hz; δC 63.4) and 3.67 (J = 11.6, 3.8 Hz; δC 63.4), in addition to cross peaks between 

the doublets at δH 3.56 (J = 11.6, 6.0 Hz) and 3.67 (J = 11.6, 3.8 Hz). Moreover, the  
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COSY spectrum also showed correlations from the methyl triplet at δH 0.86 (J = 6.4 

Hz; δC 14.1) to the brs at δH 1.23 (δC 22.7) as well as from a methylene triplet at δH 

2.32 (J = 7.4 Hz; δC 34.2) to a multiplet at δH 1.58 (δC 24.9). The 1H and 13C NMR 

spectral features of TH 1 revealed that it contained a fatty acid moiety.  

22.7
14.1

24.9
34.2

174.4

70.2

63.4

65.1

11

1.23 brs

0.86 t (6.4)

1.58 m

2.32 t (7.4)3.90 m

4.13 dd (5.5, 1.9)

3.67 dd (11.6, 3.8)

3.56 dd (11.6, 6.0)

 

That TH 1 was 2-alkanoylglycerol was evidenced by the HMBC correlations 

from the doublet doublet at δH 3.67 (J = 11.6, 3.8 Hz; δC 63.4, H-1a) to the 

oxymethine sp3 carbon at δC 70.2 (C-2) and oxymethylene carbon at δC 65.1 (C-3), 

from the multiplet at δH 3.90 (δC 70.2, H-2) to the methylene carbon at δC 65.1 (C-3), 

from the doublet doublet at δH 4.13 (J = 5.5, 1.9 Hz; δC 65.1, H-3) to the 

oxymethylene carbon at δC 63.4 (C-1), ester carbonyl carbon at δC 174.4 (C-1′) and 

methine carbon at δC 70.2 (C-2), from the triplet at δH 2.32 (J = 7.4 Hz; δC 34.2, H-2′) 

to the ester carbonyl carbon at δC 174.4 (C-1′) and methylene carbon at δC 24.9 (C-

3′), from the triplet at δH 0.86 (J = 6.4 Hz; δC 14.1, H-16′) to the methylene carbon at 

δC 22.7 (C-15′). 
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1.23 brs

63.4

70.2
65.1

174.4
24.9

22.7
14.1

11

1.23 brs

0.86 t (6.4)

1.58 m

2.32 t (7.4)

3.90 m

4.13 dd (5.5, 1.9)

3.67 dd (11.6, 3.8)

3.56 dd (11.6, 6.0)

 

Since the (+)-HRESIMS exhibited the [M+H]+ at m/z 331.2814 (calculated 

331.2848), the molecular formula of TH 1 was identified as C19H38O4. Therefore, TH 

1 was established as 2-palmitoylglycerol which is commonly known as palmitin 

(Figure 64). Palmitin which has been isolated from several natural sources including 

the mangrove-endophytic fungus Penicillium thomi, which was isolated from the root 

of Bruguiera gymnorrhia (Chen et al., 2007).  

1

23 1' 2' 3'
11

15'
16'

 

 

Figure 64. Structure of palmitin (TH 1) 
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3.1.2 Structure Elucidation of Glaucanic acid and Glauconic acid  

 

3.1.2.1. Glaucanic acid (TH 3) 

 

TH 3 was isolated as a white solid (mp, 188-189 ºC) and its molecular formula 

C18H20O6 was established on the basis of the (+)-HRESIMS m/z 333.1311 [M+H]+ 

(calculated 333.1338), indicating nine degrees of unsaturation.  

The 13C NMR, DEPTs and HSQC spectra (Table 4) revealed the presence of 

four ester carbonyls (δC 173.8, 165.3, 164.5 and 163.7), three quaternary sp2 (δC 

148.4, 140.5 and 131.9), one methine sp2 (δC 150.1), one quaternary sp3 (δC 48.6), 

two methine sp2 (δC 48.1 and 43.9), four methylene sp3 (δC 31.7, 28.4, 26.0 and 

21.4) and three methyl (δC 20.3, 12.9 and 12.4) groups. 

The 1H NMR spectrum, in combination with HSQC spectrum, exhibited 

besides, a doublet at δH 6.99 (J = 12.1 Hz) of one olefinic proton (δC 150.1) and two 

doublets of geminally coupled protons at δH 3.27 (J = 13.5 Hz) and 2.67 (J = 13.4 

Hz) (δC 31.7), two methyl triplets at δH 1.07 (J = 7.1 Hz, δC 12.4) and 0.81 (J = 7.4 

Hz, δC 12.9), a methyl singlet at δH 1.49 (δC 20.3), a doublet doublet at δH 2.87 (J = 

11.9, 2.8 Hz, δC 28.4), and multiplets at δH 2.10 (δC 48.1), 2.08 (δC 43.9), 2.00 (δC 

28.4), 1.85 (δC 21.4), 1.65 (δC 26.0), 1.52 (δC 26.0), 1.18 (δC 21.4).   
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Table 4. 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) and HMBC assignment 

for TH 3 

Position δC, type δH, (J in Hz) COSY HMBC 

1 140.5, C - - - 
2 148.4, C - - - 
3a 
  b 

31.7, CH2 3.27, d (13.5) 
2.67, d (13.4) 

H-3a 
H-3b 

C-1, 2, 4, 5, 12, 13 
- 

4 48.6, C - - - 
5 131.9, C - - - 
6 150.1, CH 6.99, d (12.1) H-7 C-4, 8, 15 
7 43.9, CH 2.08, m H-6, 8 - 
8 48.1, CH 2.10, m H-7, 9a, b - 
9a 
  b 

28.4, CH2 2.87, dd (11.9, 2.8) 
2.00, m 

H-8, 9b 
H-9a 

- 
- 

10 164.5, CO - - - 
12 165.3, CO - - - 
13 173.8, CO - - - 
15 163.7, CO - - - 
16a 
    b 

26.0, CH2 1.65, m 

1.52, m 
H-15b, 17 
H-15a, 17 

- 
- 

17 12.9, CH3 0.81, t (7.4) H-16a, b C-7, 16 
18a 
    b 

21.4, CH2 1.85, m 

1.18, m 
H-18b, 19 
H-18a, 19 

- 
- 

19 12.4, CH3 1.07, t (7.1) H-18a, b C-8, 18 
20 20.3, CH3 1.49, s - C-3, 4, 5, 13 
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The COSY spectrum exhibited correlations from the olefin proton at δH 6.99 (J 

= 12.1 Hz, δC 150.1, H-6) to the multiplet at δH 2.08 (δC 43.9, H-7), from the doublet 

doublet at δH 2.87 (J = 11.9, 2.8 Hz, δC 28.4, H-9a) to the multiplets at δH 2.10 (δC 

48.1, H-8) and δH 2.00 (δC 28.4, H-9b). The multiplet at δH 2.10 (δC 48.1, H-8) also 

gave cross peaks to H-7 and H-9.  

Similarly, the multiplets at δH1.65 (δC 26.0, H-16a) and 1.52 (δC 26.0, H-16b) 

to the triplet at δH 0.81 (J = 7.4 Hz, δC 12.9, H-17), from the multiplets at δH 1.85 (δC 

21.4, H-18a) and 1.18 (δC 21.4, H-18b) to the triplet at δH 1.07 (J = 7.1 Hz, δC 12.4, 

H-19). The COSY correlations confirmed the coupling system of CH-6-CH-7, CH2-16 

and CH3-17 and CH2-9-CH-8, CH2-18 and CH3-19. That C-6 was connected to C-8 

was corroborated by the HMBC cross peaks from H-6 at δH 6.99, d (J = 12.1 Hz; δC 

150.1) to the C-4 (δC 48.6) and C-8 (δC 48.1). Moreover, H-3 at δH 3.27, d (J = 13.5 

Hz) also showed HMBC cross peaks to the C-4 (δC 48.6) and C-5 (δC 131.9).  

That the methyl group at δH 1.49, s (δC 20.3) was on C-4 was evidenced by 

the HMBC cross peaks of the methyl singlet at δH 1.49 (δC 20.3, H-20) to the carbon 

at δC 48.6 (C-4). Moreover, this methyl signal also gave cross peaks to C-5 (δC 

131.9) and methylene carbon at δC 31.7 (C-3). In turn, the methylene proton at δH 

3.27, d (J = 13.5 Hz) exhibited cross peaks to the carbonyls at δC 173.8 (C-13), 

165.3 (C-12) as well as to C-4 and C-5. Taking these HMBC correlations into 

account, the coupling system of C-3 was connected to C-1 was substantiated by the 
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HMBC correlations from H-3 to C-1 (δC 140.5) and C-2 (δC 148.4), thus forming a 

cyclononene portion. 

That the dihydrofuran-2, 5-dione was on C-4 and C-5, and the furan-2, 5-

dione was on C-1 and C-2 was substantiated by the HMBC cross peaks (Table 4), 

from H-6 (δH 6.99, d, J = 12.1 Hz) to C-15 (δC 163.7), from Me-20 (δH 1.49, s) to C-

13 (δC 173.8), as well as from H-3 (δH 3.27, d, J = 13.5 Hz) to C-13 (δC 173.8) and C-

12 (δC 165.3).  

28.4

2.87 dd (11.9, 2.8)

2.00 m

2.10 m21.4

2.08 m
43.9

26.0
0.81 t ( 7.4)

1.65 m�

1.52 m

1.85 m1.18 m

1.07 t (7.1)

20.3
1.49 s140.5

148.4

48.6

131.9

165.3

173.8

31.7

150.1

48.1

163.7

6.99 d (12.1)

3.27 d (13.5)  

Literature search revealed that the structure of TH 3 corresponded to that of 

glaucanic acid (Figure 65). Since TH 3 has three stereogenic centers, i.e. C-4, C-7 

and C-8, it was necessary to establish the absolute configurations of these carbons. 

Comparison of 1H and 13C chemical shift values of H-4/C-4, H-7/C-7 and H-8/C-8 

and the optical rotation of TH 3 ([α]20
D  = +185) were agreement with those of 

glaucanic acid, whose absolute configuration of 4R, 7R, 8S respectively. It was  
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concluded that they are the same compound. Glaucanic acid has been previously 

isolated by Wijkman in 1931 from a fungus Penicillium glaucum (Wijkman, 1931) and 

in 1934 by Yuill from a Penicillium purpurogenum species (Yuill, 1934), as well as 

from the marine-sponge associated fungus Talaromyces trachyspermus KUFA 0021 

(Kuml et al., 2014).  
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Figure 65. Structure of glaucanic acid (TH 3) 

 

3.1.2.2. Glauconic acid (TH 4) 

 

TH 4 was isolated as a white solid (mp, 199-200 ºC) and its molecular formula 

C18H20O7 was established on the basis of the (+) HRESIMS m/z 349.1293 [M+H]+ 

(calculated 349.1287), indicating nine degrees of unsaturation. The general feature 

of the 1H and 13C NMR spectra of TH 4 closely resembled that of TH 3.  
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The 13C NMR, DEPTs and HSQC spectra (Table 5) revealed the presence of 

four ester carbonyls (δC 173.9, 164.6, 164.4 and 163.3), three quaternary sp2 (δC 

146.1, 143.3 and 129.3), one methine sp2 (δC 150.2), one quaternary sp3 (δC 47.4), 

one oxymethine sp3 (δC 65.6), two methine sp3 (δC 53.0 and 37.7), three methylene 

sp3 (δC 31.8, 27.7 and 19.6) and three methyl (δC 26.5, 13.0 and 12.5) carbons. 

The 1H NMR spectrum (Table 5), in combination with HSQC spectrum 

exhibited besides, a doublet at δH 6.89 (J = 11.8 Hz) of olefinic proton (δC 150.2) and 

singlet at δH 5.11 (δC 65.6) of an oxymethine proton,  two doublets of the geminally 

coupled methylene protons at δH 3.77 (J = 13.0 Hz, δC 31.8) and 3.47 (J = 12.8 Hz, 

δC 31.8), triplets of methyl protons at δH 1.16 (J = 7.4 Hz, δC 13.0), a broad signal of 

methyl proton at δH 0.92 (δC 12.5), a methyl singlet at δH 1.72 (δC 26.5), two 

multiplets at δH 1.66 (δC 27.7, 19.6) and broad singlet at δH 2.12 (δC 53.0) as well as 

a broad singal of one proton at δH 3.06 (δC 37.7). 
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Table 5. 1H and 13C NMR (CDCl3, 500.13 and 125.77 MHz) and HMBC assignment 

for TH 4 

Position δC, type δH, (J in Hz) COSY HMBC 

1 143.3, C - - - 
2 146.1, C - - - 
3a 
  b 

31.8, CH2 3.77, d (13.0) 
3.47, d (12.8) 

H-3b 
H-3a 

C-1, 4, 5 
C-1, 13 

4 47.4, C - - - 
5 129.3, C - - - 
6 150.2, CH 6.89, d (11.8) - C-15 
7 37.7, CH 3.06, brs - C-16, 17 
8 53.0, CH 2.12, brs H-9 - 
9 65.6, CH 5.11, s H-8 - 
10 164.4, CO - - - 
12 164.6, CO - - - 
13 173.9, CO - - - 
15 163.3, CO - - - 
16 27.7, CH2 1.66, m H-17 C-6, 7, 8, 17 
17 12.5, CH3 0.92, brs H-16 C-7, 16 
18 19.6, CH2 1.66, m - C-6, 7, 8, 17 
19 13.0, CH3 1.16, t (7.4) - C-8, 18 
20 26.5, CH3 1.72, s - C-3, 4, 5, 13 

 

The COSY spectrum showed cross peaks between the protons at δH 3.77, d 

(J = 13.0 Hz, δC 31.8, H-3a) and δH 3.47, d (J = 12.8 Hz, δC 31.8, H-3b), between δH 

1.66, m (δC H-16) and δH 0.92, brs (H-17), between δH 5.11, s (δC 65.6, H-9) and δH 

2.12, brs (δC 53.0, H-8), thus confirming the coupling system of C-7 through C-17 

and C-8 through C-19. This was confirmed by the HMBC cross peaks from Me-17  
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(δH 0.92, brs, δC 12.5) to C-7 (δC 37.7) and C-16 (δC 27.7), from Me-19 (δH 1.16, t, J 

= 7.4 Hz, δC 13.0) to C-8 (δC 53.0) and C-18 (δC 19.6). That C-7 was connected to C-

8 was evidenced by the HMBC cross peaks from H-16 (δH 1.66, m, δC 19.6) to C-7 

(δC 37.7) and C-8 (δC 53.0). 

 Furthermore, the HMBC spectrum also showed correlations from H-16 to 

methine sp2 carbon at δC 150.2 (C-6), H-6 also exhibited HMBC cross peaks to the 

carbonyl carbon at δC 163.3 (C-15), while methylene protons at δH 3.77, d (J = 13.0 

Hz, H-3) showed correlations to the quaternary sp3 carbon at δC 47.4 (C-4), 

quaternary sp2 carbons at δC 143.3 (C-1) and δC 129.3 (C-5). Another H-3 signal at 

δH 3.47, d (J = 12.8 Hz, δC 31.8) also gave HMBC cross peaks to C-1 (δC 143.3) and 

carbonyl carbon at δC 173.9 (C-13), thus confirming the coupling system of C-1 

through C-6. That the methyl group at δH 1.72, s (δC 26.5) was on C-4, this was 

supported by the HMBC cross peaks of the singlet at δH 1.72 (δC 26.5, H-20) to C-3 

(δC 31.8), C-4 (δC 47.4), C-5 (δC 129.3) and C-13 (δC 173.9). 
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1.66 m

1.66 m

150.2

163.3

143.3

47.4

3.77 d
(13.0)

3.47 d (12.8)

6.89 d (11.8)

19.6

37.7

27.7

12.5

31.8

53.0

13.0
1.16 t (7.4)

129.3

173.9

1.72 s

0.92 brs

 

Taking together the NMR spectra data, molecular formula and the degree of 

unsaturation, the structure of TH 4 should contain the cyclooctanonene ring, four 

carbonyls, and another two rings. The structure of TH 4 (Figure 66) was compatible 

with those of glauconic acid, a fungal metabolites previously isolated from Penicillium 

purpurogenum IMI 090178 (Barton et al. 1965a; Barton et al. 1965b; Barton and 

Sutherland 1965), as well as from the several sources including the fungal strain 

Talaromyces atroroseus (Frisvad et al., 2013) and marine-sponge associated fungus 

Talaromyces trachyspermus KUFA 0021 (Kuml et al., 2014).  
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Figure 66. Structure of glauconic acid (TH 4) 

 

3.1.3 Structure Elucidation of Ergosterol Derivatives 

 

3.1.3.1. Ergosta-4, 6, 8 (14), 22-tetraen-3-one (NG 1) 

 

NG 1 was isolated as yellow viscous mass, the 13C NMR spectrum exhibited 

twenty eight carbon signals, which based on DEPTs and HSQC spectra (Table 6), 

can be classified as one ketone carbonyl (δC 199.6), three quaternary sp2 (δC 164.6, 

156.2 and 124.4), two quaternary sp3 (δC 43.9 and 36.8), five methine sp2 (δC 135.0, 

134.1, 132.5, 124.5 and 123.0), five methine sp3 (δC 55.7, 44.3, 42.9, 39.3 and 33.1), 

six methylene (δC 35.6, 34.1 (2C), 27.7, 25.4 and 19.0) and six methyl (δC 21.2, 20.0, 

19.7, 19.0, 17.7 and 16.7) carbons.  
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Table 6. 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) and HMBC assignment 

for NG 1 

Position δC, type δH, (J in Hz) COSY HMBC 

1a 
  b 

34.1, CH2 2.49, m 
2.00, m 

H-1b, 2a 
H-1a, 2a 

- 
- 

2a 34.1, CH2 1.80, m 
2.35, m 

H-1a, b - 

3 199.6, CO - - - 
4 123.0, CH 5.74, s - C-1, 2, 6, 10 
5 164.6, C - - - 
6 134.1, CH 6.61, d (9.5) H-7 C-8 
7 124.5, CH 6.03, d (9.5) H-6 C-5 
8 124.4, C - - - 
9 44.3, CH 2.11, m - - 
10 36.8, C - - - 
11a 
    b 

19.0, CH2 1.68, m 

1.59, m 
H-9 
- 

- 
- 

12a 
    b 

35.6, CH2 2.06, m 
1.30, m 

- - 
- 

13 43.9, C - - - 
14 156.2, C - - - 
15a 
    b 

25.4, CH2 2.43, m 
2.63, m 

H-16a, b 
- 

- 
- 

16a 
    b 

27.7, CH2 2.90, dd (13.1, 2.9) 
1.84, m 

- 
H-15a 

- 
- 

17 55.7, CH 1.26, m H-20 C-16 
18 19.0, CH3 0.96, s - C-12, 13, 14, 17 
19 16.7, CH3 1.00, s - C-1, 2, 5, 9, 10 
20 39.3, CH 2.14, m H-21 - 
21 21.2, CH3 1.06, d (6.7) H-20 C-17, 20, 22 
22 135.0, CH 5.20, dd (15.0, 7.5) H-23 - 
23 132.5, CH 5.27, dd (15.2, 6.8) H-22 - 
24 42.9, CH 1.87, m H-26 - 
25 33.1, CH 1.48, m H-27, 28 - 
26 17.7, CH3 0.93, d (6.8) H-24 C-23, 24, 25 
27 19.7, CH3 0.83, d (6.8) H-25 C-24, 25, 28 
28 20.0, CH3 0.85, d (6.7) H-25 C-24, 25, 27 
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The 1H NMR spectrum, in combination with HSQC spectrum (Table 6) 

displayed the signals of five olefinic protons at δH 6.61, d (J = 9.5 Hz), δH 6.03, d (J = 

9.5 Hz), δH 5.27, dd (J = 15.2, 6.8 Hz), δH 5.20, dd (J = 15.0, 7.5 Hz) and a singlet at 

δH 5.74, six methyl protons at δH 1.06, d (J = 6.7 Hz), 0.93, d (J = 6.8 Hz), 0.85, d (J 

= 6.7 Hz), 0.83, d (J = 6.8 Hz), and the singlets at δH 1.00 and δH 0.96. 

The COSY spectrum showed cross peaks from the multiplet at δH 2.49 (δC 

34.1) to the multiplets at δH 2.00 (δC 34.1) and δH 1.80 (δC 34.1), from the multiplet at 

δH 2.00 to the multiplets at δH 2.49 and 1.80, from the multiplet at δH 1.80 to the 

multiplets at δH 2.49 and 2.00, from the multiplet at δH 1.68 (δC 19.0) to the multiplet 

at δH 2.11 (δC 44.3), from the multiplet at δH 2.43 (δC 25.4) to the doublet doublet at 

δH 2.90 (J = 13.1, 2.9 Hz, δC 27.7) and multiplet at δH 1.84 (δC 25.4), from the 

multiplet at δH 1.84 to the multiplet at δH 2.43, from the multiplet at δH 1.26 (δC 55.7) 

to the multiplet at δH 2.14 (δC 39.3), as well as between the doublets at δH 6.03 (J = 

9.5 Hz, δC 124.5) and δH 6.61 (J = 9.5 Hz, δC 134.1). 
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123.0

5.74 s

55.7

39.3

1.26 m

2.14 m

34.1

34.1

134.1

124.5

44.3

19.0

25.4

27.72.00 m
2.49 m

1.80 m

2.35 m

1.59 m

1.68 m

2.11 m

1.84 m

2.90 dd (13.1, 2.9)

2.63 m

2.43 m

6.03 d (9.5) 

6.61 d (9.5)  

That NG 1 consisted of a 10, 13-dimethylcyclopentanoperhydrophenanthrene 

ring system with the ketone carbonyl on C-3 and three conjugated double bonds on 

C-4/C5, C-6/C-7 and C-8/C-14 (fragment A) was supported by the HMBC 

correlations from the doublet at δH 6.61 (J = 9.5 Hz; δC 134.1, H-6) to the quaternary 

sp2 carbon at δC 124.4 (C-8), from the doublet at δH 6.03 (J = 9.5 Hz; δC 134.1, H-7) 

to the quaternary sp2 carbon at δC 164.6 (C-5), from the singlet at δH 5.74 (δC 123.0, 

H-4) to the two methylene carbons at δC 34.1 (C-1/C-2), methine sp2 carbon at δC 

134.1 (C-6) and the quaternary sp3 carbon at δC 36.8 (C-10), from the methyl singlet 

at δH 1.00 (δC 16.7, H-19) to the two methylene carbons at δC 34.1 (C-1/C-2), the 

quaternary sp2 carbon at δC 164.6 (C-5), the methine sp3 carbon at δC 44.3 (C-9) and 

the quaternary sp3 carbon at δC 36.8 (C-10), from the multiplet at δH 1.26 (δC 55.7, H-

17) to the carbon at δC 27.7 (C-16), from the methyl singlet at δH 0.96 (δC 19.0, H-18) 

to the carbons at δC 35.6 (C-12), 43.9 (C-13), 156.2 (C-14) and 55.7 (C-17). 
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44.3

199.6

5.74 s

6.03 d (9.5) 

6.61 d (9.5)

1.00 s

34.1

34.1

1.26 m

124.5

27.7

36.8

35.6

164.6

124.4

43.9

156.2

123.0 134.1

55.7

16.7

0.96 s
19.0

 

Fragment A 

 

The existence of the (3E)-5, 6-dimethylhept-3-en-2-yl side chain was based 

on the COSY correlations between the multiplet at δH 2.14 (H-20, δC 39.3) and the 

methyl doublet at δH 1.06 (J = 6.7 Hz, H-21, δC 21.2), between the doublet doublet at 

δH 5.20 (J = 15.0, 7.5 Hz, H-22, δC 135.0) and the doublet doublet at δH 5.27 (J = 

15.2, 6.8 Hz, H-23, δC 132.5), between the doublet at δH 0.93 (J = 6.8 Hz, H-26, δC 

17.7) and a multiplet at δH 1.87 (H-24, δC 42.9), as well as from the multiplet at δH 

1.48 (H-25, δC 33.1) to the doublet at δH 0.83 (J = 6.8 Hz, H-27, δC 19.7) and the 

doublet at δH 0.85 (J = 6.7 Hz, H-28, δC 20.0), from the two doublets at δH 0.83 (J = 

6.8 Hz, H-27, δC 19.7) and δH 0.85 (J = 6.7 Hz, H-28, δC 20.0) to the multiplet at δH 

1.48 (H-25). 
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20.0 
0.85 d (6.7)

0.83 d (6.8)
19.7

17.7
0.93 d (6.8)

1.48 m
33.1

42.9 

1.87 m

132.5

5.27 dd (15.2, 6.8)

5.20 dd (15.0, 7.5)

135.0
21.2

1.06 d (6.7)

2.14 m

39.3

 

This was confirmed by the HMBC correlations from H-21 (δH 1.06, d, J = 6.67 

Hz; δC 21.2) to the carbons at δC 39.3 (C-20) and 135.0 (C-22), from Me-26 (δH 0.93, 

d, J = 6.8 Hz; δC 17.7) to the carbons at δC 132.5 (C-23), 42.9 (C-24) and 33.1 (C-

25), from Me-27 (δH 0.83, d, J = 6.8 Hz; δC 19.7) to the C-24, C-25 and C-28 (δC 

20.0), from Me-28 (δH 0.85, d, J = 6.7 Hz; δC 20.0) to the C-24, C-25 and C-27 (δC 

19.7), respectively. 

20.0 
0.85 d (6.7)

0.83 d (6.8)

19.7

17.7
0.93 d (6.8)

33.1

42.9 

132.5

135.0
21.2

1.06 d (6.7)

39.3

 

That the (3E)-5, 6-dimethylhept-3-en-2-yl side chain was connected to the 

fragment A was supported by the HMBC correlations from the methyl doublet at δH 

1.06 (J = 6.7 Hz; δC 21.2, H-21) to the carbons at δC 55.7 (C-17). 
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39.3

1.06 d (6.7)

55.7

 

From the above evidence, the structure of NG 1 was established as ergosta-

4, 6, 8-(14), 22-tetraen-3-one (Figure 67) and was previously isolated from the 

sclerotia of Polyporus umbellatus, an edible species of mushroom, which is widely 

used anti-aldosteronic diuretic in Traditional Chinese medicine (Lee et al., 2005; 

Zhao et al., 2009). Moreover, this compound was also reported from the marine 

sponge-associated fungi Talaromyces stipitatus KUFA 0207 (Noinart et al., 2017), 

and Talaromyces trachyspermus KUFA 0021 (Kuml et al., 2014), as well as from an 

endophytic fungus Exophiala oligosperma EN-21, was isolated from the inner tissue 

of the marine red alga Laurencia similis (Li et al., 2011). 
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Figure 67. Structure of ergosta-4, 6, 8 (14), 22-tetraen-3-one (NG 1) 

 

3.1.3.2. Ergosterol 5, 8-endoperoxide (NG 2/EC 2) 

 

The NG 2/EC 2 was isolated as a white solid (mp, 182-183 ºC), the 13C NMR 

spectrum of NG 2/EC 2 (Table 7) showed twenty eight carbon signals, which through 

DEPTs and HSQC spectra, can be categorized as four methine sp2 (δC 135.4, 135.2, 

132.3 and 130.7), two oxyquaternary sp3 (δC 82.2 and 79.4), one oxymethine sp3 (δC 

66.4), six methine sp3 (δC 56.2, 51.7, 51.1, 42.8, 39.7 and 33.1), two quaternary sp3 

(δC 44.6 and 37.0), seven methylene sp3 [(δC 39.3, 36.9, 34.7, 30.1, 28.7, 23.4 and 

20.6)] and six methyl (δC 20.9, 20.0, 19.6, 18.2, 17.6 and 12.9) groups.  
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The 1H NMR spectrum together with HSQC spectrum (Table 7) showed the 

signals of two olefinic protons of a cis double bond at δH 6.50, d (J = 8.5 Hz) and 

6.24, d (J = 8.5 Hz), two olefinic protons of a trans double bond at δH 5.23, dd (J = 

15.2, 7.1 Hz) and 5.14, dd (J = 15.2, 7.8 Hz), an oxymethine proton at δH 3.97, sept 

(J = 5.2 Hz), the multiplets at δH 2.02, 1.95, 1.93, 1.90, 1.85, 1.84, 1.74, 1.69, 1.58, 

1.56, 1.53, 1.50, 1.47, 1.40, 1.38, 1.24, 1.23 and ddd at δH 2.11 (J = 13.8, 5.1, 1.8 

Hz), two methyl singlet at δH 0.88 (δC 18.2) and δH 0.82 (δC 12.9), four methyl 

doublets at δH 1.00 (J = 6.6 Hz, δC 20.9), δH 0.91 (J = 6.8 Hz, δC 17.6), δH 0.83 (J = 

6.8 Hz, δC 20.0) and δH 0.82 (J = 6.8 Hz, δC 19.6) and a singlet of the hydroxyl 

proton at δH 7.27. 

The HMBC correlations from the doublet doublet doublet at δH 2.11 (J = 13.8, 

5.1, 1.8 Hz, H-4; δC 36.9) to the carbons at δC 66.4 (C-3) and δC 82.2 (C-5), from the 

doublet at δH 6.24 (J = 8.5 Hz, H-6; δC 135.4) to C-4 (δC 36.9), C-5, C-7 (δC 130.7), 

C-8 (δC 79.4) and C-10 (δC 37.0), from the doublet at δH 6.50 (J = 8.5 Hz, H-7; δC 

130.7) to C-5 and C-6 (δC 135.4), C-8 and C-9 (δC 51.1), from the methyl singlet at δH 

0.88 (δC 18.2, Me-19) to C-1 (δC 34.7), C-5, C-9 and C-10, from the methyl singlet at 

δH 0.82 (δC 12.8, Me-18) to C-12 (δC 39.3), C-13 (δC 44.6), C-14 (δC 51.7) and to the 

carbon at δC 56.2 (C-17), indicated the presence of 

perhydrocyclopentanophenanthrene moiety. 
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0.82 s
12.8

39.3
44.6

51.7

56.2

28.7

23.4

20.6

6.50 d (8.5)

130.7

135.4

82.2

79.4

51.1

36.9

66.4

30.1

34.7

37.0

18.2
0.88 s

6.24 d (8.5)2.11 ddd (13.8, 5.1, 1.8)
 

Moreover, the COSY cross peaks from H-20 (δH 2.02, m) to H-21 (δH 1.00, d, 

J = 6.6 Hz) and H-22 (δH 5.14, dd, J = 15.2, 7.8 Hz), from H-21 to H-20, from H-22 to 

H-20 and H-23 (δH 5.23, dd, J = 15.2, 7.1 Hz), from H-23 to the H-22 and H-24 (1.84, 

m), from H-24 to the H-23, from H-25 (δH 1.47, m) to H-27 (δH 0.82, d, J = 6.8 Hz) 

and H-28 (δH 0.83, d, J = 6.8 Hz), from H-26 (δH 0.91, d, J = 6.8 Hz) to H-24, from H-

27 and H-28 to H-25, indicating the presence (3E)-5, 6-dimethylhept-3-en-2-yl 

moiety. 

1.47 m

0.83 d (6.8)

0.82 d (6.8)

42.8

0.91 d (6.8)
17.6

132.3

5.23 dd (15.2, 7.1)

135.2

5.14 dd (15.2, 7.8)

39.7

20.9
1.00 d (6.6) 33.1

19.6

20.0
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This connectivity was confirmed by the HMBC correlations from H-22 (δH 

5.14, dd, J = 15.2, 7.8 Hz; δC 135.2) to C-20 (δC 39.7) and C-24 (δC 42.8), from H-23 

(δH 5.23, dd, J = 15.2, 7.1 Hz; δC 132.3) to C-24 and C-26 (δC 17.6), from H-26 (δH 

0.91, d, J = 6.8 Hz; δC 17.6) to C-23 (δC 132.3), C-24 and C-25, from H-27 (δH 0.82, 

d, J = 6.8 Hz; δC 19.6) and H-28 (δH 0.83, d, J = 6.8 Hz; δC 20.0) to C-24 and C-25 

respectively. 

0.83 d (6.8)

0.82 d (6.8)

42.8

0.91 d (6.8)
17.6

132.3

5.23 dd (15.2, 7.1)

135.2

5.14 dd (15.2, 7.8)

39.7

20.9
1.00 d (6.6)

33.1

19.6

20.0

 

That the (3E)-5, 6-dimethylhept-3-en-2-yl moiety was linked to the 

perhydrocyclopentanophenanthrene moiety was confirmed by the HMBC 

correlations from H-21 (δH 1.00, d, J = 6.8 Hz; δC 20.9) to the carbons at C-17 (δC 

56.2), C-20 (δC 39.7), C-22 (δC 135.2). Therefore, the complete structure was: 
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20.9
1.00 d (6.6) 135.2

39.7

56.2

 

The structure of NG 2/EC 2 corresponds to ergosterol-5, 8-endoperoxide 

which was previously isolated from the culture of several sources such as flowers of 

Erigeron annuus L. (Kim et al., 2005), pathogenic fungus Sporothrix schenckii which 

was isolated from yeast (Sgarbi et al., 1997), entomopathogenic fungus 

Paecilomyces tenuipes (Nam et al., 2001), an endophytic fungus Verticillium sp. 

which was isolated from root of wild Rehmannia glutinosa (You et al., 2009), as well 

as from the fruiting bodies of a basidiomycete fungus Lactarius hatsudake (Zhang et 

al., 2007), and algicolous strain Aspergillus ustus, was isolated from the marine 

green alga Codium fragile (Liu et al., 2014a).  
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Figure 68. Structure of ergosterol 5, 8-endoperoxide (NG 2/EC 2) 

 

3.1.3.3. Acetyl ergosterol-5, 8-endoperoxide (TH 2) 

 

Compound TH 2 was isolated as a white amorphous solid. The general 

features of the 1H and 13C NMR spectra of TH 2 were very similar to those of 

ergosterol-5, 8-endoperoxide NG 2/EC 2. The 13C NMR, DEPTs and HSQC spectra 

(Table 7) revealed in addition to the acetoxyl group (δC 170.2 and δC 21.4, δH 2.02, 

s), the 28 carbon signals of ergosterol 5, 8-endoperoxide. Since H-3 and C-3 of TH 2 

appeared at higher frequencies (ca. 1 ppm for H-3 and 3 ppm for C-3) than the 

corresponding proton and carbon of ergosterol-5, 8-endoperoxide, the structure of 

TH 2 was elucidated as acetyl ergosterol 5, 8-endoperoxide. Acetyl ergosterol 5, 8-

endoperoxide has been previously reported from several sources including from an  
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aerial parts of Ajuga remota Benth. (Cantrell et al., 1999) and the marine-sponge 

associated fungus Talaromyces trachyspermus KUFA 0021 (Kuml et al., 2014). 
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Figure 69. Structure of acetyl ergosterol-5, 8-endoperoxide (TH 2) 
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Table 7. Comparison of 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) 

assignment for NG 2/EC 2 and TH 2 

Position NG 2/ EC 2 TH 2 

 δC, type δH, (J in Hz) δC, type δH, (J in Hz) 

1 34.7, CH2 1.69, m/ 1.93, m 34.3, CH2 1.70, m/ 1.97, m 
2 30.1, CH2 1.53, m/ 1.85, m 26.3, CH2 1.55, m/ 1.95, m 
3 66.4, CH 3.97, sept (5.2) 69.5, CH 4.99, sept (5.6) 
4 36.9, CH2 2.11, ddd (13.8, 5.1, 1.8) 

1.90, m 
33.2, CH2 2.14, ddd (13.7, 5.3, 1.8) 

1.91, m 
5 82.2, C - 79.4, C - 
6 135.4, CH 6.24, d (8.5) 135.1, CH 6.23, d (8.5) 
7 130.7, CH 6.50, d (8.5) 130.9, CH 6.51, d (8.5) 
8 79.4, C - 81.7, C - 
9 51.1, CH 1.50, m 51.0, CH 1.51, m 
10 37.0, C - 37.0, C - 
11 20.6, CH2 1.40, m/ 1.58, m 20.6, CH2 1.40, m/ 1.60, m 
12 39.3, CH2 1.95, m/ 1.23, m 39.3, CH2 1.95, m/ 1.24, m 
13 44.6, C - 44.6, C - 
14 51.7, CH 1.56, m 51.6, CH 1.58, m 
15 23.4, CH2 1.50, m/ 1.23, m 23.4, CH2 1.51, m/ 1.25, m 
16 28.7, CH2 1.74, m/ 1.38, m 28.7, CH2 1.74, m/ 1.33, m 
17 56.2, CH 1.24, m 56.2, CH 1.23, m 
18 12.9, CH3 0.82, s 12.9, CH3 0.81, s 
19 18.2, CH3 0.88, s 18.1, CH3 0.90, s 
20 39.7, CH 2.02, m 39.8, CH 2.01, m 
21 20.9, CH3 1.00, d (6.6) 21.0, CH3 1.00, d (6.6) 
22 135.2, CH 5.14, dd (15.2, 7.8) 135.2, CH 5.15, dd (15.3, 8.2) 
23 132.3, CH 5.23, dd (15.2, 7.1) 132.3, CH 5.22, dd (15.3, 7.6) 
24 42.8, CH 1.84, m 42.8, CH 1.85, m 
25 33.1, CH 1.47, m 33.1, CH 1.47, m 
26 17.6, CH3 0.91, d (6.8) 17.6, CH3 0.91, d (6.8) 
27 19.6, CH3 0.82, d (6.8) 19.7, CH3 0.82, d (6.8) 
28 20.0,CH3 0.83, d (6.8) 20.0, CH3 0.84, d (6.8) 
OH-3 - 7.27, s - - 
OAc - - 170.2, CO - 
   21.4, CH3 2.02, s 
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3.1.4 Structure Elucidation of Tetracyclic Triterpenoid 

 

3.1.4.1. Helvolic acid (NG 3) 

  

NG 3 was isolated as a white solid (mp, 217-218 ºC), the 13C NMR spectrum 

(Table 8) displayed 33 carbon signals which, through DETPs and HSQC spectra, 

can be categorized as two ketone carbonyls (δC 208.8 and 201.4), one carboxylic 

acid (δC 174.0), two ester carbonyls (δC 170.2 and 168.9), three quaternary sp2 (δC 

147.8, 132.9 and 130.4), three methine sp2 (δC 157.3, 127.8 and 122.8), two 

oxymethine sp3 (δC 73.8 and 73.5), four methine sp3 (δC 49.4, 47.2, 41.7 and 40.4), 

three quaternary sp3 (δC 52.7, 46.6 and 38.2), five methylene sp3 (δC 40.6, 28.6, 

28.3, 25.9 and 23.9) and eight methyl (δC 27.5, 25.7, 20.7, 20.5, 18.3, 17.9, 17.8 and 

13.1) carbons. 

The 1H NMR spectrum (Table 8), in combination with HSQC spectrum, 

exhibited signals of a pair of cis-coupled olefinic protons at δH 7.31, d (J = 10.1 Hz) 

and  5.87, d (J = 10.0 Hz), an olefinic proton of the trisubstituted double bond at δH 

5.11, dd (J = 7.7, 6.6 Hz), two oxymethine protons at δH 5.88, d (J = 8.3 Hz), 5.24, d 

(J = 0.5 Hz), as well as several aliphatic proton signals at δH 2.78, dq (J = 6.7 Hz), 

2.62, dd (J = 11.6, 2.4 Hz), 2.58, d (J = 10.1 Hz), 2.27, d (J = 11.3 Hz), 2.48, m, 2.40, 

m, 2.20, m and 1.92, d (J = 16.7 Hz), 2.08, m, 1.98, m, in addition to seven methyl 

singlets at δH 2.11, 1.95, 1.69, 1.61, 1.45, 1.18, 0.93 and a methyl doublet at δH 1.28 

(J = 6.8 Hz). 
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Table 8. 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) and HMBC assignment 

for NG 3 

Position δC, type δH, (J in Hz) COSY HMBC 

1 157.3, CH 7.31, d (10.1) H-2 C-3, 5, 9, 10 
2 127.8, CH 5.87, d (10.0) - - 
3 201.4, CO - - - 
4 40.4, CH 2.78, dq (6.7) H-5, 28 C-3, 18, 28 
5 47.2, CH 2.27, d (11.3) - C-1, 3, 4, 10 
6 73.8, CH 5.24, d (0.5) - C-5, 7, 8, 10, OAc-6 
7 208.8, CO - - - 
8 52.7, C - - - 
9 41.7, CH 2.62, dd (11.6, 2.4) - - 
10 38.2, C - - - 
11 23.9, CH2 1.98, m - - 
12 25.9, CH2 2.40, m H-13 - 
13 49.4, CH 2.58, d (10.1) H-12 - 
14 46.6, C - - - 
15a 
    b 

40.6, CH2 2.20, m 
1.92, d (16.7) 

H-15b, 16, 29 
- 

- 
C-13, 14, 16, 17 

16 73.5, CH 5.88, d (8.3) H-15a, b C-14, 17, 20, CO (Ac-16) 
17 147.8, C - - - 
18 27.5, CH3 1.45, s - C-1, 5, 9, 10 
19 18.3, CH3 1.18, s - C-7, 8, 9, 14 
20 130.4, C - - - 
21 174.0, CO - - - 
22 28.6, CH2 2.48, m - - 
23 28.3, CH2 2.08, m - - 
24 122.8, CH 5.11, dd (7.7, 6.6) H-26, 27 - 
25 132.9, C - - - 
26 25.7, CH3 1.69, s - C-24, 25, 27 
27 17.8, CH3 1.61, s - C-24, 25, 26 
28 13.1, CH3 1.28, d (6.8) - C-3, 4, 5 
29 17.9, CH3 0.93, s - C-8, 13, 14, 15 
OAc-6 168.9, CO - - - 
 20.7, CH3 2.11, s - CO (Ac-6) 
OAc-16 170.2, CO - - - 
 20.5, CH3 1.95, s - CO (Ac-16) 
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The COSY spectrum (Table 8) showed the correlations from the olefinic 

protons at δH 7.31, d (J = 10.1 Hz, H-1) to δH 5.87, d (J = 10.0 Hz, H-2), as well as 

from the double quartet at δH 2.78 (J = 6.7 Hz, H-4) to the doublet at δH 2.27 (J = 

11.3 Hz, H-5) and the methyl doublet at δH 1.28 (J = 6.8 Hz, H-28). The HMBC 

spectrum (Table 8) showed correlations from the olefinic proton at δH 7.31, d (J = 

10.1 Hz; δC 157.3, H-1) to the carbonyl carbon at δC 201.4 (C-3), the methine carbon 

at δC 47.2 (C-5), 41.7 (C-9) and the quaternary carbons at δC 38.2 (C-10), from the 

doublet at δH 2.27 (J = 11.3 Hz; δC 47.2, H-5) to the carbon at δC 157.3 (C-1), the 

carbonyl carbon at δC 201.4 (C-3), the methine sp3 carbon at δC 40.4 (C-4) and the 

quaternary carbon at δC 38.2 (C-10), from the methyl doublet at δH 1.28 (J = 6.8 Hz; 

δC 13.1, H-28) to the carbonyl carbon at δC 201.4 (C-3), the methine sp3 carbons at 

δC 40.4 (C-4) and 47.2 (C-5), from the methyl singlet at δH 1.45 (δC 27.5, H-18) to the 

carbons at δC 157.3 (C-1), 47.2 (C-5), 41.7 (C-9) and  38.2 (C-10). 

Moreover, the HMBC spectrum showed correlations from the doublet of 

oxymethine proton at δH 5.24 (J = 0.5 Hz; δC 73.8, H-6) to the carbons at δC 47.2 (C-

5), 168.9 (C-6), 208.8 (C-7), 52.7 (C-8) and 38.2 (C-10), and from the methyl singlet 

at δH 2.11 (δC 20.7) to the ester carbonyl at δC 168.9. Therefore, the acetoxy group 

should be on C-6. Moreover, the methyl singlet at δH 1.18 (δC 18.3, H-19) showed 

HMBC cross peaks to the quaternary carbons at δC 52.7 (C-8) and 46.6 (C-14), as 

well as to the ketone carbonyl at δC 208.8 (C-7) and the methine carbon at δC 41.7 

(C-9). These correlations indicated that the methyl substituent was on the quaternary 
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carbon at δC 52.7 (C-8). Taking together the COSY and HMBC correlations, the 

structure of NG 3 must have the following moiety. 

2.78 dq (6.7)

5.87 d ((10.0)

127.8

73.8

23.9

1.98 m

5.24 d (0.5)

38.2
46.6

52.7

7.31 d (10.1)

168.9

208.8

1.18 s
18.3

2.11 s
20.7

13.1

40.4

201.4

157.3

47.2

41.7

1.28 d (6.8)

1.45 s

27.5

 

The existence of a 1-methyl-4-acetoxy-1, 2, 3, 4-tetrasubstituted cyclopentane 

was supported by the COSY correlations from the doublet of the oxymethine proton 

at δH 5.88 (J = 8.3 Hz, H-16; δC 73.5) to the doublet  at δH 1.92 (J = 16.7 Hz, H-15; 

δC 40.6) and a multiplet at δH 2.20 of the methylene protons (H-15, δC 40.6) as well 

as by the HMBC correlations from H-16 to the carbons at δC 46.6 (C-14), from the 

doublet at δH 1.92 (J = 16.7 Hz, H-15) to C-13, C-14 and C-16, from the methyl 

singlet at δH 0.93 (δC 17.9; CH3-29) to the carbons at δC 46.6 (C-14), δC 49.4 (C-13) 

and δC 40.6 (C-15) as well as from the methyl singlet at δH 1.95 (δC 20.5, CH3-OAc) 

and H-16 to the carbonyl carbon at δC 170.2. 

That the 1-methyl-4-acetoxy-1, 2, 3, 4-tetrasubstituted cyclopentane moiety 

was fused with the cyclohexane ring of the perhydrophenanthrene portion was  
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supported by the HMBC correlations from the methyl singlet at δH 0.93 (δC 17.9; 

CH3-29) to C-8 (δC 52.7) as well as by the COSY correlation between the doublet at 

δH 2.58 (J = 10.1 Hz) to the multiplet at δH 2.40 (H-12, δC 25.9). 

52.7

2.40 m
2.58 d (10.1)

25.9

5.88 d (8.3)

17.9
0.93 s

1.92 d

(16.7)

40.6

170.273.5

1.95 s

46.6

20.5

147.8

49.4

 

That the cyclopentanoperhydrophenanthrene moiety linked to the 6-

methylhept-5-enoic acid through a double bond between C-17 of the former and C-2 

of the latter was supported by the HMBC correlations from the methyl singlets at δH 

1.69 (δC 25.7, H-26) and 1.61 (δC 17.8, H-27) to the quaternary sp2 carbon at δC 

132.9 (C-25) and the methine sp2 carbon at δC 122.8 (C-24), from H-16 to the 

quatermnary sp2 carbons at δC 147.8 (C-17) and 130.4 (C-20) as well as from 

presence of the conjugated carboxyl group at δC 170.2.  

Taking together the 1H and 13C NMR chemical shifts and the COSY and 

HMBC correlations, the structure of NG 3 was proposed as helvolic acid. 
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147.8

170.2

122.8
132.9

17.8

25.7
130.4

1.69 s

1.61 s

5.88 d (8.3)

73.5

 

This was confirmed by comparison of the 1H and 13C NMR data of NG 3 with 

those reported in the literature (Fujimoto et al., 1996). Helvolic acid has been widely 

isolated from both terrestrial and marine-derived fungi such as from an Ascomycete, 

Corynascus setosus (Fujimoto et al., 1996), marine-derived fungus Aspergillus 

sydowi PFW1-13, which was isolated from a driftwood sample (Zhang et al., 2008), 

marine sponge-associated fungus Emericellopsis minima (Pinheiro et al., 2012), an 

endophytic fungus Aspergillus fumigates strain LN-4, was isolated form the healthy 

stem bark of Melia azedarach L. (Li et al., 2012) and the soil fungus Neosartorya 

Fischeri KUFA 6344 (Eamvijarn et al., 2013).   
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Figure 70. Structure of helvolic acid (NG 3) 

 

3.1.5 Structure Elucidation of Meroditerpenes 

 

3.1.5.1. Chevalone B (NTK 10) 

 

NTK 10 was isolated as a white solid (mp, 163-164 ºC), the 13C NMR 

spectrum, and in combination with DEPTs and HSQC, (Table 9) revealed the 

presence of one ester carbonyl (δC 171.0), one conjugated ester carbonyl (δC 165.4), 

three quaternary sp2 (δC 163.3, 159.7 and 97.8), one methine sp2 (δC 100.6), one 

oxymethine sp3 (δC 80.6), three methine sp3 (δC 60.2, 55.4 and 51.9), one 

oxyquaternary sp3 (δC 80.5), three quaternary sp3 (δC 37.8, 37.2 and 37.0), seven  
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methylene sp3 (δC 40.8, 40.2, 38.0, 23.5, 18.6, 17.8 and 16.8), seven methyl (δC 

27.9, 21.3, 20.5, 19.7, 16.4, 16.3 and 16.1) carbons. 

The 1H NMR spectrum, in combination with HSQC spectrum, (Table 9) 

displayed the singlet of one olefinic proton at δH 5.69 (δC 100.6), one oxymethine 

proton at δH 4.46, dd (J = 11.0, 5.1 Hz, δC 80.6), three methine protons at δH 1.45, dd 

(J = 12.8, 4.8 Hz, δC 51.9), 0.93, dd (J = 11.6, 1.7 Hz, δC 60.2) and 0.88, m (δC 55.4), 

seven methylene groups at δH [(1.73, m and 1.06, m, δC 38.0) (1.70, m and 1.35, dd, 

J = 12.4, 3.2 Hz, δC 18.6), (1.57, m and 1.47, m, δC 17.8), (2.06, dd, J = 15.7, 4.3 Hz 

and 1.59, dd, J = 12.9, 3.3 Hz, δC 40.2), (2.43, dd, J = 16.8, 4.9 Hz and 2.14, dd, J = 

17.4, 4.1 Hz, δC 16.8), (1.85, dt, J = 12.7, 3.0 Hz and 1.04, m, δC 40.8) and (1.69, m, 

δC 23.5)], seven methyl singlets at δH 0.87 (δC 16.4), 0.88 (δC 16.3), 0.86 (δC 27.9), 

0.90 (δC 16.1), 1.18 (δC 20.5), 2.04 (δC 21.3) and 2.18 (δC 19.7). 
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Table 9. 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) and HMBC assignment 

for NTK 10 

Position δC, type δH, (J in Hz) COSY HMBC 

1a 
  b 

38.0, CH2 1.73, m 
1.06, m 

H-1b, 2 
H-1a, 2 

C-3, 5, 10 
- 

2 23.5, CH2 1.69, m H-3 C-3 
3 80.6, CH 4.46, dd (11.0, 5.1) H-2 C-22, 23, Ac-3 
4 37.8, C - - - 
5 55.4, CH 0.88, m H-6 C-1, 9, 10 
6a 
  b 

17.8, CH2 1.57, m 

1.47, m 
H-5 
H-5 

C-4, 8, 10 
- 

7a 
  b 

40.8, CH2 1.85, dt (12.7, 3.0) 
1.04, m 

H-7b 
H-7a 

- 
- 

8 37.0, C - - - 
9 60.2, CH 0.93, dd (11.6, 1.7) H-11 C-8, 10 
10 37.2, C - - - 
11a 
    b 

18.6, CH2 1.70, m 

1.35, dd (12.4, 3.2) 
H-9, 12b 
H-9, 12b 

- 
- 

12a 
    b 

40.2, CH2 2.06, dd (15.7, 4.3) 
1.59, dd (12.9, 3.3) 

H-11 
H-11 

C-9, 13, 14 
C-8, 10, 13 

13 80.5, C - - - 
14 51.9, CH 1.45, dd (12.8, 4.8) H-15 C-8, 13, 25 
15a 
    b 

16.8, CH2 2.43, dd (16.8, 4.9) 
2.14, dd (17.4, 4.1) 

H-14, 15b 
H-14, 15a 

C-14, 16, 17 
C-13, 14, 16, 17, 21 

16 97.8, C - - - 
17 163.3, C - - - 
18 100.6, CH 5.69, s H-20 C-16, 17, 19, 20 
19 159.7, C - - - 
20 19.7, CH3 2.18, s H-18 C-17, 18, 19 
21 165.4, CO - - - 
22 27.9, CH3 0.86, s - C-3, 4, 5, 23 
23 16.1, CH3 0.90, s - C-3, 4, 5, 22 
24 16.3, CH3 0.88, s - C-1, 5, 9, 10 
25 16.4, CH3 0.87, s - C-7, 8, 9, 14 
26 20.5, CH3 1.18, s - C-12, 13, 14 
Ac-3 171.0, CO - - - 
 21.3, CH3 2.04, s - CO (Ac) 
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The COSY spectrum exhibited cross peaks between the protons at δH 1.73, m 

(H-1a)/1.06, m (H-1b, δC 38.0) and δH 1.69, m (H-2, δC 23.5), between δH 1.69, m (H-

2) and δH 4.46, dd (J = 11.0, 5.1 Hz, H-3, δC 80.6), indicating the coupling system 

from H-1 through H-3. The HMBC spectrum exhibited correlations from the protons 

at δH 1.73, m (δC 38.0, H-1a) to the carbons at δC 80.6 (C-3), 55.4 (C-5) and 37.2 (C-

10), from the proton at δH 1.69, m (δC 23.5, H-2) to the carbons at δC 80.6 (C-3), from 

the proton at δH 4.46, dd (J = 11.0, 5.1 Hz; δC 80.6, H-3) to the carbons at δC 171.0 

(CO; OAc-3), 16.1 (CH3-23) and 27.9 (CH3-22), as well as from the methyl singlets at 

δH 0.86 (δC 27.9) and 0.90 (δC 16.1) to the quaternary carbon at δC 55.4 (C-5) and C-

3, and from the methyl proton at δH 2.04, s (δC 21.3, OAc) to the carbonyl carbon at 

δC 171.0 (Ac-3). These correlations suggested the presence of a 3, 3-dimethyl-4-

acetoxy-1, 2, 3, 4-substituted cyclohexyl moiety. 

0.86 s0.90 s

2.04 s

1.73 m1.06 m 

1.69 m

80.6 
37.8

55.4

37.2

27.916.1

171.0
21.3

38.0

23.5
4.46 dd (11.0, 5.1)

 

Moreover, HMBC spectrum showed the correlations from the methyl singlet at 

δH 0.88 (CH3-24, δC 16.3) to C-1, C-5, C-9 and C-10, and from H-6 (1.57 m, δH 17.8) 

to C-4, C-8 and C-10. The existence of the perhydrophenthrene ring system was 

supported by the HMBC correlations from H-14 (δH 1.45, dd, J = 12.8, 4.8 Hz;  
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δC 51.9) to C-8 (δC 37.0), C-13 (δC 80.5) and CH3-25 (δC 16.4 ) as well as from H3-25 

(δH 0.87, s) to C-7 (δC 40.8), C-8 (δC 37.0 ), C-9 (δC 60.2) and C-14 (δC 51.9). 

0.88 s
16.3 0.87 s

38.0

55.4

60.2

37.2

40.8

1.57 m

17.837.8

163.3 

51.9 

1.45 dd (12.8, 4.8)

37.0

80.5

16.4 97.8

 

The presence of the 6-methyl-2H-pyran-2-one portion was confirmed by the 

HMBC correlations from the singlet at δH 5.69 (δC 100.6, H-18) to the carbons at δC 

97.8 (C-16), 163.3 (C-17), 159.7 (C-19) and 19.7 (C-20), from the methyl singlet at 

δH 2.18 (δC 19.7, H-20) to C-17, C-18 and C-19. That the 6-methyl-2H-pyran-2-one 

portion was fused to the perhydrophenanthrene ring system, through the pyran ring, 

was corroborated by the HMBC correlation from the dd at δH 2.43, (J = 16.8, 4.9 Hz, 

H-15) to C-14, C-16 and C-17 as well as from the dd at δH 2.14 (J = 17.4, 4.1) to C-

13, C- 14, C-16, C-17, and C-21. 
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2.43 dd

(16.8, 4.9)

80.5

51.9

16.8 165.4

2.14 dd 

(17.4,4.1)

5.69 s

100.6 

97.8

163.3

159.7
19.7

2.18 s

 

All of the 1H and 13C NMR data together with the COSY and HMBC 

correlations allowed the formulation of the structure of NTK 10 as chevalone B 

(Figure 71). Chevalone B has been previously reported from several fungi including 

the soil fungi Eurotium chevalieri (Kanokmedhakul et al., 2011) and Neosartorya 

spinosa KKU-1NK1 (Rajachan et al., 2016), coral-derived fungus Neosartorya 

laciniosa KUFC 7896 (Gomes et al., 2014) and marine sponge-associated fungus 

Aspergillus similanensis sp. nov. KUFA 0013 (Prompanya et al., 2014).  
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Figure 71. Structure of chevalone B (NTK 10) 

 

3.1.5.2. Aszonapyrone A (NTK 11) 

 

NTK 11 was isolated as a white solid (mp, 242-243 ºC). The 1H and 13C NMR 

features of NTK 11 resembled those of NTK 10.  

The 13C NMR spectrum (Table 10) exhibited twenty eight  carbon signals 

which in combination with DEPTs and HSQC, was categorized as one ester carbonyl 

(δC 170.1), one conjugated ester carbonyl (δC 164.6), four quaternary sp2 (δC 164.5, 

159.4, 148.2 and 101.0), one methylene sp2 (δC 106.4), one methine sp2 (δC 99.8), 

three quaternary sp3 (δC 36.9 (2C) and 37.3), one oxymethine sp3 (δC 79.8), three 

methine sp3 (δC 59.1, 54.6 and 52.9), seven methylene sp3 (δC 39.4, 37.6, 37.5, 23.3, 

22.8, 18.3 and 18.2), and six methyl (δC 27.7, 20.9, 19.1, 16.3, 15.9 and 14.8) 

carbons.  
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Table 10. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for NTK 11 

Position δC, type δH, (J in Hz) COSY HMBC 

1a 
  b 

37.5, CH2 1.01, m 
1.62, m 

H-1b 
H-1a 

C-24 
C-22, 24 

2 22.8, CH2 1.62, m H-3 - 
3 79.8, CH 4.39, dd (10.1, 5.9) H-2 C-23, 24, Ac-3 
4 37.3, C - - - 
5 54.6, CH 0.92, d (9.1) H-6b - 
6a 
  b 

18.3, CH2 1.54, m 

1.40, m 
H-6b 
H-5 

- 
- 

7a 
  b 

39.4, CH2 1.39, m 
1.87, m 

H-7b 
H-7a 

- 
- 

8 36.9, C - - - 
9 59.1, CH 1.07, d (12.0) H-11a - 
10 36.9, C - - - 
11a 
    b 

23.3, CH2 
 

1.26, m 
1.57, m 

H-9 
- 

- 
- 

12a 
    b 

37.6, CH2 1.86, m 

2.22, m 
H-12b 
H-12a 

- 
- 

13 148.2, C - - - 
14 52.9, CH 2.44, d (3.1) H-15a, b C-7, 13 
15a 
    b 

18.2, CH2 2.47, d (14.2) 
2.30, d (11.8) 

H-14, 15b 
H-14, 15a 

C-13, 16, 21 
C-13, 16, 21 

16 101.0, C - - - 
17 164.5, C - - - 
18 99.8, CH 5.93, d (0.8) H-20 C-16, 19, 20 
19 159.4, C - - - 
20 19.1, CH3 2.11, s H-18 C-18, 19 
21 164.6, CO - - - 
22 27.7, CH3 0.83, s - C-3, 4, 5, 23 
23 15.9, CH3 0.81, s - C-3, 4, 5, 22 
24 16.3, CH3 0.79, s - C-1, 5, 9, 10 
25 14.8, CH3 0.69, s - C-7, 9, 14 
26a 
    b 

106.4, CH2 4.83, s 

4.60, s 
H-26b 
H-14, 26a 

C-12, 14 
C-12, 14 

Ac-3 170.1, CO 
20.9, CH3 

- 
2.00, s 

- 
- 

- 
CO (Ac-3) 
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The 1H NMR spectrum, together with the HSQC spectrum, (Table 10) 

exhibited the signals of an olefinic proton at δH 5.93, d (J = 0.8 Hz, δC 99.8), an 

oxymethine proton at δH 4.39, dd (J = 10.1, 5.9 Hz, δC 79.8), two singlets of the 

exocyclic olefinic protons at δH 4.83 and 4.60 (δC 106.4), and six methyl siglets at 

2.11 (δC 19.1), 2.00 (δC 20.9), 0.83 (δC 27.7), 0.81 (δC 15.9), 0.79 (δC 16.3) and 0.69 

(δC 14.8). That NTK 11 contained the 3-acetoxy-4, 4, 8, 10-

tetramethylperhydrophenanthrene moiety was substantiated by the HMBC 

correlations from the doublet doublet at δH 4.39 (J = 10.1, 5.9 Hz; δC 79.8, H-3) to 

the methyl carbons at δC 15.9 (C-23), 16.3 (C-24) and 20.9 (OAc), from the methyl 

singlet at δH 2.00 (δC 20.9, Ac) to the carbonyl carbon at δC 170.1 (Ac), from the 

methyl singlet at δH 0.83 (δC 27.7, H-22) to the carbons at δC 79.8 (C-3), 37.3 (C-4), 

54.6 (C-5) and 15.9 (C-23), from the methyl singlet at δH 0.81 (δC 15.9, H-23) to the 

carbons at δC 79.8 (C-3), 37.3 (C-4), 54.6 (C-5) and 27.7 (C-22), from the methyl 

singlet at δH 0.79 (δC 16.3, H-24) to the carbons at δC 37.5 (C-1), 36.9 (C-10), 54.6 

(C-5) and 59.1 (C-9), from the methyl singlet at δH 0.69 (δC 14.8, H-25) to the 

carbons at δC 39.4 (C-7), 59.1 (C-9) and 52.9 (C-14).  

However, the presence of the exocyclic double bond on C-13, instead of the 

pyran oxygen and the methyl group as in chevalone B, was supported by the HMBC 

correlations from the exocyclic olefinic protons at δH 4.60 and 4.83 (δC 106.4, H-26) 

to the carbons at δC 37.6 (C-12) and 52.9 (C-14). 
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0.81 s

0.79 s

4.83 s

39.4

36.9
37.5

0.69 s
14.8

59.1

2.00 s

0.83 s

16.3

106.4 

4.60 s

37.6

52.9

79.8

4.39 dd (10.1, 5.9)

20.9
170.1 37.3

27.7

15.9

54.6

 

Similar to NTK 10, the existence of 6-methyl-2H-pyran-2-one was evidenced 

by the presence of the singlet of olefinic proton at δH 5.93, d (J = 0.8, δC 99.8), the 

methyl singlet at δH 2.11 (δC 19.1), the conjugated carbonyl carbon at δC 164.6, as 

well as by the HMBC correlations from the doublet at δH 5.93 (J = 0.8 Hz; δC 99.8, H-

18) to the carbons at δC 101.0 (C-16), 159.4 (C-19) and 19.1 (C-20), from the methyl 

singlet at δH 2.11 (δC 19.1, H-20) to the carbons at δC 99.8 (C-18) and 159.4 (C-19). 

164.6
101.0

99.8
159.4

19.1

5.93 d (0.8)

2.11 s
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That the 6-methyl-2H-pyran-2-one was linked to the perhydrophenanthrene 

portion, was evidenced by the HMBC correlations from the doublets at δH 2.47, d (J 

= 14.2 Hz; δC 18.2, H-15a) and 2.30, d (J = 11.8 Hz; δC 18.2, H-15b) to the carbons 

at δC 148.2 (C-13), 101.0 (C-16), and 164.6 (C-21). 

2.30 d
 (11.8)

2.47 d 

(14.2)

148.2

101.0 164.6

 

Therefore, the structure of NTK 11 was established as aszonapyrone A 

(Figure 72). Aszonapyrone A was first isolated from Aspergillus zonatus IFO 8817 

(Kimura et al., 1982a) and was later reported from the cultures of several soil fungi 

including Neosartorya fischeri KUFC 6344 (Eamvijarn et al., 2013), Eurotium 

chevalieri (Kanokmedhakul et al., 2011) and Neosartorya tatenoi KKU-2NK23 (Yim 

et al., 2014), as well as marine-derived fungi Neosartorya Laciniosa (Gomes et al., 

2014). 
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Figure 72. Structure of aszonapyrone A (NTK 11) 

 

3.1.5.3. Sartorenol (NTK 12) 

 

NTK 12 was isolated as white crystals (mp, 122-123 ºC) and its molecular 

formula C27H42O4 was established on the basic of the (+)-HRESIMS m/z 431.3175 

[M+H]+ (calculated 431.3161), indicating seven degrees of unsaturation. The IR 

spectrum showed absorptions bands for hydroxyl (3393 cm-1), conjugated ketone 

carbonyl (1645 cm-1), ester carbonyl (1728 cm-1), and olefin (1558, 1540 cm-1) 

groups.  
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The 13NMR, DEPTs and HSQC spectra (Table 11) displayed the signals of 

one conjugated ketone carbonyl (δC 194.7), one ester carbonyl (δC 171.0), two 

quaternary sp2 (δC 147.7 and 191.1), one methine sp2 (δC 99.9), one methylene sp2 

(δC 106.4), three quaternary sp3 (δC 39.8, 37.8 and 37.4), one oxymethine sp3 (δC 

80.8), three methine sp3 (δC 59.8, 56.4 and 55.4), eight methylene sp3 (δC 40.5, 38.2, 

38.0, 37.2, 23.6, 23.3, 19.6 and 18.7) and six methyl sp3 (δC 28.0, 24.9, 21.3, 16.4, 

16.3 and 15.3) carbons. 

The 1H NMR spectrum (Table 11) revealed the presence of, besides the 

hydrogen-bonded hydroxyl group of an enol at δH 15.47, s, two exocyclic methylene 

protons at δH 4.84, brs, 4.50, brs, one olefinic proton at δH 5.45, s, and the protons of 

six methyl group at 0.69, s, 0.83, s, 0.84, s, 0.86, s, 2.05, s (2 CH3). The 1H and 13C 

NMR data of NTK 12 revealed the presence of the 3-acetoxy-4, 4, 8, 10-

tetramethylperhydrophenanthrene moiety similar to that of aszonapyrone A (NTK 

11), however, there were no proton and carbon signals of the pyran-2-one portion 

but the signals of an olefinic proton of a trisubstituted double bond (δH 5.45, s) and 

enolic proton (δC 15.47, s) and a conjugated ketone carbonyl (δC 194.7). 
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Table 11. 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) and HMBC assignment 

for NTK 12  

Position δC, type δH, (J in Hz) COSY HMBC 

1 38.2, CH2 1.05, m H-2 - 
2a 
  b 

23.3, CH2 1.65, m 

1.33, dd (12.9, 4.2) 
H-1, 3 
H-1, 3 

- 
C-4 

3 80.8, CH 4.48, dd (10.9, 4.6) H-2 C-1, 4, 21, 22 
4 37.8, C - - - 
5 55.4, CH 0.91, dd (12.0, 2.2) H-6 - 
6a 
  b 

18.7, CH2 1.62, m 
1.14, m 

H-5 
- 

- 
- 

7a 
  b 

40.5, CH2 1.18, dd (12.5, 3.6) 
1.88, m 

- 
- 

- 
- 

8 39.8, C - - - 
9 59.8, CH 1.02, dd (12.3, 2.6) - - 
10 37.4, C - - - 
11 23.6, CH2 1.70, m - - 
12a 
    b 

38.0, CH2 2.38, m 
1.92, m 

- 
- 

- 
C-14, 25 

13 147.7, C - - - 
14 56.4, CH 1.59, m H-15 - 
15 19.6, CH2 1.86, m H-14, 16 C-13 
16 37.2, CH2 2.08, m H-15 - 
17 194.7, CO - - - 
18 99.9, CH 5.45, s - C-16, 17, 19, 20 
19 191.1, C - - - 
20 24.9, CH3 2.05, s - C-18, 19 
21 16.3, CH3 0.83, s - C-3, 4, 5, 22 
22 28.0, CH3 0.86, s - C-3, 4, 5, 21 
23 16.4, CH3 0.84, s - C-1, 5, 9, 10 
24 15.3, CH3 0.69, s - C-7, 8, 9, 14 
25a 
    b 

106.4, CH2 4.84, brs 

4.50, brs 
- 
- 

C-12, 14 
C-12, 13, 14 

26 171.0, CO - - - 
27 21.3, CH3 2.05, s - C-26 
OH-19 - 15.47, s - - 
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The presence of the 3-acetoxy-4,4, 8, 10-tetramethyl perhydrophenanthrene 

moiety was supported by the HMBC cross peaks from the doublet doublet at δH 4.48 

(J = 10.9, 4.6 Hz; δC 80.8) to the carbons at δC 38.2 (C-1), 37.8 (C-4), 16.3 (C-21) 

and 28.0 (C-22), from the methyl singlet of the acetoxy group at δH 2.05 (δC 21.3) to 

the carbonyl at δC 171.0, from the methyl singlet at δH 0.83 (δC 16.3, H-21) to the 

carbons at δC 80.8 (C-3), 37.8 (C-4), 55.4 (C-5) and 28.0 (C-22), from the methyl 

singlet at δH 0.86 (δC 28.0, H-22) to the carbons at δC 80.8 (C-3), 37.8 (C-4), 55.4 (C-

5) and 16.3 (C-21), from the methyl singlet at δH 0.84 (δC 16.4, H-23) to the carbons 

at δC 38.2 (C-1), 55.4 (C-5), 59.8 (C-9) and 37.4 (C-10). 

As well as, from the singlet at δH 0.69 (δC 15.3, H-24) to the carbons at δC 

40.5 (C-7), 39.8 (C-8), 59.8 (C-9) and 56.4 (C-14). The position of the methylidene 

group on C-13 was confirmed by the HMBC correlations from the broad singlet at δH 

4.84 (δC 106.4, H-25a) to the carbons at δC 38.0 (C-12) and 56.4 (C-14), from the 

broad singlet at δH 4.50 (δC 106.4, H-25b) to the carbons at δC 38.0 (C-12), 147.7 (C-

13) and 56.4 (C-14). Like azsonapyrone A (NTK 11), the acetoxyl group on C-3 of 

NTK 12 was beta due to the coupling constants of H-3 were 10.9 and 4.6 Hz. 
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4.48 dd (10.9, 4.6)
38.2

37.8
16.3

28.0

21.3
2.05 s

80.8

37.4

171.0
55.4

0.86 s

16.4
0.84 s

4.84 brs

59.8

15.3
0.69 s

106.4
4.50 brs

40.5

39.8

147.7

56.4

38.0

 

The presence of the (4Z)-5-hydroxy-3-oxohex-4-enyl group was substantiated 

by the COSY cross peaks between the multiplets at δH 2.08, m (δC 37.2, H-16) and 

δH 1.86, m (δC 19.6, H-15), as well as by the HMBC correlations from the olefinic 

proton at δH 5.45, s (δC 99.9, H-18) to the methylene carbon at δC 37.2 (C-16), the 

ketone carbon at δC 194.7 (C-17), the quaternary sp2 carbon at δC 191.1 (C-19) and 

methyl carbon at δC 24.9 (C-20), from the methyl singlet at δH 2.05 (δC 24.9, H-20) to 

the methine sp2 carbon at δC 99.9 (C-18) and the quaternary sp2 carbon at δC 191.1 

(C-19). 

2.08 m

19.6

1.86 m

37.2
194.7

99.9
191.1

24.9

5.45 s

2.05 s
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That the (4Z)-5-hydroxy-3-oxohex-4-enyl group was connected to the 

perhydrophenanthrene moiety through the methylene carbon at δC 19.6 (C-15) of the 

former and the methine carbon at δC 56.1 (C-14) of the latter was supported by the 

HMBC correlations from the methylene proton at δH 1.86, m (δC 19.6, H-15) to the 

quaternary sp2 carbon at δC 147.7 (C-13). Therefore, the complete structure of NTK 

12 was: 

19.6

1.86 m

147.7

 

Since NTK 12 was obtained as a suitable crystal the X-ray diffraction was 

performed to confirm the structure as well as to establish the absolute configurations 

of its stereogenic carbons. The ORTEP view showed in Figure 73 revealed that the 

absolute configurations of C-3, C-5, C-8, C-9, C-10 and C-14 are 3S, 5R, 8R, 9R, 

10R and 14S. 
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Figure 73. ORTEP view of NTK 12 

Taking together with 1H and 13C NMR and X-ray data, the structure of NTK 12 

was established as: 
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Literature search revealed that the structure of NTK 12 has never been 

reported previously. Therefore we have named it sartorenol. 

The biosynthesis pathway of sartorenol should resemble those proposed for 

aszonapyrone A and sartorypyone A, which is hypothesized as originating from a 

reaction of triketide derivative (II) with GPP oxide (III) to form the meroditerpene 

intermediate (IV). Cyclization, hydrolysis of the CoA ester and enolization of the side 

chain give the intermediate (V). Decarboxylation of the side chain and acetylation of  
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the hydroxyl group of the perhydrophenanthrene moiety would finally lead to the 

formation of sartorenol (Figure 74). 

2

GPP

Sartorenol

I

IIIII

H2O
H+

CoASH

CO2

IVV

VI

Acetylation

 

 

Figure 74. Proposed biogenesis of sartorenol (NTK 12) 
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3.1.6 Structure Elucidation of Isocoumarins 

 

3.1.6.1. 6-hydroxymellein (NTK 1) 

 

NTK 1 was isolated as white solid (mp, 201-202 ºC). The 13C NMR, DEPTs 

and HSQC spectra (Table 12) displayed the signals of one conjugated ester carbonyl 

(δC 169.5), two oxyquaternary sp2
 (δC 163.4 and 164.5), two quaternary sp2 (δC 100.1 

and 142.3), two methine sp2 (δC 106.8 and 100.9), one oxymethine sp3 (δC 75.4), one 

methylene sp3 (δC 33.8) and one methyl (δC 20.3) carbons. 

The 1H NMR spectrum, in combination with the HSQC spectrum (Table 12), 

revealed the signals of two meta-coupled aromatic protons at δH 6.24, d (J = 2.1 Hz; 

δC 106.8) and 6.19, d (J = 2.1 Hz; δC 100.9), a multiplet of the oxymethine proton at 

δH 4.59, two geminally coupled methylene protons at δH 2.93, dd (J = 16.6, 3.5 Hz; 

δC 33.8) and 2.80, dd (J = 16.6, 11.1 Hz; δC 33.8), one methyl (3H) at δH 1.39, d (J = 

6.3 Hz; δC 20.3), a singlet of a hydrogen-bonding phenolic hydroxyl proton δH 11.13 

and a broad singlet of the phenolic hydroxyl proton at δH 10.64. 
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Table 12. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for NTK 1 

Position δC, type δH, (J in Hz) COSY HMBC 

1 169.5, CO - - - 
3 75.4, CH 4.59, m H-3, 4 - 
4α 33.8, CH2 2.80, dd (16.6, 11.1) - C-3 
  β  2.93, dd (16.6, 3.5) - C-3, 5, 4, 8a 
4a 142.3, C - - - 
5 106.8, CH 6.24, d (2.1) H-7 C-6, 7, 8a 
6 164.5, C - - - 
7 100.9, CH 6.19, d (2.1) H-5 C-5, 6, 8, 8a 
8 163.4, C - - - 
8a 100.1, C - - - 
CH3-3 20.3, CH3 1.39, d (6.3) - C-3, 4 
OH-6 - 10.64, brs - - 
OH-8 - 11.13, s - C-7, 8 

 

The presence of the 6, 8-dihydroxy tetrasubstituted benzene ring was 

supported by the COSY correlation from the doublet at δH 6.19 (J = 2.1 Hz, H-7) to 

the doublet at δH 6.24 (J = 2.1 Hz, H-5) as well as by the HMBC correlation from the 

doublet at δH 6.24 (J = 2.1 Hz; δC
 106.8, H-5) to the quaternary sp2 carbon at δC 

164.5 (C-6), 100.1 (C-8a) and  methine sp2 carbon at δC 100.9 (C-7), from the 

doublet at δH 6.19 (J = 2.1 Hz; δC 100.9, H-7) to C-5, C-6, C-8 (δC 163.4) and C-8a, 

from a singlet at δH 11.13 (H-8) to C-7 and C-8. 
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106.8

164.5

100.9

163.4

100.1

6.24 d (2.1)

6.19 d (2.1)

11.13 s

10.64 brs

 

The presence of the 6-methyl-3, 4, 6-trisubstituted pyran-2-one moiety was 

evidenced by the COSY correlations from the multiplet at δH 4.59 (H-3) to the methyl 

doublet at δH 1.39 (J = 6.3 Hz; δC 20.3), 2.80, dd (J = 16.6, 11.1 Hz, H-4) and δH 

2.93, dd (J = 16.6, 3.5 Hz, H-4) as well as by the HMBC correlations from the methyl 

doublet at δH 1.39 (J = 6.3 Hz) to the carbons at δC 75.4 (C-3) and 33.8 (C-4), from 

the doublet doublet at δH 2.80 (J = 16.6, 11.1 Hz; δC 33.8, H-4) to the methyl carbon 

at δC 20.3, and from the doublet doublet at δH 2.93 (J = 16.6, 3.5 Hz; δC 33.8, H-4) to 

C-3 and C-4. 

That the 6, 8-dihydroxy tetrasubstituted benzene ring, was fused to the 6-

methylpyran-2-one ring through C-4a and C-8a was confirmed by the HMBC 

correlations from H-4 to C-4a, C-5 and C-8a. Therefore the planar structure of NTK 1 

was elucidated as 6, 8-dihydroxy-3-methyl-3, 4-dihydro-1H-isochromen-1-one. 
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75.4

20.3
33.8106.8

100.1

142.3

1.39 d (6.3)

2.80 dd (16.6,11.1)2.93 dd (16.6,3.5)
 

Since the optical rotation of NTK 1 was ([α]26
D  = – 51), its structure was 

established as 6-hydroxymellein (Figure 75), a secondary metabolites previously 

reported from the Ceratocystis minor which was associated with blue stain disease 

of pine (Ayer et al., 1987). This compound was also reported from an inhibitor of 

pollen development in Arabidopsis thaliana, isolated from the fungus Aspergillus 

terreus (Shimada et al., 2002), as well as from the scale insect pathogenic fungus 

Torrubiella tenuis BCC 12732 (Kornsakulkarn et al., 2009). 
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Figure 75. Structure of 6-hydroxymellein (NTK 1) 
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3.1.6.2. 6, 8-Dihydroxy-3-(2R-hydroxypropyl)-7-methyl-1H-isochromen-1-one 

(EC 11) 

 

EC 11 was isolated as yellow viscous liquid and its molecular formula C13H14O5 

was determined based on the (+)-HRESIMS m/z 251.0900 [M+H]+ (calculated 

251.0919), indicating seven degrees of unsaturation. The IR spectrum showed 

absorption bands for hydroxyl (3443 cm-1), a conjugated ester carbonyl (1671 cm-1), 

aromatic (1540, 1507 cm-1) and olefin (1623 cm-1) groups.  

The 13C NMR spectrum (Table 13) exhibited thirteen carbon signals which can be 

categorized, according to DEPTs and HSQC spectra, into one conjugated ester 

carbonyl (δC 166.2), six quaternary sp2 (δC 163.6, 159.9, 154.5, 136.4, 109.7 and 

97.8), three of which are oxygen bearing, two methine sp2 (δC 105.3 and 101.5), one 

oxygen bearing methine sp3 (δC 64.0), one methylene sp3 (δC 42.6), and two methyl 

(δC 23.4 and 8.0) groups. 

The 1H NMR spectrum revealed the presence of two phenolic hydroxyl groups 

(δH 11.31, s and 10.83, brs), one of which is hydrogen-bonded (δH 11.31, s), one 

aromatic (δH 6.44, s; δC 101.5), one olefinic (δH 6.48, s; δC 105.3), one secondary 

hydroxyl (δH 4.80, d, J = 4.5 Hz), one oxygen-bearing methine multiplet (δH 3.98; δC 

64.0), one methylene multiplet (δH 2.52; δC 42.6), one tertiary methyl (δH 2.01, s; δC 

8.0) and one secondary methyl (δH 1.13, d, J = 6.2 Hz; δC 23.4) group. 
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Table 13. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for EC 11 

Position δC, type δH, (J in Hz) COSY HMBC 

1 166.2, CO - - - 
3 154.5, C - - - 
4 105.3, CH 6.48, s - C-3, 5, 8a, 1′ 
4a 136.4, C - - - 
5 101.5, CH 6.44, s - C-4, 6, 7, 8a 
6 163.6, C - - - 
7 109.7, C - - - 
8 159.9, C - - - 
8a 97.8, C - - - 
9 8.0, CH3 2.01, s - C-6, 7, 8 
1′ 42.6, CH2 2.52, m - C-3, 4, 2′ 
2′ 64.0, CH 3.98, m OH-2′, H-3′ - 
3′ 23.4, CH3 1.13, d (6.2) H-2′ C-1′, 2′ 
OH-2′ - 4.80, d (4.5) H-2′ C-1′, 2′, 3′ 
OH-6 - 10.83, brs - C-6, 7 
OH-8 - 11.31, s - C-7, 8, 8a 

 

That EC 11 was a 6, 8-dihydroxy-7-methyl isochromone derivative was 

corroborated by HMBC correlations from the hydrogen-bonded phenolic hydroxyl at 

δH 11.31, s (OH-8) to the aromatic carbons at δC 109.7 (C-7), 159.9 (C-8) and 97.8 

(C-8a), from the tertiary methyl singlet at δH 2.01 (CH3-9) to C-7, C-8 and C-6 (δC 

163.6), from the singlet at δH 6.44 (H-5) to C-6, C-7, C-8a and C-4 (δC 105.3), and 

from the singlet at δH 6.48 (H-4) to C-3 (δC154.5), C-5 (δC101.5) and C-8a. 
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159.9

97.8109.7

163.6

105.3101.5

154.5

11.31 s

2.01 s

6.44 s 6.48 s�

8.0

 

The presence of the 2-hydroxypropyl moiety was substantiated by COSY 

correlations from the methylene multiplet at δH 2.52 (H2-1′) to the hydroxymethine 

multiplet at δH 3.98 (H-2′), from the secondary methyl doublet at δH 1.13 (J = 6.2 Hz, 

H3-3′) to H-2′, as well as by the HMBC correlations from the hydroxyl doublet at  δH 

4.80, d (J = 4.5 Hz, OH-2′) to C-1′ (δC 42.6), C-2′ (δC 64.0), CH3-3′ (δC 23.4), from H3-

3′ to C-1′ and C-2′, from H-1′ to C-2′. That the 2-hydroxypropyl substituent was on 

C-3 of the isochromone nucleus was supported by the HMBC correlations from H-4 

to C-1′, as well as from H-1′ to C-3 and C-4. 

3.98 m

2.52 m

1.13 d (6.2)
105.3

154.5

6.48 s

42.6 64.0
23.4

4.80 d (4.5)
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Therefore, the structure of EC 11 was established as 6, 8-dihydroxy-3-(2-

hydroxypropyl)-7-methyl-1H-isochromen-1-one.  
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Since compound EC 11 could not be obtained as a suitable crystal, the 

stereochemistry of the stereogenic carbon (C-2′) could not be established by X-ray 

crystallographic analysis. Therefore, comparison of the calculated and experimental 

ECD spectra was used to determine the absolute configuration of C-2′ of EC 11. 

Conformational analysis of EC 11 by dihedral driver search and MM2 minimization 

resulted in eighteen main conformations, and the most populated conformation is 

represented in Figure 76. The other seventeen conformations resulted from rotating 

the C-3′/C-2′ bond by 180 degrees steps, the C-1′/C-2′ by 120 degrees steps and 

the C-2′/OH also by 120 degrees steps. Each was energetically optimized in 

Gaussian software using APFD/6-311+G (2d, p) model chemistry and IEFPCM 

model of solvation for methanol. The Gibbs energies thereby obtained were used to 

determine the populations of each conformation by Boltzmann weighing of the 

energies at 298 K (Mori et al., 2006). The electronic circular dichroism (ECD) 

transitions for each conformation were calculated also in Gaussian using the same  
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model chemistry as the energy minimization but with the time-dependent (TD) 

method. Line broadening was performed for the 18 sets of transitions and a weighted 

sum enabled to obtain the calculated spectrum in Figure 77. As can be seen, the 

experimentally obtained ECD spectrum, with negative Cotton effects (217 nm, Δε = –

2.3 M-1 cm-1), also in Figure 77, fits well the calculated spectrum. Therefore, it was 

concluded that the absolute configuration of C-2′ is 2′S and the structure of EC 11 

was establish as 6,8-dihydroxy-3-(2R-hydroxypropyl)-7-methyl-1H-isochromen-1-

one. To the best of our knowledge, EC 11 is a new natural product. 

 

Figure 76. Most stable conformation of EC 11 (C-2′S), representing a fraction of 

around 35% of all the 18 conformations considered. The next most stable 

conformation represents a fraction of around 13% of all conformations and is 

obtained by rotating the hydroxyl group in C-2′ 120 degrees towards the viewer. In 

this visualization, the carbonyl group points away from the viewer and the rings are 

viewed diagonally from above. 
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Figure 77. Experimental (solid) and simulated (dotted) ECD spectra of EC 11 (C-

2′S) in methanol. The calculated spectral line results from the Boltzmann weighing of 

rotatory strengths of all 18 conformations of the compound with a gaussian line 

broadening of 0.3 eV. The experimental data exhibit a negative, deep minimum at 

217 nm (Δε = – 2.3 M–1 cm–1) and two smaller positive maxima at 260 nm (Δε = 0.8 

M–1 cm–1) and 295 nm (Δε = 0.7 M–1 cm–1) that are well matched by the calculated 

data. 
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Therefore, the structure of EC 11 was established as 6, 8-dihydroxy-3-(2R-

hydroxypropyl)-7-methyl-1H-isochromen-1-one (Figure 78). To the best of our 

knowledge, EC 11 has never been reported previously. Therefore, it is a new 

compound. 
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Figure 78. Structure of 6, 8-dihydroxy-3-(2R-hydroxypropyl)-7-methyl-1H-

isochromen-1-one (EC 11) 

  

From a biosynthetic point of view, the structure of EC 11 can be hypothesized 

to derive from the acetate pathway, which is summarized in Figure 79. Condensation 

of acetyl CoA (I) with five units of malonyl CoA (II) gives a hexaketide intermediate 

(III) which, after cyclization and methylation (by SAM), forms an intermediate IV. 

Enolization of IV leads to a formation of an isochromone (V) which, after 

stereospecific reduction of the ketone function in the side chain, gives rise to EC 11. 

 



CHAPTER III. RESULTS AND DISCUSSIONS 
   

 

192 
 

 

SAM

5

PKS

NADH

NAD+

I II III

IVV

EC 11  

 

Figure 79. Proposed biogenesis of EC 11 
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3.1.7 Structure Elucidation of Anthraquinones 

 

3.1.7.1. Emodin (EC 3) 

 

EC 3 was isolated as a yellow amorphous solid (mp, 256-257 ºC), its 

molecular formula C15H10O5 was established on the basis of the (+)-HRESIMS m/z 

271.0594 [M+H]+ (calculated 271.0606), indicating eleven degrees of unsaturation. 

The 13C NMR spectrum (Table 14) displayed only thirteen carbon signals which, 

together with DEPTs and HSQC spectra, were classified as two conjugated ketone 

carbonyls (δC 181.6 and 189.7), six quaternary sp2 (δC 164.6, 161.4, 147.9, 134.9, 

132.8 and 113.4), four methine sp2 (δC 124.0, 120.3, 109.7 and 108.1) and one 

methyl (δC 21.5) groups. 

The 1H NMR spectrum (Table 15), together with the COSY spectrum, 

exhibited two singlets of the aromatic protons at δH 7.12 and δH 7.44, two doublets of 

the meta-coupled aromatic protons at δH 6.51 (J = 2.2 Hz) and 7.06 (J = 2.2 Hz), in 

addition to a broad signal of two phenolic hydroxyl protons at δH 12.08 and a methyl 

singlet at δH 2.39. 

The presence of the aromatic protons/carbons, phenolic hydroxyl groups and 

the conjugated carbonyl carbons at δC 189.7 and 181.6, suggested the existence of 

the 1, 8-dihydroxyanthraquinone nucleus. This was supported by the HMBC 

correlations of the singlet at δH 7.44 (H-4) and δH 7.06, d (J = 2.2 Hz, H-5) to the 

carbonyl carbon at δC 181.6 (C-10). The methyl group was placed on C-3 was  
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confirmed by the HMBC correlations from H-2 (7.12, s) and H-4 to the methyl carbon 

at δC 21.5 (CH3-11) as well as from the singlet at δH 2.39 (CH3-11) to the carbons at 

δC 120.3 (C-4) and δC124.0 (C-2). That another benzene ring has the hydroxyl group 

on C-5 and C-7 was supported by the presence of the low frequency aromatic proton 

at 6.51, d (J = 2.2 Hz, H-7) and the higher frequency aromatic proton H-5, as well as 

by the HMBC correlation from H-7 to the oxyquaternary sp2 carbon at δC 164.6 (C-6) 

and methine sp2 carbon at δC 109.7 (C-5). 

134.9132.8

189.7 161.4

108.1 124.0

164.6 147.9

109.7 120.3181.6

113.4

2.39 s

7.06 d (2.2)

7.12 s6.51 d (2.2)

7.44 s

21.5

 

The molecular formula and the 1H and 13C NMR data of EC 3 was in 

agreement with emodin. Emodin has been previously reported from several sources, 

including from the plant Rhamnus triquerta wall (Goel et al., 1991), Chinese 

medicinal plant Polygonum cuspidatum (Polygonaceae) (Jayasuriya et al., 1992), 

Cassia obtusifolia (Leguminosae) seeds (Yang et al., 2003), and marine lichen-

derived fungus Gliocladium sp. T31 (Ren et al., 2006), an endophytic fungus 

Aspergillus versicolor, was isolated from the inner tissue of Red sea green alga 

Halimeda opuntia (Hawas et al., 2012), marine-derived fungus Monodictys sp., from  
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the sea urchin Anthocidaris crassispina, collected in Toyama Bay in the Sea of 

Japan (El-Beih et al., 2007), an endophytic fungus Eurotium rubrum, isolated from 

the inner tissue of semi-mangrove plant (Yan et al., 2012) and marine gorgonian 

coral-associated fungus Penicillium sp. SCSGAF 0023 (Bao et al., 2013). 
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Figure 80. Structure of emodin (EC 3) 

 

3.1.7.2. Physcion (EC 4)  

 

EC 4 was isolated as red crystals (mp, 207-208 ºC). The general features of 

the 1H and 13C NMR spectra of EC 4 resemble those of EC 3, except for the 

presence of the proton and carbon signals of methoxyl group in the 1H and 13C NMR 

spectra of EC 4.  

The 13C NMR spectrum (Table 14) displayed sixteen carbon signals which 

were classified, based on DEPTs and HSQC spectra, as two ketone carbonyls (δC 

190.8 and 182.0), three oxygenated quaternary sp2 carbon (δC 166.5, 165.2 and  
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162.5), five quaternary sp2 (δC 148.5, 135.2, 133.2, 113.7 and 110.2), four methine 

sp2 (δC 124.5, 121.3, 108.2 and 106.8), one methoxy (δC 56.1) and one methyl (δC 

22.2) carbons. 

The 1H NMR spectrum (Table 15), together with COSY spectrum, showed two 

pairs of meta-coupled aromatic protons at δH 7.62, dd (J = 1.4, 0.4 Hz)/ 7.08, dd (J = 

1.6, 0.8 Hz) and δH 7.36, d (J = 2.6 Hz)/ 6.68, d (J = 2.6 Hz), a singlet of methoxy 

protons at δH 3.94, a singlet of methyl protons at δH 2.45 and two singlets of the 

hydrogen-bonded phenolic hydroxyl protons at δH 12.31 and 12.11. That the 

hydroxyl group was on C-1 and the methyl group was on C-3, in emodin, was 

confirmed by the COSY correlations from the doublet doublet at δH 7.08 (J = 1.6, 0.8 

Hz, H-2) to the doublet doublet at δH 7.62 (J = 1.4, 0.4 Hz, H-4), as well as by the 

HMBC correlations from H-2 to the carbons at δC 162.5 (C-1), 121.3 (C-4), 

quaternary carbon at δC 113.7 (C-9a), from H-4 to C-9a and to the carbons at δC 

124.5 (C-2) and 182.0 (C-10), from the methyl singlet at δH 2.45 (δC 22.2, H3-11) to 

C-2 and C-4 and quaternary carbon at δC 148.5 (C-3), from the singlet of hydrogen-

bonded hydroxyl proton at δH 12.11 (OH-1) to C-1, C-2 and C-9a. That the hydroxyl 

group was on C-8 and the methoxyl group was on C-6 was confirmed by the HMBC 

correlations from another hydrogen-bonded hydroxyl singlet at δH 12.31 to the 

carbons at δC 165.2 (C-8), 110.2 (C-8a) and 106.8 (C-7) as well as from the singlet of 

the methoxyl protons at δH 3.94 to the carbon at δC 166.5. 
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7.36 d (2.6)

6.68 d (2.6)

135.2

190.8
113.7

133.2
56.1

182.0

12.31 s 12.11 s

162.5165.2 7.08 dd (1.6, 0.8)

3.94 s 2.45 s

7.62 dd (1.4, 0.4)

124.5

166.5

148.5

106.8

121.3108.2
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Consequently, the structure of EC 4 was established as physcion (Figure 81). 

Physcion has been previously reported from the culture of several fungi including 

three species of the Lichen genus Xanthoria (X. fallax, X. elegans, X. policarpa) 

(Manojlovic et al., 2000), the halotolerant fungus Aspergillus variecolor B-17, isolated 

from the sediments (Wang et al., 2007b), Aspergillus glaucus, was obtained from 

marine sediment surrounding mangrove roots (Du et al., 2008), Aspergillus terreus, 

isolated as an epiphyte from a soft coral Sinulariakavarattiensis (Parvatkar et al., 

2009), marine sponge-associated fungus Eurotium cristatum (Gomes et al., 2012) 

and marine-derived fungus Microsporum sp., was isolated from the surface of a 

marine red alga Lomentaria catenata (Wijesekara et al., 2014). 
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Figure 81. Structure of physcion (EC 4) 

 

3.1.7.3. Questin (EC 5) 

 

EC 5 was isolated as a yellow solid (mp 298-299 ºC). The 1H and 13C NMR 

spectra of EC 5 were similar to those of EC 4.  The 13C NMR spectrum (Table 14) 

showed fifteen carbon signals which were categorized, based on DEPTs and HSQC 

spectra, as two conjugated ketone carbonyls (δC 185.9 and 182.6), two oxygen 

bearing quaternary sp2 (δC 163.6 and 161.7), five quaternary sp2 (δC 146.3, 136.7, 

132.1, 114.5 and 112.5), four methine sp2 (δC 124.1, 118.9, 108.0 and 105.4), one 

methoxy (δC 56.1) and one methyl (δC 21.4) groups. The 1H NMR spectrum (Table 

15), together with the COSY spectrum, displayed two pairs of meta-coupled aromatic 

protons at δH 7.40, d (J = 1.2 Hz)/ 7.10, brs and 7.15, d (J = 2.0 Hz)/ 6.79, d (J = 2.1 

Hz), one methoxy singlet at δH 3.87, a methyl singlet at δH 2.38 and a singlet of a 

hydrogen-bonded hydroxyl proton at δH 13.39. 
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Like EC 4, the existence of 1-hydroxy-3-methylpenyl moiety was corroborated 

by the COSY correlations from the methyl singlet at δH 2.38 to a broad singlet at δH 

7.10 (H-2) and a doublet at 7.40 (J = 1.2 Hz, H-4), as well as by the HMBC 

correlation of H-2 to the carbons at δC 161.7 (C-1), 114.5 (C-9a), 118.9 (C-4) and the 

methyl carbon at δC 21.4 (C-3), from H-4 to the carbons at δC 124.1 (C-2), (C-9a), the 

methyl carbon at δC 21.4 (C-3) and the ketone carbonyl carbon at δC 182.6 (C-10), 

from the methyl singlet at δH 2.38 (δC 21.4) to C-2, C-4 and the quaternary sp2 carbon 

at δC 146.3 (C-3).  

Contrary to EC 4 (physcion), the methoxyl group was on C-8 as was 

confirmed by the HMBC correlations from the doublet at δH 7.15 (J = 2.0 Hz; δC 

108.0, H-5) to the quaternary carbon at δC 112.5 (C-8a) and the ketone carbonyl at 

δC 182.6 (C-10), from the doublet at δH 6.79 (J = 2.1 Hz; δC 105.4, H-7) to the 

quaternary carbons at δC 163.6 (C-8) and 112.5 (C-8a). 

56.1

163.6

105.4

118.9

114.5

108.0

13.39 s

112.5

182.6

6.79 d (2.1)

7.15 d (2.0)

3.87 s

161.7

124.1

146.3

2.38 s

7.10 brs

7.40 d (1.2)

21.4
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Therefore, the structure of EC 5 was established as 1, 6-dihydroxy-8-

methoxy-3-methyl anthracene-9, 10-dione, commonly known as questin (Figure 82). 

Questin was previously isolated from several fungal species including the fungus 

Penicillium frequentans Westling (Mahmoodian and Stickings, 1964), marine-derived 

fungus Aspergillus sp. B-F-2 (Liu et al., 2006), the halotolerant fungus Aspergillus 

variecolor B-17, was isolated from the sediments (Wang et al., 2007b) and 

mangrove-derived endophytic fungus Eurotium rubrum (Li et al., 2009). 
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Figure 82. Structure of questin (EC 5) 

 

3.1.7.4. Questinol (EC 6) 

 

EC 6 was isolated as yellow crystals (mp 281-282 ºC), its molecular formula 

C16H12O6, was established on the basis of the (+)-HRESIMS m/z 301.0713 [M+H]+ 

(calculated 301.0712), indicating eleven degrees of unsaturation. The 1H and 13C 

NMR spectra of EC 6 resembled those of EC 5. 
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The 13C NMR spectrum (Table 14) showed only fourteen carbon signals and 

in conjunction with DEPTs and HSQC spectra, they were classified as two ketone 

conjugated carbonyls (δC 185.8 and 182.8), six quaternary sp2 (δC 163.8, 161.8, 

150.9, 136.6, 132.3 and 115.3), four methine sp2 (δC 120.8, 115.6, 107.2 and 105.8), 

one hydroxymethyl (δC 62.1) and one methoxy (δC 56.1) carbons. 

The 1H NMR (Table 15), in combination with HSQC spectrum, exhibited four 

singlets of the aromatic protons at δH 7.55, 7.18, 7.14 and 6.78, a singlet of 

hydroxymethylene protons (2H) at δH 4.57, a methoxy singlet at δH 3.86, in addition 

to a singlet of the hydrogen-bonded hydroxyl proton at δH 13.54 and a hydroxyl 

proton at δH 8.30, d (J = 4.4 Hz). 

The COSY spectrum revealed cross peaks from the singlet at δH 7.55 (H-4) to 

the singlet at δH 7.18 (H-2) and the singlet at δH 4.57 (H2-11), from H-2 to H-4 and H-

11, suggesting that the methyl group on C-3 in EC 5 (questin) was replaced by a 

hydroxymethyl group in EC 6. This was supported by the HMBC correlations from H-

4 to the carbons at δC 120.8 (C-2) and 115.3 (C-9a), as well as from H2-11 to C-2 

and C-4 and the quaternary carbon at δC 150.9 (C-3). Like EC 5 (questin), the 

hydroxyl and methoxyl groups were on C-6 and C-8 of another benzene ring of EC 6 

was supported by COSY correlations between the broad singlets at δH 7.14 (H-5) 

and δH 6.78 (H-7) as well as by HMBC correlations from the singlet of methoxy 

proton at δH 3.86 (δC 56.1, OCH3-8) to the quaternary carbon at δC 163.8 (C-8). 
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56.1

161.8
115.3

3.86 s

4.57 s
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7.55 s7.14 brs

115.6
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8.30 d (4.4)

6.78 s

 

The 1H and 13C NMR data, in conjunction with the molecular formula, of EC 6 

allowed to establish the structure of EC 6 as questinol. Questinol has been 

previously isolated from several fungi, including an endophytic fungus Penicillium 

glabrum, was isolated from pomegranate fruits (Punica granatum) (Hammerschmidt 

et al., 2012), filamentous fungus Eurotium herbariorum NU-2 from Karebushi (a 

katsuobushi), marine-derived fungus Eurotium amstelodami (Yang et al., 2014), an 

endophytic fungus isolated from Catharanthus roseus, was collected from the river 

banks of Amassoma in Southern Nigeira (Akpotu et al., 2017), crinoid-derived fungus 

Aspergillus ruber 1017 (Li et al., 2017) and marine sponge-associated fungus 

Talaromyces stipitatus KUFA 0207 (Noinart et al., 2017). 
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Figure 83. Structure of questinol (EC 6) 

 

3.1.7.5. Acetylquestinol (EC 7) 

 

EC 7 was isolated as yellow crystals (mp, 101-103 ºC), and its molecular 

formula was determined as C18H14O7, based on the (+)-HRESIMS m/z 343.0814 

[M+H]+ (calculated 343.0818), indicating twelve degrees of unsaturation. The IR 

spectrum showed absorption bands for hydroxyl (3442 cm-1), ester (1749 cm-1) and 

conjugated carbonyl (1631 cm-1) and aromatic (1588 cm-1) groups. 

The 1H and 13C NMR spectra of EC 7 are similar to those of EC 6 (questin), 

except for the presence of one ester carbonyl and one extra methyl carbon in the 13C 

NMR spectrum. The 13C NMR spectrum (Table 14) exhibited eighteen carbon signals 

which, based on DEPTs and HSQC spectra, can be classified as two conjugated 

ketone carbonyls (δC 186.0 and 182.2), one ester carbonyl (δC 170.2), eight 

quaternary sp2 [δC 163.6, 161.7 (2C), 144.2, 136.7, 132.5, 116.0 and 111.8], four  
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methine sp2 (δC 122.3, 116.6, 107.5 and 105.3), one methylene sp3 (δC 64.3), one 

methoxy (δC 56.3) and one methyl (δC 20.6) groups. 

The 1H NMR spectrum (Table 15), together with the COSY spectrum, 

exhibited two pairs of meta-coupled aromatic protons at δH 7.54, d (J = 1.5 Hz)/ δH 

7.24, d (J = 1.5 Hz) and δH 7.17, d (J = 2.2 Hz)/ δH 6.81, d (J = 2.2 Hz); a broad 

singlet of a hydrogen-bonded phenolic hydroxyl at δH 13.38, an aromatic methoxy 

singlet at δH 3.89, a singlet of two magnetically equivalent oxymethylene protons at 

δH 5.15 and a methyl singlet at δH 2.13. The 1H and 13C NMR general features of 

compound EC 7 suggested that it is a 1, 3, 6, 8-tetrasubsituted 9,10-anthraquinone, 

similar to questin (EC 5) (Li et al., 2009) and questinol (EC 6) (Bao et al., 2013). 

 That the hydroxyl group was on C-1 and the oxygenated methylene 

substituent as on C-3, was substantiated by the HMBC correlations from H-2 (δH 

7.24, d, J = 1.5 Hz) to C-1 (δC 161.7), C-4 (δC 116.6), C-9a (δC 116.0), C-11 (δC 

64.3), from H-4 (δH 7.54, d, J = 1.5 Hz) to C-2 (δC 122.3), C-9a, C-10 (δC 182.2) and 

C-11. Since both H2-11 (δH 5.15, s) and the methyl singlet at δH 2.13 exhibited 

HMBC correlations with the carbonyl carbon at δC 170.2 (Ac), the substituent on C-3 

was acetoxymethyl. 
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116.0

64.3

122.3

182.2
144.2
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5.15 s

2.13 s

7.24 d (1.5)

7.54 d (1.5)

20.6

 

That the hydroxyl and methoxyl groups were on C-6 and C-8 of another aromatic 

ring was supported by the COSY correlation between H-7 (δH 6.81, d, J = 2.2 Hz) 

and the methoxyl singlet. This was confirmed by the HMBC correlation of H-7 to C-5 

(δC 107.5), C-8 (δC 163.6), and C-8a (δC 111.8) as well as from H-5 (δH 7.17, d, J = 

2.2 Hz) to C-7 (δC 105.3), C-8a (δC 111.8) and C-10 (δC 182.2). 

111.8105.3

182.2
107.5

163.6

7.17 d (2.2)

6.81 d (2.2)

3.89 s
56.3

 

Therefore, the structure of compound EC 7 was determined as acetylquestinol, 

which was confirmed by the X-ray analysis as shown in the ORTEP view (Figure 84). 
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Figure 84. ORTEP view of acetylquestinol 

Literature search revealed that although questinol was isolated from several 

sources (Bao et al., 2013; Yang et al., 2014), however this is the first report on 

isolation of acetylquestinol (Figure 85). Therefore, compound EC 7 is a new natural 

product. 
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Figure 85. Structure of acetylquestinol (EC 7) 
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Table 14. Comparison of the 13C NMR (300.13 and 75.47 MHz) assignment for EC 3 

(DMSO-d6), EC 4 (CDCl3), EC 5 (DMSO-d6), EC 6 (DMSO-d6), and EC 7 (DMSO-d6) 

Position EC 3  EC 4  EC 5  EC 6  EC 7 

 δC, type δC, type δC, type δC, type δC, type 

1 161.4, C 162.5, C 161.7, C 161.8, C 161.7, C 
2 124.0, CH 124.5, CH 124.1, CH 120.8, CH 122.3, CH 
3 147.9, C 148.5, C 146.3, C 150.9, C 144.2, C 
4 120.3, CH 121.3, CH 118.9, CH 115.6, CH 116.6, CH 
4a 134.9, C 135.2, C 136.7, C 136.6, C 136.7, C 
5 109.7, CH 108.2, CH 108.0, CH 107.2, CH 107.5, CH 
6 164.6, C 166.5, C - - 161.7, C 
7 108.1, CH 106.8, CH 105.4, CH 105.8, CH 105.3, CH 
8 - 165.2, C 163.6, C 163.8, C 163.6, C 
8a - 110.2, C 112.5, C - 111.8, C 
9 189.7, CO 190.8, CO 185.9, CO 185.8, CO 186.0, CO 
9a 113.4, C 113.7, C 114.5, C 115.3, C 116.0, C 
10 181.6, CO 182.0, CO 182.6, CO 182.8, CO 182.2, CO 
10a 132.8, C 133.2, C 132.1, C 132.3, C 132.5, C 
11 21.5, CH3 22.2, CH3 21.4, CH3 - - 
CH2-11 - - - 62.1, CH2 64.3, CH2 
OCH3-6 - 56.1, CH3 - - - 
OCH3-8 - - 56.1, CH3 56.1, CH3 56.3, CH3 
Ac - - - - 170.2, CO 

20.6, CH3 
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Table 15. Comparison of the 1H NMR (300.13 and 75.47 MHz) assignment for EC 3 

(DMSO-d6), EC 4 (CDCl3), EC 5 (DMSO-d6), EC 6 (DMSO-d6), and EC 7 (DMSO-d6) 

Position  EC 3  EC 4 EC 5  EC 6  EC 7 

 δH, (J in Hz) δH, (J in Hz) δH, (J in Hz) δH, (J in Hz) δH, (J in Hz) 

1 - - -  - 
2 7.12, s 7.08, dd (1.6, 0.8) 7.10, brs 7.18, s 7.24, d (1.5) 
3 - - - - - 
4 7.44, s 7.62, dd (1.4, 0.4) 7.40, d (1.2) 7.55, s 7.54, d (1.5) 
4a - - - - - 
5 7.06, d (2.2) 7.36, d (2.6) 7.15, d (2.0) 7.14, brs 7.17, d (2.2) 
6 - - - - - 
7 6.51, d (2.2) 6.68, d (2.6) 6.79, d (2.1) 6.78, s 6.81, d (2.2) 
8 - - - - - 
8a - - - - - 
9 - - - - - 
9a - - - - - 
10 - - - - - 
10a - - - - - 
CH3-3 2.39, s 2.45, s 2.38, s - - 
CH2-11 - 3.94, s - 4.57, s 5.15, s 
OCH3-6 - - - - - 
OCH3-8 - - 3.87, s 3.86, s 3.89, s 
OH-1 12.08, brs 12.11, s 13.39, s 13.54, s 13.38, brs 
OH-6 - - - - - 
OH-8 - 12.31, s - - - 
OH-11 - - - 8.30, d (4.4) - 
Ac - - - - 2.13, s 
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3.1.8 Structure Elucidation of prenylated 1-H indole-3-carbaldehydes 

 

3.1.8.1. 2-(2-Methyl-3-en-2yl)-1H-indole-3-carbaldehyde (EC 8) 

 

Compound EC 8 was isolated as yellow crystal (mp, 162-164 ºC) and its 

molecular formula C14H15NO was determined based on the (+)-HRESIMS m/z 

214.1236 [M+H]+ (calculated 214.1232), indicating eight degrees of unsaturation. 

The IR spectrum showed absorption bands for amine (3242 cm-1), carbonyl (1735 

cm-1), aromatic (1583 cm-1) and olefin (1622 cm-1) groups. 

The 13C NMR spectrum (Table 16) exhibited thirteen carbon signals which, in 

combination with DEPTs and HSQC spectra, can be categorized as one aldehyde 

carbonyl (δC 186.6), four quaternary sp2 (δC 155.0, 133.9, 127.2 and 113.9), five 

methine sp2 (δC 145.0, 123.5, 123.1, 122.0 and 111.0), one methylene sp2 (δC 114.0), 

one quaternary sp3 (δC 39.8) and two methyl (δC 28.9) carbons. 

The 1H NMR and COSY spectrum (Table 16), revealed the presence of four 

aromatic protons of a 1, 2-disubstituted benzene ring at δH 8.37, dd (J = 7.4, 2.0 Hz, 

H-4), δH 7.38, dd (J = 7.4, 2.0 Hz, H-7), δH 7.27, ddd (J = 7.4, 7.4, 2.0 Hz, H-5) and 

δH 7.24, ddd (J = 7.4, 7.4, 2.0 Hz, H-6), three olefinic protons of the vinyl group at δH 

6.24, dd (J = 17.5, 11.0 Hz, H-12), 5.27, d (J = 11.0 Hz) and 5.28, d (J = 17.5, Hz, H-

13), in addition to a singlet of an aldehyde proton at δH 10.49 (H-10), a broad singlet 

of NH group at δH 8.96 and a singlet of two methyl groups at δH 1.68. 
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Table 16. 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) and HMBC assignment 

for EC 8 

Position δC, type δH, (J in Hz) COSY HMBC 

2 155.0, C - - - 
3 113.9, C - - - 
4 122.0, CH 8.37, dd (7.4, 2.0) H-5 C-6, 8 
5 123.1, CH 7.27, ddd (7.4, 7.4, 2.0) H-4, 6 C-7, 9 
6 123.5, CH 7.24, ddd (7.4, 7.4, 2.0) H-5, 7 C-4, 8 
7 111.0, CH 7.38, dd (7.4, 2.0) H-6 C-5, 9 
8 133.9, C - - - 
9 127.2, C - - - 
10 186.6, CHO 10.49, s - C-3, 9 
11 39.8, C - - - 
12 145.0, CH 6.24, dd (17.5, 11.0) H-13a, 13b C-2, 11 
13a 
    b 

114.0, CH2 5.28, d (17.5) 
5.27, d (11.0) 

H-12 
H-12 

C-11, 12 
C-11, 12 

14 28.9, CH3 1.68, s - C-2, 11, 12, 15 
15 28.9, CH3 1.68, s - C-2, 11, 12, 14 
NH-1  8.96, brs - - 

 

The HMBC spectrum (Table 16) showed correlations from the proton signal at 

δH 8.37, dd (J = 7.4, 2.0 Hz, H-4) to the carbons at δC 123.5 (C-6) and δC 133.9 (C-8), 

from δH 7.38, dd, J = 7.4, 2.0 Hz (H-7) to the carbons at δC 123.1 (C-5) and δC 127.2 

(C-9), from δH 7.27, ddd, J = 7.4, 7.4, 2.0 Hz (H-5) to the carbons at δC 111.0 (C-7) 

and (C-9), from δH 7.24, ddd, J = 7.4, 7.4, 2.0 Hz (H-6) to the carbon at δC 122.0 (C-

4) and δC 133.9 (C-8) as well as from the aldehyde proton (H-10) to the carbon δC 

113.9 (C-3) and (C-9), suggesting the existence of a 3-carbaldehyde indole moiety. 
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113.9

8.37 dd (7.4, 2.0) 

7.27 ddd (7.4, 7.4, 2.0)

7.24 ddd (7.4, 7.4, 2.0)

7.38 dd (7.4, 2.0)

10.49 s

122.0
123.1

111.0

133.9

127.2

186.6

123.5

 

Moreover, the HMBC spectrum (Table 16) also showed correlations from the 

proton signal at δH 6.24, dd, J = 17.5 Hz, 11.0 Hz (H-12) to the carbon at δC 39.8 (C-

11), from δH 5.28, d, J = 17.5 Hz (H-13a) and δH 5.27, d, J = 11.0 Hz (H-13b) to C-11 

and the carbon at δC 145.0 (C-12), and from the methyl signal at δH 1.68 (H3-14/15) 

to C-11 and C-12, indicating the presence of the 2-methyl-3-en-2-yl substituent. As 

both H-12 and H3-14/15 also showed HMBC cross peaks to the carbon at δC 155.0 

(C-2), the 2-methyl-3-en-2-yl substituent was placed on C-2. 

1.68 s

1.68 s

155.0

39.8

145.0
28.9

28.9

5.27 d (11.0)

5.28 d (17.5)

114.06.24 dd (17.5, 11.0)
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Taking into account the 1H and 13C chemical shift values and their 

correlations, the structure of EC 8 (Figure 86) was established as 2-(2-methyl-3-en-

2-yl)-1H-indole-3-carbaldehyde, extensive literature search revealed that this 

compound has never been previously reported and therefore it is a new compound. 
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Figure 86. Structure of 2-(2-methyl-3-en-2-yl)-1H-indole-3-carbaldehyde (EC 8) 

 

3.1.8.2. 2-(2, 2-Dimethylcyclopropyl)-1H-indole-3-carbaldehyde (EC 9) 

 

The (+)-HRESIMS of EC 9 (m/z 214.1239 [M+H]+, calculated 214.1232), revealed 

that it has the same molecular formula (C14H15NO) as compound EC 8. Therefore, 

compound EC 9 is an isomer of compound EC 8. 

The IR spectrum showed absorption bands for amine (3252 cm-1), carbonyl (1768 

cm-1), aromatic (1583, 1558 cm-1), and olefin (1633 cm-1) groups. The general  
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features of the 1H and 13C NMR spectra (Table 17) of compound EC 9 resemble 

those of EC 8, revealing the presence of a 1H-indole-3-carbaldehyde moiety. 

 

Table 17. 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) and HMBC assignment 

for EC 9 

Position δC, type δH, (J in Hz) COSY HMBC 

2 150.6, C - - - 
3 116.7, C - - - 
4 121.2, CH 8.26, dd (7.5, 2.0) H-5 C-6, 8 
5 122.9, CH 7.26, ddd (7.5, 7.5, 2.0) H-4, 6 C-7,9 
6 123.5, CH 7.23, ddd (7.5, 7.5, 2.0) H-5, 7 C-4, 8 
7 111.0, CH 7.35, dd (7.5, 2.0) H-6 C-5, 9 
8 134.8, C - - - 
9 126.2, C - - - 
10 185.4, CHO 10.19, s - C-3, 9 
11 21.0, CH 2.25, dd (8.4, 5.9) H-12a, 12b C-13, 14 
12a 
    b 

19.4, CH2 1.12, dd (8.4, 5.1) 
1.05, dd (5.7, 5.7) 

- 
- 

C-2, 11 
C-2, 11, 14 

13 20.8, C - - - 
14 26.2, CH3 1.32, s - C-11, 15 
15 21.3, CH3 0.92, s - C-11, 15 
NH-1 - 8.91, brs - - 

 

This was supported by the HMBC correlations from the singlet of the aldehyde 

proton at δH 10.19 (H-10) to the quaternary sp2 carbons at δC 116.7 (C-3) and 126.2 

(C-9), from the dd at δH 8.26 (J = 7.5, 2.0 Hz, H-4) to the carbons at δC 123.5 (C-6) 

and 134.8 (C-8), from the dd at δH 7.35 (J = 7.5, 2.0 Hz, H-7) to the carbons at  
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δC 122.9 (C-5) and 126.2 (C-9), from the ddd at δH 7.26 (J = 7.5, 7.5, 2.0 Hz, H-5) to 

the carbon at δC 111.0 (C-7) and 126.2 (C-9), and from the ddd at δH 7.23 (J = 7.5, 

7.5, 2.0 Hz, H-6) to the carbon at δC 121.2 (C-4) and 134.8 (C-8). 

 

116.7
121.2

122.9

123.5

111.0
134.8

126.2

8.26 dd (7.5, 2.0)

7.26 ddd (7.5, 7.5, 2.0)

7.23 ddd (7.5, 7.5, 2.0)

7.35 dd (7.5, 2.0)

10.19 s185.4

 

That the substituent on C-2 was the 2, 2-dimethylcyclopropyl group, was 

substantiated by the presence of two tertiary methyl (δH 1.32, s/ δC 26.2, H3-14 and 

δH 0.92, s/ δC 21.3, H3-15), one sp3 methylene (δH 1.05, dd, J = 5.7, 5.7 Hz and 1.12, 

dd, J = 8.4, 5.1 Hz / δC 19.4, H2-12), one methine (δH 2.25, dd, J = 8.4, 5.9 Hz/δC 

21.0, H-11) and one sp3 quaternary carbon (δC 20.8, H-13) as well as by the HMBC 

correlations from  H3-14 and H3-15 to C-11, from H2-12 to C-2, C-11 and C-14, as 

well as from H-11 to C-13 and C-14. 
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21.0

19.4 20.8 26.2

21.3 0.92 s

1.32 s1.12 dd (8.4, 5.1)

1.05 dd (5.7, 5.7)

150.6

2.25 dd (8.4, 5.9)

 

 

Therefore, the structure of EC 9 (Figure 87) was established as (2, 2-

dimethylcyclopropyl)-1H-indole-3-carbaldehyde. 
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Figure 87. Structure of (2, 2-dimethylcyclopropyl)-1H-indole-3-carbaldehyde (EC 9) 

 

Examination of the structure of EC 9 revealed that C-11 of its cyclopropane 

ring is stereogenic. Therefore, it was necessary to determine the configuration of this 

carbon. Since compound EC 9 was isolated as a yellowish viscous mass, the 

stereochemistry of C-11 could not be determined by X-ray analysis. Therefore, the  
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absolute configuration of C-11 of EC 9 was determined by comparison of 

experimental electronic circular dichroism (ECD) with the calculated ECD. In order to 

perform ECD calculations, conformational analysis by dihedral driver search and 

MM2 minimization was carried out which resulted in four main conformations, of 

which the most populated is represented in Figure 88 (11S enantiomer). The other 

three conformations resulted from rotating the aldehyde and/or the C-2/C-11 bond by 

180º. Each conformation was energetically optimized using APFD/6-311+G (2d, p) 

model chemistry and an IEFPCM model of solvation for chloroform. The Gibbs 

energies thereby obtained were used to determine the populations of each 

conformation by Boltzmann weighing at 298 K.  

The conformation shown in Figure 88 represents 89.5% of all conformers and 

was therefore solely used to calculate ECD spectra (Figure 89) for the C-11S 

enantiomer, which superimposed on the experimental spectrum. ECD transitions 

calculations used the same model chemistry as the energy minimization but with the 

time-dependent (TD) method. The experimentally observed negative Cotton effects 

(242 nm, Δε = – 1.4 M-1 cm-1 and 280 nm, Δε = – 0.7 M-1 cm-1) fit well the calculated 

spectrum. Therefore the absolute configuration of C-11 is S. To the best of our 

knowledge, the structure of compound EC 9 has not yet been reported so far. 
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Figure 88. Most stable conformation of EC 9 (C-11S), representing a fraction of 

around 90% of all four main conformations. In this visualization, the aldehyde is the 

nearest group and the rings are viewed from below. 

 

Figure 89. Experimental (solid, left axis) and simulated (dotted, right axis) ECD 

spectra of EC 9 (C-11S) in chloroform. A line broadening of 0.4 eV was applied to 

calculated rotatory strengths. The experimental data exhibits two minima around 242 

nm (Δε = – 1.4 M–1 cm–1) and 280 nm (Δε = – 0.7 M–1 cm–1) that are well matched by 

the calculated data. 
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Structurally, the biosynthesis of EC 8 and EC 9 can be proposed to derive 

from L-tryptophan (L-Trp). Oxiadtive deamination of L-Trp produces indole pyruvic 

acid (I) which, after oxidative decarboxylation, gives rise to indole acetaldehyde (II). 

Oxidation of indole acetaldehyde (II) gives indole acetic acid (III) which, after 

oxidative decarboxylation, leads to a formation of indole 3-carbaldehyde (IV). 

Prenylation of IV by different prenyltransferase enzymes gives rise to the reverse 

prenylated indole 3-carbaldehyde EC 8 and the prenylated 3-carbaldehyde (V). 

Cyclization of the prenyl sidechain of (V) leads to a formation of EC 9. 

NH3 CO2

CO2
PPi DMAPP

DMAPP

PPi

[O]

[O][O]

[O]

L-Trp I II

IIIIVEC 8

VEC 9

(i)
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Figure 90. Proposed biosynthetic pathways for EC 8 and EC 9 
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3.1.9 Structure Elucidation of indolylmethyl 1, 4-bezodiazepen-2, 5-dione 

 

3.1.9.1. Aszonalenin (NTK 2/NG 4) 

 

NTK 2/NG 4 was isolated as a white solid (mp, 249-250 ºC). The 13C NMR 

spectrum (Table 18) displayed twenty three carbon signals which can classified, 

according to DEPTs and HSQC spectra, as two amide carbonyls (δC 169.9 and 

166.8), four quaternary sp2 (δC 149.1, 134.1, 131.3 and 126.8), nine methine sp2 (δC 

143.8, 132.6, 131.1, 128.6, 125.3, 125.0, 120.5, 118.4 and 109.2), one methylene 

sp2 (δC 114.3), two quaternary sp3 (δC 60.7 and 41.5), two methine sp3 (δC 81.7 and 

57.1), one methylene sp3 (δC 33.4) and two methyl (δC 22.7 and 22.5) groups. 

The 1H NMR spectrum, in combination with HSQC spectrum (Table 18) 

showed the presence of eight aromatic protons at δH 7.83, dd (J = 7.9, 1.4 Hz), 7.44, 

ddd (J = 7.7, 7.7, 1.6 Hz), 7.22, ddd (J = 7.6, 7.6, 1.1 Hz), 7.15, d (J = 7.4 Hz), 7.08, 

ddd (J = 7.6, 7.6, 1.2 Hz), 6.92, dd (J = 8.0, 0.8 Hz), 6.72, ddd (J = 7.4, 7.4, 1.0 Hz) 

and 6.62, d (J = 7.7 Hz), methine sp2 proton at δH 6.11, dd (J = 17.3, 10.7 Hz, δC 

143.8), methylene sp2 proton at δH 5.10, dd (J = 17.3, 1.2 Hz)/ 5.13, dd (J = 10.9, 1.2 

Hz, δC 114.3), two methine sp3 proton at δH 4.00, dd (J = 8.9, 7.6 Hz, δC 57.1), 5.58, 

s, methylene sp3 proton at δH 3.47, dd (J = 13.9, 7.5 Hz)/ 2.41, dd (J = 13.9, 9.0 Hz, 

δC 33.4), two methyl singlet at δH 1.14, 1.06 and a singlet of NH group at δH 6.15 and 

8.11. 
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The COSY spectrum (Table 18) exhibited the cross peaks from the dd at δH 

6.92 (J = 8.0, 0.8 Hz, H-18) to the ddd at δH 7.44 (J = 7.7, 7.7, 1.6, H-19), from the 

ddd at δH 7.22 (J = 7.6, 7.6, 1.1 Hz, H-20) to the dd at δH 7.83 (J = 7.9, 1.4 Hz, H-21) 

and also by the H-19 and H-20 indicating the presence of the 1, 2-disubstituted 

benzene ring. This was confirmed by the HMBC correlation from the H-21 to the 

carbons at δC 134.1 (C-15) and 132.6 (C-19), from H-19 to C-15 and the carbon at δC 

131.1 (C-21), from H-20 to the carbon at δC 126.8 (C-14) and 120.5 (C-18), from H-

18 to C-14. That this 1, 2-disubstituted benzene ring was fused to the 1, 4-

bezodiazepen-2, 5-dione ring through C-14 and C-15 was evidence by the HMBC 

correlation of H-21 to the amide carbonyl at δC 166.8. 

131.1

125.3
132.6

120.5

134.1

166.8

169.9

8.11 s

7.22 ddd (7.6, 7.6, 1.1)

6.92 dd (8.0, 0.8)

7.44 ddd (7.7, 7.7, 1.6)

7.83 dd (7.9, 1.4)

126.8

57.1

 

That the second 1, 2-disubstituted benzene ring was part of the 2,3-dihydro-

1H-indole moiety was confirmed by the COSY correlations from the doublet at δH 

7.15 (J = 7.4 Hz, H-4) to the ddd at δH 6.72 (J = 7.4, 7.4, 1.0 Hz, H-5), from the 

doublet at δH 6.62 (J = 7.7 Hz, H-7) to the ddd at δH 7.08 (J = 7.6, 7.6, 1.2 Hz, H-6),  
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as well as from H-5 to H-4 and H-6, and H-6 to H-5 and H-7. This was confirmed by 

the HMBC correlations from H-4 to the carbons at δC 128.6 (C-6) and 149.1 (C.8), 

from H-7 to the carbons at δC 118.4 (C-5) and 131.3 (C-9), from H-5 to the carbons 

at δC 109.2 (C-7) and C-9, as well as from H-6 to the carbon at δC 125.0 (C-4) and C-

8, from the amine singlet at δH 6.15 (NH-1) to C-8, C-9 and the quaternary carbon at 

δC 60.7, as well as from the singlet at δC 5.58 (H-2) to C-8 and C-9. 

149.1

131.3

81.7

5.58 s

6.15 s

109.2

128.6

60.7

125.0

7.15 d (7.4)

118.4

6.62 d (7.7)

7.08 ddd (7.6, 7.6,1.2)

6.72 ddd (7.4, 7.4, 1.0)

 

That the 2, 3-dihydro-1H-indole and the 3, 4-dihydro-1H-1, 4-benzodiazepen-

2, 5-dione portions were linked together through a pyrrolidine ring, was corroborated 

by the HMBC cross peaks from the dd at δH 3.47 (J = 13.9, 7.5 Hz; δC 33.4, H-10a) 

to the carbons at δC 60.7 (C-3) and 57.1 (C-11), from the dd at δH 2.41 (J = 13.9, 9.0 

Hz, δC 33.4, H-10b) to C-11.  
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57.1 

3.47 dd (13.9, 7.5)

2.41 dd (13.9, 9.0)

33.460.7

 

That the 2-methylbut-3-en-2-yl substituent was on C-3 was substantiated by 

the COSY correlations from the dd at δH 6.11 (J = 17.3, 10.7, H-2′, δC 143.8) to the 

double doublets at δH 5.13 (J = 10.9, 1.2, H-1′b; δC 114.3) and 5.10 (J = 17.3, 1.2 

Hz, H-1′a; δC 114.3) as well as by the HMBC correlations from the methyl singlets at 

δH 1.06 (δC 22.5, Me-4′) and δH 1.14 (δC 22.7, Me-5′) to  the quaternary carbon at δC 

41.5 (C-3′), C-3 and C-2′, and from H-2 to C-3′. 
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5.58 s

6.11 dd (17.3, 10.7)

1.06 s

22.5

143.8

60.7

41.5

1.14 s 22.7

5.10 dd (17.3, 1.2)
5.13 dd (10.9, 1.2)
114.3

 

The 1H and 13C NMR data of NTK 2/NG 4 are compatible with those of 

aszonalenin. However, the concrete prove of it identity was based on the optical 

rotation of NTK 2/NG 4 ([α]20
D  = – 27.0) which is compatible with those of 

aszonalenin. 

Aszonalenin is well known fungal metabolites have been isolated from several 

fungi including Aspergillus zonatus (Kimura et al., 1982b), Neosartorya Fischeri IFM 

52672 (Wakana et al., 2006) and Neosartorya fischeri CGMCC 3.53781 (Shan et al., 

2014). This compound was also reported from the marine-derived fungus Aspergillus 

carneus which was isolated from an estuarine sediment (Capon et al., 2003), as well 

as from the soil fungi Neosartorya fischeri KUFC 6344 (Eamvijarn et al., 2013) and 

Neosartorya tatenoi KKU-2NK23 (Yim et al., 2014). 
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Figure 91. Structure of aszonalenin (NTK 2/NG 4) 

 

3.1.9.2. Acetylaszonalenin (NTK 3) 

 

NTK 3 was isolated as a white solid (mp, 237-239 ºC). The general features of 

the 1H and 13C NMR spectra (Table 18) NTK 3 were very similar to those of NTK 

2/NG 4 except for the appearance of the signals of the ester carbonyl (δC 170.7) and 

methyl carbons (δC 24.2) in the 13C NMR spectrum and an additional methyl singlet 

at δH 2.59 in the 1H NMR spectrum. 

That the acetyl group (δC 170.7, 24.2; δH 2.59, s) was on the nitrogen of the 

indole moiety (N-1) was corroborated by the lower frequencies of C-8 (δC 142.0) 

when compared to the corresponding carbon of NTK 2/NG 4 (δC 149.1) while the  
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frequencies of H-7 and C-7 increased from δH 6.62, d (J = 7.7 Hz)/ δC 109.2 in NTK 

2/NG 4 to δH 8.00, d (J = 7.9 Hz)/ δC 119.2, respectively. Therefore the structure of 

NTK 3 was proposed to be acetylaszonalenin which was confirmed by the 1H and 

13C NMR values and the sign of the rotation from the literature. 

Acetylaszonalenin was frequently isolated from many fungi such as 

Neosartorya fischeri KUFC 6344 (Eamvijarn et al., 2013), Neosartorya fischeri 

CGMCC 3.53781 (Shan et al., 2014) and marine-derived fungus Aspergillus terreus 

(You et al., 2015) and normally occurred together with aszonalenin. 
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Figure 92. Structure of acetylaszonalenin (NTK 3) 
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Table 18. Comparison of 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) 

assignment for NTK 2/NG 4 and NTK 3 

Position NTK 2/NG 4 NTK 3 

 δC, type δH, (J in Hz) δC, type δH, (J in Hz) 

2 81.7, CH 5.58, s 82.1, CH 5.92, s 
3 60.7, C - 60.2, C - 
4 125.0, CH 7.15, d (7.4) 124.3, CH 7.23, d (7.6) 
5 118.4, CH 6.72, ddd (7.4, 7.4, 1.0) 124.1, CH 7.05, dd (7.5, 7.5) 
6 128.6, CH 7.08, ddd (7.6, 7.6, 1.2) 128.9, CH 7.25, dd (7.4, 7.4) 
7 109.2, CH 6.62, d (7.7) 119.2, CH 8.00, d (7.9) 
8 149.1, C - 142.0, C - 
9 131.3, C - 133.9, C - 
10a 
    b 

33.4, CH2 3.47, dd (13.9, 7.5) 
2.41, dd (13.9, 9.0) 

30.6, CH2 3.38, dd (13.8, 8.4) 
2.42, dd (13.4, 8.0) 

11 57.1, CH 4.00, dd (8.9, 7.6) 56.6, CH 3.89, t (8.3) 
13 166.8, CO - 166.7, CO - 
14 126.8, C - 127.4, C - 
15 134.1, C - 133.8, C - 
17 169.9, CO - 169.6, CO - 
18 120.5, CH 6.92, dd (8.0, 0.8) 120.7, CH 6.98, d (7.9) 
19 132.6, CH 7.44, ddd (7.7, 7.7, 1.6) 132.3, CH 7.36, ddd (7.7, 7.7, 1.4) 
20 125.3, CH 7.22, ddd (7.6, 7.6, 1.1) 125.3, CH 7.10, dd (7.4, 7.4, 0.8) 
21 131.1, CH 7.83, dd (7.9, 1.4) 130.9, CH 7.61, d (7.7) 
1′a 
   b 

114.3, CH2 5.10, dd (17.3, 1.2) 
5.13, dd (10.9, 1.2) 

114.2, CH2 5.08, d (16.2) 
5.07, d (11.6) 

2′ 143.8, CH 6.11, dd (17.3, 10.7) 143.3, CH 5.85, dd (17.5, 10.7) 
3′ 41.5, C - 40.7, C - 
4′ 22.7, CH3 1.06, s 22.9, CH3 0.96, s 
5′ 22.5, CH3 1.14, s 22.5, CH3 1.16, s 
NH-1 - 6.15, s - 9.45, s 
NH-16 - 8.11, s 170.7, CO 

24.2, CH3 
- 
2.59, s 
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3.1.9.3. Takakiamide (NTK 4/ NG 7) 

 

NTK 4/ NG 7 was isolated as a white solid (mp, 182-183°C), and its molecular 

formula C23H23N3O2 was established on the basis of the (+)-HRESIMS m/z 374.1876 

[M+H]+ (calculated 374.1869), indicating fourteen degrees of unsaturation. The IR 

spectrum showed absorption bands for amine (3214 cm-1), amide carbonyls (1688, 

1654 cm-1), aromatic (3057, 1579 cm-1) and olefin (1607, 1468 cm-1). 

The 1H and 13C NMR spectra of NTK 4/ NG 7 resembled those of NTK 2/NG 

4 (aszonalenin), but with some slight differences. The 13C NMR spectrum (Table 19), 

displayed twenty three carbon signals which can be categorized, based on DEPTs 

and HSQC spectra, as two amide carbonyls (δC 172.0 and 168.9), six quaternary sp2 

(δC 136.4, 136.3, 135.7, 127.9, 125.5 and 108.0), ten methine sp2 (δC 133.1, 131.4, 

127.3, 125.2, 121.7, 121.0, 119.9, 119.2, 118.4 and 109.9), one methine sp3 (δC 

52.4), two methylene sp3 (δC 44.2 and 22.4) and two methyl (δC 25.6 and 18.1) 

groups. 

The 1H NMR and HSQC spectra (Table 19) revealed eight aromatic protons at 

δH 7.91, dd (J = 8.0, 1.5 Hz), 7.54, d (J = 7.8 Hz), 7.50, ddd (J = 8.0, 8.0, 1.5 Hz), 

7.31, d (J = 7.8 Hz), 7.24, dd (J = 8.0, 8.0 Hz), 7.20, ddd (J = 7.8, 7.8, 0.7 Hz), 7.08, 

ddd (J = 7.8, 7.8, 0.7 Hz), 7.06, d (J = 8.0 Hz), two methine sp2 proton at δH 7.15, s 

and 5.35, m, one methine proton at δH 4.12, dt (J = 8.3, 5.5 Hz), two methylene 
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protons at δH 4.63, d (J = 6.8 Hz), 3.57, dd (J = 15.2, 5.5 Hz) and 3.26, dd (J = 15.2, 

8.3 Hz), two methyl singlets at δH 1.80 and 1.74. 

Similar to NTK 2/NG 4 (aszonalenin), NTK 4/ NG 7 also consists of the indole 

ring system which was corroborated by the COSY correlations from the doublet at δH 

7.54 (J = 7.8 Hz; H-4) through the ddd at δH 7.08 (J = 7.8, 7.8, 0.7 Hz; H-5), a ddd at 

δH 7.20 (J = 7.8 7.8, 0.7 Hz; H-6) and a doublet at δH 7.31 ( J = 8.2 Hz; H-7), as well 

as the HMBC correlations from H-4 to the carbons at δC 121.7 (C-6) ,127.9 (C-9), 

and 108.0 (C-3), from H-7 to the carbons at δC 119.2 (C-5) and C-9, from H-6 to the 

carbon at δC 118.4 (C-4) and 136.3 (C-8), and from the singlet at δC 7.15 (H-2) to C-

3, C-8 and C-9. 

Contrary to NTK 2/NG 4 (aszonalenin), NTK 4/ NG 7 has the 3-methylbuten-

2-yl substituent on the nitrogen atom of the indole nucleus as was supported by the 

COSY correlation from the doublet at δH 4.63 (J = 6.8 Hz, H-1′; δC 44.2) though the 

multiplet at δH 5.35 (H-2′; δC 119.9) and two methyl singlets at δH 1.74 (Me-5′; δC 

25.6) and 1.80 (Me-4′; δC 18.1) as well as the HMBC correlation from H-1′ to C-2, C-

2′ and the carbon at δC 136.4 (C-3′). 
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7.54 d (7.8)

7.08 ddd (7.8, 7.8, 0.7)

7.20 ddd (7.8, 7.8, 0.7)

7.31 d (7.8)

108.0
118.4

119.2

121.7

109.9

44.2

136.3

119.9

127.9

136.4

7.15 s

25.618.1

127.3

4.63 d (6.8)
5.35 m

1.74 s1.80 s
 

Like aszonalenin (NTK 2/NG 4), another part of the molecule consist of 3,4-

dihydro-1H-1,4-benzodiazepine-2,5-dione based on the COSY correlations from the 

dd at δH 7.91 (J = 8.0, 1.5, H-21; δC 131.4) through the dd at δH 7.24 (J = 8.0, 8.0 Hz; 

H-20; δC 125.2), a ddd at δH 7.50 (J = 8.0, 8.0, 1.5 Hz, H-19; δC 133.1) and a doublet 

at δH 7.06 (J = 8.0 Hz, H-18; δC 121.0), as well as from the HMBC correlations of the 

amide proton singlet at δH 9.03, s (NH-16) to the carbons at δC 125.5 (C-14) and 

52.4 (C-11), from H-21 to the carbons at δC 135.7 (C-15),  133.1 (C-19) and 168.9 

(CO-13). 
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125.2

125.5

131.4

135.7 121.0

133.1168.9

9.03 s

52.4

7.06 d (8.0)

7.50 ddd (8.0, 8.0, 1.5)

7.24 dd (8.0, 8.0)
7.91 dd (8.0, 1.5)  

That the N-prenylated 3, 4-dihydro-1H-1, 4-benzodiazepine-2,5-dione was 

linked to the indole moiety through a methylene bridge, was evidenced by the COSY 

correlations from the doublet doublet at δH 3.57 (J = 15.2, 5.5 Hz, H-10a) and 

doublet doublet at δH 3.26 (J = 15.2, 8.3 Hz, H-10b) to the doublet triplet at δH 4.12 (J 

= 8.3, 5.5 Hz, H-11), as well as by the HMBC correlations from H-10a and H-10b to 

C-2, C-3, C-11 and the amide carbonyl at δC 172.0 (C-17). Therefore, the flat 

structure of NTK4/ NG 7 was proposed as below: 

52.4

3.57 dd (15.2, 5.5)
3.26 dd (15.2, 8.3)

127.3

108.0

22.4 172.0
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A literature survey revealed that the compound 3S)-3[1-(3-methylbut-2-enyl) 

indol-3-yl]-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (PubChem SID 

185030170), whose flat structure is the same as that of compound NTK 4/NG 7, was 

reported as a product of Angene Chemical (AGN-PC-069E9V) 

(http://pubchem.ncbi.nlm.nih.gov/substance/185030170).  

Although the absolute configuration of its C-11 is reported as S, there is 

neither 1H and 13C NMR nor optical rotation data available for this compound in 

the PubChem Substance website. Since compound NTK 4/NG 7 did not provide 

suitable crystals for X-ray diffraction, it was not possible to determine the absolute 

configuration of C-11 with certainty. Thus, an attempt was made to combine the 

data from the NOESY spectrum, scalar coupling constants and molecular 

mechanics simulations. 

The NOESY spectrum exhibited correlations of H-11 to H-4, NH-12 and NH-

16. A stochastic conformational search using MMFF force field models of the C-11 

stereoisomers of compound NTK 4/NG 7, performed with ChemBio3D Ultra 14.0 

using the MMFF force field with application’s default parameters (Halgren, 1996) 

showed a somewhat flat energy landscape concerning the spatial relative 

positions of the two cyclic regions of the molecule. The rotational freedom around 

the two carbon-carbon single bonds of C-10, on which compound NTK 4/NG 7 

whole conformations hinge, precludes any clear differentiation between the two 

stereoisomers since both C-11R and C-11S stereoisomers yield lowest energy  

http://pubchem.ncbi.nlm.nih.gov/substance/185030170


CHAPTER III. RESULTS AND DISCUSSIONS 
   

 

232 
 

 

conformations that explain the observed NOESY cross-peaks as well as the 1H 

scalar coupling constants measured. Regardless of the stereoisomer, the gas-

phase least energetic conformers of compound NTK 4/NG 7 show almost equal 

steric energy for the two major conformations (half-chair) of the amide ring. Figure 

93 shows the C-11R stereoisomer as an example: (a) H-11 is in the equatorial and 

(b) H-11 is in the axial position. The major difference resides in the dihedral angle 

between H-11 and NH-12, which is approximately 0° for the equatorial and 110° 

for the axial position of H-11 relative to the ring. The observed scalar coupling of 

5.5 Hz between the two protons may be interpreted as an average value between 

their extreme relative positions, suggesting that the two conformations exchange 

rapidly at room temperature. The observed NOESY correlation between H-11 and 

NH-16 does not allow us to positively decide for any of the two amide ring 

conformations since the distances between the two protons in the molecular 

mechanics models are very close, i.e., 4.0 Å for the equatorial H-11, and 3.6 Å for 

the axial H-11. Therefore, the constant exchange between the two conformations 

of the amide ring is the most probable case. 
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Figure 93. Conformations of C-11 R stereoisomer of compound NTK 4/NG 7 

obtained by simulation performed with ChemBio Ultra 14.0; (a) conformer with H-11 

in equatorial position; (b) conformer with H-11 in axial position. 

 

NTK 4/NG 7 was isolated together with aszonalenin (NTK 2/NG 4) and 

acetylaszonalenin (NTK 3), suggested that they should be derived from the same 

biosynthetic pathways. It is probable that the absolute configuration of C-11 of NTK 

4/NG 7 is the same as that of the corresponding carbon of aszonalenin (NTK 2/NG 

4) and acetylaszonalenin (NTK 3) i.e., C-11 is R. Taking together with 1H and 13C 

NMR, NOESY and conformational analysis, the compound NTK 4/NG 7 (Figure 94) 

is a new natural product, which we have named it takakiamide.  
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Figure 94. Structure of takakiamide (NTK 4/NG 7) 

 

3.1.9.4. (3R)-3-(1H-indol-3ylmethyl)-3, 4-dihydro-1H-1, 4-benzodiazepine-2, 5-

dione (NG 5) 

 

NG 5 was isolated as a yellow viscous mass and its molecular formula 

C18H15N3O2 was established on the basis of the (+)-HRESIMS m/z 306.1256 [M+H]+ 

(calculated 306.1243), indicating thirteen degrees of unsaturation. The general 

feature of the 1H and 13C NMR spectra of NG 5 resembled those of NTK 4/NG 7 

(takakiamide) except for the absence of the prenyl substituents. 

The 13C NMR spectrum exhibited the presence of 18 carbon signals which, in 

combination with DEPTs and HSQC spectra (Table 19), can be classified as two 

amide carbonyls (δC 172.1 and 169.2), five quaternary sp2 (δC 136.2, 135.9, 127.2,  
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125.5 and 109.8), nine methine sp2 (δC 133.1, 131.3, 125.1, 124.0, 122.2, 121.2, 

119.6, 118.3 and 111.4), one methine sp3 (δC 52.4) and one methylene (δC 24.2) 

carbons. 

The 1H NMR, COSY, HSQC and HMBC spectra displayed the presence of 

two 1,2-disubstituted benzene rings, one of which belonged to the indole moiety: δH 

8.17, d (J = 1.3 Hz, NH-1), δH 7.14, d (J = 1.3 Hz; H-2; δC 124.0), δH 7.53, d (J = 7.8 

Hz, H-4; δC 118.3), δH 7.08, ddd (J = 7.5, 7.5, 1.0 Hz, H-5, δC 119.6), δH 7.18, ddd (J 

= 8.1, 8.1, 1.0 Hz, H-6; δC 122.2) and δH 7.33, d (J = 8.1 Hz, H-7; δC 111.4).  

7.53 d (7.8)

7.08 ddd (7.5, 7.5, 1.0)

7.18 ddd (8.1, 8.1, 1.0)

7.33 d (8.1) 

118.3
119.6

122.2

111.4
136.2

127.2 109.8

124.0

7.14 d (1.3)

8.17 d (1.3)  

While another belonged to the 1,4-benzodiazepen-2,5-dione moiety: δH 7.03, 

d (J = 7.5 Hz, H-18; δC 121.2), δH 7.46, ddd (J = 7.7, 7.7, 1.6 Hz, H-19; δC 133.1), δH 

7.21, ddd (J = 7.9, 7.9, 1.6 Hz, H-20; δC 125.1), δH 7.88, dd (J = 7.9, 1.6 Hz, H-21; δC 

131.3), δH 4.11, dt (J = 8.3, 5.6 Hz, H-11; δC 52.4), δH 9.12, s (NH-16), δH 7.30, brd 

(J = 6.6 Hz, NH-12), δC 169.2 (CO-13), δC 172.1 (C-17). 
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9.12 s

7.03 d (7.5)

7.46 ddd (7.7, 7.7, 1.6)

7.21 ddd (7.9, 7.9, 1.6)7.88 dd (7.9, 1.6)

7.30 brd (6.6)

121.2

133.1

125.1131.3

125.5

172.1

169.2

 

That the 3, 4-dihydro-1H-1, 4-benzodiazepine -2, 5-dione moiety was linked to 

the indole ring by a methylene bridge, was evidenced by the HMBC correlations from 

the dd at δH 3.54 (J = 15.2, 5.8 Hz; δC 24.2, H-10a) and the dd at δH 3.25 (J = 15.2, 

8.4 Hz; δC 24.2, H-10b) to the carbons at δC 124.0 (C-2), 109.8 (C-3), 52.4 (C-11), 

and 172.1 (C-17), from the broad doublet of imine proton at δH 7.30 (J = 6.6 Hz; NH-

12) to the carbon at δC 125.5 (C-14), from NH-16 (9.12, s) to C-11 and C-17, as well 

as the coupling system of (H-10a), (H-10b) and (H-11) were observed in the COSY 

spectrum.  

125.5

109.8

24.2

52.4

7.30 brd (6.6)

172.1
9.12 s

3.25 dd (15.2, 8.4)

124.0

3.54 dd (15.2, 5.8)
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Therefore, the structure of NG 5 was proposed as 3-(1H-indol-3-ylmethyl)-3, 

4-dihydro-1H-1,4-benzodiazepine-2,5-dione. Comparison of the 1H and 13C chemical 

shift values and the optical rotation of NG 5 ([α]20 
D = + 96.00) were agreement with 

those of (3R)-3-(1H-indol-3-ylmethyl)-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione, 

whose absolute configuration of C-11 is S. This compound has previously reported 

from the soil fungus Aspergillus flavipes (Barrow and Sun, 1994), and also 

synthesized by the condensation of L-tryptophan and anthranilic acid catalyzed by 

the non-ribosomal peptide synthetase AnaPS has been already described by Yin et 

al. (2009). 
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Figure 95. Structure of (3R)-3-(1H-indol-3-ylmethyl)-3, 4-dihydro-1H-1, 4-

benzodiazepine-2, 5-dione (NG 5) 
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Table 19. Comparison of 1H and 13C NMR (CDCl3, 300.13 and 75.47 MHz) 

assignment for NTK 4/NG 7 and NG 5 

Position NTK 4/ NG 7 NG 5 

 δC, type δH, (J in Hz) δC, type δH, (J in Hz) 

2 127.3, CH 7.15, s 124.0, CH 7.14, d (1.3) 
3 108.0, C - 109.8, C - 
4 118.4, CH 7.54, d (7.8) 118.3, CH 7.53, d (7.8)  
5 119.2, CH 7.08, ddd (7.8, 7.8, 0.7) 119.6, CH 7.08, ddd (7.5, 7.5, 1.0) 
6 121.7, CH 7.20, ddd (7.8, 7.8, 0.7) 122.2, CH 7.18, ddd (8.1, 8.1, 1.0) 
7 109.9, CH 7.31, d (7.8) 111.4, CH 7.33, d (8.1) 
8 136.3, C - 136.2, C - 
9 127.9, C - 127.2, C - 
10a 
    b 

22.4, CH2 3.57, dd (15.2, 5.5) 
3.26, dd (15.2, 8.3) 

24.2, CH2 3.54, dd (15.2, 5.8) 
3.25, dd (15.2, 8.4) 

11 52.4, CH 4.12, dt (8.3, 5.5) 52.4, CH 4.11, dt (8.3, 5.6) 
13 168.9, CO - 169.2, CO - 
14 125.5, C - 125.5, C - 
15 135.7, C - 135.9, C - 
17 172.0, CO - 172.1, CO - 
18 121.0, CH 7.06, d (8.0) 121.2, CH 7.03, d (7.5) 
19 133.1, CH 7.50, ddd (8.0, 8.0, 1.5) 133.1, CH 7.46, ddd (7.7, 7.7, 1.6) 
20 125.2, CH 7.24, dd (8.0, 8.0) 125.1, CH 7.21, ddd (7.9, 7.9, 1.6) 
21 131.4, CH 7.91, dd (8.0, 1.5) 131.3, CH 7.88, dd (7.9, 1.6) 
1′ 44.2, CH2 4.63, d (6.8) - - 
2′ 119.9, CH 5.35, m - - 
3′ 136.4, C - - - 
4′ 25.6, CH3 1.74, s - - 
5′ 18.1, CH3 1.80, s - - 
NH-1 - - - 8.17, d (1.3) 
NH-12 - 7.03, d (5.5) - 7.30, brd (6.6) 
NH-16 - 9.03, s - 9.12, s 
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3.1.9.5. (11 aS)-2, 3-dihydro-1H-pyrrolo [2, 1-c] [1, 4] benzodiazepine-5, 11 (10 

H, 11 aH)-dione (NG 6) 

 

NG 6 was isolated as a yellow viscous mass and its molecular formula 

C12H12N2O2 was established on the basis of the (+)-HRESIMS m/z 217.0992 [M+H]+ 

(calculated 217.0977), indicating eight degrees of unsaturation. The 13C NMR 

spectrum (Table 20) exhibited 12 carbon signals which, through DEPTs and HSQC 

spectra, can be classified as two amide carbonyls (δC 170.8 and 164.6), two 

quaternary sp2 (δC 136.4 and 126.6), four methine sp2 (δC 132.1, 130.3, 123.9 and 

121.3), one methine sp3 (δC 56.2) and three methylene (δC 46.9, 25.8 and 23.1) 

carbons. 

The 1H NMR spectrum together with HSQC spectrum (Table 20) showed the 

proton signals at δH 7.78, dd (J = 7.9, 1.6 Hz), 7.51, ddd (J = 8.0, 7.3, 1.7 Hz), 7.22, 

ddd (J = 7.8, 7.8, 1.1 Hz), 7.13, dd (J = 8.1, 0.8 Hz), δH 4.11, dd (J = 7.2, 2.1 Hz), 

multiplets at δH 3.60, 3.45, 2.50, 1.96, 1.93, 1.82 and a singlet of amide proton at δH 

10.50. 
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Table 20. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for NG 6 

Position δC, type δH, (J in Hz) COSY HMBC 

1 121.3, CH 7.13, dd (8.1, 0.8) H-2 C-3, 5, 6 
2 132.1, CH 7.51, ddd (8.0, 7.3, 1.7) H-1, 3 C-2, 4 
3 123.9, CH 7.22, ddd (7.8, 7.8, 1.1) H-2, 4 C-1, 5 
4 130.3, CH 7.78, dd (7.9, 1.6) H-3 C-2, 6, 14 
5 126.6, C - - - 
6 164.6, CO - - - 
8a 
  b 

46.9, CH2 3.60, m 
3.45, m 

H-9 
- 

- 
C-9 

9a 
  b 

23.1, CH2 1.93, m 

1.82, m 
H-8, 10 
- 

- 
C-10 

10a 
  b 

25.8, CH2 2.50, m 
1.96, m 

H-11 
- 

- 
C-9 

11 56.2, CH 4.11, dd (7.2, 2.1) H-10 C-9, 10 
12 170.8, CO - - - 
14 136.4, C - - - 
NH-13 - 10.50, s - C-1, 5, 11, 12 

 

Similar to NG 5, the presence of the 3,4-dihydro-1H-1,4-benzodiazepine-2,5-

dione was evidenced by the COSY correlations from the dd at δH 7.13 (J = 8.1, 0.8 

Hz, H-1; δC 121.3) through the ddd at δH 7.51 (J = 8.0, 7.3, 1.7 Hz, H-2; δC 132.1), 

the ddd at δH 7.22 (J = 7.8, 7.8, 1,1 Hz, H-3; δC 123.9) to the dd at δH 7.78 (J = 7.9, 

1.6 Hz, H-4; δC 130.3) and by the HMBC correlations from the singlet of the amide 

group (N13-H) at δH 10.50 to the carbonyl carbon at δC 170.8 (C-12), the quaternary 

sp2 carbon at δC 126.6 (C-5), the methine sp3 carbon at δC 56.2 (C-11) and C-1 as  
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well as from H-4 to the carbonyl carbon at δC 164.6 (C-6), the sp2 quaternary carbon 

at δC 136.4 (C-14) and C-2. 

10.50 s

56.2

170.8

7.51 ddd (8.0, 7.3, 1.7)

7.78 dd (7.9, 1.6)
7.22 ddd (7.8, 7.8, 1.1)

7.13 dd (8.1, 0.8)

121.3
132.1

164.6

123.9130.3

126.6

136.4

 

Contrary to NG 5, the 1H NMR spectrum of NG 6 did not display the proton 

signals of the indole moiety.  Instead, it exhibited several multiplets of aliphatic 

protons belonging to four methylene groups. The COSY spectrum revealed 

correlations from the mutually coupled multiplets at δH 3.45 and 3.60 (H2-8; δC 46.9) 

through the mutually coupled multiplets at δH 1.82 and 1.93 (H2-9; δC 23.1) and the 

mutually coupled multiplets at δH 1.96 and 2.50 (H-10; δC 25.8) to the dd at δH 4.11 (J 

= 7.2, 2.1 Hz, H-11; δC 56.2). Taking into account the COSY correlation and the 

chemical shift value of C-8 (δC 46.9), another part portion of NG 6 was a 1, 2-

disubstituted pyrrolidine. 
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2.50 m

56.2
23.1

25.8

46.9

4.11 dd (7.7, 2.1)

3.45 m 

1.96 m

1.82 m

3.60 m

1.93 m

 

That the pyrrolidine ring was fused to 3,4-dihydro-1H-1,4-benzodiazepine-2,5-

dione moiety through C-11 and N-7, was confirmed by the HMBC correlation from H-

11 to C-9 and C-10 as well as by the lack of proton on N-7. 

23.1
25.8 56.2

4.11 dd (7.7, 2.1)

 

The HRMS, 1H and 13C NMR data of NG 6 were compatible with the structure 

of 2, 3-dihydro-1H-pyrrolo [2,1-c][1,4] benzodiazepine-5,11(10H,11aH)-dione. 

However, the compound called (11aS)-2, 3-dihydro-1H-pyrrolo [2,1-c] [1,4] 

benzodiazepine-5,11(10H, 11aH)-dione, whose absolute configuration of C-11 is S,  

was obtained by cyclocondensation of L-proline with isatoic acid anhydride has been 

already described by Sorra et al. (2012) (Molecules 17, 8762-8772, 2012). 
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In order to verify if NG 6 was the same compound as that reported by Sorra et 

al. (2012), the optical rotation of NG 6 ([α]20
D  = + 205.88) was measured. Since both 

NG 6 and (11aS)-2, 3-dihydro-1H-pyrrolo [2, 1-c] [1, 4] benzodiazepine-5, 11 (10H, 

11aH)-dione were dextrorotatory, we concluded that they are the same compound, 

i.e. the absolute configuration of C-11 is S. This compound was also isolated from 

the fungus Myrothecium verrucaria, which was collected from lake water of 

Chenghai, China (Zhang et al., 2017). 
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Figure 96. Structure of (11 aS) 2, 3-dihydro-1H-pyrrolo [2,1-c] [1,4] benzodiazepine-

5,11 (10 H, 11a H)-dione (NG 6) 
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3.1.10 Structure Elucidation of Indolyl Quinazolinone Alkaloids 

 

3.1.10.1. 3′-(4-oxoquinazolin-3-yl) [1H-indole-3, 5′-oxolone]-2, 2′-dione (NTK 5) 

  

NTK 5 was isolated as a white solid (mp, 266-268 ºC) and its molecular 

formula C19H13N3O4, was established based on the (+) HRESIMS m/z 348.0968 

[M+H]+ peak indicating fifteen degrees of unsaturation. The 13C NMR spectra (Table 

21), in combination with DEPTs and HSQC spectra, revealed the presence of 

nineteen carbon signals, which were categorized as three carbonyls (δC 175.2, 171.7 

and 159.7), four quaternary sp2 (δC 147.5, 142.6, 126.2 and 121.2), nine methine sp2 

(δC 147.6, 135.0, 131.5, 127.5, 127.3, 126.0, 125.1, 122.9 and 110.6), one 

quaternary sp3 (δC 80.7), one methine sp3 (δC 56.3) and one methylene sp3 (δC 

33.3). 

The 1H NMR spectrum together with the HSQC spectrum (Table 21) displayed 

the signals for eight aromatic protons at δH 8.24, dd (J = 8.0, 1.2 Hz), 7.92, ddd (J = 

7.7, 7.6, 1.5 Hz), 7.76, d (J = 7.7 Hz), 7.66, d (J = 6.8 Hz), 7.64, ddd (J = 7.5, 7.5, 1.1 

Hz), 7.41, ddd (J = 7.7, 7.7, 1.3 Hz), 7.18, ddd (J = 7.5, 7.5, 0.9 Hz), 6.96, d (J = 7.7 

Hz), methine sp2 proton at δH 8.63, s, methine sp3 proton at δH 5.86, t (J = 10.1 Hz) 

and methylene proton at δH 3.01, d (J = 10.4 Hz). 
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Table 21. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for NTK 5 

Position δC, type δH, (J in Hz) COSY HMBC 

2 175.2, CO - - - 
3 80.7, C - - - 
3a 126.2, C - - - 
4 125.1, CH 7.66, d (6.8) H-5 C-6, 7a 
5 122.9, CH 7.18, ddd (7.5, 7.5, 0.9) H-4, 6 C-3a, 7 
6 131.5, CH 7.41, ddd (7.7, 7.7, 1.3) H-5, 7 C-4, 7a 
7 110.6, CH 6.96, d (7.7) H-6 C-3a, 5 
7a 142.6, C - - - 
2′ 171.7, CO - - - 
3′ 56.3, CH 5.86, t (10.1) H-4 C-2′, 2′′, 4′, 4′′ 
4′ 33.3, CH2 3.01, d (10.4) H-3′ C-2, 2′, 3, 3′, 3a 
2′′ 147.6, CH 8.63, s - C-3′, 4′′, 8′′a 
4′′ 159.7, CO - - - 
4′′a 121.2, C - - - 
5′′ 126.0, CH 8.24, dd (8.0, 1.2) H-6′′ C-4′′, 7′′, 8′′a 
6′′ 127.5, CH 7.64, ddd (7.5, 7.5, 1.1) H-5′′, H-7′′ C-4′′a, 8′′ 
7′′ 135.0, CH 7.92, ddd (7.7, 7.6, 1.5) H-6′′ C-5′′, 8′′a 
8′′ 127.3, CH 7.76, d (7.7) H-7′′ C-4′′a, 6′′ 
8′′a 147.5, C - - - 
NH-1 - 10.90, s - C-2, 3, 3a, 7a 

 

That NTK 5 contained a 1, 3-dihydro-2H-indol-2-one ring system was 

substantiated by the COSY correlations from the doublet at δH 7.66 (J = 6.8 Hz, H-4; 

δC 125.1) through the dd at δH 7.18 (J = 7.5, 7.5, 0.9, H-5; δC 122.9), the ddd at δH 

7.41 (J = 7.7, 7.7, 1.3 Hz; H-6; δC 131.5) and the d at  δH 6.96 (J = 7.7 Hz, H-7, 
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δC 110.6) as well as the HMBC correlations from H-4 to C-6 and the carbon at δC 

142.6 (C-7a), from H-5 to C-7 and the carbons at δC 126.2 (C-3a), and from the 

singlet of the amine proton at δH 10.90 (NH-1) to C-7a, the carbonyl carbon at δC 

175.2 (C-2) and the oxyquaternary carbon at 80.7 (C-3) and C-3a, indicated that the 

1, 2-disubstituted benzene ring was part of the indole moiety. 

125.1
122.9

131.5

110.6

80.7
126.2

142.6
175.2

7.66 d (6.8)

7.18 ddd (7.5, 7.5, 0.9)

7.41 ddd (7.7, 7.7, 1.3)

6.96 d (7.7)
10.90 s

 

That another of the molecule was a substituted quinazolin-4(3H)-one was 

supported by the existence of the 1, 2 disubstituted benzene ring  was evidenced by 

COSY relations from the dd at δH 8.24 (J = 8.0, 1.2, H-5′′, δC 126.0) through the ddd 

at δH 7.64 (J = 7.5, 7.5, 1.1 Hz, H-6′′, δH 127.5), a ddd at δH 7.92 (J = 7.7, 7.6, 1.5 

Hz, H-7′′; δC 135.0) and a doublet at δH 7.76 (J = 7.7 Hz; H-8′′; δC 127.3) as well as 

the HMBC correlations from H-5′′ to the carbonyl carbon at δC 159.7 (C-4′′) and the 

quaternary sp2 carbon at δC 147.5 (C-8′′a), and from the singlet of the imine proton at 

δH 8.63 (H-2′′) to C-4′′ and C-8′′a. 
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8.63 s
147.6

7.64 ddd (7.5, 7.5, 1.1)

7.76 d (7.7) 7.92 ddd (7.7, 7.6, 1.5)

8.24 dd (8.0, 1.2)
159.7

121.2
126.0

127.5

135.0
127.3

147.5

 

That the N-substituted quinazolin-4-one moiety was connected to the 1,3-

dihydro-2H-indol-2-one ring system, through the spirolactone ring was based not 

only on the COSY correlation from the triplet at δH 5.86 (J = 10 Hz, H-3′, δC 56.5) to 

the multiplet at δH 3.01 (H2-4′, δC 33.3) but also on the HMBC correlations from H-3′ 

to C-2′′, C-4′′, C-4′ and the lactone carbonyl at δC 171.7 (C-2′), as well as from  H-4′ 

to C-2, C-3a. 

147.6

159.7

56.3

5.86 t (10.1)

3.01 d (10.4)

33.380.7

175.2

126.2

171.7
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Extensive literature search revealed that the 1H and 13C NMR, chemical shift 

values and the optical rotation of NTK 5 ([α]20
D  = + 19.7) were compatible with those 

reported for 3′-(4-oxoquinazolin-3-yl) [1H-indole-3,5′-oxolone]-2, 2′-dione, a new 

natural products previously reported from the soil fungus Neosartorya siamensis 

KUFC 6349 (Buttachon et al., 2012), coral-derived fungus Neosartorya laciniosa 

(Eamvijarn et al., 2013) and marine sponge-associated fungus Neosartorya 

paulistensis KUFC 7897 (Gomes et al., 2014).  

4
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Figure 97. Structure of 3′-(4-oxoquinazolin-3-yl) [1H-indole-3, 5′-oxolone]-2, 2′-dione 

(NTK 5) 
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3.1.10.2. Tryptoquivaline F (NTK 6) 

 

NTK 6 was isolated as a white solid (mp, 278-280 ºC) and its molecular 

formula C22H18N4O4, established on the basis of the (+)-HRESIMS m/z 403.1399 

[M+H]+ (calculated 403.1406) indicating the sixteen degrees of unsaturation.  

The 13C NMR (Table 22) displayed twenty seven carbons signals which was 

classified, according to DEPTs and HSQC spectra, as three carbonyls (δC 176.7, 

170.7 and 159.6), four quaternary sp2 (δC 147.5, 140.7, 131.7 and 121.3), nine 

methine sp2 (δC 147.5, 134.9, 131.5, 127.5, 127.3, 126.0, 125.8, 125.3 and 116.9), 

three methine sp3 (δC 84.4, 59.3 and 56.8), one quaternary sp3 (δC 86.1), one 

methylene sp3 (δC 30.9) and one methyl (δC 17.4) carbons. 

The 1H NMR spectrum, in conjunction with the HSQC spectrum revealed the 

presence of eight aromatic protons at δH 8.22, dd (J = 8.0, 1.1 Hz), 7.92, ddd (J = 

7.7, 7.7, 1.5 Hz), 7.76, d (J = 8.1 Hz), 7.70, d (J = 7.3 Hz), 7.63, ddd (J = 7.6, 7.6, 1.1 

Hz), 7.58, ddd (J = 7.6, 7.6, 1.2 Hz), 7.48, d (J = 7.3 Hz), 7.39, ddd (J = 7.5, 7.5, 1.2 

Hz) and three methine sp3 protons at δH 5.69, t (J = 10.0 Hz), 5.51, d (J = 8.4 Hz), 

3.64, q (J = 7.0 Hz), two methylene protons at δH 2.89, dd (J = 13.1, 9.3 Hz) and 

3.43, dd (J = 13.0, 11.0 Hz), one methyl group (3H) at δH 1.39, d (J = 7.6 Hz), a 

singlet of imine proton at δH 8.56 and the other amine proton at δH 3.91, dd ( J = 7.6, 

7.6 Hz).  
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The 1H and 13C NMR spectra of NTK 6 (Table 22) revealed the presence of 

the same substituted quinazolin-4(3H)-one moiety as that of NTK 5, as evidenced by 

the COSY correlations from the dd at δH 8.22 (J = 8.0, 1.1, H-20; δC 126.0) through 

the ddd at δH 7.63 (J = 7.6, 7.6, 1.1 Hz; H-21, δC 127.5), the ddd at δH 7.92 (J = 7.7, 

7.7, 1.5 Hz; H-22; δC 134.9) and dd at δH 7.76 (J = 8.1 Hz; H-23, δC 127.3) as well as 

the HMBC correlations from H-20 to C-22,  the carbons at δC 147.5 (C-24) and 159.6 

(CO-18), from the imine singlet at δH 8.56 to C-24 and C-18. 

147.5 8.56 s
126.0

127.5

134.9127.3

147.5

121.3

159.6

8.22 dd (8.0, 1.1)

7.63 ddd (7.6, 7.6, 1.1)

7.92 ddd (7.7, 7.7, 1.5)7.76 dd (8.1, 0.5)

 

Contrary to NTK 5, another 1, 2-disubstituted benzene ring was part of the 6-

5-5-2-methyl imidazoindol-3-one ring system. This was supported by the COSY 

correlations from the d at δH 7.70 (J = 7.3 Hz, H-5; δC 125.3) through the ddd at δH 

7.39 (J = 7.5, 7.5, 1.2 Hz, H-6; δC 125.8), the ddd at δH 7.58 (J = 7.6, 7.6, 1.2 Hz, H-

7; δC 131.5) and the doublet at δH 7.48 (J = 7.3 Hz, H-8; δC 116.9), from the dd of the 

amine proton of the imidazolone ring at δH 3.91 (J = 7.6, 7.6 Hz; N16-H) to the a 

doublet at 5.51 (J = 8.4; H-2) and a quartet at δH 3.64 (J = 7.0 Hz) as well as by the 

HMBC correlations from H-8 to C-6 and the carbon at δC 131.7 (C-4), from H-5 to  
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C-7 and the carbons at δC 140.7 (C-9) and 86.1 (C-3), from H-2 to C-3, the carbons 

at δC 176.7 (C-14) and 59.3 (C-15) and from the methyl doublet at δH 1.39 (J = 7.6) 

to C-14 and C-15. 

3.64 q (7.0)

7.70 d (7.3)

7.39 ddd (7.5, 7.5, 1.2)

7.58 ddd (7.6, 7.6, 1.2)

7.48 d (7.3)

86.1 5.51 d (8.4) 
125.3

125.8

131.5
116.9

131.7

140.7

17.4
1.39 d (7.6)

3.91 dd (7.6, 7.6)
84.4

59.3
176.7

 

That the 6-5-5-2-methyl imidazoindol-3-one ring system was connected to the 

substituted quinazolin-4(3H)-one moiety through a spirolactone ring was 

corroborated by the COSY correlations from the triplet at δH 5.69 (J = 10.0 Hz) to the 

two methylene doublets at δH 2.89 (J = 13.1, 9.3 Hz) and 3.43  (J = 13.0, 11.0 Hz, δC 

30.9) as well as the HMBC correlations from H-12 to C-11, C-13 and C-18, from H-

16 to C-3, and from H-26 to C-12, C-18 and C-24.  
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2.89 dd (13.1, 9.3)

3.43 dd (13.0, 11.0)

56.8

5.69 t (10.0)

170.7

159.6

3.91 dd (7.6, 7.6)

30.9

8.56 s

147.5

147.5

86.1

 

Therefore the flat structure of NTK 6 was the same as that of tryptoquivaline 

F. Since, NTK 6 has four stereogenic centers, i. e. C-2, C-3, C-12 and C-15, it was 

necessary to establish the absolute configurations of these carbons. Comparison of 

the 1H and 13C chemical shift values of H-2/C-2, H-3/C-3, H-12/C-12 and H-15/C-15 

and the optical rotation of NTK 6 ([α]20
D  = – 120.0) with those of tryptoquivaline F, it 

was concluded that they are the same compound. 
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Figure 98. Structure of tryptoquivaline F (NTK 6) 

 

3.1.10.3. Tryptoquivaline H (NTK 7) 

 

NTK 7 was isolated as a white solid (mp, 246-248 ºC) and its molecular 

formula C22H18N4O5, established on the basis of the (+) HRESIMS m/z 419.13496 

[M+H]+, indicating sixteen degrees of unsaturation. The general features of the 1H 

and 13C NMR of NTK 7 were very similar to those of NTK 6. 

However, H-2 of NTK 7 appeared as a singlet at δH 5.43 instead of a doublet 

at δH 5.51 (J = 8.4 Hz). Moreover, CH3-27 (δC 10.6) resonated at lower chemical shift 

values than the tryptoquivaline F (δC 17.4) while C-15 exhibited higher chemical shift 
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value (δC 67.4) than the corresponding carbon (δC 59.3) of tryptoquivaline F (Table 

22).  Thus the different between the NTK 6 and NTK 7, except for only one oxygen 

atom more than compound NTK 6, i.e the N16-OH was replaced by N16-H which 

was confirmed by the molecular formula of NTK 7 (C22H18N4O5). 

Analysis of the 1H, 13C NMR, HSQC and COSY spectra revealed the 

presence of two 1, 2-disubstituted benzene rings, similar to those found in NTK 6. 

The HMBC correlations between the signals of H-26 (δH 8.55, s) and C-18 (δC 

159.8), C-24 (δC 147.5) as well as between the signals of H-20 (8.24 dd, J = 8.0, 1.2 

Hz) and C-18, C-22 (δC 134.9), C-24, permitted identification of the N-substituted 

quinazolin-4-one. The quinazolinone moiety was connected to the 6-5-5 gem-

dimethyl imidazoindolone ring system via a 5-membered spirolactone, similar to that 

of tryptoquivaline F (NTK 6). Thus, the structure of NTK 7 could also correspond to 

the previously reported tryptoquivaline E or H (Yamazaki et al., 1978). However, the 

chemical shift of H-12 (δH 5.58, t, J = 10.0 Hz) of NTK 7 was more similar to that of 

H-12 (δH 5.69, t, J = 10.0 Hz) of tryptoquivaline H than H-12 (δH 6.20, t, J = 10 Hz) of 

tryptoquivaline E. 

The flat structure of NTK 7 was the same as that of tryptoquivaline H. In order 

to verify if NTK 7 was the same as tryptoquivaline H, we have measure the optical 

rotation of NTK 7 ([α]20
D  =  – 20.1), which was levoratory like that of tryptoquivaline H. 

Therefore, NTK 7 was identified as tryptoquivaline H. 
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Figure 99. Structure of tryptoquivaline H (NTK 7) 

 

3.1.10.4. Tryptoquivaline L (NTK 8) 

 

NTK 8 was isolated as a white solid (mp, 262-264 ºC), exhibited the [M+H]+,  

peak at m/z 433.1509 (HRESIMS), corresponding to C23H21N4O5, indicating the 

sixteen degrees of unsaturation. The general features of the 1H and 13C NMR of NTK 

8 were very similar to those of NTK 7, except for the appearance of the signals of the 

quaternary sp3 carbon at δC 70.3 and methyl carbon at δC 22.7 in 13C NMR spectrum 

and an additional methyl singlet at δH 1.26 in 1H NMR spectrum. 
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The 1H NMR and COSY spectra (Table 23) revealed the presence of two 1, 2-

disubstituted benzene rings of the gem-dimethyl imidazoindolone ring system and 

quinazolin-4 (3H)-one moiety as well as the protons of the five-membered 

spirolactone ring, similar to those of tryptoquivaline H (NTK 7). Analysis of the 1H, 

13C NMR, COSY, HSQC and HMBC spectra revealed a similarity between the 

structures of compounds NTK 7 and NTK 8, expect for two methyl substituted 

groups instead of one methyl group on C-15 of the imidazolone ring in NTK 7.  

Consequently, it could correspond to the previously reported tryptoquivaline G 

(Yamazaki et al., 1978) or its C-12 epimer, tryptoquivaline L (Yamazaki et al., 1979). 

Comparison of the 1H NMR data of NTK 8 with those of tryptoquivaline G and L 

(Yamazaki et al., 1978; Yamazaki et al., 1979), it was obvious that the chemical shift 

values of H-12 (δH 5.59, t, J = 10.0 Hz), H3 -27 (δH 1.35, s) and H3-28 (δH 1.26, s) of 

compound NTK 8 were more similar to those of H-12 (δH 5.57, t, J = 10.0 Hz), H3-27 

(δH 1.36, s) and H3-28 (δH 1.26, s) of tryptoquivaline L than those of corresponding 

protons of tryptoquivaline G (respectively, δH 6.16, t, J = 10 Hz, δH 1.35, s and δH 

1.30, s). Comparison of the 1H and 13C NMR data, chemical shift values and the 

optical rotation of NTK 8 ([α]20
D  = – 30.5) which is compatible with those of 

tryptoquivaline L, it was concluded that they are the same compound.  
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Figure 100. Structure of tryptoquivaline L (NTK 8) 

 

Tryptoquivalines, L, H and F have been previously reported from the fungus 

Aspergillus fumigatus (Yamazaki et al., 1978; Yamazaki et al., 1979). However, 

Buttachon et al. (2012) has isolated tryptoquivaline L, H, F and other analogs from 

the soil fungus Neosartorya siamenisis KUFC 6349 and have corrected the 

stereochemistry of the stereogenic carbons which were previously incorrectly 

assigned. Tryptoquivaline L, H and F were also isolated from marine sponge-

associated fungus Neosartorya paulistensis KUFC 7897 (Gomes et al., 2014), as 

well as tryptoquivaline L, which was isolated from the marine-derived fungus 

Neosartorya laciniosa (KUFC 7896) (Eamvijarn et al., 2013).   
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3.1.10.5. Tryptoquivaline U (NTK 9) 

 

NTK 9 was isolated as white crystals (mp, 208-209 C), and its molecular 

formula C23H21N4O4 was established on the basis of (+)-HRESIMS at m/z 417.1563 

(calculated 417.1563), indicating sixteen degrees of unsaturation. The 1H and 13C 

NMR spectra (Table 23) of NTK 9 resembled those of tryptoquivaline L (NTK 8). The 

13C NMR, DEPTs and HSQC spectra displayed signals of three carbonlys (δC 176.0, 

170.7 and  159.6), four quaternary sp2 (δC 147.5, 139.8, 132.0 and 121.4), nine 

methine sp2 (δC 147.4, 135.0, 131.6, 127.6, 127.3, 126.1, 125.7 (2C) and 116.2), two 

quaternary sp3 (δC 84.7 and 64.6), two methine sp3 (δC 82.0 and 56.9), one 

methylene sp3 (δC 31.6) and two methyl (δC 26.9 and 26.5) carbons.  

The 1H NMR and COSY spectra revealed the presence of two 1, 2-

disubstituted benzene rings of the gem-dimethyl imidazoindolone ring system and 

quinazolin-4 (3H)-one moiety as well as the protons of the five-membered 

spirolactone ring, similar to those of tryptoquivaline L (NTK 8). However, contrary to 

tryptoquivaline L, H-2 of NTK 9 appeared as a doublet at δH 5.55 (J = 8.4 Hz) instead 

of a singlet at δH 5.25. Moreover, the COSY spectrum exhibited a correlation 

between H-2 signal and a doublet at δH 3.76 (J = 8.4 Hz). Consequently, this signal 

was attributed to NH-16. Interestingly, both CH3-27 (δC 26.5) and CH3-28 (δC 26.9) 

resonated at higher chemical shift values than their counterparts in tryptoquivaline L 

(δC 16.2 and 22.7) while C-15 exhibited lower chemical shift value (δC 64.6) than the 

corresponding carbon (δC 70.0) of tryptoquivaline L. Thus, the only difference  
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between the structure of NTK 9 and NTK 8 is the presence of a hydrogen atom on 

N-16 instead of a hydroxyl group. This was supported by the molecular formula of 

NTK 9 (C23H20N4O4), which has one oxygen atom less than tryptoquivaline L (NTK 

8). Since NTK 9 furnished suitable crystals, an X-ray analysis undertaken. The 

ORTEP view of NTK 9 depicted in Figure 101 revealed that the absolute 

configurations of the stereogenic carbons of C-2, C-3 and C-12 are S, S and R, the 

same as that of the corresponding carbons of tryptoquivaline L (NTK 8).  

 

Figure 101. ORTEP view of NTK 9 

 

NTK 9 was also levorotatory and it was established as a new analog of 

tryptoquivalines, which have named tryptoquivaline U.  
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Figure 102. Structure of tryptoquivaline U (NTK 9) 

 

 

 

 

 

 

 

 

 

 



CHAPTER III. RESULTS AND DISCUSSIONS 
   

 

261 
 

 

Table 22. Comparison of 1H and 13C NMR (DMSO, 300.13 MHz and 75.47 MHz) 

assignment for NTK 6 and NTK 7 

Position NTK 6 NTK 7 

 δC, type δH, (J in Hz) δC, type δH, (J in Hz) 

2 84.4, CH 5.51, d (8.4) 88.6, CH 5.43, s 
3 86.1, C - 83.7, C - 
4 131.7, C - 132.4, C - 
5 125.3, CH 7.70, d (7.3) 126.0, CH 7.81, d (7.5) 
6 125.8, CH 7.39, ddd (7.5, 7.5, 1.2) 125.5, CH 7.37, ddd (7.4, 7.4, 1.3) 
7 131.5, CH 7.58, ddd (7.6, 7.6, 1.2)  131.9, CH 7.57, ddd (7.5, 7.5, 1.1) 
8 116.9, CH 7.48, d (7.3) 114.9, CH 7.51, d (7.0) 
9 140.7, C - 138.2, C - 
11 170.7, CO - 170.7, CO - 
12 56.8, CH 5.69, t (10.0) 56.9, CH 5.58, t (10.0) 
13 30.9, CH2 2.89, dd (13.1, 9.3) 

3.43, dd (13.0, 11.0) 
33.8 CH2 3.05, dd (13.2, 9.3) 

3.46, dd (13.0, 11.0) 
14 176.7, CO - 169.9, CO - 
15 59.3, CH 3.64, q (7.0) 67.4, CH 4.01, q (7.0) 
18 159.6, CO - 159.8, CO - 
19 121.3, C - 121.4, C - 
20 126.0, CH 8.22, dd (8.0, 1.1) 126.2, CH 8.24, dd (8.0, 1.2) 
21 127.5, CH 7.63, ddd (7.6, 7.6, 1.1) 127.7, CH 7.64, ddd (7.6, 7.6, 1.0) 
22 134.9, CH 7.92, ddd (7.7, 7.7, 1.5) 135.1, CH 7.92, ddd (7.7, 7.7, 1.5) 
23 127.3, CH 7.76, d (8.1) 127.4, CH 7.77, d (7.7) 
24 147.5, C - 147.5, C - 
26 147.5, CH 8.56, s 147.6, CH 8.55, s 
27 17.4, CH3 1.39, d (7.6) 10.6 CH3 1.44, d (7.1) 
28 - - - - 
NH-16 - 3.91, dd (7.6, 7.6) - - 
OH-16 - - - 8.80, s 
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Table 23. Comparison of 1H and 13C NMR (DMSO, 300.13 MHz and 75.47 MHz) 

assignment for NTK 8 and NTK 9 

Position NTK 8 NTK 9 

 δC, type δH, (J in Hz) δC, type δH, (J in Hz) 

2 86.1, CH 5.25, s 82.0, CH 5.55, d (8.4)  
3 83.4, C - 84.7, C - 
4 132.3, C - 132.0, C - 
5 125.9, CH 7.83, d (7.5) 125.7, CH 7.71, d (7.3) 
6 125.2, CH 7.36, ddd (7.4, 7.4, 1.4) 125.7, CH 7.38, ddd (7.5, 7.5, 1.2) 
7 131.7, CH 7.56, ddd (7.5, 7.5, 1.4) 131.6, CH 7.57, ddd (8.1, 7.7, 1.2) 
8 114.7, CH 7.50, d (7.8) 116.2, CH 7.49, d (7.2) 
9 138.2, C - 139.8, C - 
11 170.6, CO - 170.7, CO - 
12 56.8, CH 5.59, t (10.0) 56.9, CH 5.58, dd (10.8, 9.1) 
13 34.4, CH2 3.07, dd (13.2, 9.3) 

3.45, dd (13.0, 11.0) 
31.6, CH2 2.86, dd (12.9, 9.1) 

3.45, dd (12.7, 11.2) 
14 171.2, CO - 176.0, CO - 
15 70.3, C - 64.6, C - 
18 159.7, CO - 159.6, CO - 
19 121.3, C - 121.4, C - 
20 126.0, CH 8.25, d (8.0, 1.2) 126.1, CH 8.23, dd (8.0, 1.2) 
21 127.5, CH 7.64, ddd (7.6, 7.6, 1.1) 127.6, CH 7.63, ddd (7.6, 7.6, 1.0) 
22 134.9, CH 7.93, ddd (7.7, 7.7, 1.5) 135.0, CH 7.92, ddd (8.2, 8.2, 1.5) 
23 127.3, CH 7.77, d (7.7) 127.3, CH 7.76, d (7.7) 
24 147.4, C - 147.5, C - 
26 147.5, CH 8.57, s 147.4, CH 8.49, s 
27 16.2, CH3 1.35, s 26.5 CH3 1.45, s 
28 22.7, CH3 1.26, s 26.9 CH3 1.24, s 
NH-16 - - - 3.76, d (8.4) 
OH-16 - 8.80, s - - 
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3.1.11 Structure Elucidation of Diketopiperazine Derivatives 

 

3.1.11.1. Fellutanine A (NG 10) 

 

NG 10 was isolated as a yellow viscous mass and its molecular formula 

C22H20N4O2, was established on the basis of the (+)-HRESIMS m/z 373.1675  

[M+H]+, (calculated for C22H21N4O2, 373.1665),  indicating eighteen degrees of 

unsaturation. Despite twenty two carbon atoms indicated by the HRMS, the 13C NMR 

spectrum (Table 24) displayed only 11 signals, which were categorized, according to 

DEPTs and HSQC spectra, as one carbonyl (δC 166.7), three quaternary sp2 (δC 

136.0, 127.3 and 108.9), five methine sp2 (δC 124.4, 120.8, 118.5, 118.4 and 111.3), 

one methine sp3 (δC 55.3) and one methylene sp3 (δC 30.0) carbons. Therefore, the 

molecule should be symmetrical and each carbon signal must correspond to two 

carbon atoms.  

The 1H NMR spectrum, in conjunction with the HSQC spectrum (Table 24), 

exhibited three doublets at δH 6.59 (J = 2.3 Hz; H-2; δC 124.4),  δH 7.35 (J = 7.8 Hz, 

H-4, δC 118.4) and δH 7.29 (J = 8.0 Hz, H-7; δC 111.3), two ddd at δH 6.95, (J = 7.4, 

7.4, 1.0, H-5; δC 118.5), δH 7.04 (J = 7.5, 7.5, 1.1 Hz, H-6; δC 120.8), two mutually 

coupled dd at δH 2.72 (J = 14.3, 4.1 Hz; H-10; δC 30.0) and 2.17 (J = 14.3, 6.7, H-10; 

δC 30.0), in addition to two amine doublets at δH 10.85 (J = 1.7 Hz) and 7.71 (J = 

2.5). 
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Table 24. 1H and 13C NMR (DMSO, 300.13 MHz and 75.47 MHz) and HMBC 

assignment for NG 10 

Position C, type H, (J in Hz) COSY HMBC 

2 124.4, CH 6.59, d (2.3) - C-3, 8, 9, 10 
3 108.9, C - - - 
4 118.4, CH 7.35, d (7.8) H-5 C-6, 8 
5 118.5, CH 6.95, ddd (7.4, 7.4, 1.0) H-4 C-7, 9 
6 120.8, CH 7.04, ddd (7.5, 7.5, 1.1) H-5, 7 C-4, 8, 9 
7 111.3, CH 7.29, d (8.0) H-6 C-4, 5, 9 
8 136.0, C - - - 
9 127.3, C - - - 
10a 
    b 

30.0, CH2 2.17, dd (14.3, 6.7) 
2.72, dd (14.3, 4.1) 

H-10b, 11 
H-10a, 11 

C-2, 3, 9, 11, 12 
C-2, 3, 9, 11, 12 

11 55.3, CH 3.87, q (3.8) H-10a, 10b C-12 
12 166.7, CO - - - 
NH-1 - 10.85, d (1.7) - C-2, 3, 8, 9 
NH-13′ - 7.71, d (2.5) - C-11, 12 

 

Similar to NG 5, the presence of the indolylmethyl moiety was corroborated by 

the COSY correlation from H-4 through H-5 and H-6, to H-7 as well by the HMBC 

correlations from the indole amine doublet at δH 10.85 (J = 1.7 Hz) to the carbons at 

δC 124.4 (C-2), 108.9 (C-3), 127.3 (C-9) and 136.0 (C-8), from H-4 to C-3, C-6, C-8, 

from H-7 to C-5 and C-9, from H-2 to C-9 and C-10 and from H2-10 to C-2, C-3 and 

C-9. 
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30.0

2.17 dd (14.3, 6.7)
2.72 dd (14.3, 4.1)

6.59 d (2.3)

7.35 d (7.8)

6.95 ddd (7.4, 7.4, 1.0)

7.04 ddd (7.5, 7.5, 1.1)

7.29 d (8.0)

127.3

136.0

108.9

124.4

118.4
118.5

120.8

10.85 d (1.7)  

That NG 10 contained a symmetrical 1, 4-diketopiperazine moiety was 

corroborated by the coupling system from the doublet of the amide proton (δH 7.71, J 

= 2.5 Hz, NH-13′), through the methine quintet at δH 3.87 (J = 3.8 Hz, H-11; δC 55.3) 

to H2-10, as observed in the COSY spectrum. This was also supported by the HMBC 

correlations from NH-13′ to the carbonyl carbon at δC 166.7 (C-12) and C-11. 

2.17 dd (14.3, 6.7)

2.72 dd (14.3, 4.1)

30.0

3.87 q (3.8)

166.7

55.3

7.71 d (2.5)
 

The flat structure of NG 10 was the same as that of fellutanine A, a secondary 

metabolite previously reported from Penicillium fellutanum by Kozlovsky et al. 

(2000). In order to verify if NG 10 was the same as fellutanine A, we have measure 

the optical rotation of NG 10 ([α]20
D  = – 151.5) which as dextrorotatory like that of 

fellutaine A. Thefore, NG 10 was identified as fellutanine A or Cyclo (L-Trp-L-Trp).    



CHAPTER III. RESULTS AND DISCUSSIONS 
   

 

266 
 

 

10 11
13

13'
12'

1'2'

3'

4'

5'

6'

7'

8'

9'10'

11'
1

2

3

4

5

6

7
8

9

'

'

12

 

Figure 103. Structure of fellutanine A (NG 10) 

 

3.1.11.2. Fellutanine A epoxide (NG 11) 

 

NG 11 was isolated as pale yellow viscous mass, and its molecular formula 

C22H20N4O3 was established on the basic of the (+)-HRESIMS m/z 389.1626 [M+H]+ 

(calculated 389.1614), indicating fifteen degrees of unsaturation. The IR spectrum 

showed absorption bands for amine (3420 cm-1), amide carbonyl (1649 cm-1) and 

aromatic (1418 cm-1).  

The 13C NMR, DEPTs and HSQC spectra (Table 25) revealed the presence of 

two amide carbonyls (δC 169.8 and 167.7), five quaternary sp2 (δC 148.4, 136.0, 

131.1, 127.4 and 109.5), nine methine sp2 (δC 128.9, 124.1, 122.5, 120.9, 118.5, 

118.3 117.8, 111.3 and 109.8), one oxygen bearing quaternary sp3 (δC 85.9), one 

oxygen bearing methine sp3 (δC 84.0), two methine sp3 (δC 58.6 and 55.1) and two 

methylene sp3 (δC 41.3 and 24.7) carbons. 
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The 1H NMR (Table 25) exhibited, besides four NH signals at δH 10.88, brd (J 

= 1.4 Hz), 7.72, brs, 6.68, d (J = 4.1 Hz) and 6.05, s, and in conjunction with COSY 

and HSQC spectra, the protons of two 1, 2-disubstituted benzene ring at δH 7.60, d 

(J = 7.9 Hz, H-4; δC 118.5), 7.33, d (J = 7.9 Hz, H-7; δC 111.3), 7.07, ddd (J = 7.9, 

7.9, 1.1 Hz, H-6; δC 120.9), 6.99, ddd (J = 7.9, 7.9, 0.5 Hz, H-5; δC 118.3), and at δH 

7.18, d (J = 7.4 Hz, H-4′; δC 122.5), 7.05, ddd (J = 7.8, 7.8, 1.3 Hz, H-6′; δC 128.9), 

6.61, ddd (J = 7.8, 7.4, 0.5 Hz, H-5′; δC 117.8) and 6.54, d (J = 7.8 Hz, H-7′; δC 

109.8). 

That one of the 1, 2-disubstituted benzene ring was part of the indole moiety 

was corroborated by the HMBC correlations from H-4 (δH 7.60, d, J = 7.9 Hz) to C-3 

(δC 109.5), C-6 (δC 120.9) and C-8 (δC 136.0), from the amine proton at δH 10.88 brd 

(J = 1.4 Hz, NH-1) to C-2 (δC 124.1), C-3, C-8, C-9 (δC 127.4) and from H-2 (δH 7.25, 

d, J = 2.3 Hz) to C-3 and C-9. 

118.3

111.3

6.99 ddd (7.9, 7.9, 0.5)

7.07 ddd (7.9, 7.9, 1.1)

7.33 d (7.9)

124.1

109.5
118.5

120.9 136.0

127.4

10.88 brd (1.4)

7.25 d (2.3)

7.60 d (7.9)
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Table 25. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz), HMBC assignment and NOESY for NG 11 

Position δC, type δH, (J in Hz) COSY HMBC NOESY 

2 124.1, CH 7.25, d (2.3) NH-1 C-3, 9 H-10a, 11 (str), NH-13′ 
3 109.5, C - - - - 
4 118.5, CH 7.60, d (7.9) H-5 C-3, 6, 8 H-10a, 11 (str) 
5 118.3, CH 6.99, ddd (7.9, 7.9, 0.5) H-4, 6 C-7, 9 - 
6 120.9, CH 7.07, ddd (7.9, 7.9, 1.1) H-5, 7 C-4, 8 - 
7 111.3, CH 7.33, d (7.9) H-6 C-5, 9 - 
8 136.0, C - - - - 
9 127.4, C - - - - 
10a 
b 

24.7, CH2 3.06, dd (15.7, 6.5) 
3.40, m 

H-10b, 11 
H-10a, 11 

C-3, 9, 11, 12 
C-3, 9, 11, 12 

H-4, 10b, 11, NH-13′ 
H-10a 

11 55.1, CH 4.46, t (5.1) H-10a, 10b C-3, 10, 12 H-2, 4, 10a, 11′, NH-13′ 
12 167.7, CO - - - - 
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Table 25. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz), HMBC assignment and NOESY for NG 11 (Cont.) 

Position δC, type δH, (J in Hz) COSY HMBC NOESY 

2′ 84.0, CH 5.33, d (4.1) NH-1′ C-3′, 10′ H-11, NH-13, NH-1′(str) 
3′ 85.9, C - - - - 
4′ 122.5, CH 7.18, d (7.4) H-5′ C-6′, 8′ NH-13 
5′ 117.8, CH 6.61, ddd (7.8, 7.4, 0.5) H-4′, 6′ C-7′, 9′ - 
6′ 128.9, CH 7.05, ddd (7.8, 7.8, 1.3) H-5′, 7′ C-4′, 8′ - 
7′ 109.8, CH 6.54, d (7.8) H-6′ C-5′, 9′ - 
8′ 148.4, C - - - - 
9′ 131.1, C - - - - 
10′a 
     b 

41.3, CH2 1.83, dd (13.0, 11.6) 
2.43, dd (13.6, 6.7) 

H-10′b, 11 
H-10′a, 11 

C-11′, 12′ 
C-3′ 

H-10′b 
H-10′a, 11 

11′ 58.6, CH 4.66, dd (11.6, 6.7) H-10′a, 10′b C-10′, 12′ H-11, 2′, 10′b 
12′ 169.8, CO - - - - 
NH-1 - 10.88, brd (1.4) H-2 C-2, 3, 8, 9 H-2, 4 
NH-1′ - 6.68, d (4.1) H-2′ C-3′, 9′ - 
NH-13 - 6.05, s - C-10′ H-2′, 4′ 
NH-13′ - 7.72, brs - C-10, 11, 11′, 12 H-10a (str), 11 (str), H-2 
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The presence of a 2, 5-disubstituted 1,4-diketopiperazine was supported by 

the HMBC correlations from a singlet at δH 7.72 (NH-13′) to the carbonyl at  δC 167.7 

(C-12), the methine carbon at δC 58.6 (C-11′) and 55.1 (C-11) and the methylene 

carbon at δC 24.7 (C-10), and from another singlet at δH 6.05 (NH-13) to the 

methylene carbon at  δC 41.3 (C-10′), from H-11  (δH 4.46, t, J = 5.1 Hz) to C-10 and 

C-12, from H-11′ (δH 4.66, dd, J = 11.2, 6.1 Hz) to C-10′ and C-12′, as well as by the 

COSY correlations from H-11 to H2-10 (δH 3.06, dd, J = 15.7, 6.5 Hz and 3.40, m) 

and from H-11′ to H2-10′ (δH 1.83, dd, J = 13.0, 11.6 Hz and 2.43, dd, J = 13.0, 6.7 

Hz). That the indole ring system was connected to the 1, 4-diketopiperazine moiety 

through CH2-10 was supported by the HMBC correlations of H-11 to C-3 and H-10 to 

C-9. 

1.83 dd (13.0, 11.6)

2.43 dd (13.6, 6.7)

6.05 s

7.72 brs 

58.6
41.3

169.8

4.66 dd

(11.6, 6.7)

24.7
109.5

127.4 55.1

167.7

3.06 dd (15.7, 6.5)

3.40 m

4.46 t (5.1)

 

That another 1, 2-disubstituted was part of the 2, 3-disubstituted 2,3-dihydro-

1H-indole  ring system was corroborated by the HMBC correlations of NH-1′ doublet 

at δH 6.68 (J = 4.1 Hz) to the oxygenated quaternary carbon at δC 85.9 (C-3′) and the 

quaternary aromatic carbon at δC 131.1 (C-9′) as well as of the oxymethine doublet  
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at δH 5.33 (J = 4.1 Hz, H-2′) to C-3′. That the 2, 3-disubstituted 2, 3-dihydro-1H-

indole  ring system was linked to the 1, 4-diketopiperazine moiety through CH2-10′ 

was evidence by the HMBC correlations of H-2′ to C-10′ and C-11′ as well as of H-

10′ to C-3′. As this accounted only for C22H20N4O2, which is one oxygen atom less 

than the molecular formula, the epoxide functionality was place between C-2′ and C-

3′. 

131.1

6.68 d (4.1)

2.43 dd

(13.6, 6.7)

5.33 d (4.1)

84.0

41.3

85.958.6

 

Since NG 11 was obtained as pale yellow viscous mass, its stereochemistry 

could not be determined by X-ray crystallography. However, as NG 11 was isolated 

together with fellutanine A (NG 10), it is legitimate to assume that the 

stereochemistry of C-11 and C-11′ of both compounds are the same. Like fellutanine 

A (NG 10) and NG 11 must be derived from the same biosynthetic precursor, i.e. L-

tryptophan. Consequently the absolute configurations of C-11 and C-11′ of NG 10 

and NG 11 are presumed to be S. In an effort to unravel the stereochemistry of C-11, 

C-11′, and the epoxide bearing carbons (C-2′ and C-3′) of NG 11, the NOESY  
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experiments and molecular dynamic simulations were carried out. The NOESY 

spectrum of NG 11 exhibited correlations from H-11 to H-2, H-4, H-10a, H-11′, NH-

13′, therefore confirming the cis-relation between H-11 and H-11′. Since the coupling 

constant between H-11 and H-10a is 6.5 Hz, H-10a must be in an equatorial and H-

11 in axial positions in the major conformation. On the other hand, H-11′ exhibited 

only correlations to H-11 and H-10′b (δH 2.43, dd, J =13.0, 6.7 Hz), and H-2′, but not 

with H-10′a (δH 1.83, dd, J =13.0, 11.6 Hz) and NH-13, while H-2′ gave correlations 

to only H-11′ and NH-13, but not to H-10′a or 10′b. The values of the coupling 

constants of H-11 to H-10′a (J = 11.6 Hz) and to H-10′b (J = 6.7 Hz) indicated that H- 

11′ and H-10′a are in trans-diaxial, while H-11′ and H-10′b are in axial-equatorial 

position. These data indicated that H-2′ is in the same face as H-11′ and points to 

the opposite direction from H-10′a/ 10′b.  However, these correlations do not allow 

us to determine the stereochemistry of the epoxide. Surprisingly, the NOESY 

spectrum also shows strong correlation of H-4′ to NH-13. 
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Furthermore, a strong NOESY cross-peak between H-11 and H-11′ of NG 11, 

and in conjunction with conformational search, molecular dynamics and ab initio 

molecular modelling, showed that both amide bonds in the diketopiperazine ring are 

cis and that both amino acids have the same stereochemistry for their α-carbons. 

This type of six membered ring is thermodynamically stable because resonance 

compensates for the extra energy of the amide cis configurations (Bodanszky, 2012), 

when compared to the more normal trans configuration. Nevertheless, cis peptide 

bonds occur naturally even in linear biological proteins (Jabs et al., 1999). NOESY 

cross-peaks and molecular modeling also aided the assignment of the absolute 

configurations to the epoxide carbon atoms of NG 11. The minimal energy 

conformations for the R/R and S/S models are presented in Figure 104, showing 

how the epoxide oxygen points outwards in both cases for minimal repulsion. 

Conformational analysis was based mainly on the combinations of the three 

staggered conformations for C-10′/C-11′ bond and two for the C-3′/C-10′ bond. 

These six conformers differ by less than 7 kcal/mol (RHF/6-21G total energy), 

independently of the configuration of the epoxide. Of all the conformations, the most 

stable conformation of the 2′S/3′S epoxide actually explains simultaneously the 

observed NOESY correlations of H-4′ to NH-13 and of H-2′ to H-11′ (Table 25 and 

Figure 104). On the other hand, none of the R/R conformations justifies the NOESY 

data without assuming unreasonable spin-diffusion. The assignment of the S/S 

isomer for the epoxide carbons of NG 11 has to assume, however, that there is a  
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spin-diffusion during the mixing time, otherwise, given the proposed structure for NG 

11, it would not be possible to explain also the H-2′/H-13 NOESY cross-peak. The 

proximities H-4′/NH-13 and H-2′/H-11′ are physically incompatible with direct H-2′/H-

13 NOE proximity. The fact that H-2′/H-11′/NH-13 forms a coupled dipolar spin 

system is perhaps an explanation for the very week H-11′/NH-13 NOESY cross-peak 

(Table 25 and Figure 104), expect to be strong unless some polarization transfer is 

at play between the three spins. 

 

Figure 104. The two possible epoxide configuration for NG 11 in their lowest RHF/6-

21G total energy conformation. Solid lines indicate direct NOESY correlations, 

explained by the S/S stereoisomer and not by the R/R. The discontinuous line shows 

how spin diffusion gives rise to an H-2′/NH-13 NOESY cross-peak. 
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Taking together all the evidences, the structure of NG 11 was proposed as 

fellutanine A 2′S, 3′S-epoxide. To the best of our knowledge, compound NG 11 is a 

new compound. 
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Figure 105. Structure of fellutanine A 2′S, 3′S- epoxide (NG 11) 

 

3.1.11.3. (11S, 14 R)-3-(1H-indol-3-ylmethyl)-6-isopropyl-2, 5-piperazinedione 

(EC 12) 

 

EC 12 was isolated as white crystals (mp, 270-271 ºC), and its molecular 

formula C16H19N3O2 was determined based on the (+)-HRESIMS [M+H]+ peak at m/z 

286.1555 (calculated for C16H20N3O2, 286.1556), indicating nine degrees of 

unsaturation. The 1H and 13C NMR spectra exhibited characteristic proton and 

carbon signals of a indolylmethyl diketopiperazine derivative.  

The 13C NMR (Table 26) showed the presence of sixteen carbon signals 

which can be categorized, according to the DEPTs and HSQC spectra, as two amide  
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carbonyls (δC 168.1 and 167.1), three quaternary sp2 (δC 135.8, 127.7 and 108.5), 

five methine sp2 (δC 124.5, 120.8, 118.9, 118.3 and 111.1), three methine sp3 (δC 

59.1, 54.7 and 31.5), one methylene sp3 (δC 28.4) and two methyl (δC 18.2 and 16.6) 

carbons. 

Table 26. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for EC 12 

Position δC, type δH, type (J in Hz) COSY HMBC 

2 124.5, CH 7.08, d (2.3) - C-3, 9 
3 108.5, C - - - 
4 118.9, CH 7.60, d (7.9) H-5 C-3, 6, 8 
5 118.3, CH 6.95, ddd (7.5, 7.5, 1.4) H-4, 6 C-8, 9 
6 120.8, CH 7.04, ddd (7.4, 7.4, 1.1) H-5, 7 C-4, 7, 8 
7 111.1, CH 7.32, d (7.1) H-6 C-5, 9 
8 135.8, C - - - 
9 127.7, C - - - 
10a 
    b 

28.4, CH2 3.04, m 
3.23, dd (14.5, 4.4) 

- C-2, 3, 9, 11, 12 
C-2, 3, 9, 11, 12 

11 54.7, CH 4.13, brt (3.9) H-10 C-3, 10, 12 
12 168.1, CO - - - 
14 59.1, CH 3.04, m - C-17, 18, 19 
15 167.1, CO - - - 
17 31.5, CH 2.03, m H-14, 18, 19 - 
18 18.2, CH3 0.77, d (6.8) - C-14, 17, 19 
19 16.6, CH3 0.82, d (7.1) - C-14, 17, 18 
NH-1 - 10.88, brs H-2 C-3, 8, 9 
NH-13 - 7.86, d (1.5) H-14 C-11, 15 
NH-16 - 8.03, brs H-11 C-12, 14 
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Like for NG 5, NG 10 and NG 11, the existence of indolylmethyl moiety was 

evidence by the coupling system of H-4 (δH 7.60, d, J = 7.9 Hz; δC 118.9) through H-

5 (δH 6.95, ddd, J = 7.5, 7.5, 1.4 Hz; δC 118.3) and H-6 (δH 7.04, ddd, J = 7.4, 7.4, 

1.1 Hz; δC 120.8) to H-7 (δH 7.32, d, J = 7.1 Hz; δC 118.9) and from the cross peak 

from the brs of the indole amine proton at 10.88 to the doublet at δH 7.08 (J = 2.3, H-

2; δC 124.5) observed in the COSY spectrum. This was also supported by the HMBC 

correlation from H-4 to C-6, C-3 (δC 108.5) and C-8 (δC 135.8), from H-7 to C-5 and 

C-9 (δC 127.7), from NH-1 to C-3, C-8, C-9, from H-2 to C-3 and C-9 and from H2-10 

(δH 3.04, m and 3.23, dd, J = 14.5, 4.4 Hz; δC 28.4) to C-2, C-3 and C-9. 

28.4

3.04 m

3.23 dd (14.5, 4.4)

10.88 brs 

7.60 d (7.9)

6.95 ddd (7.5, 7.5, 1.4)

7.04 ddd (7.4, 7.4, 1.1)

7.32 d (7.1)

118.9118.3

120.8

111.1

135.8

127.7 108.5

124.5

7.08 d (2.3)

 

The existence of the 2, 5-diketopiperazine ring was confirmed by the COSY 

correlations from the amide proton (NH-16) at δH 8.03 brs to the brt at δH 4.13 (J = 

3.9 Hz; H-11; δC 54.7) and from another amide proton (NH-13) at δH 7.86 (J = 1.5 

Hz) to a multiplet at δH 3.04 (H-14, δC 59.1) as well as by the HMBC correlation from 

NH-16 to carbonyl at δC 168.1 (C-12) and C-14 and from NH-13 to the carbonyl at δC 

167.1 (C-15) and C-11. That the isopropyl group was on C-14 was corroborated by  
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the COSY correlation from the multiplet at δH 2.03 (H-17) to H-14 and the two methyl 

doublets at δH 0.77 (J = 6.8 Hz, Me-18; δC 18.2) and 0.82 (J = 7.1, Me-19; δC 16.6) 

as well as by the HMBC correlations of both Me-17 and Me-18 to C-14.  

2.03 m

54.7
4.13 brt (3.9)

16.6

59.1

18.2

7.86 d (1.5)

8.03 brs

168.1

0.77 d (6.8)167.1

0.82 d (7.1)

3.04 m

31.5

 

Finally, the isopropyl 1, 4-diketopiperazine ring was linked to the indole moiety 

through the methyl group was confirmed by the COSY correlation from H2-10 to H-11 

as well as by the HMBC from H-11 to C-3, C-10 and C-12. 

3.04 m

3.23 dd (14.5, 4.4)

4.13 brt

(3.9)

28.4

108.5

168.1

54.7

 

Analysis of the 1H, 13C NMR and (+)-HRESIMS data allowed to establish its 

structure as 3-(1H-indol-3-ylmethyl)-6-isopropyl-2,5-piperazinedione or cyclo 

(tryptophylvalyl). Literature survey revealed that both 11S, 14R and 11S, 14S forms  
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have been previously reported. While the 11S, 14R form [mp 278-280ºC; [α]20
D  = – 15 

(c = 1, DMF)] was isolated from Aspergillus chevalieri, the 11S, 14S form [mp 294-

298 ºC; [α]20
D  = – 98 (c = 1, DMF)] was reported from Phoma linga (Blunt and Munro, 

2007). Since the specific rotation of EC 12, determined in acetone, was levorotatory 

[α]20
D  = – 187 (c = 0.02, acetone), it was not possible to determine unequivocally the 

absolute configuration of C-11 and C-14. However, since EC 12 was obtained in a 

suitable crystal, an X-ray diffraction was performed. The ORTEP view of EC 12 

(Figure 106) showed clearly that the absolute configuration of C-11 and C-14 are 

11S and 14R, respectively. 

 

Figure 106. ORTEP view of EC 12 

 

Therefore, the structure of EC 12 (Figure 107) was established as (11S, 14R) 

-3-(1H-indol-3-ylethyl)-6-isopropyl-2, 5-piperazinedione (Blunt and Munro, 2007). 
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Figure 107. Structure of (11S, 14R)-3-(1H-indol-3-ylethyl)-6-isopropyl-2,5-

piperazinedione (EC 12) 

 

3.1.11.4. Preechinulin (EC 13) 

 

EC 13 was isolated as a white solid (mp, 251-252 ºC), its molecular formula 

C19H23N3O2, was established on the basis of the (+)-HRESIMS m/z 326.1873 [M+H]+ 

(calculated for C19H24N3O2, 326.1869), indicating ten degrees of unsaturation. The 

13C NMR (Table 27), in combination with DEPTs and HSQC spectra, exhibited two 

amide carbonyls (δC 167.9 and 167.3), four quaternary sp2 (δC 141.4, 134.9, 129.0 

and 104.7), five methine sp2 (δC 146.5, 120.5, 118.4, 117.9 and 110.8), one 

quaternary sp3 (δC 39.0), two methine sp3 (δC 55.7 and 50.3), one methylene sp2 (δC 

111.1), one methylene sp3 (δC 31.1) and three methyl (δC 28.0, 27.9 and 20.7) 

carbons. 
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The 1H NMR spectrum, in conjunction with the HSQC spectrum (Table 27) 

showed the signals of four aromatic protons at δH 7.43, d (J = 7.7 Hz), 7.32, d (J = 

7.9 Hz), 7.03, ddd (J = 7.5, 7.5, 1.1 Hz) and 6.94, ddd (J = 7.4, 7.4, 1.0 Hz), one 

olefinic proton at δH 6.19, dd (J = 17.4, 10.5 Hz), two methine sp3 protons at δH 3.96, 

m and 3.79, dd (J = 14.1, 7.1, 2.5 Hz), two methylene sp2 proton at 5.08, dd (J = 

17.5, 1.2 Hz) and 5.02, dd (J = 10.5, 1.2 Hz), methylene sp3 proton at δH 3.08, dd (J 

= 14.4, 8.9 Hz) and 3.33, dd (J = 14.4, 8.2 Hz), three methyl protons at δH 1.50, s, 

1.49, s and 1.23, d (J = 7.1 Hz), singlet of one amine proton at δH 10.55, two 

doublets of amide protons at δH 8.18 (J = 2.8 Hz) and 7.53 (J = 3.1 Hz). The 1H and 

13C NMR spectra of EC 13 resemble those of EC 12 exhibiting the presence of the 

indolylmethyl moiety and the 1, 4-diketopiperazine portion. 
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Table 27. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for EC 13 

Position δC, type δH, type (J in Hz) COSY HMBC 

2 141.4, C - - - 
3 104.7, C - - - 
4 117.9, CH 7.43, d (7.7) H-5 C-6, 8 
5 118.4, CH 6.94, ddd (7.4, 7.4, 1.0) H-4, 6 C-7, 9 
6 120.5, CH 7.03, ddd (7.5, 7.5, 1.1) H-5, 7 C-4, 5, 8 
7 110.8, CH 7.32, d (7.9) H-6 C-4, 5, 9 
8 134.9, C - - - 
9 129.0, C - - - 
10a 
    b 

31.1, CH2 3.08, dd (14.4, 8.9) 
3.31, dd (14.4, 8.2) 

H-10b, 11 
H-10a, 11 

C-2, 3, 9, 11 
C-2, 3, 9, 11 

11 55.7, CH 3.96, m H-10 C-12, 15 

12 167.9, CO - - - 
14 50.3, CH 3.79, ddd (14.1, 7.1, 2.5) NH-13, H-17 C-12, 15, 17 
15 167.3, CO - - - 
17 20.7, CH3 1.23, d (7.1) H-14 C-12, 14, 15 
18 39.0, C - -  
19 146.5, CH 6.19, dd (17.4, 10.5) H-20 C-18, 21, 22 
20a 
    b 

111.1, CH2 5.08, dd (17.5, 1.2)  
5.02, dd (10.5, 1.2) 

H-19 
H-19 

C-19 
C-19 

21 27.9, CH3 1.49, s H-22 C-2, 19, 22 
22 28.0, CH3 1.50, s H-21 C-2, 19, 21 
NH-1 - 10.55, s - C-2, 3, 9 
NH-13 - 8.18, d (2.8) H-14 C-11 
NH-16 - 7.53, d (3.1) H-11 C-14 

 

 



CHAPTER III. RESULTS AND DISCUSSIONS 
   

 

283 
 

 

The indole ring system was evidenced by the coupling system, similar to that 

of EC 12 as observed in the COSY spectrum, from H-4 (δH 7.43, d, J = 7.7 Hz; δC 

117.9) through H-5 (δH 6.94, ddd, J = 7.4, 7.4, 1.0 Hz; δC 118.4) and H-6 (δH 7.03, 

ddd, J = 7.5, 7.5, 1.1 Hz; δC 120.5) to H-7 (δH 7.32, d, J = 7.9 Hz; δC 110.8)  as well 

as by the HMBC correlations from the indole amine proton singlet  at δH 10.55 to the 

carbons at δC 104.7 (C-3), δC 129.0 (C-9) and a quaternary sp2 carbon at δC 141.1 

(C-2). The presence of the quaternary sp2 carbon at δC 141.1 and the lack of a 

proton doublet with a coupling constant ca. 2.5 Hz in the 1H NMR spectrum of EC 13 

led to the conclusion that C-2 of the indole moiety was substituted. 

141.4
129.0

117.9

120.5

118.4

110.8

134.9

104.7

7.43 d (7.7)

7.03 ddd (7.5, 7.5, 1.1)

6.94 ddd (7.4, 7.4, 1.0)

7.32 d (7.9) 10.55 s  

The existence of the 3-methylbut-3-en-2-yl moiety was based on the COSY 

correlations from the doublet doublet at δH 6.19 (J = 17.4, 10.5 Hz, H-19; δC 146.5) to 

the two double doublets at 5.08 (J = 17.5, 1.2 Hz; H-20a; δC 111.1) and 5.02 (J = 

10.5, 1.2 Hz; H-20b; δC 111.1) as well as by the HMBC correlations from H-19 to the 

quaternary sp3 carbon at δC 39.0 (C-18) and the two methyl singlets at δH 1.49 (Me-

21, δC 27.9) and 1.50 (Me-22; δC 28.0). That the 2-methylbut-3-en-2-yl substituent 
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was on C-2 of the indole moiety was corroborated by the HMBC correlations from 

Me-21 and Me-22 to C-2. 

39.0

146.5

111.1

27.9

28.0

1.49 s

1.50 s

6.19 dd (17.4, 10.5)

5.02 dd (10.5, 1.2)

5.08 dd (17.5, 1.2)

141.4

 

Similar to EC 12, the indole portion of EC 13 was also connected to the 1,4-

diketopiperazine moiety by the methylene bridge as evidenced by coupling system, 

as observed in the COSY spectrum,  from the mutually coupled dd at δH 3.08 (J = 

14.4, 8.9 Hz, H-10a; δC 31.1) and δH 3.33 (J = 14.4, 8.2 Hz, H-10b; δC 31.1) through 

the multiplet at δH 3.96 (H-11; δC 55.7) to the doublet of the amide proton at δH 7.53 

(J = 3.1 Hz; NH-16), from NH-16 to the methine sp3 carbon at δC 50.3 (C-14).  

Contrary to EC 12, the substituent on C-14 of the 1, 4-diketopiperzine ring 

was a methyl group instead of isopropyl group. This was evident by the COSY 

correlation from a ddd at δH 3.79 (J = 14.1, 7.1, 2.5 H-14; δC 50.3) to the methyl 

doublet at δH 1.23 (J = 7.1 Hz, Me-17) as well as the HMBC correlations from H-14 

to C-17 and the carbonyl at δC 167.9 (C-12). 
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20.7 

3.08 dd (14.4, 8.9)

3.79 ddd (14.1, 7.1, 2.5)

3.33 dd (14.4, 8.2)

50.3

31.1

1.23 d (7.1)

55.7
167.9

 

Taking together the 1H and 13C NMR data and their correlations, EC 13 was 

identified as 3-Methyl-6-[2-(2-methyl-3-buten-2-yl)-1H-indol-3-yl]methyl-2,5-

piperazinedione. Since EC 13 was dextrorotatory ([α]20
D  = + 23.4), it was identified as 

preechinulin (Fugure 108). 

 Preechinulin was reported from the culture of several fungi such as the fungal 

strain Aspergillus chevalieri (Mangin) Thom et Church IFO 4090 (Hamasaki et al., 

1976), a halotolerant fungus Aspergillus variecolor B-17, which was isolated from 

sediments (Wang et al., 2007a), mangrove-derived endophytic fungus Eurotium 

rubrum (Li et al., 2008c), sponge-derived fungus Aspergillus repens (Chen and GU, 

2010), soft coral-derived fungus Nigrospora oryzae (Sun et al., 2014) and marine-

derived fungus Eurotium rubrum, which was isolated from the sediments (Chen et 

al., 2015). 
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Figure 108. Structure of preechinulin (EC 13) 

 

3.1.11.5. Neoechinulin E (EC 14) 

 

EC 14 was isolated as a white solid (mp, 273-275 ºC) and its molecular 

formula C18H17N3O3 was determined based on the (+)-HRESIMS m/z 324.1347 

[M+H]+ (calculated  for C18H18N3O3, 324.1348), indicating twelve degrees of 

unsaturation. The 13C NMR (Table 28) revealed the presence of eighteen carbon 

signals which can be categorized, through DEPTs and HSQC spectra as three 

amide carbonyl (δC 160.5, 157.3 and 152.3), five quaternary sp2 (δC 145.6, 135.1, 

126.1, 123.4 and 103.7), one quaternary sp3 (δC 39.0), six methine sp2 (δC 144.9, 

121.1, 119.7, 119.6, 116.0 and 111.6), one methylene sp2 (δC 112.0) and two methyl 

[δC 27.7 (2C)] carbons. 
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Like preechinulin, EC 14 also contained  the 2-(2-methylbut-3-en-2-yl)-1H-

indolemoiety which was supported by the coupling system, as observed in the COSY 

spectrum, from H-4 (δH 7.44, d, J = 8.0 Hz, δC 119.7), through H-5 (δH 7.03, dd, J = 

7.6, 7.0 Hz, δC 119.7) and H-6 (δH 7.12, dd, J = 7.9, 6.0 Hz, δC 121.0) to H-7 (δH 

7.44, d, J = 8.0 Hz, δC 111.6), from H-18 (δH 6.09, dd, J = 17.3, 10.6 Hz, δC 144.9) to 

H-19a (δH 5.07, d, J = 17.3 Hz, δC 112.0) and H-19b (δH 5.10, d, J = 10.6 Hz, δC 

112.0), as well as by the HMBC correlation from NH-1 (δH 11.25, brs) to C-2 (δC 

145.6), C-3 (δC 103.7), C-8 (δC 135.1) and C-9 (δC 126.1), from H-18 to Me-21/Me-

22 (δC 27.7), C-17 (δC 39.0) and C-2. 

7.12 dd (7.4, 7.4)
39.0

144.9

6.09 dd (17.3, 10.6)

5.10 d (10.6)

7.03 dd (7.3, 7.3)

5.07 d (17.3)

7.44 d (8.0)

27.7

7.44 d (8.0)

145.6

27.7

1.49 s

103.7

1.49 s

119.7

112.0

119.6

121.1

111.6

126.1

135.1

11.25 s
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Table 28. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for EC 14 

Position δC, type δH, type (J in Hz) COSY HMBC 

2 145.6, C - - - 
3 103.7, C - - - 
4 119.7, CH 7.03, dd (7.3, 7.3) H-5 C-7, 8 
5 119.6, CH 7.44, d (8.0) H-4, 6 C-4, 8, 9 
6 121.1, CH 7.12, dd (7.4, 7.4) H-5, 7 C-4, 5, 9 
7 111.6, CH 7.44, d (8.0) H-6 C-4, 5, 8, 9 
8 126.1, C - - - 
9 135.1, C - - - 
10 116.0, CH 7.20, s - C-2, 3, 8, 12 
11 123.4, C - - - 
12 160.5, CO - - - 
14 152.3, CO - - - 
15 157.3, CO - - - 
17 39.0, C - - - 
18 144.9, CH 6.09, dd (17.3, 10.6) H-19 C-2, 18, 20, 21 
19a 
    b 

112.0, CH2 5.07, d (17.3) 
5.10, d (10.6) 

H-18 
H-18 

C-2, 18 
C-2, 18 

20 27.7, CH3 1.49, s - C-2, 18, 21 
21 27.7, CH3 1.49, s - C-2, 18, 20 
NH-1 - 11.25, s - C-2, 3, 8, 9 
NH-13 - 9.87, s - - 
NH-16 - 12.00, s - - 

 

The indole ring system was connected to the 1, 4-diketopiperazine moiety, 

which was revealed by the HMBC correlations from the singlet of methine proton at 

δH 7.20 (δC 116.0, H-10) to the quaternary carbons at δC 145.6 (C-2), 103.7 (C-3),  
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126.1 (C-8) and carbonyl carbon at δC 160.5 (C-12). Therefore, the complete 

structure was: 

9.87 s

157.3
12.00 s

123.4

152.3

145.6

103.7

126.1

160.5

7.20 s

116.0

 

Taking all of the information together, EC 14 was established as neoechinulin 

E (Figure 109), previously reported from the fungal strain isolated the mycelium of 

Aspergillus amstelodami, grown on molasses beet cultures (Marchelli et al., 1977), 

mangrove-derived endophytic fungus Eurotium rubrum (Li et al., 2008c) and marine 

sponge-associated fungus Eurotium cristatum (Gomes et al., 2012). 
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Figure 109. Structure of neoechinulin E (EC 14) 
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3.1.11.6. Echinulin (EC 15) 

 

EC 15 was isolated as a white solid (mp, 226-227 ºC) and the general 

features of its 1H and 13C NMR spectra revealed that it was an indolylmethyl 1,4-

diketopiperazine derivative, similar to EC 13 (preechinulin), differing only in the 

substitution pattern of the benzene ring of the indole moiety. The 13C NMR spectrum 

(Table 29) revealed the presence of 28 carbon signals which can be categorized, 

according to DEPTs and HSQC spectra, into two amide carbonyl (δC 167.9 and 

167.4), eight quaternary sp2 (δC 144.4, 132.2, 131.6, 131.5, 130.4, 129.2, 123.6 and 

105.1), five methine sp2 (δC 146.8, 124.9, 122.8, 121.0 and 114.6), one methylene 

sp2 (δC 111.0), one quaternary sp3 (δC 39.0), two methine sp3 (δC 55.6 and 50.3), 

three methylene sp3 (δC 34.2, 31.3 and 29.0), and seven methyl (δC 28.0 (2C), 25.6, 

25.5, 20.8, 17.8 and 17.7) carbons.  

The 1H NMR spectrum (Table 29) displayed, among others, three amine 

proton signals at δH 9.71, s, typical for the indole amine proton, and two doublets at 

δH 8.19 (J = 2.6 Hz) and 7.46 (J = 3.0 Hz), which were characteristic of the amide 

protons of a 1,4-diketopiperazine moiety. The existence of a 3-methylpiperazine-2, 5-

dione, similar to that of EC 13 (preechinulin) was evidenced by the coupling system 

from the amide doublet at δH 8.19 (J = 2.6 Hz, NH-13) through the ddd at δH 3.81 (J 

= 14.0, 6.9, 2.8; H-14; δC 50.3) to the methyl doublet at δH 1.33 (J = 7.1 Hz; Me-17; 

δC 20.8), and from the amide doublet at δH 7.46 (J = 3.0 Hz, NH-16) to the dt at δH 

3.92 (J = 9.0, 3.5 Hz; H-11; δC 55.6), as observed in the COSY spectrum.  
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Table 29. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for EC 15 

Position δC, type δH, type (J in Hz) COSY HMBC 

2 144.4, C - - - 
3 105.1, C - - - 
4 114.6, CH 7.04, s H-6 C-3, 6, 8, 9, 23 
5 131.6, C - - - 
6 121.0, CH 6.63, s - C-4, 8, 23, 28 
7 123.6, C - - - 
8 132.2, C - - - 
9 129.2, C - - - 
10a 
    b 

31.3, CH2 3.31, m 
3.02, dd (14.4, 9.5) 

- 
H-10a, 11 

C-2, 3, 9, 11 
C-2, 3, 9, 11 

11 55.6, CH 3.92, dt (9.0, 3.5) H-10 - 
12 167.4, CO - - - 
14 50.3, CH 3.81, ddd (14.0, 6.9, 2.8) H-13, 17 C-15, 17 
15 167.9, CO - -  
17 20.8, CH3 1.33, d (7.1) H-14 C-14, 15 
18 39.0, C - - - 
19 146.8, CH 6.22, dd (17.5, 10.5) H-20 C-2, 18, 21, 22 
20 111.0, CH2 5.08, dd (17.4, 1.1) 

5.02, dd (10.5, 1.2) 
- 
- 

C-18, 19 
C-18, 19 

21 28.0, CH3 1.50, s - C-2, 18, 19, 22 
22 28.0, CH3 1.51, s - C-2, 18, 19, 21 
23 34.2, CH2 3.29, d (6.8) H-24, 26, 27 C-4, 5, 6, 24, 25 
24 124.9, CH 5.30, dt (7.3, 1.6) H-23, 26, 27 - 
25 130.4, C - - - 
26 25.5, CH3 1.69, s H-23, 24 C-24, 25, 27 
27 17.7, CH3 1.69, s H-23, 24 C-24, 25, 26 
28 29.0, CH2 3.57, d (7.1) H-29, 31, 32 C-7, 29, 30 
29 122.8, CH 5.38, dt (7.2, 1.0) H-28, 31, 32 C-31, 32 
30 131.5, C - - - 
31 25.6, CH3 1.74, s H-28, 29 C-29, 30, 32 
32 17.8, CH3 1.74, s H-28, 29 C-29, 30, 31 
NH-1 - 9.71, s - C-2, 3, 8, 9 
NH-13 - 8.19, d (2.6) H-14 C-11, 15 
NH-16  7.46, d (3.0) H-11 C-12, 14 



CHAPTER III. RESULTS AND DISCUSSIONS 
   

 

292 
 

 

This was also confirmed by the HMBC correlations from NH-13 to C-11 (δC 

55.6) and the carbonyl at δC 167.9 (C-15), from NH-16 to C-14 (δC 50.3) and the 

carbonyl carbon at δC 167.4 (C-12), from Me-17 (δH 1.33, d, J = 7.1 Hz; δC 20.8) to 

C-14 and C-15. Since the COSY spectrum also showed correlation of the mutually 

coupled methylene protons at δH 3.02, dd (J = 14.4, 9.5 Hz, H-10; δC 31.3) to H-11, 

the 3-methylpiperazine-2, 5-dione ring was connected to the methylene group at C-

11. 

167.9 20.8
1.33 d (7.1)

8.19 d (2.6)

3.92 dt

(9.0, 3.5)

31.3

3.02 dd (14.4, 9.5)

3.31 m 

55.6

7.46 d (3.0)

3.81 ddd

(14.0, 6.9, 2.8)

50.3

167.4

 

Contrary to EC 13 (preechinulin), the 1H NMR, COSY and HMBC spectra of 

EC 15 (Table 29) also revealed the existence of the 2, 3, 5, 7-tetrasubstituted indole 

moiety. This hypothesis was confirmed correlations from the proton singlet at δH 7.04 

(H-4; δC 114.6) to another proton singlet at δH 6.63 (H-6; δC 121.0) as well as the 

HMBC correlations from H-4 to C-6 (δC 121.0), C-3 (δC 105.1), C-8 (δC 132.2), from 

H-6 to C-4 (δC 114.6) and C-8, from NH-1 (δH 9.71, s) to C-3, C-8, C-9 (δC 129.2) 

and C-2 (δC 144.4).  
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Like EC 13 (preechinulin), the 2-methylbut-3-en-2-yl side chain was on C-2 of 

the indole moiety which was confirmed by the COSY correlations from a pair of the 

sp2 methylene protons at δH 5.08, dd (J = 17.4, 1.1 Hz, H-20a; δC 111.0)/5.02, dd (J 

= 10.5, 1.2 Hz, H-20b) to the olefinic proton at δH 6.22, dd (J = 17.5, 10.5 Hz, H-19; 

δC 146.8), as well as by the HMBC correlations from H-19 to the methyl carbons at 

δC 28.0 (Me-21 and Me-22), the sp3 quaternary carbon at δC 39.0 (C-18) and C-2, 

and from the methyl singlets at δH 1.50 (Me-21; δC 28.0) and 1.51 (Me-20; δC 28.0) 

to C-2, C-18 and C-19. 

6.22 dd (17.4, 10.5) 111.0
9.71 s

114.6

121.0

6.63 s

7.04 s

129.2
105.1

132.2 39.0

146.8

28.0

28.0

1.51 s

1.50 s

5.08 dd (17.4, 1.1)

5.02 dd (10.5, 1.2)

144.4

 

Analysis of the 1H, 13C NMR, DEPTs, COSY, HSQC and HMBC also revealed 

the presence of two 3-methylbut-2-en-1-yl (prenyl) groups.  The first prenyl group 

consists of the coupling system, as observed in the COSY spectrum, from the 

methylene doublet at δH 3.29, d (J = 6.8, H2-23; δC 34.2), through the olefinic proton 

at δH 5.30, dt (J = 7.3, 1.6 Hz, H-24, δC 124.9) to the methyl singlet at δH 1.69 (6H, 

Me-26 and Me-27; δC 25.5 and δC 17.7).   
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This system was confirmed by the HMBC correlations from H-23 to C-24 (δC 

124.9), C-25 (δC 130.4), from Me-26/Me-27 (δH 1.69, s) to C-24 and C-25. Since H-

23 showed HMBC correlations to C-4, C-6 and the quaternary sp2 carbon at δC 

131.6, this carbon was assigned to C-5. The second group consists of the coupling 

system from the methylene protons at δH 3.57, d (J = 7.1, H2-28; δC 29.0), through 

the olefinic proton at δH 5.38, dt (J = 7.2, 1.0 Hz, H-29, δC 122.8) to the methyl 

singlet at δH 1.74 (6H, Me-31 and Me-32; δC 25.6 and 17.8).  This was corroborated 

by the HMBC correlations from H2-28 to C-29 (δC 122.8), C-30 (δC 131.5). Since H2-

28 showed correlation to the quaternary aromatic carbon at δC 123.6, this carbon 

was assigned to C-7.Therefore, the two prenyl substituents were on C-5 and C-7 of 

the indole moiety. 

5.38 dt (7.2, 1.0)
3.57 d (7.1)

1.74 s

1.74 s
17.8

25.6

131.5

122.8

29.0

121.0

131.6

114.6

3.29 d (6.8)

34.2

124.9
130.4

25.5

17.7
1.69 s

1.69 s

5.30 dt (7.3, 1.6)
123.6
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That the prenylated indole moiety was connected to the 3-methylpiperazine-2, 

5-dione through the methylene group was confirmed by the HMBC correlation from 

H2-10 to C-2, C-3 and C-9. Therefore the complete structure of EC 15 was 

elucidated as 3-(2-(1,1-Dimethyl-2-propenyl)-5,7-bis(3-methyl-2-butenyl)-1H-indol-3-

yl)methyl)-6-methyl-2,5-piperazinedione: 

129.2

31.3

105.1

3.02 dd (14.4, 9.5)3.31 m 

144.4

 

EC 15 was identified as echinulin since its specific rotation ([α]20
D  = – 41.7) was  

compatible with that determined for echinulin (Smetanina et al., 2007). Echinulin is a 

fungal metabolites isolated from various fungal species including the soil fungus 

Chaetomium globosum KMITL-N0802 (Kanokmedhakul et al., 2002), Eurotium 

repens, which was isolated from the sponge Suberites domuncula (Smetanina et al., 

2007), a halotolerant fungus Aspergillus variecolor B-17 (Wang et al., 2007a), 

mangrove-derived endophytic fungi Eurotium rubrum (Li et al., 2008b) and Eurotium 

cristatum EN-220 (Du et al., 2012), a deep-ocean sediment derived fungus 

Penicillium griseofulvum (Zhou et al., 2010), marine sponge-associated fungus  
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Eurotium cristatum (Gomes et al., 2012) and crinoid-derived fungus Aspergillus rubur 

1017 (Li et al., 2017). 
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Figure 110. Structure of echinulin (EC 15) 

 

3.1.11.7. Eurocristatine (EC 16) 

 

EC 16 was isolated as a white crystal (mp, 243-244 ºC) and its molecular 

formula was determined as C32H36N6O4, based on the HRESIMS m/z 569.2889 

[M+H]+ (calculated for C32H37N6O4, 569.2876), indicating nineteen degree of 

unsaturation. However, the 13C NMR spectrum (Table 30) displayed only sixteen 

carbon signals which was categorized, based on DEPTs and HSQC spectra, as two 

amide carbonyl (δC 168.4 and 167.5), two quaternary sp2 (δC 149.1 and 130.4), four  
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methine sp2 (δC 128.7, 124.4, 118.0 and 108.9), one quaternary sp3 (δC 59.7), four 

methine sp3 (δC 78.8, 62.3, 55.7 and 32.1), one methylene sp2 (δC 37.2) and two 

methyl (δC 18.0 and 19.0) carbons. Since the number of the carbon signals displayed 

by the 13C NMR spectrum was half of the number of the carbon atoms in the 

molecular formula, EC 16 was hypothesized to be a symmetrical dimer.  

Table 30. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for EC 16 

Position δC, type δH, type (J in Hz) COSY HMBC 

2 78.8, CH 4.90, brs - - 
3 59.7, C - - - 
4 124.4, CH 7.39, d (7.5) H-5 C-3, 6, 8 
5 118.0, CH 6.64, dd (7.5, 7.5) H-4, 6 C-7, 9 
6 128.7, CH 7.03, dd (7.6, 7.6) H-5, 7 C-4, 8 
7 108.9, CH 6.60, d (7.3) H-6 C-5, 9 
8 149.1, C - - - 
9 130.4, C - - - 
10a 
    b 

37.2, CH2 3.15, m 
2.39, dd (14.2, 9.4) 

H-11 
H-11 

C-3 
C-3, 11, 12 

11 55.7, CH 4.12, t (8.7) H-10 C-10, 12 
12 168.4, CO - - - 
14 62.3, CH 3.41, m H-17, NH-13 C-12, 17, 18, 19 
15 167.5, CO - - - 
17 32.1, CH 1.95, m H-14, 18, 19 C-14, 18, 19 
18 19.0, CH3 0.80, d (6.8) H-17 C-14, 17, 19 
19 18.0, CH3 0.69, d (6.7) H-17 C-14, 17, 18 
NH-1 - 6.75, brs - C-2, 3, 8, 9 
NH-13 - 8.28, d (4.2) H-14 C-11, 14, 15 
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That part of the monomer consisted of 2, 3-dihydro-1H-indole was supported 

by the coupling system, as observed in the COSY spectrum, from H-4 (δH 7.39, d, J 

= 7.5 Hz; δC 124.4), through H-5 (δH 6.64, dd, J = 7.5, 7.5 Hz; δC 118.0) and H-6 (δH 

7.03, dd, J = 7.6, 7.6 Hz; δC 128.7) to H-7 (δH 6.60, d, J = 7.3 Hz; δC 108.9) as well 

as by the HMBC correlations from H-4 to C-6 (δC 128.7), C-8 (δC 149.1), and a 

quaternary sp3 carbon at δC 59.7 (C-3), from H-7 to C-5 (δC 118.0) and C-9 (δC 

130.4) and from the brs of the amine proton of the 2,3-dihydroindole ring at δH 6.75 

(NH-1) to C-3, C-8, C-9 and the sp3 methine carbon at δC 78.8 (C-2; δH 4.90, brs). 

7.39 d (7.5)

6.64 dd (7.5, 7.5)

7.03 dd (7.6, 7.6)

6.60 d (7.3)

124.4
118.0

128.7

108.9

130.4

149.1

59.7

78.8

4.90 brs

6.75 brs  

Another part of the monomer was 3-isopropylpiperazine-2, 5-dione, similar to 

that of EC 12, since the COSY spectrum showed correlations from the multiplet at δH 

1.95 (H-17; δC 32.1) to the multiplet at δH 3.41 (H-14; δC 62.3) and the methyl 

doublets at δH 0.80 (J = 6.8 Hz, H-18; δC 19.0) and δH 0.69 (J = 6.7 Hz, H-19; δC 

18.0) in addition to the HMBC correlations from the doublet of the amide proton at δH 

8.28 (J = 4.2 Hz) to C-11 (δC 55.7), C-14 (δC 62.3) and the carbonyl at δC 167.5  
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(C-15), from the triplet at δH 4.12 (J = 8.7 Hz, H-11, δC 55.7) to C-10 (δC 37.3) and a 

weak correlation to the carbonyl at δC 168.4 (C-12). 

32.1
1.95, m

168.4
8.28 d (4.2)

19.0
0.80 d (6.8)

0.69 d (6.7)
18.0

3.41 m

62.3

55.7

37.3

2.39 dd (14.2, 9.4)

3.15 m
4.12 t (8.7)

167.5

 

That the 2,3-dihydro-1H-indole was connected to the 3-isopropylpiperazine-2, 

5-dione between C-3 and C-11, through the methylene group (C-10) as well as 

between C-2 and N-16, forming an extra pyrrolidine ring between the 2,3-dihydro-

1H-indole and the 1,4-diketopiperazine ring, was corroborated by the weak HMBC 

correlation from H2-10 (δH 2.39, dd, J = 14.2, 9.4 Hz)/3.15, m (δC 37.3) to C-3 as well 

as by COSY correlations from H2-10 to H-11. Therefore, the structure of the 

monomer was: 
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This structure corresponds to a molecular formula C16H18N3O2 and since there 

was no substituent on C-3, it was proposed that the two monomers are linked 

through its C-3. Therefore the molecule of EC 16 is: 

4'

9'

1
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In order to verify the stereochemistry of C-3/C-3′ and C-14/C-14′, the X-ray 

analysis was performed and the ORTEP view of EC 16 was shown below: 
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Figure 111. ORTEP view of EC 16 

 

From the ORTEP view, it is possible to conclude that the absolute 

configuration of C-2/2′, C-3/3′, C-11/11′ and C-14/14′, respectively as 2/2′R, 3/3′S, 

11/11′S and 14/14′R.  

Literature search revealed that EC 16 is eurocristatine, a bis-indolylmethyl 1, 

4-diketopiperazine previously isolated from marine sponge-associated fungus 

Eurotium cristatum (Gomes et al., 2012). 
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Figure 112. Structure of eurocristatine (EC 16) 

 

3.1.12 Structure Elucidation of 2-(2, 2-Dimethylbut-3-enoyl) amino-benzoic acid  

 

3.1.12.1. 2-(2, 2-Dimethylbut-3-enoyl) amino-benzoic acid (EC 10) 

 

EC 10 was isolated as yellow viscous liquid. The (+)-HRESIMS gave the m/z 

at 234.1132 (M+H)+ corresponding to C13H16NO3 (calculated 234.1130). Therefore, 

the molecular formula of EC 10 is C13H15NO3, indicating seven degrees of 

unsaturation. The IR spectrum showed absorption bands for amine (3421 cm-1), 

hydroxyl (3253 cm-1), conjugated carbonyl (1696 cm-1), amide carbonyl (1670 cm-1), 

aromatic (1606, 1586 cm-1) and olefin (1636 cm-1) carbons. 
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The 13C NMR spectrum (Table 31) exhibited thirteen carbon signals which can 

be classified, according to DEPTs and HSQC spectra, as two carbonyls (δC 174.4 

and 169.9), two quaternary sp2 (δC 141.2 and 116.4), five methine sp2 (δC 142.5, 

133.9, 131.2, 122.4 and 119.4), one methylene sp2 (δC 114.4), one quaternary sp3 

(δC 46.3) and two tertiary methyl (δC 24.4) groups.  

The 1H NMR spectrum, in combination with COSY and HSQC spectra (Table 

31), exhibited the signals of aromatic protons of the 1, 2-dissubsituted benzene ring 

at δH 8.60, d (J = 7.8 Hz; δC 119.4), 8.00, dd (J = 7.8, 1.5 Hz; δC 131.2), 7.57, ddd (J 

= 7.8, 7.8, 1.5 Hz; δC 133.9), 7.13, ddd (J = 7.8, 7.8, 1.5 Hz; δC 112.4), three vinyl 

proton signals at δH 6.09, dd (J = 17.4, 10.6 Hz; δC 142.5), 5.27, d (J = 17.4 Hz; δC 

114.4) and 5.22, d ( J = 10.6 Hz; δC 114.4) and a methyl singlet at δH 1.32 (6H, δC 

24.4 ), in addition to a broad singlet of the hydroxyl group at δH 11.55. 
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Table 31. 1H and 13C NMR (DMSO, 300.13 and 75.47 MHz) and HMBC assignment 

for EC 10 

Position δC, type δH, type (J in Hz) COSY HMBC 

1 116.4, C - - - 
2 141.2, C - - - 
3 119.4, CH 8.60, d (7.8) H-4 C-1, 5 
4 133.9, CH 7.57, ddd (7.8, 7.8, 1.5) H-3, 5 C-2, 6 
5 122.4, CH 7.13, ddd (7.8, 7.8, 1.5) H-4, 6 C-1, 3 
6 131.2, CH 8.00, dd (7.8, 1.5) H-5 C-2, 4, 7 
7 169.9, CO - - - 
1′ 174.4, CO - - - 
2′ 46.3, C - - - 
3′ 142.5, CH 6.09, dd (17.4, 10.6) H-4′a, 4′b C-2′, 5′, 6′ 
4′a 
   b 

114.4, CH2 5.27, d (17.4) 
5.22, d (10.6) 

H-3′ 
H-3′ 

C-2′, 3′ 
C-2′, 3′ 

5′ 24.4, CH3 1.32, s - C-1′, 2′, 3′, 6′ 
6′ 24.4, CH3 1.32, s - C-1′, 2′, 3′, 5′ 
OH-7 - 11.55, brs - - 

 

The HMBC spectrum exhibited correlations from the methyl singlet at δH 1.32 

(CH3-5′/6′) to the quaternary sp3 carbon at δC 46.3 (C-2′), the olefinic carbon at δC 

142.5 (C-3′) and the carbonyl carbon at δC 174.4 (C-1′), while the methylene protons 

at δH 5.27, d (J = 17.4 Hz; H-4′a) and 5.22, d (J = 10.6 Hz, δH H-4′b) exhibited cross 

peaks to C-2′, C-3′ and the vinylic proton at δH 6.09, dd (J = 17.4, 10.6 Hz; H-3′) 

showed cross peaks with C-2′ and C-5′/6′, revealing the existence of a 2, 2-

dimethylbut-3-enoyl moiety. 
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24.4

1.32 s

24.41.32 s

5.27 d (17.4)

5.22 d (10.6)

6.09 dd (17.4, 10.6)

46.3
142.5174.4

114.4

 

Additionally, the HMBC spectrum also exhibited correlations from the double 

doublet at δH 8.00 (J = 7.8, 1.5 Hz, H-6) to the carbons at δC 141.2 (C-2), 133.9 (C-4) 

and 169.9 (CO-7) and from the double at δH 8.60 (J = 7.8 Hz; H-3) to the carbon at 

δC 116.4 (C-1) and 122.4 (C-5), confirming the presence of the anthranilic acid 

moiety. 

7.13 ddd (7.8, 7.8, 1.5)

7.57 ddd (7.8, 7.8, 1.5)

116.4

8.60 d (7.8)

8.00 dd (7.8, 1.5)

133.9 141.2

169.9
122.4

 

Taking together the NMR data and its molecular formula, the structure of EC 

10 (Figure 113) was established as 2-(2, 2-dimethylbut-3-enoyl) amino-benzoic acid. 

Extensive literature search revealed that this compound has never been reported 

previously. Therefore, it is a new compound. 
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Figure 113. Structure of 2-(2, 2-Dimethylbut-3-enoyl) amino-benzoic acid (EC 10) 

 

3.1.13 Structure Elucidation of Cyclopeptides 

 

3.1.13.1. Sartoryglabramide A (NG 8) 

 

NG 8 was isolated as white crystals (mp, 146-148ºC), and its molecular 

formula C30H30N4O4 was established on the basis of the (+)-HRESIMS m/z 511.2365 

[M+H]+, indicating eighteen degrees of unsaturation. The IR spectrum showed 

absorption bands for amine (3447 cm-1), amide carbonyl (1655 cm-1) and aromatic 

(1622, 1587, 1526 cm-1).  

The 13C NMR, DEPTs and HSQC spectra (Table 32) revealed the presence of 

four amide carbonyls (δC 170.2, 169.9, 168.8 and 166.5), four quaternary sp2 (δC 

138.3, 137.3, 136.5 and 124.8), fourteen methine sp2 [δC 130.4, 129.6 (2C), 129.1 

(2C), 128.1 (2C), 128.0 (2C), 126.6, 126.3, 126.0, 122.4 and 120.4], three methine  
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sp3 (δC 62.2, 55.2 and 54.4), and five methylene sp3 (δC 49.4, 37.1, 34.7, 28.3 and 

24.6). 

The 1H NMR spectrum (Table 32) exhibited, besides three NH signals at δH 

9.40, s, 8.49, d (J = 7.8 Hz) and 7.41, d (J = 9.8 Hz), and in conjunction with COSY 

and HSQC spectrum displayed the signals of four aromatic protons of anthranilic 

acid at δH 8.31, dd (J =7.9, 0.5 Hz, H-6), 7.55, dd (J = 7.7, 1.3 Hz, H-3), 7.48, ddd (J 

= 7.9, 7.9, 1.4 Hz, H-5) and 7.16, dd (J = 7.9, 7.7 Hz, H-4). This was supported by 

the HMBC correlations from NH-8 (δH 9.40, s) to C-2 (δC 124.8), C-6 (δC 120.4), from 

H-3 to C-1 (δC 166.5), C-5 (δC 130.4) and C-7 (δC 136.5), from H-4 to C-2 and C-6. 

7.55 dd (7.7, 1.3)

7.16 dd (7.9, 7.7)

7.48 ddd (7.9, 7.9, 1.4)

8.31 dd (7.9, 0.5)

126.6

122.4

130.4

120.4

9.40 s

166.5

124.8

136.5
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Table 32. 1H and 13C NMR (DMSO, 500.13 MHz and 125.77 MHz) and HMBC assignment for NG 8 

 Position δC, type δH, (J in Hz) COSY HMBC 

Anthranilic acid 1 166.5, CO - - - 
 2 124.8, C - - - 
 3 126.6, CH 7.55, dd (7.7, 1.3) H-4 C-1, 5, 7 
 4 122.4, CH 7.16, dd (7.9, 7.7) H-3, 5 C-2, 6 
 5 130.4, CH 7.48, ddd (7.9, 7.9, 1.4) H-4, 6 C-3, 7 
 6 120.4, CH 8.31, dd (7.9, 0.5) H-5 C-2, 4 
 7 136.5, C - - - 
 NH-8 - 9.40, s - C-2, 6, 9 
Phe-I 9 168.8, CO - - - 
 10 55.2, CH 4.36, ddd (8.4, 7.8, 5.3) H-11, NH-18 C-9, 11, 12 
 11a 

    b 
34.7, CH2 2.97, dd (13.9, 8.4) 

3.23, dd (13.9, 5.3) 
H-10, 11b 
H-10, 11a 

C-9, 10, 12, 13, 17 
C-9, 10, 12, 13, 17 

 12 138.3, C - - - 
 13 129.6, CH 7.08, dd (7.4, 1.4) H-14 C-11, 15, 17 
 14 128.0, CH 7.19, dd (7.4, 7.4) H-14. 15 C-12, 16 
 15 126.0, CH 7.18, dd (7.4, 7.4) H-14, 16 C-13, 17 
 16 128.0, CH 7.19, dd (7.4, 7.4) H-15, 17 C-12, 14 
 17 129.6, CH 7.08, dd (7.4, 1.4) H-16 C-11, 13, 15 
 NH-18 - 8.49, d (7.8) H-10 C-10, 19 
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Table 32. 1H and 13C NMR (DMSO, 500.13 MHz and 125.77 MHz) and HMBC assignment for NG 8 (Cont.) 

 Position C, type H, (J in Hz) COSY HMBC 

Phe-II 19 169.9, CO - - - 
 20 54.4, CH 4.58, ddd (9.8, 8.9, 7.3) H-21a, b C-19, 21, 22 
 21a 

    b 
37.1, CH2 2.71, dd (13.5, 8.9) 

2.94, dd (13.5, 7.3) 
H-20, 21b 
H-20, 21a 

C-19, 20, 22, 23, 27 
C-19, 20, 22, 23, 27 

 22 137.3, C - - - 
 23 129.1, CH 7.14, dd (7.4, 1.4) H-24 C-25, 27 
 24 128.1, CH 7.27, dd (7.4, 7.4) H-23, 25 C-22, 26 
 25 126.3, CH 7.23, dd (7.4, 7.4) H-24, 26 C-23, 27 
 26 128.1, CH 7.27, dd (7.4, 7.4) H-25, 27 C-22, 24 
 27 129.1, CH 7.14, dd (7.4, 1.4) H-26 C-23, 25 
 NH-28 - 7.41, d (9.8) H-20 C-19, 20, 29 
Pro 29 170.2, CO - - - 
 30 62.2, CH 4.20, dd (9.8, 2.3) H-31a, b C-29, 31, 32 
 31a 

    b 
28.3, CH2 1.54, m 

2.12, m 
H-30, 31b 
H-30, 31a 

- 
C-29, 30 

 32 24.6, CH2 1.89, m H-31a, b - 
 33a 

    b 
49.4, CH2 3.70, dd (17.6, 9.6) 

3.63, m 
H-32, 33b 
H-32, 33a 

C-30, 32 
- 

 N-34 - - - - 
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The existence of phenylalanine residue (Phe I) was based on the HMBC 

correlations from the dd at δH 7.08 (J = 7.4, 1.4 Hz; δC 129.6, H-13) to the carbons at 

δC 34.7 (C-11), 126.0 (C-15), 129.6 (C-17), from the dd at δH 7.19 (J = 7.4, 7.4 Hz; 

δC 128.0, H-14) to the carbons at δC 138.3 (C-12) and 128.0 (C-16), from the dd at 

δH 7.18 (J = 7.4, 7.4 Hz; δC 126.0, H-15) to the carbons at δC 129.6 (C-13) and C-17, 

from the dd  at δH  7.19 (J  =  7.4,  7.4  Hz;  δC  128.0, H-16) to the C-12 and 128.0 

(C-14), from the dd at δH 7.08 (J = 7.4, 1.4 Hz; δC 129.6, H-17) to the C-11, C-13 

and 126.0 (C-15). The coupling systems of the aromatic protons of phenylalanine 

residue as observed in the COSY spectrum (Table 32). 

4.36 ddd (8.4, 7.8, 5.3)

2.97 dd (13.9, 8.4)
3.23 dd (13.9, 5.3)

7.08 dd

(7.4, 1.4)

7.19 dd (7.4, 7.4)

7.18 dd (7.4, 7.4)

7.19 dd (7.4, 7.4)

7.08 dd (7.4, 1.4)

8.49 d (7.8)

168.8
55.2

34.7

138.3

129.6128.0

126.0
128.0

129.6

 

Moreover, the presence of second phenylalanine residue (Phe II) displayed 

the COSY cross peaks from the dd at  δH  7.14 (J  = 7.4, 1.4 Hz, H-23) to the dd at 

δH 7.27 (J = 7.4, 7.4 Hz, H-24), from the dd at δH 7.14 (J = 7.4, 1.4 Hz, H-27) to the 

dd at δH 7.27 (J = 7.4, 7.4 Hz, H-26), and also by the dd at δH 7.27 (J = 7.4, 7.4 Hz, 

H-24), dd at δH 7.23 (J = 7.4, 7.4 Hz, H-25) and dd at δH 7.27 (J = 7.4, 7.4 Hz, H-26). 
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This was confirmed by the HMBC correlations from H-23 to C-25 (δC 126.3), C-27 (δC 

129.1), from H-26 to C-22, C-24 (δC 128.1), from H-27 to C-23 and C-25. 

169.9

54.4

37.1

137.3

129.1
128.1

126.3

128.1

129.1 4.58 ddd (9.8, 8.9, 7.3)

2.71 dd (13.5, 8.9)
2.94 dd (13.5, 7.3)7.14 dd (7.4, 1.4)

7.27 dd (7.4, 7.4)

7.23 dd (7.4, 7.4)

7.27 dd (7.4, 7.4)

7.14 dd

(7.4, 1.4)

7.41 d (9.8)

 

The existence of the proline residue was evidence not only by the COSY 

correlations from the double doublet at δH 4.20 (J = 9.8, 2.3 Hz, H-30; δC 62.2) to the 

multiplets at δH 1.54 and 2.12 (H2-31, δC 28.3), from the multiplet at δH 1.89 (H2-32; 

δC 24.6) to H2-31 and the double doublet at δH 3.70 (J = 17.6, 9.6 Hz, H-33; δC 49.4) 

and a multiplet at δH 3.63 (H-33; δC 49.4) but also by the HMBC correlations from H-

30 to the carbon signals at δC 170.2 (CO-29), δC 28.3 (C-31) and δC 24.6 (C-32), from 

H2-33 to C-30 (δC 62.2), C-32 and from H2-31 to C-29 and C-30. 

1.54 m
1.89 m4.20 dd (9.8, 2.3)

3.63 m

2.12 m

3.70 dd (17.6, 9.6)

170.2
62.2

28.3
24.6

49.4
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The anthranilic acid residue was linked to the phenylalanine residue, through 

the amino group of the former and the carboxyl group of the latter, since the HMBC 

spectrum showed correlations from the NH signal at δH 9.40, s (NH-8) to the carbonyl 

carbon at δC 168.8 (C-9), from the methine proton at δH 4.36, ddd (J = 8.4, 7.8, 5.3 

Hz, H-10)  to C-9, C-11 (δC 34.7), C-12 (δC 138.3), from the methylene protons at δH 

2.97, dd (J =13.9, 8.4 Hz, H-11) and 3.23, dd (J =13.9, 5.3 Hz, H-11) to C-9, C-10 

(δC 55.2), C-12, C-13/C-17 (δC 129.6), as well by the COSY correlation of H-10 and 

H2-11.  

The phenylalaline residue (Phe-I) was linked to another phenylalanine residue 

(Phe-II) was corroborated by the COSY correlation of H-10 to the proton doublet at 

δH 8.49, d (J = 7.8 Hz, NH-18), as well as by the HMBC correlations of NH-18 to C-

10 and the carbonyl carbon at δC 169.9 (C-19), from the methine proton signal at δH 

4.58, ddd (J = 9.8, 8.9, 7.3, 8.4 Hz, H-20) to C-19, C-21 (δC 37.1), C-22 (δC 137.3), 

from the methylene proton (H-21) signals at δH 2.71, dd (J = 13.5, 8.9 Hz)/2.94 dd (J 

= 13.5, 7.3 Hz) to C-19, C-20 (δC 54.4), and C-23/C-27 (δC 129.1), as well as the 

COSY correlation of H-20 to H2-21 and the proton doublet at δH 7.41 (J = 9.8 Hz, NH-

28). That the proline residue was connected to the Phe-II residue, through the 

carbonyl of the former and the amino group of the latter was corroborated by the 

HMBC correlation of NH-28 to CO-29. Since there are only three NH signals, the 

nitrogen of the proline residue was linked to the carbonyl group of anthranilic acid.  
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This was corroborated by the HMBC correlation of H-3 to CO-1 and of NH-8 to 

C-2 and C-6. Therefore, combining this information, it was possible to conclude that 

NG 8 was cyclo (anthranilic acid- Phe- Phe- Pro). 

170.2

129.6
4.36 ddd

(8.4, 7.8, 5.3)

137.3

168.8
8.49 d (7.8)

169.9

54.4

2.97 dd (13.9, 8.4)

37.1

3.23 dd (13.9, 5.3)

7.55 dd (7.7, 1.3)

129.1

126.6

4.58 ddd�
(9.8, 8.9,7.3)

2.71 dd (13.5, 8.9)

55.2

9.40 s

2.94 dd (13.5, 7.3)

34.7

166.5

138.3

7.41 d (9.8)

 

 

Since NG 8 could be obtained in a suitable crystal for X-ray diffraction, the 

stereochemistry of its amino acid residues was tentatively determined by X-ray 

analysis and the ORTEP view shown in Figure 114 revealed that Phe-I, Phe-II and 

Pro have the same relative configuration. 
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Figure 114. ORTEP view of NG 8 

 

However, since the flack x parameter value (0.3) did not guarantee the 

absolute confidence of the absolute configuration, the stereochemistry of the amino 

acid residues of NG 8 was confirmed by chiral HPLC analysis of its acidic 

hydrolysate, using appropriate D- and L- amino acid standards, according to the 

previously described method (Prompanya et al., 2015).  

The enantioseparations of the standard amino acids were successfully 

performed with the Chirobiotic T column under reversed-phase elution conditions 

(Berthod et al., 1996). The elution order of the enantiomers of all the standards 

amino acids was confirmed by injecting the solutions of the enantiomeric mixtures 

and then each enantiomer separately at a flow rate of 1mL/min. As predicted, the D-

enantiomer was always more strongly retained than the corresponding L-enantiomer 

on Chirobiotic column (Berthod et al., 1996). The retention times (tR min) for standard  
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amino acids, using MeOH: H2O (80:20 v/v) as mobile phase, at a flow rate of 1.0 

mL/min, and with UV detection set at 210 nm, were L-Phe (3.8) and D-Phe (5.0), L-

Pro (6.7) and D-Pro (20.1) were observed in Table 33 and Figure 115.  

 

Table 33. Chromatographic conditions: column, Chirobiotic T; mobile phase, MeOH: 

H2O (80:20 v/v); flow rate, 1.0 mL/min; detection, 210 nm. 

Amino Acids Retention Time (tR min) 

L-Phe 3.81 

D-Phe 5.00 

L-Pro 6.72 

D-Pro 20.10 

Anthranilic acid 1.92 

Acidic Hydrolysate NG 8 1.91, 2.55, 2.86, 3.49, 3.89, 6.79 

Acidic Hydrolysate NG 8 + DL-Phe (coinjection) 1.87, 2.50, 2.89, 3.68, 5.01, 6.82 

Acidic Hydrolysate NG 8 + DL-Pro (coinjection) 1.96, 2.60, 2.96, 3.52, 3.92, 6.70, 21.09 
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Figure 115. Chromatogram of the acidic hydrolysate of NG 8. Chromatographic 

condition: Chirobiotic T; mobile phase, MeOH: H2O (80:20 v/v); flow rate, 1.0 

mL/min; detection, 210 nm. 

 

Based on mix HPLC analyses of the acidic hydrolysate with standard D- and 

L-amino acids (co-injection), NG 8 was elucidated as cyclo (anthranilic acid-L-Phe-L-

Phe-L-Pro). Since NG 8 is a new compound, we have named it sartoryglabramide A. 
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Figure 116. Structure of sartoryglabramide A (NG 8) 

 

3.1.13.2. Sartoryglabramide B (NG 9) 

 

Compound NG 9, which was also isolated as white solid (mp, 190-192ºC), 

exhibited the [M+H]+ peak at m/z 550.2501 [(+)-HRESIMS], corresponding to 

C32H32N5O4 (calculated 550.2454). Like NG 8, its IR spectrum showed absorption 

bands for amine (3417 cm-1), amide carbonyl (1649 cm-1) and aromatic (3058, 1620, 

1588, 1526 cm-1). With some exceptions, the general feature of the 1H and 13C 

spectra of compound NG 9 resembled those of NG 8. 

The 13C NMR, DEPTs and HSQC spectra (Table 34) displayed signals of four 

carbonyls [δC 170.2, 170.1, 169.0 and 166.4], six quaternary sp2 (δC 134.4, 136.3,  
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136.0, 127.7, 125.2 and 110.2), fourteen methine sp2 [δC 130.4, 129.0 (2C), 128.1 

(2C), 126.5, 126.3, 124.0, 122.6, 120.8, 120.7, 118.5, 118.2 and 111.3), three 

methine sp3 (δC 62.1, 54.6 and 54.3), and five methylene sp3 (δC 49.4, 37.0, 28.3, 

24.9 and 24.6).  

Unlike NG 8, the 1H NMR spectrum (Table 34) exhibited four NH signals at δH 

10.82, brs, 9.25, s, 8.42, d (J = 7.9 Hz) and 7.38, d (J = 10.0 Hz). Similar to NG 8, 

the presence of the proline residue was corroborated by the presence of the coupling 

system of the proton signals from H-33 to H2-36 (δH 4.15, dd, J = 9.0, 1.2 Hz, H-33; 

δC 62.1), δH 1.45, m and 2.09, m (H2-34; δC 28.3), δH 1.86, m (H2-35; δC 24.6), and δH 

3.55, m and 3.67, m (H2-36; δC 49.4) as well as by the HMBC correlation from H-33 

to the carbonyl carbon at δC 170.2 (C-32) while the existence of the phenylalanine 

residue was supported by the coupling system from H2-24 (δH 2.66, dd, J = 13.6, 

10.0 Hz, and 2.92, dd, J = 13.6, 6.4 Hz;  δC 37.0) through H-23 (δH 4.61, ddd, J = 

10.0, 10.0, 6.4 Hz; δC 54.6) to NH-31 (δH 7.38, d, J = 10.0 Hz) and by the HMBC 

correlations from H-23 to C-24 (δC 37.0), C-25 (δC 134.4) and C-32 (δC 170.2), from 

H2-24 to C-23 (δC 54.6), C-25, C-26/30 (δC 129.0).  

 

 

 

 



CHAPTER III. RESULTS AND DISCUSSIONS 
   

 

319 
 

Table 34. 1H and 13C NMR (DMSO, 500.13 MHz and 125.77 MHz) and HMBC assignment for NG 9 

 Position C, type H, (J in Hz) COSY HMBC 

Anthranilic acid 1 166.4, CO - - - 
 2 125.2, C - - - 
 3 126.5, CH 7.53, d (7.6) H-4 C-1, 5, 7 
 4 122.6, CH 7.16, dd (7.6, 7.6) H-3, 5 C-2, 6 
 5 130.4, CH 7.48, ddd (8.3, 7.6) H-4, 6 C-3, 7 
 6 120.7, CH 8.27, d (8.3) H-5 C-2, 4 
 7 136.3, C - - - 
 NH-8 - 9.25, s - C-2, 6, 9 
Trp 9 169.0, CO - - - 
 10 54.3, CH 4.52, ddd (7.9, 6.7, 5.9) H-11, NH-21 C-9, 11, 12, 22 
 11a 

    b 
24.9, CH2 3.32, dd (14.7, 5.9) 

3.14, dd (14.7, 6.7) 
H-10, 11b 
H-10, 11a 

C-9, 10, 12, 13, 20 
C-9, 10, 12, 13, 20 

 12 110.2, C - - - 
 13 127.7, C - - - 
 14 118.5, CH 7.58, d (7.9) H-15 C-16, 18 
 15 118.2, CH 6.98, dd (7.9, 7.5 H-14, 16 C-13, 17 
 16 120.8, CH 7.06, dd (8.0, 7.5) H-15, 17 C-14, 18 
 17 111.3, CH 7.34, d (8.0) H-16 C-13, 15 
 18 136.0, C - - - 
 NH-19 - 10.82, brs H-20 C-12, 13, 18, 20 
 20 124.0, CH 7.04, d (1.8) NH-19 C-13 
 NH-21 - 8.42, d (7.9) H-10 C-9, 22 
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Table 34. 1H and 13C NMR (DMSO, 500.13 MHz and 125.77 MHz) and HMBC assignment for NG 9 (Cont.) 

 Position C, type H, (J in Hz) COSY HMBC 

Phe 22 170.1, CO - - - 
 23 54.6, CH 4.61,ddd (10.0, 10.0, 6.4) H-24a, b C-24, 25, 32 
 24a 

    b 
37.0, CH2 2.66, dd (13.6, 10.0) 

2.92, dd (13.6, 6.4) 
H-23, 24b 
H-23, 14a 

C-22, 23, 25, 26, 30 
C-22, 23, 25, 26, 30 

 25 134.4, C - - - 
 26 129.0, CH 7.10, dd (7.7, 1.0) H-27 C-25 
 27 128.1, CH 7.20, m H-26, 28 C-25 
 28 126.3, CH 7.18, m H-27, 29 - 
 29 128.1, CH 7.20, m H-28, 30 C-28 
 30 129.0, CH 7.10, dd (7.7, 1.0) H-29 C-25 
 NH-31 - 7.38, d (10.0) H-23 C-32 
Pro 32 170.2, CO - - - 
 33 62.1, CH 4.15, dd (9.0, 1.2) H-34a, b C-32 
 34a 

    b 
28.3, CH2 1.45, m 

2.09, m 
H-33, 34b 
H-33, 34a 

- 
- 

 35 24.6, CH2 1.86, m H34a, b, 36a,b - 
 36a 

    b 
49.4, CH2 3.55, m 

3.67, m 
H-35, 36b 
H-35, 36a 

- 

 N-37 - - - - 
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Like in NG 8, the proline residue was linked to the phenylalanine residue, 

through the carbonyl of the former and the amine group of the latter, which was 

supported by the HMBC correlations of the amine proton at δH 7.38, d (J = 10 Hz, 

NH-31) to C-32, and also to the anthranilic acid residue, through the nitrogen of the 

pyrrolidine ring of proline and the carbonyl group of carboxylic acid. That the one of 

the phenyl residues of NG 8 was replaced by the tryptophan residue was 

substantiated by the presence of the indole system, as characterized by the coupling 

system of H-14 (δH 7.58, d, J = 7.9 Hz, δC 118.5) through H-17 (δH 7.34, d, J = 8.0 

Hz, δC 111.3), as observed in the COSY spectrum (Table 34), and also by the HMBC 

correlations from NH-19 (δH 10.82, brs) to C-12 (δC 110.2), C-13 (δC 127.7), C-18 (δC 

136.0) and C-20 (δC 124.0) as well as of the ethylamino moiety, as evidenced by the 

coupling system from H2-11 (δH 3.14, dd, J = 14.7, 6.7 Hz and 3.32, dd, J = 14.7, 5.9 

Hz; δC 24.9) through H-10 (δH 4.52, ddd, J = 7.9, 6.7, 5.9 Hz; δC 54.3) to NH-21 (8.42, 

d, J = 7.9 Hz).  

That the tryptophan residue was linked to the phenylalanine residue, through 

the amino group of the former and the carbonyl group of the latter, was corroborated 

by the HMBC correlations of NH-21 to the carbonyl group at δC 170.1 (C-22) and 

169.0 (C-9) as well as of H-10 to C-9, C-11, C-12 and C-22. Finally, the amino group 

of the anthranilic acid residue was linked to the carbonyl group of the tryptophan 

residue was supported by the HMBC correlations of NH-8 (δH 9.25, s) to C-2  
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(δC 125.2), C-6 (δC 120.7) and C-9. Therefore, NG 9 was identified as cyclo 

(anthranilic acid-Trp-Phe-Pro). 

3.32 dd (14.7, 5.9)
3.14 dd (14.7, 6.7)

7.38 d (10.0)

54.6
170.2

4.61 ddd

(10.0, 10.0, 6.4)

37.0

134.4

2.66 dd (13.6, 10.0)
2.92 dd (13.6, 6.4)

129.0

4.15 dd (9.0, 1.2)

62.1

126.5

7.53 d (7.6)

122.6 7.16 dd (7.6, 7.6)

166.4

130.4
120.7

125.2

9.25 s

169.0

24.9

110.2

124.0136.0

10.82 brs

127.7

8.42 d
(7.9) 54.3

4.52 ddd (7.9, 6.7, 5.9)

170.1

8.27 d (8.3)

 

The absolute stereochemistry of the amino acid residues of NG 9 was also 

determined by chiral HPLC analysis of its acidic hydrolysate, using appropriate D- 

and L- amino acids standards. The retention times (tR min) for standard amino acids, 

using MeOH: H2O (80:20 v/v) as mobile phase, at a flow rate of 1.0 mL/min, and with 

UV detection set at 210 nm, were L-Phe (3.8) and D-Phe (5.0), L-Pro (6.7) and D-

Pro (20.1), L-Trp (4.5) and D-Trp (5.2) shown in Table 35 and Figure 117.  
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Table 35. Chromatographic conditions: column, Chirobiotic T; mobile phase, MeOH: 

H2O (80:20 v/v); flow rate, 1.0 mL/min; detection, 210 nm. 

Amino Acids Retention Time (tR min) 

L-Phe 3.81 

D-Phe 5.00 

L-Pro 6.72 

D-Pro 20.10 

L-Trp 4.51 

D-Trp 5.20 

Acidic Hydrolysate NG 9 1.93, 3.07, 3.80, 4.29, 4.60, 6.62 

Acidic Hydrolysate NG 9 + DL-Phe (coinjection) 1.90, 3.10, 3.78, 4.39, 5.04, 6.70 

Acidic Hydrolysate NG 9 + DL-Pro (coinjection) 2.04, 3.02, 3.72, 4.30, 4.60, 6.66, 19.40 

Acidic Hydrolysate NG 9 + DL-Trp (coinjection) 1.93, 2.99, 3.70, 4.29, 4.60, 5.07, 6.33 
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Figure 117. Chromatogram of the acidic hydrolysate of NG 9. Chromatographic 

conditions: column, Chirobiotic T; mobile phase, MeOH: H2O (80:20 v/v); flow rate, 

1.0 mL/min; detection, 210 nm. 

 

Based on mix HPLC analyse of the acidic hydrolysate with standard D- and L-

amino acids (co-injection), NG 9 was elucidated as cyclo (anthranilic acid-L-Trp-L-

Phe-L-Pro). Since NG 9 is a new compound we have named it sartoryglabramide B 

(Figure 118).  
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Figure 118. Structure of sartoryglabramide B (NG 9) 
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3.2 Biological Activity Evaluation of Isolated Compounds from Marine-Derived 

Fungi and Marine Margrove-Derived Fungus 

 

Some of the isolated compounds from the marine alga-associated fungus 

Neosartorya takakii (KUFC 7898), marine sponge-associated fungus Neosartorya 

glabra (KUFA 0702) and marine mangrove-derived endophytic fungus Eurotium 

chevalieri (AKEC 0006) were evaluated for their biological activity. 

 

3.2.1. Antibacterial and Antibiofilm Activity Evaluation 

 

Three new metabolites takakiamide (NTK 4), tryptoquivaline U (NTK 9) and 

sartorenol (NTK 12) (Figure 119) were isolated form the aligicolous fungus N. takakii 

(KUFC 7898) and evaluated for their antibacterial activity against Gram positive 

Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633 and Gram-

negative Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, as 

well as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant Enterococci 

(VRE) isolates from the environment. None of the compounds exhibited relevant 

antibacterial activity against with MIC > 256 µg/mL. 
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NTK 12

NTK 8NTK 4

 

 

Figure 119. New Secondary metabolites isolated from the ethyl acetate extract of 

the culture of N. takakii KUFC 7898.  

 

 

 

 

 



CHAPTER III. RESULTS AND DISCUSSIONS 
   

 

328 
 

 

As well as, Emodin (EC 3), physicon (EC 4), questin (EC 5), questinol (EC 6), 

acetylquestinol (EC 7), (2, 2-dimethyl-3-en-2yl)-1H-indole-3-carbaldehyde (EC 8), (2, 

2-dimethylcyclopropyl)-1H-indole-3-carbaldehyde (EC 9), 2-(2, 2-dimethylbut-3-

enoyl) amino-benzoic acid (EC 10), 6, 8-dihydroxy-3-(2-hydroxypropyl)-7-methyl-1H-

isochrome-1one (EC 11), (11S, 14R)-3-(1H-indol-3ylmethyl) 6-isopropyl-2, 5-

piperazinedione (EC 12), preechinulin (EC 13), neoechinulin E (EC 14), echinulin 

(EC 15) and eurocristatine (EC 16) (Figure 120) were tested for their antibacterial 

against two Gram-positive Staphylococcus aureus ATCC 25923 and Enterococcus 

faecalis ATCC 29212 and two Gram-negative Escherichia coli ATCC 25922 and 

Pseudomonas aeruginosa ATCC 27853 bacteria, as well as multidrug-resistant 

isolates from the environment. The tested compounds were also investigated for 

their capacity to inhibit biofilm formation in the reference strains of S. aureus, E. 

faecalis and E. coli. The potential synergism between the tested compounds and the 

clinically used antibiotics was also evaluated against multidrug-resistant bacteria: 

methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE) and 

extended-spectrum beta-lactamase E. coli (ESBL). 

 

 

 

 



CHAPTER III. RESULTS AND DISCUSSIONS 
   

 

329 
 

 

EC 13 : R1 = R2 = R3 = CH3�

EC 14 : R1 = R2 = H, R3 = O

EC 15 : R1 = R2 =                    , R3 = CH3

EC 3 : R1 = CH3, R2 = R3 = R4 = H

EC 4 : R1 = CH3, R2 = R4 = H, R3 = CH3

EC 5 : R1 = CH3, R2 = R3 = H, R4 = CH3

EC 6 : R1 = CH2OH, R2 = R3 = H, R4 = CH3

EC 7 : R1 = CH2OAc, R2 = R3 = H, R4 = CH3

EC 11EC 10 EC 12

EC 16

EC 8 EC 9

 

Figure 120. Compounds EC 3-EC 16 evaluated for antibacterial and antibiofilm 

activities 
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Based on the results, only EC 3 (Table 36) showed antibacterial activity 

against Gram positive bacteria, S. aureus ATCC 25923 and E. faecalis ATCC 29212 

with MIC values of 32 and 64 µg/mL, respectively. However, EC 3 did not show a 

bactericidal effect against any of the strains, its MBC was not determined. None of 

the compounds were inactive against either Gram-negative bacteria or methicillin-

resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE). 

Table 36. Antimicrobial activity, expressed in µg/mL, of emodin (EC 3) against 

reference strains and multidrug-resistant isolates 

Reference strains MIC MBC 

E. coli ATCC 25922 >64 >64 

P. aeruginosa ATCC 27853 >64 >64 

E. faecalis ATCC 29212 64 >64 

S. aureus ATCC 25923 32 >64 

E. coli SA/2 (ESBL) >64 >64 

E. faecalis B3/101 (VRE) >64 >64 

S. aureus 66/1 (MRSA) >64 >64 

MIC = minimum inhibitory concentration; MBC = minimum bacterial concentration; 
ESBL = extended spectrum beta-lactamase; VRE = vancomycin-resistant 
enterococci; MRSA= methicillin-resistant Staphylococcus aureaus. 
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The inhibitory efficacy EC 3- EC 16 in preventing biofilm formation was also 

evaluated in the reference strains S. aureus, E. faecalis and E. coli. Compounds that 

showed a statistically significant reduction (one sample t-test) of biofilm information 

are shown in Table 37. For emodin (EC 3), three concentrations, i.e. 2 x MIC, MIC 

and ½ x MIC, were tested against S. aureus ATCC 25923. For the rest of the 

compounds, the highest concentration that did not inhibit bacterial growth was used 

since it was not possible to determine their MIC.  

Compounds EC 6, EC 7, EC 9, EC 10, EC 12, EC 14 and EC 16 were found 

to exhibit a significant reduction in the biofilm production of E.coli ATCC 25922. On 

the other hand, the anthraquinones derivatives, emodin (EC 3), physicon (EC 4) and 

two new prenylated indole carbaldehydes (EC 8 and EC 9) showed inhibition of 

biofilm production in S. aureus (ATCC 25923). Emodin (EC 3) not only showed 

maximum inhibitory effects but also interfered with the biofilm production even at the 

sub-inhibitory concentrations. Interestingly, EC 9 is the most effective in inhibiting 

biofilm formation in E. coli ATCC 25922, and also causes nearly 80% reduction of 

the biomass production in S. aureus ATCC 25923. Only physicon (EC 4) causes a 

reduction of biofilm formation in E.faecalis ATCC 29212 (Table 37). 
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Table 37. Percentage of biofilm formation for compounds that showed antibiofilm 

activity, after 24 hr incubation 

 

Compounds 

 

Concentration 

(µg/mL) 

 

Biofilm biomass (% of control) 

 

E. coli 
ATCC 25922 

E. faecalis 
ATCC 29212 

S. aureus 
ATCC 25923 

CTX 0.31 1.0 ± 1.4*** (MIC) - - 

EC 3 64 - - 15.4 ± 20.4* (2 x MIC) 

EC 3 32 - - 21.1 ± 30.2* (MIC) 

EC 3 16 - - 74.5 ± 2.6* (1/2 x MIC) 

EC 4 16 - 39.1 ± 16.0* 60.3 ± 27.9* 

EC 6 64 56.1 ± 14.3* - - 

EC 7 64 50.6 ± 17.6* - - 

EC 8 64 - - 21.1 ± 11.5* 

EC 9 64 23.7 ± 24.8* - 21.8 ± 18.9* 

EC 10 64 57.6 ± 8.1* - - 

EC 12 64 59.6 ± 16.2* - - 

EC 14 64 54.0 ± 17.4* - - 

EC 16 64 67.1 ±10.2* - - 

Data are shown as Mean ± SD of 3 independent sxperiments. One-sample t test: *p 
< 0.05 and ** p < 0.001, significantly different from 100 %; MIC = minimum inhibitory 
concentration. 
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Additionally, the tested compounds were also investigated for their potential 

synergy with clinical relevant antibiotics on the multidrug-resistant isolates by a disk 

diffusion method. It was found that some of the tested compounds exhibited a small 

to moderate synergistic association with antibiotics depending on the multidrug-

resistant strains, as shown in (Table 38).  

When tested alone, none of the compounds showed inhibition against the 

three multidrug-resistant strains. However, in combination with cefotaxime (CTX) in 

the impregnated disks, EC 3, EC 4, EC 6, EC 8, EC 11, EC 14 and EC 15 produced 

a small synergistic association as can be seen by a small increase in the inhibition 

zone when compared with the halo of inhibition produced by CTX alone in the ESBL 

E.coli strain (SA/2). While EC 7, EC 8, EC 9, EC 12, EC 13, EC 14, EC 15 and EC 

16 induced a moderate increase in the halo of partial inhibition of vancomycin (VAN) 

in VRE E. faecalis B3/101, when compared with VAN alone. Interestingly, only 

emodin (EC 3) produced a synergistic effect with the antibiotic oxacillin (OX) against 

the MRSA S. aureus 66/1, increasing a halo of inhibition zone from zero (when 

treated with OX alone) to 11 mm when tested in combination. 

These results were also confirmed by determining the MICs of each antibiotic 

for the respective strain, in the presence of a fixed concentration of each compound, 

which is the highest concentration that did not inhibit the growth of the three 

multidrug-resistant strains under study. The MICs of antibiotics combined with each 

compound tested against the three multidrug-resistant strains are shown Table 39.  
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The combination of CTX with EC 15 resulted in a four-fold decrease in the 

MIC of CTX, i.e. from 256 μg/mL of CTX alone to 64 μg/mL of the combination, when 

tested against ESBL E. coli SA/2. The MBC also decrease from >512 µg/mL to 512 

µg/mL. Although the rest of the compounds did not show a synergistic effect with 

CTX in terms of MIC, EC 3, EC 4, EC 7, EC 8, EC 10, EC 11, EC 15 and EC 16 

reduced the MBC when compared with CTX alone. The combination of VAN with EC 

3, EC 4, EC 5 and EC 8 resulted in a four-fold decrease (from 512 µg/mL to 128 

µg/mL) in MIC of VAN while EC 9 reduced the MIC of VAN only by half (from 512 

µg/mL to 256 µg/mL) against VRE E faecalis B3/101 when compared to VAN alone. 

The combination of VAN with emodin (EC 3) resulted in a four-fold decrease (from 

512 μg/mL to 128 μg/mL) in MIC of VAN against VRE E. faecalis B3/101 when 

compared to VAN alone. Contrary to what was observed by the disk diffusion 

method, the combination of OX with emodin (EC 3) against the 

MRSA S. aureus 66/1 did not result in a decrease in the MIC of OX. Therefore, 

fungal anthraquinones derivatives represent an interesting group of compounds for 

development as arsenal against multidrug-resistant bacteria.  
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Table 38. Combined effects of antibiotics with EC 3-EC 16 against three multidrug-

resistant strains by disk diffusion method 

 

Compounds 

E. coli SA/2 E. faecalis B3/101 S. aureus 66/1 

CTX VAN* OX 

Antibiotic + EC 3 + + +++ 

Antibiotic + EC 4 + + - 

Antibiotic + EC 5 - + - 

Antibiotic + EC 6 + + - 

Antibiotic + EC 7 - ++ - 

Antibiotic + EC 8 + ++ - 

Antibiotic + EC 9 - ++ - 

Antibiotic + EC 10 - + - 

Antibiotic + EC 11 + + - 

Antibiotic + EC 12 - ++ - 

Antibiotic + EC 13 - ++ - 

Antibiotic + EC 14 + ++ - 

Antibiotic + EC 15 + ++ - 

Antibiotic + EC 16 - ++ - 

(-) non-effective; (+) slight efficacy-halo of inhibition or additional increase in the halo 
of inhibition of 1-2.5 mm around the disk; (++) moderate efficacy increase in the halo 
of inhibition of >2.5-5 mm; (+++) good efficacy-increase in the halo of inhibition of >5-
11 mm; CTX = cefotaxime; VAN + vancomycin; OX = oxacillin; *Halo of partial 
inhibition. 
 

 

 

 



CHAPTER III. RESULTS AND DISCUSSIONS 
   

 

336 
 

 

Table 39. Combine effect of antibiotics with EC 3-EC 16 against three multidrug-

resistant strains. MIC and MBC for antibiotics are expressed in µg/mL 

 

 

Compounds * 

E. coli SA/2 E. faecalis B3/101 S. aureus 66/1 

CTX VAN OX 

MIC MBC MIC MBC MIC MBC 

Antibiotic 256 >512 512 >1024 64 >256 

Antibiotic + EC 3 256 512 128 >1024 64 >256 

Antibiotic + EC 4 256 512 128 >1024 64 >256 

Antibiotic + EC 5 256 >512 128 >1024 64 >256 

Antibiotic + EC 6 256 >512 512 >1024 64 256 

Antibiotic + EC 7 256 256 512 >1024 64 >256 

Antibiotic + EC 8 256 256 128 >1024 64 >256 

Antibiotic + EC 9 512 >512 256 >1024 64 >256 

Antibiotic + EC 10 256 256 512 >1024 64 >256 

Antibiotic + EC 11 256 512 512 >1024 64 >256 

Antibiotic + EC 12 256 >512 512 >1024 64 >256 

Antibiotic + EC 13 512 >512 512 >1024 64 >256 

Antibiotic + EC 14 256 >512 512 >1024 64 >256 

Antibiotic + EC 15 64 512 512 >1024 256 >256 

Antibiotic + EC 16 256 512 512 >1024 128 >256 

MIC = minimum inhibitory concentration; MBC = minimum bacterial concentration; 
CTX = cefotaxine; VAN = vancomycin; OX = oxacillin.  
*Compound EC 3 was used a concentration of 16 µg/mL; compounds EC 4-EC 16 
were used at a concentration of 64µg/mL. 
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3.2.2. Antibacterial and Antifungal Activity Evaluation 

 

Aszonalenin (NG 4), (3R, 3-(1H-indole-3-ylmethyl)-3, 4-dihydro-1H-1, 4-

benzodiazepine-2, 5-dione (NG 5), (11aS)-2, 3-dihydro-1H-pyrrolo[2,1-c] [1,4] 

benzodiazepine-5, 11(10H, 11aH)-dione (NG 6), takakiamide (NG 7), 

sartoryglabramide A (NG 8), sartoryglabramide B (NG 9), fellutanine A (NG 10) and 

fellutanine A epoxide (NG 11) were isolated from the ethyl acetate extract of 

N.glabra (KUFA 0702) which were evaluated for their anbacterial activity against 

Gram-positive Straphyllococus aureus ATCC 25923 and Gram-negative Escherichia 

coli ATCC 25922 bacteria, as well as for their antifungal activity against filamentous 

Aspergillus fumigatus ATCC 46645, dermatophyte Trichophyton rubrum ATCC FF5, 

and yeast Candida albicans ATCC 10231. Compounds NG 4-NG 11 displayed no 

antibacterial activity against with MIC ˃ 256 µg/ mL or antifungal activities MIC ˃ 512 

µg/ mL. 
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NG 8NG 7

NG 6NG 4 NG 5

 

 

Figure 121. Secondary metabolites isolated from the ethyl acetate extract of the 

culture of N. glabra KUFA 0702. 
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4.1 General Experimental Procedures 

 

Merck® silica gel 60 (0.04-0.63 mm), Li Chroprep® Si (40-60 µm) and 

SephadexTM LH-20 were used for column chromatography. 

Analytical and preparative TLC was performed on silica gel 60 (GF254; Merck, 

0.25 mm thickness). The plates were activated at 110ºC in the oven Binder for 4 

hours and percolated silica gel sheets, GF254 (Macherey-Nagel), ALUGRAM®, Sil 

G/UV254, 20x20 cm. All TLC plates were visualized under UV254 nm and UV365 nm or 

developed with iodine vapor. 

1H and 13C NMR spectra were recorded at ambient temperature in CDCl3 or 

DMSO-d6 on a Bruker AMC instrument (Bruker Biosciences Corporation, Billerica, 

MA, USA) operating either at 300.13 and 75.47 MHz or 500.13 MHz and 125.77 

MHz, respectively. 

High-resolution mass spectra were measured with a Waters Xevo QToF mass 

spectrometer (Waters Corporations, Milford, MA, USA) coupled to a Waters Aquity 

UPLC system. 

Melting points were determined on a Bock monoscope and are uncorrected.  

Optical rotations were measured on an ADP410 Polarimeter (Bellingham + 

Stanley Ltd., Tunbridge wells, Kent, UK). 
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UV spectra were taken in CHCl3 and were recorded on a Varian CARY 100 

spectrophotometer. 

Infrared spectra were recorded in a KBr microplate in a FTIR spectrometer 

Nicolet iS 10 from Thermo Scientific (Waltham, MA, USA) with smart OMNI-

Transmission accessary (Software 188 OMNIC 8.3). 

The weight was measured on the analytical balance AND GH-202. 

The solvents used were from Merck and Fischer with analytical reagent 

grade. Solvents were evaporated at reduced pressure, using Büchi Heating Bath B-

49, Büchi Rotavapor R-210, Buchi Vacuum Module V-801 EasyVac and Vacuum 

Pump V-700. 

 

4.2 Isolation and Identification of the Biological Material 

 

4.2.1. Talaromyces helicus (KUFA 0063) 

 

Talaromyces helicus (KUFA 0063) was isolated from a cauliflower coral, 

Pocillopora verrucosa, which was collected from Angthong national marine Park, 

Samui district, Suratthani Province, Thailand. The coral was rinsed 3 times with 

sterile sea water and let it dry on sterile filter papers. Small pieces of coral tissues 

(5x5 mm) were placed on plates containing malt extract agar (MEA) with 70% sea  
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water. The plates were incubated at room temperature for a week and the fungus 

was transferred onto MEA +70% sea water slant. The fungus was identified based 

on macro- and microscopic characteristics, observed under light and scanning 

electron microscopes (SEM). The pure cultures were deposited as KUFA 0063 at 

Kasetsart University Fungal Collection, Department of Plant Pathology, Faculty of 

Agriculture, Kasetsart University, Bangkok, Thailand. 

 

   

 

Figure 122. Talaromyces helicus (KUFA 0063), colony on PDA 7 days (A) and SEM 

photomicrograph of ascospores (B and C) 

 

4.2.2. Neosartorya takakii (KUFC 7898) 

 

The fungus was isolated from the alga Amphiora sp. which was collected from 

Samaesarn Island, in the Gulf of Thailand, Chonburi Province, in September 2011. 
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Figure 123. Algae (Amphiroa sp) 

The alga was washed with 0.06% sodium hypochlorite for 1 min, followed by 

sterilized sea water for three times. The alga was dried on sterile filter paper and cut 

into small pieces (5x5 mm) and placed on malt extract agar (MEA) with 70% sea 

water and incubated at 28ºC for 5-7 days. The fungus was identified as Neosartorya 

takakii by Leka Manoch (Department of Plant Pathology, Faculty of Agriculture, 

Kasetsart University, Bangkok, Thailand), based on morphological characteristics, 

such as colony growth rate and growth pattern on standard media namely Czapek’s 

agar (CZA), Czapek yeast autolysate agar (CYA) and malt extract agar (MEA). 

Microscopic characteristics including size, shape, ornamentation of ascospores and 

Aspergillus takakii anamorph were examined under light and scanning electron 

microscopes (Horie et al., 2001). 
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Figure 124. Obverse and reverse views of colonies MEA media, incubated for 7 

days at 28ºC (A and B), and SEM photomicrographs of ascospores (C). 

This identification was supported by sequence analysis of the β-tubulin, 

calmodulin and actin genes as described in the previous report (Matsuzawa et al., 

2014). Neosartorya takakii was also confirmed by analysis sequence of the 

internal transcribed spacer (ITS) gene. Briefly, 2–15 mg of mycelia was ground in 

liquid nitrogen. DNA was extracted using the DNeasy™ Plant Mini Kit (QIAGEN, 

Hilden, Germany) according to the manufacturer’s instructions. The entire nuclear 

ITS regions were amplified with the primers: ITS1F-5′ (Gardes and Bruns, 1993) 

and ITS4-3′ (White et al., 1990). PCR reactions were conducted on Thermal 

Cycler and the amplification process consisted of initial denaturation at 95 °C for 5 

min, 34 cycles at 95 °C for 1 min (denaturation), at 55 °C for 1 min (annealing) and 

at 72 °C for 1.5 min (extension), followed by final extension at 72 °C for 10 min. 

PCR products were cleaned using QIAquick PCR Purification Kit (QIAGEN, 

Hilden, Germany), then examined by Agarose gel electrophoresis (1% agarose  

C A B 
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with 1× TBE buffer) and visualized under UV light after staining with ethidium 

bromide. DNA sequencing analyses were carried out by Macrogen Inc. (Seoul, 

South Korea). The sequences were compared using the NCBI nucleotide BLAST 

program (http://www.ncbi.nlm.nih.gov/BLAST) for identification (Altschul et al., 

1997). The pure cultures were deposited as KUFC 7898 at Kasetsart University 

Fungal Collection, Department of Plant Pathology, Faculty of Agriculture, 

Kasetsart University, Bangkok, Thailand, and also as MMERU 03 at Microbes 

Marine Environment Research Unit, Division of Environmental Science, Faculty of 

Science, Ramkhamhaeng University, Bangkok, Thailand. 

 

4.2.3. Neosartorya glabra (Fennell & Raper) Kozak (KUFA 0702) 

 

The strain KUFA 0702 was isolated from the marine sponge Mycale sp., 

which was collected, by scuba diving at a depth of 15-20 m, from the coral reef at 

Samaesarn Island (12º 34ʹ 36.64ʹʹ N 100º 56ʹ 59.69ʹʹ E) in the Gulf of Thailand, 

Chonburi Province, in February 2015. The sponge was washed with 0.06% sodium 

hypochlorite solution for 1 min, followed by sterilized seawater 3 times, and then 

dried on sterile filter paper, cut into small pieces (5x5 mm), and placed on malt 

extract agar (MEA) medium containing 70% sea water and 300 mg/L of streptomycin 

sulfate. After incubation at 28ºC for 7 days, the hyphal tips were transferred onto a 

slant MEA and maintained as pure culture for further identification. 

http://www.ncbi.nlm.nih.gov/BLAST
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Figure 125. Colony on MEA, 7 days, 28oC obverse (A), SEM of ascospores (B) and 

Mycale sp. (C) 

 

The fungus was identified as Neosartorya glabra (Fennell & Raper) Kozak 

based on morphological characteristics such as colony growth rate and growth 

pattern on standard media, namely Czapekʹs agar, Czapek yeast autolysate agar 

and malt extract agar. Microscopic characteristics including size, shape and 

ornamentation of ascospores were examined under light and scanning electron 

microscopes. This identification was supported by sequence analysis of the β-

tubulin, calmodulin and actin genes as described in the previous report (Matsuzawa 

et al., 2014). N. glabra was also confirmed by sequence analysis of the internal 

transcribed spacer (ITS) gene, according to the procedure previously described in 

section 4.2.2. Its gene sequences were deposited in Genbank with accession 

numbers KU 955860. The pure cultures were deposited as KUFA 0702 at Kasetsart 

University, Bangkok, Thailand. 

B C A 
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4.2.4. Eurotium Chevalieri L. Mangin (KUFA 0006) 

 

The fungus was isolated from a healthy twig of Rhizophora mucronata Poir, 

which was collected in Kung Krabaen Bay Royal Development Study Center, 

Chanthaburi in July 2010. The twig was washed with running tap water and air died 

in a laminar hood. It was cut to 1 cm long and was surface sterilized with 70% 

ethanol for 5 min and then rinsed three times in sterile distilled water. The surface 

sterilized twig was blotted dry on sterilized filter paper under aseptic condition and 

was transversely cut to 1-2 mm-thick slices using a sterile razor blade, after which 

were placed in Petri dishes containing potato dextrose agar (PDA) amended 

streptomycin sulphate (300 mg/L), four pieces per dish. The dishes were incubated 

at room temperature and the mycelium emerged from plant tissues were observed 

daily. The hyphal tips of the mycelium emerged from plant were transferred to PDA 

slants using a sterile needle and maintained as pure culture for further identification. 

The strain KUFA 0006 was identified as Eurotium chevalieri L. Mangin on the 

basic of morphological characteristics such as colony growth rate and growth pattern 

on standard media, namely Czapekʹs agar, Czapek yeast autolysate agar and malt 

extract agar as well as microscopic characteristics including size, shape and 

ornamentation of ascospores were observed under light and scanning electron 

microscopes. 
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Figure 126. Colony on MEA (A), CZA (B), CYA(C) 7 days, 28oC, Aspergillia and 

spores (D and F), SEM of ascospores (E), ascus and ascospores (G and H) 

 

 

 

C B A 
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The identification also confirmed by molecular techniques. The internal 

transcribed spacer (ITS) region of rRNA of this fungus was amplified using ITS 

primers (ITS 1 and ITS 4) as previously described in section 4.2.2. Its gene 

sequence was deposited in Genbank with accession number, KX 431211. The pure 

cultures were deposited at Kasetsart University Fungal Collection, Department of 

Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand. 

 

4.3. Extraction and Isolation of Metabolites 

 

4.3.1. Talaromyces helicus (KUFA 0063) 

 

Talaromyces helicus (KUFA 0063) was cultured for 2 weeks at 28ºC in 10 

Petri-dishes (i.d. 90 mm) containing 25 mL per dish of MEA +70% sea water. Fifty-

five Erlenmeyer flasks (1,000 mL) containing 200 g of rice, 30 mL water and 70 mL 

sea water were autoclaved. Each of flasks was inoculated with 5 mycelia plug of this 

fungus and incubated at 28ºC for 30 days, after which the moldy rice was macerated 

in ethyl acetate (30 L) for 10 days and filtered. The ethyl acetate solution was 

evaporated under reduced pressure to give dark brown viscous mass of a crude 

ethyl acetate extract (96.31 g) which was dissolved in 1000 ml of CHCl3 and then 

washed with H2O (3x500 mL). The organic layer were combined and dried with 

anhydrous Na2SO4, filtered and evaporated under reduce pressure to give (47.5 g) of 

crude chloroform extract. 
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The crude chloroform extract (40 g) was applied on a column chromatography 

over a 0.04-0.63 mm Merck® silica gel 60 (350 g) and eluted with mixtures of petrol-

CHCl3, CHCl3-Me2CO and Me2CO, 250 mL fractions were collected as follows: 

Fractions 1-26 (petrol-CHCl3, 1:1), 27-48 (petrol-CHCl3, 3:7), 49-160 (petrol-CHCl3, 

1:9) and 161-218 (CHCl3-Me2CO, 9:1), 219-311 (CHCl3-Me2CO, 7:3). Fractions 107-

115 were combined (546 mg) and precipitated in MeOH to give white solid (17.7 mg) 

of 3-acetyl-ergosterol 5, 8 endoperoxide (TH 2).  

Fractions 177-206 were combined (2.50 g) and applied on a column 

chromatography over a 40-60 µm Li Chroprep® silica gel (35 g) and eluted with 

mixtures of petrol-CHCl3 and CHCl3-Me2CO and Me2CO, 100 mL sub-fractions were 

collected as follows: Sub-fractions 1-34 (petrol-CHCl3, 1:1), 35-170 (petrol-CHCl3, 

3:7), 171-223 (petrol-CHCl3, 1:9) and 224-273 (CHCl3-Me2CO, 9:1), 274-298 (CHCl3-

Me2CO, 7:3), 299-300 (Me2CO). Sub-fractions 100-138 were combined (206 mg) 

and precipitated in MeOH to give white solid (9.5 mg) of glaucanic acid (TH 3) and 

sub-fractions 139-195 were combined (443 mg) and precipitated in MeOH to give 

white solid (34.1 mg) of palmitin (TH 1).  

Fractions 207-237 were combined (5.676 g) and applied on a column 

chromatography over a 40-60 µm Li Chroprep® silica gel (35 g) and eluted with 

mixtures of petrol-CHCl3 and CHCl3-Me2CO and Me2CO, 100 mL sub-fractions were 

collected as follows: Sub-fractions 1-30 (petrol-CHCl3, 1:1), 31-91 (petrol-CHCl3, 

3:7), 92-132 (petrol-CHCl3, 1:9) and 133-166 (CHCl3-Me2CO, 9:1), 167-212  
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(CHCl3-Me2CO, 7:3), 213-214 (Me2CO). Sub-fractions 48-51 were combined (241 

mg) and precipitated in MeOH to give white solid (10 mg) of glauconic acid (TH 4). 

 

4.3.2. Neosartorya takakii (KUFC 7898) 

 

Neosartorya takakii (KUFC 7898) was cultured for one week at 28ºC in 10 

Petri dishes (i.d. 90 mm) containing 25 mL of MEA with 70% sea water per dish. Fifty 

1000 mL Erlenmeyer flasks each containing rice (200 g), water (30 mL) and sea 

water (70 mL), were autoclaved, inoculated with five mycelia plugs of N. takakii and 

incubated at 28ºC for 30 days, after which the moldy rice was macerated in ethyl 

acetate (15 L total) for 10 days and then filtered. The two layers were separated 

using a separating funnel and the ethyl acetate solution was concentrated at a 

reduced pressure to yield 83.5 g of crude ethyl acetate extract which was dissolved 

in 1000 mL of CHCl3 and then washed with H2O (3x500 mL). The organic layers 

were combined and dried with anhydrous Na2SO4, filtered, evaporated under 

reduced pressure to give 53.8 g of the crude chloroform extract, which was applied 

on a column chromatography of 0.04-0.63 mm Merck® silica gel 60 (420 g), and 

eluted with a mixtures of petrol-CHCl3, CHCl3-Me2CO and Me2CO, 250 mL fractions 

were collected as follows: Fractions 1-40 (petrol-CHCl3, 1:1), 41-82 (petrol-CHCl3, 

3:7), 83-197 (petrol-CHCl3, 1:9), 198-321 (CHCl3-Me2CO, 9:1), and 322-460 (CHCl3-

Me2CO, 7:3). 
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Fractions 198-203 were combined (1.573 g) and applied over a column 

chromatography of 40-60 µm Li Chroprep® silica gel (35 g) and eluted with a 

mixtures of petrol-CHCl3 and CHCl3-Me2CO and Me2CO, 200 mL sub-fractions were 

collected as follows: Sub-fractions 1-80 (petrol-CHCl3, 1:1), 81-110 (petrol-CHCl3, 

3:7), 111-138 (petrol-CHCl3, 1:9), 139-150 (CHCl3-Me2CO, 9:1), and 151-154 

(Me2CO). Sub-fractions 27-33 were combined (80.3 mg) and recrystallized in MeOH 

to give 26.7 mg of sartorenol (NTK 12). Sub-fractions 34-70 were combined (498 

mg) and purified by TLC (silica gel 60 GF254, CHCl3-Me2CO-HCO2H, 9.5:0.5:0.1) to 

give an additional 18.2 mg of sartorenol (NTK 12). Sub-fractions 71-90 were 

combined (179 mg) and purified by TLC (silica gel 60 GF254, CHCl3-Me2CO-HCO2H, 

9.5:0.5:0.1) to give (33.6 mg) of chevalone B (NTK 10). Sub-fractions 91-112 were 

combined (78.4 mg) and purified by TLC (silica gel 60 GF254, CHCl3-Me2CO-HCO2H, 

9.5:0.5:0.1) to yield additional 2.7 mg of chevalone B (NTK 10). 

Fractions 204-209 were combined (2.08 g) and recrystallized in MeOH to give 

(586.0 mg) of aszonalenin (NTK 2/NG 4) and a mother liquor was combined with 

fractions 210-212 (1.53 g) and applied over a column chromatography of 40-60 µm 

Li Chroprep® silica gel (35 g) and eluted with mixture of petrol-CHCl3, CHCl3-Me2CO 

and Me2CO, wherein 200 mL sub-fractions were collected as follows: Sub-fractions 

1-25 (petrol-CHCl3, 1:1), 26-120 (petrol-CHCl3, 3:7), 121-164 (petrol-CHCl3, 1:9), 

165-179 (CHCl3-Me2CO, 9:1), 180-189 (CHCl3-Me2CO, 7:3), 190-191 (Me2CO). Sub  
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fractions 69-105 were combined (150.2 mg) and purified by TLC (silica gel 60 GF254, 

CHCl3-Me2CO-HCO2H, 9.5:0.5:0.1) to give (5 mg) of 6-hydroxymellein (NTK 1). 

Fractions 213-224 were combined (626.0 mg) and crystallized in MeOH to 

give (230 mg) of aszonapyrone A (NTK 11). 

Fractions 262-267 were combined (573.4 mg) and purified by TLC (silica gel 

60 GF254, CHCl3-Me2CO-HCO2H, 8:2:0.1) to give 20.5 mg of takakiamide (NTK 4/NG 

7) and 91.3 mg of acetylaszonalenin (NTK 3).  

Fractions 268-283 were combined (1.03 g) and recrystallized in MeOH to give 

(115.1 mg) of acetylaszonalenin (NTK 3). 

Fractions 325-334 were combined (2.95 g) and recrystallized in MeOH to give 

(0.98 g) of tryptoquivaline L (NTK 8).  

Fractions 335-342 were combined (6.06 g) and recrystallized in MeOH to give 

(259.5 mg) of tryptoquivaline H (NTK 7).  

Fractions 343-348 were combined (281 mg) and crystallized in MeOH to give 

(24.9 mg) of 3′-(4-oxoquinazolin-3-yl) spiro [1H-indole -3, 5′-oxolane]-2, 2′-dione 

(NTK 5). 

Fractions 356-390 were combined (1.15 g) and purified by TLC (silica gel 60 

GF254, CHCl3-Me2CO-HCO2H, 7:3:0.1) to give 16.5 mg of tryptoquivaline U (NTK 9) 

and 3.9 mg of tryptoquivaline F (NTK 6). 
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Fractions 391-400 were (125.3 mg) and recrystallized in MeOH to give 8.6 mg 

of tryptoquivaline F (NTK 6). 

 

4.3.3. Neosartorya glabra (KUFA 0702) 

 

Neosartorya glabra (KUFA 0702) was cultured for one week at 28ºC in 5 Petri 

dishes (i.d. 90 mm) containing 15 mL of potato dextrose agar (PDA). In order to 

obtain the mycelial suspension, the mycelial plugs were transferred to two 500 mL 

Erlenmeyer flasks containing 250 mL of potato dextrose broth (PDB), and then 

incubated on a rotary shaker at 150 rpm at 28ºC for 7 days. Forty 1000 mL 

Erlenmeyer flasks, each containing 300 g of cooked rice, were autoclaved at 121ºC 

for 15 min, and then inoculated with 25 mL of mycelial suspension of N. glabra, and 

incubated at 28ºC for 30 days, after which the moldy rice was macerated in ethyl 

acetate (20 L total) for 7 days, and then filtered with filter paper. 

The ethyl acetate solution was concentrated under reduced pressure to yield 

98.2 g of crude ethyl acetate extract, which was dissolved in 1000 mL of CHCl3, and 

then washed with H2O (3x500 mL). The organic layers were combined and dried with 

anhydrous Na2SO4, filtered and evaporated under reduced pressure to give 71.2 g of 

the crude chloroform extract, which was applied on a column chromatography of 

0.04-0.63 mm Merck® silica gel 60 (420 g), and eluted with mixtures of petrol-CHCl3, 

CHCl3-Me2CO and Me2CO, 250 mL fractions were collected as follows: Fractions  
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1-80 (petrol-CHCl3, 1:1), 81-144 (petrol-CHCl3, 3:7), 145-201 (petrol-CHCl3, 1:9), 

202-356 (CHCl3-Me2CO, 9:1), 357-398 (CHCl3-Me2CO, 7:1), and 399-410 (Me2CO). 

Fractions 85-105 were combined (2.04 g) and purified by TLC (silica gel 60 

GF254, CHCl3-petrol-EtOAc-HCO2H, 8:1:1:0.1) to give 11 mg of ergosta-4, 6, 8 (14), 

22-tetraen-3-one (NG 1). 

Fractions 207 (1.14 g) was applied over a column chromatography of 

SephadexTM LH-20 (10 g) and eluted with MeOH and a mixture of MeOH: CH2Cl2 

(1:1), wherein 20 mL sub-fractions were collected as follows: Sub-fractions 1-90 

(MeOH), and 91-145 (MeOH: CH2Cl2, 1:1). Sub-fractions 53-61 were combined (19.5 

mg) and recrystallized in MeOH to give 16.8 mg of ergosterol 5, 8-endoperoxide (NG 

2/EC 2). Sub-fractions 62-90 were combined (53.2 mg) and purified by TLC (silica 

gel 60 GF254, CHCl3-Petrol-EtOAc-HCO2H, 8:1:1:0.1) to give 11.2 mg of aszonalenin 

(NG 4/NTK 2). 

Fractions 206-212 were combined (4.88 g) and applied over a column 

chromatography of 40-60 µm Li Chroprep® silica gel (45 g) and eluted with mixtures 

of petrol-CHCl3, CHCl3-Me2CO and Me2CO, wherein 100 mL sub-fractions were 

collected as follows: Sub-fractions 1-51 (petrol-CHCl3, 1:1), 52-107 (petrol-CHCl3, 

3:7), 108-164 (petrol-CHCl3, 1:9), 165-190 (CHCl3-Me2CO, 9.5:0.5), 191-310 (CHCl3-

Me2CO, 9:1). Sub-fractions 83-164 were combined (53.4 mg) and recrystallized in 

MeOH to give 27.6 mg of ergosterol 5, 8-endoperoxide (NG 2/EC 2). Sub-fractions 
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166 (38.8 mg) was recrystallized in Me2CO to give more 8.7 mg of aszonalenin (NG 

4/NTK 2). 

Fractions 213-245 were combined (3.61 g) and applied over a column 

chromatography of SephadexTM LH-20 (10 g) and eluted with MeOH, wherein 60 

sub-fractions of 20 mL were collected. Sub-fractions 31-51 were combined and 

purified by TLC (silica gel 60 GF254, CHCl3-Me2CO-HCO2H, 4:1:0.1) to give 9.7 mg of 

takakiamide (NG 7/NTK 4) and 13.1 mg of (11 aS)-2, 3-dihydro-1H-pyrrolo [2, 1-c] 

[1, 4] benzodiazepine-5, 11 (10H, 11aH)-dione (NG 6). 

Fractions 246-257 were combined (1.44 g) and recrystallized in MeOH to give 

23.7 mg of helvolic acid (NG 3). 

Fractions 273-287 were combined (621.0 mg) and purified by TLC (silica gel 

60 GF254, CHCl3-Me2CO-HCO2H, 7:3:0.3) to give 12.1 mg of helvolic acid (NG 3) and 

32.3 mg of sartoryglabramide A (NG 8).  

Fractions 363-373 were combined (1.26 g) and applied over a column 

chromatography of SephadexTM LH-20 (10 g) and eluted with MeOH, wherein 60 

sub-fractions of 20 mL were collected. Sub-fractions 22-54 were combined (91.2 mg) 

and purified by TLC (silica gel 60 GF254, CHCl3-Me2CO-HCO2H, 9.5:0.5:0.3) to give 

14.7 mg of sartoryglabramide B (NG 9) and 10 mg of (3R)-3-(1H-indol-3ylmethyl)-3, 

4-dihydro-1H-1, 4-benzodiazepine-2, 5-dione (NG 5). 
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Fractions 374-398 were combined (1.37 g) and purified by TLC (silica gel 60 

GF254, CHCl3-Me2CO-HCO2H, 3:2:0.3) to give 32.8 mg of fellutanine A epoxide (NG 

11). 

Fractions 403-405 were combined (2.49 g) and applied over a column 

chromatography of SephadexTM LH-20 (10 g) and eluted with MeOH, wherein 112 

sub-fractions of 20 mL were collected. Sub-fractions 90-112 were combined (24.9 

mg) and purified by TLC (silica gel 60 GF254, CHCl3-Me2CO-HCO2H, 9.5:0.5:0.3) to 

give 20.7 mg of fellutanine A (NG 10). 

 

4.3.4. Eurotium chevalieri L. Mangin (KUFA 0006) 

 

Forty 1000 mL Erlenmeyer flasks, each containing 200 g of cooked white rice 

and 100 mL of water containing 20% sucrose, were autoclaved at 121ºC for 15 min 

and then inoculated with ten mycelial plugs of the E. chevalieri KUFA 0006, and 

incubated at 28ºC for 40 days. Each flask of the moldy rice was added 500 mL of 

ethyl acetate and the content was left to macerate for 7 days and then filtered. The 

ethyl acetate solution was concentrated under reduced pressure to yield 79 g of dark 

brown viscous mass of crude ethyl acetate extract which was dissolved in 1000 mL 

of CHCl3, and then washed with H2O (3x 500 mL). The organic layer were combined 

and dried with anhydrous Na2SO4, filtered and evaporated under reduced pressure 

to give 75 g of the crude chloroform extract, which was applied on a column  
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chromatography of 0.04-0.63 mm Merck® silica gel (770 g), and eluted with mixtures 

of petrol-CHCl3, CHCl3-Me2CO, CHCl3-MeOH, Me2CO and MeOH, 250 mL fractions 

were collected as follows: Fractions 1-450 (petrol-CHCl3, 1:1), 451-518 (petrol-

CHCl3, 3:7), 519-726 (petrol-CHCl3, 1:9), 727-1000 (CHCl3-Me2CO, 9:1), 1001-1192 

(CHCl3-Me2CO, 7:3), 1193-1311 (CHCl3:MeOH, 9:1), 1312-1328 (Me2CO) and 1329-

1330 (MeOH). 

Fractions 72-85 were combined (605.5 mg) and recrystallized in methanol to 

give 27.3 mg of physcion (EC 4). 

Fractions 250-294 were combined (919.1 mg) and precipitated in MeOH to 

give 31.3 mg of palmitic acid (EC 1). 

Fractions 365-368 were combined (94.3 mg) and precipitated in petroleum 

ether to give 10.7 mg of 2-(2-methyl-3-en-2yl)-1H-indole-3-carbaldehyde (EC 8). 

Fractions 369-398 were combined (453.6 mg) and purified by TLC (silica gel 

60 GF254, CHCl3-Me2CO-HCO2H, 9.5:0.5:0.1) to give 10.6 mg of ergosterol 5, 8-

endoperoxide (EC 2/NG 2). 

Fractions 652-708 were combined (157.0 mg) and purified by TLC (silica gel 

60 GF254, CHCl3-Me2CO-HCO2H, 9.5:0.5:0.1) to give 25.1 mg of 2-(2-dimethyl 

cyclopropyl)-1H-indole-carbaldehyde (EC 9). 

Fractions 734-738 were combined (166.2 mg) and applied on a SephadexTM 

LH-20 column chromatography (10 g) and eluted with MeOH and a mixture with  
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MeOH:CH2Cl2 (1:1), wherein 20 mL sub-fractions were collected as follows: Sub-

fractions 1-56 (MeOH) and 57-68 (MeOH:CH2Cl2, 1:1). Sub-fractions 48-56 were 

combined (15.0 mg) and purified by TLC (silica gel 60 GF254, CHCl3-Me2CO-HCO2H, 

9.5:0.5:0.1) to give 10.2 mg of emodin (EC 3). 

Fractions 756-770 were combined (155.7 mg) and applied on a SephadexTM 

LH-20 column chromatography (10 g) and eluted with MeOH, wherein 60 sub-

fractions (20 mL each) were collected. Sub-fractions 42-60 were combined (28.2 mg) 

and purified by TLC (silica gel 60 GF254, CHCl3-Me2CO-HCO2H, 9:1:0.1) to give 23.3 

mg of questin (EC 5). 

Fractions 801-815 were combined (371.5 mg) and applied on a SephadexTM 

LH-20 column chromatography (10 g) and eluted with MeOH wherein 68 sub-

fractions (20 mL each) were collected. Sub-fractions 34-48 were combined (29.4 mg) 

and purified by TLC (silica gel 60 GF254, CHCl3-Me2CO-HCO2H, 9:1:0.1) to give 23.8 

mg of acetyl questinol (EC 7). 

Fractions 860-874 were combined (59.8 mg) and purified by TLC (silica gel 60 

GF254, CHCl3-Me2CO-HCO2H, 9:1:0.1) to give 10 mg of 2-(2, 2-dimethylbut-3-enoyl) 

amino-benzoic acid (EC 10), 10.2 mg of echinulin (EC 15) and 38.2 mg of 

neochenulin E (EC 14). 
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Fractions 919-945 were combined (439.1 mg) and purified by TLC (silica gel 

60 GF254, CHCl3-Me2CO-HCO2H, 9.5:0.5:0.1) to give 10 mg of 6, 8-dihydroxy-3-(2R-

hydroxylpropyl)-7-methyl-1H-isochromen-1-one (EC 11). 

Fractions 1004-1010 were combined (456.9 mg) and purified by TLC (silica 

gel 60 GF254, CHCl3-MeOH-HCO2H, 9.5:0.5:0.1) to give 23.3 mg of questinol (EC 6). 

Fractions 1032-1049 were combined (1.34 g) and applied on a SephadexTM 

LH-20 column chromatography (10 g) and eluted with MeOH:CH2Cl2 (1:1), 73 sub-

fractions of (20 mL) were collected. Sub-fractions 29-42 were combined (84.4 mg) 

and purified by TLC (silica gel 60 GF254, CHCl3-MeOH-HCO2H, 9.5:0.5:0.1) to give 

(11.9 mg) of eurocristatine (EC 16), 15.1 mg of preechinulin (EC 13) and 20.3 mg of 

(11S, 14R)-3-(1H-indol-3ylmethyl)-6-isopropyl-2,5-piperazinedione (EC 12). 

 

4.4 Physical Characteristics and Spectroscopic data 

 

Palmitic acid (EC 1): White solid; mp 62-63 ºC; 1H and 13C NMR (see Table 2); (+)-

HRESIMS m/z 257.2484 [M+H]+ (calcd. for C16H33O2, 257.2481). 

Palmitin (TH 1): White solid; mp 65-66 ºC; 1H and 13C NMR (see Table 3); (+)-

HRESIMS m/z 331.2814 [M+H]+ (calcd. for C19H39O4, 331.2848). 
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Glaucanic acid (TH 3): White solid; mp 188-189 ºC; [α]20
D  = + 185 (c 1.05, CDCl3); 

1H and 13C NMR (see Table 4); (+)-HRESIMS m/z 333.1311 [M+H]+ (calcd. for 

C18H21O6, 333.1338). 

Glauconic acid (TH 4): White solid; mp 199-200 ºC; 1H and 13C NMR (see Table 5); 

(+)-HRESIMS m/z 349.1293 [M+H]+ (calcd. for C18H21O7, 349.1287). 

Ergosta-4, 6, 8 (14), 22-tetraen-3-one (NG 1): Yellow viscous mass; 1H and 13C 

NMR (see Table 6). 

Ergosterol 5, 8-endperoxide (NG 2/EC 2): White solid; mp 182-183 ºC; 1H and 13C 

NMR (see Table 7). 

Acetyl ergosterol 5, 8-endoperoxide (TH 2): White amorphous solid; 1H and 13C 

NMR (see Table 7). 

Helvolic acid (NG 3): White solid; mp 216-217 ºC; 1H and 13C NMR (see Table 8). 

Chevalone B (NTK 10): White solid; mp 163-164 ºC; 1H and 13C NMR (see Table 9). 

Aszonapyrone A (NTK 11): White solid; mp 242-243 ºC; 1H and 13C NMR (see 

Table 10). 

Sartorenol (NTK 12): White crystal; mp 122-123ºC (petrol/CHCl3); [α]20
D  = – 18 (c 

0.02, CHCl3); λmax (log ) 228 (4.41), 275 (3.99); IR (KBr) vmax 3393, 2932, 2850, 

1728, 1645, 1558, 1540, 1418, 1251 cm-1; 1H and 13C NMR (see Table 11); (+)-

HRESIMS m/z 431.3175 [M+H]+ (calcd. for C27H43O4, 431.3161). 
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6-hydroxymellein (NTK 1): White solid; mp 201-202 ºC; [α]26
D  = – 51 (c 0.04, MeOH); 

1H and 13C NMR (see Table 12). 

6, 8-dihydroxy-3(2R-hydroxypropyl)-7-methyl-1H-isochromen-1-one (EC 11): 

Yellow viscous liquid;  [α]20
D  = –88 (c 0.07, Me2CO); IR (KBr) vmax 3443, 2921, 2254, 

1671, 1623, 1540, 1507, 1455 cm-1; 1H and 13C NMR (see Table 13); (+)-HRESIMS 

m/z 251.0900 [M+H]+ (calcd. for C13H15O5, 251.0919). 

Emodin (EC 3): yellow amorphous solid; mp 256-257 ºC; 1H and 13C NMR (see 

Table 14 and 15); (+)-HRESIMS m/z 271.0594 [M+H]+ (calcd. for C15H11O5, 

271.0606). 

Physcion (EC 4): Red crystal; mp 207-208 ºC; 1H and 13C NMR (see Table 14 and 

15). 

Questin (EC 5): Yellow solid; mp 298-299 ºC; 1H and 13C NMR (see Table 14 and 

15). 

Questinol (EC 6): Yellow crystal; mp 281-282 ºC; 1H and 13C NMR (see Table 14 

and 15); (+)-HRESIMS m/z 301.0713 [M+H]+ (calcd. for C16H13O6, 301.0712). 

Acetylquestinol (EC 7): Yellow crystal; mp 101-102ºC; IR (KBr) vmax 3442, 2922, 

1749, 1631, 1588, 1466, 1379, 1352, 1264 cm-1; 1H and 13C NMR (see Table 14 and 

15); (+)-HRESIMS m/z 343.0814 [M+H]+ (calcd. for C18H15O7, 343.0818). 

2-(2-Methyl-3-en-2-yl)-1H-indole-3-carbaldehyde (EC 8): Yellow crystal; mp 162-

164ºC; IR (KBr) vmax 3242 (NH), 2972, 2928, 1735, 1622, 1583, 1453, 1381,  
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1274 cm-1; 1H and 13C NMR (see Table 16); (+)-HRESIMS m/z 214.1236 [M+H]+ 

(calcd. for C14H16NO, 214.1232). 

2-(2, 2-dimethylcyclopropyl)-1H-indole-3-carbaldehyde (EC 9): Yellow viscous 

liquid; [α]20
D  = + 68 (c 0.04, CHCl3); IR (KBr) vmax 3252 (NH), 2923, 1768, 1633, 1583, 

1558, 1463, 1376, 1239 cm-1; 1H and 13C NMR (see Table 17); (+)-HRESIMS m/z 

214.1239 [M+H]+ (calcd. for C14H16NO, 214.1232). 

Aszonalenin (NTK 2/NG 4): White solid; mp 249-250 ºC; [α]20
D   = – 27.0 (c 0.04, 

CDCl3); 1H and 13C NMR (see Table 18). 

Acetylaszonalenin (NTK 3): White solid; mp 237-239 ºC; 1H and 13C NMR (see 

Table 18). 

Takakiamide (NTK 4/NG 7): White solid; mp 182-183ºC (petrol/CHCl3);  [α]20
D  = – 213 

(c 0.02, CHCl3); IR (KBr) vmax 3214, 3057, 2924, 2851, 1688, 1654, 1607, 1579, 

1481, 1334, 1255 cm-1, 1H and 13C NMR (see Table 19); (+)-HRESIMS m/z 

374.1876 [M+H]+ (calcd. for C23H24N3O2, 374.1869). 

(3R)-3-(1H-indole-3ylmethyl)-3, 4-dihydro-1H-1, 4-benzodiazepine-2, 5-dione 

(NG 5): Yellow viscous mass; [α]20 
D = + 96.00 (c 0.06, CDCl3); 1H and 13C NMR (see 

Table 19); (+)-HRESIMS m/z 306.1256 [M+H]+ (calcd. for C18H16N3O2, 306.1243). 

(11aS)-2, 3-dihydro-1H-pyrrolo [2, 1-c] [1, 4] benzodiazepine-5, 11 (10H, 11 aH) 

(NG 6): Yellow viscous mass; [α]20
D  = +205.88 (c 0.03, MeOH); 1H and 13C NMR (see 

Table 20); (+)-HRESIMS m/z 217.0992 [M+H]+ (calcd. for C12H13N2O2, 217.0977). 
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3′-(4-oxoquinazolin-3-yl) (1H-indole-3, 5′-oxolone]-2, 2′-dione (NTK 5): White 

solid; mp 266-268 ºC; [α]20
D  = + 19.7 (c 0.02, MeOH); 1H and 13C NMR (see Table 21). 

Tryptoquivaline F (NTK 6): White solid; mp 278-280 ºC; [α]20
D   = – 120.0 (c 0.05, 

MeOH); 1H and 13C NMR (see Table 22). 

Tryptoquivaline H (NTK 7): White solid; mp 246-248 ºC; [α]20
D  = – 20.1 (c 0.03, 

MeOH) 1H and 13C NMR (see Table 22). 

Tryptoquivaline L (NTK 8): White solid; mp 262-264 ºC; [α]20
D   = – 30.5 (c 0.02, 

MeOH) 1H and 13C NMR (see Table 23). 

Tryptoquivaline U (NTK 9): White crystals; mp 208-209ºC (petrol/CHCl3) ;  [α]20
D  = − 

196 (c 0.01, CHCl3); IR (KBr) vmax 3363, 2924, 2852, 1775, 1710, 1662, 1607, 1473, 

1384, 1260, 1199 cm-1; 1H and 13C NMR (see Table 23); (+)-HRESIMS m/z 

417.1563 [M+H]+ (calcd. for C23H21N4O4, 417.1563). 

Fellutanine A (NG 10): Yellow viscous mass; [α]20
D  = − 151.52 (c 0.03, MeOH); 1H 

and 13C NMR (see Table 24); (+)-HRESIMS m/z 373.1675 [M+H]+ (calcd. for 

C22H21N4O2, 373.1665). 

Fellutanine A epoxide (NG 11): Pale yellow viscous mass; [α]20
D  = + 13.9 (c 0.07, 

Me2CO); IR (KBr) vmax 3420, 2922, 1649, 1416, 1188, 1047, 1025, 996 cm-1; 1H and 

13C NMR (see Table 25); (+)-HRESIMS m/z 389.1626 [M+H]+ (calcd. for C22H21N4O3, 

389.1614). 
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(11S, 14R)-3-(1H-indol-3-ylethyl)-6-isopropyl-2, 5-piperazinedione (EC 12): 

White crystal; mp 270-271ºC; [α]20
D  = − 187 (c 0.02, Me2CO); 1H and 13C NMR (see 

Table 26); (+)-HRESIMS m/z 286.1575 [M+H]+ (calcd. for C16H20N3O2, 286.1556). 

Preechinulin (EC 13): White solid; mp 251-252 ºC; [α]23
D   = + 23.4 (c 0.09, AcOH); 1H 

and 13C NMR (see Table 27); (+)-HRESIMS m/z 326.1870 [M+H]+ (calcd. for 

C19H24N3O2, 326.1869). 

Neoechinulin E (EC 14): White solid; mp 273-275 ºC; 1H and 13C NMR (see Table 

28); (+)-HRESIMS m/z 324.1347 [M+H]+ (calcd. for C18H18N3O3, 324.1348). 

Echinulin (EC 15): White solid; mp 226-227 ºC; [α]26
D   = – 41.7 (c 0.02, CDCl3); 1H 

and 13C NMR (see Table 29). 

Eurocristatine (EC 16): White crystal; mp 243-244 ºC; 1H and 13C NMR (see Table 

30); (+)-HRESIMS m/z 569.2889 [M+H]+ (calcd. for C32H37N6O4, 569.2876). 

2-(2, 2-dimethylbut-3enoyl) amino-benzoic acid (EC 10): Yellow viscous liquid; IR 

(KBr) vmax 3421, 3253, 2927, 1696, 1670, 1636, 1606, 1586, 1522, 1448, 1385, 

1295, 1259 cm-1; 1H and 13C NMR (see Table 31); (+)-HRESIMS m/z 234.1132 

[M+H]+ (calcd. for C13H16NO3, 234.1130). 

Sartoryglabramide A (NG 8): White crystal; mp 146-148 ºC (CHCl3-Me2CO); [α]20
D  = 

+ 34.6 (c 0.06, Me2CO); IR (KBr) vmax 3447, 3060, 3028, 2920, 2850, 1655, 1622, 

1587, 1526, 1453, 1415, 1300, 1261, 1173 cm-1; 1H and 13C NMR (see Table 32); 

(+)-HRESIMS m/z 511.2365 [M+H]+ (calcd. for C30H31N4O4, 511.2345). 



CHAPTER IV. MATERIALS AND METHODS 
   

 

366 
 

 

Sartoryglabramide B (NG 9): White solid; mp; 190-192ºC (CHCl3-Me2CO); [α]20
D  = + 

42.8 (c 0.05, Me2CO); IR (KBr) vmax 3417, 3058, 2924, 2852, 1649, 1620, 1588, 

1526, 1454, 1418, 1302, 1263, 1101 cm-1; 1H and 13C NMR (see Table 34); (+)-

HRESIMS m/z 550.2501 [M+H]+ (calcd. for C32H32N5O4, 550.2454). 

 

4.5 X-Ray Crystallographic Analysis  

 

4.5.1. X-ray Crystal structure of Sartorenol (NTK 12) 

 

Crystals were orthorhombic, space group P21P21P21, cell volume 2449.73 

(12) Å3 and unit cell dimensions a = 5.99830 (16) Å, b = 13.1349 Å and c = 31.0931 

(11) Å (uncertainties in parentheses). There are four molecules per unit cell with 

calculated density of 1.170 g/cm-3. Diffraction data were collected at 110 K with a 

Geminin PX Ultra equipped with CuKα radiation (λ = 1.54184 Å). The structure was 

solved by direct methods using SHELXS-97 and refined with SHELXL-97 (Sheldrick, 

2008). Carbon and oxygen were refined anisotropically. Hydrogen atoms bound to 

the carbon atom C-20 were placed at their idealized positions using appropriate 

HFIX instructions in SHELXL, and included in subsequent refinement cycles. All 

other hydrogen atoms were directly found from difference Fourier maps and were 

refined freely with isotropic displacement parameters. The refinement converged to 

R (all data) = 9.51 % and wR2 (all data) = 17.76 %. Full details of the data collection  
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and refinement and tables of atomic coordinates, bond lengths and angles, and 

torsion angles have been deposited with the Cambridge Crystallographic Data 

Centre (CCDC 1060934). 

 

4.5.2. X-Ray Crystal Structure of Tryptoquivaline U (NTK 8) 

 

Crystals were triclinic, space group P1, cell volume 501.08 (12) Å3 and unit 

cell dimensions a = 5.3913 (7) Å, b = 9.8891 (15) Å and c = 9.9063 (13) Å and 

angles α = 84.939 (11)º, β = 75.732 (11)º and γ = 78.452 (12)º (uncertainties in 

parentheses). There is one molecule per unit cell with calculated density of 1.380 

g/cm-3. Diffraction data were collected at 293 K with a Gemini PX Ultra equipped with 

CuKα radiation (λ = 1.54184 Å). The structure was solved by direct methods using 

SHELXS-97 and refined with SHELXL-97 (Gardes and Bruns, 1993). Carbon and 

oxygen were refined anisotropically. Hydrogen atoms bound to carbon atoms C-5, C-

6, C-20 and C-23 were placed at their idealized positions using appropriate HFIX 

instructions in SHELXL, and included in subsequent refinement cycles. All other 

hydrogen atoms were directly found from difference Fourier maps and were refined 

freely with isotropic displacement parameters. The refinement converged to R (all 

data) = 10.88 % and wR2 (all data) = 30.04%. The absolute structure was 

established with confidence (flask x parameter) 0.03 (11). Full details of the data 

collection and refinement and tables of aromatic coordinates, bond lengths and  
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angles, and torsion angles have been deposited with the Cambridge Crystallographic 

Data Centre (CCDC 1060935). 

 

4.5.3. X-Ray Crystal Structure of Sartoryglabramide A (NG 8) 

 

A single crystal of sartoryglabramide A was mounted on a cryoloop using 

paratone. X-rays diffraction data was collected at room temperature with a Gemini 

PX Ultra equipped with CuKα radiation (λ = 1.54184 Å). The crystal was 

orthorhombic, space group P21P21P21, cell volume 5459.8 (2) Å3 and unit cell 

dimensions a = 15.1792 (3) Å, b = 18.7674 (5) Å and c = 19.1659 (3) Å (uncertainties 

in parentheses). There are two molecular per unit cell with calculated density of 

1.242 g/cm-3. The structure was solved by direct methods using SHELXS 97 and 

refined with SHELXL-97 (Sheldrick, 2008). Carbon, nitrogen and oxygen atoms were 

refined anisotropically. Hydrogen atoms were either placed at their idealized 

positions using appropriate HFIX instructions in SHELXL and included in subsequent 

refinement cycles or were directly found from difference Fourier maps and were 

refined freely with isotropic displacement parameters. The refinement converged to 

R (all data) = 10.02% and wR2 (all data) = 15.26%. The absolute structure could not 

be established with confidence (flask x parameter) 0.3 (4). Full details of the data 

collection and refinement and tables of atomic coordinates, bond lengths and angles, 
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and torsion angles have been deposited with the Cambridge Crystallographic Data 

Centre (CCDC 1483750). 

 

4.5.4. X-Ray Crystal Structure of Acetyquestinol (EC 7) and (11S, 14R)-3-(1H-

indol-3ylmethyl)-6-isopropyl-2, 5-piperazinedione (EC 12) 

 

Diffraction data were collected at 293K with a Gemini PX Ultra equipped with 

CuKα radiation (λ = 1.54184 Å). The structures were solved by direct methods using 

SHELXS-97 and refinement with SHELXL-97 (Sheldrick, 2008). Carbon, nitrogen 

and oxygen atoms were refined anisotropically. Hydrogen atoms were directly found 

from difference Fourier maps and were refined freely with isotropic displacement 

parameters. Full details of the data collection and refinement and tables of atomic 

coordinates, bond lengths and angles and torsion angles have been deposited with 

the Cambridge Crystallographic Data Centre.  

Acetyquestinol (EC 7): Crystals were monoclinic, space group P21/c, cell 

volume 1470.45 (19) Å3 and unit cell dimensions a = 6.10326 (16) Å, b = 29.533 (2) 

Å and c = 11.0898 (9) Å and angle β = 92.503 (7)º (uncertainties in parentheses). 

The refinement converged to R (all data) = 7.65% and wR2 (all data) = 14.76%, 

CCDC 1532709. 

(11S, 14R)-cyclo (tryptophylvalyl) (EC 12): Crystals were monoclinic, space 

group P21, cell volume 748.51 (4) Å3 and unit cell dimensions a = 6.10326 (16) Å,  



CHAPTER IV. MATERIALS AND METHODS 
   

 

370 
 

 

b = 13.4265 (4) Å and c = 9.4770 (3) Å angle β= 105.457 (3)º. The refinement 

converged to R (all data) = 3.32 % and wR2 (all data) = 8.01 %. The flask x 

parameter was refined with SHELXL-97 to yield 0.1 (3), CCDC 1532719. 

 

4.6 Amino Acids Analysis of Hydrolysate of Sartoryglabramide A (NG 8) and 

Sartoryglabramide B (NG 9) 

 

4.6.1. Acid Hydrolysis 

 

The stereochemistry of the amino acids was determined by analysis of the 

acidic hydrolysate from sartoryglabramide A (NG 8) and sartoryglabramide B (NG 9) 

(5.0 mg) was dissolved in 6 N HCl (5 mL) and heated at 110ºC, in a furnace, for 24 h 

in a sealed glass tube. After cooling to room temperature, the solution was dried 

under N2 for 24 h, reconstituted in MeOH or HPLC-MS (200 µL), filtered through a 4 

mm PTFE Syringe Filter F2504-4 of 0.2 µm pore size (Thermo Scientific, Mumbai, 

India), and then analyzed by HPLC equipped with a chiral column. 

 

4.6.2. Chiral HPLC analysis  

 

The HPLC system consisted of Shimadzu LC-20AD pump, equipped with a 

Shimadzu DGV-20A5 degasser, a Rheodyne 7725i injector fitted with a 20 µL loop,  
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and a SPD-M20A DAD detector (Kyoto, Japan). Data acquisition was performed 

using Shimadzu LCMS Lab Solutions software, version 3.50 SP2. The chiral column 

used in this study was Chirobiotic T (15 cm x 4.6 mm I.D., partical size 5µm) 

manufactured by ASTEC (Whippany, NJ, USA). The mobile phase composition was 

MeOH: H2O (80:20 v/v), all were LC-MS grade solvents obtained from Sigma-Aldrich 

Co. (St. Louis, MO, USA). The flow rate was 1.0 mL/min and the UV detection 

wavelength was 210 nm. Analyses were performed at room temperature in an 

isocratic mode. All standards of pure amino acid enantiomers were purchased from 

Sigma-Aldrich Co. (St. Louis, MO, USA). The elution order of the enantiomers of all 

the standards amino acids was confirmed by injecting the solutions of enantiomeric 

mixtures and then each enantiomer separately. Working solutions of single 

enantiometric amino acids were prepared by dissolution in MeOH at the 

concentration of 1 mg/mL (10 µL sample injection), while the enantiometric mixtures 

were prepared by mixing equal aliquots of each enantiomer (20 µL smaple injection). 

Mix HPLC analyses of the acidic hydrolysate with standard amino acids (co-injection) 

confirmed the stereochemistry of the amino acids of sartoryglabramide A (NG 8) and 

sartoryglabramide B (NG 9). 
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4.7 Molecular Mechanics Conformation Analysis of Takakiamide (NTK 4/NG 7) 

and Fellutanine A Epoxide (NG 11) 

 

Molecular simulations for the structures of takakiamide (NTK 4/NG 7) and 

fellutanine A epoxide (NG 11) were carried out in ChemBio3D Ultra 14 (Perkin-

Elmerm, Waltham, MA, USA). Stochastic and dihedral driver conformational search, 

with MMFF force field energy minimization, was done for both S/S and R/R isomers 

of NTK 4/NG 7 and NG 11, followed by ab initio RHF/6-21G energy re-minimization 

of the lowest energy conformations using CSGAMESS interfaced by ChemBio3D. 

The PCM solvent model for DMSO was used on the ab initio minimizations. 

 

4.8 Electronic Circular Dichroism (ECD) 

 

Electronic circular dichroism spectra were obtained in a Jasco J-815 CD 

spectropolarimeter with a 1mm cuvette; Savitsky-Golay noise reduction was applied 

when necessary. Dihedral driver and MM2 minimizations were done in Chem3D 

Ultra (perkin-Elmer Inc.). All other minimizations and spectral calculations were 

performed with Gaussian (Gaussian Inc.) at the APFD/6-311+G (2d, p) level (Austin 

et al., 2012) with IEFPCM solvation model. The simulated spectral lines were 

obtained by summation of Gaussian curves, as recommended in Stephan et al. 

(Stephens and Harada, 2010). ECD spectra for all conformations were added using 

Boltzmann weights derived from its minimal energies (Mori et al., 2006). 
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4.9 Antibacterial Activity Bioassays 

 

4.9.1. Bacterial strains and growth conditions 

 

Two Gram-positive (Staphylococcus aureus ATCC 25923 and Enterococcus 

faecalis ATCC 29212) and two Gram-negative (Escherichia coli ATCC 25922 and 

Pseudomonas aeruginosa ATCC 27853) reference strains were used. Multidrug-

resistant bacterial strains isolated from public buses (MRSCA S. aureus 66/1) 

(Simoes et al., 2011), river water (VRE E. faecalis B3/101) (Bessa et al., 2014) and a 

clinical isolate (ESBL E. coli SA/2) were also used. Frozen stocks of all stains were 

grown in Mueller-Hinton agar (MH-BioKar diagnostics, Allone, France) at 37ºC. 

Bacteria were sub-cultured in MH agar and incubated overnight at 37ºC in order to 

obtain fresh cultures for each assay. 

 

4.9.2. Antimicrobial susceptibility testing 

 

The minimum inhibitory concentration (MIC) for each compound was 

determined by the broth microdilution method according to the recommendations of 

the Clinical and Laboratory Standards Institute (CLSI) (CLSI, 2015). With the 

exception of physcion (EC 4), 10 mg/mL stock solutions of each compound were 

prepared in dimethylsulfoxide (DMSO-Applichem GmbH, Darmstadt, Germany). For 

physcion (EC 4), which was less soluble in DMSO than the other compounds,  
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a stock solution of 1 mg/mL was prepared. Two-fold serial dilutions of concentrated 

stock solutions were prepared in Mueller-Hinton broth 2 (MHB2-Sigma-Aldrich, St. 

Lousis, MO, USA). The range of concentrations tested was 0.016-16 µg/mL in the 

case of compound physcion (EC 4) and 0.062-64 µg/mL for all other compounds. 

The highest concentrations tested were chosen in order to maintain DMSO in-test 

concentration below 1% as recommended by the CLSI (CLSI, 2015). At this 

concentration DMSO did not affect the bacterial growth. Cefotaxime (CTX) ranging 

from 0.031-16 µg/mL was used as a control. Purity check and colony counts of the 

inoculum suspensions were also evaluated in order to ensure that the final inoculum 

density closely approximates the intended at number (5 x 105 CFU/mL). The MIC 

was determined as the lowest concentration at which no visible growth was 

observed. The minimum bactericidal concentration (MBC) was assessed by 

spreading 10 µL of culture collected from wells showing no visible growth on MH 

agar plates. The MBC was determined as the lowest concentration at which no 

colonies grew after 16-18 hours incubation at 37ºC. These assays were performed in 

duplicate. 

 

4.9.3. Biofilm formation inhibition assay 

 

The effect of all compounds on biofilm formation was evaluated using crystal 

violet staining as described previously (Gomes et al., 2014). Briefly, the highest 
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concentration tested in the MIC assay was added to bacterial suspensions of 1 x 106 

CFU/mL prepared in Tryptic Soy broth (TSB-BioKar diagnostics, Allonne, France). 

When it was possible to determine a MIC, three concentrations were tested: 2 x MIC, 

MIC and ½ x MIC. A control without any compound as well as a negative control 

(TBS alone) was included. CTX was used as a positive control. The stabilized biofilm 

mass was quantified after 24 hours incubation at 37ºC. The samples were quantified 

calorimetrically at 595 nm on an iMarkTM microplate spectrophotometer (Bio-Rad 

Laboratories, Hercules, CA, USA). The background absorbance (TBS without 

inoculum) was subtracted from the absorbance of each sample and the data are 

presented as percentage of control. Three independent experiments were performed 

in triplicate for each experimental condition. 

 

4.9.4. Antibiotic synergy testing 

 

In order to evaluate the combined effect of the compounds and clinical 

relevant antimicrobial drugs, a screening was conducted using the disk diffusion 

method, as described previously (Bessa et al., 2015; Gomes et al., 2014). A set of 

antibiotic disks (Oxoid, Basingstoke, UK) to which the isolates were resistant was 

selected: cefotaxime (CTX, 30 µg) for E. coli SA/2, oxacillin (OX, 1 µg) for S. aureus 

66/1, and vancomycin (VAN, 30 µg) for E. faecalis B3/101. Antibiotic disk alone 

(controls) and antibiotic disks impregnated with 15 µg of each compound were  
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placed on MH agar plates seeded with the respective bacteria. Sterile 6 mm blank 

paper disks (Oxoid, Basingstoke, UK) impregnated with 15 µ of each compound 

alone was also tested. A blank disk with DMSO was used as a negative control. MH 

inoculated plates were incubated for 18-20 hours at 37ºC. Potential synergism was 

recorded when the halo of the antibiotic disk impregnated with a compound was 

greater than the halo of the antibiotic or compound-impregnated blank disk alone. 

The potential synergy between the compounds and clinical relevant antibiotics 

was also evaluated by determining the antibiotic MIC in the presence of each 

compound. Briefly, MIC of CTX, OX and VAN (Sigma-Aldrich, St. Louis, MO, USA) 

for the respective multidrug-resistant strains was determined in the presence of the 

highest concentration of each compound tested that did not affect bacterial growth 

when the compound was tested alone. The antibiotic tested was serially diluted 

whereas the concentration of each compound was fixed. In the case of physcion (EC 

4), the concentration used was 16 µg/mL. For all other compounds the concentration 

used was 64 µg/mL. Antibiotic MICs were determined as described above. 
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CONCLUSIONS 

 

This thesis reports on the secondary metabolites isolated from the marine soft 

coral-derived fungus Talaromyces helicus KUFA 0063, which was collected from 

Angthong National Marine Park, Thailand, marine alga-assiociated fungus 

Neosartorya takakii KUFC 7898 and marine sponge-associated fungus Neosartorya 

glabra KUFA 0702, collected from the Samaesarn Island in the Gulf of Thailand and 

the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006, which was 

collected in the Eastern Seaboard of Thailand, for the purpose of finding new leads 

for the discovery of pharmacologically active metabolites. 

Totally forty-three secondary metabolites have been successfully isolated in 

this study which can be classified as fatty acids, nonadrides, ergosterol derivatives, 

tetracyclic triterpenoid, meroditerpenes, isocoumarins, anthraquinones, prenylated 

1H-indole 3-carbaldehydes, indolymethyl 1, 4-benzodiazepen 2, 5-dione, indolyl 

quinazolinone alkaloids, diketopiperazines and cylopeptides. To the best of our 

knowledge, eleven compounds have never been previously reported.  

Four known compounds namely palmitin (TH 1), acetyl ergosterol 5, 8-

endoperoxide (TH 2), glaucanic acid (TH 3) and glauconic acid (TH 4) were isolated 

from the marine soft coral-derived fungus Talaromyces helicus KUFA 0063. 

Additionally, the crude ethyl acetate extract of the marine alga-associated fungus N. 

takakii KUFC 7898, produced nine known compounds: 6-hydroxymellein (NTK 1),  

javascript:popupOBO('CHEBI:25212','B301926H','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=25212')
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aszonalenin (NTK 2/NG 4), acetylaszonalenin (NTK 3), 3′-(4-oxoquinazolin-3-yl) 

spiro [1H-indole-3, 5′-oxolane]-2, 2′-dione (NTK 5), tryptoquivaline F (NTK 6), 

tryptoquivaline H (NTK 7), tryptoquivaline L (NTK 8), chevalone B (NTK 10), 

aszonapyrone A (NTK 11), together with three new compounds including 

takakiamide (NTK 4), tryptoquivaline U (NTK 9) and a new meroditerpene sartorenol 

(NTK 12). 

Two new cyclotetrapeptides, sartoryglabramide A (NG 8) and 

sartoryglabramide B (NG 9), and a new analog of fellutanine A: fellutanine A 2′, 3′-

epoxide (NG 11), were isolated together with eight known compounds including 

ergosta-4, 6, 8 (14), 22-tetraen-3-one (NG 1), ergosterol 5, 8-endoperoxide (NG 

2/EC 2), helvolic acid (NG 3), aszonalenin (NG 4/NTK 2), (3R)-3-(1H-indol-3-

ylmethyl)-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (NG 5), (11aS)-2,3-dihydro-

1H-pyrrolo [2,1-c] [1,4] benzodiazepine-5, 11 (10aH, 11aH)-dione (NG 6), 

takakiamide (NG 7/NTK 4) and fellutanine A (NG 10) from the ethyl acetate extract 

of the culture of the marine sponge-associated fungus N. glabra KUFA 0702. 

The mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006 

furnished five new metabolites, including a new anthraquinone derivative 

acetylquestinol (EC 7), two prenylated indole 3-carbaldehyde derivatives 2-(2-

methyl-3-en-2-yl)-1H-indole-3-carbaldehyde (EC 8), (2, 2-dimethylcyclopropyl)-1H-

indole-3-carbaldehyde (EC 9), an anthranilic acid derivative: 2-(2, 2-dimethylbut-3-

enoyl) amino-benzoic acid (EC 10) and an isochromone derivative:  
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6, 8-dihydroxy-3-(2R-hydroxypropyl)-7-methyl-1H-isochromen-1-one (EC 11), 

together with eleven known metabolites: palmitic acid (EC 1), ergosterol 5,8-

endoperoxide (EC 2/NG 2), emodin (EC 3), physcion (EC 4), questin (EC 5), 

questinol (EC 6), (11S, 14R)-3-(1H-indol-3-ylmethyl)-6-isopropyl-2,5-piperazinedione 

(EC 12), preechinulin (EC 13), neoechinulin E (EC 14), echinulin (EC 15) and 

eurocristatine (EC 16).  

The structures of the isolated compounds were elucidated by extensive 1D 

and 2D NMR spectral analysis (1H, 13C NMR, COSY, DEPTs, HSQC, HMBC and 

NOESY) and High Resolution Mass Spectrometry. The optical rotation used for the 

comparison of the previously reported compounds. The absolute configurations of 

the stereogenic carbons of the compounds: tryptoquivaline U (NTK 8), sartorenol 

(NTK 12), sartoryglabramide A (NG 8), acetylquestinol (EC 7) and (11S, 14R)-3-(1H-

indol-3-ylmethyl)-6-isopropyl-2,5-piperazinedione (EC 12) were determined by X-ray 

analysis as well as takakiamide (NG 7/NTK 4) and fellutanine A epoxide (NG 11) 

were confirmed by molecular mechanics conformation analysis, in addition (2, 2-

dimethylcyclopropyl)-1H-indole-3-carbaldehyde (EC 9) and 6, 8-dihydroxy-3 (2R-

hydroxypropyl)-7-methyl-1H-isochromen-1-one (EC 11) were confirmed by 

comparision of the experimental and calculated electronic circular dichroism (ECD). 

The absolute stereochemistry of the amino acid constituents of sartoryglabramides A 

and B (NG 8 and NG 9) was determined by chiral HPLC analysis of their 

hydrolysates by co-injection with the D- and L-amino acids standards.  
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Some of the isolated compounds were screened for antibacterial, antibiofilm 

and antifungal activities. The result showed that only emodin (EC 3), isolated from E. 

chevalieiri KUFA 0006 exhibited moderate antibacterial activity against Gram 

positive bacteria, S. aureus ATCC 25923 and E. faecalis ATCC 29212 with MIC 

values of 32 and 64 µg/mL, respectively, as well as strong synergism with the 

antibiotic against MRSA S. aureus 66/1. All of the metabolites from Eurotium 

chevalieri KUFA 0006 (EC 3-EC 16) showed synergistic association with vancomycin 

against the multidrug-resistant VRE E. faecalis B3/101. Emodin (EC 3), physicon 

(EC 4) and two new prenylated indole carbaldehydes (EC 8 and EC 9) are found to 

significantly inhibit the production of biofilm in S. aureus ATCC 25923.  

Therefore, the anthraquinone derivatives can represent an interesting scaffold 

to test for their activity against multidrug-resistant bacteria. Interestingly, fungi of the 

genera Talaromyces, Neosartorya and Eurotium were found to be the most 

promising genera because of their capacity of producing bioactive compounds. 

Although many of the secondary metabolites isolated from the fungi of the genus 

Neosartorya did not exhibit antibacterial activity in our assay protocols, it is by no 

means to conclude that these compounds do not possess any other interesting 

biological activities. Therefore, it is necessary to test these compounds in more 

bioassay systems so that their potential can be duly exploited.  

These data indicate that the mangrove-derived endophytic fungi are a good 

source of new antibacterial and antibiofilm compounds and this information will be  
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benificial for further utilization and development of antibacterial compounds from 

marine fungi and as lead compounds for pharmaceutical industry in the future.  
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1.1 Sartorenol (NTK 12)  

 

1.1.1. 1H NMR spectrum (CDCl3, 300.13 MHz) 

 

1.1.2. 13C NMR spectrum (CDCl3, 75.47 MHz) 
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1.2  Takakiamide (NTK4/NG 7)  

 

1.2.1. 1H NMR spectrum (CDCl3, 300.13 MHz) 

 

1.2.2. 13C NMR spectrum (CDCl3, 75.47 MHz) 
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1.3 Tryptoquivaline U (NTK 9)  

 

1.3.1. 1H NMR spectrum (DMSO, 300.13 MHz) 

 

1.3.2. 13C NMR spectrum (DMSO, 75.47 MHz) 
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1.4 Sartoryglabramide A (NG 8) 

 

1.4.1. 1H NMR spectrum (DMSO, 500.13 MHz)  

 

1.4.2. 13C NMR spectrum (DMSO, 125.77 MHz)  
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1.5 Sartoryglabramide B (NG 9)  

 

1.5.1. 1H NMR spectrum (DMSO, 500.13 MHz)  

 

1.5.2. 13C NMR spectrum (DMSO, 125.77 MHz) 
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1.6  Fellutanine A epoxide (NG 11)  

 

1.6.1. 1H NMR spectrum (DMSO, 300.13 MHz) 

 

1.6.2. 13C NMR spectrum (DMSO, 75.47 MHz) 
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1.7 Acetylquestinol (EC 7)  

1.7.1. 1H NMR spectrum of acetylquestinol (EC 7) (DMSO, 300.13 MHz) 

 

1.7.2. 13C NMR spectrum of acetylquestinol (EC 7) (DMSO, 75.47 MHz) 
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1.8 2-(2-Methyl-3-en-2-yl)-1H-indole-3-carbaldehyde (EC 8) 

 

1.8.1. 1H NMR spectrum (CDCl3, 300.13 MHz)  

 

1.8.2. 1H NMR spectrum (CDCl3, 75.47 MHz)  
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1.9 2-(2, 2-dimethylcyclopropyl)-1H-indole-3-carbaldehyde (EC 9) 

 

1.9.1. 1H NMR spectrum (CDCl3, 300.13 MHz) 

 

1.9.2. 1H NMR spectrum (CDCl3, 75.47 MHz) 
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1.10 2-(2, 2-dimethylbut-3enoyl) amino-benzoic acid (EC 10) 

 

1.10.1. 1H NMR (DMSO, 300.13 MHz) 

 

1.10.2. 13C NMR spectrum (DMSO, 75.47 MHz) 
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1.11 6, 8-dihydroxy-3(2R-hydroxypropyl)-7-methyl-1H-isochromen-1-one 

(EC 11) 

1.11.1. 1H NMR spectrum (DMSO, 300.13 MHz) 

 

1.11.2. 13C NMR spectrum (DMSO, 75.47 MHz) 
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Abstract: A new meroditerpene sartorenol (1), a new natural product takakiamide (2)  

and a new tryptoquivaline analog (3) were isolated, together with nine known  

compounds, including aszonapyrone A, chevalone B, aszonalenin, acetylaszonalenin,  

3′-(4-oxoquinazolin-3-yl) spiro[1H-indole-3,5′-oxolane]-2,2′-dione, tryptoquivalines L, F 

and H, and the isocoumarin derivative, 6-hydroxymellein, from the ethyl acetate extract of 

the culture of the algicolous fungus Neosartorya takakii KUFC 7898. The structures of the new 

compounds were established based on 1D and 2D NMR spectral analysis, and, in the case of 

sartorenol (1) and tryptoquivaline U (3), X-ray analysis was used to confirm their structures 

and to determine the absolute configuration of their stereogenic carbons. Compounds 1, 2 
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and 3 were evaluated for their antimicrobial activity against Gram-positive and Gram-negative 

bacteria, and multidrug-resistant isolates from the environment; however, none exhibited 

antibacterial activity (MIC ˃ 256 mg/mL). The three new compounds did not show any 

quorum sensing inhibition in the screening protocol based on the pigment production by 

Chromobacterium violaceum (ATCC 31532). 

Keywords: Neosartorya takakii; meroditerpene; sartorenol; tryptoquivaline U; 

aszonapyrone A; chevalone B; aszonalenin; 6-hydroxymellein 

 

1. Introduction 

In recent years, marine-derived fungi have been demonstrated to be a rich and promising source  

of novel anticancer, antibacterial, antiplasmodial, anti-inflammatory, and antiviral agents [1]. To date, 

more than one thousand unique molecular structures have been discovered from marine-derived fungi. 

Several reviews on marine fungi [2–4] have shown that a variety of secondary metabolites isolated from 

marine-derived fungi had not been produced by terrestrial fungi, and these metabolites possibly act as a 

chemical defense, enabling marine-derived fungi to survive competition with native microorganisms [5]. 

Thus, marine-derived fungi, which successfully fostered their armamentarium against bacterial competitors 

for millions of years, can be considered as a potential source of antibiotics. 

In our ongoing pursuit of new natural products with antibacterial activity produced by marine-derived 

fungi of the genera Neosartorya and Aspergillus, we have investigated the secondary metabolites of a 

Thai collection of Neosartorya takakii KUFC 7898, isolated from the marine macroalga Amphiroa sp., 

collected from Samaesarn Island in the Gulf of Thailand. The ethyl acetate extract of its culture yielded, 

in addition to the previously reported aszonapyrone A [6], chevalone B [7,8], aszonalenin [6], 

acetylaszonalenin [6], 3′-(4-oxoquinazolin-3-yl) spiro[1H-indole-3,5′-oxolane]-2,2′-dione [9], 

tryptoquivalines L, F and H [9], and 6-hydroxymellein [10], three new compounds including a meroditerpene 

sartorenol (1), a prenylated indole alkaloid takakiamide (2), and a new tryptoquivaline analog, which we 

have named tryptoquivaline U (3) (Figure 1). Compounds 1–3 were screened for their antibacterial 

activity against Gram-positive and Gram-negative bacteria, and multidrug-resistant isolates from the 

environment as well as for their quorum sensing inhibitory activity. 

2. Results and Discussion 

Compound 1 was isolated as white crystals (mp, 122–123 °C) and its molecular formula C27H42O4 

was established on the basis of the (+)-HRESIMS m/z 431.3175 [M + H]+ (calculated 431.3161), indicating 

seven degrees of unsaturation. The IR spectrum showed absorption bands for hydroxyl (3393 cm−1), 

conjugated ketone carbonyl (1645 cm−1), ester carbonyl (1728 cm−1), and olefin (1558, 1540 cm−1) groups. 

The 13C NMR, DEPT and HSQC spectra (Table 1, Supplementary Figures S3 and S4) exhibited the 

signals of one conjugated ketone carbonyl (δC 194.7), one ester carbonyl (δC 171.0), two quaternary sp2 

(δC 147.7 and 191.1), one methine sp2 (δC 99.9), one methylene sp2 (δC 106.4), three quaternary sp3 (δC 37.4, 

37.8, 39.8), one oxymethine sp3 (δC 80.8), three methine sp3 (δC 55.4, 56.4 and 59.8), eight methylene 
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sp3 (δC 18.7, 19.6, 23.3, 23.6, 37.2, 38.0, 38.2 and 40.5) and six methyl (δC 15.3, 16.3, 16.4, 21.3, 24.9 

and 28.0) carbons. The 1H NMR spectrum (Table 1, Supplementary Figure S1) revealed the presence of 

one hydrogen-bonded hydroxyl group of an enol at δH 15.47, s, two exocyclic methylene protons at δH 

4.84, brs and 4.50, brs, one olefinic proton at δH 5.45, s, and the protons of six methyl groups at δH 0.69, 

s, 0.83, s, 0.84, s, 0.86, s, 2.05, s (integrating for two methyls). Except for the enolic hydroxyl group, the 

olefinic proton and the conjugated ketone carbonyl (δC 194.7), the 1H and 13C data (Table 1, 

Supplementary Figures S1 and S3) revealed the presence of a perhydrophenanthrene moiety, similar to 

that of aszonapyrone A [6]. Like aszonapyrone A, the acetoxyl group on C-3 of compound 1 was β, as 

was evidenced by the coupling constants of H-3 (δH 4.48, dd, J = 10.9, 4.6 Hz). Another portion of the 

molecule, which consists of C6H9O2, was identified as (4Z)-5-hydroxy-3-oxohex-4-enyl group due to the 

HMBC correlations (Table 1, Supplementary Figure S5) of H3-20 (δH 2.05, s) to C-18 (δC 99.9) and C-19 

(δC 191.1), of H-18 (δH 5.45, s) to C-16 (δC 37.2), C-17 (δC 194.7), C-19 (δC 191.1) and C-20 (δC 24.9), 

as well as the NOESY correlation (Supplementary Figure S6) between H-18 and H3-20. That C-15 of the 

(4Z)-5-hydroxy-3-oxohex-4-enyl group was connected to C-14 of the perhydrophenanthrene moiety was 

supported by the correlations between H-14 (δH 1.59, m) and H-15 (δH1.86, m) in the COSY spectrum 

(Table 1, Supplementary Figure S2), as well as by the HMBC correlation of H2-15 to C-13 (δC 147.7). 

The structure and stereochemistry of compound 1 were unambiguously determined by X-ray analysis 

(Figure 2), and the absolute configurations of C-3, C-5, C-8, C-9, C-10 and C-14 were identified as 3S, 

5R, 8R, 9R, 10R and 14S, respectively. Since 1 is a new compound, we have named it sartorenol. 

 

Figure 1. New secondary metabolites isolated from the ethyl acetate extract of the culture 

of N. takakii KUFC 7898. 
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Table 1. 1H and 13C NMR (CDCl3, 300.13 MHz and 75.47 MHz) and HMBC assignment for 1. 

Position δC, Type δH, (J in Hz) COSY HMBC 

1 38.2, CH2 1.05, m H-2  
2 23.3, CH2 1.65, m H-1, 3  
  1.33, dd (12.9, 4.2) H-1, 3 C-4 

3 80.8, CH 4.48, dd (10.9, 4.6) H-2 C-1, 4, 21, 22 
4 37.8, C -   
5 55.4, CH 0.91, dd (12.0, 2.2) H-6  
6 18.7, CH2 1.62, m H-5  
  1.14, m   

7 40.5, CH2 1.18, dd (12.5, 3.6)   
  1.88, m   

8 39.8, C -   
9 59.8, CH 1.02, dd (12.3, 2.6)   

10 37.4, C -   
11 23.6, CH2 1.70, m   
12 38.0, CH2 2.38, m   

  1.92, m  C-14, 25 
13 147.7, C -   
14 56.4, CH 1.59, m H-15  
15 19.6, CH2 1.86, m H-14, 16 C-13 
16 37.2, CH2 2.08, m H-15  
17 194.7, CO -   
18 99.9, CH 5.45, s  C-16, 17, 19, 20
19 191.1, C -   
20 24.9, CH3 2.05, s  C-18, 19 
21 16.3, CH3 0.83, s  C-3, 4, 5, 22 
22 28.0, CH3 0.86, s  C-3, 4, 5, 21 
23 16.4, CH3 0.84, s  C-1, 5, 9, 10 
24 15.3, CH3 0.69, s  C-7, 8, 9, 14 
25a 106.4, CH2 4.84, brs  C-12, 14 
b  4.50, brs  C-12, 13, 14 

26 171.0, CO -   
27 21.3, CH3 2.05, s  C-26 

OH-19  15.47, s   

The biosynthetic pathway of sartorenol (1) resembles those proposed for aszonapyrone A and 

sartorypyone A [6], which is hypothesized as originating from a reaction of the triketide derivative (II) 

with GPP oxide (III) to form the meroditerpene intermediate (IV). Cyclization, hydrolysis of the CoA 

ester and enolization of the side chain give the intermediate (V). Decarboxylation of the side chain and 

acetylation of the hydroxyl group of the perhydrophenanthrene moiety would finally lead to the formation 

of sartorenol (1) (Figure 3). 
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Figure 2. Ortep view of sartorenol (1). 

 

Figure 3. Proposed biogenesis of sartorenol (1). 
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Compound 2 was isolated as white solid (mp, 182–183 °C), and its molecular formula C23H23N3O2 

was established on the basis of the (+)-HRESIMS m/z 374.1876 [M + H]+ (calculated for C23H24N3O2, 

374.1869), indicating fourteen degrees of unsaturation. The IR spectrum showed absorption bands for 

amine (3214 cm−1), amide carbonyls (1688, 1654 cm−1), aromatic (3057, 1579 cm−1) and olefin (1607, 

1468 cm−1) groups. The 13C NMR, DEPTs and HSQC spectra (Table 2, Supplementary Figures S9 and 

S10) revealed the presence of two amide carbonyls (δC172.0 and 168.9), six quaternary sp2 (δC 136.4, 

136.3, 135.7, 127.9, 125.5, 108.0), ten methine sp2 (δC 133.1, 131.4, 127.3, 125.2, 121.7, 121.0, 119.9, 

119.2, 118.4, 109.9), one methine sp3 (δC 52.4), two methylene sp3 (δC 44.2 and 22.4)  

and two methyl (δC 25.6 and 18.1) carbons. The coupling system of the aromatic protons, observed in 

the COSY spectrum (Table 2, Supplementary Figure S8), indicated the presence of two  

1,2-disubstituted benzene rings. That one of the 1,2-disubstituted benzene rings was part of the  

3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione was supported by the HMBC cross peaks (Table 2, 

Supplementary Figure S11) of the singlet of the amine proton at δH 9.03 (NH-16) to C-11 (δC 52.4) and 

C-14 (δC 125.5), of H-21 (δH 7.91, dd, J = 8.0, 1.5 Hz) to C-13 (δC 168.9), as well as by the COSY cross 

peaks (Table 2, Supplementary Figure S8) observed between NH-12 (δH 7.03, brd, J = 5.5 Hz) and  

H-11 (δH 4.12, dt, J = 8.3, 5.5 Hz). That another 1,2-disubstituted benzene ring belonged to the indole 

moiety of the molecule was substantiated by the HMBC cross peaks (Table 2, Supplementary  

Figure S11) of H-2 (δH 7.15, s) to C-3 (δC 108.0), C-8 (δC 136.3) and C-9 (δC 127.9). The presence of 

the 3-methylbuten-2-yl moiety was corroborated by cross peaks of H-1′ (δH 4.63, d, J = 6.8 Hz) to H-2′ 

(δH 5.35, m), CH3-4′ (δH 1.74, s) and CH3-5′ (δH 1.80, s) protons in the COSY spectrum, as well as by 

the HMBC cross peaks of CH3-4′ (1.74, s) and CH3-5′ (1.80, s) protons to C-2′ (δC 119.9) and C-3′  

(δC 136.4). Since the HMBC spectrum showed cross peaks of H-1′ to C-2 (δC 127.3) and C-8 (δC 136.3), 

the 3-methylbuten-2-yl moiety was linked to the indole nitrogen. That the indole moiety was linked to 

the 3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione by a methylene bridge, through C-3 of the former and  

C-11 of the latter, was evidenced by the COSY correlations of H2-10 (δH 3.57, dd, J = 15.2, 5.5 Hz and 

3.26, dd , J = 15.2, 8.3 Hz) to H-11 (δH 4.12, dt, J = 8.3, 5.5 Hz), as well as by the HMBC cross peaks 

of H2-10 to C-2, C-3 (δC 108.0) and C-17 (δC 172.0).  

A literature search revealed that the compound (3S)-3-[1-(3-methylbut-2-enyl)indol-3-yl]-3, 

4-dihydro-1H-1,4-benzodiazepine-2,5-dione (PubChem SID 185030170), whose flat structure is the 

same as that of compound 2, was reported as a product of Angene Chemical (AGN-PC-069E9V) [11]. 

Although the absolute configuration of its C-11 is reported as S, there is neither 1H/13C NMR nor optical 

rotation data available for this compound in the PubChem Substance website. Since compound 2 did not 

provide suitable crystals for X-ray diffraction, it was not possible to determine the absolute configuration 

of C-11 with certainty. Thus, an attempt was made to combine the data from the NOESY spectrum, scalar 

coupling constants and molecular mechanics simulations. 
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Table 2. 1H and 13C NMR (DMSO, 300.13 MHz and 75.47 MHz) and HMBC assignment for 2. 

Position δC, Type δH, (J in Hz) COSY HMBC 

2 127.3, CH 7.15, s  C-3, 8, 9 
3 108.0, C -   
4 118.4, CH 7.54, d (7.8) H-5 C-3, 6, 8 
5 119.2, CH 7.08, ddd (7.8, 7.8, 0.7) H-4, 6 C-7, 9 
6 121.7, CH 7.20, ddd (7.8, 7.8, 0.7) H-5, 7 C-4, 8 
7 109.9, CH 7.31, d (7.8) H-6 C-5, 9 
8 136.3, C -   
9 127.9, C -   
10 22.4, CH2 3.57, dd (15.2, 5.5) H-11 C-2, 3, 17 
  3.26, dd (15.2, 8.3) H-11 C-2, 3, 17 

11 52.4, CH 4.12, dt (8.3, 5.5) H-10, NH-12  
13 168.9, CO -   
14 125.5, C -   
15 135.7, C -   
17 172.0, CO    
18 121.0, CH 7.06, d (8.0) H-19 C-14, 20 
19 133.1, CH 7.50, ddd (8.0, 8.0, 1.5) H-18, 20 C-15, 21 
20 125.2, CH 7.24, dd (8.0, 8.0) H-19, 21 C-14, 18 
21 131.4, CH 7.91, dd (8.0, 1.5) H-20 C-13, 19, 15 
1′ 44.2, CH2 4.63, d (6.8) H-2′ C-2, 2′, 3′ 
2′ 119.9, CH 5.35, m H-1′, 4′, 5′  
3′ 136.4, C -   
4′ 25.6, CH3 1.74, s H-1′, 2′ C-2′, 3′, 5′ 
5′ 18.1, CH3 1.80, s H-1′, 2′ C-2′, 3′, 5′ 

NH-12  7.03, d (5.5) H-11  
NH-16  9.03, s  C-11, 14 

The NOESY spectrum (Supplementary Figure S12) exhibited correlations of H-11 to H-4, NH-12 

and NH-16. A stochastic conformational search using MMFF force field models of the C-11 

stereoisomers of compound 2, performed with ChemBio3D Ultra 14.0 using the MMFF force field with 

application’s default parameters [12] showed a somewhat flat energy landscape concerning the spatial 

relative positions of the two cyclic regions of the molecule. The rotational freedom around the two 

carbon-carbon single bonds of C-10, on which compound 2 whole conformations hinge, precludes any 

clear differentiation between the two stereoisomers since both C-11R and C-11S stereoisomers yield 

lowest energy conformations that explain the observed NOESY cross-peaks as well as the 1H scalar coupling 

constants measured. Regardless of the stereoisomer, the gas-phase least energetic conformers of 

compound 2 show almost equal steric energy for the two major conformations (half-chair) of the amide 

ring. Figure 4 shows the C-11R stereoisomer as an example: (a) H-11 is in the equatorial and  

(b) H-11 is in the axial position. The major difference resides in the dihedral angle between H-11 and  

NH-12, which is approximately 0° for the equatorial and 110° for the axial position of H-11 relative to 

the ring. The observed scalar coupling of 5.5 Hz between the two protons may be interpreted as an 

average value between their extreme relative positions, suggesting that the two conformations exchange 

rapidly at room temperature. The observed NOESY correlation between H-11 and NH-16 does not allow 
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us to positively decide for any of the two amide ring conformations since the distances between the two 

protons in the molecular mechanics models are very close, i.e., 4.0 Å for the equatorial H-11, and 3.6 Å 

for the axial H-11. Therefore, the constant exchange between the two conformations of the amide ring 

is the most probable case. 

 

(a) (b) 

Figure 4. Conformations of C-11R stereoisomer of compound 2 obtained by simulation 

performed with ChemBio3D Ultra 14.0; (a) conformer with H-11 in equatorial position;  

(b) conformer with H-11 in axial position. 

However, the co-occurrence of compound 2 with aszonalenin and acetylaszonalenin in this extract 

suggested that they should be derived from the same biosynthetic pathways. Thus, it is probable that the 

absolute configuration of C-11 of compound 2 is the same as that of the corresponding carbons of 

aszonalenin and acetylaszonalenin, i.e., 11R. Thus, compound 2 is a new natural product and we have 

named it takakiamide. 

Compound 3 was isolated as white crystals (mp, 208–209 °C), and its molecular formula C23H21N4O4 

was established on the basis of the [M + H]+ peak at m/z 417.1563 (calculated 417.1563) in the  

(+)-HRESIMS. The 1H and 13C NMR spectra of compound 3 (Table 3, Supplementary Figures S13 and 

S15) resembled those of tryptoquivaline L [9]. The 13C NMR, DEPT and HSQC spectra (Table 3, 

Supplementary Figures S15 and S16) displayed signals of three carbonyls (δC 176.0, 170.7, 159.6), four 

quaternary sp2 (δC 147.5, 139.8, 132.0, 121.4), nine methine sp2 (δC 147.4, 135.0, 131.6, 127.6, 127.3, 

126.1, 125.7, 125.7, 116.2), two quaternary sp3 (δC 84.7 and 64.6), two methine sp3 (δC 82.0 and 56.9), 

one methylene sp3 (δC 31.6) and two methyl (δC 26.9 and 26.5) carbons. The 1H NMR and COSY spectra 

(Table 3, Supplementary Figures S13 and S14) revealed the presence of two 1,2-disubstituted benzene 

rings of the gem-dimethyl imidazoindolone ring system and quinazolin-4(3H)-one moiety as well as the 

protons of the five-membered spirolactone ring, similar to those of tryptoquivaline L [9]. However, 

contrary to tryptoquivaline L, H-2 of compound 3 appeared as a doublet at δH 5.55 (J = 8.4 Hz) instead of 

a singlet at δH 5.25 [9]. Moreover, the COSY spectrum exhibited a correlation between H-2 signal and a 

doublet at δH 3.76 (J = 8.4 Hz). Consequently, this signal was attributed to NH-16. Interestingly, both 

CH3-27 (δC 26.5) and CH3-28 (δC 26.9) resonated at higher chemical shift values than their counterparts in 

tryptoquivaline L (δC 16.4 and 22.8) while C-15 exhibited lower chemical shift value (δC 64.6) than the 

corresponding carbon (δC 70.0) of tryptoquivaline L [9]. Thus, the only difference between the structure 
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of compound 3 and that of tryptoquivaline L is the presence of a hydrogen atom on N-16 instead of a 

hydroxyl group. This was supported by the molecular formula of compound 3 (C23H20N4O4), which has 

one oxygen atom less than that of tryptoquivaline L. In order to verify if the stereochemistry of 

compound 3 is the same as that of tryptoquivaline L, X-ray analysis of compound 3 was performed. The 

ORTEP diagram of compound 3 (Figure 5) showed unambiguously that the absolute configurations of  

C-2, C-3 and C-12 are S, S and R, the same as that of the corresponding carbons of tryptoquivaline L. 

Since compound 3 is a new analog of tryptoquivalines, and in accordance with the names given to the 

tryptoquivaline series, we have named compound 3 tryptoquivaline U. 

Table 3. 1H and 13C NMR (DMSO, 300.13 MHz and 75.47 MHz) and HMBC assignment 

for tryptoquivaline U (3). 

Position δC, Type δH, (J in Hz) COSY HMBC 

2 82.0, CH 5.55, d (8.4) NH-16 C-13, 14 
3 84.7, C  -   
4 132.0, C -   
5 125.7, CH 7.71, d (7.3) H-6 C-7, 9 
6 125.7, CH 7.38, ddd (7.5, 7.5, 1.2) H-5, 7 C-4, 8 
7 131.6, CH 7.57, ddd (8.1, 7.7, 1.2) H-6, 8 C-5, 9 
8 116.2, CH 7.49, d (7.2) H-7 C-4, 6 
9 139.8, C -   
11 170.7, CO -   
12 56.9, CH 5.58, dd (10.8, 9.1 H-13 C-3, 11, 13, 18, 26 
13 31.6, CH2 2.86, dd (12.9, 9.1) H-12 C-2, 4, 11, 12 
  3.45, dd (12.9, 11.2) H-12 C-2, 3, 4, 12 

14 176.0, CO -   
15 64.6, C -   
16 - 3.76, d (8.4) H-2 C-2, 3, 14, 15, 26, 27
18 159.6, CO -   
19 121.4, C -   
20 126.1, CH 8.23, dd (8.0, 1.2) H-21 C-18, 22, 24 
21 127.6, CH 7.63, ddd (7.6, 7.6, 1.0) H-20, 22 C-19, 23 
22 135.0, CH 7.92, ddd (8.2, 8.2, 1.5) H-21, 23 C-20, 24 
23 127.3, CH 7.76, d (7.7) H-22 C-19, 21 
24 147.5, C -   
26 147.4, CH 8.49, s  C-12, 18, 24 
27 26.5, CH3 1.45, s  C-14, 15, 28 
28 26.9, CH3 1.24, s  C-14, 15, 27 

Since we have previously found that the meroditerpenes aszonapyrone A and sartorypyrone A, 

isolated from the culture of N. fischeri KUFC 6344, exhibited potent antibacterial activity as well as 

synergism with antibiotics against the Gram-positive multidrug-resistant strains [7], we also evaluated 

sartorenol (1), takakiamide (2) and tryptoquivaline U (3) for their antibacterial activity against four reference 

strains (Staphylococcus aureus, Bacillus subtillis, Escherichia coli and Pseudomonas aeruginosa), as 

well as the environmental multidrug-resistant isolates, according to the previously described method [7]. 

The results showed that none of the tested compounds exhibited relevant antibacterial activity, i.e., their 
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MIC values are higher than 256 mg/mL. These compounds were also tested for their capacity to inhibit 

a quorum sensing by the screening protocol based on the pigment production by Chromobacterium 

violaceum ATCC 31532 [13] and none of them showed a quorum sensing inhibitory activity. 

 

Figure 5. Ortep view of tryptoquivaline U (3). 

3. Experimental Section 

3.1. General Procedure 

Melting points were determined on a Bock monoscope and are uncorrected. Optical rotations were 

measured on an ADP410 Polarimeter (Bellingham + Stanley Ltd., Tunbridge Wells, Kent, UK). Infrared 

spectra were recorded in a KBr microplate in a FTIR spectrometer Nicolet iS10 from Thermo Scientific 

(Waltham, MA, USA) with Smart OMNI-Transmission accessory (Software 188 OMNIC 8.3). UV spectra 

were taken in CHCl3 and were recorded on a Varian CARY 100 spectrophotometer. 1H and 13C-NMR 

spectra were recorded at ambient temperature on a Bruker AMC instrument (Bruker Biosciences 

Corporation, Billerica, MA, USA) operating at 300.13 and 75.4 MHz, respectively. High-resolution 

mass spectra were measured with a Waters Xevo QToF mass spectrometer (Waters Corporations, 

Milford, MA, USA) coupled to a Waters Aquity UPLC system. A Merck (Darmstadt, Germany) silica 

gel GF254 was used for preparative TLC, and a Merck Si gel 60 (0.2–0.5 mm) was used for  

analytical chromatography. 

3.2. Extraction and Isolation 

The strain KUFC 7898 was isolated from the alga Amphiroa sp., which was collected from Samaesarn 

Island in the Gulf of Thailand, Chonburi Province, in September 2011. The alga was washed with 0.06% 

sodium hypochlorite solution for 1 min, followed by sterilized seawater three times. The alga was dried 

on sterile filter paper, cut into small pieces (5 × 5 mm) and placed on a malt extract agar (MEA) medium 

containing 70% seawater and incubated at 28 °C for 5–7 days. The fungus was identified as Neosartorya 

takakii, by Leka Manoch (Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, 

Bangkok, Thailand), based on morphological characteristics such as colony growth rate and growth 
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pattern on standard media, namely Czapek’s agar (CZA), Czapek yeast autolysate agar (CYA) and malt 

extract agar (MEA). Microscopic characteristics including size, shape, ornamentation of ascospores and 

Aspergillus takakii anamorph were examined under light and scanning electron microscopes [14]. This 

identification was supported by sequence analysis of the β-tubulin, calmodulin and actin genes as 

described in the previous report [15]. Neosartorya takakii was also confirmed by analysis sequence of 

the internal transcribed spacer (ITS) gene. Briefly, 2–15 mg of mycelia was ground in liquid nitrogen. 

DNA was extracted using the DNeasy™ Plant Mini Kit (QIAGEN, Hilden, Germany) according to the 

manufacturer’s instructions. The entire nuclear ITS regions were amplified with the primers: ITS1F-5′ [16] 

and ITS4-3′ [17]. PCR reactions were conducted on Thermal Cycler and the amplification process 

consisted of initial denaturation at 95 °C for 5 min, 34 cycles at 95 °C for 1 min (denaturation), at 55 °C 

for 1 min (annealing) and at 72 °C for 1.5 min (extension), followed by final extension at 72 °C for 10 min. 

PCR products were cleaned using QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany), then 

examined by Agarose gel electrophoresis (1% agarose with 1× TBE buffer) and visualized under UV 

light after staining with ethidium bromide. DNA sequencing analyses were carried out by Macrogen Inc. 

(Seoul, South Korea). The sequences were compared using the NCBI nucleotide BLAST program 

(http://www.ncbi.nlm.nih.gov/BLAST) for identification [18]. The pure cultures were deposited as 

KUFC 7898 at Kasetsart University Fungal Collection, Department of Plant Pathology, Faculty of 

Agriculture, Kasetsart University, Bangkok, Thailand, and also as MMERU 03 at Microbes Marine 

Environment Research Unit, Division of Environmental Science, Faculty of Science, Ramkhamhaeng 

University, Bangkok, Thailand. 

The fungus was cultured for one week at 28 °C in 10 Petri dishes (i.d. 90 mm) containing 25 mL of 

MEA with 70% seawater per dish. Fifty 1000 mL Erlenmeyer flasks, each containing rice (200 g), water 

(30 mL), and seawater (70 mL), were autoclaved, inoculated with five mycelia plugs of N. takakii and 

incubated at 28 °C for 30 days, after which the moldy rice was macerated in ethyl acetate (15 L total) 

for 10 days and then filtered. The two layers were separated using a separating funnel and the ethyl acetate 

solution was concentrated under reduced pressure to yield 83.5 g of crude ethyl acetate extract which 

was dissolved in 500 mL of CHCl3 and then washed with 5% NaHCO3 aqueous solution (2 × 300 mL) 

and H2O (3 × 300 mL). The organic layers were combined and dried with anhydrous Na2SO4, filtered 

and evaporated under reduced pressure to give 53.8 g of the crude chloroform extract, which was applied 

on a column of silica gel (420 g), and eluted with mixtures of petrol–CHCl3 and CHCl3–Me2CO, 250 mL 

fractions were collected as follows: Frs 1–40 (petrol–CHCl3, 1:1), 41–82 (petrol–CHCl3, 3:7), 83–197 

(petrol–CHCl3, 1:9), 198–321 (CHCl3–Me2CO, 9:1), and 322–460 (CHCl3-Me2CO, 7:3). Frs 198–203 

were combined (1.57 g) and applied over a column chromatography of silica gel (35 g) and eluted with 

mixtures of petrol–CHCl3, CHCl3–Me2CO and Me2CO, 200 mL sub-fractions were collected as follows; 

sfrs 1–80 (petrol-CHCl3, 1:1), 81–110 (petrol–CHCl3, 3:7), 111–138 (petrol–CHCl3, 1:9), 139–150 

(CHCl3–Me2CO, 9:1), and 151–154 (Me2CO). Sfrs 27–33 were combined (80.3 mg) and recrystallized 

in MeOH to give 26.7 mg of sartorenol (1). Sfrs 34–70 were combined (498 mg) and purified by TLC 

(silica gel G254, CHCl3–Me2CO–HCO2H, 9.5:0.5:0.1) to give an additional 18.2 mg of sartorenol (1). 

Sfrs 71–90 were combined (179.0 mg) and purified by TLC (silica gel G254, CHCl3–Me2CO–HCO2H, 

9.5:0.5:0.1) to give chevalone B (33.6 mg) [7]. Sfrs 91–112 were combined (78.4 mg) and purified by 

TLC (silica gel G254, CHCl3–Me2CO–HCO2H, 9.5:0.5:0.1) to yield additional 2.7 mg of chevalone B. 

Frs 204–209 were combined (2.08 g) was recrystallized in MeOH to give aszonalenin (586.0 mg) [6], 
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and the mother liquor was combined with frs 210–212 (1.53 g) and applied over a column 

chromatography of silica gel (35 g) and eluted with mixtures of petrol–CHCl3, CHCl3–Me2CO and 

Me2CO, wherein 200 mL sub-fractions were collected as follows: sfrs 1–25 (petrol–CHCl3, 1:1),  

26–120 (petrol–CHCl3, 3:7). Sfrs 69–105 were combined (150.2 mg) and purified by TLC (silica gel G254, 

CHCl3–Me2CO–HCO2H, 9.5:0.5:0.1) to give 6-hydroxymellein (5 mg) [10]. Frs 213–224 were combined 

(626 mg) and crystallized in MeOH to give aszonapyraone A (230 mg) [6]. Frs 262–267 were combined 

(573.4 mg) and purified by TLC (silica gel G254, CHCl3–Me2CO–HCO2H, 8:2:0.1) to give 20.5 mg of 

takakiamide (2) and 91.3 mg of acetylaszonalenin [6]. Frs 268–283 were combined (1.03 g) and 

recrystallized in MeOH to give acetylaszonalenin (115.1 mg). Frs 325–334 were combined (2.95 g) and 

recrystallized in MeOH to give tryptoquivaline L (0.98 g) [9]. Frs 335–342 were combined (6.06 g) and 

recrystallized in MeOH to give tryptoquivaline H (259.5 mg) [9]. Frs 343–348 were combined (281 mg) 

and crystallized in MeOH to give 3′-(4-oxoquinazolin-3-yl) spiro[1H-indole-3,5′-oxolane]-2,2′-dione 

(24.9 mg) [9]. Frs 356–390 were combined (1.15 g) and purified by TLC (silica gel G254, CHCl3–

Me2CO–HCO2H, 7:3:0.1) to give 16.5 mg of tryptoquivaline U (3) and 3.9 mg tryptoquivaline F [9]. Frs 

391–400 were combined (125.3 mg) and recrystallized in MeOH to give 8.6 mg of tryptoquivaline F [9].  

3.2.1. Satorenol (1) 

White crystal, Mp 122–123 °C (petrol-CHCl3); [α]D
20 −18 (c 0.02, CHCl3); λmax (log ε) 228 (4.41), 

275 (3.99); IR (KBr) νmax 3393, 2932, 2850, 1728, 1645, 1558, 1540, 1418, 1251 cm−1; 1H and 13C NMR 

(see Table 1); HRESIMS m/z 431.3175 (M + H)+ (calculated for C27H43O4, 431.3161). 

3.2.2. Takakiamide (2) 

White solid, Mp 182–183 °C (petrol/CHCl3); [α]D
20 −213 (c 0.06, CHCl3); IR (KBr) νmax 3214, 3057, 

2924, 2851, 1688, 1654, 1607, 1579, 1481, 1468, 1334, 1255 cm−1; 1H and 13C NMR (see Table 2); 

HRESIMS m/z 374.1876 (M + H)+ (calculated for C23H24N3O2, 374.1869). 

3.2.3. Tryptoquivaline U (3) 

White crystals, Mp 208–209 °C (petrol/CHCl3); [α]D
20 −196 (c 0.01, CHCl3); IR (KBr) νmax 3363, 

2924, 2852, 1775, 1710, 1662, 1607, 1473, 1384, 1260, 1199 cm−1; 1H and 13C NMR (see Table 3); 

HRESIMS 417.1563 (M + H)+ (calculated for C23H21N4O4, 417.1563). 

3.3. X-Ray Crystal Structure of Sartorenol (1) 

Crystals were orthorhombic, space group P212121, cell volume 2449.73(12) Å3 and unit cell 

dimensions a = 5.99830(16) Å, b =13.1349(3) Å and c = 31.0931(11) Å (uncertainties in parentheses). 

There are four molecules per unit cell with calculated density of 1.170 g/cm−3. Diffraction data were 

collected at 110 K with a Gemini PX Ultra equipped with CuKα radiation (λ = 1.54184 Å). The structure 

was solved by direct methods using SHELXS-97 and refined with SHELXL-97 [19]. Carbon and oxygen 

were refined anisotropically. Hydrogen atoms bound to the carbon atom C20 were placed at their idealized 

positions using appropriate HFIX instructions in SHELXL, and included in subsequent refinement 

cycles. All other hydrogen atoms were directly found from difference Fourier maps and were refined freely 
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with isotropic displacement parameters. The refinement converged to R (all data) = 9.51% and wR2 (all 

data) = 17.76%. Full details of the data collection and refinement and tables of atomic coordinates, bond 

lengths and angles, and torsion angles have been deposited with the Cambridge Crystallographic Data 

Centre (CCDC 1060934). 

3.4. X-Ray Crystal Structure of Tryptoquivaline U (3) 

Crystals were triclinic, space group P1, cell volume 501.08(12) Å3 and unit cell dimensions  

a = 5.3913(7) Å, b =9.8891(15) Å and c = 9.9063(13) Å and angles α = 84.939(11)°, β = 75.732(11)° 

and γ = 78.452(12)° (uncertainties in parentheses). There is one molecule per unit cell with calculated 

density of 1.380 g/cm−3. Diffraction data were collected at 293 K with a Gemini PX Ultra equipped with 

CuKα radiation (λ = 1.54184 Å). The structure was solved by direct methods using SHELXS-97 and 

refined with SHELXL-97 [16]. Carbon and oxygen were refined anisotropically. Hydrogen atoms bound 

to carbon atoms C-5, C-6, C-20 and C-23 were placed at their idealized positions using appropriate HFIX 

instructions in SHELXL, and included in subsequent refinement cycles. All other hydrogen atoms were 

directly found from difference Fourier maps and were refined freely with isotropic displacement 

parameters. The refinement converged to R (all data) = 10.88% and wR2 (all data) = 30.04%. The 

absolute structure was established with confidence (flack x parameter 0.03(11)). Full details of the data 

collection and refinement and tables of atomic coordinates, bond lengths and angles, and torsion angles 

have been deposited with the Cambridge Crystallographic Data Centre (CCDC 1060935). 

4. Conclusions 

N. takakii has been previously isolated from a soil sample; however, this is the first report of the 

secondary metabolites from a marine-derived strain of this species. Besides the indole alkaloids aszonalenin; 

acetylaszonalenin; and tryptoquivalines L, H, and F, and the meroditerpene aszonapyrone A, which are 

common among the members of this genus, a new tryptoquivaline analog (trytoquivaline U), a new 

meroditerpene with an uncommon side chain containing an enol function (sartorenol), a prenylated 

indole alkaloid (takakiamide) and the previously reported isocoumarin derivative (6-hydroxymellein) 

were also produced by the culture of the marine-derived N. takakii KUFC 7898. Although sartorenol, 

takakiamide and tryptoquivaline U did not exhibit any antibacterial activity against the Gram-positive 

(Staphylococcus aureus ATCC 25923 and Bacillus subtilis ATCC 6633) and Gram-negative (Escherichia 

coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853) bacteria as well as methicillin-resistant  

S. aureus (MRSA) and vancomycin-resistant Enterococci (VRE) from the environment in our assay 

protocol, it does not mean that these new metabolites do not have other interesting biological activities. 

Thus, these new metabolites should be explored in other bioassay protocols so that their potential can be 

further discovered. 
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Abstract: Background: Fungi are microorganisms which can produce interesting secondary metabo-

lites with structural diversity. Although terrestrial fungi have been extensively investigated for their 

bioactive secondary metabolites such as antibiotics, marine-derived fungi have only recently attracted 

attention of Natural Products chemists.  

Methods: Our group has been working on the secondary metabolites produced by the cultures of the 

fungi of the genera Neosartorya and Aspergillus, collected from soil and marine environments from 

the tropical region for the purpose of finding new leads for anticancer and antibacterial drugs.  

Results: This review covers only the secondary metabolites of four soil and six marine-derived species of Neosarorya as 

well as a new species of marine-derived Aspergillus, investigated by our group. In total, we have isolated fifty three sec-

ondary metabolites which can be categorized as polyketides (two), isocoumarins (six), terpenoids (two), meroterpenes 

(fourteen), alkaloids (twenty eight) and cyclic peptide (one). The anticancer and antibacterial activities of these fungal me-

tabolites are also discussed.  

Conclusion: Among fifty three secondary metabolites isolated, only the alkaloid eurochevalierine and the cadinene ses-

quiterpene, isolated from the soil fungus N. pseudofisheri, showed relevant in vitro cytostatic activity against glioblastoma 

(U373) and non-small cell lung cancer (A549) cell lines while the meroditerpene aszonapyrone A exhibited strong anti-

bacterial activity against multidrug-resistant Gram-positive bacteria and also strong antibiofilm activity in these isolates.  

Keywords: Antibacterial, antibiofilm, anticancer, marine-derived fungi, secondary metabolites, soil fungi. 
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1. INTRODUCTION 

 The potential of marine natural products has attracted 
attention of many researchers in the past few decades. Since 
the marine environment presents different physical and 
chemical conditions from the land, it can be an extraordinary 
reservoir of bioactive compounds, many of which possess 
unique and interesting structural characteristics which are not 
found in terrestrial counterparts [1]. Since natural products 
and their synthetically modified derivatives have been exten-
sively developed for clinical use for the treatment of almost 

all human diseases, especially in anti-infective and oncology 
areas, research on chemistry of marine natural products has 
experienced a tremendous boost due to the need for com-
pounds with bioactivity and possible therapeutic applications 
[2]. Recently, researchers have focused more of their atten-
tion on marine-derived fungi as a source of interesting bioac-
tive compounds since many consider them as one of the still 
untapped resources for new and biologically relevant chemi-
cal entities [3]. Moreover, through established culture meth-
ods, they can produce quantity of compounds needed for 
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medicinal chemistry development, clinical trials and even 
marketing.  

 On the other hand, the two major important areas of the 
pharmaceutical industries are anticancer and anti-infective 
drugs. It is widely recognized that cancer is a constant and 
major problem of the human population. Since epidemiol-
ogical evidence shows that current treatment of cancer with 
chemotherapy and surgery are still far from ideal, more re-
search is necessary to find new drugs that are more effective 
and have less side-effect than those currently used in chemo-
therapy as an alternative. One of these approaches is to look 
for new chemical entities which can be potential for the de-
velopment of cancer chemotherapeutic agents via genetic 
mining from the marine environment [4]. Since natural prod-
ucts from terrestrial environments and their derivatives have 
traditionally been a major source of new anticancer agents 
[5], it is no wonder that marine-derived fungi can be a poten-
tial source of anticancer compounds. Curiously, even though 
fungal metabolites have been found to exhibit a variety of 
the in vitro anticancer properties such as pro-apoptotic, anti-
proliferative, anti-angiogenic and anti-migratory effects 
through different pathways, no single fungi-derived com-
pound has been approved as an anticancer drug so far [6]. 

 On the other hand, the infectious diseases are the second 
major cause of death worldwide and the third leading cause 
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of death in developed countries [7]. It is also recognized that 
more and more bacterial infections cannot be controlled by a 
current standard treatment, and more often than not, they are 
very difficult or even impossible to treat. As the resistance to 
multiple antibiotics is spreading throughout the world, the 
therapy failure and rising treatment costs, especially in the 
hospital environment, are becoming a great concern. At the 
same time, the use of antibiotics is proved to be the cause of 
resistance development which ultimately limits the efficacy 
and life span of every antibiotic [8]. Although resistance can 
be slowed down by using appropriate antibiotic, it will by no 
means prevent it. Thus, only the continuing discovery and 
development of new antibiotics can help tackle this problem 
[8]. Since antibiotics are the third largest segment of the 
pharmaceutical drug market, it becomes obvious that there is 
an urgent need for novel antibacterial agents which do not 
exhibit cross-resistance to the currently used antibiotics. 
From the evolutionary point of view, natural products are 
considered as promising lead structures, especially for anti-
bacterial drugs [9]. Microorganisms evolved sustainable de-
fense strategies to modulate competitors and aggressors 
based on the coevolution of their secondary metabolites with 
their corresponding targets in bacteria [8]. In this perspec-
tive, microorganisms, especially fungi, which successfully 
produced secondary metabolites as their vital armamen-
tarium in the persistent fight for space and resources against 
bacterial competitors for millions of years, can be considered 
as promising target organisms for antibiotics production. 
Therefore, besides terrestrial fungi, marine-derived fungi can 
be considered potential source for new antibiotics. 

2. THE GENUS NEOSARTORYA 

 Fungi belonging to the genus Neosartorya are a teleo-
morphic or sexual state of Aspergillus section Fumigati. 
While the Aspergillus species produce only conidiospores, 
Neosartorya species produce both a sexual state with asco-
spores, and an asexual state with conidiospores [10]. Re-
cently, this nomenclature has suffered a great extent of modi-
fication since the distinct morphological features from fungal 
sexual stages had let to a dual nomenclature permitting sepa-
rate names for anamorphs of fungi with a pleomorphic life-
cycle, which caused ambiguity regarding the correct and 
unequivocal taxonomic classification of several fungal spe-
cies. The fact that an increasing number of mycologists rec-
ognizing the urgent need for a transition to a single-name 
nomenclatural system for fungi had resulted in the prepara-
tion of the “Amsterdam Declaration on Fungal Nomencla-
ture”, under the auspices of the International Commission on 
the Taxonomy of Fungi (ICTF) during the symposium “One 
Fungus = One Name” held in Amsterdam in April 2011 [11]. 
The discontinuance of the dual nomenclature system was 
later approved and adopted in the 18

th International Botanical 
Congress in Melbourne in July 2011, during which the Vi-
enna edition of the “International Code of Botanical Nomen-
clature” was replaced by the “International Code of Nomen-
clature for algae, fungi and Plants (The Melbourne Code) 
published in December 2012. According to the Melbourne 
Code, after 1st January 2013, one fungus can have only one 
name [11, 12]. Therefore, only the genus name Aspergillus is 
used for both sexual and asexual states after this rule was 
established. However, the genus name Neosartorya is still 

used for the fungi which had already been taxonomically 
classified before the new rule was in force. In this case, a 
teleomorphic state of a new species of Aspergillus we have 
recently isolated was named Aspergillus similanensis KUFA 
0013 instead of Neosartorya similanensis. 

3. SECONDARY METABOLITES FROM THE CUL-
TURES OF SOIL AND MARINE-DERIVED STRAINS 
OF NEOSARTORYA AND ASPERGILLUS  

 Aspergillus section Fumigati and its teleomorph Neosar-
torya include many important species because they can be 
pathogenic or allergenic to man as well as causing food 
spoilage and producing mycotoxins. Certain species are also 
found to produce interesting bioactive secondary metabolites 
that can be considered potential for drug development [13]. 
Although Aspergillus species are known to produce several 
bioactive secondary metabolites including indole alkaloids 
with unique structural features such as prenylated indole 
derivatives [14, 15], quinazolinone containing indole deriva-
tives such as the tryptoquivalines [16-21] and pyrazino-
quinazolinone containing indole derivatives such as the fu-
miquinazolines [22, 23], there were only few reports on the 
studies of secondary metabolites from Neosartorya species. 
For these reasons, together with our interest in bioactive sec-
ondary metabolites from microorganisms with potential bio-
technological applications, we have investigated four 
Neosartorya species collected from soil in Thailand (N. 
glabra KUFC 6311, N. pseudofisheri KUFC 6422, N. sia-
mensis KUFC 6349 and N. fischeri KUFC 6344) and six 
marine-derived species of Neosartorya, i.e. N. paulistensis 
KUFC 7898 (isolated from a marine sponge Chondrilla aus-
traliensis), N. laciniosa KUFC 7896 (isolated from a dis-
eased coral Porites lutea), N. spinosa KUFC 8104 (isolated 
from a marine sponge Dedronephthya sp.), N. tsunodae 
KUFC 9213 (isolated from a marine sponge Aka coral-
liphaga), N. siamensis KUFA 0017 (isolated from a sea fan 
Rumphella sp.) and N. takakii KUFC 7898 (isolated from a 
marine alga Amphiroa sp.), as well as the previously uniden-
tified marine-derived Aspergillus similanensis KUFA 0013 
(isolated from a marine sponge Rhabdermia sp.). The com-
pounds isolated from the cultures of these soil and marine-
derived Neosartorya species can be categorized into the fol-
lowing classes: 

3.1. Polyketides (Fig. 1) 

 Only two polyketides were isolated from the soil fungi of 
the genus Neosartorya in our investigation. 3’-Hydroxy-5’-
methylphenyl-2,4-dihydroxy-6-methylbenzoate (1) was iso-
lated from the culture of N. pseudofisheri KUFC 6422 [24], 
while 2,4-dihydroxy-3-methylacetophenone (2) was obtained 
from the ethyl acetate extract of the culture of N. siamensis 
KUFC 6349 [25]. 

3.2. Isocoumarins (Fig. 2) 

 Reticulol (3) and four new hydroxylated isocoumarins, 
including 6,8-dihydroxy-3-methylisocoumarin (4), similan-
pyrone A (5), similanpyrone B (6) and similanpyrone C (7) 
were isolated from the ethyl acetate extract of the culture of 
A. similanensis KUFA 0013, isolated from the marine sponge 
Rhabdermia sp, which was collected from the Similan Islands, 
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in Southern Thailand [26, 27]. The structures of the new 
compounds were established by an extensive analysis of 1D 
and 2D NMR (1H, 13C NMR, DEPT, COSY, HSQC, HMBC 
and NOESY) as well as by High Resolution Mass Spec-
trometry (HRMS) technique. The ethyl acetate extract of the 
culture of N. takakii KUFC 7898, isolated from a marine 
alga Amphiroa sp., yielded the previously reported 6-
hydroxymellein (8) [28]. 

3.3. Terpenoids (Fig. 3) 

 The cadinene sesquiterpene (9) was isolated only from 
the ethyl acetated extract of the culture of N. pseudofisheri 
KUFC 6422 while the fungal steroid helvolic acid (10) was 
isolated from the cultures of the soil fungus N. fischeri 
KUFC 6344 [24] as well as from the marine-derived N. 
tsunodae KUFC 9213 [29]. 
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Fig. (3). Structures of cadinene sesquiterpene (9) and helvolic acid 

(10). 

3.4. Meroterpenoids 

3.4.1. Pyripyropenes (Fig. 4) 

 Pyripyropene A (11) was isolated from the culture of N. 
pseudofisheri KUFC 6422 [24]. Pyripyropene E (12), two 
new pyripyropene derivatives: pyripyropenes S and T (13 
and 14), and a structurally related meroterpene S14-95 (15) 
were isolated from the culture of A. similanensis KUFA 
0013 [26, 27]. 

3.4.2. Meroditerpenes (Fig. 5) 

 Aszonapyrone A (16) was isolated from the cultures of 
N. fischeri KUFC 6344 and the marine-derived N. laciniosa 
KUFC 7896 [29] as well as N. takakii KUFC 7898 [28], 
while aszonapyrone B (17) was only found in the culture of 
N. laciniosa KUFC 7896 [29]. A new aszonapyrone analog, 
sartorypyrone C (18), was isolated only from the culture of 
the marine-derived N. paulistensis KUFC 7897 [30] Interest-
ingly, while chevalone B (19) was isolated from the cultures 
of both soil (KUFC 6349) and marine-derived N. siamensis 
(KUFA 0017) [25], N. takakii KUFC 7898 [28] and A. 
similanensis KUFA 0013 [26], chevalone C (20) was found 
in the cultures of both soil and marine-derived N. siamensis 
(KUFC 6349 and KUFA 0017) and a marine-derived A. 
similanensis KUFA 0013 [26]. While a new chevalone de-
rivative, chevalone E (21), was isolated only from the culture 
of A. similanensis KUFA 0013 [26], a new chevalone analog, 
sartotypyrone B [23] was found only in the extract of N. 
tsunodae KUFC 9213 [29]. On the other hand, a new mono-
cyclic meroditerpene, sartorypyrone A (22) was isolated 
from the culture of N. fischeri KUFC 6344 [29]. Recently,
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Fig. (1). Structures of 3’-Hydroxy-5’-methylphenyl-2,4-dihydroxy-6-methylbenzoate (1) and 2,4-dihydroxy-3-methylacetophenone (2). 
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Fig. (2). Structures of isocoumarins isolated from the cultures of A. similanensis KUFA 0013 and N. takakii KUFC 7898. 
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Fig. (4). Structures of pyripyropenes A (11), E (12), S (13), T (14) and S14-95 (15). 
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Fig. (5). Structure of meroditerpenes isolated from soil and marine-derived Neosartorya species. 
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we have reported isolation of a new tricyclic meroditerpene 
with an enolic side chain which we have named sartorenol 
(24) from the culture of the marine-derived N. takakii [28]. 

3.5. Alkaloids 

3.5.1. Alkaloids Derived from Phenylalanine (Fig. 6) 

 Eurochevalierine (25), a sesquiterpene containing alka-
loid, previously isolated from the culture of the fungus Eu-
rotium chevalieri [31], was isolated together with a previ-
ously reported brasiliamide B (26) and a new 1,4-diacetyl-
2,5-dibenzylpiperazine-3,7”-oxide (27a and 27b) from the 
culture of N. pseudofisheri KUFC 6422 [24]. The conforma-
tions of brasiliamide B (26) and 1,4-diacetyl-2,5-
dibenzylpiperazine-3,7”-oxide (27a and 27b) were studied 
using the 1H chemical shift values and NOESY correlations 
[24]. 
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Fig. (6). Structure of eurochevalierine (25), brasiliamide B (26) and 

1,4-diacetyl-2,5-dibenzylpiperazine-3,7”-oxide (27a and 27b). 

 

3.5.2. Prenylated Indole Alkaloids (Fig. 7) 

 The culture of N. fischeri KUFC 6344 yielded aszon-
alenin (28), acetylaszonalenin (29), 1-formyl -5-
hydroxyaszonalenin (30), and 13-oxofumitremorgin (31) 
[29], while the culture of N. spinosa KUFC 8104 furnished 
aszonalenin (28) and acetylaszonalenin (29). Aszonalenin 
(28) and acetylaszonalenin (29) were also isolated, together 
with a new natural product takakiamide (32), from the cul-
ture of N. takakii KUFC 7898 [28]. On the other hand, only 
the culture of N. glabra KUFC 6311 produced the ardeemin 
analogs: sartoryglabrins A (33), B (34) and C (35) [32]. 

3.5.3. Quinazolinone Containing Indole Alkaloids (Fig. 8) 

 The new indole alkaloid pseudofisherine (36) was iso-
lated from the culture of N. pseudofisheri KUFC 6422 [24]. 
Although the structure of pseudofisherine (36) resembles that 
of a cytotoxic alkaloid chaetominine, produced by an endo-
phytic fungus Chaetomium sp. IFB-E015 [33], the stereo-
chemistry of C-8 and C-15 of pseudofisherine (36) is oppo-
site to that of the corresponding carbons of chaetominine. A 
new hexacyclic indole alkaloid containing a quinazolinone 
ring system, sartorymensin (37), was isolated from the cul-
ture of the soil fungus N. siamensis KUFC 6349 [25], and 
the absolute configuration of its stereogenic carbons was 
determined by X-ray analysis. Interestingly, sartorymensin 
(37) was not detected in the culture of the marine-derived 
strain of N. siamensis KUFA 0017. 

3.5.4. Tryptoquivaline Derivatives (Fig. 9) 

 Tryptoquivalines are a class of indole alkaloids contain-
ing the quinazolinone moiety connected to the 6-5-5 imida-
zoindolone ring system through a five-membered spirolac-
tone. Several analogs of tryptoquivaline were isolated from 
both soil and marine-derived Neosartorya species. While 
tryptoquivalines F (40) and H (41) were found only in the 
cultures of N. siamensis (KUFC 6349 and KUFA 0017), N. 
paulistensis KUFC 7898 [29] and N. takakii KUFC 7898 
[28], tryptoquivaline L (42) was isolated from the cultures of 
both soil and marine-derived N. siamensis (KUFC 6349 and 
KUFA 0017) [25], N. paulistensis KUFC 7898, N. laciniosa 
KUFC 7896 [30], N. spinosa KUFC 8104 and N. takakii 
KUFC 7898 [28]. Interestingly, although both soil and ma-
rine-derived N. siamensis (KUFC 6349 and KUFA 0017) 
produced tryptoquivaline (38) and a new tryptoquivaline 
derivative, trytoquivaline O (43), only the marine strain pro-
duced nortryptoquivaline (39).  

 The cultures of N. laciniosa KUFC 7896 and N. takakii 
KUFC 7898 also produced new tryptoquivaline analogs, 
respectively, tryptoquivalines T (44) [29] and U (45) [28]. A 
structurally related natural product, 3’-(4-oxoquinazolin-3-
yl)spiro [1H-indole-3,5’-oxolane]-2,2’-dione (46) was also 
isolated from the cultures of N. siamensis (KUFC 6349 and 
KUFA 0017) [25], N. laciniosa KUFC 7896 [29], N. spinosa 
KUFC 8104 and N. takakii KUFC 7898 [28]. The absolute 
configuration of the stereogenic carbons of the new tryp-
toquivalines was determined unambiguously by X-ray analy-
sis and the stereochemistry of the previously isolated analogs 
was also revised by X-ray analysis. 

3.5.5. Fiscalin Derivatives (Fig. 10) 

 Fiscalins are indole alkaloids with a pyrazinoquinazoli-
none ring system connected with the 6-5-5 imidazoindolone 
ring system by a methylene group. The culture of both soil 
and marine-derived N. siamensis (KUFC 6349 and KUFA 
0017) were found to produce, besides the previously reported 
fiscalins A (47) and C (51), the new analogs epi-fiscalin A 
(48), neofiscalin A (49), epi-neofiscalin A (50) and epi-
fiscalin C (52) [25]. The stereochemistry of the stereogenic 
carbons (C-3, C-14, C-19, C-20, and C-22) of these com-
pounds was unequivocally established by X-ray analysis. 
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Fig. (7). Structures of the prenylated indole alkaloids aszonalenin (28), acetylaszonalenin (29), 1-formyl -5-hydroxyaszonalenin (30), 13-

oxofumitremorgin (31), takakiamide (32) and sartoryglabrins A (33), B (34) and C (35). 
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Fig. (8). Structures of the quinazolinone containing indole alkaloids pseudofisherine (36) and sartorymensin (37). 

 
3.6. Cyclopeptides (Fig. 11) 

 Similanamide (53), a new cyclic hexapeptide, was iso-
lated from the culture of A. similanensis KUFA 0013 [27]. 
The structure of the compound was determined, by HRMS 

and extensive analysis of their 1D and 2D NMR as well as 
by a chiral HPLC analysis of the acid hydrolysate by co-
injection with D and L amino acids standards, as cyclo (an-
thranilic acid-L-Val-D-Leu-L-Ala-N-methyl-L-Leu-D-pipecolic 
acid). 
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Fig. (9). Structures of tryptoquivaline derivatives. 
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Fig. (10). Structure of fiscalin derivatives. 
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Fig. (11). Structure of similanamide (53). 

 

4. BIOLOGICAL ACTIVITIES 

 Although the secondary metabolites isolated from the 
fungi of the genera Neosartorya and Aspergillus exhibited a 
myriad of biological and pharmacological activities, we have 
evaluated only their capacity to inhibit in vitro growth of 
some human cancer cell lines, as well as antibacterial activ-
ity since the main goal of our research is to search for lead 
compounds for anticancer and antibacterial drugs. 

4.1. Anticancer Activity 

 The fact that 15b-β-hydroxy-5-N-acetylardeemin, an 
ardeemin analog isolated from the fungus Aspergillus 
fischeri var. brasiliensis, was able to reverse multiple drug 
resistance in tumor cells [34-36], together with the similarity 
of the structures of sartoryglabrins A (33), B (34), and C 
(35), isolated from the culture of N. glabra KUFC 6311, 
with those of the ardeemins, has motivated us to evaluate the 
in vitro growth inhibitory activity of sartoryglabrins A (33), 
B (34), and C (35) against the MCF-7 (breast adenocarci-
noma), NCI-H460 (non-small cell lung cancer) and A375-C5 
(melanoma) human tumor cell lines by using the protein 
binding dye SRB method. Sartoryglabrin A (33) was found 
to exhibit a strong growth inhibitory activity against MCF-7 
cell line (GI50 = 27.0 ± 0.57 µM) and a weak activity against 

NCI-H460 cell line (GI50 = 84.0 ± 2.1 µM) but inactive 
against the A375-C5 cell line, at the highest concentration 
tested (GI50 ˃150 µM). On the contrary, sartoryglabrin B 
(34) exhibited a moderate growth inhibitory activity against 
MCF-7 cell line (GI50 = 53.0 ± 4.7 µM), but inactive (GI50 

˃150 µM) against both NCI-H460 and A375-C5 cell lines. 
These results suggested that sartoryglabrin B (34) was not 
cytotoxic since it was only active against the MCF-7 cell 
line. Therefore, sartoryglabrin B (34) may be considered as 
an interesting scaffold for further anticancer drug develop-
ment [32]. On the other hand, sartoryglabrin C (35) exhibited 

moderate growth inhibitory activity against MCF-7 cell line 
(GI50 = 44.0 ± 7.2 µM) and weak inhibitory activity against 
NCI-H460 (GI50 = 82.3 ± 5.6 µM) and A375-C5 (GI50 = 
108.0 ± 7.7 µM) cell lines [32]. 

 3”-Hydroxy-5’-methylphenyl-2,4-dihydroxy-6-
methylbenzoate (1), the cadinene sesquiterpene (9), pyripy-
ropene A (11), and the alkaloids eurochevalierine (25), 1,4-
diacetyl-2,5-dibenzylpiperazine-3,7”-oxide (27a and 27b) 
and pseudofischerine (36), isolated from the culture of the 
soil fungus N. pseudofisheri KUFC 6422, were assayed, to-
gether with the the widely used anticancer drugs etoposide 
and carboplatin, for their growth inhibitory activity against 
six human cancer cell lines, i.e. Hs683 (glioblastoma), U373 
(glioblastoma), A546 (non-small cell lung cancer), MCF-7 
(breast cancer), OE21 (esophageal cancer), SKMEL28 
(melanoma), by the MTT colorimetric method [24]. Interest-
ingly, eurochevalierine (25) was found to have an in vitro 
anticancer activity in the range of etoposide and carboplatin 
while the cadinene sesquiterpene (9), whose activity was 
similar to carboplatin, was found to be less active than euro-
chevalierine (25). On the contrary, pyripyropene A (11), 1,4-
diacetyl-2,5-dibenzylpiperazine-3,7”-oxide (27a and 27b) 
and pseudofischerine (36) were inactive in all cell lines at the 
highest concentration tested. Furthermore, observation of the 
global cell growth by the computer-assisted phase-contrast 
microscopy, over a 72 hours period, revealed that 50 µM of 
eurochevalierine (25) was able to reduce growth of the hu-
man glioblastoma cells (U373) by 65% and of the non-small 
cell lung cancer cells (A549) by 50%. These data revealed 
that eurochevalierine (25) is not cytotoxic, but instead cy-
tostatic which was able to overcome the intrinsic resistance 
of the two cancer cell lines to pro-apoptotic stimuli. Moreo-
ver, the lack of cytotoxicity of eurochevalierine (25) was 
also confirmed by flow cytometry analysis. Contrary to the 
positive control narciclasine which induced marked pro-
apoptotic effects in human apoptosis-sensitive PC-3 prostate 
cancer cells, eurochevalierine (25) did not exhibit any pro-
apoptotic effects in the human U373 glioblastoma and A549 
non-small cell lung cancer cells. Furthermore, flow cytome-
try analysis also demonstrated that eurochevalierine (25) did 
not modify cell cycle kinetic such as distribution of cells into 
the G1, S and G2 phases of the cell cycle of these two cell 
lines. Additionally, determination of the percentages of mito-
sis under control and treatment with eurochevalierine (25) by 
quantitative videomicroscopy revealed that treatment with 
eurochevalierine (25) caused a significant decrease in the 
percentage of the mitotic cells in both human U373 glioblas-
toma and A549 non-small cell lung cancer cells. Therefore, 
we have concluded that the inhibition of mitotic rates by 
eurochevalierine (25) was responsible for its cytostatic ef-
fects [24]. 

 Similarly, the indole alkaloids sartorymensin (37), tryp-
toquivaline (38), tryptoquivalines F (40), H (41), L (42), O 
(43), and 3’-(4-oxoquinazolin-3-yl) spiro [1H-indole-3,5’-
oxolane]-2,2’-dione (46), isolated from the culture of N. sia-
mensis KUFC 6349, were evaluated for their in vitro growth 
inhibitory activity on the human U373 and Hs683 glioblas-
toma, the A549 non-small cell lung cancer, the MCF-7 breast 
cancer, and the SKMEL-28 melanoma cell lines by MTT 
colorimetric assay [25]. However, only sartorymensin (37) 
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exhibited moderate in vitro growth inhibitory activity on 
these five cancer cell lines with the mean of IC50 = 44 µM 
[25]. 

 The prenylated indole alkaloids aszonalenin (28), acety-
laszonalenin (29), 1-formyl-5-hydroxyaszonalenin (30), and 
13-oxofumitremorgin (31), isolated from the culture of N. 
fisheri KUFC 6344, were also evaluated for their in vitro 
growth inhibitory activity on the MCF-7 (breast adenocarci-
noma), NCI-H460 (non-small cell lung cancer) and A375-C5 
(melanoma) human tumor cell lines by the protein binding 
dye SRB method. Although 13-oxofumitremorgin (31) ex-
hibited a weak growth inhibitory activity against all the three 
cell lines, with GI50= 115.0 ± 20.0 µM, 123.3 ± 11.5 µM, 
68.6 ± 12.9 µM, respectively, for MCF-7, NCI-H460 and 
A375-C5, aszonalenin (28), acetylaszonalenin (29) and 1-
formyl -5-hydroxyaszonalenin (30) were inactive in all the 
cell lines at the highest concentration tested (˃150 µM) [29].  

 The meroditerpenes aszonapyrones A (16) and B (17), 
isolated from the culture of N. laciniosa KUFC 7896, as well 
as sartorypyrone B (23), isolated from the culture of N. 
tsunodae KUFC 9213, were also assayed for their in vitro 
growth inhibitory activity against MCF-7, NCI-H460 and 
A375-C5 human tumor cell lines by the protein binding dye 
SRB method. Aszonapyrone A (16) was found to be the 
most active, showing strong growth inhibitory activity 
against the three cell lines, with GI50= 13.6 ± 0.9 µM, 11.6 ± 
1.5 µM, 10.2 ± 1.2 µM, respectively for MCF-7, NCI-H460 
and A375-C5, while sartorypyrone B (23), which possesses a 
monocyclic diterpene core, also exhibited strong growth in-
hibitory activity, although less than that of aszonapyrone A 
(16), with GI50= 17.8 ± 7.4 µM, 20.5 ± 2.4 µM and 25.0 ± 
4.4 µM, for MCF-7, NCI-H460 and A375-C5 respectively. 
Interestingly, aszonapyrone B (17) whose structure corre-
sponds to 3-deacetyl aszonapyrone A, was inactive in all the 
cell lines at the highest concentration tested [29]. 

4.2. Antibacterial Activity 

 The meroditerpenes aszonapyrones A (16) and B (17), 
chevalones B (19), C (20) and E (21), sartorypyrones A (22), 
B (23), and C (18), together with pyripyropenes E (12) and S 
(13), S14-95 (15), tryptoquivalines F (40), H (41), L (42) and 
3’-(4-oxoquinazolin-3-yl) spiro[1H-indole-3,5’-oxolane]-
2,2’-dione (46), were tested for antibacterial activity against 
Gram-positive (Staphylococcus aureus ATCC 25923 and 
Bacillus subtilis ATCC 6633) and Gram-negative (Es-
cherichia coli ATCC 25922 and Pseudomonas aeruginosa 
ATCC 27853) bacteria, as well as the multidrug-resistant 
isolates from the environment [30]. Neither of the indole 
alkaloids, i.e. tryptoquivalines F (40), H (41), L (42) and 3’-
(4-oxoquinazolin-3-yl) spiro[1H-indole-3,5’-oxolane]-2,2’-
dione (46), nor pyripyropene derivatives exhibited antibacte-
rial activity. However, within the meroditerpene group, only 
aszonapyrone A (16) and sartorypyrone A (22) showed sig-
nificant MIC values against Gram-positive bacteria. While 
aszonapyrone A (16) showed the MIC values of 8 µg/mL 
against S. aureus ATCC 25923 and B. subtilis ATCC 6633, 
sartorypyrone A (22) showed the MIC values of 32 and  
64 µg/mL, respectively against both reference strains. 
Moreover, aszonapyrone A (16) was also active against both 
S. aureus MRSA and Enterrococcus spp. VRE isolates. On 

the contrary, sartorypyrone A (22) was not active against 
both strains in the range of concentrations tested [30]. 

 Synergism study by the disc diffusion method revealed 
that there was a small synergistic association between all the 
compounds tested and the antibiotics to which a multidrug-
resistant E. coli was resistant. However, only few com-
pounds showed synergism against the S. aureus MRSA and 
E. faecium VRE isolates. It was observed that only the com-
bination of aszonapyrone A (16) with the antibiotics pro-
duced the biggest halo, while sartorypyrone A (22) only 
showed an increase in the inhibition halo of the antibiotics 
against S. aureus MRSA, and, in a small extent, against E. 
faecium VRE. Curiously, both chevalones C (20) and E (21) 
were found to display a synergistic effect with antibiotic 
against the multidrug-resistant isolates in spite of the fact 
that they did not exhibit antibacterial activity at the highest 
concentration tested (MIC ˃ 256 µg/mL) when tested alone. 
By using the Checkerboard method [37] to evaluate the syn-
ergistic effect of aszonapyrone A (16) and sartorypyrone A 
(22) with the antibiotics, it was found that the combination 
effect of aszonapyrone A (16) with oxacillin against MRSA 
isolates, as well as with ampicillin against VRE isolates, was 
not different (ΣFIC ˃ 0.5). Since aszonapyrone A (16) was 
found to decrease the MIC of each antibiotic tested, it may 
be considered to exert partial synergism. On the contrary, the 
association of aszonapyrone A (16) with vancomycin dis-
played clearly the synergistic effect (ΣFIC ˂ 0.5) against the 
VRE isolates tested. It was found also that the combination 
of sartorypyrone A (22) with oxacillin and ampicillin against 
MRSA isolates was also indifferent (ΣFIC ˃ 0.5).  

 Using the biomass quantification method [38] to evaluate 
the effect of aszonapyrone A (16) and sartorypyrone A (22), 
at different concentrations, on the biofilm formation of S. 
aureus ATCC 25923, B. subtilis ATCC 6633, S. aureus 
MRSA and E. faecalis VRE, revealed that no biofilm was 
formed in all the tested strains in the presence of aszonapy-
rone A (16) and sartorypyrone A (22) at 2 x MIC and MIC 
concentrations. However, it was found that both S. aureus 
ATCC 25923 and S. aureus MRSA produced more biofilm 
than in the control in the presence of aszonapyrone A (16) at 
a sub-inhibitory concentration, i.e. 1/2 x MIC. Interestingly, 
in the presence of sartorypyrone A (22) at 1/2 x MIC, a sig-
nificantly higher amount of biofilm was produced by S. 
aureus ATCC 25923 than in the control. 

 The results obtained revealed that the antibacterial activ-
ity of the meroditerpenes tested is related to their structural 
features. For this series of meroditerpenes, the presence of a 
free 4-hydroxy-6-methyl-2H-pyran-2-one ring on C-15 as 
well as of the β-acetoxyl group on C-4 of the perhydrophe-
nanthrene ring system is required for their antibacterial activ-
ity [30]. 

 The isocoumarins reticulol (3), 6, 8-dihydroxy-3-
methylisocoumarin (4), similanpyrone A (5), similanpyrone 
B (6) and similanpyrone C (7), together with the cyclo-
hexapeptide similanamide (53), isolated from the culture of 
A. similanensis KUFA 0013, were also tested for their anti-
bacterial activity. However, none of these compounds was 
found to exhibit any significant activity on the reference and 
multidrug-resistant strains of bacteria at the highest concen-
tration tested [26, 27].  
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CONCLUSION 

 Soil and marine-derived fungi continue to be an impor-
tant source of interesting secondary metabolites with unique 
structural feature. Although the terrestrial fungi have been 
more intensively investigated for their bioactive secondary 
metabolites, the marine-derived counterparts have just re-
cently emerged as an interesting source of bioactive com-
pounds. Fungi of the genera Neosartorya and Aspergillus 
continue to be a prolific source of bioactive secondary me-
tabolites. With new culture methods and advancement in 
biotechnology techniques, these fungi can be a very promis-
ing source for biotechnological applications. Although many 
of the secondary metabolites isolated from the fungi of these 
genera, both terrestrial and marine strains, exhibited neither 
the in vitro growth inhibitory activity on the human cancer 
cell lines nor antibacterial activities in our test systems, it is 
by no means to conclude that these compounds do not have 
other interesting biological functions. Thus, it is necessary to 
test these compounds in more bioassay systems so that their 
potential can be duly exploited. 
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Abstract: Two new cyclotetrapeptides, sartoryglabramides A (5) and B (6), and a new
analog of fellutanine A (8) were isolated, together with six known compounds including
ergosta-4, 6, 8 (14), 22-tetraen-3-one, ergosterol 5, 8-endoperoxide, helvolic acid, aszonalenin
(1), (3R)-3-(1H-indol-3-ylmethyl)-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (2), takakiamide (3),
(11aR)-2,3-dihydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11(10H,11aH)-dione (4), and fellutanine A
(7), from the ethyl acetate extract of the culture of the marine sponge-associated fungus Neosartorya
glabra KUFA 0702. The structures of the new compounds were established based on extensive 1D and
2D spectral analysis. X-ray analysis was also used to confirm the relative configuration of the amino
acid constituents of sartoryglabramide A (5), and the absolute stereochemistry of the amino acid
constituents of sartoryglabramide A (5) and sartoryglabramides B (6) was determined by chiral HPLC
analysis of their hydrolysates by co-injection with the D- and L- amino acids standards. Compounds
1–8 were tested for their antibacterial activity against Gram-positive (Escherichia coli ATCC 25922) and
Gram-negative (Staphyllococus aureus ATCC 25923) bacteria, as well as for their antifungal activity
against filamentous (Aspergillus fumigatus ATCC 46645), dermatophyte (Trichophyton rubrum ATCC
FF5) and yeast (Candida albicans ATCC 10231). None of the tested compounds exhibited either
antibacterial (MIC > 256 µg/mL) or antifungal activities (MIC > 512 µg/mL).

Keywords: Neosartorya glabra; marine-derived fungus; Mycale sp.; cyclotetrapeptides;
sartoryglabramides A and B; diketopiperazines; fellutanine A epoxide
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1. Introduction

Although the chemical constituents of the fungi of the genus Neosartorya, a teleomorphic state of
Aspergillus section Fumigatus, have not previously been intensively investigated [1], there are currently
three reports on the secondary metabolites and their biological activities of Neosartorya glabra (Fennell
& Raper) Kozakiewicz. Jayasuriya et al. first described isolation of three new antibacterial bicyclic
lactones, glabramycins A–C, from N. glabra isolated from a soil sample collected from Candamia, Spain,
by antisense screening [2]. However, it is only very recently that the synthesis and revision of the
relative configuration of glabramycin B were achieved [3]. Kijjoa et al. described isolation of three new
reverse prenylated indole derivatives, sartoryglabrins A–C, and their in vitro growth inhibitory activity
against three human cancer cell lines, from the Thai collection of a soil-derived N. glabra [4]. Recently,
Liu et al. reported isolation of two new polyketides, neosarphenols A and B, together with six known
polyketides and two known meroterpenoids, from the crude ethyl acetate extract of N. glabra CGMCC
32286 [5]. During our ongoing search for bioactive secondary metabolites from members of the genus
Neosartorya and our pursuit for natural antibiotics from marine-derived fungi, we have investigated
the secondary metabolites of a Thai collection of N. glabra KUFA 0702, isolated from the marine
sponge Mycale sp., collected from the coral reef at Samaesarn Island in the Gulf of Thailand. The ethyl
acetate extract of its culture furnished three new compounds including two new cyclotetrapeptides,
sartoryglabramides A (5) and B (6), and a new analog of fellutanine A (8), in addition to the previously
reported ergosta-4,6,8 (14), 22-tetraen-3-one [6], ergosterol 5, 8-endoperoxide [7], helvolic acid [8],
aszonalenin (1) [9], (3R)-3-(1H-indol-3-ylmethyl)-3, 4-dihydro-1H-1,4-benzodiazepine-2,5-dione (2) [10],
takakiamide (3) [11], (11aR)-2,3-dihydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11(10H,11aH)-dione
(4) [12], and fellutanine A (7) [13,14] (Figure 1). Compounds 1–8 were tested for their antibacterial
activity against Gram-positive (Escherichia coli ATCC 25922) and Gram-negative (Staphyllococus aureus
ATCC 25923) bacteria, as well as for their antifungal activity against filamentous (Aspergillus fumigatus
ATCC 46645), dermatophyte (Trichophyton rubrum ATCC FF5) and yeast (Candida albicans ATCC 10231).
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2. Results and Discussion

Compound 5 was isolated as white crystals (mp, 146–148 ˝C), and its molecular formula
C30H30N4O4 was established on the basis of the (+)-HRESIMS m/z 511.2365 [M + H]+, indicating
eighteen degrees of unsaturation. The IR spectrum showed absorption bands for amine (3447 cm´1),
amide carbonyl (1655 cm´1) and aromatic (1622, 1587, and 1526 cm´1). The 13C NMR (Supplementary
Materials, Figure S10), DEPTs and HSQC spectra (Table 1, Supplementary Materials, 12) revealed
the presence of four amide carbonyls (δC 170.2, 169.9, 168.8, 166.5), four quaternary sp2 (δC 138.3,
137.3, 136.5, 124.8), fourteen methine sp2 [δC 130.4, 129.6 (2C), 129.1 (2C), 128.1 (2C), 128.0 (2C), 126.6,
126.3, 126.0, 122.4, 120.4], three methine sp3 (δC 62.2, 55.2, 54.4), and five methylene sp3 (δC 49.4, 37.1,
34.7, 28.3, 24.6). The 1H NMR spectrum (Table 1, Supplementary Materials, Figure S9) revealed three
NH signals at δH 9.40, s, 8.49, d (J = 7.8 Hz) and 7.41, d (J = 9.8 Hz), the signals of four aromatic
protons of anthranilic acid at δH 8.31, dd (J = 7.9, 0.5 Hz, H-6), 7.55, dd (J = 7.7, 1.3 Hz, H-3), 7.48,
ddd (J = 7.9, 7.9, 1.4 Hz, H-5) and 7.16, dd (J = 7.9, 7.7 Hz, H-4) [15]. The anthranilic acid residue was
linked to the phenylalanine residue, through the amino group of the former and the carboxyl group
of the latter, since the HMBC spectrum (Supplementary Materials, Figure S12) showed correlations
of the NH signal at δH 9.40, s (NH-8) to the carbonyl carbon at δC 168.8 (C-9), C-2 (δC 124.8), C-6
(δC 120.4), of the methine proton at δH 4.36, ddd (J = 8.4, 7.8, 5.3 Hz, H-10) to C-9, C-11 (δC 34.7), C-12
(δC 138.3), of the methylene protons at δH 2.97, dd (J = 13.9, 8.4 Hz, H-11a) and 3.23, dd (J = 13.9,
5.3 Hz, H-11b) to C-9, C-10 (δC 55.2), C-12, C-13/C-17 (δC 129.6). The COSY spectrum also showed
correlation (Supplementary Materials, Figure S11) of H-10 to H2-11 of this phenylalanine residue
(Table 1 and Figure 2). That this phenylalanine residue (Phe-I) was linked to another phenylalanine
residue (Phe-II) was corroborated by the COSY correlation of H-10 to the proton doublet at δH 8.49, d
(J = 7.8 Hz, NH-18), as well as by the HMBC correlations of NH-18 to C-10 and the carbonyl carbon at
δC 169.9 (C-19), of the methine proton signal at δH 4.58, ddd (J = 9.8, 8.9, 7.3 Hz, H-20) to C-19, C-21
(δC 37.1), C-22 (δC 137.3), of the methylene proton signals at δH 2.71, dd (J = 13.5, 8.9 Hz, H-21a)/2.94
dd (J = 13.5, 7.3 Hz, H-21b) to C-22, C-19, C-20 (δC 54.4), and C-23/C-27 (δC129.1) (Table 1 and Figure 2).
This was further supported by the COSY correlations of H-20 to H2-21 and the proton doublet at δH

7.41 (J = 9.8 Hz, NH-28). The existence of the proline residue was evidenced not only by the COSY
correlations of the double doublet at δH 4.20 (J = 9.8, 2.3 Hz, H-30; δC 62.2) to the multiplets at δH 1.54
and 2.12 (H2-31, δC 28.3), of the multiplet at δH 1.89 (H2-32; δC 24.6) to H2-31 and the double doublet
at δH 3.70 (J = 17.6, 9.6 Hz, H-33a; δC 49.4) and a multiplet at δH 3.63 (H-33b; δC 49.4) but also by the
HMBC correlations of H-30 to the carbon signals at δC 170.2 (CO-29), δC 28.3 (C-31) and δC 24.6 (C-32),
and of H-33a to C-30 (δC 62.2), C-32, of H2-31 to C-29 and C-30, respectively (Table 1 and Figure 2).
That the proline residue was connected to the Phe-II residue, through the carbonyl of the former and
the amino group of the latter, was corroborated by the HMBC correlation of NH-28 to CO-29. Since
there are only three NH signals, the nitrogen of the pyrrolidine ring of the proline residue was linked
to the carbonyl group (C-1) of anthranilic acid. This was corroborated by the HMBC correlations of H-3
to CO-1 (δC 166.5), and of NH-8 to C-2 (δC 124.8) and C-6 (δC 120.4) (Table 1 and Figure 2). Therefore,
combining this information, it was possible to conclude that 5 was cyclo (anthranilic acid-Phe-Phe-Pro).

Table 1. 1H and 13C NMR (DMSO, 500 MHz and 125 MHz) and HMBC assignment for 5.

Position δC, Type δH, (J in Hz) COSY HMBC

Anthranilic acid 1 166.5, C -
2 124.8, C -
3 126.6, CH 7.55, dd (7.7, 1.3) H-4 C-1, 5, 7
4 122.4, CH 7.16, dd (7.9, 7.7) H-3, 5 C-2, 6
5 130.4, CH 7.48, ddd (7.9, 7.9, 1.4) H-4, 6 C-3, 7
6 120.4, CH 8.31, dd (7.9, 0.5) H-5 C-2, 4
7 136.5, C -

NH-8 - 9.40, s - C-2, 6, 9
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Table 1. Cont.

Position δC, Type δH, (J in Hz) COSY HMBC

Phe-I 9 168.8, CO -
10 55.2, CH 4.36, ddd (8.4, 7.8, 5.3) H-11, NH-21 C-9, 11, 12

11a 34.7, CH2 2.97, dd (13.9, 8.4) H-10, 11b C-9, 10, 12, 13, 17
b 3.23, dd (13.9, 5.3) H-10, 11a C-9, 10, 12, 13, 17
12 138.3, C -
13 129.6, CH 7.08, dd (7.4, 1.4) H-14 C-11, 15, 17
14 128.0, CH 7.19, dd (7.4, 7.4) H-14, 15 C-12, 16
15 126.0, CH 7.18, dd (7.4, 7.4) H-14, 16 C-13, 17
16 128.0, CH 7.19, dd (7.4, 7.4) H-15, 17 C-12, 14
17 129.6, CH 7.08, dd (7.4, 1.4) H-16 C-11, 13, 15

NH-18 - 8.49, d (7.8) H-20 C-10, 19

Phe-II 19 169.9, CO -
20 54.4, CH 4.58, ddd (9.8, 8.9, 7.3) H-21a, b C-19, 21, 22

21a 37.1, CH2 2.71, dd (13.5, 8.9) H-21b, 20 C-19, 20, 22, 23, 27
b 2.94, dd (13.5, 7.3) H-21a, 20 C-19, 20, 22, 23, 27
22 137.3, C -
23 129.1, CH 7.14, dd (7.4, 1.4) H-24 C-25, 27
24 128.1, CH 7.27, dd (7.4, 7.4) H-23, 25 C-22, 26
25 126.3, CH 7.23, dd (7.4, 7.4) H-24, 26 C-23, 27
26 128.1, CH 7.27, dd (7.4, 7.4) H-25, 27 C-22, 24
27 129.1, CH 7.14, dd (7.4, 1.4) H-26 C-23, 25

NH-28 - 7.41, d (9.8) H-20 C-19, 20, 29

Pro 29 170.2, CO -
30 62.2, CH 4.20, dd (9.8, 2.3) H-31a, b C-29, 31, 32

31a 28.3, CH2 1.54, m H-30, 31b -
b 2.12, m H-30, 31a C-29, 30
32 24.6, CH2 1.89, m H-31a, b, 32a, b

33a 49.4, CH2 3.70, dd (17.6, 9.6) H-32, 33b C-30, 32
b 3.63, m H-32, 33a

N-34 - -
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Since 5 was obtained as a suitable crystal for X-ray diffraction, the stereochemistry of its amino acid
residues was tentatively determined by X-ray analysis, and the ORTEP view shown in Figure 3 revealed
that Phe-I, Phe-II and Pro have the same relative configuration. However, since the flack x parameter
(0.3) did not guarantee the absolute confidence of the absolute configurations, the stereochemistry
of the amino acid residues of 5 was confirmed by a chiral HPLC analysis of its acidic hydrolysate,
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using appropriate D- and L-amino acid standards, according to the previously described method [15].
The enantioseparations of the standard amino acids were successfully performed with the Chirobiotic
T column under reversed-phase elution conditions [16]. The elution order of the enantiomers
of all the standards amino acids was confirmed by injecting the solutions of the enantiomeric
mixtures and then each enantiomer separately at a flow rate of 1 mL/min (Supplementary Materials,
Table S1). As predicted, the D-enantiomer was always more strongly retained than the corresponding
L-enantiomer on Chirobiotic column [16]. The retention times (tR min) for standards amino acids,
using MeOH: H2O (80:20 v/v) as mobile phase, at a flow rate of 1.0 mL/min, and with UV detection set
at 210 nm, were L-Phe (3.8) and D-Phe (5.0), L-Pro (6.7) and D-Pro (20.1). Based on mix HPLC analyses
of the acidic hydrolysate with standard D- and L-amino acids (co-injection) (Supplementary Materials,
Figure S27 and Table S1), compound 5 was elucidated as cyclo (anthranilic acid-L-Phe-L-Phe-L-Pro).
Since compound 5 is a new compound, we have named it sartoryglabamide A.
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Figure 3. Ortep view of compound 5.

Compound 6, which was also isolated as white solid (mp, 190–192 ˝C), exhibited the [M + H]+

peak at m/z 550.2501 [(+)-HRESIMS], corresponding to C32H32N5O4 (calcd. 550.2454). Therefore, the
molecular formula C32H31N5O4 was attributed to compound 6, which indicated twenty degrees of
unsaturation. Like compound 5, the IR spectrum of 6 showed absorption bands for amine (3417 cm´1),
amide carbonyl (1649 cm´1) and aromatic (3058, 1620, 1588, 1526 cm´1). With some exceptions,
the general features of the 1H and 13C spectra of compound 6 resembled those of 5. The 13C NMR
(Supplementary Materials, Figure S15), DEPTs and HSQC spectra (Table 2, Supplementary Materials,
Figure S17) displayed signals of four carbonyls (δC 170.2, 170.1, 169.0, 166.4), six quaternary sp2

(δC 137.4, 136.3, 136.0, 127.7, 125.2, 110.2), fourteen methine sp2 [δC 130.4, 129.0 (2C), 128.1 (2C), 126.5,
126.3, 124.0, 122.6, 120.8, 120.7, 118.5, 118.2, and 111.3], three methine sp3 (δC 62.1, 54.6, 54.3), and five
methylene sp3 (δC 49.4, 37.0, 28.3, 24.9, 24.6). Unlike compound 5, the 1H NMR spectrum of 6 (Table 2,
Supplementary Materials, Figure S15), exhibited four NH signals at δH 10.82, d (J = 1.8 Hz), 9.25, s, 8.42,
d (J = 7.9 Hz) and 7.38, d (J = 10.0 Hz). Similar to compound 5, the presence of the proline residue was
corroborated by the presence of the coupling system of the protons from H-33 to H2-36 [(δH 4.15, dd,
J = 9.0, 2.0 Hz, H-33; δC 62.1), δH 1.45 m and 2.09, m (H2-34; δC 28.3), δH 1.86 m (H2-35; δC 24.6), and δH

3.55 m and 3.67, m (H2-36; δC 49.4)] as well as by the HMBC correlation of H-33 to the carbonyl carbon
at δC 170.2 (C-32), while the presence of the phenylalanine residue was supported by the coupling
system from H2-24 (δH 2.66, dd, J = 13.6, 10.0 Hz, and 2.92, dd, J = 13.6, 6.4 Hz; δC 37.0) through
H-23 (δH 4.61, ddd, J = 10.0, 10.0, 6.4 Hz; δC 54.6) to NH-31 (δH 7.38, d, J = 10.0 Hz), as observed
in the COSY spectrum, as well as by the HMBC correlations from H-23 to C-24 (δC 37.0) and C-25
(δC 137.4), of H2-24 to C-23 (δC 54.6), C-25, C-26/30 (δC 129.0)(Table 2 and Figure 4). Like compound
5, the HMBC correlation of the amine proton at δH 7.38, d (J = 10 Hz, NH-31) to C-32 confirmed the
linkage of the carbonyl group of the proline residue (C-32) to the amino group of the phenylalanine
residue (N-31). Similarly, the nitrogen of the pyrrolidine ring of the proline residue (N-37) was linked
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to the carbonyl group of anthranilic acid (C-1, δC 166.4). That one of the phenyl residues of 5 was
replaced by a tryptophan residue in 6 was substantiated by the presence of the indole system, which
was characterized by the coupling system of H-14 (δH 7.58, d, J = 7.9 Hz, δC 118.5) through H-17 (δH

7.34, d, J = 8.0 Hz, δC 111.3), as observed in the COSY spectrum (Table 2 and Figure 4, Supplementary
Materials, Figure S16), and also by the HMBC correlations from NH-19 (δH 10.82, brs) to C-12 (δC 110.2),
C-13 (δC 127.7), C-18 (δC 136.0) and C-20 (δC 124.0) (Table 2 and Figure 4, Supplementary Materials,
Figure S18), as well as of the ethylamino moiety, as evidenced by the coupling system from H2-11 (δH

3.14, dd, J = 14.7, 6.7 Hz and 3.32 dd, J = 14.7, 5.9 Hz; δC 24.9) through H-10 (δH 4.52, ddd, J = 7.9, 6.7,
5.9 Hz; δC 54.3) to NH-21 (8.42, d, J = 7.9 Hz) (Table 2 and Figure 4). That the tryptophan residue was
linked to the phenylalanine residue, through the amino group of the former and the carbonyl group of
the latter, was corroborated by the HMBC correlations of NH-21 to the carbonyl carbons at δC 170.1
(C-22) and 169.0 (C-9), as well as of H-10 to C-9, C-11, C-12 and C-22. Finally, the amino group of the
anthranilic acid residue was linked to the carbonyl group of the tryptophan residue was supported by
the HMBC correlations of NH-8 (δH 9.25, s) to C-2 (δC 125.2), C-6 (δC 120.7) and C-9. Therefore, 6 was
identified as cyclo (anthranilic acid-Trp-Phe-Pro).

Table 2. 1H and 13C NMR (DMSO, 500 MHz and 125 MHz) and HMBC assignment for 6.

Position δC, Type δH, (J in Hz) COSY HMBC

Anthranilic acid 1 166.4, CO -
2 125.2, C -
3 126.5, CH 7.53, d (7.6) H-4 C-1, 5, 7
4 122.6, CH 7.16, dd (7.6, 7.6) H-3, 5 C-2, 6
5 130.4, CH 7.48, ddd (8.3, 7.6) H-4, 6 C-3, 7
6 120.7, CH 8.27, d (8.3) H-5 C-2, 4
7 136.3, C -

NH-8 - 9.25, s C-2, 6, 9

Trp 9 169.0, CO -
10 54.3, CH 4.52, ddd (7.9, 6.7, 5.9) H-11, NH-21 C-9, 11, 12, 22
11a 24.9, CH2 3.32, dd (14.7, 5.9) H-10, 11b C-9, 10, 12, 13, 20
b 3.14, dd (14.7, 6.7) H-10, 11a C-9, 10, 12, 13, 20
12 110.2, C -
13 127.7, C -
14 118.5, CH 7.58, d (7.9) H-15 C-16, 18
15 118.2, CH 6.98, dd (7.9, 7.5) H-14, 16 C-13, 17
16 120.8, CH 7.06, dd (8.0, 7.5) H-15, 17 C-14, 18
17 111.3, CH 7.34, d (8.0) H-16 C-13, 15
18 136.0, C -

NH-19 - 10.82, brs H-20 C-12, 13, 18, 20
20 124.0, CH 7.04, d (1.8) NH-19 C-13

NH-21 - 8.42, d (7.9) H-10 C-9, 22

Phe 22 170.1, CO -
23 54.6, CH 4.61, ddd (10.0, 10.0, 6.4) H-24a, b C-24, 32
24a 37.0, CH2 2.66, dd (13.6, 10.0) H-23, 24b C-22, 23, 25, 26, 30
b 2.92, dd (13.6, 6.4) H-23, 24a C-22, 23, 25, 26, 30
25 134.4, C -
26 129.0, CH 7.10, dd (7.7, 1.0) H-27 C-25
27 128.1, CH 7.20, m H-26, 28 C-25
28 126.3, CH 7.18, m H-27, 29
29 128.1, CH 7.20, m H-28, 30 C-28
30 129.0, CH 7.10, dd (7.7, 1.0) H-29 C-25

NH-31 - 7.38, d (10.0) H-23 C-32

Pro 32 170.2, CO -
33 62.1, CH 4.15, dd (9.0, 1.2) H-34a, b C-32
34a 28.3, CH2 1.45, m H-33, 34b
b 2.09, m H-33, 34a
35 24.6, CH2 1.86, m H-34a,b, 36a, b
36a 49.4, CH2 3.55, m H-35, 36b
b 3.67, m H-35, 36a

N-37 - -
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The absolute stereochemistry of the amino acid residues of compound 6 was also determined
by chiral HPLC analysis of its acidic hydrolysate, using appropriate D- and L-amino acids standards.
The retention times (tR min) for standards amino acids, using MeOH: H2O (80:20 v/v) as mobile phase,
at a flow rate of 1.0 mL/min, and with UV detection set at 210 nm, were L-Phe (3.8) and D-Phe (5.0),
L-Pro (6.7) and D-Pro (20.1), L-Trp (4.5) and D-Trp (5.2). Based on mix HPLC analyses of the acidic
hydrolysate with standard D- and L-amino acids (co-injection) (Supplementary Materials, Figure S28,
Table S1), compound 6 was elucidated as cyclo (anthranilic acid-L-Trp-L-Phe-L-Pro). Since compound
6 is also a new compound, we have named it sartoryglabamide B.

Compound 8 was isolated as pale yellow viscous mass, and its molecular formula C22H20N4O3

was established on the basis of the (+)-HRESIMS m/z 389.1626 [M + H]+, indicating fifteen degrees
of unsaturation. The IR spectrum showed absorption bands for amine (3420 cm´1), amide carbonyl
(1649 cm´1) and aromatic (1418 cm´1). The 13C NMR (Supplementary Materials, Figure S22), DEPTs
and HSQC spectra (Table 3, Supplementary Materials, Figure S25) revealed the presence of two amide
carbonyls (δC 169.8 and 167.7), five quaternary sp2 (δC 148.4, 136.0, 131.1, 127.4, 109.5), nine methine
sp2 (δC 128.9, 124.1, 122.5, 120.9, 118.5, 118.3, 117.8, 111.3, 109.8), one oxygen bearing quaternary
sp3 (δC 85.9), one oxygen bearing methine sp3 (δC 84.0), two methine sp3 (δC 58.6, 55.1) and two
methylene sp3 (δC 41.3, 24.7). The 1H NMR spectrum (Table 3, Supplementary Materials, Figure S21),
exhibited, besides four NH signals at δH 10.88, brd (J = 1.4 Hz), 7.72, brs, 6.68, brs, and 6.05, s, and,
in conjunction with the COSY and HSQC spectra (Table 3, Supplementary Materials, Figures S23
and S24), the proton signals of two 1,2-disubstituted benzene rings at δH 7.60, d (J = 7.9 Hz, H-4;
δC 118.5), 7.33, d (J = 7.9 Hz, H-7, δC 111.3), 7.07, ddd (J = 7.9, 7.9, 1.1 Hz, H-6, δC 120.9), 6.99, ddd
(J = 7.9, 7.9, 0.5 Hz, H-5, δC 118.3), and at δH 7.18, d (J = 7.4 Hz, H-41; δC 122.5), 7.05, ddd (J = 7.8,
7.4, 1.3 Hz, H-61, δC 128.9), 6.61, ddd (J = 7.8, 7.4, 0.5 Hz, H-5’, δC 117.8) and 6.54, d (J = 7.8 Hz,
H-7’, δC 109.8). That one of the 1,2-disubstituted benzene rings was part of the indole moiety was
corroborated by the HMBC correlations of H-4 to C-3 (δC 109.5), C-6 (δC 120.9) and C-8 (δC 136.0), of
the amine proton at δH 10.88, brd (J = 1.4 Hz, NH-1) to C-2 (δC 124.1), C-3, C-8, C-9 (δC 127.4), and of
H-2 (δH 7.25, d, J = 2.3 Hz) to C-3 and C-9 (Table 3 and Figure 5). The presence of a 2,5-disubstituted
1,4-diketopiperazine was supported by the HMBC correlations of NH-13’ (δH 7.72, brs) to the carbonyl
at δC 167.7 (C-12), the methine carbons at δC 58.6 (C-111) and δC 55.1 (C-11) and the methylene carbon
at δC 24.7 (C-10), of NH-13 (δH 6.05, s) to the methylene carbon at δC 41.3 (C-101), of H-11 (δH 4.46,
t, J = 5.1 Hz) to C-10 and C-12, of H-111 (δH 4.66, dd, J = 11.6, 6.7 Hz) to C-101 and C-121. Moreover,
the COSY correlations of H-11 to H2-10 (δH 3.06, dd, J = 15.7, 6.5 Hz and 3.40, m), and of H-111 to
H2-101 (δH 1.83, dd, J = 13.0, 11.6 Hz and 2.43, dd, J = 13.0, 6.7 Hz) (Table 3 and Figure 5) confirmed
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that the substituents on C-11 and C-111 are methylene groups. The indole ring system was connected
to the 1, 4-diketopiperazine moiety through CH2-10 since the HMBC spectrum exhibited correlations
of H-11 to C-3, and of H-10 to C-9 (Table 3, Figure 5, Supplementary Materials, Figure S25). The second
1,2-disubstituted benzene ring was part of the 2,3-disubstituted 2,3-dihydro-1H-indole ring system
since the HMBC spectrum showed correlations of NH-11 (δH 6.68,d, J = 4.1 Hz) to the oxygenated sp3

quaternary carbon at δC 85.9 (C-31) and to the quaternary aromatic carbon at δC 131.1 (C-91), and also
of H-21 (δH 5.33, d, J = 4.1 Hz,) to C-31. Since the HMBC spectrum showed correlations of H-21 to C-101,
as well as of H-101 to C-31, it was concluded that the 2, 3-disubstituted 2, 3-dihydro-1H-indole ring
system was linked to the 1, 4-diketopiperazine moiety through CH2-101. As all of the 1H and 13C data
so far mentioned accounted only for C22H20N4O2, which is one oxygen atom less than the molecular
formula, the epoxide functionality was placed between C-21 and C-31.
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Table 3. 1H and 13C NMR (DMSO, 300 and 75 MHz), HMBC assignment and NOESY for 8.

Position δC, type δH, (J in Hz) COSY HMBC NOESY

2 124.1, CH 7.25, d (2.3) NH-1 C-3, 9 H-10a, 11 (str), NH-131

3 109.5, C -
4 118.5, CH 7.60, d (7.9) H-5 C-3, 6, 8 H-10a, 11 (str)
5 118.3, CH 6.99, ddd (7.9, 7.9, 0.5) H-4, 6 C-7, 9
6 120.9, CH 7.07, ddd (7.9, 7.9, 1.1) H-5, 7 C-4, 8
7 111.3, CH 7.33, d (7.9) H-6 C-5, 9
8 136.0, C -
9 127.4, C -

10a 24.7, CH2 3.06, dd (15.7, 6.5) H-10b, 11 C-3, 9, 11, 12 H-4, 10b, 11, NH-131

b 3.40, m H-10a, 11 C-3, 9, 11, 12 H-10a
11 55.1, CH 4.46, t (5.1) H-10a, 10b C-3, 10, 12 H-2, 4, 10a, 111, NH-131

12 167.7, CO -
21 84.0, CH 5.33, d (4.1) NH-11 C-31, 101 H-11, NH-13, NH-11 (str)
31 85.9, C -
41 122.5, CH 7.18, d (7.4) H-51 C-61, 81 NH-13
51 117.8, CH 6.61, ddd (7.8, 7.4, 0.5) H-41, 61 C-71, 91

61 128.9, CH 7.05, ddd (7.8, 7.8, 1.3) H-51, 71 C-41, 81

71 109.8, CH 6.54, d (7.8) H-61 C-51, 91

81 148.4, C -
91 131.1, C -

101a 41.3, CH2 1.83, dd (13.0, 11.6) H-101b, 11 C-111, 121 H-101b
b 2.43, dd (13.6, 6.7) H-101a, 11 C-31 H-101a, 111

111 58.6, CH 4.66, dd (11.6, 6.7) H-101a, 10b C-101, 121 H-11, 21, 101b
121 169.8, CO -

NH-1 - 10.88, brd (1.4) H-2 C-2, 3, 8, 9 H-2, 4
NH-11 - 6.68, d (4.1) H-21 C-31, 91

NH-13 - 6.05, s - C-101 H-21, 41

NH-131 - 7.72, brs - C-10, 11, 111, 12 H-10a (str), 11 (str), H-2
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Since compound 8 was obtained as pale yellow viscous mass, its stereochemistry could not be
determined by X-ray crystallography. However, as compounds 8 was isolated together with fellutanine
A (7) [13,14], it is reasonable to assume that the stereochemistry of C-11 and C-111 of both compounds
are the same. Like compounds 1–3, 5 and 6, fellutanine A (7) and compound 8 must be derived from
the same biosynthetic precursor, i.e., L-tryptophan. Consequently, the absolute configurations of C-11
and C-111 of fellutanine A (7) and compound 8 are presumed to be S. In an effort to unravel the
stereochemistry of C-11, C-111, and the epoxide bearing carbons (C-21 and C-31) of compound 8, the
NOESY experiments and molecular dynamic simulations were carried out. The NOESY spectrum of
compound 8 (Table 3 and Figure 6, Supplementary Materials, Figure S26) exhibited correlations of
H-11 to H-2, H-4, H-10a, H-111, NH-131, therefore confirming the cis-relation between H-11 and H-111.
Since the coupling constant between H-11 and H-10a is 6.5 Hz, H-10a must be in an equatorial and
H-11 in axial positions in the major conformation. On the other hand, H-111 exhibited only correlations
to H-11 and H-101b (δH 2.43, dd, J = 13.0, 6.7 Hz), and H-21, but not with H-101a (δH 1.83, dd, J = 13.0,
11.6 Hz) and NH-13, while H-21 gave correlations to only H-111 and NH-13, but not to H-101a or
101b. The values of the coupling constants of H-111 to H-101a (J = 11.6 Hz) and to H-101b ((J = 6.7 Hz)
indicated that H-111 and H-101a are “anti”, while H-111 and H-101b are “gauche”. These data indicated
that H-21 is in the same face as H-111 and points to the opposite direction from H-101a/101b. However,
these correlations do not allow us to determine the stereochemistry of the epoxide. Surprisingly, the
NOESY spectrum also shows strong correlation of H-41 to NH-13.
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Furthermore, a strong NOESY cross-peak between H-11 and H-111 of compound 8, and in
conjunction with conformational search, molecular dynamics and ab initio molecular modeling,
showed that both amide bonds in the diketopiperazine ring are cis and that both amino acids have
the same stereochemistry for their α-carbons. This type of six-membered ring is thermodynamically
stable because resonance compensates for the extra energy of the amide cis configurations [17], when
compared to the more normal trans configuration. Nevertheless, cis peptide bonds occur naturally
even in linear biological proteins [18]. NOESY cross-peaks and molecular modeling also aided the
assignment of the absolute configurations to the epoxide carbon atoms of 8. The minimal energy
conformations for the R/R and S/S models are presented in Figure 7, showing how the epoxide oxygen
points outwards in both cases for minimal repulsion. Conformational analysis was based mainly on the
combinations of the three staggered conformations for C-101/C-111 bond and two for the C-31/C-101

bond. These six conformers differ by less than 7 kcal/mol (RHF/6-21G total energy), independently of
the configuration of the epoxide. Of all the conformations, the most stable conformation of the 21S/31S
epoxide actually explains simultaneously the observed NOESY correlations of H-41 to NH-13 and of
H-21 to H-111 (Table 3 and Figure 6, Supplementary Materials, Figure S26). On the other hand, none
of the R/R conformations justifies the NOESY data without assuming unreasonable spin-diffusion.
The assignment of the S/S isomer for the epoxide carbons of 8 has to assume, however, that there
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is a spin-diffusion during the mixing time; otherwise, given the proposed structure for 8, it would
not be possible to explain also the H-21/H-13 NOESY cross-peak. The proximities H-41/NH-13
and H-21/H-111 are physically incompatible with direct H-21/H-13 NOE proximity. The fact that
H-21/H-111/NH-13 form a coupled dipolar spin system is perhaps an explanation for the very week
H-111/NH-13 NOESY cross-peak (Table 3 and Figure 6, Supplementary Materials, Figure S26), which
is expected to be strong unless some polarization transfer is at play between the three spins.
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Taking all of the evidence together, the structure of compound 8 was proposed as fellutanine A
21S, 31S-epoxide. To the best of our knowledge, compound 8 is also a new compound.

Compounds 1–8 were tested for their antibacterial activity against Gram-positive (Escherichia coli
ATCC 25922) and Gram-negative (Staphyllococus aureus ATCC 25923) bacteria, as well as for
their antifungal activity against filamentous (Aspergillus fumigatus ATCC 46645), dermatophyte
(Trichophyton rubrum ATCC FF5) and yeast (Candida albicans ATCC 10231), according to the previously
described protocols [19,20]; however, none of the tested compounds exhibited either antibacterial
(MIC > 256 µg/mL) or antifungal activities (MIC > 512 µg/mL).
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3. Experimental Section

3.1. General Procedure

Melting points were determined on a Bock monoscope and are uncorrected. Optical rotations
were measured on an ADP410 Polarimeter (Bellingham + Stanley Ltd., Tunbridge Wells, Kent, UK).
Infrared spectra were recorded in a KBr microplate in a FTIR spectrometer Nicolet iS10 from Thermo
Scientific (Waltham, MA, USA) with Smart OMNI-Transmission accessory (Software 188 OMNIC
8.3). 1H and 13C NMR spectra were recorded at ambient temperature on a Bruker AMC instrument
(Bruker Biosciences Corporation, Billerica, MA, USA) operating at 300.13 or 500.13 MHz, and 75.4 or
125.8 MHz, respectively. High resolution mass spectra were measured with a Waters Xevo QToF mass
spectrometer (Waters Corporations, Milford, MA, USA) coupled to a Waters Aquity UPLC system.
A Merck (Darmstadt, Germany) silica gel GF254 was used for preparative TLC, and a Merck Si gel 60
(0.2–0.5 mm) was used for column chromatography.

3.2. Extraction and Isolation

The strain KUFA 0702 was isolated from the marine sponge Mycale sp., which was collected,
by scuba diving at a depth of 15–20 m, from the coral reef at Samaesarn Island (12˝34136.6411 N
100˝56159.6911 E) in the Gulf of Thailand, Chonburi Province, in February 2015. The sponge was
washed with 0.06% sodium hypochlorite solution for 1 min, followed by sterilized seawater 3 times,
and then dried on sterile filter paper, cut into small pieces (5 ˆ 5 mm), and placed on a malt extract
agar (MEA) medium containing 70% seawater and 300 mg/L of streptomycin sulfate. After incubation
at 28 ˝C for 7 days, the hyphal tips were transferred onto a slant MEA and maintained as pure culture
for further identification. The fungus was identified as Neosartorya glabra (Fennell & Raper) Kozak
based on morphological characteristics such as colony growth rate and growth pattern on standard
media, namely Czapek1s agar, Czapek yeast autolysate agar and malt extract agar. Microscopic
characteristics including size, shape and ornamentation of ascospores were examined under light
and scanning electron microscopes. This identification was supported by sequence analysis of the
β-tubulin, calmodulin and actin genes as described in the previous report [21]. Neosartorya glabra
was also confirmed by sequence analysis of the internal transcribed spacer (ITS) gene, according
the procedure previously described by us [11]. Its gene sequences were deposited in GenBank
with accession numbers KU955860. The pure cultures were deposited as KUFA 0702 at Kasetsart
University Fungal Collection, Department of Plant Pathology, Faculty of Agriculture, Kasetsart
University, Bangkok, Thailand. The fungus was cultured for one week at 28 ˝C in 5 Petri dishes
(i.d. 90 mm) containing 15 mL of potato dextrose agar. In order to obtain the mycelial suspension,
the mycelial plugs were transferred to two 500 mL Erlenmeyer flasks containing 250 mL of potato
dextrose broth, and then incubated on a rotary shaker at 150 rpm at 28 ˝C for 7 days. Forty 1000-mL
Erlenmeyer flasks, each containing 300 g of cooked rice, were autoclaved at 121 ˝C for 15 min, and
then inoculated with 25 mL of mycelial suspension of N. glabra, and incubated at 28 ˝C for 30 days,
after which the moldy rice was macerated in ethyl acetate (20 L total) for 7 days, and then filtered
with filter paper. The ethyl acetate solution was concentrated under reduced pressure to yield 98.2 g
of crude ethyl acetate extract, which was dissolved in 1000 mL of CHCl3, and then washed with
H2O (3 ˆ 500 mL). The organic layers were combined and dried with anhydrous Na2SO4, filtered and
evaporated under reduced pressure to give 71.2 g of the crude chloroform extract, which was applied
on a column of silica gel (420 g), and eluted with mixtures of petrol-CHCl3 and CHCl3–Me2CO, 250 mL
fractions were collected as follows: Frs 1-80 (petrol–CHCl3, 1:1), 81-144 (petrol–CHCl3, 3:7), 145-201
(petrol–CHCl3, 1:9), 202-356 (CHCl3–Me2CO, 9:1), 357-398 (CHCl3–Me2CO, 7:1), and 399-410 (Me2CO).
Frs 85-105 were combined (2.04 g) and purified by TLC (silica gel G254, CHCl3–Petrol–EtOAc–HCO2H,
8:1:1:0.01) to give 11 mg of ergosta-4,6,8 (14), 22-tetraen-3-one. Fr 207 (1.14 g) was applied over a
column chromatography of Sephadex LH-20 (10 g) and eluted with MeOH and a mixture of MeOH:
CH2Cl2 (1:1), wherein 20 mL subfractions were collected as follows: sfrs 1–90 (MeOH), and 91–145
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(MeOH: CH2Cl2, 1:1). Sfrs 53–61 were combined (19.5 mg) and recrystallized in MeOH to give
16.8 mg of ergosterol 5,8-endopeoxide. Sfrs 62-90 were combined (53.2 mg) and purified by TLC
(silica gel G254, CHCl3-Petrol-EtOAc-HCO2H, 8:1:1:0.01) to give 11.2 mg of 1. Frs 206–212 were
combined (4.88 g) and applied over a column chromatography of Si gel (45 g) and eluted with
mixture of petrol–CHCl3, CHCl3–Me2CO and Me2CO, wherein 100 mL subfractions were collected
as follows: sfrs 1–51 (petrol–CHCl3, 1:1), 52-107 (petrol–CHCl3, 3:7), 108–164 (petrol–CHCl3, 1:9),
165–190 (CHCl3–Me2CO, 9.5:0.5), 191–310 (CHCl3–Me2CO, 9:1). Sfrs 83–164 were combine (53.4 mg)
and recrystallized in MeOH to give 27.6 mg of ergosterol 5,8-endopeoxide. Sfr 166 (38.8 mg) was
recrystallized in Me2CO to give 8.7 mg of 1. Frs 213–245 were combined (3.61 g) and applied over a
column chromatography of Sephadex LH-20 (10 g) and eluted with MeOH, wherein 60 sfrs of 20 mL
were collected. Sfrs 31–51 were combined and purified by TLC (silica gel G254, CHCl3–Me2CO–HCO2H,
4:1:0.01) to give 9.7 mg of 3 and 13.1 mg of 4. Frs 246–257 were combined (1.44 g) and recrystallized
in MeOH to give 23.7 mg of helvolic acid. Frs 273–287 were combined (621.0 mg) and purified by
TLC (silica gel G254, CHCl3–Me2CO–HCO2H, 7:3:0.03) to give 12.1 mg of helvolic acid and 32.3 mg
of 5. Frs 363–373 were combined (1.26 g) and applied over a column chromatography of Sephadex
LH-20 (10 g) and eluted with MeOH, wherein 60 subfractions of 20 mL were collected. Sfrs 22–54
were combined (91.2 mg) and purified by TLC (silica gel G254, CHCl3–Me2CO–HCO2H, 9.5:0.5:0.03) to
give 14.7 mg of 6 and 10 mg of 2. Frs 374–398 were combined (1.37 g) and purified by TLC (silica gel
G254, CHCl3–Me2CO–HCO2H, 3:2:0.03) to give 32.8 mg of 8. Frs 403–405 were combined (2.49 g) and
applied over a column chromatography of Sephadex LH-20 (10 g) and eluted with MeOH, wherein
112 sfrs of 20 mL were collected. Sfrs 90–112 were combined (24.9 mg) and purified by TLC (silica gel
G254, CHCl3–Me2CO–HCO2H, 9.5:0.5:0.03) to give 20.7 mg of 7.

3.2.1. Satoryglabramide A (5)

White crystal, mp 146–148 ˝C (CHCl3-Me2CO); rαs20
D +34.6 (c 0.06, Me2CO); IR (KBr) νmax 3447,

3060, 3028, 2920, 2850, 1655, 1622, 1587, 1526, 1453, 1415, 1300, 1261, 1173 cm´1; 1H and 13C NMR
(see Table 1); HRESIMS m/z 511.2365 (M + H)+ (calculated for C30H31N4O4, 511.2345).

3.2.2. Satoryglabramide B (6)

White solid, mp 190–192 ˝C (CHCl3–Me2CO); rαs20
D +42.8 (c 0.05, Me2CO); IR (KBr) νmax 3417,

3058, 2924, 2852, 1649, 1620, 1588, 1526, 1454, 1418, 1302, 1263, 1101 cm´1; 1H and 13C NMR (see Table 2);
HRESIMS m/z 550.2501 (M + H)+ (calculated for C32H32N5O4, 550.2454).

3.2.3. Fellutanine A Epoxide (8)

Pale yellow viscous mass; rαs20
D +13.9 (c 0.07, Me2CO); IR (KBr) νmax 3420, 2922, 1649, 1416, 1188,

1047, 1025, 996 cm´1; 1H and 13C NMR (see Table 3); HRESIMS m/z 389.1626 (M + H)+ (calculated for
C22H21N4O3, 389.1614).

3.3. X-ray Crystal Structure of Sartoryglabramide A (5)

A single crystal of sartoryglabamide A was mounted on a cryoloop using paratone. X-ray
diffraction data was collected at room temperature with a Gemini PX Ultra equipped with CuKα

radiation (λ = 1.54184 Å). The crystal was orthorhombic, space group P212121, cell volume 5459.8(2)
Å3 and unit cell dimensions a = 15.1792(3) Å, b = 18.7674(5) Å and c = 19.1659(3) Å (uncertainties
in parentheses). There are two molecules per unit cell with calculated density of 1.242 g/cm3.
The structure was solved by direct methods using SHELXS-97 and refined with SHELXL-97 [22].
Carbon, nitrogen and oxygen atoms were refined anisotropically. Hydrogen atoms were either
placed at their idealized positions using appropriate HFIX instructions in SHELXL and included
in subsequent refinement cycles or were directly found from difference Fourier maps and were refined
freely with isotropic displacement parameters. The refinement converged to R (all data) = 10.02%
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and wR2 (all data) = 15.26%. The absolute structure could not be established with confidence (flack x
parameter 0.3(4)).

Full details of the data collection and refinement and tables of atomic coordinates, bond lengths
and angles, and torsion angles have been deposited with the Cambridge Crystallographic Data Centre
(CCDC 1483750).

3.4. Amino Acids Analysis of Acidic Hydrolysate of Sartoryglabramide A (5) and Sartoryglabramide B (6)

3.4.1. Acid Hydrolysis

The stereochemistry of the amino acids was determined by analysis of the acidic hydrolysate from
5 and 6. Compound 5 or 6 (5.0 mg) was dissolved in 6 N HCl (5 mL) and heated at 110 ˝C, in a furnace,
for 24 h in a sealed glass tube. After cooling to room temperature, the solution was dried under N2

for 24 h, reconstituted in MeOH for HPLC-MS (200 µL), filtered through a 4 mm PTFE Syringe Filter
F2504-4 of 0.2 µm pore size (Thermo Scientific, Mumbai, India), and then analyzed by HPLC equipped
with a chiral column.

3.4.2. Chiral HPLC Analysis

The HPLC system consisted of Shimadzu LC-20AD pump, equipped with a Shimadzu DGV-20A5
degasser, a Rheodyne 7725i injector fitted with a 20 µL loop, and a SPD-M20A DAD detector (Kyoto,
Japan). Data acquisition was performed using Shimadzu LCMS Lab Solutions software, version
3.50 SP2. The chiral column used in this study was Chirobiotic T (15 cm ˆ 4.6 mm I.D., particle size
5 µm) manufactured by ASTEC (Whippany, NJ, USA). The mobile phase composition was MeOH:
H2O (80:20 v/v), all were LC-MS grade solvents obtained from Sigma-Aldrich Co. (St. Louis, MO,
USA). The flow rate was 1.0 mL/min and the UV detection wavelength was 210 nm. Analyses were
performed at room temperature in an isocratic mode. All standards of pure amino acid enantiomers
were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). The elution order of the enantiomers
of all the standards amino acids was confirmed by injecting the solutions of enantiomeric mixtures,
and then each enantiomer separately. Working solutions of single enantiomeric amino acids were
prepared by dissolution in MeOH at the concentration of 1 mg/mL (10 µL sample injection), while
the enantiomeric mixtures were prepared by mixing equal aliquots of each enantiomer (20 µL sample
injection). Mix HPLC analyses of the acidic hydrolysate with standard amino acids (co-injection)
confirmed the stereochemistry of the amino acids of 5 and 6.

3.4.3. Molecular Mechanics Conformation Analysis of Fellutanine A Epoxide (8)

Molecular simulations for structure 8 were carried out in ChemBio3D Ultra 14 (Perkin-Elmerm,
Waltham, MA, USA). Stochastic and dihedral driver conformational search, with MMFF force
field energy minimization, was done for both S/S and R/R isomers of 8, followed by ab initio
RHF/6-21G energy re-minimization of the lowest energy conformations using CS GAMESS interfaced
by ChemBio3D. The PCM solvent model for DMSO was used on the ab initio minimizations.

4. Conclusions

Although there are few reports of the constituents of N. glabra, this is the first study of the
secondary metabolites from the marine-derived strain of this fungus. It is interesting to point out that
even though some common fungal metabolites previously isolated from other members of this and
related genera, such as ergosta-4,6,8 (14), 22-tetraen-3-one, ergosterol 5,8-endoperoxide, helvolic acid,
aszonalenin, takakiamide, (3R)-3-(1H-indol-3-ylmethyl)-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione
(2) and fellutanine A (7), compound 4 was only described as a synthetic intermediate obtained by
cyclocondensation of L-proline with isatoic acid anhydride [12]. Moreover, this is the first report on
isolation of the cyclopeptides (sartoryglabramides A and B) from the genus Neosartorya. In addition,
despite the fact that compounds 1–8 did not exhibit antimicrobial activities in our assay protocols,
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it does not mean that they do not possess any other relevant biological activities. It is also worth
mentioning that several cyclopeptides have been shown to possess antifungal and antibacterial
activities, however, their potencies depend on the stereochemical configurations of the amino acids
constituents [23]. Therefore, it is not surprising that the stereochemistry of the amino acids constituents
of both sartoryglabramides A (5) and B (6) could play an important role in their (lack of) antimicrobial
activities. Therefore, it is necessary to further examine the isolated metabolites in other target-based
assay protocols.

Supplementary Materials: The supplementary materials are available online at www.mdpi.com/1660-3397/14/
7/136/s1.
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a b s t r a c t

Five previously undescribed metabolites, including acetylquestinol, two prenylated indole 3-
carbaldehyde derivatives, an anthranilic acid derivative and an isochromone derivative, were isolated,
in addition to eleven known compounds: palmitic acid, ergosterol 5,8-endoperoxide, emodin, physcion,
questin, questinol, (11S, 14R)-cyclo(tryptophylvalyl), preechinulin, neoechinulin E, echinulin and euro-
cristatine, from the culture of the endophytic fungus Eurotium chevalieri KUFA 0006. The structures of the
previously undescribed compounds were established based on an extensive 1D and 2D NMR spectral
analysis as well as HRMS and IR data. In case of 2-(2, 2-dimethylcyclopropyl)-1H-indole-3-carbaldehyde
and 6, 8-dihydroxy-3-(2S-hydroxypropyl)-7-methylisochromone, the absolute configurations of their
stereogenic carbons were established based on comparison of their experimental and calculated ECD
spectra. All the compounds, except for palmitic acid and ergosterol 5, 8-endoperoxide, were evaluated for
their antibacterial and antibiofilm activities against two Gram-positive and two Gram-negative bacteria,
as well as multidrug-resistant isolates from the environment. Emodin not only exhibited moderate
antibacterial activity against the Gram-positive bacteria but also showed strong synergistic association
with oxacillin against MRSA Staphylococcus aureus.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The fungi of the genus Eurotium (Family Trichocomaceae) have
shown to produce a variety of interesting bioactive specialised
metabolites (Smetanina et al., 2007; Li et al., 2008a, 2008b). For this
reason we have previously investigated these metabolites from the
culture of the marine-sponge associated fungus Eurotium cristatum
KUFC 7356 and their in vitro anticancer activity during our research
program of biodiscovery of novel bioactive metabolites from
marine-derived fungi (Almeida et al., 2010; Gomes et al., 2012). On
the other hand, it is well recognized that mangrove-derived
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endophytic fungi are promising sources of structurally unprece-
dented natural products and drug leads with an amazing array of
bioactivities (Debbab et al., 2013). Combining these concepts with
the objective to search for antibiotics from marine-derived fungi,
we have decided to investigate if the endophytic strain of Eurotium
chevalieri L. Mangin, isolated from the mangrove tree, could pro-
duce different specialised metabolites from the previously inves-
tigated soil-derived strain (Kanokmedhakul et al., 2011) as well as
to find new compounds with antibacterial activity. The ethyl ace-
tate extract of E. chevalieri KUFA 0006, isolated from the inner twig
of Rhizophora mucronata Poir, which was collected in the Eastern
Seaboard of Thailand, furnished five previously undescribed me-
tabolites including the anthraquinone derivative acetylquestinol
(1e), two prenylated indole 3-carbaldehydes (2, 3), an anthranilic
acid derivative (4) and an isochromone derivative (5), along with

palmitic acid, ergosterol 5,8-endoperoxide (Cantrell et al., 2001),
four previously described anthraquinones: emodin (1a) (Bao et al.,
2013), physcion (1b) (Anke et al., 1980), questin (1c) (Li et al., 2009),
questinol (1d) (Bao et al., 2013), and the previously reported
diketopiperazine derivatives: echinulin (7c) (Smetanina et al.,
2007), neoechinulin E (7b) (Li et al., 2008a), preechinulin (7a)
(Aoki et al., 2010), (11R, 14S)-3-(1H-indol-3ylmethyl) 6-isopropyl-2,
5-piperazinedione (6) and eurocristatine (8) (Gomes et al., 2012)
(Fig. 1).

All the isolated compounds, except palmitic acid and ergosterol
5, 8-endoperoxide, were tested for their antibacterial activity
against two Gram-positive (Staphylococcus aureus ATCC 25923 and
Enterococcus faecalis ATCC 29212) and two Gram-negative
(Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC
27853) bacteria as well as multidrug-resistant isolates from the

Fig. 1. Specialised metabolites from the culture of Eurotium chevalieri KUFA 0006.
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environment. The tested compounds were also investigated for
their capacity to inhibit biofilm formation in the reference strains of
S. aureus, E. faecalis and E. coli. The potential synergism between the
tested compounds and the clinically used antibiotics was also
evaluated against multidrug-resistant bacteria: methicillin-
resistant S. aureus (MRSA), vancomycin-resistant enterococci
(VRE) and extended-spectrum beta- lactamases E. coli (ESBL).

2. Results and discussion

The structures of palmitic acid, ergosterol 5,8-endoperoxide,
emodin (1a), physcion (1b), questin (1c), questinol (1d), echinulin
(7c), neoechinulin E (7b), preechinulin (7a) and eurocristatine (8)
were elucidated by analysis of their 1H, 13C NMR spectra and HRMS
data, as well as by comparison of their spectral data to those re-
ported in the literature.

Compound 1e was isolated as yellow crystal (mp 101-103 �C)
and its molecular formula was determined as C18H14O7, based on
the (þ)-HRESIMS m/z 343.0814 [MþH]þ (calculated 343.0818),
indicating twelve degrees of unsaturation. The IR spectrum showed
absorption bands for hydroxyl (3442 cm�1), ester (1749 cm�1),
conjugated carbonyl (1631 cm�1) and aromatic (1588 cm�1) groups.
The 13C NMR spectrum exhibited seventeen carbon signals which,
based on DEPTs and HSQC spectra, can be classified as two conju-
gated ketone carbonyls (dC 186.0 and 182.2), one ester carbonyl (dC
170.2), eight quaternary sp2 [dC 163.6, 161.7 (2C), 144.2, 136.7, 132.5,
116.0, 111.8], four methine sp2 (dC 122.3, 116.6, 107.5, 105.3), one
methylene sp3 (dC 64.3), one methoxy (dC 56.3) and one methyl (dC
20.6) groups. The 1H NMR spectrum, together with the COSY
spectrum, exhibited two pairs of meta-coupled aromatic protons at
dH 7.24, d (J ¼ 1.5 Hz)/dH 7.54, d (J ¼ 1.5 Hz) and dH 7.17,
d (J ¼ 2.2 Hz)/dH 6.81, d (J ¼ 2.2 Hz), a broad singlet of a hydrogen-
bonded phenolic hydroxyl at dH 13.38, an aromatic methoxyl
singlet at dH 3.89, a singlet of two magnetically equivalent oxy-
methylene protons at dH 5.15 and a methyl singlet at dH 2.13. The 1H
and 13C NMR general features of 1e suggested that it is a 1,3,6,8-
tetrasubsituted 9,10-anthraquinone, similar to questinol (Bao
et al., 2013). The presence of the acetoxyl group (dH 2.13/dC 20.6;
dC 170.2) together with the higher frequency oxymethylene protons
at dH 5.15 (dC 64.3) led to the conclusion that the structure of 1ewas
acetylquestinol, which was confirmed by the X-ray analysis as
shown in the ORTEP view (Fig. 2). Literature search revealed that,
although questinol was isolated from several sources (Bao et al.,
2013; Yang et al., 2014), this is the first report on isolation of
acetylquestinol.

The concomitant isolation of questinol (1d) and acetylquestinol

(1e) from the ethyl acetate extract of this fungus could raise the
prospect of acetylquestinol (1e) being originated from questinol
(1d) during the extraction process. However, this hypothesis seems
to be improbable since many natural products with the acetoxyl
group have been isolated from many extracts other than ethyl ac-
etate extract. Moreover, the extraction condition is not vigorous
enough to promote a nucleophilic substitution of a strong base
(OMe) of ethyl acetate by a primary hydroxyl group in questinol
(1d). On the contrary, acetyl CoA from the biosynthetic pool is the
most probable acetylating agent.

Compound 2 was isolated as yellow crystal (mp 162e164 �C)
and its molecular formula C14H15NO was determined based on the
(þ)-HRESIMS m/z 214.1236 [MþH]þ (calculated 214.1232), indi-
cating eight degrees of unsaturation. The IR spectrum showed ab-
sorption bands for amine (3242 cm�1), carbonyl (1735 cm�1),
aromatic (1583 cm�1) and olefin (1622 cm�1) groups. The 13C NMR
spectrum (Table 1) exhibited thirteen carbon signals which, in
combination with DEPTs and HSQC spectra, can be categorized as
one aldehyde carbonyl (dC 186.6), four quaternary sp2 (dC 155.0,
133.9, 127.2, 113.9), five methine sp2 (dC 145.0, 123.5, 123.1, 122.0,
111.0), one methylene sp2 (dC 114.0), one quaternary sp3 (dC 39.0)
and two methyl (dC 28.9) groups. The 1H NMR and COSY spectra
(Table 1) revealed the presence of four aromatic protons of a 1, 2-
disubstituted benzene ring at dH 8.37, dd (J ¼ 7.4, 2.0 Hz, H-4), dH
7.38, dd (J ¼ 7.4, 2.0 Hz, H-7), dH 7.27, ddd (J ¼ 7.4, 7.4, 2.0 Hz, H-5)
and dH 7.24, ddd (J ¼ 7.4, 7.4, 2.0 Hz, H-6), three olefinic protons of
the vinyl group at dH 6.24, dd (J ¼ 17.5, 11.0 Hz, H-12), 5.27,
d (J ¼ 11.0 Hz, H-13b), 5.28, d (J ¼ 17.5, Hz, H-13a), in addition to a
singlet of an aldehyde proton at dH 10.49 (H-10), a broad singlet of
NH group at dH 8.96 (NH-1) and a singlet of twomethyl groups at dH
1.68 (Me-14,15). The HMBC spectrum (Table 1) showed correlations
fromH-4 to C-8 (dC 133.9), from H-5 and H-7 to C-9 (dC 127.2), from
H-6 to C-8 as well as from the aldehyde proton (H-10) to C-3 (dC
113.9) and C-9, suggesting the existence of a 3-carbaldehyde indole
moiety. Moreover, the HMBC spectrum also showed correlations
from H-12 to C-11 (dC 39.8), from H-13a/13b and H3-14/15 to C-11
and C-12 (dC 145.0), indicating the presence of the 2-methyl-3-en-
2-yl substituent. As both H-12 and H3-14/15 also showed HMBC
cross peaks to C-2 (dC 155.0), the 2-methyl-3-en-2-yl substituent
was placed on C-2. Taking into account the 1H and 13C chemical
shift values and their correlations, the structure of 2 was estab-
lished as 2-(2-methyl-3-en-2-yl)-1H-indole-3-carbaldehyde. Liter-
ature search revealed that 2 has never been reported previously.

Compound 3 is an isomer of 2 since it has the same molecular
formula (C14H15NO) as 2, as determined by the (þ)-HRESIMS m/z
214.1239 [MþH]þ (calculated 214.1232). The IR spectrum showed

Fig. 2. Ortep view of compound 1e.
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also absorption bands for amine (3252 cm�1), carbonyl
(1768 cm�1), aromatic (1583, 1558 cm�1), and olefin (1633 cm�1)
groups. The general features of the 1H and 13C NMR spectra
(Table 1) of 3 resemble those of 2, revealing the presence of a 1H-
indole-3-carbaldehyde moiety. This suggestion was supported by
the HMBC correlations (Table 1) of the singlet of the aldehyde
proton at dH 10.19 (H-10) to C-3 (dC 116.7) and C-9 (dC 126.2), from
H-4 (dH 8.26, dd, J ¼ 7.5, 2.0 Hz) to C-8 (dC 134.8), from H-5 (dH 7.26,
ddd, J ¼ 7.5, 7.5, 2.0 Hz) and H-7 (dH 7.35, dd, J ¼ 7.5, 2.0 Hz) to C-9
(dC 126.2), and from H-6 (dH 7.23, ddd, J ¼ 7.5, 7.5, 2.0 Hz) to C-8.
That the substituent on C-2was the 2, 2-dimethylcyclopropyl group
was substantiated by the presence of two tertiary methyls (dH 1.32,
s/dC 26.2, Me-14, and dH 0.92, s/dC 21.3, Me-15), one methylene sp3

(dH 1.05, dd, J¼ 5.7, 5.7 Hz and 1.12, dd, J¼ 8.4, 5.1 Hz/dC 19.4, C-12),
one methine proton (dH 2.25, dd, J ¼ 8.4, 5.7 Hz/dC 21.0, C-11) and
one quaternary sp3 carbon (dC 20.8, C-13) as well as by the HMBC
correlations from H3-14 and H3-15 to C-11, from H2-12 to C-2, C-11
and C-14, as well as from H-11 to C-13 and C-14. Therefore, the
structure of 3 was established as (2, 2-dimethylcyclopropyl)-1H-
indole-3-carbaldehyde.

Since 3 was isolated as a yellowish viscous liquid, the stereo-
chemistry of C-11 could not be determined by X-ray analysis.
Therefore, the absolute configuration of C-11 of 3 was determined
by comparison of the experimental electronic circular dichroism
(ECD) spectrum with the calculated ECD spectra. In order to
perform ECD calculations, conformational analysis by dihedral
driver search and MM2 minimization was carried out which
resulted in four main conformations, of which the most populated

is represented in Fig. 3 (11S enantiomer). The other three confor-
mations resulted from rotating the aldehyde and/or the C-2/C-11
bond by 180�. Each conformation was energetically optimized us-
ing APFD/6-311þ G (2d, p) model chemistry and the IEFPCMmodel
of solvation for chloroform. The Gibbs energies thereby obtained
were used to determine the populations of each conformation by
Boltzmannweighing at 298 K (Mori et al., 2006). The conformation
shown in Fig. 3 represents 89.5% of all conformers and was there-
fore solely used to calculate ECD spectra (Fig. 4) for the C-11S
enantiomer, which superimposed on the experimental spectrum.
ECD transitions calculations used the same model chemistry as the
energy minimization but with the time-dependent (TD) method.
The experimentally observed negative Cotton effects (242 nm,
Dε ¼ �1.4 M�1 cm�1 and 280 nm, Dε ¼ �0.7 M�1 cm�1) fit well the
calculated spectrum. Therefore, the absolute configuration of C-11
is determined to be S. To the best of our knowledge, the structure of
3 has not yet been reported so far.

Fig. 3. The most stable conformation of 3 (C-11S), representing a fraction of around
90% of all four main conformations. In this visualization, the aldehyde is the nearest
group and the rings are viewed from below.

Fig. 4. Experimental (solid, left axis) and simulated (dotted, right axis) ECD spectra of
3 (C-11S) in chloroform. A line broadening of 0.4 eV was applied to calculated rotatory
strengths. The experimental data exhibit two minima around 242 nm
(Dε ¼ �1.4 M�1 cm�1) and 280 nm (Dε ¼ �0.7 M�1 cm�1) that are well matched by the
calculated data.

Table 1
1H and 13C NMR (CDCl3, 300.13 MHz and 75.4 MHz) of 2 and 3.

Position 2 3

dC, type dH, (J in Hz) COSY HMBC dC, type dH, (J in Hz) COSY HMBC

1 e 8.96, brs e e e 8.91, s e

2 155.0, C e 150.6, C e

3 113.9, C e 116.7, C e

4 122.0, CH 8.37, dd (7.4, 2.0) H-5 C-6, 8 121.2, CH 8.26, dd (7.5, 2.0) H-5 C-6, 8
5 123.1, CH 7.27, ddd (7.4, 7.4, 2.0) H-4, 6 C-7, 9 122.9, CH 7.26, ddd (7.5, 7.5, 2.0) H-4, 6 C-7, 9
6 123.5, CH 7.24, ddd (7.4, 7.4, 2.0) H-5, 7 C-4, 8 123.5, CH 7.23, ddd (7.5, 7.5, 2.0) H-5, 7 C-4, 8
7 111.0, CH 7.38, dd (7.4, 2.0) H-6 C-5, 9 111.0, CH 7.35, dd (7.5, 2.0) H-6 C-5, 9
8 133.9, C e 134.8, C e

9 127.2, C e 126.2, C e

10 186.6, CHO 10.49, s e C-3, 9 185.4, CHO 10.19, s C-3, 9
11 39.8, C e 21.0, CH 2.25, dd (8.4, 5.9) H-12a, 12b C-13, 14, 15
12a 145.0, CH 6.24, dd (17.5, 11.0) H-13a, 13b C-2, 11 19.4, CH2 1.12, dd (8.4, 5.1) H-11, 12b C-2, 11
b e 1.05, dd (5.7, 5.7) H-11, 12a C-2, 11, 14
13a 114.0, CH2 5.27, d (11.0) H-12 C-11, 12 20.8, C e

b 5.28, d (17.5) H-12 C-11, 12
14 28.9, CH3 1.68, s e C-2, 11, 12, 15 26.2, CH3 1.32, s C-11, 15
15 28.9, CH3 1.68, s e C-2, 11, 12, 14 21.3, CH3 0.92, s C-11, 15

W.W. May Zin et al. / Phytochemistry 141 (2017) 86e97 89



Compound 4 was also isolated as yellow viscous liquid. The
(þ)-HRESIMS exhibited the m/z at 234.1132 (M þ H)þ, corre-
sponding to C13H16NO3 (calculated 234.1130). Therefore, the mo-
lecular formula of 4 is C13H15NO3, indicating seven degree of
unsaturation. The IR spectrum showed absorption bands for amine
(3421 cm�1), hydroxyl (3253 cm�1), conjugated carbonyl
(1696 cm�1), amide carbonyl (1670 cm�1), aromatic (1606,
1586 cm�1) and olefin (1636 cm�1) groups. The 13C NMR spectrum
(Table 2) exhibited twelve carbon signals which can be classified,
according to DEPTs and HSQC spectra, as two carbonyl (dC 174.4 and
169.9), two quaternary sp2 (dC 141.2, 116.4), five methine sp2 (dC
142.5, 133.9, 131.2, 122.4, 119.4), one methylene sp2 (dC 114.4), one
quaternary sp3 (dC 46.3) and two tertiary methyl (dC 24.4) groups.
The 1H NMR spectrum (Table 2), in combination with COSY and
HSQC spectra, exhibited the signals of aromatic protons of the 1, 2-
disubsituted benzene ring at dH 8.60, d (J ¼ 7.8 Hz, H-3; dC 119.4),
8.00, dd (J ¼ 7.8, 1.5 Hz, H-6; dC 131.2), 7.57, ddd (J ¼ 7.8, 7.8, 1.5 Hz,
H-4; dC 133.9), 7.13, ddd (J ¼ 7.8, 7.8, 1.5 Hz, H-5; dC 122.4), three
vinyl proton signals at dH 6.09, dd (J ¼ 17.4, 10.6 Hz, H-3’; dC 142.5),
5.27, d (J¼ 17.4 Hz, H-4'a; dC 114.4) and 5.22, d (J¼ 10.6 Hz, H-4'b; dC
114.4) and a methyl singlet at dH 1.32 (Me-50, 60, dC 24.4), in addition
to a broad singlet of the hydroxyl group at dH 11.55. The HMBC
spectrum (Table 2), exhibited correlations from the methyl singlet
of Me-5’/60 to the quaternary sp3 carbon at dC 46.3 (C-20), the
olefinic carbon at dC 142.5 (C-30) and the carbonyl carbon at dC 174.4
(C-10), from H-4'a and H-4'b to C-20 and C-30, as well as fromH-30 to
C-20 and C-5’/60, revealing the existence of a 2, 2-dimethylbut-3-
enoyl moiety. Additionally, the HMBC spectrum also exhibited
correlations from H-6 to C-2 (dC 141.2) and C-7 (dC 169.9), and from
H-3 to C-1 (dC 116.4), confirming the presence of the anthranilic
acid moiety. Taking together the NMR data and its molecular for-
mula, the structure of 4 was established as 2[(2, 2-dimethylbut-3-
enoyl)amino]benzoic acid. Literature search revealed that 4 has
never been previously reported.

Compound 5 was also isolated as yellow viscous liquid and its
molecular formula C13H14O5 was determined based on the
(þ)-HRESIMS m/z 251.0900 [MþH]þ (calculated 251.0919), indi-
cating seven degrees of unsaturation. The IR spectrum showed
absorption bands for hydroxyl (3443 cm�1), a conjugated ester
carbonyl (1671 cm�1), aromatic (1540, 1507 cm�1) and olefin

(1623 cm�1) groups. The 13C NMR spectrum (Table 2) exhibited
thirteen carbon signals which can be categorized, according to the
DEPTs and HSQC spectra, into one conjugated ester carbonyl (dC
166.2), six quaternary sp2 (dC 163.6, 159.9, 154.5, 136.4, 109.7, 97.8),
three of which are oxygen bearing, two methine sp2 (dC 105.4 and
101.5), one oxygen bearing methine sp3 (dC 64.0), one methylene
sp3 (dC 42.6), and two methyl (dC 23.4 and dC 8.0) groups. The 1H
NMR spectrum (Table 2) revealed the presence of two phenolic
hydroxyl groups (dH 11.31, s and 10.83, brs), one of which is
hydrogen-bonded (dH 11.31, s), one aromatic (dH 6.44, s; dC 101.5, s),
one olefinic (dH 6.48, s; dC 105.3, s), one secondary hydroxyl (dH
4.80, d, J¼ 4.5 Hz), one oxygen-bearing methine multiplet (dH 3.98;
dH 64.0), one methylene multiplet (dH 2.52; dC 42.6), one tertiary
methyl (dH 2.01, s, dC 8.0) and one secondary methyl (dH 1.13, d,
J ¼ 6.2 Hz; dC 23.4) groups. That 5 was a 6, 8-dihydroxy-7-methyl
isochromone derivative was corroborated by HMBC correlations
(Table 2) from the hydrogen-bonded phenolic hydroxyl at dH 11.31, s
(OH-8) to the aromatic carbons at dC159.9 (C-8), 97.8 (C-8a), 109.7
(C-7), from the tertiary methyl singlet at dH 2.01, s (H3-9) to C-7, C-8
and C-6 (dC163.6), from the singlet at dH 6.44 (H-5) to C-6, C-7, C-8a
and C-4 (dC105.3), and from the singlet at dH 6.48, s (H-4) to C-5
(dC101.5), C-8a and C-3 (dC154.5). The presence of the 2-
hydroxypropyl moiety was substantiated by COSY correlations
from the methylene multiplet at dH 2.52 (H2-10) to the hydrox-
ymethine multiplet at dH 3.98 (H2-20), from the secondary methyl
doublet at dH 1.13 (J¼ 6.2 Hz, H3-30) to H2-20, as well as by the HMBC
correlations (Table 2) from the hydroxyl doublet at dH 4.80
(J ¼ 4.5 Hz, OH-20) to C-1’ (dC 42.6), C-2’ (dC 64.0), CH3-3’ (dC 23.4),
from H3-30 to C-1’. That the 2-hydroxypropyl substituent was on C-
3 of the isochromone nucleus was supported by the HMBC corre-
lations from H-4 to C-10 as well as from H-1’ to C-3 and C-4.
Therefore, the structure of 5 was established as 6, 8-dihydroxy-3-
(2-hydroxypropyl)-7-methyl-1H-isochromen-1-one.

Since 5 could not be obtained as a suitable crystal for X-ray
analysis, the absolute configuration of C-20 was established by
comparison of the calculated and experimental ECD spectra.
Conformational analysis of 5 by dihedral driver search and MM2
minimization resulted in eighteen main conformations, and the
most populated conformation is represented in Fig. 5. The other
seventeen conformations resulted from rotating the C-3’/C-20, C-1’/

Table 2
1H and 13C NMR (DMSO, 300.13 MHz and 75.4 MHz) and HMBC assignment for 4 and 5.

Position 4 5

dC, type dH, (J in Hz) COSY HMBC dC, type dH, (J in Hz) COSY HMBC

1 116.4, C e 166.2, CO e

2 141.2, C e e

3 119.4 CH 8.60, d (7.8) H-4 C-1, 5 154.5, C e

4 133.9, CH 7.57, ddd (7.8, 7.8, 1.5) H-3, 5 C-2, 6 105.3, CH 6.48, s e C-3, 5, 8a, 10

4a e e 136.4, C e

5 122.4, CH 7.13, ddd (7.8, 7.8, 1.5) H-4, 6 C-1, 3 101.5, CH 6.44, s C-4, 6, 7, 8a
6 131.2, CH 8.00, dd (7.8, 1.5) H-5 C-2, 4, 7 163.6, C e

7 169.9, CO e 109.7, C e

8 e 159.9, C e

8a e 97.8, C e

9 e 8.0, CH3 2.01, s e C-6, 7, 8
10 174.4, CO e 42.6, CH2 2.51, m H-20 C-3, 4, 20

20 46.3, C e 64.0, CH 3.98, m OH-20 , H3-30

30 142.5, CH 6.09, dd (17.4, 10.6) H-4'a, 4'b C-20 , 50 , 60 23.4, CH3 1.13, d (6.2) H-20 C-10 , 20

4'a 114.4, CH2 5.27, d (17.4) H-30 C-20 , 30

b 5.22, d (10.6) H-30 C-20 , 30

50 24.4, CH3 1.32, s e C-10 , 20 , 30 , 60

60 24.4, CH3 1.32, s e C-10 , 20 , 30 , 50

OH-6 e 10.83, brs e C-6, 7
HO-7 e 11.55, brs
OH-8 e 11.31, s e C-7, 8, 8a
OH-20 e 4.80, d (4.5) H-20 C-10 , 20 , 30
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C-20 and C-2’/OH bonds by 180�, 120� and 120� steps, respectively.
Each conformation was energetically optimized in Gaussian using
APFD/6-311 þ G(2d,p) model chemistry and IEFPCM model of sol-
vation for methanol. The Gibbs energies thereby obtained were
used to determine the populations of each conformation by
Boltzmannweighing of the energies at 298 K (Mori et al., 2006). The
ECD transitions for each conformation were calculated also in
Gaussian using the same model chemistry as the energy minimi-
zation but with the time-dependent (TD) method. Line broadening
was performed for the eighteen sets of transitions and a weighted
sum enabled to obtain the calculated spectrum in Fig. 6. As can be
seen, the experimentally obtained ECD spectrum, with negative
Cotton effects (217 nm, Dε ¼ �2.3 M�1 cm�1), also in Fig. 6, fits well
the calculated spectrum. Therefore, the absolute configuration of C-
20 is 20S. To the best of our knowledge, 5 is a new natural product.

Finally, compound 6 was isolated as white crystal (mp 270-
271 �C). Analysis of the 1H, 13C NMR and (þ)-HRESIMS data allowed
to establish its structure as 3-(1H-indol-3-yethyl)-6-isopropyl-2,5-
piperazinedione or cyclo(tryptophylvalyl). Literature survey
revealed that both 11S, 14R and 11S, 14S forms have been previously
reported. While the 11S, 14R form [mp 278-280 �C; [a]D �15 (c ¼ 1,
DMF)] was isolated from Aspergillus chevalieri, the 11S, 14S form
[mp 294e298 �C; [a]D �98 (c ¼ 1, DMF)] was reported from Phoma
lingam (Blunt and Munro, 2007). Since the specific rotation of 6,
determined in acetone, was levorotatory ([a]D �187, c ¼ 0.02,

acetone), it was not possible to determine unequivocally the ab-
solute configuration of C-11 and C-14. However, since 6 was ob-
tained in a suitable crystal, an X-ray diffraction was performed. The
ORTEP view of 6 (Fig. 7) showed clearly that the absolute config-
uration of C-11 and C-14 are 11S and 14R, respectively.

Biosynthetically, compounds 1e8 are derived from different
biosynthetic pathways. The biosynthesis of the prenylated indole
derivatives, including diketopiperazine derivatives, has been
reviewed by Li (2010).

The previously undescribed prenylated indole derivatives 2 and
3 are proposed to derive from L-tryptophan as shown in Fig. 8.

Oxidative deamination of L-Trp produces indole pyruvic acid (I)
which, after oxidative decarboxylation, gives rise to indole acetal-
dehyde (II). Oxidation of indole acetaldehyde (II) gives indole acetic
acid (III) which, after oxidative decarboxylation, leads to a forma-
tion of indole 3-carbaldehyde (IV). Prenylation of IV by different
prenyltransferase enzymes gives rise to the reverse prenylated
indole 3-carbaldehyde (2) and the prenylated 3-carbaldehyde (V).
Cyclization of the prenyl sidechain of V leads to a formation of 3.

The biosynthesis of anthraquinones has been extensively
investigated and recently reviewed (Fouillaud et al., 2016). The
biogenesis of 5, from the acetate pathway, is summarized in Fig. 9.
Condensation of acetyl CoA (VI) with five units of malonyl CoA (VII)
gives a hexaketide intermediate (VIII) which, after cyclization and
methylation (by SAM), forms an intermediate IX. Enolization of IX
leads to a formation of an isochromone (X) which, after stereo-
specific reduction of the ketone function in the side chain, gives rise
to 5.

Compounds 1e8 (Fig. 1) were tested for their antibacterial ac-
tivity against Gram-positive and Gram-negative bacteria, and their
minimum inhibitory concentration (MIC) for the reference strains
and environmental multidrug-resistant isolates were determined.
In the range of concentrations tested, only emodin (1a) exhibited

Fig. 5. Most stable conformation of 5 (C-20S), representing a fraction of around 35% of all the 18 conformations considered. The next most stable conformation represents a fraction
of around 13% of all conformations and is obtained by rotating the hydroxyl group in C-20 120� towards the viewer. In this visualization, the carbonyl group points away from the
viewer and the rings are viewed diagonally from above.

Fig. 6. Experimental (solid, right axis) and simulated (dotted, left axis) ECD spectra of
5 (C-20S) in methanol. The calculated spectral line results from the Boltzmann
weighing of rotatory strengths of all 18 conformations of the compound with a
gaussian line broadening of 0.3 eV. The experimental data exhibit a negative, deep
minimum at 217 nm (Dε ¼ �2.3 M�1 cm�1) and two smaller positive maxima at
260 nm (Dε ¼ 0.8 M�1 cm�1) and 295 nm (Dε ¼ 0.7 M�1 cm�1) that are well matched
by the calculated data. Fig. 7. Ortep view of 6.
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antibacterial activity against Gram-positive bacteria, with MIC
values of 32 and 64 mg/mL for S. aureus ATCC 25923 and E. faecalis
ATCC 29212, respectively (Table 3). None of the compounds were

active against either Gram-negative bacteria or methicillin-
resistant S. aureus (MRSA) and vancomycin-resistant enterococci
(VRE). Since emodin (1a) did not exhibit the bactericidal effect

Fig. 8. Proposed biogenesis of 2 and 3.

Fig. 9. Proposed biogenesis of 5.

W.W. May Zin et al. / Phytochemistry 141 (2017) 86e9792



against any of the tested strains, its minimum bactericidal con-
centration (MBC) was not determined.

The efficacy of 1e8 in preventing biofilm formation was also
evaluated in the reference strains. Compounds that showed a sta-
tistically significant reduction (one sample t-test) of biofilm for-
mation are shown in Table 4. For emodin (1a), three concentrations,
i.e. 2 x MIC, MIC and ½ x MIC, were tested against S. aureus ATCC
25923. For the rest of the compounds, the highest concentration
that did not inhibit bacterial growth was used since it was not
possible to determine their MIC. Questinol (1d), acetylquestinol
(1e), 3, 5, 6, 7b and 8were found to cause a significant reduction in
biofilm production by E. coli ATCC 25922. On the other hand,
emodin (1a), physcion (1b), 2 and 3 showed inhibition of biofilm
production in S. aureus ATCC 25923. Emodin (1a) not only showed
maximum inhibitory effects but also interfered with the biofilm
production even at the sub-inhibitory concentration. Interestingly,
3, which is the most effective in inhibiting biofilm formation in
E. coli ATCC 25922, also caused nearly 80% reduction of the biofilm
production in S. aureus ATCC 25923. On the other hand, only
physcion (1b) causes a reduction of biofilm formation in E. faecalis
ATCC 29212.

Compounds 1e8 were also investigated for their potential syn-
ergy with clinically relevant antibiotics on the multidrug-resistant
isolates by a disk diffusion method. The results revealed that some
of the tested compounds exhibited a small to moderate synergistic
association with antibiotics, depending on the multidrug-resistant
strain. When tested alone, none of the compounds showed inhi-
bition against the three multidrug-resistant strains. However, in
combination with cefotaxime (CTX) in the impregnated disks,
emodin (1a), physcion (1b), questinol (1d), 2, 5, 7b and 7c produced
a small synergistic association as evidenced by a small increase in
the inhibition zone when compared with the halo of inhibition
produced by CTX alone in the ESBL E. coli strain SA/2. On the other
hand, all the compounds induced a weak or moderate increase in
the halo of partial inhibition of vancomycin (VAN) in VRE E. faecalis
B3/101, when comparedwith VAN alone. Interestingly, only emodin

(1a) produced a synergistic effect with oxacillin (OX) against MRSA
S. aureus 66/1, increasing the halo of inhibition zone from zero
(when treated with OX alone) to 11 mm when tested in combina-
tion. These results were also confirmed by determining the MICs of
each antibiotic for the respective strain, in the presence of a fixed
concentration (the highest concentration that did not inhibit the
growth of the three multidrug-resistant strains) of each compound.
The combination of CTX with 7c resulted in a four-fold decrease in
the MIC of CTX, i.e. from 256 mg/mL of CTX alone to 64 mg/mL of the
combination, when tested against ESBL E. coli SA/2. The combina-
tion of VANwith emodin (1a) resulted in a four-fold decrease (from
512 mg/mL to 128 mg/mL) in MIC of VAN against VRE E. faecalis B3/
101 when compared to VAN alone. Contrary to what was observed
by the disk diffusion method, the combination of OX with emodin
(1a) against the MRSA S. aureus 66/1 did not result in a decrease in
the MIC of OX.

3. Conclusions

The culture of the endophytic strain E. chevalieri KUFA 0006,
isolated from the twig of the mangrove plant Rhizophora mucronata
Poir., was found to produce different secondary metabolites from
those previously reported from the soil-derived strain of
E. chevalieri. Besides polyhydroxy anthraquinones and diketopi-
perazine derivatives, which were commonly isolated from other
species of Eurotium, two new prenylated indole 3-carbaldehydes, a
new isochromone derivative and a new anthranilic acid derivative
were isolated from this endophytic strain, however, no mer-
oditerpenes were detected. Except for emodin (1a), neither of the
isolated metabolites exhibited antibacterial activity against the
reference strains of Gram-positive (Staphylococcus aureus ATCC
25923 and Enterococcus faecalis ATCC 29212) and Gram-negative
(Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC
27853) bacteria as well as multidrug-resistant isolates from the
environment. Interestingly, some of these compounds have a ca-
pacity to inhibit biofilm formation in S. aureus ATCC 25923 (Gram-

Table 3
Antimicrobial activity, expressed in mg/mL, of emodin (1a) against reference strains and multidrug-resistant isolates.

E. coli
ATCC 25922

P. aeruginosa
ATCC 27853

E. faecalis
ATCC 29212

S. aureus
ATCC 25923

E. coli SA/2
(ESBL)

E. faecalis
B3/101 (VRE)

S. aureus
66/1 (MRSA)

MIC >64 >64 64 32 >64 >64 >64
MBC >64 >64 >64 >64 >64 >64 >64

MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration; ESBL, extended- spectrum beta-lactamases; VRE, vancomycin-resistant enterococci;
MRSA, methicillin-resistant Staphylococcus aureus.

Table 4
Percentage of biofilm formation for compounds that showed antibiofilm activity, after 24 h incubation.

Compound Concentration (mg/mL) Biofilm biomass (% of control)

E. coli ATCC 25922 E. faecalis ATCC 29212 S. aureus ATCC 25923

CTX 0.031 1.0 ± 1.4*** (MIC) e e

1a 64 e e 15.4 ± 20.4* (2XMIC)
1a 32 e e 21.1 ± 30.2* (MIC)
1a 16 e e 74.5 ± 2.6* (1/2 MIC)
1b 16 e 39.1 ± 16.0* 60.3 ± 27.9*
1d 64 56.1 ± 14.3* e e

1e 64 50.6 ± 17.6* e e

2 64 e e 21.1 ± 11.5**
3 64 23.7 ± 24.8* e 21.8 ± 18.9*
5 64 57.6 ± 8.1* e e

6 64 59.6 ± 16.2* e e

7b 64 54.0 ± 17.4* e e

8 64 67.1 ± 10.2* e e

Data are shown as Mean ± SD of 3 independent experiments. One-sample t-test: *p < 0.05 and **p < 0.01, significantly different from 100%.
MIC, minimum inhibitory concentration.
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positive) and E. coli ATCC 25922 (Gram-negative). Moreover, all of
the tested metabolites also exhibited synergistic association with
vancomycin against the multidrug-resistant VRE E. faecalis B3/101.
In particular, the anthraquinones emodin (1a) and physcion (1b),
and the two new prenylated indole carbaldehydes (2 and 3) are
found to significantly inhibit the production of biofilm in S. aureus
ATCC 25923. Additionally, emodin (1a) also showed strong syner-
gism with the antibiotic oxacillin against the MRSA S. aureus 66/1.
Therefore, fungal anthraquinones can represent an interesting
group of compounds for further development as arsenal against
multidrug-resistant bacteria.

4. Experimental section

4.1. General experimental procedures

Melting points were determined on a Bock monoscope and are
uncorrected. Optical rotations were measured on an ADP410
Polarimeter (Bellinghamþ Stanley Ltd., TunbridgeWells, Kent, UK).
Infrared spectra were recorded in a KBr microplate in a FTIR spec-
trometer Nicolet iS10 from Thermo Scientific (Waltham, MA, USA)
with Smart OMNI-Transmission accessory (Software 188 OMNIC
8.3). 1H and 13C NMR spectra were recorded at ambient tempera-
ture on a Bruker AMC instrument (Bruker Biosciences Corporation,
Billerica, MA, USA) operating at 300.13 and 75.4 MHz, respectively.
High resolution mass spectra were measured with a Waters Xevo
QToF mass spectrometer (Waters Corporations, Milford, MA, USA)
coupled to a Waters Aquity UPLC system. A Merck (Darmstadt,
Germany) silica gel GF254 was used for preparative TLC, and aMerck
Si gel 60 (0.2e0.5 mm) was used for column chromatography.

4.2. Fungal material

The strain KUFA 0006 was isolated from a healthy twig of Rhi-
zophora mucronata Poir., which was collected at Kung Krabaen Bay
Royal Development Study Center (altitude 12º31107.9200 N,
101º54001.0600E), Chanthaburi Province, Eastern Thailand, in July
2010. The twig was washed with running tap water, air died in a
laminar hood, cut into pieces of 1 cm and then sterilized with 70%
ethanol for 5min, followed by sterile distilled water for three times.
The surface of sterilized twig was blotted dry on a sterilized filter
paper under aseptic condition, and transversely cut to 1e2 mm
slices using a sterile razor blade, and then placed in Petri dishes
containing potato dextrose agar (PDA) amended with streptomycin
sulphate (300 mg/L). The dishes were incubated at room temper-
ature and the mycelia emerged from plant tissues were observed
daily. The hyphal tips of the mycelia were then transferred to PDA
slants using a sterile needle and maintained as pure culture for
further identification. The fungus was identified as Eurotium che-
valieri L. Mangin (Family Trichocomaceae) on the basis of
morphological characteristics such as colony growth rate and
growth pattern on standard media, namely Czapek's agar, Czapek
yeast autolysate agar and malt extract agar as well as on the
microscopic characteristics including size, shape and ornamenta-
tion of ascospores observed under light and scanning electron
microscopes. The identification was also confirmed by molecular
techniques. The internal transcribed spacer (ITS) region of rRNA of
the fungus was amplified using ITS primers (ITS 1 and ITS 4) as
described previously by us (May Zin et al., 2015). Its gene sequence
was deposited at GenBank with the accession number KX431211,
and the pure cultures were deposited at Kasetsart University Fungal
Collection, Department of Plant Pathology, Faculty of Agriculture,
Kasetsart University, Bangkok, Thailand.

4.3. Extraction and isolation

Forty 1000 mL Erlenmeyer flasks, each containing 200 g of
cooked white rice and 100 mL of water containing 20% sucrose,
were autoclaved at 121 �C for 15 min and then inoculated with ten
mycelial plugs of E. chevalieri KUFA 0006, and incubated at 28 �C for
40 days. Each flask, containing themoulded rice, was added 500mL
of EtOAc and the content was left to macerate for 7 days and then
filtered. The EtOAc solution was concentrated under reduced
pressure to yield 79 g of dark brown viscous mass of crude EtOAc
extract which was dissolved in 1000 mL of CHCl3, and then washed
with H2O (3 � 500 mL). The organic layers were combined and
dried with anhydrous Na2SO4, filtered and evaporated under
reduced pressure to give 75 g of the crude chloroform extract,
which was applied on a column of silica gel (770 g), and eluted with
mixtures of petrol-CHCl3 and CHCl3-Me2CO, wherein 250 mL frac-
tions were collected as follows: Frs 1e450 (petrol-CHCl3, 1:1),
451e518 (petrol-CHCl3, 3:7), 519e726 (petrol-CHCl3, 1:9),
727e1000 (CHCl3-Me2CO, 9:1), 1001e1192 (CHCl3-Me2CO, 7:3). Frs
72e85 were combined (605.5 mg) and recrystallized in MeOH to
give 27.3 mg of physcion (1b)(Anke et al., 1980). Frs 250e294 were
combined (919.1 mg) and precipitated in MeOH to give 31.3 mg of
palmatic acid. Frs 365e368 were combined (94.3 mg) and precip-
itated in petroleum ether to give 10.7 mg of 2-(2-methyl-3-en-2-
yl)-1H-indole-3-carbaldehyde (2). Frs 369e398 were combined
(453.6 mg) and purified by TLC (Silica gel G254, CHCl3-Me2CO-
HCO2H 9.5:0.5:0.01) to give 10.6 mg of ergosterol 5, 8-
endoperoxide (Cantrell et al., 2001). Frs 652e708 were combined
(157.0 mg) and purified by TLC (Silica gel G254, CHCl3-Me2CO-
HCO2H 9.5:0.5:0.01) to give 25.1 mg of 2-(2, 2-
dimethylcyclopropyl)-1H-indole-3-carbaldehyde (3). Frs 734e738
were combined (166.2 mg) and applied on a Sephadex LH-20 col-
umn (10 g) and eluted with MeOH and a mixture with
MeOH:CH2Cl2 (1:1), wherein 20 mL subfractions (sfrs) were
collected as follows: Sfrs 1e56 (MeOH) and 57e68 (MeOH:CH2Cl2,
1:1). Sfrs 48e56 were combined (15.0 mg) and purified by TLC
(Silica gel G254, CHCl3-Me2CO-HCO2H 9.5:0.5:0.01) to give 10.2 mg
of emodin (1a) (Bao et al., 2013). Frs 756e770 were combined
(155.7 mg) and applied on a Sephadex LH-20 column (10 g) and
eluted with MeOH, wherein 60 subfractions of 20 mL were
collected. Sfrs 42e60 were combined (28.2 mg) and purified by TLC
(Silica gel G254, CHCl3-Me2CO-HCO2H 9:1:0.01) to give 23.3 mg of
questin (1c) (Li et al., 2009). Frs 801e815were combined (371.5mg)
and applied on a Sephadex LH-20 column (10 g) and eluted with
MeOHwherein 68 subfractions of 20mLwere collected. Sfrs 34e48
were combined (29.4 mg) and purified by TLC (Silica gel G254,
CHCl3-Me2CO-HCO2H 9:1:0.01) to give 23.8 mg of acetylquestinol
(1e). Frs 860e874 were combined (59.8 mg) and purified by TLC
(Silica gel G254, CHCl3-Me2CO-HCO2H 9:1:0.01) to give 10 mg of 2
[(2, 2-dimethylbut-3-enoyl)amino]benzoic acid (4), 10.2 mg of
echinulin (7c) (Smetanina et al., 2007) and 38.2 mg of neoechinulin
E (7b) (Li et al., 2008a). Frs 919e945were combined (439.1 mg) and
purified by TLC (Silica gel G254 CHCl3-Me2CO-HCO2H 9.5:0.5:0.01)
to give 10 mg of 6, 8-dihydroxy-3-(2S-hydroxypropyl)-7-methyl-
1H-isochromen-1-one (5). Frs 1004e1010 were combined
(456.9 mg) and purified by TLC (Silica gel G254, CHCl3-MeOH-
HCO2H 9.5:0.5:0.01) to give 23.3 mg of questinol (1d) (Bao et al.,
2013). Frs 1032e1049 were combined (1.34 g) and applied on a
Sephadex LH-20 column (10 g) and eluted with MeOH: CH2Cl2
(1:1), wherein 73 subfractions of 20 mL were collected. Sfrs 29e42
were combined (84.4 mg) and purified by TLC (Silica gel G254,
CHCl3-MeOH-HCO2H 9.5:0.5:0.01) to give 11.9 mg of eurocristatine
(8) (Gomes et al., 2012), 15.1 mg of preechinulin (7a) (Aoki et al.,
2010) and 20.3 mg of (11S, 14R) - 3-(1H-indol-3ylmethyl) 6-
isopropyl-2, 5-piperazinedione (6).
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Acetylquestinol (1e). Yellow crystal; mp 101e103 �C; IR (KBr)
ymax 3442, 2922, 1749, 1631, 1588, 1466, 1379, 1352, 1264 cm�1; 1H
NMR (DMSO, 300.13 MHz): 13.38, brs (OH-1), 7.54, d (J ¼ 1.5 Hz; H-
4), 7.24, d (J ¼ 1.5 Hz; H-2), 7.17, d (J ¼ 2.2 Hz; H-5), 6.81,
d (J ¼ 2.2 Hz; H-7), 5.15, s (H2-11), 3.89, s (OMe), 2.13, s (CH3, OAc);
13C NMR (DMSO, 75.4 MHz): 186.0 (C-9), 182.2 (C-10), 170.2 (CO,
OAc), 163.6 (C-8), 161.7 (C-1), 161.1 (C-6), 144.2 (C-3), 136.7 (C-10a),
132.5 (C-4a), 122.3 (C-2), 116.0 (C-9a), 111.8 (C-8a), 107.5 (C-5), 105.3
(C-7), 64.3 (C-11), 56.3 (OMe), 20.6 (CH3, OAc); (þ)-HRESIMS m/z
343.0814 [MþH]þ (calcd for C18H15O7, 343.0818).

2-(2-Methyl-3-en-2-yl)-1H-indole-3-carbaldehyde (2). Yellow
crystal; mp 162-164 �C; IR (KBr) ymax 3242, 2972, 2928, 1735, 1622,
1583, 1453, 1381, 1274 cm�1; For 1H and 13C spectroscopic data
(CDCl3, 300.13 and 75.4 MHz), see Table 1; (þ)-HRESIMS m/z
214.1236 [MþH]þ (calcd for C14H16NO, 214.1232).

2-(2, 2-Dimethylcyclopropyl)-1H-indole-3-carbaldehyde (3).
Yellow viscous liquid. [a]20D þ 68 (c 0.04, CHCl3); IR (KBr) ymax
3252, 2923, 1768, 1633, 1583, 1558, 1463, 1376, 1239; For 1H and 13C
spectroscopic data (CDCl3, 300.13 and 75. MHz), see Table 1;
(þ)-HRESIMSm/z 214.1239 [MþH]þ (calcd for C14H16NO, 214.1232).

2[(2, 2-Dimethylbut-3-enoyl)amino]benzoic acid (4). Yellow
viscous liquid. IR (KBr) ymax 3421, 3253, 2927, 1696, 1670, 1636,
1606, 1586, 1522, 1448, 1385, 1295, 1259 cm�1; For 1H and 13C
spectroscopic data (DMSO, 300.13 and 75.4 MHz), see Table 2;
(þ)-HRESIMS m/z 234.1132 [MþH]þ (calcd for C13H16NO3,
234.1130).

6, 8-Dihydroxy-3-(2S-hydroxypropyl)-7-methyl-1H-isochro-
men-1-one (5). Yellow viscous liquid. [a]20D - 88 (c 0.07, Me2CO); IR
(KBr) ymax 3443, 2921, 2254, 1671, 1623, 1540, 1507, 1455 cm�1; For
1H and 13C spectroscopic data (DMSO, 300.13 and 75.4 MHz), see
Table 2; (þ)-HRESIMS m/z 251.0900 [MþH]þ (calcd for C13H15O5,
251.0919).

(11S, 14R) - 3-(1H-indol-3-yllmethyl)-6-isopropyl-2, 5-
piperazinedione (6). White crystal; mp 270-271 �C; [a]20D - 187 (c
0.02, Me2CO); 1H NMR (DMSO, 300.13 MHz): 10.88, brs (NH-1),
8.03, brs (NH-16), 7.86, brs (NH-13), 7.60, d (J ¼ 7.5 Hz; H-4), 7.32,
d (J ¼ 7.5 Hz; H-7), 7.08, d (J ¼ 2.3 Hz, H-2), 7.04, ddd (J ¼ 7.5, 7.5,
1.0 Hz; H-6), 6.95, ddd (J ¼ 7.5, 7.5, 1.0 Hz; H-5), 4.13, brt (J ¼ 3.9 Hz,
H-11), 3.27, dd (J ¼ 14.5, 4.4 Hz, H-10a), 3.04, m (2H, H-10b, 14),
2.03, m (H-17), 0.82, d (J ¼ 7.1, H3-19), 0.77, d (J ¼ 6.8, H3-18). 13C
NMR (DMSO, 75.4 MHz): 168.1 (CO-12), 167.1 (CO-15), 135.8 (C-8),
127.7 (C-9), 124.5 (C-2), 120.8 (C-6), 118.9 (C-4), 118.3 (C-5), 111.1 (C-
7), 108.5 (C-3), 59.1 (C-14), 54.7 (C-11), 31.5 (C-17), 28.4 (C-10), 18.2
(Me-18), 16.6 (Me-19). (þ)-HRESIMS m/z 286.1575 [MþH]þ (calcd
for C16H20N3O2, 286.1556).

4.4. Electronic circular dichroism (ECD)

ECD spectra were obtained in a Jasco J-815 CD spec-
tropolarimeter with a 1 mm cuvette; Savitsky-Golay noise reduc-
tion was applied when necessary. Dihedral driver and MM2
minimizations were done in Chem3D Ultra (Perkin-Elmer Inc.). All
other minimizations and spectral calculations were performed
with Gaussian (Gaussian Inc.) at the APFD/6-311 þ G(2d,p) level
(Austin et al., 2012) with IEFPCM solvation model. The simulated
spectral lines were obtained by summation of Gaussian curves, as
recommended in Stephens and Harada (2010). ECD spectra for all
conformations were added using Boltzmann weights derived from
its minimal energies (Mori et al., 2006).

4.5. X-ray crystal structure of 1e and 6

Diffraction data were collected at 293 K with a Gemini PX Ultra
equipped with CuKa radiation (l ¼ 1.54184 Å). The structures were
solved by direct methods using SHELXS-97 and refined with

SHELXL-97 (Sheldrick, 2008). Carbon, nitrogen and oxygen atoms
were refined anisotropically. Hydrogen atoms were directly found
from difference Fourier maps and were refined freely with isotropic
displacement parameters. Full details of the data collection and
refinement and tables of atomic coordinates, bond lengths and
angles, and torsion angles have been deposited with the Cambridge
Crystallographic Data Center.

Acetylquestinol (1e). Crystals weremonoclinic, space group P21/
c, cell volume 1470.45(19) Å3 and unit cell dimensions
a ¼ 4.4939(3) Å, b ¼ 29.533(2) Å and c ¼ 11.0898(9) Å and angle
b ¼ 92.503(7)� (uncertainties in parentheses). The refinement
converged to R (all data) ¼ 7.65% and wR2 (all data) ¼ 14.76%. CCDC
1532709.

(11S, 14R)-cyclo(tryptophylvalyl) (6). Crystals were monoclinic,
space group P21, cell volume 748.51(4) Å3 and unit cell dimensions
a ¼ 6.10326(16) Å, b ¼ 13.4265(4) Å and c ¼ 9.4770(3)Å angle
b ¼ 105.457(3)�. The refinement converged to R (all data) ¼ 3.32%
and wR2 (all data) ¼ 8.01%. The flack x parameter was refined with
SHELXL-97 to yield 0.1(3). CCDC 1532719.

4.6. Antibacterial activity bioassays

4.6.1. Bacterial strains and growth conditions
Two Gram-positive (Staphylococcus aureus ATCC 25923 and

Enterococcus faecalis ATCC 29212) and two Gram-negative
(Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC
27853) reference strains were used. Multidrug-resistant bacterial
strains isolated from public buses (MRSA S. aureus 66/1) (Sim~oes
et al., 2011), river water (VRE E. faecalis B3/101) (Bessa et al.,
2014), and a clinical isolate (ESBL E. coli SA/2) were also used.
Frozen stocks of all strains were grown in Mueller-Hinton agar
(MH-BioKar diagnostics, Allone, France) at 37 �C. Bacteriawere sub-
cultured in MH agar and incubated overnight at 37 �C in order to
obtain fresh cultures for each assay.

4.6.2. Antimicrobial susceptibility testing
The minimum inhibitory concentration (MIC) for each com-

pound was determined by the broth microdilution method ac-
cording to the recommendations of the Clinical and Laboratory
Standards Institute (CLSI) (CLSI, 2015). With the exception of 1b,
10 mg/mL stock solutions of each compound were prepared in
dimethylsulfoxide (DMSO- Applichem GmbH, Darmstadt, Ger-
many). For 1b (which was less soluble in DMSO than the other
compounds), a stock solution of 1 mg/mL was prepared. Two-fold
serial dilutions of concentrated stock solutions were prepared in
Mueller-Hinton broth 2 (MHB2-Sigma-Aldrich, St. Louis, MO, USA).
The range of concentrations tested was 0.016e16 mg/mL in the case
of 1b, and 0.062e64 mg/mL for all other compounds. The highest
concentration tested was chosen in order to maintain DMSO in-test
concentration below 1%, as recommended by the CLSI (CLSI, 2015).
At this concentration, DMSO did not affect the bacterial growth.
Cefotaxime (CTX), ranging from 0.031 to 16 mg/mL, was used as a
control. Purity check and colony counts of the inoculum suspen-
sions were also evaluated in order to ensure that the final inoculum
density closely approximates the intended number (5 � 105 CFU/
mL). The MIC was determined as the lowest concentration at which
no visible growth was observed. The minimum bactericidal con-
centration (MBC) was assessed by spreading 10 mL of culture
collected fromwells showing no visible growth on MH agar plates.
The MBC was determined as the lowest concentration at which no
colonies grew after 16e18 h incubation at 37 �C. These assays were
performed in duplicate.

4.6.3. Biofilm formation inhibition assay
The effect of all compounds on biofilm formation was evaluated
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using crystal violet staining as described previously (Gomes et al.,
2014). Briefly, the highest concentration tested in the MIC assay
was added to bacterial suspensions of 1 � 106 CFU/mL prepared in
Tryptic Soy broth (TSB-BioKar diagnostics, Allonne, France). When
it was possible to determine a MIC, three concentrations were
tested: 2 x MIC, MIC, and½ xMIC. A control without any compound
as well as a negative control (TSB alone) were included. CTX was
used as a positive control. The stabilized biofilm mass was quan-
tified after 24 h incubation at 37 �C. The samples were quantified
calorimetrically at 595 nm on an iMark™ microplate spectropho-
tometer (Bio-Rad Laboratories, Hercules, CA, USA). The background
absorbance (TSB without inoculum) was subtracted from the
absorbance of each sample and the data are presented as per-
centage of control. Three independent experiments were per-
formed in triplicate for each experimental condition.

4.6.4. Antibiotic synergy testing
In order to evaluate the combined effect of the compounds and

clinically relevant antimicrobial drugs, a screening was conducted
using the disk diffusion method, as described previously (Gomes
et al., 2014; Bessa et al., 2015). A set of antibiotic disks (Oxoid,
Basingstoke, UK) to which the isolates were resistant was selected:
cefotaxime (CTX, 30 mg) for E. coli SA/2, oxacillin (OX, 1 mg) for
S. aureus 66/1, and vancomycin (VAN, 30 mg) for E. faecalis B3/101.
Antibiotic disks alone (controls) and antibiotic disks impregnated
with 15 mg of each compound were placed on MH agar plates
seeded with the respective bacteria. Sterile 6 mm blank paper disks
(Oxoid, Basingstoke, UK) impregnated with 15 mg of each com-
pound alone were also tested. A blank disk with DMSO was used as
a negative control. MH inoculated plates were incubated for
18e20 h at 37 �C. Potential synergism was recorded when the halo
of the antibiotic disk impregnated with a compound was greater
than the halo of the antibiotic or compound-impregnated blank
disk alone.

The potential synergy between the compounds and clinically
relevant antibiotics was also evaluated by determining the anti-
biotic MIC in the presence of each compound. Briefly, MIC of CTX,
OX and VAN (Sigma-Aldrich, St. Louis, MO, USA) for the respective
multidrug-resistant strains was determined in the presence of the
highest concentration of each compound tested that did not affect
bacterial growth when the compound was tested alone. The anti-
biotic tested was serially diluted whereas the concentration of each
compound was fixed. In the case of 1b, the concentration used was
16 mg/mL. For all other compounds the concentration used was
64 mg/mL. Antibiotic MICs were determined as described above.
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