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Abstract  
 

Microalgae constitute a diverse group of microscopic prokaryotic (cyanobacteria) 

and eukaryotic photosynthetic organisms; due their large diversity, along with their 

physiological and functional flexibility, they constitute as a valuable source of added-

value bioproducts. Biotechnology of microalgae has accordingly gained growing 

importance in recent decades, with applications ranging from plain biomass production 

for food and feed, to valuable products for nutra- and pharmaceutical uses. Some of 

their bioproducts have indeed been identified as bioactive compounds, such as 

carotenoids and polyunsaturated fatty acids (PUFAs) – exhibiting a great potential for 

application in pharmaceutical formulations, based on their capacity to act as 

antioxidant, antiviral, anti-inflammatory, antimicrobial or antitumoural agents. 

However, extraction costs of microalgal intracellular metabolites remain high; the 

downstream separation stages often account for 50%–80% of the total production 

costs, depending on the biochemical characteristics of the target metabolite and purity 

required for the intended use – thus limiting commercial exploitation. Therefore, the 

work developed along this thesis attempted to alleviate some of the aforementioned 

bottlenecks in microalga-based processes – namely intracellular concentration and 

extraction of bioactive compounds.  

Microalgal extracts require characterization prior to concluding on their potential 

pharmaceutical application. In order to achieve this goal, efforts were developed to: I) 

ascertain the influence of several food GRAS (Generally Recognized As Safe) solvents 

upon recovery of bioactive extracts – rich in lipidic components (carotenoids and 

PUFA), and provide preliminary biochemical characterization thereof; II) optimize the 

extraction conditions of said bioactive components, in terms of temperature and 

pressure, using the solvent selected in I); and III) optimize the concentration of said 

bioactive components in the microalga cell itself, using light as a tool – so as to reduce 

the need for purification downstream. 

The work developed along these lines supported the following major conclusions: 

I)  the food-GRAS solvents tested – ethanol, acetone, hexane:Isopropanol (3:2) (HI) 

and ethyl lactate, exhibited different rates of extraction of lipidic compounds in two 

microalgal models encompassing disparate cell complexity – Scenedesmus 

obliquus (eukaryote) and Gloeothece sp. (prokaryote). The antioxidant bioactivity of 

the extracts obtained – assessed via four distinct assays (ABTS•+, DPPH•, •NO and 

O2
•-), indicated that solvent nature appears critical upon the final antioxidant 

performance – probably due to the resulting carotenoid/PUFA balance. Ethanol and 
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Gloeothece sp. were thus selected for further optimization studies: ethanol for its 

good performance in extraction of both carotenoids and PUFA; and Gloeothece sp. 

for its ethanol extract being active against all radicals tested – further to its being a 

prokaryotic microalga poorly studied to date in this regard.  

Wide experimental evidence has unfolded the direct role of some antioxidants 

toward prevention of appearance, and control of growth of certain cancer tumours. 

Therefore, the aforementioned extracts were tested for antitumor activities, 

departing from their strong antioxidant features; two gastric cancer cell lines in 

particular, i.e. AGS and MNK45, served as model to evaluate such a bioactivity. 

Although the study still is on processing, some preliminary studies revealed that all 

extracts were able to modulate cancer cell viability, particularly HI and ethyl lactate, 

that exhibited cell death and anti-proliferative effects upon the two gastric cancer cell 

lines. 

II) temperature (T) and pressure (P) are effective in acceleration, and eventual 

improvement of bioactive compound extraction from microalgae. Hence, a 

laboratory-made continuous pressurized solvent extraction system (CPSE) was 

built, aimed at optimizing extraction of carotenoids and/or fatty acids from 

Gloeothece sp. Biomass amount in the extraction column, solvent flow rate, 

pressure, temperature and overall solvent volume – including extract fractioning and 

degree of solvent recirculation, were sequentially optimized as operation 

parameters. Carotenoids and fatty acids were identified by HPLC-DAD and GC-FID, 

respectively, while antioxidant capacity was assessed by ABTS•+ and DPPH• 

methods. It was found that 60 °C and 180 bar were the best temperature and 

pressure, respectively, toward extraction of lipidic compounds. Collection as 

different volume fractions allowed one to obtain extracts with distinct characteristics, 

e.g. PUFA-rich, carotenoid-rich (particularly in terms of lutein) and/or antioxidant 

compound-rich. Recirculation of extract for up to 3 cycles (a cycle being defined as 

passage of a set volume of solvent through the biomass-containing column) led to a 

1.7-fold increase in lutein and an 11-fold increase in β-carotene contents, as well as 

a 1.4-fold increase in antioxidant capacity; and a 7.4-fold increase in C18:2 n6 t was 

observed when using 5 cycles of recirculation. When compared to a conventional 

extraction method, ultrasound assisted extraction (UAE), our CPSE proved proved 

clearly superior in extraction yield. 
 

III) light emitting diodes (LED) can be a valid alternative to fluorescent light for the 

associated decrease in cost, besides enhancement of biomass growth rate and 

added value-metabolite yield. Light plays a crucial role in several metabolic 
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pathways, especially when microalgae operate under strict photoautotrophy; the 

possibility of use of specific wavelengths when operating with LED is a key feature 

toward biomass production and metabolite synthesis. Different LED wavelengths – 

more specifically blue (B), red (R) and two combinations thereof (BR), were tested in 

terms of biomass productivity of Gloeothece sp. (PX), as well as content of 

carotenoids and fatty acids (FA), and associated antioxidant capacity (AC). 

Combination with infrared (IR) LEDs was also tested, using the best performant 

visible LEDS. The B LEDs induced higher PX and high FA, although R LEDs 

supported the best AC. The BR combination (40:60) promoted biomass richer in 

carotenoids, particularly lutein and β-carotene; extra combination of BR and R with 

IR enhanced PX and FA, besides producing a change in carotenoid profile and AC 

over time.  

 

All in all, Gloeothece sp. proved a quite promising source of bioactive compounds, 

namely carotenoids and PUFAs, due the antioxidant and antitumoural features found in 

extracts obtained therefrom. It is hoped that the work developed along this thesis will 

constitute a valid contribution to solve (some of the) bottlenecks found in microalga-

based industrial processing – specifically with regard to increase in intracellular 

concentration and solvent-mediated extraction afterwards of bioactive compounds. 
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Resumo  
 

As microalgas constituem um grupo diversificado de microorganismos 

fotossintéticos, podendo ser procariotas (cianobactérias) ou eucariotas. Devido à sua 

grande diversidade e flexibilidade, tanto fisiológica como funcional, constituem uma 

valiosa fonte de produtos de valor acrescentado. Consequentemente, a biotecnologia 

microalgal tem vindo ganhar importância ao longo das últimas décadas – sendo que a 

sua aplicação vai desde a simples produção de biomassa para alimentação, humana e 

animal, até à produção de metabolitos importantes para aplicação na indústria nutra- e 

farmacêutica. De facto, alguns desses metabolitos foram identificados como sendo 

bioativos, p.ex. carotenóides e ácidos gordos polinsaturados (PUFA); estes exibem 

potencial particular de aplicação em fórmulas farmacêuticas, devido à sua capacidade 

de actuação como agentes antioxidantes, antivirais, anti-inflamatórios, antimicrobianos 

e até mesmo antitumorais.  

Contudo, os custos associados à extração de metabolitos intracelulares das 

microalgas permanecem normalmente elevados – e, dependendo das etapas 

necessárias ao seu processamento e da sua finalidade, podem mesmo atingir valores 

na ordem dos 50–80% do custo total de produção, limitando assim a sua viabilidade 

económica a larga escala.  

Em face do exposto, o trabalho desenvolvido ao longo desta tese pretendeu ser 

um contributo para a resolução das referidas limitações na biotecnologia microalgal, 

nomeadamente em termos de extracção e concentração intracelular de compostos 

bioactivos.  

Os extractos obtidos de microalgas necessitam de caracterização prévia com 

vista a aferir do seu potencial de aplicação farmacêutica. Nesse contexto, foram feitos 

estudos com base nas seguintes abordagens: I) averiguar a influência de diferentes 

solventes GRAS (geralmente reconhecidos como seguro) de grau alimentar na 

extracção optimizada de compostos bioactivos do tipo lipídicos (carotenóides e AGPI), 

assim como caracterizar bioquimicamente os extractos obtidos; II) optimizar as 

condições de extracção de tais componentes bioactivas, em termos de temperatura e 

pressão, usando o solvente seleccionado em i); e III) optimizar a concentração das 

componentes lipídicas na célula da microalga, usando a luz como ferramenta, com 

vista a minorar a purificação posterior dos compostos. 

O trabalho desenvolvido nesta tese permitiu concluir que: 

I) Os solventes GRAS de grau alimentar testados – etanol, acetona, 

hexano;isopropanol (3:2) e etil lactato, exibiram diferentes capacidades de 
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extracção de compostos lipídicos nas duas microalga modelo, as quais 

representam diferentes graus de complexidade celular – o Scenedesmus obliquus 

porquanto eucacariota, e a Gloeothece sp. porquanto procariota. Foi avaliada 

também a capacidade antioxidante dos extractos obtidos, recorrendo a quatro 

ensaios diferentes (ABTS•+, DPPH•, •NO e O2•-); os resultados revelaram que os 

solventes usados para extrair as componentes lipídicas constituem um factor crítico 

na prestação antioxidante dos extractos – tendo assim colocada a hipótese de tal 

prestação ser afectada pelo balanço de carotenóides e AGPIs. 

O etanol e a Gloeothece sp. acabaram por ser seleccionados como solvente e 

microalga para estudos posteriores de optimização da extracção pelas seguintes 

razões: o etanol devido à sua alta performance na extracção de carotenóides e 

AGPIs, ao mesmo tempo que o extracto obtidos apresenta alta actividade 

antioxidante; e a Gloeothece sp. porque o seu extrato etanólico apresentou 

capacidade antioxidante contra todos os radicais testados – para além de esta 

microalga procariota se encontrar parcamente estudada até ao momento. 

Evidências experimentais relatadas na literatura confirmam o benefício de alguns 

antioxidantes na prevenção e controlo de certos tumores. Com base nos resultados 

promissores obtidos referentes a capacidade antioxidante, os referidos extractos 

foram avaliados quanto à sua capacidade antitumoral – particularmente sobre duas 

linhas de cancro gástrico, AGS e MKN 45. Ensaios preliminares revelaram que 

todos os extractos foram capazes de modular a viabilidade celular nas referidas 

linhas de cancro, particularmente os extratos HI e etil lactato, que desempenharam 

também efeitos de indução de morte celular e anti-proliferativos sobre as referidas 

linhas.  

 

II) A temperatura e a pressão são factores eficazes na aceleração e na melhoria da 

extracção de compostos bioactivos de microalgas. Em conformidade, foi construído 

um sistema de extracção contínua pressurizado (CPSE) à escala laboratorial, de 

maneira a melhorar a extracção de carotenóides e AGPIs de Gloeothece sp. – dada 

a sua evidente capacidade antioxidante. Foram testados parâmetros da extracção 

tais como quantidade de biomassa no interior da coluna de extracção, 

caudal/pressão do solvente, temperatura e volume de solvente – nomeadamente em 

termos de fraccionamento do volume total e número de passagens do solvente pela 

coluna de extracção, tendo-se procedido a optimização sequencial optimizadas 

usando etanol como solvente. 
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Além disso, os carotenóides e AGPIs contidos nos extratos foram identificados por 

HPLC-DAD e GS-FID, respectivamente, e apurada a sua capacidade antioxidante 

pelos métodos ABTS•+ e DPPH•. 

De entre as condições estudadas, 60 ºC e 180 bar resultaram como as melhores 

condições de temperatura e pressão para extrair os compostos lipídicos de interesse. 

Além disso, várias fracções recolhidas mostraram que é possível obter extractos com 

diferentes características, p.ex. rico em AGPIs, rico em carotenóides (particularmente 

luteína) e/ou rico em compostos antioxidantes. A recirculação de uma fracção de 

solvente pela coluna de extracção em 3 ciclos (em que cada ciclo corresponde a uma 

passagem de solvente pela biomassa) permitiu aumentar em 1.7 vezes a 

concentração de luteína, cerca de 11 vezes a de β-caroteno, e até 1.4 vezes a 

capacidade antioxidante do extracto obtido. Por outro lado, usando 5 ciclos, verificou-

se um aumento de 7.4 vezes na concentração de C18:2 (n-6) t. Em geral, o sistema 

CPSE desenvolvido mostrou ser capaz de atingir melhores rendimentos, quando 

comparado com um sistema convencional de extracção assistido por ultra-sons. 

 

III) Os díodos emissores de luz (LED) são uma alternativa válida ao uso de luz 

fluorescente (FL) na produção de microalgas, diminuindo os custos inerentes à 

utilização ao mesmo tempo que aumentam a produção de biomassa e metabolitos 

de valor acrescentado. A luz tem um papel crucial na regulação de diversas vias 

metabólicas, particularmente quando as microalgas optam por um regime de foto-

autotrofia estrita; o uso de comprimentos de onda específicos, facilmente obtidos 

recorrendo a LED, são um ponto-chave para a produção de biomassa e a 

modulação da sua composição bioquímica. Diferentes comprimentos de onda de 

LED – mais especificamente na zona do azul (A), vermelho (V) e duas combinações 

das duas, foram analisados em termos da produção de biomassa P(X) de 

Gloeothece sp., carotenóides e ácidos gordos (AG), assim como sobre a 

capacidade antioxidante (CA). Para além disso, no caso dos LEDs para os quais 

esta microalga atingiu melhores resultados, foi testado o efeito de um LED 

infravermelho (IF) sobre os parâmetros acima referidos. Os resultados mostraram 

que o A induziu um alto P(X) e um alto conteúdo em AG, em comparação com os 

outros LEDs testados. Por outro lado, culturas iluminadas por V exibiram os 

melhores resultados relativamente à CA. Uma combinação AV (40:60) deu origem a 

biomassa mais rica em carotenóides, particularmente luteína e β-caroteno. Por fim, 

a luz IV em conjugação com AV (40:60) e V aumentou a P(X) e o conteúdo em AG, 

alterando também o perfil de carotenóides produzidos ao longo do tempo, embora 

mantendo os valores máximos.  
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Em conclusão, a microalga Gloeothece sp. afigura-se como uma nova promissora 

fonte de compostos bioactivos, tais como carotenóides e AGPIs, devido à capacidade 

antioxidante e antitumoral detetada nos extratos obtidos. Espera-se que o trabalho 

desenvolvido ao longo desta tese possa constituir uma contribuição válida para aliviar 

algumas das limitações encontradas no processamento industrial com microalgas – 

em particular no que toca à concentração intracelular de compostos e à sua extracção 

via solvente. 
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Outline of thesis structure 
 
This thesis is composed by 4 main parts, and each of them is based on published or 

submitted papers and book chapters, written in the scope of the thesis. 

 

 
PART I 
 
CHAPTER 1 – STATE OF THE ART – this first part entails a literature review on bioactive 

microalgal metabolites and their health/pharmacological benefits, particularly in 

what concerns to microalgal lipidic components. Moreover, some factors that 

affect their production by microalgae, as well as their most reported extraction 

methods, will be reviewed. Accordingly, this chapter was based in the following 

publications: 
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CHAPTER 2 – EFFECT OF SOLVENT SYSTEM ON EXTRACTABILITY OF LIPIDIC COMPONENT 

OF SCENEDESMUS OBLIQUUS (M2-1) AND GLOEOTHECE SP. ON ANTIOXIDANT 

SCAVENGING CAPACITY THEREOF – this chapter is an approach to optimization of 

lipidic microalgal component extraction. It is based on a classical extraction 

method that is intended to ascertain the influence of the several extraction 

solvents on microalga metabolites recovery (namely carotenoids and fatty 

acids), and its effect on the extracts bioactivity in terms of antioxidant capacity. 

Hence, this chapter was based in the following publication: 

 

- Effect of Solvent System on Extractability of Lipidic Components of 
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CHAPTER 3 – ANTITUMOUR POTENTIAL OF LIPIDIC EXTRACTS FROM GLOEOTHECE sp. – In 

sequence of the previous chapter, the lipidic extracts obtained with the different 

tested solvents were assessed for their antitumor capacity against two gastric 

cancer cell lines. Furthermore, its capacity was tentatively correlated with its 

content in carotenoids and fatty acids. 

 

- Antitumoral potential of Gloeothece sp. lipidic extracts (paper still is in 

progress but will be submitted to Topical Collection "Bioactive Compounds from 
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CHAPTER 4 – CAROTENOID AND FATTY ACID EXTRACTION FROM GLOEOTHECE SP. VIA 

IMPROVED CONTINUOUS PRESSURIZED SOLVENT EXTRACTION SYSTEM – this 

chapter is a sequel of the former studies. It aimed to develop an optimized 

extraction method to recover the so far proved bioactive microalgal lipidic 

compounds – carotenoids and fatty acids. Thus, an innovative improved 

continuous pressurized solvent extraction system was developed testing the 

most proper extraction conditions of temperature and pressure to extract 

specific compounds. This chapter was based in the following publication: 

 

- Carotenoid and fatty acid extraction from Gloeothece sp. via an improved 

continuous pressurized solvent extraction system (paper submitted to 

Bioresource Technology, 2016)  

 

CHAPTER 5 – FLUORESCENT LIGHT VS. LED FOR GLOEOTHECE SP. IN BIOMASS AND HIGH 

VALUE-METABOLITE PRODUCTION – A PROMISING APPROACH FROM BLUE 

BIOTECHNOLOGY? – This chapter focus on the optimization of microalgal 

biomass and its bioactive metabolites production, particularly carotenoids and 

fatty acids. LED, particularly blue, red and infra-red were tested as an 

alternative to common fluorescent light source used in microalga production. 

This chapter was based in the following publication: 

 

- Fluorescent light vs. LED for Gloeothece sp. in biomass and high value-

metabolite production – a promising approach from blue biotechnology? (paper 
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PART I                                                                                                                                          CHAPTER 1 

  
1.1 Introduction 
 

Microalgae constitute a diverse group of microscopic prokaryotic (cyanobacteria) and 

eukaryotic photosynthetic organisms of paramount ecological importance. They indeed 

include some of the most efficient converters of solar energy to biomass; their only growth 

requirements are CO2, a broth containing basic nutrients such as nitrogen and phosphorus, 

and a light source. Several environmental factors, e.g. temperature, salinity, light and 

nutrients, as well as culture time affect the growth and biochemical composition of 

microalgae as discussed by Guedes et al. (2010). Among them, light intensity and its 

spectrum have been reported to affect microalgal composition to extents that are species-

specific (Fu et al., 2013, Guedes et al., 2010). 

Microalgae are known to be rich sources of bioactive compounds, such as carotenoids 

and polyunsaturated fatty acids (PUFAs), with potential applications in pharmaceutical 

formulations – e.g. as antioxidant, anti-viral, anti-inflammatory, antimicrobial and antitumoral 

active principles. Furthermore, as photoautotrophs, their simple growth requirements make 

them particularly attractive for bioprocesses aimed at producing these high-added value 

compounds that are in large demand –e.g. as lutein, a known antioxidant produced by 

several microalga, with important anti-inflammatory and antitumoral roles.  

In view of the diversity of added-value bioproducts produced by microalgae, together 

with their wide physiological and functional flexibility, it might be expected that microalgal 

cultures would be ideal “biofactories” – particularly due to their secondary metabolism that 

can be easily triggered by most forms of externally applied stress like e.g. excess or 

limitation of light. These characteristics of microalgae have attracted commercial interest due 

to their potential in valuable products and high biomass productivity. Large-scale cultivation 

experiments with biotechnological purposes were initiated in the USA, Japan and Israel in 

the early 1950s (Guedes and Malcata, 2011); in the last 50 years, microalgal biotechnology 

has achieved a range of applications, from traditional (extensive) biomass production for 

human and animal nutrition (including aquaculture), soil conditioning, bioremediation, and 

formulation of cosmetics and pharmaceuticals, to high-tech applications based on the 

manufacture of products for research and medical diagnostic (Guedes and Malcata, 2011).  

However, a few limitations remain, owing to metabolic and processing constraints; this 

is the case of metabolite extraction, due the high costs associated. This has urged some of 

the research efforts described in this dissertation. 

Therefore, a briefly state of the art is presented next covering a group of added-value 

bioproducts with health/pharmacological benefits, i.e. lipidic microalgal compounds – 
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carotenoids and PUFA. Moreover, some recent advances in their optimization in terms of 

extraction and production will be presented in the following sections. 

 

1.2. Microalgal lipidic compounds and their health/pharmacological benefits 
 

A particular interest has been received by lipidic components, such as carotenoids 

and PUFAs, due their great potential in industrial formulation of nutra- and pharmaceutical 

products. These families of microalgal lipidic components are two examples of microalgal 

molecules able to protect living organisms from oxidative damage (Marxen et al., 2007).  

Based on their physicochemical characteristics, microalgal lipids can be divided into 

two major types: polar lipids, e.g. phospholipids and glycolipids; and neutral/non-polar lipids, 

e.g. mono-, di- and tri-acylglycerols (TAG) (Schuhmann et al., 2012). While polar lipids are 

important structural components of cell membranes and organelles, and can operate as 

signal molecules or their precursors; neutral (non-polar) lipids, such as tri-acylglycerols 

(TAG), are a most widespread group of compounds involved in catabolism for production of 

energy as required by the cell (Schuhmann et al., 2012). A considerable number of 

observations indicate that TAG possesses diverse functions in photoautotrophic organisms, 

like adaptation to environmental factors such as temperature, illumination or salinity. In many 

microalgal species, low light fluxes or nutrient deficiency induce TAG to accumulate as 

cytoplasmic oil bodies in the cells (Merzlyak et al., 2007). Therefore, conditions favourable 

for TAG biosynthesis are stressful for microalgae: they delay cell division and slow down 

culture growth (and thus biomass build-up), and this constitutes a major obstacle to attain 

high accumulation of algal biomass enriched by such valuable compounds. Finding solutions 

for this nontrivial task is thus very important for photobiotechnology involving microalga 

cultivation.  

A simple type of lipids, which are bioactive as such, is free fatty acids; they are mainly 

composed of a 12-22 carbon chain with a methyl group at one end of the molecule (labelled 

as omega, ω) and a carboxyl group at the other end. They can be saturated or unsaturated, 

depending on presence of one or multiple double carbon–carbon bonds; in the case of the 

latter if the number of such double bonds is above unity, they are termed poli-unsaturated 

fatty acids (PUFA) (Rustan and Drevon, 2001), some examples are depicted in Fig. 1. 

According to the position of the first double bond in the structure, PUFAs can be classified 

into two major categories, namely ω-3 and ω-6 PUFA (or n3 or n6); they are essential 

cellular components that hold diverse biofunctions. 
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Fig. 1.1. Chemical structure of some poli-unsaturated fatty acids (PUFA) produced by 
microalgae. 

 

PUFAs are found in animals, plants, fungi, microalgae and bacteria as a part (or 

included as moieties of more complex compounds) of membranes or storage organelles, 

typically in the form of glycolipids, phospholipids, sphingolipids and lipoproteins (Thelen and 

Ohlrogge, 2002). 

Many species of microalgae contain PUFA in their polar lipids, but the content of 

these compounds is subject to stringent regulation within the cell (Makewicz et al. 1997; 

Cohen et al. 2011). Moreover, they can be found in neutral lipids, like linoleic (18:2n-6, LA), 

α-linolenic (18:3n-3, ALA), arachidonic (20:4n-6, AA), eicosapentaenoic (20:5n-3, EPA) and 

docosahexaenoic (22:6n-3, DHA), among others. They are considered valuable for humans, 

due to their physiological roles in cells as precursors and primary preventers of health 

conditions, e.g. as anti-inflammatory or neuroprotective agents (Guedes and Malcata, 2011). 

Moreover, AA, EPA, γ-linoleic acid (GLA) and DHA are also important structural components 

of membrane lipids and act as precursors of biologically active eicosanoids, such as 

prostaglandins and leukotrienes (Qi et al., 2002). It is known that AA and DHA play relevant 

roles in nervous tissues and blood vessels, besides being essential for pre- and post-natal 

development of the brain and the retina (van Goor et al., 2008). On the other hand, EPA and 

AA have been implicated in prevention of coronary heart diseases, hypertriglyceridemia, 

blood platelet aggregation, atherosclerosis, general inflammation and several carcinomas 

(Guil-Guerrero et al., 2000). Both EPA and DHA have as well been included in therapeutics 

to prevent dementia; the mechanisms that qualify such PUFAs as aids in primary prevention 

of those health conditions include their anti-atherogenic, anti-inflammatory , antioxidant, anti-

amyloid and neuroprotective features (Lim et al., 2006, Mullen et al., 2010). 

Linoleic acid,  LA, 18:2n6 

Eicosapentaenoic acid, EPA, 20:5n3  

Docosahexaenoic acid , DHA, 22:6n3 

α-linolenic , ALA, 18:3n3 
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Presence of DHA in the diet of infants has been requested for full neurological 

development (Tonon et al., 2002). Dietary DHA showed to affect expression of several key 

genes involved in cholesterol metabolism, besides its role in prevention and treatment of 

such chronic diseases as coronary heart disease, hypertension, type II diabetes, ocular 

diseases, arthritis and cystic fibrosis (Kramer et al., 2003). Additionally, GLA and AA appear 

to play a relevant role in prevention of diabetes, reproductive disorders and a few skin 

diseases (Suresh and Das, 2003, Guedes and Malcata, 2011).  

Studies have indicated that a balanced ω6/ω3 ratio in in diet decreases the doses 

required of some pharmaceutical medications; a decrease in ω6 intake concomitant with an 

increase in ω3 intake is accordingly recommended to assure homeostasis and regular health 

(Simopoulos, 2002). 

 

Carotenoids are organic pigments found in the chloroplasts and chromoplasts of 

microalgae. They are classified into two classes: xanthophylls (which contain oxygen) and 

carotenes (which are purely hydrocarbons, and thus do not contain oxygen). All carotenoids 

are natural pigments derived from 5-carbon isoprene units that are enzymatically 

polymerized to form regular, highly conjugated 40-carbon structures (with up to 15 

conjugated double bonds). One or both ends of the carbon backbone may be substituted by 

oxo (e.g. canthaxanthin), hydroxyl (e.g. lutein) or epoxy (e.g. astaxanthin) groups, at different 

positions, to form different xanthophylls (Del Campo et al. 2007), as depicted in Fig. 2. A 

distinction is usually made between primary and secondary carotenoids: the former (i.e. 

xanthophylls) are structural and functional components of the cellular photosynthetic 

apparatus, so they are essential for survival, while the latter encompass those produced to a 

large extent by microalgae (via carotenogenesis) but only in response to specific 

environmental stimuli (Guedes and Malcata, 2011). Carotenoids may be found naturally in 

microalgae, either in their free form or esterified with fatty acids. 
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Fig. 1.2. Chemical structures of some xanthophylls found in microalgae. 

 

Xanthophylls are relatively hydrophobic molecules, so they are typically associated with 

membranes and/or involved in non-covalent binding to specific proteins; they are often 

located in the thylakoid membrane, whereas secondary carotenoids are mainly found in lipid 

vesicles — in either the plastid stroma or the cytosol. Most xanthophylls in cyanobacteria and 

oxygenic photosynthetic bacteria are associated with chlorophyll-binding polypeptides of the 

photosynthetic apparatus (Grossman et al., 1995); however, in most green microalgae, 

carotenes and xanthophylls are synthesized and accumulate inside plastids. Conversely, 

secondary xanthophylls in a few green microalgae, such as astaxanthin in Haematococcus 

sp., accumulate in the cytoplasm; this raises the hypothesis of an extra-plastidic site of 

carotenoid biosynthesis in that genus. Alternatively, xanthophylls synthesized in the 

chloroplast may be exported and will eventually accumulate in the cytoplasm (Jin et al., 

2003).  

All xanthophylls synthesized by higher plants (e.g. violaxanthin, antheraxanthin, 

zeaxanthin, neoxanthin, and lutein) can also be synthesized by green microalgae; however, 

the latter possess additional xanthophylls, such as loroxanthin, astaxanthin, and 

canthaxanthin – and diatoxanthin, diadinoxanthin and fucoxanthin can also be obtained from 

brown algae or diatoms (Jin et al., 2003). 

At least 600 different carotenoids that play important biological functions in bacteria, 

algae, plants, and animals have been identified to date (Polivka and Sundstrom, 2004). 

Animals cannot endogenously synthesize carotenoids, so they must resort solely to their diet 

to obtain them. Of the 600+ carotenoids identified to date, around 40 can be found in 

common foods. However, selective uptake along the digestive tract leads to that only 14 

Lutein 

Violoxanthin 

Neoxanthin 

Astaxanthin 
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carotenoids (and corresponding derivations) are eventually found in human plasma and 

tissues. 

As emphasized before, carotenoids are essential constituents of the photosynthetic 

apparatus, primarily in the reaction centres of photosystems (or inserted in pigment–protein 

antenna complexes), where they act: (1) as accessory pigments for light-harvesting 

processes during photosynthesis, (2) as structural stabilizers for protein assembly in 

photosystems, and (3) as inhibitors of either photo- or free-radical oxidation caused by 

exposure to excess light (Zhang et al., 1999). The intrinsic antioxidant capacity of 

carotenoids constitutes the basis for their protective action against oxidative stress; however, 

not all biological activities claimed for carotenoids pertain to their ability to inactivate free 

radicals and reactive oxygen species (ROS) (Guedes and Malcata, 2011). Minor structural 

differences between said compounds account for variations in their biological activities (Sun 

and Yao, 2007); although most reports have dealt with the conjugated double bonds with 

regard to their role upon biological impact, few data are available on the role of hydroxyl 

groups (Cha et al. 2008). 

As reviewed before, numerous epidemiological studies suggest that consumption of 

carotenoids correlates with a lower risk of contracting several types of degenerative disease 

in human beings (Guedes and Malcata, 2011). Most of these reports have actively focused 

on carotenoids from microalgal sources; the major fields, in terms of current or potential 

industrial applications, are food and health — and the antioxidant properties exhibited by this 

class of compounds constitutes the core interest. 

Carotenoids provide direct photoprotection against ultraviolet (UV) light-induced photo-

oxidation in the skin, while β-carotene modulates UVA-induced gene expression in human 

keratinocytes (Wertz et al., 2005, Aust et al., 2005). Astaxanthin is believed to play a key role 

in amelioration/prevention of several human pathological processes, such as skin UV-

mediated photo-oxidation, inflammation, prostate and mammary carcinogenesis, ulcers 

caused by Helicobacter pylori, and age-related diseases (Guerin et al., 2003). Among the 

benefits of carotenoids for eye health, the occurrence of age-related macular degeneration 

(AMD) has been associated to lower levels of both zeaxanthin and lutein (xanthophylls) in 

the macula (Neelam et al., 2005); prospective epidemiological data show a 19 % lower risk of 

cataract in men who regularly take high doses of both xanthophylls (Meyer and Sekundo, 

2005). Based on several medical and nutritional trials, authors have hypothesized that the 

antioxidant activity of carotenoids is likely the key factor in reducing incidence of many 

diseases mediated by light (Astley et al., 2004). 

Considering the close relationship between antitumor and anti-inflammatory features 

and immune system improvement, these should not be viewed as independent systems – as 

long as the role of lipidic compounds, such as carotenoids and PUFA, in regulating these 
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mechanisms is strongly related to their antioxidant features. Although such properties 

associated with carotenoids are not restricted to those originated in microalgae, all 

carotenoids tested are also synthesized by microalgae. 

Interest in compounds with antioxidant properties has indeed been on the rise, since 

such compounds can play favourable roles in human health. The evidence collected from a 

large number of studies has confirmed the positive effects of antioxidants (section 2.1) in 

prevention and control of growth of certain tumours (see Section 2.2). Therefore, bioactive 

compounds, such as carotenoids or PUFA, may hold at least two capacities within the set of 

antioxidant and antitumor capacities, as will be discussed below. 

 

1.2.1. Antioxidant features of lipidic components 

A definition of antioxidant is “any substance that delays, prevents or removes oxidative 

damage to a target molecule” (Halliwell, 2001). Concomitantly, such compounds may display 

antiviral and antimicrobial activities, as well as ability to chelate iron, inhibit enzymes, 

regulate gene expression, and improve endothelial function (Tabart et al., 2009). 

Antioxidants are generally divided into two groups, depending on their mechanism of 

action: chain-breaking antioxidants and preventive antioxidants. The latter reduce the rate of 

chain initiation, while the former (that include carotenoids and PUFA) interfere with chain 

propagation.  

Antioxidants may alternatively be classified as hydrogen-donating compounds, singlet 

oxygen quenchers, metal chelators, or oxygen scavengers. Singlet oxygen quenchers 

include carotenoids, PUFA, α-tocopherol and ascorbic acid; they can react with oxygen 

before other essential structures do, thus leading to useful and high quenching rates (Giao et 

al., 2010). 

To realize the importance of antioxidant compounds, it is crucial to understand the 

process leading to their origin, oxidation. “Oxidation” denotes a set of common processes in 

nature, led by reactive species that are also involved in a variety of biological phenomena. 

Such processes occur when electrons are removed from an atom or a group of atoms, and 

may entail addition of oxygen atoms to, or removal of hydrogen atoms from the compound 

undergoing oxidation. Simultaneously, there is a corresponding reduction that involves 

addition of electrons to a distinct atom or group of atoms (Giao et al., 2010). 

Chemical compounds capable of generating (potentially toxic) reactive species of 

oxygen (ROS) are referred to as “pro-oxidants”. In a normal cell, pro-oxidants and 

antioxidants are in balance, yet this balance may be shifted towards pro-oxidants when 

production of ROS increases to a sufficient level (e.g. following ingestion of certain chemical 

compounds or drugs), or when the cellular levels of antioxidants are somehow reduced. This 
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situation is widely termed “oxidative stress”, and may follow essentially two mechanisms: (1) 

the concentration of antioxidants is reduced or (2) the number of oxygen/nitrogen/carbon-

based reactive species derived from activated phagocytes is increased — as happens with 

chronic inflammation (Somogyi et al., 2007). 

However, ROS are unavoidable by-products in normal aerobic metabolism; in the 

human being, oxidation driven by ROS may lead to various detrimental phenomena, 

including pigment and protein damage and DNA decay or mutation – which may in turn 

cause several syndromes, such as cardiovascular diseases (CVDs), some forms of cancer, 

degenerative diseases, and ageing (Halliwell, 2001).  

The antioxidant capacity of two lipid components, carotenoids and PUFA, will be briefly 

discussed next, with particularly emphasis on those (also) obtainable from microalgal 

sources. 

 

1.2.1.1.Antioxidant capacity of carotenoids 

Since carotenoids are potent biological antioxidants; they are able to absorb the 

excitation energy of singlet oxygen radicals (SOR) into their complex ringed chain, thus 

promoting energy dissipation while protecting tissues from putative chemical damage. Their 

radical scavenging capacity lessens tissue decay by reducing the decay of such molecules 

as DNA, proteins, and membrane lipids (Bai et al., 2005). A few processes brought about by 

SOR have also been linked to the ageing process, as well as to pathogenesis of several 

diseases, namely cancer, CVDs, atherosclerosis, rheumatoid arthritis, muscular dystrophy, 

cataracts, and several neurological disorders (Abe et al., 2007, Kim and Cha, 2010). For 

instance, lutein has been recommended (and even prescribed) for prevention of cancer and 

of diseases related to retinal degeneration (Granado-Lorencio et al., 2009). Another 

illustrative example is the decline of cognitive ability in Alzheimer’s disease, which is 

apparently caused by persistent oxidative stress in the brain (Mattson, 2004). Nakashima et 

al. (2009) reported that progression of cognitive impairment in transgenic mice could be 

prevented to a significant extent by feeding them with Chlorella sp. containing carotenoids 

(e.g. β-carotene and lutein). 

A list of microalgae rich in carotenoids that have already been recognized as strong 

antioxidants is given in Table 1. The antioxidant effects of carotenoids are dependent on the 

number of conjugated double bonds, the chain structure, and the specific functional groups 

— as detailed in the following sections. Unfortunately, there are contradictory results 

pertaining to lutein (and its esterified derivatives) with regard to antioxidant effects: although 

esterification of lutein with fatty acid increased its stability against heat and light, no effect 

was found upon its antioxidant capacity (Subagio and Morita, 2001). 
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Table 1.1. Carotenoids produced by microalga with proven antioxidant capacity. 

Carotenoid Microalga source Reference 

Asthaxanthin  
Haematococcus pluvialis 

Chlorella vulgaris (Mendes et al., 2003, Plaza et 
al., 2009, Guedes and 
Malcata, 2011) 

Cantaxanthin 
Haematococcus pluvialis 

Chlorella vulgaris 

Lutein 

Chlorella pyrenoidosa 

Haematococcus pluvialis 

Scenedesmus obliquus (Wu et al., 2007, Guedes and 
Malcata, 2011) 

Violaxanthin Chlorella pyrenoidosa 

β-carotene Dunaliella salina 
(Mendes et al., 2003, Plaza et 
al., 2008, Guedes and 
Malcata, 2011) 

 

Singlet oxygen (1O2) is effectively quenched by xanthophylls; lutein is an efficient 

quencher of triplet chlorophyll, while β-xanthophylls (zeaxanthin and neoxanthin) serve as 

quenchers to 1O2 (Dall'Osto et al., 2007). Under high light intensity, violaxanthin is converted 

to zeaxanthin via enzymatic removal of epoxy groups from violaxanthin; its conversion to 

zeaxanthin is catalyzed by violaxanthin de-epoxidase, while the reverse conversion is 

effected by zeaxanthin epoxidase (Pospisil, 2012). 

Antioxidants (such as astaxanthin) provide a broad, “upstream” approach that 

quenches ROS/reactive nitrogen species (RNS) or free radical chain-breaking; consequently, 

antioxidants appear to be an appropriate therapeutic option, as epidemiologic, dietary, and in 

vivo animal model data suggest (Giao et al., 2010). However, lutein is more effective than β-

carotene in inhibiting auto-oxidation of cellular lipids and in protecting against oxidant-

induced cell damage (Lakshminarayana et al. 2010). For instance, (Manabe et al., 2008) 

have indicated that astaxanthin can scavenge ROS in high-glucose-treated mesangial cells. 

Other studies have revealed that this compound can also convey antioxidative protection in 

diabetic animals (Marin et al. 2011). 

 

1.2.1.2. Antioxidant scavenging capacity of PUFA 

As mentioned previously, EPA and DHA have been claimed as therapeutical agents to 

prevent several diseases, and some of the mechanisms are related to their antioxidant 

properties (Mazza et al., 2007). 

Common knowledge on fatty acids has it that the higher degree of unsaturation 

promotes a higher susceptibility to oxidation, but several pieces of evidence indicate that this 
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assumption does not always hold true. As an example, when individual fatty acids are 

oxidized in an aqueous environment, the generation of peroxidation products does not reflect 

their degree of unsaturation (Visioli et al., 1998). Maziere et al. (Maziere et al., 1998) 

compared the effects of omega 6 and omega 3 fatty acids, incorporated into endothelial cells, 

with regard to cellular ability to oxidize low density lipoprotein (LDL). They reported that ω-3 

fatty acids lowered TBARS production (thiobarbituric acid reactive substances), by-products 

of lipid peroxidation), superoxide anion secretion, and LDL peroxidation as compared with ω-

6. One explanation proposed by the authors was that the ω-3 series, due to their double 

bond positions, are less susceptible to oxidative damage than the ω-6 series 

Free radical-scavenging potential of PUFA and the production of reactive 

oxygen/nitrogen (ROS/RNS) species by human aortic endothelial cells (HAECs) 

supplemented with different fatty acids, was investigated (Richard et al., 2008). It was found 

that fatty acid micelles scavenged superoxide in an unsaturation-dependent manner, and 

highlighted EPA as the most effective. Additionally, they reinforced the idea that 

supplementation of HAEC with polyunsaturated fatty acids of the ω-3 series results in lower 

formation of ROS, as compared to cells supplemented with saturates, mono-, or poly-

unsaturates of the ω-6 series. Hence, they claimed that fatty acids might diminish 

inflammation and, in turn, the risk of atherosclerosis and cardiovascular disease.  

More recently, Mas et al. (2010) found that DHA can reduce oxidative stress by 

reducing the levels of F2-isoprostanes; these ω-3 fatty acids reduced the oxidative stress, 

which is likely related to their anti-inflammatory action and reduction in leukocyte activity 

(Mas et al., 2010). These findings further backup supplementation of one’s diet with ω-3 fatty 

acids aimed at preventing said diseases.  

Microalgae are an important source of long-chain fatty acids, mainly PUFA, as 

described before in many studies (Plaza et al., 2008, Guedes et al., 2011a). 

Although scarce studies have focused specifically on antioxidants properties of 

microalgal PUFA, a correlation of microalgal extracts rich in PUFA as having antioxidant 

capacity has been proposed (Amaro et al., 2015, Maadane et al., 2015). 

 

1.2.1.Antitumor features of microalgal lipidic components 

Despite significant progress in prevention, diagnosis, and development over the last 

quarter of a century, cancer still represents the second highest cause of mortality in 

developed countries, after CVDs. There are 3.2 million new cases of cancer every year; in 

2008, 1.7 million deaths were associated with cancer. The most common forms are 

colorectal (13.6 %), breast (13.1 %), lung (12.2 %), and prostate (11.9 %) cancers. The main 
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causes of death are lung (19.9 %), colorectal (12.3 %), breast (7.5 %), and stomach (6.8 %) 

cancers (Ferlay et al., 2010). 

In said disease, cells divide and grow uncontrollably due an imbalance in the rate of 

cell proliferation and apoptosis, thus leading to formation of malignant tumours that can 

invade nearby parts of the body and spread to more distant parts of the body through the 

lymphatic system or the bloodstream. 

Tumour suppression and/or cell death is thus crucial in cancer therapy. The 

fundamental mechanisms of the former often involve inhibition of tumour cell-mediated 

protease activity, attenuation of tumour-induced angiogenesis, promotion of cell cycle arrest, 

induction of apoptosis, and immunostimulation (Amaro et al., 2013). On the other hand, cell 

death entails mainly apoptosis, necrosis or autophagy phenomena. 

Comparing cell death mechanisms in neoplastic cells, occurrence of apoptosis is 

preferred. It involves action of proteins from different families, such as Bcl-2, Bax, and 

caspases 3, 6, 7, 8, and 9; these are engaged in complex signal transduction pathways, and 

may affect tumour growth at one or more stages of carcinogenesis (Amaro et al., 2013). 

Conversely, cell necrosis is difficult to prevent and always develops an inflammatory 

response and death of surrounding cells (Han et al., 2008). 

Autophagy, a mechanism that disassembles unnecessary or dysfunctional cellular 

components, and also described as a mechanism of cell death, is likewise indicated as a 

cancer therapeutic target. However, it has a dual effect since maintaining cell survival can 

promote growth of established tumours (Costa et al., 2012, Amaro et al., 2013). Several 

anticancer drugs work as apoptotic modulators, in order to eliminate silent and cleanly the 

unwanted cell (Costa et al., 2012). 

Until now, cancer research has focused on the search for curative treatments; 

however, these treatments normally entail side effects (Sangeetha et al., 2014). A few 

studies have aimed at developing preventive strategies for the control of various cancers. 

Hence, discovery of new drugs that are more active, more selective, and less toxic – but 

which limit deleterious side effects and tumour multidrug resistance, will obviously constitute 

a challenge in coming years (Pasquet et al., 2011).  

Chemoprevention is an old concept that consists on use of drugs, vitamins, or 

nutritional supplements to reduce the risk of developing or having a recurrence of cancer. 

Considering the important role of inflammation in the origin and evolution of a variety of 

tumours, the interest in chemoprevention has markedly increased in the last years (Sporn, 

2011). Carcinogenesis of common epithelial tumours, including lung, colon, pancreas, ovary, 

skin, prostate and breast that are responsible for most deaths, is a slow process that could 

start twenty years before the first symptoms appear. This long period is suitable for use of 

chemopreventive strategies that block the development of invasive and/or metastatic 
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disease. Toward these goals, cancer chemoprevention resorts to natural, synthetic or 

biological substances to reverse, suppress or prevent either the initial phase of 

carcinogenesis or the progression of neoplastic cells to cancer (Demaria et al., 2010). 

Some of the aforementioned preventive features have been assigned to antioxidant 

micronutrients, including those belonging to the carotenoid and PUFA group (Sun and Yao, 

2007). Their isolation from the marine environment has generated interest among many 

groups – including purification of original compounds and understanding their biological 

activity, as well as in identifying their pharmacological targets (Pasquet et al., 2011). 

Additionally, more than 50 % of the marine prokaryotic microalga are potentially 

exploitable for extracting bioactive substances that are effective in killing cancer cells by 

inducing apoptotic death (Sangeetha et al., 2014). Moreover, an increasing number of 

marine cyanobacterial compounds are found to promote cell cycle arrest by targeting tubulin 

or actin filaments in eukaryotic cells, thus making them an attractive source of natural 

products as anticancer agents (Sangeetha et al., 2014). Until now, a considerable number of 

cyanobacteria compounds have shown antitumor capacity towards several human cancer 

cell lines. In a simplified approach, they can be grouped according to class of compound 

(lipopeptides, peptides, fatty acids, macrolides and amides). 

Furthermore, studies on human cells with bio-guided fractionation of microalgal 

extracts have proven that many pigments, beyond their ecological function as light-

harvesting molecules, act as potent bioactive compounds against cancer cells – and may 

thus hold great potential in the prevention and treatment of cancers (Folmer et al., 2010). In 

particular, carotenoids have received increasing attention because of the decreased 

incidence of cancers associated with their dietary consumption via fruits and vegetables 

(Nishino et al., 2000, Nishino et al., 2009). Microalgae have a high carotenoid content, and 

may thus be of great interest as functional foods for prevention of cancer, or even as a 

source of pure carotenoids. 

Clinical trials have demonstrated that phytomedicine (including phycomedicine) is 

effective in treating pathologies related to vascularization and cell proliferation in prostate 

hyperplasia, especially using carotenoids (Tanaka et al., 2012). Its underlying activity rests 

on several mechanisms, including enzyme activity (as in the case of topoisomerases), 

prevention of oxidative damage, immune modulation, hormone and growth-factor signalling, 

regulatory mechanisms of cell-cycle progression, cell differentiation, and apoptosis (Tanaka 

et al., 2012, Wu et al., 2010). 
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1.2.1.1. Antitumor features of carotenoids 

Microalgal carotenoids, mainly β-carotene, astaxanthin, and lutein, have been 

consistently suggested as antitumor agents (see Table 2). Other carotenoids, however, also 

found in microalgae, have also been found to possess antitumor capacity (see Table 3). 

Selected possibilities will be briefly discussed in this section, on a compound-by-compound 

basis. 
 
Table 1.2. Carotenoids produced by microalga with antitumor capacity tested on cancer cell 
lines. 
 

Carotenoid Action Type of cancer Microalga 
source Reference 

Asthaxanthin  

Apoptosis 
induction  
Growth inhibition 
Proliferation 
inhibition  

HCT-116 (colon cancer)  
HepG2 (hepatic cancer) 
MCF-7 (breast cancer) 

Haematococcus 
pluvialis 

(Tanaka et al., 
2012) 

Violaxanthin Proliferation 
inhibition 

AGS (stomach) 
MCF-7 (breast) 
HeLa (cervical) 
DLD (colon) 
Hep-G2 (liver) 

Chlorella 
ellipsoidea 

(Soontornchaibo
on et al., 2012) 

Violaxanthin + 
antheraxanthin + zeaxanthin 

Proliferation 
inhibition 
Apoptosis 
induction 

HCT116 (Colon) (Cha et al., 
2008) 

Diadinochrome A, B, 
Diatoxanthin/cynthiaxanthin 

Cytotoxic effect  HeLa cells Peridinium bipes 
(Guedes et al., 
2011) 

Fucoxanthin Proliferation 
inhibition 

A549 (bronchopulmonar)  
NSCLC-N6 
(bronchopulmonar) 
SRA 01/04 (epithelial) 

Odontella aurita, 
Chaetoseros sp. 
Isochrisys aff. 
galbana 

(Moreau et al., 
2006) 
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Table 1.3. Carotenoids produced by microalgae with proven antitumor capacity and 
produced by microalgae. 

Carotenoid Action Type of cancer Microalga source Reference 

β-Carotene Tumor 
inhibition  

Hepatic cancer Dunaliella salina (Mukherjee et al., 2011)  

α-Carotene Proliferation 
inhibition 

Skin, lung, liver 
and colon 
Neuroblastoma 

D.salina (Nishino et al., 2002, Murakoshi et 
al., 1989) 

Lutein Growth 
inhibition 
Proliferation 
inhibition 
Chemoprote
ctive effect 

Prostate  
Mammary tumor  
Colon cancer  
Mouth epithelial 
cancer  

Muriellopsis 
sp., Scenedesmus 
almeriensis, Chlorella 
protothecoide, C. 
zofingiensis, C. citriforme, 
Neospongiococcus 
gelatinosum  

(Narisawa et al., 1996b, 
Lakshminarayana et al., 2010a, 
Reynoso-Camacho et al., 2011b, 
Fernández-Sevilla et al., 2010)  

 

1.2.2.1.1. Antitumor action by α-and β-carotene 

The discovery in the 1970s of β-carotene as a possible anticancer agent opened a new 

route in the field of cancer chemoprevention. The deficiency of β-carotene (along with other 

antioxidants) associated with some cancers suggests that a low-antioxidant diet may allow 

neoplastic changes to continue. A cancer-protective role for β-carotene has been claimed, 

and an apparent primary mechanism as antioxidant has been suggested – relying on 

oxidative tissue damage (Nishino et al., 2000). In fact, a study involving the population of 

Linxian, China – known for the highest rate of incidence of esophageal/gastric cancer in the 

world, has confirmed that supplementation with β-carotene, vitamin E, and selenium 

substantially reduces the risk of developing this type of cancer  (Liu et al., 1998, Clerici et al., 

2004). At the same time, diets with a low serum β-carotene level have also been unfolded as 

a risk factor for various other forms of cancer, such as leukemia, lymphoma, and central 

nervous system (CNS), bone, and renal cancers. β-carotene has been reported to play an 

anticarcinogenic role against hepatocarcinogenesis in rats (Chattopadhyay et al., 2004). 

The anticancer activity of β-carotene appears to be more effective in long-term trials 

when administered for a prolonged period rather than in mere initiation or promotional 

stages; this was demonstrated in a study involving 2-acetylaminofluorine-induced 

hepatocarcinogenesis. Hence, β-carotene may be better suited for use as a prophylactic than 

chemopreventive agent; moreover, pre-neoplastic lesions induced by diethylnitrosamine in 

resistant rat hepatocytes were shown to decrease when β-carotene was present, to a 

statistically significant extent (Bishayee et al., 2000). In general, the anticancer potential of β-

carotene relies upon its free radical scavenging nature coupled with its immediate 

involvement in trapping singlet oxygen; this provides an overall reducing environment in the 

hepatic tissues on long-term exposure to β-carotene (Mukherjee et al., 2011). 
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However, administration of large doses of synthetic β-carotene was found to have no 

effect on mesothelioma and lung cancer in human subjects (De Klerk et al. 1998). β-

Carotene is one of the most efficient known substances in quenching the excitation energy of 
1O2 and in trapping certain organic free radicals (thus preventing oxidative tissue damage); 

its capacity to enhance gap-junctional communication and inhibit lipid peroxidation in 

chemically induced neoplastic transformation in 10T1/2 cells, and to act as a chain-breaking 

antioxidant in the lipid phase via neutralization of peroxy radicals appear to be the underlying 

mechanism in controlling cancer growth (Black and Gerguis, 2003, Yang et al., 2004). 

The microalga Dunaliella salina (Teo.) is well known for accumulating β-carotene (β, β-

carotene) when subjected to growth-limiting conditions (e.g. exposure to high irradiances). 

However, some of the detectable carotenoids in the human body have more potent activity 

than β-carotene in suppressing the process of carcinogenesis, including α-carotene (Orset 

and Young, 1999). In addition, α-carotene (β, ε-carotene) may be synthesized and then 

accumulated by D. salina under specific growing conditions. It appears that α-carotene 

inhibits proliferation by inducing G1 arrest in the cell cycle of human neuroblastoma (cell line 

GOTO), in a dose- and time-dependent manner (Orset and Young, 1999). Moreover, this 

carotenoid shows a 10-fold greater inhibitory activity than β-carotene in suppressing tumours 

in the skin, lung, liver, and colon (Nishino et al., 2009). 

A particularly relevant note is that β-carotene of natural origin (e.g. microalgae) is preferred 

by the health market due their mixture of trans- and cis-isomers, which are hardly obtained 

via chemical synthesis; the latter exhibit better anticancer features (Guedes and Malcata, 

2011). 

 

1.2.2.1.2. Antitumor action by lutein and zeaxanthin 

Lutein and zeaxanthin are stereoisomers that belong to the xanthophyll family. Several 

reports have revealed an inverse correlation between lutein or zeaxanthin intake and cancer 

occurrence. Lutein can significantly inhibit growth of androgen-dependent and androgen-

independent prostate cancer cell lines in vitro, and prevent colon carcinogenesis in vivo 

(Narisawa et al., 1996a); it also plays a role upon inhibition of proliferation of human mouth 

epithelial cancer line KB (Sun Zhen, 2006) (Table 3). 

A few in vivo studies involving mice have unfolded the potential of dietary lutein as an 

antitumor agent; indeed it was demonstrated that a diet containing lutein reduced the growth 

of (transplantable) mammary tumor and enhanced lymphocyte proliferation 

(Lakshminarayana et al., 2010b). Furthermore, Reynoso-Camacho et al. (2011) verified an 

additional chemoprotective effect of lutein against colon cancer induced by DMH 

(dimethylhydrazine), via modulation of proteins involved in the regulation of cellular 

proliferation or differentiation; in other words, they increased the expression of mitogen-
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activated protein (K-ras), protein kinase B (pKB), and β-catenin proteins. Lutein fed at 0.002 

% of the diet, before (prevention) and after (treatment) DMH administration, decreased the 

number of tumours by 55 and 32 %, respectively. Lutein significantly decreased the 

expression of K-ras (25 and 39 %), β-catenin (28 and 26 %), and pPKB (32 and 26 %) in 

tumours during prevention and treatment, respectively (Reynoso-Camacho et al., 2011a). 

Concerning zeaxanthin alone, it appears to play an important role upon progression of 

melanoma by inhibiting the migration of skin fibroblasts (cells involved in melanoma growth 

and progression) at several stages (Wu et al., 2010). 

 

1.2.2.1.3. Antitumor action by violaxanthin 

Violaxanthin is another carotenoid that shows strong antiproliferative activity in vitro 

against human mammary cancer cells (MCF-7), thus suggesting that violaxanthin and 

derivatives thereof obtained via pharmacomodulation should be considered as tentative new 

drugs for treatment of breast cancer (Yang et al., 2004). Violaxanthin extracts from C. 

ellipsoidea possess a strong antiproliferative and pro-apoptotic activity against HCT116 

human colon cancer cells (Sheu et al., 2008). Further studies are, nevertheless, needed to 

define the pharmacological mechanisms involved in its antiproliferative activity in human 

cancer cells. 

 

1.2.2.2. Antitumor action by PUFA 

As seen before, PUFAs can be classified into two major categories, ω-3 and ω-6. 

Between these two different classes of PUFAs, there is a great deal of variation in 

bioactivities – namely those that are cancer-related. For example, ω-3s, such as EPA and 

DHA, have been associated with cancer suppression, while ω-6s, particularly AA, is 

generally associated to cancer promotion (Yang et al., 2004, Xu and Qian, 2014). Hence, a 

high intake of ω-6s was found to correlate with a high risk of breast, prostate, and colon 

cancer incidence in many animal and human studies, and the ratio of ω-6s to ω-3s was 

suggested to be a predictor for cancer progression (Williams et al., 2011). 

However, it was reported that other ω-6s, such as linoleic acid (LA), GLA, and dihomo-

γ-linolenic acid (DGLA), may possess anticancer effects, and there is experimental evidence 

that LA can be involved in both pro- and anti-cancer activities. For example, studies indicate 

that LA stimulates cell proliferation in the human breast cancer cell line BT-474 and lung 

cancer cell line A549 in vitro, and promotes colon and prostate tumorigenesis and tumour 

growth in animal models (Sauer et al., 2007). However, others claim that a high dose of LA 

inhibits proliferation of the colon cancer cell line Caco-2, and shows a protective effect 

against cancer development (Horrobin and Ziboh, 1997, Dommels et al., 2003).  
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Other studies also demonstrate that GLA is associated with anticancer activities either 

in vitro as in vivo. GLA inhibited cell growth of the human neuroblastoma cell lines GOTO, 

SK-N-DZ, NKP, and NCG, a rat C6 glioma cell line, and the rat carcinosarcoma cell line LLC-

WRC256 in vitro (Fujiwara et al. 1998). Additionally, a dietary supplement of GLA also 

reduced tumor growth in an implanted WRC256 using a rat model (Colquhoun et al. 2002). 

More interestingly, GLA-induced cytotoxicity was shown to exhibit high selectivity toward 

cancer cells, with no significant effect on normal cell growth. For instance, a series of studies 

suggested that 3–7 days of incubation with GLA could selectively induce cell death in various 

human cancer cell lines, including the human breast cancer cell ZR-75–1, the lung cancer 

cell A549, and the prostatic cancer cell PC-3, without affecting normal cell growth (Das, 

2006). 

Lipid peroxides derived from docosahexaenoic acid (DHA), a PUFA rather abundant in 

microalgae, are generally regarded as toxic to cells. They exhibit anticancer effects that 

materialize in the mitochondria and nucleus. The mitochondria is considered a universal 

sensor of cell stress: it respond to stress by undergoing functional and/or structural changes 

leading to induction of apoptosis. PUFAs, such as DHA, are rapidly incorporated into the 

mitochondria, where they cause several changes that eventually promote cell death. Those 

changes encompass alteration of mitochondrial membrane properties and related functions 

in rat colonocytes, human colonic tumour cell line HT29, Walker 256 rat carcinosarcoma, and 

T24 and Hep2 cancer cells (Siddiq and Dembitsky, 2008). 

Experimental evidence suggests that DHA accumulates preferentially in mitochondrial 

cardiolipin (CL) that is present in the inner membrane and at intermembrane contact sites 

(McMillin and Dowhan, 2002). 

As review before (Amaro et al., 2013) DHA in CL is apparently susceptible to ROS 

generated through oxidative phosphorylation. An increase in mitochondrial Ca2+ due to 

changes in the cytosolic levels of this cation probably results in enhanced ROS generation 

and modification of membrane topography – both favouring CL peroxidation; cytochrome C 

catalyses that phenomenon. When peroxidation occurs, mitochondrial CL levels decrease, 

affecting the activity of CL-dependent proteins involved in energy transduction, and causing a 

drop in mitochondrial membrane potential – which in turn initiates apoptosis. Moreover, DHA-

induced cell death and fragmentation apparently take place in parallel with activation of ERK, 

c-Jun N terminal kinase (JNK), and actuator protein 1 (AP-1) in gastric carcinoma AGS cells 

(Lee et al., 2009). DHA was able to increase the intracellular levels of p53, cytochrome C, 

and Bax in gastric cancer cells, thereby exerting anticancer effects via decreasing their 

proliferation and inhibiting cell cycle progression (Albino. et al. 2000). 

In DHA-treated gastric cancer cells, AP-1 regulates apoptosis-associated gene 

expression – determined by the relative levels of p53, cytochrome c, and Bax metabolites. 
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DHA-induced DNA fragmentation and increases in the three metabolites were suppressed by 

inhibiting AP-1 transactivation. Hence, DHA can inhibit cancer cell proliferation and induce 

apoptosis through the AP-1 pathway in human gastric cancer cells (Lee et al., 2009). Despite 

these pieces of evidence in support of DHA from microalgae (or otherwise) as a beneficial 

nutrient for cancer treatment, further studies are required to shed light on the anticancer 

action of DHA on specific cancer cells, including its putative side-effects. Furthermore, DHA 

demonstrated a synergistic effect with fluorouracil – meaning that the dose of fluorouracil 

used to treat human gastric carcinoma may be decreased without compromising its 

therapeutic effect (Albino et al., 2000). 

In recent years, microalgae have become a good alternative source of PUFAs, e.g. 

with EPA, DHA and ALA being the most representative; species of microalgae rich in those 

PUFA are Tetraselmis sp. and Nannochloropsis oculata, Pavlova lutheri, Arthrospira 

platensis and Chlorella sp. (Guedes et al., 2011a, Martins et al., 2013). 

 

1.3. Lipidic components extraction  
 

One of the major bottlenecks in obtaining molecules from microalgae is the difficulty of 

extracting some metabolites, which can compromise high-throughput screening analyses. 

Development of extraction techniques for microalgae has become a field of growing interest 

for the scientific community. Most techniques developed are intended for heat-stable 

molecules, and thus seldom suitable for high-throughput screening for sensitive molecules. 

Concerning the latter, a few studies have been carried out to extract natural bioactive 

products from microorganisms since the 1980s. Many extraction techniques have 

accordingly been developed (Serive et al., 2012). Pigment studies, in particular, have been 

steadily increasing since the early 1970s, both in the field of oceanography (Szymczak-Żyła 

et al., 2011) and for industrial applications (Hejazi et al. 2002, Machmudah et al. 2006). 

These techniques are often suitable for molecule purification from large amounts of biomass 

(Hosikian et al., 2010), but not for high-throughput screening purposes. 

Microalgae species are characterized by a huge biodiversity. This biodiversity includes 

thick-walled green or red algae, silicified diatoms, cyanobacteria with multi-layered walls, red 

algae with wall-bound exopolysaccharides and armoured dinoflagellates, which need to be 

broken before extraction is possible (Serive et al., 2012). Another important requirement is 

easy solubilisation of molecules of a wide polarity range. At laboratory scale, it is tempting to 

use strong solvents to extract target molecules. However, acetone, chloroform, dimethyl 

acetamide, dimethyl formamide, dimethyl sulfoxide and methanol are unsuitable at industrial 

scale, due to safety considerations (low lethal dose, carcinogenic, harmful, irritant or toxic) 

(Serive et al., 2012). Eco-friendly approaches may be used instead, via mild solvents that 
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would limit health risks while facilitating scale-up. The extraction method needs to be quick, 

simple to use and requiring no heavy equipment. The methods most widely applied for 

carotenoid extraction use classical solvent extraction, pressurized fluid extraction (PLE) and 

supercritical fluid extraction (SFE) – and will be discussed in terms of potential of applicability 

and limitations. 

 

1.3.1Classical solvent extraction of lipidic components 

 

1.3.1.1. Carotenoids classical solvent extraction 

In classical solvent extraction, several different methods are employed depending on 

the carotenoid – see Table 4. For carotenoids, such as astaxanthin, classic extraction 

methods may include use of organic solvents, preceded by a breakdown pre-treatment of 

cells (cryogenic grinding and acid/base treatment), enzyme lysis (kitalase, cellulose and 

abalone acetone powder, mainly β-glucoronidase), mechanical disruption and spray-drying 

(Sarada et al., 2002, Kang and Sim, 2007). 

These methods have been comprehensively tried – Sarada et al. (2002) tested the 

extractability of carotenoids from H. pluvialis with hydrochloric acid (2N) for 10 min at 70°C, 

followed by acetone extraction for 1 h – thus extracting 87 % (w/w) of astaxanthin without 

affecting its composition. Later, Kang & Sim (2007) developed a two-stage solvent procedure 

with dodecane and methanol to extract free astaxanthin from H. pluvialis cells, by mixing the 

solvents with the culture broth, followed by settling of the mixture for 48 h. The dodecane 

extract was separated from the cell debris, placed in another tank and mixed with NaOH in 

methanol (0.02 M), at a volume ratio of 1:1 (to promote saponification of astaxanthin esters 

to free form). Then, the tank was kept in darkness at 4 °C (12h) to support astaxanthin 

extraction toward the methanol phase. The results indicated a total recovery yield of free 

astaxanthin over 85 % Dry-Weight (DW.)  

However, some disruption methods have a negative effect upon carotenoid recovery. For 

example, Zhao et al. (2006) found that methods like microwave and ultrasound induce 

instability of synthetic astaxanthin, thus inducing its conversion to other astaxanthin isomers 

– while ultrasound showed to degrade this pigment into colorless compounds, due the 

cavitation produced in the solvent from propagation of ultrasonic waves. 
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Table 1.4. Microalgal carotenoid classical solvent extraction. 

Carotenoids 
Microalgae 

source 
Extraction/Purification method 

Yield/Extraction 
efficiency Reference 

Astaxanthin Chlorococcum 
sp. 

Methanol:dichloromethane 1:3 (v/v). 
Cells disrupted by French Pressure 
at 110MPa. 
Saponification in darkness (50 mg 
NaOH in 100 ml methanol). 

Yield: 7.09 mg/g DW 
(Ma and Chen, 

2001) 

 Haematococcus 
pluvialis 

Cell acid digestion with HCl 2M. 
Acetone extraction at 70°C for 1h. 

Efficiency: 87 %  (Sarada et al., 
2002) 

Dodecane mixing for 48h. 
Saponification with methanolic 
NaOH (0.02M). Sedimentation in 
darkness at 4°C, 12 h. 

Efficiency: 85 %  (Kang and Sim, 
2007) 

Hexane:acetone: ethyl alcohol 
(100:70:70 %v/v) extraction. 

N/A 
(Domı́nguez-

Bocanegra et al., 
2004) 

DMSO extraction at 55°C, vortex 
30s 

N/A (Orosa et al., 2005) 

Dodecane :methanol (1:1) (v/v), 2-
step procedure, and addition of 
NaOH at 25 ºC 

Efficiency: 85 %  (Mäki-Arvela et al., 
2014) 

β-carotene Dunaliella salina 
Hexane/acetone/ EtOH (2:1:1) (v/v) 
at 25 ºC for 24 h 
Followed by KOH saponification 

Efficiency: 90.42  %  (Hu et al., 2008) 

Carotenoids D. salina DMF extraction at 25 ºC for 3 min of 
sonification. Storage at 4 ºC. 

Yield: 27.7 mg/g (Macias-Sanchez 
et al., 2009) 

Lutein Scenedesmus  
obliquus 

Bead beater pretreatment, 
extraction with diethyl ether at 25 ºC 
in S/R ratio, 2-5 extraction steps. 

Efficiency: 99 % 
Yield: 2.05 mg/g (Chan et al., 2013) 

Fucoxanthin Phaeodactylum 
trocornutum 

Freeze-dried cells, extraction with 
ethanol during 60 min. 

Yield: 15.33 % (Kim et al., 2012) 

 
1.3.1.2. Lipids classical solvent extraction 

For an ideal lipid extraction, the organic solvents should preferably be volatile for low-

energy distillation from the crude lipids (Medina et al., 1998). 

Chloroform:methanol 1:2 (v/v) is the organic solvent mixture most frequently used for 

lipid extraction from any living tissue. Using this organic solvent system, originally developed 

by Folch et al. (1951), residual endogenous water in the microalgal cells acts as a ternary 

component that enables quantitative extraction of both neutral and polar lipids (Folch et al., 

1957). This method does not require complete drying of microalgal biomass. Once the cell 

debris is removed, more chloroform and water are added to induce biphasic partitioning. The 

lower organic phase (chloroform with some methanol) contains most lipids (both neutral and 

polar), while the upper aqueous phase (water with some methanol) encompasses most non-
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lipids (proteins and carbohydrates) (Medina et al., 1998). Chloroform, however, is highly toxic 

and its usage is undesirable.  

Therefore, a hexane:isopropanol (3:2 (v/v)) mixture has been suggested as a low-

toxicity substitute to chloroform:methanol system (Halim et al., 2011). The mixture works in a 

similar fashion to the chloroform:methanol system. Upon biphasic separation, the upper 

organic phase (hexane with some isopropanol) contains most lipids (both neutral and polar), 

while the lower aqueous phase (water with some isopropanol) contains most non-lipids 

(proteins and carbohydrates). When evaluated for microalgal lipid extraction, the 

hexane:isopropanol mixture was found more selective towards neutral lipids compared to 

chloroform:methanol (Halim et al., 2011). 

Guckert et al. (1988) found a neutral lipid selectivity by hexane:isopropanol mixture, 

and  its inability to extract the polar lipid constituents of microalgal membranes (chloroplast 

membranes contain glycolipids and cell membranes contain phospholipids) (Guckert and 

Cooksey, 1990). The hexane:isopropanol system, however, yielded a surprisingly low total 

lipid recovery when applied to Botryococcus braunii (Lee et al., 1998). 

Nagle and Lemke (1990) have evaluated the efficiencies of three organic solvents 

(butanol, hexane:2-propanol mixture and ethanol) in extracting crude lipids from Chaetoceros 

muelleri, and compared them to a control water:methanol:chloroform mixture(Nagle and 

Lemke, 1990). Even though the control polar/non-polar mixture was found to be the most 

effective organic solvent system (assigned an arbitrary extraction efficiency of 100 %), 

butanol (with an average extraction efficiency of 94 %) was found to be highly promising with 

a final total lipid yield consistently higher than hexane:2-propanol mixture or ethanol; and it 

showed lower sensitivity to changes in extraction procedure – an essential attribute to scale-

up the procedure. Due to its tendency to inactivate many phosphatidases and lipases, the 

use of isopropanol-containing organic solvent mixture was recommended to extract lipids 

from unicellular microalgal species that produces lipid degradative enzymes (Halim et al., 

2011). 

Some extraction techniques could be combined with polar extraction solvents to 

enhance the kinetics of lipid extraction, through fast cell disruption structures such as Soxhlet 

extraction, microwave-assisted extraction, ultrasound-assisted extraction, extraction via 

pulsed electric field, bead-beating-assisted extraction, and others. Advantages and 

disadvantages will be briefly discussed next.  

Some laboratory-scale organic solvent lipid extractions methods resort to use Soxhlet 

apparatus, but this batch extraction is limited by the lipid mass transfer equilibrium. In order 

to overcome this limitation, the continuous process requires a large amount of organic 

solvent so it becomes too expensive. Soxhlet ingenious extraction endorses cycles of solvent 

evaporation and condensation through microalgal biomass, and continuously replenishes 

39 
 



PART I                                                                                                                                          CHAPTER 1 

 
cells with fresh organic solvent (hence circumventing equilibrium limitation) while 

simultaneously minimizing solvent consumption; despite its advantageous design in avoiding 

equilibrium limitation, the Soxhlet apparatus suffers from the high energy requirement of 

continuous distillation (Luque de Castro and Garcıá-Ayuso, 1998). 

However, independent studies by Guckert et al. (1988) and Halim et al. (2011) 

confirmed the superior efficacy of Soxhlet extraction when compared to batch extraction. 

Among the three systems texted by Guckert et al. (1988) to extract lipids from Chlorella sp., 

Soxhlet extraction using a methylene chloride:methanol 2:1 (v/v) mixture attained the highest 

final total lipid yield; the final total lipid recovered was ca. 11.9 % in terms of dry microalgal 

weight. Moreover, Halim et al. (2011) found Soxhlet operation of hexane extraction to be 

significantly more efficient than its batch counterpart when used to extract lipids from 

Chlorococcum sp. – with a final total lipid yield of batch extraction of 0.015 g.gDW
 -1, and a 

final total lipid yield of Soxhlet extraction of 0.057 g.gDW
 -1. 

Despite its improved total lipid recovery, Soxhlet extraction potentially suffer from lipid 

degradation resulting from use of high temperature throughout the process – particularly in 

the case of PUFAs, more labile to thermal degradation (Guckert and Cooksey, 1990). 

Microwave-assisted organic solvent extraction resorts to electromagnetic radiation, 

within a specific frequency range, to deliver large amount of thermal energy to the microalgal 

cells (Balasubramanian et al., 2011). When the cells receive this energy, local internal 

superheating occurs, leading to instantaneous temperature rise within the matrices and rapid 

pressure effects on the cell wall/membrane structure. Cell structures are immediately 

ruptured, thus forcing cell constituents to spill out. This effective release of cell materials 

facilitates diffusion of microalgal lipids into the extracting organic solvent. Microwave-assisted 

heating is substantially more rapid than conventional heating, as heat is delivered via 

radiation rather than convection and conduction. Microwave-assisted hexane extractions 

were found to lead to higher oil yields compared to conventionally water-heated hexane 

extraction control methods, at all extraction temperatures and times. While the microwave 

system extracted 76-77 % of total recoverable oil within 20-30 min at 95 °C, the water-heated 

hexane only extracted 43-47 %. 
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1.3.2. Pressurized fluid extraction 

 

1.3.2.1. Pressurized fluid extraction of carotenoids  

Pressurized fluid extraction (PFE) or Pressurized Liquid Extraction (PLE) is a method 

that operates with conventional solvents; mainly due to the use of elevated temperatures and 

pressures, it increases compound solubility. Unlike extraction at room temperature, pressure 

keeps the solvent in its liquid state, even if temperatures above the boiling point are applied. 

Additionally, pressure favors penetration of the solvent into the biological matrix. This is 

specifically beneficial for microalgal cells with thick cell walls. The PFE device includes an 

extraction cell (1 up to 100 mL) maintained within 80-200°C, into which a solvent is pumped 

and maintained at 10-20 MPa for a few minutes. The extract is then pushed into a collection 

vial by a second volume of solvent, and finally the whole solvent is pushed with an inert gas 

flow (Camel, 2001). 
PFE show higher (or equal) extraction efficiencies as compared to traditional solvent 

extraction, while maintaining the integrity of chemical components (Denery et al., 2004). High 

pressure typically shortens the extraction time and the amount of solvent used. Pressurized 

fluid extraction has been actively studied (Denery et al., 2004, Plaza et al., 2008, Koo et al., 

2012, Jaime et al., 2010) Pressurized liquid extraction of algae has been preferred due to 

specific benefits, and is a powerful tool in the nutraceutical industry: possibility to avoid 

excessive heat, oxygen and light that cause degradation of sensitive compounds (Plaza et 

al., 2010), lower amount of solvent needed (Jaime et al., 2010), higher selectivity compared 

with Soxhlet and ultrasound-assisted extraction (Koo et al., 2012), and shorter time needed 

for extraction (Jaime et al., 2010). Several solvents have been investigated for pressurized 

liquid extraction of algae, such as ethanol, 2-propanol, hexane, petroleum ether and water. 

Ethanol has been one of the best solvents, giving both high yields (Koo et al., 2012) and 

extracts with high antioxidative capacity (Herrero et al., 2005) – as can be grasped in Table 

5. 

Pressurized extraction of zeaxanthin has been investigated with Chlorella ellipsoidea 

under pressurized conditions with different solvents, such as hexane, ethanol and 2-

propanol, and with Chlorella vulgaris using ethanol as solvent (Koo et al., 2012, Chan et al., 

2013). Use of hexane and 2-propanol as solvent requires higher temperatures when 

compared to ethanol (Koo et al., 2012). The high extraction efficiency of ethanol was also 

observed in the extraction of carotenoids from Phormidium in the temperature range 50-100 

°C at 10.3 MPa, compared to those achieved with water or hexane (Rodriguez-Meizoso et 

al., 2008). Ethanol was also an efficient solvent for extraction of astaxanthin from 

Haematococcus pluvialis at 10.3 MPa and 200 °C. When non-polar hexane was applied, low 
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efficiency was achieved due to the polar nature of zeaxanthin. It has been claimed that 

zeaxanthin is hardly soluble in hexane and petroleum ether (Mäki-Arvela et al., 2014). 

When comparing different solvents toward extraction of carotenoids from Spirulina 

platensis at 10.3 MPa in hexane, petroleum ether, ethanol and water, the highest yields were 

attained in ethanol (19.7 wt%), followed by water (10.12 wt%), hexane (4.3 wt%) and 

petroleum ether (4.0 wt%) (Herrero et al., 2005). On the other hand, the use of polar solvents 

favors extracts in terms of antioxidant capacity, as is the case of ethanol. Similarly to the 

work by Herrero et al. (2005), ethanol gave higher extraction yields compared with hexane 

during extraction of Haematococcus pluvialis within the temperature range 50-200 °C at 10.3 

MPa. 

 
Table 1.5. Optimal conditions for pressurized liquid extraction of carotenoids from 

microalgae. 

Carotenoid Microalga source Solvent system Processing 
conditions 

Efficiency/ yield 
(%) 

References 

Lutein 

Synechocystis 
sp. Ethanol 

T (ºC): 100 
P (MPa): 10.3 
T (min): 20 

Yield: 2.04 mg/g (Plaza et al., 
2009) 

Chlorella vulgaris 
20 ml ethanol for 
0.5 g microalga  

T (ºC): 160 
P (MPa): 10.3 
T (min): 30 

Yield: 3.78 mg/g (Chan et al., 
2013) 

Chlorella 
Jet mill treated cell 
extracted with 
EtOH, 6 % KOH 

T (ºC): 50 
P (MPa): 3 
T (min): 

Efficiency:1.46 (Shibata et al., 
2004) 

Zeaxanthin 

Chlorella 
ellipsoidea 

Ethanol 
T (ºC): 115.4 
P (MPa): 10.3 
T (min): 23.3 

Yield: 4.28 mg/g: (Koo et al., 2012) 

Synechocystis 
sp. 

Ethanol 
T (ºC): 100 (MPa) 
P (MPa) 10.3 
T (min): 20 

Yield:1.64 mg/g (Plaza et al., 
2010) 

As emphasized before, pressurized liquid extraction shortens extraction time. Typically, 

a longer extraction time leads to a higher extraction yield; however, in some cases, e.g. 

extraction of lutein, lower yields were achieved with longer extraction times, since lutein was 

less thermolabile than astaxanthin (Denery et al., 2004). Short extraction time (just 10 min) 

gave high extraction yield of fucoxanthin from Phaeodactylum tricornutum at 100 °C in 

ethanol – whereas comparable methods led to about the same yields either at room 

temperature with ultrasound-assisted extraction or in Soxhlet extraction at 80 °C for 30 min 

(Kim et al., 2012).  

Temperature can either be dominant, or exhibit a minor effect. However, some 

combinations of temperature and time can promote side reactions, e.g. pheophorbide 
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formation from chlorophyll a (Koo et al., 2012). The most efficient solvent for extraction of 

zeaxanthin is ethanol, with an optimum temperature for extraction of 115.4 °C, whereas 

extraction in hexane produces a lower amount of zeaxanthin. When comparing ultrasound-

assisted extraction with pressurized extraction of carotenoids at high temperature, a benefit 

claimed for zeaxanthin extraction via the pressurized system is the lower liquid viscosity (Koo 

et al., 2012). One drawback of using higher extraction temperatures, namely in extraction of 

lutein and β-carotene from Chlorella vulgaris, is formation of pheophorbide from chlorophyll 

a. This formation increases with extraction time, and the highest pheophorbide formation was 

observed at 60 °C – but decreased with increasing temperature, due to deactivation of 

chlorophyllase at high temperature. Pheophorbide is a Mg2+-free chlorophyll that may cause 

dermatitis in human skin and food poisoning above 1.6 mg g-1 (Mäki-Arvela et al., 2014). 

Temperature exhibited only a minor effect upon astaxanthin yields during pressurized liquid 

extraction of Haematococcus pluvialis performed in acetone at 10.3 MPa, within 20–100 °C 

for 5 min, using three extraction cycles (Denery et al., 2004). The results revealed that 

astaxanthin yield was nearly unaffected by temperature, whereas a slight decrease of lutein 

was observed at higher temperature (Denery et al., 2004). Furthermore, no trans- to cis-

isomerization of astaxanthin occurred at 40 °C and 10.3 MPa. It was finally stated that the 

pressurized liquid extraction required only half the amount of solvent and 20 min extraction 

time, when compared to the traditional extraction time of 90 min. 

 
1.3.2.1. Pressurized fluid extraction in PUFA extraction 

PLE extraction for microalga PUFA recovery has been seldom reported, yet there is 

evidence that an extract rich in fatty acids was obtained by this technique from Phormidium 

sp.(Rodriguez-Meizoso et al., 2008). Pieber et al. (2012) also found that ethanol was very 

effective in EPA extraction via a PLE system from Nannochloropsis oculata biomass, 

achieving yields of 16.7 ± 0.6 biomass% in terms of fatty acids and 3.7 ± 0.1 mass %, 

particularly EPA (Pieber et al., 2012). 

 
1.3.2. Supercritical fluid extraction  

Supercritical Fluid Extraction (SFE) is a relatively rapid extraction process due the low 

viscosities and high diffusivities that characterize supercritical fluids. Supercritical CO2 

exhibits indeed a relatively lower viscosity and higher diffusivity – ca. 10-4 cm2.s-1, whereas 

liquid solvents are characterized by ca. 10-5 cm2.s-1, so it can penetrate porous solid materials 

more effectively than liquid solvents would, and consequently render mass transfer much 

faster. For instance, for a given level of recovery, the extraction time may be reduced from 

hours or even days in liquid-solid extraction to just a few tens of minutes in SFE (Brühl and 
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Matthäus, 1999). On the other hand, extraction can be made selective by controlling the 

density of the medium; whereas the material extracted can be recovered by simply 

depressurizing, thus allowing the supercritical fluid to return to its gaseous form while leaving 

no (or very little) residual solvent in the solute precipitate (Bravi et al., 2007). In SFE, the 

physicochemical properties of a given fluid – viz. density, diffusivity, dielectric constant and 

viscosity, can indeed be easily controlled by changing the operating pressure and/or 

temperature, as long as the phase boundaries are not crossed (Bravi et al., 2007). 

Supercritical CO2 (SCCO2) has so far been the most employed supercritical fluid – because it 

is non-flammable, non-toxic, inexpensive and relatively inert from a chemical point of view. 

On the other hand, due to its moderate critical temperature (31.1 ºC), extraction of 

thermolabile compounds can take place without significant thermal degradation (Mendes et 

al., 2003). Moreover, addition of a small amount a co-solvent with some polarity may 

increase the solvation power of CO2; for example, addition of 1-10 % of ethanol to CO2 

expands the extraction range so as to include several polar solutes (Bravi et al., 2007).  

There are several advantages (but also drawbacks) in using supercritical CO2 relative 

to classical organic solvents. Despite its properties that make it suitable for extracting 
thermally labile and non-polar bioactive compounds, it performs much worse in terms of polar 

molecules; the decreases in processing time and the increases in yield are outrun by its 

presence complicating the associated thermodynamics and increasing capital costs (Guedes 

et al., 2013). On the other hand, use of high purity, SFE-grade CO2 is not required; however, 

impurities and moisture in industrial operation may accumulate, and eventually interfere with 

further operation. 

So far, high installation costs of the extraction pressure vessel, coupled with 

unfavorable energy requirements for fluid compression and heating remain the primary 

obstacles for scaling-up SCCO2 extraction. 

 

1.3.2.1. Supercritical fluid extraction of carotenoids 

Supercritical extraction with CO2 or ethane has been applied to carotenoid separation, 

due to its high selectivity and safety toward thermolabile carotenoids (Jaime et al., 2010). In 

some cases, supercritical CO2 extraction gives low yields, e.g. in astaxanthin extraction, so 

use of ethanol as a co-solvent is recommended. However, in supercritical extraction of β-

carotene, ethane or ethylene have been successfully demonstrated as effective – since β-

carotene has higher solubility in these hydrocarbons than in CO2 (Guedes et al., 2013). 

The extraction for carotenoids entails three different stages: i) in the beginning, the 

extraction is linear with time – thus indicating a constant rate, which is caused by either 

solubility equilibrium or a constant mass transfer resistance; ii) extraction rate declines 
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because most of the carotenoids have already been stripped from the solid–liquid interface; 

and iii) in the final region, the extraction rate is very low due to the need for solvent to diffuse 

into the algae matrix for residual extraction. The addition of ethanol as a co-solvent can 

enhance permeabilization and cell rupture and/or matrix swelling, thus facilitating internal 

mass transfer (Macias-Sanchez et al., 2009). 

The effects of pressure and temperature upon supercritical extraction of carotenoids 

are interrelated; when increasing temperature at relatively low pressure, extraction yield is 

lowered due the lower density of CO2 – which also lowers solubility of carotenoids in the 

solvent, as observed at 70 °C and 30 MPa in supercritical CO2 (Kitada et al., 2009). 

Otherwise, extraction yields are increased with increasing pressure and temperature, if the 

carotenoid is sufficiently thermoresistant. Note that solute properties, such as thermal and 

chemical stability, as well as polarity and solubility also affect extraction efficiency (Cardoso 

et al., 2012). 

At high pressures, the carotenoid yield typically increases with increasing of CO2 

pressure and temperature (Machmudah et al., 2006). Solubility and vapor pressure of solute 

are important parameters in determining extraction efficiency. Furthermore, solvent viscosity 

decreases with increasing temperature. High temperature enhanced the yield of astaxanthin 

from Haematococcus pluvialis with supercritical CO2, when changing temperature from 40 to 

70 °C (Aravena et al. 2012) – see Table 6. This result was explained by the increase in 

vapour pressure of the solute, thus facilitating mass transfer into the CO2 phase.  

Similar results were also achieved by Machmudah et al. (2006)- high yields of 

astaxanthin from Haematococcus pluvialis were attained with pure CO2 at relatively high 

temperatures, 60-80 °C, and pressures of ca. 5 MPa – i.e. similar to those found by Aravena 

et al. (2012) when starting from dry alga powder. 

Different optimum temperatures and pressures were obtained for extraction of β-

carotene and zeaxanthin from Synechococcus sp., due to the fact that β-carotene is non-

polar – whereas zeaxanthin has two hydroxyl groups; hence, different temperature and 

pressure optima for their extraction have been reported (Cardoso et al., 2012). β-carotene 

yield from Synechococcus sp. was largest at the highest temperature and pressure studied, 

i.e. 60 °C and 40 MPa, respectively, when using pure CO2 as solvent with ethanol (Cardoso 

et al., 2012). On the other hand, the highest extraction efficiency for zeaxanthin was 

achieved with CO2 at the highest temperature and lowest pressure, 60 °C and 20 MPa, 

respectively (Cardoso et al., 2012). Extraction of β-carotene from Dunaliella salina has also 

been demonstrated in supercritical ethane or ethylene (Mendes et al., 2003). Typically, 

extraction yields increase with increasing density of ethane or ethylene, and ca. 59 wt% yield 

of β-carotene was attained within 20 min. On the other hand, the carotenoid yields were quite 

low at relatively low CO2 pressure and high temperature, due to the decrease in density and 
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solubility of carotenoid (Mendes et al., 2003, Kitada et al., 2009). This effect was apparent in 

the final yield of lutein using 40 MPa at 70 °C; it was lower at 40 MPa than 30 MPa. The 

solubility of lutein was, however, higher at 40 MPa compared to 30 MPa, thus unfolding 

diffusion limitations. Furthermore, the initial extraction rates were the same at 30 MPa within 

60-80 °C. This result was justified by the fact that lutein solubility at 80 °C was the rate-

limiting factor, because the density of supercritical CO2 decreases with increasing 

temperature at constant pressure (Kitada et al., 2009). Lutein extraction rate and final lutein 

recovery after 2 h were similarly very low for Chlorella vulgaris at 40 MPa and 80 °C, 

whereas at 40 °C lutein recovery was much higher, 0.6 % and 1.6 %, respectively (Ruen-

ngam et al., 2012). In the work by Mendes et al. (2003), a lower carotenoid yield was 

achieved at 55 °C than 40 °C, and 20 MPa. The results showed an analogous trend of low 

solubilities of astaxanthin at three different temperatures, and low CO2 pressure. 

Analogously, at pressures close to the critical pressure of CO2, a temperature increase 

lowers the recovery degree of astaxanthin – since solubility of astaxanthin decreases with 

increasing temperature, due to a decrease in density (Machmudah et al., 2006). In addition, 

only a slight increase in astaxanthin extraction efficiency from Haematococcus pluvialis was 

observed at 30 MPa of CO2, when increasing the extraction temperature from 40 °C to 60 °C. 

In some cases, carotenoid yields also decrease with increasing pressure. Supercritical 

CO2 has been investigated in carotenoid extraction from Dunaliella salina (Macias-Sanchez 

et al., 2009) – see Table 6. For instance, carotenoid yield exhibited a maximum at 40 MPa 

and 60 °C, whereas at a higher pressure, 50 MPa, the yield of carotenoids was much lower. 

This result was explained by the fact that diffusivity of solvent increases with increasing 

temperature, while density of CO2 decreases. Furthermore, vapour pressure of pigments 

increased as well (Macías-Sánchez et al., 2009). 

Selectivity for carotenoid extraction is high in microalga extraction with pure CO2, but its 

being very non-polar limits the yields of such relatively polar carotenoids as astaxanthin 

(Cardoso et al., 2012, Mendes et al., 2003, Macias-Sanchez et al., 2009). In some cases, the 

solubility of cis- versus trans- isomers of carotenoid is different in pure CO2, thus favoring 

faster extraction of the other isomer (Mendes et al., 2003) 

Supercritical extraction of lutein with 30 MPa CO2 at 60 °C results in relatively low yield, 

0.5 mg.g-1, but maximum selectivity – whereas in the presence of ethanol the yield of lutein 

was 3 mg.g-1, while ca. 9 mg.g-1 chlorophylls were extracted under the same conditions 

(Kitada et al., 2009) as per Table 6 . Supercritical extraction with CO2 is also very selective 

toward β-carotene (Cardoso et al., 2012). It was demonstrated that the supercritical 

extraction of carotenoids gave rise to both carotenoids and chlorophylls, but it was about 18-

fold more selective for carotenoid extraction than achieved with ultrasound-assisted 

extraction with methanol (Macias-Sanchez et al., 2009). 
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The solubility difference between cis- and trans isomers of β-carotene in supercritical 

CO2 facilitates selective production of the former in supercritical CO2, since solubility of cis-β-

carotene is higher than trans-β-carotene in CO2 (Mendes et al., 2003). It is also known that 

the cis-form is more easily absorbed by the human body than its trans-isomer, thus 

emphasizing the importance of selective recovery of cis-β-carotene. When comparing the 

extraction efficiency of acetone with the efficiency of supercritical CO2 extraction, a two-fold 

enhancement of the cis/trans ratio was obtained for extraction of β-carotene from Dunaliella 

salina using supercritical CO2 as solvent. 
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Table 1.6. Optimal conditions of supercritical fluid extraction for pigments from microalgae. 

Carotenoid Microalga source Processing conditions Achievements Reference 

Astaxanthin 

Haematococcus 
pluvialis 

EtOH/10 % soybean 
oil extraction at 70 ºC, 
4Mpa 

Efficiency: 36 %  (Krichnavaruk et 
al., 2008) 

SCCO2 at 55 MPa and 
70 ºC. 

Total extracted: 21.8 
%, Amount extracted: 
77.9 %.  
AX content in the 
extract: 12.3 % 

(Machmudah et al., 
2006) 

CXE at 7 MPa and 45 
°C with 50 % w/w 
EtOH content in CO2 

Extraction yield: 333.1 
mg/gDW. AX content: 
62.57 mg/gDW.  
AX recovery: 124.2 % 
w/w 

(Reyes et al., 2014) 

Monoraphidium 
sp. 

SCCO2 with acid 
treatment, 
EtOH as co-solvent at 
20 MPa and 60 °C for 
1 h  

AX yield: 2.45 mg/gDW (Fujii, 2012) 

Total carotenoids Scenedesmus 
almeriensis 

SFE at 40 MPa and 60 
°C 12.17 ± 0.24 μg/mgDW 

(Macías-Sánchez 
et al., 2010) 

Lutein 

Sc. almeriensis 
SCCO2 at 30 MPa and 
39 ºC for 300 min 0.0236 mgpigments/gDW 

(Macias-Sanchez 
et al., 2009) 

Scenedesmus 
obliquus 

SCCO2 at 25 MPa, 40 
ºC with a CO2 flow of 2 
g.min-1

 

0,028 mg/gDW 
(Guedes et al., 
2013) 

AX- Astaxanthin; CXE- CO2-expanded ethanol extraction; EtOH- ethanol; MeOH- methanol 

 

As stated before, due to the fact of SCCO2 is a very non-polar solvent and xanthophylls 

(e.g. lutein and astaxanthin) have low solubility, addition of ethanol aids in the extraction of 

hydroxyl-containing carotenoids; however, extraction selectivity towards one specific 

carotenoid is reduced when compared with pure CO2 (Kitada et al., 2009). Lutein extraction 

from Scenedesmus sp. was found very efficient with CO2 and ethanol as co-solvent (Guedes 

et al., 2013). Lutein yield from Scenedesmus sp. increased with increasing CO2 pressure at 

47.5 °C, with the maximum recovery being only 3.1 % at 40 MPa (Yen et al., 2012). When 

ethanol was used as entrainer, the yield increased with increasing molar fraction of ethanol 

up to 62.2 %, using 40 mol% ethanol at 40 MPa and 70 °C. Therefore, supercritical CO2 

extraction of spray-dried Scenedesmus sp. was not feasible without ethanol as co-solvent. 

Furthermore, an optimum ethanol concentration in SCCO2 gives the highest carotenoid yield 

(Yen et al., 2012). The optimum ethanol concentration in the extraction of lutein from 

Scenedesmus sp. was 20 mol %, thus yielding 76.65 % recovery at 40 MPa and 70 °C, 

whereas it was only 5 % for astaxanthin extraction from Haematococcus pluvialis – with CO2 
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giving the highest astaxanthin yield, of 77.9 %, at 70 °C and 40 MPa within 240 min (Yen et 

al., 2012, Machmudah et al., 2006). In the presence of ethanol as co-solvent, the increase of 

temperature can in some cases have a negative effect – e.g. in supercritical CO2 extraction 

of astaxanthin from Haematococcus pluvialis (Machmudah et al., 2006). The rationale for 

these results may lie on the isomerization of astaxanthin in ethanol favoring oxidation 

(Bustamante et al. 2008). Different optimum temperatures and pressures were also found for 

extraction of β-carotene and zeaxanthin from Synechococcus sp., due to their different 

solubilities in CO2–ethanol mixture. The optimum temperature for extraction of β-carotene 

was 40 °C at 20 MPa CO2 and 5 vol % ethanol, whereas the optimum temperature and 

pressure were 60 °C and 20 MPa, respectively, for zeaxanthin (Cardoso et al., 2012).  

Another promising method for supercritical CO2 is to use vegetable oil as a co-solvent. 

The benefits of this method are higher solubility of e.g. astaxanthin in soybean oil–CO2 

mixture compared to that in pure CO2, and the possibility of avoiding the subsequent 

separation step of the co-solvent – since the carotenoid can remain in vegetable oil products 

(Krichnavaruk et al., 2008). This method has been utilized in the preparation of astaxanthin 

extracted from Haematococcus pluvialis with supercritical CO2 using vegetable oils – see 

Table 7 (Krichnavaruk et al., 2008) The optimum amount of soybean co-solvent was 10 %, 

giving 36 % extraction efficiency for astaxanthin at 70 °C and 40 MPa CO2. 

 

1.3.3.2. Supercritical fluid extraction in PUFA extraction 

Many algae and microalgae are rich in polyunsaturated fatty acids that can be 

extracted by SFE; however, fatty acid extraction has been studied to a lesser extent than 

carotenoids (Herrero et al., 2006). 

Almost two decades ago, Cheung (1999) studied the effect of extraction conditions to 

obtain fatty acids, particularly ω-3 from non-conventional algae, Hypnea charoides, using 

supercritical CO2, with temperature ranging from 40 to 50 ºC and pressure from 241 and 379 

bar (Cheung, 1999). Although, in general, the lipid recovery increased along a pressure and 

temperature increase, the ratio of unsaturated fatty acids was also increased (Herrero et al., 

2005). 

Concerning the extraction of ω-3 fatty acids, their solubility was shown to depend on 

their chain length in the case of Botrycoccus braunii cells. It was observed that solubility of 

these type of compounds in CO2 increased with pressure; at 300 bar, the best conditions 

were attained, also in terms of extraction rate. 

Another microalga species tested in term of fatty acids extraction by SFE was 

Arthospira (Spirulina) maxima (Mendes et al., 2003). This microalga produces high amounts 

of GLA, and was tested for said PUFA recovery with pure CO2 – with CO2 plus ethanol as co-
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solvent, and with traditional organic solvent extraction. Although both CO2 and n-hexane 

provided similar extraction yields, CO2 allowed a higher recovery of GLA. Moreover, 

maximum extraction yield was obtained using CO2 with 10 % of ethanol as modifier, and 

performing the extraction at 350 bar and 60 ºC. The same was observed in other species of 

this cyanobacteria, Arthospira platensis, as studied by Qiuhui (1999) (Albino et al., 2000, 

Qiuhui, 1999) with regard to GLA extraction. The maximum extraction yield was obtained at 

350 bar, in good agreement with Mendes et al. (2003). The temperature was set at 40 ºC, 

while the CO2 flow rate was fixed at 24 Kg.h-1 for 4 hours. 

Although SFE is an effective method for microalgal fatty acids extraction, there is a 

limitation in its application – the moisture content of the original feedstock. High moisture 

content reduces the contact time between solvent and feedstock. Microalgal biomass then 

acquires a thick consistency – with moisture acting as barrier against diffusion of CO2 and of 

lipids off the cells, so samples are usually dried prior to SFE (Sahena et al., 2009). Although 

applied with success to Arthrospira maxima, Arthrospira platensis, Botryococcus braunii, 

Chlorella vulgaris, Ochronomas danica, Skeletonema costatum and Isochrysis galbana, only 

limited information exists on the kinetics of the underlying process, and the influence of 

operating conditions upon the fatty acid composition of the final lipid extracts (Pereira et al., 

2013). Its main disadvantage is being expensive, and requiring complex instrumentation and 

powerful pumping facilities. 

 

1.4. Optimization of lipidic components production by microalgae  
 
Several environmental factors (e.g. temperature, pH and light) not only affect 

photosynthesis and growth rate of microalgae, but also influence the activity of cellular 

metabolism and composition (Guedes and Malcata, 2011). Hence, selection and control of 

the most appropriate parameters allow redirection of metabolism towards the target 

compounds, turning the concept of microalgae as “biofactories” to a much more effective one 

– particularly if added-value bioproducts are intended. 

 

1.4.1. Temperature 

Temperature is perhaps one of the most important environmental factors that influence 

algal growth rate, cell size, biochemical composition and nutrient requirements. Below 

optimal growth temperatures, growth rate (μ) increases with increasing temperature, but 

declines markedly above the species- or strain-specific optimum (Juneja et al., 2013). 

Growth at temperature optima results in minimal cell size, while the efficiency of carbon and 

nitrogen utilization decreases at non-optimal temperatures (Juneja et al., 2013). Temperature 
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may also play a key role in photoinhibition, which is known to strongly impact algal growth 

rate. 

It was observed that temperature has a major effect upon fatty acids synthesized by 

microalgae; many microalgal species respond indeed to a decrease in temperature by 

increasing the ratio of unsaturated to saturated fatty acids; however, this this feature is a 

species-dependent trait, with no overall consistent relationship between temperature and 

fatty acid unsaturation (Thompson et al., 1992). 

High temperature also favours accumulation of lutein, as is the case with other 

carotenoids (e.g. β-carotene); this was observed in Dunaliella sp., and was reviewed by 

(Guedes and Malcata, 2011). Such temperatures are close to the edge of causing 

environmental stress; hence, the operational window is narrow, because further temperature 

increases would be harmful and eventually cause decreases in biomass productivity.  

 

1.4.2. pH 

In microalgal cultivation, pH is one of the most important factors – since it controls 

solubility and availability of CO2 and other essential nutrients, so it can have a significant 

impact upon algal metabolism (Juneja et al., 2013). On the other hand, it can rise 

significantly in algal cultures due the uptake of inorganic carbon by microalgae (Juneja et al., 

2013). Usually, maximum algal growth occurs around neutral pH; a higher pH may limit the 

availability of carbon from CO2, thus suppressing growth and lowering the affinity of algae to 

free CO2 (Azov, 1982). Alkaline pH indirectly results in an increase of triglyceride 

accumulation, but a decrease in membrane-associated polar lipids due to cell cycle 

inhibition. Membrane lipids in Chlorella were observed to be less unsaturated under 

conditions of alkaline pH (Juneja et al., 2013). Acidic conditions may instead alter nutrient 

uptake, or induce metal toxicity and thus affect algal growth (Gensemer et al., 1993). 

However, Chlamydomonas sp. and Pinnilaria braunii var. amplicephala (an acidophilic 

diatom) were able to accumulate storage lipids such as triacylglycerides under highly acidic 

conditions (pH 1) (Poerschmann et al., 2004). It was also observed that acidic conditions 

promoted an increase in saturated fatty acid content, which reduces membrane fluidity and 

inhibits high proton concentrations (Poerschmann et al., 2004). Such adaptation was also 

reported in a Chlamydomonas sp. – for which total fatty acid content slightly increased from 2 

% at pH 7, to 2.4 % at pH 2.7 (Poerschmann et al., 2004).  

In terms of carotenoid production, available data show that pH does not exert a 

relevant role in their production; in fact, the best productivities are normally attained at the 

optimum pH for biomass production (Guedes et al., 2011c). 
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1.4.3. Light 

Light is the most important factor influencing growth of a photosynthetic microorganism – 

and represents the main source of energy for microalgae. Irrespective of microalgal 

production system, the light source, intensity and spectrum are critical upon performance of 

phototrophic growth  (Mata et al., 2010).  

Sun is the universal light source, but is only available in outdoor microalgae cultivation 

and is restricted to the daylight period. On the other hand, sunlight is composed by a wide 

spectrum – but only the visible part contains photosynthetic active radiation (PAR), which 

ranges from violet (380 nm) to the far red at (750 nm). For photosynthetic organisms like 

microalgae, only a restricted range is harvested, namely blue (about 400 nm) and red 

(around 700 nm).  

Light harvesting by photosynthetic organisms occurs due presence of three major 

classes of pigments: chlorophylls (Chl), carotenoids and phycobilins, which are arranged in 

light harvesting complexes (LHC). All types of LHC are composed by a core and a reaction 

center pigment (Chl a), and light-harvesting antennae composed by such other pigments as 

subtypes of Chl and carotenoids or phycobilins (in the case of prokaryotic microalga) – 

composing the so-called accessory (antennae) pigments that allow extension of the range of 

light absorption (Masojídek et al., 2007).  

Although blue and red lights are the most effectively absorbed by photosynthetic 

pigments, photoregulation of microalgae is not limited to the photosynthetic apparatus; 

several photoreceptors, i.e. pigments that absorb light and transduce light signals, are also 

actively involved in triggering various light responses, which are independent of the 

photosynthetic apparatus (Masojídek et al., 2007). For instance, blue light has been proven 

to influence gene expression and several metabolic pathways in microalgae and plants, like 

endogenous breakdown of carbohydrate reserves (Schulze et al., 2016), and to induce 

nitrate and nitrite uptake. Moreover, red and far-red lights appeared to affect growth, cell 

size, and photosynthesis rate in microalgae (Lee and Palsson, 1996). 

Following selection of the most adequate light source, it is possible to manipulate the 

microalgal biomass toward maximum biomass production, as well its content of high value 

metabolites for specific uses (Schulze et al.).  

Fluorescent lightening is the most common light source employed in indoor microalga 

cultivation; as happens with sunlight, it possesses a wide light spectrum that makes it an 

energetically inefficient light source, and besides its high energy cost also leads to unwanted 

heat generation (Schulze et al., 2016). A new technology for microalga culture illumination 

has arisen in recent years to overcome these limitations – light emitting diodes (LEDs). Their 

advantages include longer life-expectancy, lower heat generation, and higher conversion 

52 
 



PART I                                                                                                                                          CHAPTER 1 

 
efficiency – further to narrow light emission spectra, between 20 and 30 nm of amplitude, 

which can be matched to photosynthetic needs (Chen et al., 2011). 

Light intensity also affects growth and cellular composition of algae. An excessive 

supply of light above saturating limits is known to cause photoinhibition; it leads to disruption 

of the chloroplast lamellae, and inactivation of enzymes involved in carbon dioxide fixation 

(Juneja et al., 2013). It was observed that the growth rate of Dunaliella viridis decreased to 

63 % following an increase in light intensity from 700 to 1500 µmol·m−2·s−1 (Gordillo et al., 

1998). Moreover light intensity affects the cellular composition of microalgae. Dunaliela 

tertiolecta subjected to high light intensity, up to saturation, exhibited a decrease in protein 

content and an increase in lipid fraction (Juneja et al., 2013).  

Conversely, low light intensities led to an increase in the rate of protein synthesis by 

Phaeodactylum tricornutum (Juneja et al., 2013). In absence of light, an increase in total lipid 

content of D. virdis was observed – but a reduced content in triglycerides, free fatty acids, 

free alcohols and sterols arose (Smith et al., 1993). As reviewed by Juneja et al. (2013) 

regarding Nannochloropsis sp., detrimental effects of low light intensities have been 

observed: 40 % of the total lipids were found to be galactolipids, and 26 % were found to be 

triacylglycerols. In the same system, however, high light conditions resulted in increased 

synthesis of triacylglycerol, with concomitant reduction in galactolipid synthesis (Juneja et al., 

2013).  

Strong light, in general, leads to oxidative damage of PUFA. Numerous studies have 

suggested that cellular lipid content and PUFA levels decrease with increase in light intensity 

(Renaud et al., 1991, Juneja et al., 2013). Conversely, Nannochloropsis cells under low light 

conditions were characterized by high lipid content and high proportions of EPA (Sukenik et 

al., 1989). There are contradictory claims regarding PUFA levels versus increasing light 

intensity (Molina Grima et al. 1999). Such differences in response to environmental 

conditions by different microalgae may be related to difference in their metabolic pathways. 

Increase in oxygen-mediated lipid desaturation could be one reason for the observed 

increase in PUFA levels under conditions of higher light intensity (Fernández-Sevilla et al., 

2010). 

As seen above – due to the carotenoid role in light harvesting, particularly under stress 

conditions, it is easy to conclude that their production is highly affected by light intensity. 

Excess of photo-oxidation caused by high light irradiance does apparently trigger synthesis 

of carotenoids, as part of a cellular strategy aimed at cell protection against oxidative 

damage (Fu et al., 2013). In particular, flashing light showed to increase the rate of some 

carotenoid concentrations, such as astaxanthin in H. pluvialis (Hu, 2007). Furthermore, high 

irradiance provides more energy for photosynthetic fixation of carbon, which leads to a higher 

rate of astaxanthin synthesis; this may be further enhanced by raising the C/N ratio (Juneja 
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et al., 2013). In D. salina, it has been widely accepted that light intensity is a key stimulus for 

β-carotene overproduction. 

Unlike fatty acids, biosynthesis of carotenoids is complex and coordinated with 

biogenesis of chlorophylls and proteins of the photosynthetic apparatus (Fu et al., 2013); the 

light spectrum influences their production, but the underlying mechanism is not fully clear yet.  

Some studies have related blue light to induction of production of astaxhantin in H. 

pluvialis (Katsuda et al., 2004); others showed that red light induces production of a larger 

pool of xanthophylls and Chl a in Phaeodactylum tricornutum (Schellenberger Costa et al., 

2013). However, others authors claim that a higher carotenoid/chlorophyll ratio is obtained 

under red light when compared to blue or green light in Botryococcus braunii Bot-144 

cultures (Baba et al., 2012). In Dunaliella salina, red light supplemented with blue one 

increase accumulation of β-carotene and lutein (Fu et al. 2013).  

 

1.5. Thesis aims  
 

So, the main objective of this thesis was the study and characterization of bioactive 

compounds with potential pharmaceutical application produced by microalgae. To achieve 

this goal, efforts founded in resolution of biotechnological bottlenecks were founded in the 

following approaches: 

I)  ascertain the solvent influence on optimized recovery of bioactive extracts rich in 

lipidic components (carotenoids and PUFA) and their characterization; 

II) optimize the extraction conditions of extraction of said bioactive components in terms 

of temperature and pressure, using the solvent selected in I); 

III) optimize concentration of lipidic components in the microalga cell in order to minimize 

further purification processes, using light quality as a tool. 
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DOMıŃGUEZ-BOCANEGRA, A. R., GUERRERO LEGARRETA, I., MARTINEZ JERONIMO, F. & TOMASINI 
CAMPOCOSIO, A. 2004. Influence of environmental and nutritional factors in the production 
of astaxanthin from Haematococcus pluvialis. Bioresource Technology, 92, 209-214. 

DOMMELS, Y. E. M., HARING, M. M. G., KEESTRA, N. G. M., ALINK, G. M., VAN BLADEREN, P. J. & VAN 
OMMEN, B. 2003. The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid 
mediated effects on cell proliferation, PGE2 synthesis and cytotoxicity in human colorectal 
carcinoma cell lines. Carcinogenesis, 24, 385-392. 

FERLAY, J., PARKIN, D. M. & STELIAROVA-FOUCHER, E. 2010. Estimates of cancer incidence and 
mortality in Europe in 2008. Eur J Cancer, 46, 765-81. 

FERNÁNDEZ-SEVILLA, J., ACIÉN FERNÁNDEZ, F. G. & MOLINA GRIMA, E. 2010. Biotechnological 
production of lutein and its applications. Applied Microbiology and Biotechnology, 86, 27-40. 

FOLCH, J., LEES, M. & SLOANE STANLEY, G. H. 1957. A simple method for the isolation and 
purification of total lipides from animal tissues. J Biol Chem, 226, 497-509. 

FOLMER, F., JASPARS, M., DICATO, M. & DIEDERICH, M. 2010. Photosynthetic marine organisms as a 
source of anticancer compounds. Phytochemistry Reviews, 9, 557-579. 

56 
 



PART I                                                                                                                                          CHAPTER 1 

 
FU, W., GUETHMUNDSSON, O., PAGLIA, G., HERJOLFSSON, G., ANDRESSON, O. S., PALSSON, B. O. & 

BRYNJOLFSSON, S. 2013. Enhancement of carotenoid biosynthesis in the green microalga 
Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol 
Biotechnol, 97, 2395-403. 

FUJII, K. 2012. Process integration of supercritical carbon dioxide extraction and acid treatment for 
astaxanthin extraction from a vegetative microalga. Food and Bioproducts Processing, 90, 
762-766. 

GENSEMER, R. W., SMITH, R. E. H. & DUTHIE, H. C. 1993. Comparative effect of pH and aluminium on 
cilica-limited growth and nutrient uptake in Asterionella ralfsii Var. americana 
(Bacillariophyceae). Journal of Phycology, 29, 36-44. 

GIAO, M. S., PESTANA, D., FARIA, A., GUIMARAES, J. T., PINTADO, M. E., CALHAU, C., AZEVEDO, I. & 
MALCATA, F. X. 2010. Effects of extracts of selected medicinal plants upon hepatic oxidative 
stress. J Med Food, 13, 131-6. 

GORDILLO, F. J. L., GOUTX, M., FIGUEROA, F. L. & NIELL, F. X. 1998. Effects of light intensity, CO2 and 
nitrogen supply on lipid class composition of Dunaliella viridis. Journal of Applied Phycology, 
10, 135-144. 

GRANADO-LORENCIO, F., HERRERO-BARBUDO, C., ACIÉN-FERNÁNDEZ, G., MOLINA-GRIMA, E., 
FERNÁNDEZ-SEVILLA, J. M., PÉREZ-SACRISTÁN, B. & BLANCO-NAVARRO, I. 2009. In vitro 
bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food 
Chemistry, 114, 747-752. 

GROSSMAN, A. R., BHAYA, D., APT, K. E. & KEHOE, D. M. 1995. Light-harvesting complexes in 
oxygenic photosynthesis: diversity, control, and evolution. Annu Rev Genet, 29, 231-88. 

GUCKERT, J. B. & COOKSEY, K. E. 1990. Triglyceride accumulationand fatty acid profile changes in 
Chlorella (chlorophyta) during high pH-induced cell cycle inhibition. Journal of Phycology, 26, 
72-79. 

GUEDES, A. C., AMARO, H. M., BARBOSA, C. R., PEREIRA, R. D. & MALCATA, F. X. 2011a. Fatty acid 
composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, 
docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Research 
International, 44, 2721-2729. 

GUEDES, A. C., AMARO, H. M. & MALCATA, F. X. 2011. Microalgae as sources of high added-value 
compounds—a brief review of recent work. Biotechnology Progress, 27, 597-613. 

GUEDES, A. C., AMARO, H. M., PEREIRA, R. D. & MALCATA, F. X. 2011c. Effects of temperature and pH 
on growth and antioxidant content of the microalga Scenedesmus obliquus. Biotechnol Prog, 
27, 1218-24. 

GUEDES, A. C., GIÃO, M. S., MATIAS, A. A., NUNES, A. V. M., PINTADO, M. E., DUARTE, C. M. M. & 
MALCATA, F. X. 2013. Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, 
from a wild strain of Scenedesmus obliquus for use in food processing. Journal of Food 
Engineering, 116, 478-482. 

GUEDES, A. C. & MALCATA, F. X. 2011. Bioreactors for Microalgae: A Review of Designs, Features and 
Applications In: ANTOLLI, P. G. & LIU, Z. (eds.) Bioreactors: Design, Properties and 
Applications. NY: Nova Science Publishers:. 

GUEDES, A. C., MEIRELES, L. A., AMARO, H. M. & MALCATA, F. X. 2010. Changes in Lipid Class and 
Fatty Acid Composition of Cultures of Pavlova lutheri, in Response to Light Intensity. Journal 
of the American Oil Chemists' Society, 87, 791-801. 

GUERIN, M., HUNTLEY, M. E. & OLAIZOLA, M. 2003. Haematococcus astaxanthin: applications for 
human health and nutrition. Trends Biotechnol, 21, 210-6. 

GUIL-GUERRERO, J. L., BELARBI, E. H. & REBOLLOSO-FUENTES, M. M. 2000. Eicosapentaenoic and 
arachidonic acids purification from the red microalga Porphyridium cruentum. Bioseparation, 
9, 299-306. 

HALIM, R., GLADMAN, B., DANQUAH, M. K. & WEBLEY, P. A. 2011. Oil extraction from microalgae for 
biodiesel production. Bioresource Technology, 102, 178-185. 

57 
 



PART I                                                                                                                                          CHAPTER 1 

 
HALLIWELL, B. 2001. Free Radicals and Other Reactive Species in Disease. eLS. John Wiley & Sons, Ltd. 
HAN, S. I., KIM, Y. S. & KIM, T. H. 2008. Role of apoptotic and necrotic cell death under physiologic 

conditions. BMB Rep, 41, 1-10. 
HERRERO, M., CIFUENTES, A. & IBAÑEZ, E. 2006. Sub- and supercritical fluid extraction of functional 

ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A 
review. Food Chemistry, 98, 136-148. 

HERRERO, M., MARTÍN-ÁLVAREZ, P. J., SEÑORÁNS, F. J., CIFUENTES, A. & IBÁÑEZ, E. 2005. 
Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis 
microalga. Food Chemistry, 93, 417-423. 

HORROBIN, D. F. & ZIBOH, V. A. 1997. The Importance of Linoleic Acid Metabolites in Cancer 
Metastasis and in the Synthesis and Actions of 13-HODE. In: SINZINGER, H., SAMUELSSON, B., 
VANE, J. R., PAOLETTI, R., RAMWELL, P. & WONG, P. Y. K. (eds.) Recent Advances in 
Prostaglandin, Thromboxane, and Leukotriene Research. Boston, MA: Springer US. 

HOSIKIAN, A., LIM, S., HALIM, R. & DANQUAH, M. K. 2010. Chlorophyll Extraction from Microalgae: A 
Review on the Process Engineering Aspects. International Journal of Chemical Engineering, 
2010, 11. 

HU, C.-C., LIN, J.-T., LU, F.-J., CHOU, F.-P. & YANG, D.-J. 2008. Determination of carotenoids in 
Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract. 
Food Chemistry, 109, 439-446. 

HU, Q. 2007. Environmental Effects on Cell Composition. Handbook of Microalgal Culture. Blackwell 
Publishing Ltd. 

JAIME, L., RODRÍGUEZ-MEIZOSO, I., CIFUENTES, A., SANTOYO, S., SUAREZ, S., IBÁÑEZ, E. & 
SEÑORANS, F. J. 2010. Pressurized liquids as an alternative process to antioxidant 
carotenoids' extraction from Haematococcus pluvialis microalgae. LWT - Food Science and 
Technology, 43, 105-112. 

JIN, E., POLLE, J. E. W., LEE, H. K., HYUN, S. M. & CHANG, M. 2003. Xanthophylls in microalgae: From 
biosynthesis to biotechnological mass production and application. Journal of Microbiology 
and Biotechnology, 13, 165-174. 

JUNEJA, A., CEBALLOS, R. & MURTHY, G. 2013. Effects of Environmental Factors and Nutrient 
Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. 
Energies, 6, 4607. 

KANG, C. D. & SIM, S. J. 2007. Selective extraction of free astaxanthin from Haematococcus culture 
using a tandem organic solvent system. Biotechnol Prog, 23, 866-71. 

KATSUDA, T., LABABPOUR, A., SHIMAHARA, K. & KATOH, S. 2004. Astaxanthin production by 
Haematococcus pluvialis under illumination with LEDs. Enzyme and Microbial Technology, 35, 
81-86. 

KIM, S. M., JUNG, Y.-J., KWON, O.-N., CHA, K. H., UM, B.-H., CHUNG, D. & PAN, C.-H. 2012. A Potential 
Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum 
tricornutum. Applied Biochemistry and Biotechnology, 166, 1843-1855. 

KIM, Y. S. & CHA, H. J. 2010. Disperse distribution of cationic amino acids on hydrophilic surface of 
helical wheel enhances antimicrobial peptide activity. Biotechnol Bioeng, 107, 216-23. 

KITADA, K., MACHMUDAH, S., SASAKI, M., GOTO, M., NAKASHIMA, Y., KUMAMOTO, S. & HASEGAWA, 
T. 2009. Supercritical CO2 extraction of pigment components with pharmaceutical 
importance from Chlorella vulgaris. Journal of Chemical Technology & Biotechnology, 84, 
657-661. 

KOO, S. Y., CHA, K. H., SONG, D.-G., CHUNG, D. & PAN, C.-H. 2012. Optimization of pressurized liquid 
extraction of zeaxanthin from Chlorella ellipsoidea. Journal of Applied Phycology, 24, 725-
730. 

KRAMER, J. A., LEDEAUX, J., BUTTEIGER, D., YOUNG, T., CRANKSHAW, C., HARLOW, H., KIER, L. & 
BHAT, B. G. 2003. Transcription profiling in rat liver in response to dietary docosahexaenoic 

58 
 



PART I                                                                                                                                          CHAPTER 1 

 
acid implicates stearoyl-coenzyme a desaturase as a nutritional target for lipid lowering. J 
Nutr, 133, 57-66. 

KRICHNAVARUK, S., SHOTIPRUK, A., GOTO, M. & PAVASANT, P. 2008. Supercritical carbon dioxide 
extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent. 
Bioresource Technology, 99, 5556-5560. 

LAKSHMINARAYANA, R., SATHISH, U. V., DHARMESH, S. M. & BASKARAN, V. 2010a. Antioxidant and 
cytotoxic effect of oxidized lutein in human cervical carcinoma cells (HeLa). Food and 
Chemical Toxicology, 48, 1811-1816. 

LAKSHMINARAYANA, R., SATHISH, U. V., DHARMESH, S. M. & BASKARAN, V. 2010b. Antioxidant and 
cytotoxic effect of oxidized lutein in human cervical carcinoma cells (HeLa). Food Chem 
Toxicol, 48, 1811-6. 

LEE, C.-G. & PALSSON, B. Ø. 1996. Photoacclimation of Chlorella vulgaris to Red Light from Light-
Emitting Diodes Leads to Autospore Release Following Each Cellular Division. Biotechnology 
Progress, 12, 249-256. 

LEE, S. E., LIM, J. W. & KIM, H. 2009. Activator protein-1 mediates docosahexaenoic acid-induced 
apoptosis of human gastric cancer cells. Ann N Y Acad Sci, 1171, 163-9. 

LEE, S. J., YOON, B.-D. & OH, H.-M. 1998. Rapid method for the determination of lipid from the green 
alga Botryococcus braunii. Biotechnology Techniques, 12, 553-556. 

LIM, W. S., GAMMACK, J. K., VAN NIEKERK, J. & DANGOUR, A. D. 2006. Omega 3 fatty acid for the 
prevention of dementia. Cochrane Database Syst Rev, CD005379. 

LIU, G., WU, M., LEVI, G. & FERRARI, N. 1998. Inhibition of cancer cell growth by all-trans retinoic acid 
and its analog N-(4-hydroxyphenyl) retinamide: a possible mechanism of action via regulation 
of retinoid receptors expression. Int J Cancer, 78, 248-54. 
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Abstract: Microalgae are well known for their biotechnological potential, namely with regard 

to bioactive lipidic components – especially carotenoids and PUFA, well-known for 

therapeutic applications based on their antioxidant capacity. The aim of this work was to 

evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic 

components, and on the antioxidant capacity exhibited thereby against both synthetic (DPPH• 

and ABTS+•) and biological reactive species (O2
−• and NO−•). An eukaryotic microalga 

(Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case 

studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone 

extracts of Sc. obliquus (M2-1) were the most effective against DPPH• and ABTS+•, 

respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2
•−, 

probably due their high content in linolenic acid. On the other hand, acetone and 

hexane:isopropanol (3:2) extracts were the most interesting ones regarding the NO•− assay. 

The acetone extract exhibited the best results for the ABTS assay, likely associated to its 

content in carotenoids, in both microalgae. Otherwise, ethanol stood out in terms of PUFA 

extraction. Therefore, the profile of lipidic components extracted is critical upon the 

antioxidant performance – which appears to hinge, in particular, on the balance between 

carotenoids and PUFAs. 

Keywords: carotenoid; PUFA; extract; microalga; cyanobacteria; ABTS+•; DPPH•; 

superoxide (O2
-•) assay; nitric oxide (•NO) assay
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2.1. Introduction 

 
Reactive oxygen species (ROS) occur naturally as by-products of aerobic metabolism. In 

microalgae under non-stress conditions, the production and scavenging of ROS remain in 

equilibrium [1]. However, several environmental stress factors, such as pollution, drought, 

high temperature, excessive light intensity, and nutritional limitation may increase the 

production of ROS, thus inducing oxidative stress. The formation of these unstable, yet very 

reactive radicals, can trigger human diseases – e.g. cancer and cardiovascular diseases, 

owing to the damage caused in proteins, DNA, and lipids [1,2]. 

Photosynthetic organisms, like microalgae, are able to counteract the aforementioned 

negative effects via a number of enzymatic and non-enzymatic mechanisms [1]. Lipidic 

components, such as carotenoids and polyunsaturated fatty acids (PUFA), are but two 

examples of non-enzymatic classes of molecules able to protect the organism from oxidative 

damage [2,3]. A particular interest has been received by those two families of compounds 

due their great potential in industrial formulation of nutra- and pharmaceutical products [4]. 

PUFA, found in microalgae as components of polar and neutral lipids, include linoleic (18:2), 

α-linolenic (18:3), arachidonic (20:4), eicosapentaenoic (20:5) and docosahexaenoic (22:6), 

among others; they are valuable for humans due to their physiological roles in cells – as 

precursors and primary preventers of health conditions, e.g. as anti-inflammatory or 

neuroprotective agents [6,7]. Besides being excellent singlet oxygen scavengers suitable for 

use as food colorants, carotenoids may be employed as dietary supplements in cosmetics 

and nutraceuticals [8]. In particular, lutein has proven to alleviate cardiovascular diseases, 

some types of cancer and degenerative human diseases [9]. Hence, combined extraction of 

those lipidic compounds appears crucial in attempts to maximize their extra added value in 

nutra- and pharmaceutical formulations.  

The mode of recovery of functional ingredients from natural matrices should be carefully 

addressed. There is in fact a need to combine appropriate, selective, cost-effective, and 

environment-friendly extraction procedures with legal requirements regarding use of food-

grade solvents and associated processes. Extraction costs of microalgal intracellular 

metabolites are normally high; the downstream separation stages may account for 50–80% 

of the total production costs [10]. Despite the worldwide increasing interest on lipidic 

components from microalgae, there is no optimum standardized method for their extraction. It 

has been established that efficient extraction of lipids is strongly dependent on the polarity of 
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the organic solvent or solvent mixture employed [11]; however, other issues such as location 

of compound inside the cell have to be addressed, depending on cell structure complexity.  

Based on their physicochemical characteristics, microalgal lipids can be divided into two 

major types: polar lipids, e.g. phospholipids and glycolipids; and neutral/non-polar lipids, e.g. 

mono-, di- and tri-acylglycerols (TAG) and carotenoids [11,12]. Polar lipids are important 

structural components of cell membranes and organelles, where they apparently operate as 

signal molecules (or precursors thereof). Among non-polar lipids, TAG are the most 

widespread group of compounds aimed at storage – and are accumulated as cytoplasmic oil 

bodies [7].  

Carotenoids are hydrophobic molecules that, depending on their role, can be divided in 

two categories – primary and secondary ones. Primary carotenoids – including β-carotene 

and such xanthophylls as lutein, neoxanthin, violaxanthin, antheraxanthin, and zeaxanthin (in 

Chlorophyta), are contained within the non-polar ‘pouches’ of the thylakoid membrane, and 

are pigment-protein complexes of the photosynthetic apparatus; hence, they essentially do 

not interact with the hydrophilic environment [13]. Secondary carotenoids, like astaxanthin, 

are often esterified by fatty acids and accumulated in ester form – being present in oil bodies 

and plastoglobuli [13]. 

Neutral lipids are extracted with relatively non-polar solvents, e.g. hexane, whereas 

membrane-associated lipids are more polar, thus demanding such polar solvents as ethanol 

or methanol to disrupt hydrogen bonds and electrostatic forces. 

The efficiency of extraction of lipids is highly dependent on polarity of the organic solvent 

or solvent mixture used. In general, solvent mixtures containing a polar and a non-polar 

component are able to extract a greater amount of lipids [12]. Hexane/isopropanol (3:2) has 

accordingly proven to be one of the best non-halogenated solvent mixtures to extract fatty 

acids in Isochrysis galbana [13]. By the same token, most extraction methods suitable for 

carotenoids resort to such organic solvents as hexane, ethanol, isopropanol, acetone, 

methanol, benzene and petroleum ether [14,15]. Although carotenoids can be polar (e.g. 

lutein) and nonpolar (e.g. β-carotene or carotenoids in ester form), the former are easily 

dissolved in polar solvents (e.g. acetone), while the latter are easily dissolved in nonpolar 

solvents (e.g. petroleum ether or hexane) [16].  

Therefore, food GRAS (Generally Recognized As Safe) solvents with lower environmental 

impact and toxicity were selected for this work. Ethyl lactate was chosen as alternative to 

ethyl acetate and halogenated solvents. It is environment-friendly and fully biodegradable 

into CO2 and water. Its use has been approved for food products by U.S. Food and Drug 

Administration, and its miscibility with both hydrophilic and hydrophobic compounds make it 
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appropriate to extract a diverse range of metabolites, namely carotenoids (in their 

stereoisomeric forms) and PUFA [17]. Ethanol and isopropanol, two short chain alcohols, 

have been proposed as alternative extracting solvents due to their greater safety and lack of 

regulatory problems, namely for extraction of carotenoids [8]. 

In attempts to cover a large range of polarities consistent with the various lipidic 

components of interest in microalgae, the next five food grade solvents were selected based 

on literature searches including data on their relative polarities: hexane, 0.009; acetone, 

0.355; ethyl lactate, 0.460; isopropanol, 0.617; and ethanol, 0.654. Experimentation was 

conducted with plain ethanol, plain acetone, a mixture of hexane/isopropanol (3:2) (v/v) and 

plain ethyl lactate. 

Due to absence of a standard extraction method for lipidic components, our motivation 

was to investigate the potential impact of the aforementioned food grade solvents upon 

extraction, and assess the bioactivity potential of the extracts afterwards. The target 

compounds were carotenoids and PUFA, and the tested species were representative of two 

levels of cell complexity, i.e. Gloeothece sp. (prokaryote) and Scenedesmus obliquus (M2-1) 

(eukaryote). The antioxidant scavenging capacity was measured by four distinct assays: total 

activity (ABTS+• and DPPH• radicals), and superoxide (O2
-•) and nitric oxide (•NO) radicals. 

Our findings may be useful in efforts to design more selective extraction protocols, and 

further incorporation of the extract obtained in food or cosmetic formulation based on the 

antioxidant potential attained. 

 

2.2. Experimental Section  
 
2.2.1. Microorganism source and growth conditions 

Sc. obliquus (M2-1) strain was previously isolated from Portuguese aquaculture biofilters, 

and cultivated using Optimal Haematococcus Medium (OHM) [41]. This species was selected 

due to its high antioxidant capacity [38]. Gloeothece sp. (ATCC 27152) was purchased from 

ATCC — American Type Culture Collection (USA), and cultivated using Blue Green Medium 

(BG11) [42]. For each 4 L batch biomass production, a pre-inoculum with an initial optical 

density of 0.1 (at 560 nm or 680 nm for Gloeothece sp.) was cultivated for 10 days in 800 mL 

of buffered OHM or BG11 medium, with Tri-(hydroxymethyl)-aminomethane hydrochloride 

(Tris-HCl) aimed at maintaining a constant pH of 8. This pre-inoculum ensured that the 

microalga is at exponential growth phase by the time of inoculation. A continuous illumination 

with fluorescent BlOLUX lamps, with intensity of 250 µmolphoton.m -2.s -1, was provided, as well 

as air bubbling at a flow rate of 0.5 L.min -1.  
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2.2.2. Biomass quantification 

 

2.2.2.1. Optimization of culture time  

In order to choose the harvesting day yielding the best antioxidant potential, growth 

curves and associated antioxidant activity were obtained for both Gloeothece sp. and Sc. 

obliquus. Microalga cultures were accordingly settled in triplicate, samples were taken over 

time, and assayed (in duplicate) for optical density (OD) and dry weight (DW). The OD was 

measured spectrophotometrically at 560 and 680 nm for Sc. obliquus, and 680 nm for 

Gloeothece sp. (UV–Vis mini 1800, Shimadzu, Japan); these wavelengths correspond to the 

maximum and minimum culture absorption peaks. On the other hand, DW was determined 

by first filtering a volume of culture through preconditioned GF/C glass fiber filters (Whatman, 

UK), and drying at 100 ºC to constant weight. For the antioxidant capacity assessment, the 

procedure followed has been reported elsewhere [40]. 

 

2.2.2.2. Biomass production 

Following the optimization in section 2.1., the biomass production was performed as 

described in section 3.1. during 14 days. It was then collected by centrifugation at 4000 rpm 

for 10 min, freeze-dried and stored under nitrogen at -20 °C prior to analysis. 

 
2.2.3. Lipidic component extraction 

To evaluate the influence of solvents in lipid extractability, four different solvents/mixtures 

were tested: ethanol (99.6% purity), acetone (99.6% purity), a mixture (3:2) of 

hexane/isopropanol (99.6 and 99.8% purity respectively), and ethyl lactate (97% purity). 

Each extraction was performed in triplicate, in a triple stage extraction at a ratio of 1:60 

(wDW/v), at 40 ºC and 250 rpm for 20 min. To remove cells debris, extracts were then 

centrifuged at 20000 rpm for 10 min and filtered by 0.45 µm pore size. Extracts were stored 

under nitrogen, at -20 ºC in the dark, prior to analyses. 

 

2.2.4. Antioxidant scavenging capacity assessment of extracts 

The antioxidant scavenging activity was ascertained via four different assays. Two 

synthetic reactive species that measure the total activity (DPPH•- and ABTS•+), and two 

biological reactive species (O2
-• and •NO). DPPH•, O2

•-
 and •NO microassays were monitored 

spectrophotometrically in a Multiskan Ascent plate reader (Thermo, Electron Corporation), 

and ABTS•+ assay was performed in a spectrophotometer (Shimadzu). Antioxidant 

scavenging capacity was compared based on their IC50 and IC25 values. IC50 value is 
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defined as the concentration of an extract required to achieve half maximal inhibition of 

radicals, a parameter that is indicative of antioxidant capacity. IC values were calculated 

using GraphPad Prism (Version 5.0, 2007), via interpolation of dose-response curves 

obtained by plotting variation of radical scavenging % inhibition (average ± standard 

deviation) as a function of extract concentration (mg.mL-1) for each radical assay tested. 

 

2.2.4.1. ABTS•+ scavenging capacity  

Extracts, obtained as described above, were evaporated and the residue re-suspended in 

ethanol:water 50:50 v/v to a final concentration of 10 mg.mL-1. A dilution series was prepared 

(in triplicate), with concentrations ranging from 0.312 to 10 mg.mL-1, in order to assess the 

IC50 values. The radical-scavenging capacity of the extracts was assessed via the ABTS•+ 

radical cation (ABTS•+) assay (in triplicate) – following the method described elsewhere 

[43,44], and recently refined by Guedes et al. [40]. For determination of evolution of total 

antioxidant capacity for both microalgae species, the results were expressed as Trolox 

Equivalent – TE, per unit of biomass, as given by dry weight, DW – where 1 TE unit is the 

mass of trolox possessing an equivalent antioxidant power. 

 

2.2.4.2. DPPH• scavenging capacity  

Each extract was evaporated, and the residue resuspended in methanol to a final 

concentration of 10 mg.mL-1. In order to obtain the IC50 and IC25, a dilution series was 

prepared (in triplicate), with concentrations ranging from 0.312 to 10 mg.mL-1, and tested in a 

96-well plate. The plates were incubated for 30 min at room temperature, after addition of 

2,2-diphenyl-1-picrylhydrazyl (DPPH) methanol, and the scavenging reaction was monitored 

515 nm as described by Ferreres et al. [24].  

 

2.2.4.3. Superoxide radical (O2
•-) scavenging capacity 

Each evaporated extract was re-suspended in phosphate buffer (100 mM, pH 7.4) with 

20% DMSO. A dilution series was generated, ranging from 9.8 µg.mL-1 to 10 mg.mL-1, and 

tested in a 96-well plate. The superoxide radical induced by reduction of NBT was monitored 

spectrophotometrically, in kinetic function, at 562 nm. Superoxide radicals were generated by 

the NADH/PMS system as reported previously [24].  

 

2.2.4.4. Nitric oxide radical (•NO) scavenging capacity 

Each evaporated extract was re-suspended in phosphate buffer with 20% DMSO, and 

diluted in a range series from 4.9 µg mL-1 to 2.5 mg mL-1. Samples (in triplicate) were then 
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incubated with sodium nitroprusside, for 60 min at room temperature, in the light. Griess 

reagent was added afterwards, and the chromophore reaction was undertaken in the dark for 

10 min, with absorbance read at 562 nm [24].  

 

2.2.5. Chemical characterization of extracts 

 

2.2.5.1. Determination of polyunsaturated fatty acids profile  

Fatty acid methyl esters were produced for each extract obtained in section 3.3. by direct 

transesterification – according to the acidic method described by Lepage and Roy [44], after 

modifications introduced by Cohen et al. [45], using heptadecanoic (C17:0) acid as internal 

standard and acetyl chloride as catalyst. Esters were analysed in a GC ThermoFinnigan 

Model gas chromatograph, using a flame ionization detector, and quantified with the program 

Chroma Card data system (2003). A silica CP-WAX 52 CB (Chrompac cp 7723) column was 

used, and helium was employed as carrier gas in splitless mode. Injector and detector were 

maintained at 260 and 280 °C, respectively, and the oven heating program consisted of a 

linear increase of column temperature from 150 to 260 °C, at a rate of 1 °C.min-1. 

Chromatographic grade standards of fatty acids in methyl ester form (Sigma) were used for 

tentative identification, based on comparison of retention times: myristoleic, palmitoleic, 

petroselinic, oleic, elaidic, cis-vaccenic, linoleic, linolelaidic, linolenic, cis-11-eicosenoic, 

arachidonic, erucic, cis-4,7,10,13,16,19-docosahexanoic and nervonic. The average of the 

results from the aforementioned chemical assays were used as a datum point. 

 

2.2.5.2. Determination of carotenoids profile  

Carotenoids in each extract were tentatively identified, and then quantified by an HPLC-

DAD method. Solvent was evaporated in a rotavapor, and the residue re-suspended in 

methanol LiChrosolv (Merck 99,9% purity) to a final concentration of 20 mg.mL-1.  

A Gilson HPLC-DAD with UV-visible photodiode array detector was employed to resolve, 

detect and identify the various chemical compounds of interest in each extract. The 

stationary-phase was a C30 YMC column – 5 µm, 250 x 4.6mm (YMC, Japan), maintained at 

room temperature, according to a previously described procedure [46] with modifications. 

The mobile phase consisted of two solvents: methanol (Merck) (A) and tert-butyl methyl ether 

(Sigma-Aldrich) (B), starting with 95% A and using a gradient to obtain 70% by 30 min, 50% 

by 50 min, 0% at 65 min, and 95% by 68 min. The injection volume was 20 µl, and the flow 

rate 0.9 mL.min-1. Spectral data from all peaks were collected in the range 200-700 nm, and 
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chromatograms recorded at 450 nm. Data were processed on Unipoint System software 

(Gilson Medical Electronics, Villiers le Bel, France).  

Carotenoids were identified by comparing their elution order and UV-Vis spectra with 

chromatographic HPLC-grade standards under identical conditions – lutein, zeaxanthin, β-

carotene, fucoxanthin, astaxanthin (Sigma-Aldrich - St. Louis MO, USA), β-cryptoxanthin 

(Extrasynthese - Genay, France), astaxanthin, violaxanthin, neoxanthin, anteraxantina, 

lycopene, ε-carotene, γ-carotene and α-carotene (CaroteNature Lupsingen, Switzerland).  

 

2.2.6 Statistical analyses 

The experimental data were analysed using GraphPad Prism v. 5.0. A first diagnostic 

unfolded a non-normal distribution of the data, so 1-way ANOVA with Tukey’s 

multicomparison test was used to assess variances between PUFA and carotenoid content, 

for the various solvents tested. Since each datum point had been replicated, a representative 

measure of variability was available in all cases to support said statistical analyses. 

 

2.3. Results and Discussion 
 

2.3.1. Microalgae production and harvesting 

Microalgae species were selected based on earlier studies by Guedes et al. [18]. They 

found that intracellular extracts of Sc. obliquus (strain M2-1) possess a high antioxidant 

capacity when compared with other strains of Scenedesmus. Moreover, the scavenging 

activity correlated well with protective effects against DNA oxidative damage, with no 

mutagenic effects. It was also found that the maximum production of antioxidant compounds 

took place in the plain exponential phase, coinciding with the maximum peak production of 

lutein and β-carotene – thus suggesting a correlation between antioxidant capacity and 

presence of those carotenoids. Additionally, Sc. obliquus (M2-1) showed to have high 

content in PUFA, namely linoleic acid C18:2 (n-6) [6,18]. In the same study, Gloeothece sp. 

revealed to possess antioxidant potential and an interesting profile of PUFA [6,18]. The 

growth conditions selected for biomass production were 25 ºC and pH 8, based in an earlier 

study [19].  

In order to unfold best antioxidant potential of each microalga, the culture time was 

selected based on growth curves and evolution in total antioxidant capacity (Fig. 1).  
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Fig. 1. Variation in time of biomass expressed as natural logarithm of dry weight (Ln DW) 
(average ± standard deviation) (    ), and variation of intracellular extract antioxidant capacity 
expressed as ratio of trolox equivalent (TE) antioxidant capacity to dry weight, DW (average 
± standard deviation) (     ), for Gloeothece sp. (A) and Sc. obliquus (M2-1) (B).  

 

Inspection of Fig. 1 indicates a maximum antioxidant intracellular capacity of both species 

in the intermediate exponential phase by 14 days of growth; hence, this was established as 

biomass harvesting day for subsequent use in lipidic extraction assays.  

 

2.3.2. Extracts characterization  

The principles underlying organic solvent extraction of microalgal lipidic compounds are 

anchored on the basic chemistry concept of ‘like dissolving like’. Due to the interactions 

between their long hydrophobic fatty acid chains, neutral lipids – such as TAG and 

carotenoids [11], contribute to weak van der Waals attractions between one another, leading 

to formation of globules in the cytoplasm [11].  

A 5-step protocol for organic solvent extraction has been proposed by Halim et al. [20], 

applicable to either non-polar or polar solvents. When a microalgal cell is exposed to a non-

polar organic solvent, such as hexane: 1) the organic solvent penetrates through the cell 

membrane into the cytoplasm; 2) interacts with the neutral lipids via alike van der Waals 

forces; 3) an organic solvent-lipids complex is formed; 4) driven by a concentration gradient, 

the lipid complex diffuses across the cell membrane; and 5) said complex eventually crosses 

the static organic solvent film surrounding the cell into the bulk organic solvent. As a result, 

the neutral lipids are extracted out of the cells and remain dissolved in the non-polar organic 

solvent. A static organic solvent film is formed because the interaction between organic 

solvent and cell wall remains undisturbed for every rate of solvent flow or agitation. Some 

neutral lipids are, however, found in the cytoplasm complexed with polar lipids; such 

complexes are strongly linked via hydrogen bonds to proteins in the cell membrane. The van 

der Waals interactions between non-polar organic solvent and neutral lipids in the complex 

A B 
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are insufficient to disrupt the membrane-based lipid-protein associations. Conversely, polar 

organic solvents (e.g. ethanol, isopropanol or acetone) can disrupt the lipid–protein 

associations by forming hydrogen bonds with the polar lipids in the complex [11].  

The mechanism of extraction of membrane-associated lipids by the mixture of non-

polar/polar organic solvent follows the same major principles, except for minor differences 

arising from the solvent nature: 1) the organic solvent (both non-polar and polar) penetrates 

the cell membrane into the cytoplasm; 2) the solvent then interacts with the lipid complex – 

the non-polar organic solvent surrounds the lipid complex and engages in van der Waals 

associations with the neutral lipids of the complex, while the polar organic solvent surrounds 

the lipid complex and forms hydrogen bonds with the polar lipids in the complex, strong 

enough to counteract the lipid–protein associations binding the lipid complex to the cell 

membrane; 3) an organic solvent-lipid complex is formed, and dissociates away from the cell 

membrane; 4) the organic solvent-lipid complex diffuses across the cell membrane; and 5) 

said entity crosses the static organic solvent film surrounding the cell into the bulk organic 

solvent. Consequently, addition of a polar organic solvent to a non-polar organic solvent 

facilitates extraction of membrane-associated neutral lipid complexes. However, the process 

inevitably leads to co-extraction of polar lipids [11].  

In this regard, it is expected that the intracellular location of a given compound affects its 

extractability by distinct solvents. Resorting to the solvents chosen, it was possible to 

produce extracts with different composition and, consequently, distinct antioxidant capacity, 

as discussed next. 

 

2.3.2.1. Antioxidant capacity  

Numerous methods are used to assess the antioxidant capacity of natural compounds in 

biological systems. Two free radical scavenging methods commonly used involve ABTS•+ 

and DPPH•, yet both such radicals are foreign to biological systems. ABTS+• assays 

measures the relative ability of an antioxidant to scavenge the ABTS+• generated in aqueous 

and organic solvents, as in ethanol:water 50:50 (v/v). Conversely, DPPH• is widely used to 

determine antiradical/antioxidant capacities, but acts only upon species generated in a 

methanol phase. Comparatively, ABTS+• is more stable, so it can be used at different pH 

levels. DPPH• may also suffer from colour interference, for instance in the case of 

anthocyanins or carotenoids, which leads to underestimation of antioxidant capacity; 

moreover, it was reported that this method may be more sensitive to phenolic antioxidants 

over time [20,21]. Therefore, there is some controversy in the applicability of these assay for 

carotenoid antioxidant capacity assessment [4,21,22]. In a report by Müller et al. [22], when 
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comparing several methods to evaluate antioxidant capacity of carotenoids, DPPH• did not 

show any scavenging capacity. However, this method seems appropriate to measure 

antioxidant capacity of poly-unsaturated fatty acids, as is the case of conjugated linoleic acid 

[23]. Therefore, to avoid a misinterpretation of the total antiradical capacity of extracts, both 

DPPH• and ABTS+• assays were performed – thus allowing consistent confirmation of the 

relation between biochemical profile and results of said antioxidant assays (as described in 

the following sections). 

Nitric oxide (•NO) and superoxide (O2
•-) are two of the six major reactive oxygen species 

causing oxidative damage in the human body [4]. The former is a short-lived free radical 

generated endogenously, involved in different physiological functions [24]. It interacts with 

lipids, DNA and proteins, via direct oxidative reactions or via indirect radical-mediated 

mechanisms. Hence, any antioxidant scavenging capacity against this radical may unfold a 

similar capacity in vivo, and a potential to prevent such diseases as chronic inflammatory 

diseases, cancer or neurodegenerative disorders [25]. On the other hand, superoxide radical 

is the first product of oxygen univalent reduction. Its biological significance derives from its 

ability to generate other more reactive species, like hydroxyl radical (•OH) and peroxynitrite 

(ONOO−), and induce major damages in vivo [26].  

All extracts of both microalgae acted as scavengers of ABTS•+, DPPH•, O2
-• and •NO, in a 

concentration-dependent manner, with topical exceptions. Data can be compared through 

calculation of inhibitory concentration (IC) values, as acquired by plotting inhibitory 

scavenging percentages for various extract concentrations. Extracts from the two microalgae 

exhibited a distinct behaviour for each scavenging assay (Table 1). 

79 
 



PART II                                                                                                                                                         CHAPTER 2 

 

Table 2.1. Comparison of antioxidant capacity of Gloeothece sp. and Sc. obliquus (M2-1) 
extracts, in terms of IC (µg.mL-1) toward radicals ABTS+•, DPPH•, •NO and O2

-•. 

  Antioxidant activity (µg.mL-1) 

  ABTS•+ DPPH• •-NO O2
•- 

 Solvent IC50 IC50 IC25 IC50 IC25 IC50 IC25 

G
lo

eo
th

ec
e 

sp
. Ethanol 75 629 274 - 23 247 54 

Ethyl lactate 129 - 927 82 25 - - 

Acetone 63 850 310 22 6 1394 278 

HI (3:2) 276 - 789 25 7 1183 357 

         

S
ce

ne
de

sm
us

 
ob

liq
uu

s 
(M

2-
1)

 Ethanol 87 - 633 - 15 637 416 

Ethyl lactate 195 878 261 - - 520 300 

Acetone 41 - 488 - - 826 620 

HI (3:2) 648 412 194 60 20 1236 513 

HI - Hexane: isopropalnol (3:2) v/v. 

 

Regarding ABTS•+, acetonic extracts of both Gloeothece sp. and Sc. obliquus (M2-1) 

attained the best IC50 values: 63 and 41 μg.mL-1, respectively. On other hand, the most 

active in scavenging DPPH• were the hexane:isopranol (3:2) extract of S. obliquus and the 

ethanol extract of Gloeothece sp. (IC25 of 194 and 274 μg.mL-1, respectively). Therefore, with 

regard to synthetic reactive species, S. obliquus (M2-1) conveyed better results compared to 

Gloeothece sp; however, the other three extracts of the latter displayed the best results in the 

assay against ABTS•+. 

In what concerns reactive species with biological significance, acetone and 

hexane:isopranol (3:2) extracts of Gloeothece sp. have strong activity against •NO – but 

being quite similar (IC25 values of 6 and 7 μg.mL-1, respectively). On other hand, only the 

ethanol and hexane:isopranol (3:2) extracts of Sc. obliquus (M2-1) exhibited antioxidant 

capacity against this reactive nitrogen species (IC25 values of 15 and 20 μg.mL-1, 

respectively). Ethanol extracts of Gloeothece sp. and ethyl lactate extracts of Sc. obliquus 

(M2-1) exhibited the best activities against O2
•-, described by IC25 of 54 and 300 μg.mL-1. It is 

thus possible to conclude that each solvent system exerts a different scavenging activity 

because of its composition. In order to establish some relationship between the observed 

activity and the lipidic composition, carotenoids and PUFA were duly quantified. 
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2.3.2.2. Lipidic composition  

As explained above, solvent polarity plays an important role on extractability of lipidic 

compounds, due to the basic chemistry concept of ‘like dissolving like’. Moreover, it is 

important to remember that the cell location of the lipidic component is crucial for extraction, 

because the solvent needs to reach the compound in the cell. 

As stated before, xanthophylls are relatively hydrophobic molecules, typically associated 

with membranes and/or involved in non-covalent binding to specific proteins. Primary 

carotenoids are structural and functional components of the photosynthetic apparatus, 

typically confined to the thylakoid membrane complex – with proteins being disrupted only by 

polar organic solvents able to form hydrogen bonds [14,27]. Secondary carotenoids are 

produced in large quantities by microalgal cells, only after exposure to specific environmental 

stimuli (carotenogenesis), being usually found in lipid vesicles — in either the plastid stroma 

or the cytosol [28]. 

In prokaryotic microalgae, such as Gloeothece sp., most xanthophylls are associated with 

chlorophyll-binding polypeptides of the photosynthetic apparatus [29]. In most green 

microalgae, carotenes and xanthophylls are synthesized within plastids, accumulating therein 

only. However, secondary xanthophylls in some green microalgae accumulate in the 

cytoplasm, which raises the possibility of an extra-plastidic site for carotenoid biosynthesis. 

Alternatively, xanthophylls synthesized in the chloroplast may be exported, and consequently 

accumulate in the cytoplasm – so they may be found in essentially all cellular compartments 

[29]. 

Prokaryotes and eukaryotes exhibit several structural differences of their cell wall, in terms 

of mechanical barrier. As happens with several other members of the Chlorococcales family, 

the trilaminar structure of the outer wall layers of eukaryotic Scenedesmus species is  

composed of cellulose in the inner wall layers, and insoluble, acetolysis-resistant, lipid-

containing biopolymers – termed algaenans, located in the trilaminar outer layer, thus 

contributing to cell wall rigidity [30,31]. Furthermore, prokaryotic Gloeothece species holds a 

typical Gram-negative cell wall, mainly of polysaccharide nature, which differs in thickness 

and consistency [32]. 

Besides solvent polarity, the cell structural complexity, including cell location of 

metabolites, of the two microalga under scrutiny affects lipidic component extractability. 

However, it is possible to propose a correlation between affinity of carotenoids for acetone 

and PUFA for ethanol (Tables 2 and 3). At a first glance, Gloeothece sp. extracts entail 

higher variety of carotenoids and higher total amount of PUFAs than their Sc. obliquus (M2-
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1) counterparts. Species belonging to the Scenedesmus genus possess particularly resistant 

cell walls, so extraction of carotenoids and fatty acids becomes notoriously difficult [33]. 

Acetone is a solvent widely used in pigment extraction, as it extracts most photosynthetic 

pigments with a wide range of polarity [28,34,35]. Our results indicate that acetonic extracts 

are the richest in carotenoids, particularly lutein. In Gloeothece sp., the lutein content 

corresponds to ca. 78% of the total quantified carotenoids (1.424 ± 0.079 µglutein.gDW 
-1 – see 

Table 2), and in Sc. obliquus (M2-1) to ca. 47% (1.392 ± 0.034 µglutein.gDW 
-1 – see Table 3). 

Conversely, violaxanthin and neoxanthin possess a significant expression in acetonic extract 

of Sc. obliquus (M2-1), 22.7 and 25.5% of the total quantified carotenoids, respectively 

(Table 3). However, acetone is not selective only for carotenoids, since PUFA are also 

extracted. In acetonic extract of Sc. obliquus (M2-1), the content of PUFA ranges from 50% 

in the case of oleic acid, to 71% of linoleic acid in the ethanol extract – and linolenic acid is 

even more concentrated in the acetonic extract (Table 3). This provides evidence for the 

dependence of the solvent ability to extract the feedstock species, as emphasized before 

[14]. 

Ethanol affinity for PUFA is clear; for example, it extracts 3-7.8-fold more linolenic acid 

from Gloeothece sp. than the other solvents (Table 2). Ethanol is also able to extract 10-fold 

more linolelaidic acid from both Gloeothece sp. and Sc. obliquus (M2-1) than ethyl lactate 

(Table 2). Ethanol can extract carotenoids as well, but at a lower rate; for instance, 

Gloeothece sp. ethanol extract contains 1.5-3 fold less carotenoids than its acetonic 

counterpart, although an exception occurs in what concerns to violaxanthin that is extracted 

to 3-fold an extent than with acetone (Table 2).  

Ethanol has a different behaviour in extracting carotenoids from Sc. obliquus (M2-1), as it 

extracts 3-fold less lutein and 1.7- fold less neoxanthin. Due to its lower affinity for 

carotenoids, it was not possible to quantify the remaining carotenoids. 

Ethyl lactate has been proposed to extract carotenoids, particularly lutein, from plant 

material [17]; however, its performance in the microalgae under the processing conditions 

used is less than expected, in view of the low level of extraction of carotenoids. nevertheless, 

ethyl lactate showed some selectivity for lutein in both species (Tables 2 and 3). Ethyl lactate 

was able to extract PUFA as γ- linolenic acid from Spirulina sp. [36]. Ethyl lactate indeed 

extracted 6.185 ± 0.265 mgFA.gDW
-1 from Gloeothece sp., 55% of that corresponding to 

linolenic acid; furthermore, it was the only solvent that extracted linolelaidic acid to detectable 

levels (Table 2). Converselys, ethyl lactate performance toward PUFA extraction from Sc. 

obliquus (M2-1) rated the poorest – see Table 3. 
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Previous studies have proven that the hexane:isopropanol (3:2) mixture is one of the best 

non-halogenated solvent mixtures to extract fatty acids [14]. However, it only led to a 

reasonable result regarding extraction of oleic and cis-vaccenic acid from Gloeothece sp. 

(Table 2) – and, surprisingly, of the xanthophyll violaxanthin. With respect to Sc. obliquus 

(M2-1), this solvent extracted 1.849 ± 0.156 mgFA.gDW 
-1 of total PUFA (Table 3). In addition to 

carotenoids and PUFA, hexane: isopropanol (3:2) has been claimed to extract more non-

lipids (e.g. proteins, carbohydrates) than plain hexane, due to the polar nature of isopropanol 

[14] – which may have contributed to the low recovery of PUFA and carotenoids.  
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Table 2.2. Gloeothece sp. extracts lipidic profile in terms of carotenoids (µgcarotenoid/gDW) and PUFA (mgFA/gDW) (average ± standard deviation). 

 Carotenoids (µgcarotenoid gDW 
-1)  PUFA (mgFA gDW 

-1) 
 

Solvent Violaxanthin Neoxanthin Lutein α-Carotene β-Carotene Total 
carotenoids Oleic cis-Vaccenic Linoleic Linolelaidic Linolenic Total PUFA 

             
Ethanol 0.181 ±0.004 0.114 ± 0.004 0.822 ± 0.021a 0.018 ± 0.001 0.122 ± 0.006 1.258 ± 0.022b 0.771 ± 0.064c - 2.250 ± 0.198 - 10.100 ± 0.212 13.219± 0.233 

             
Ethyl 

 

0.067 ± 0.002 0.043 ± 0.001 0.424 ± 0.030 -_ 0.050 ± 0.002 0.584 ± 0.031 1.007 ± 0.192 0.264 ± 0.074 1.267 ± 0.200 0.201 ± 0.046 3.406 ± 0.111 6.185 ± 0.265 

             
Acetone 0.058 ± 0.005 0.180 ± 0.013 1.424 ± 0.079 0.057 ± 0.004 0.251 ± 0.004 1.806 ± 0.080 0.773 ± 0.054c - 0.255 ± 0.30 - 1.286 ± 0.064 2.317 ± 0.106 

             
HI (3:2) 0.220 ± 0.008 0.086 ± 0.004 0.868 ± 0.015a 0.056 ± 0.003 0.067 ± 0.002 1.301 ± 0.014b 1.352 ± 0.032 0.689 ± 0.038 0.538 ± 0.098 - 2.631 ± 0.119 5.216 ± 0.126 

 

a-c Means within the same column, without a common superscript, are significantly different (P<.05). HI - Hexane: isopropanol (3:2) v/v. 

 

Table 2.3. Sc. obliquus (M2-1) extracts lipidic profile in terms of carotenoids (µgcarotenoid/gDW) and PUFA (mgFA/gDW) (average ± standard deviation). 

 Carotenoids (µgcarotenoid gDW 
-1) 

 
PUFA (mgFA gDW 

-1)  

Solvent Violaxanthin Neoxanthin Lutein α-Carotene β-Carotene 
Total 

carotenoids 
 

Oleic  Linoleic  Linolelaidic  Linolenic  Total PUFA 

             

Ethanol - 0.439 ± 0.019 0.464 ± 0.011a - - 0.904 ± 0.019  0.889 ± 0.060 1.045 ± 0.097 1.045 ± 0.097 0.932 ± 0.088 2.888 ± 0.078 

             

Ethyl 

 

- - 0.156 ± 0.012 - - 0.156 ± 0.012  0.320 ± 0.070 0.465 ± 0.012 0.147 ± 0.021 0.522 ± 0.078 1.454 ± 0.073 

             

Acetone 0.674 ± 0.057 0.759 ± 0.053 1.392 ± 0.034 0.022 ± 0.011 0.100 ± 0.004 2.970 ± 0.068  0.427 ± .076c 0.752 ± 0.22a - 1.199 ± 0.089 2.381 ± 0.122 

             

HI (2:1) 0.020 ± 0.001 0.357 ± 0.009 0.420 ± 0.034a - - 0.797 ± 0.030  0.518 ± 0.055c 0.734 ± 0.075a - 0.577 ± 0.049 1.849 ± 0.156 
 

a-c Means within the same column, without a common superscript, are significantly different (P<0.05). HI - Hexane: isopropanol (3:2) v/v 
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2.3.3. Relation of antioxidant capacity with carotenoid and PUFA contents 

There is a number of reports on the evaluation of antioxidant capacity in prokaryotic and 

eukaryotic microalgae compounds from lipophilic and hydrophilic nature [19,37,38], but most 

of them have not performed antioxidant scavenging assays in lipid-rich extracts. An important 

and well-known class of antioxidants from microalgae are carotenoids, and they are already 

produced to commercial scale (e.g. astaxanthin from Haematococcus sp. and β-carotene 

from Dunaliella sp.) for use as additive in food and feed, as well as in cosmetics and as food 

supplements [39]. Flavonoids, sterol, reducing sugars and tannins may also exert antiradical 

or antioxidant capacities in alcoholic extracts [21]. Their co-extraction may provide an 

explanation for some unexpected results of antioxidant capacity obtained with ethyl lactate 

and hexane:isopropanol (3:2) extracts from Sc. obliquus (M2-1). One should take into 

account that synergic or antagonic interactions may occur between the compounds found in 

an extract. Hence, high amounts of a known antioxidant compound do not necessarily imply 

a high antioxidant activity, in view of the crude nature of the extracts obtained. 

The ABTS•+ assay was used before to evaluate the antioxidant capacity of carotenoid-rich 

extracts (namely in lutein and β-carotene [40]. Upon inspection of Tables 1, 2 and 3, it is 

possible to draw a few conclusions: acetonic extracts of both microalgae species attained the 

best IC50 values in this assay, and they contain the highest levels of carotenoids, namely 

lutein and β-carotene. IC50 values found for ethyl lactate extracts and its selectivity to lutein 

suggest that this xanthophyll may be responsible for the main antioxidant capacity of these 

extracts.  

With regard to the results in Table 1, 2 and 3, one realizes that is not always possible to 

propose a correlation between carotenoids content and antiradical capacity; this is supported 

by some studies revealing that DPPH• does not detect carotenoids antioxidant capacity 

[4,21,22]. Furthermore, this assay was used to quantify the antioxidant capacity of 

conjugated linoleic acid [23]. Nevertheless, one concludes that ethanol extract of Gloeothece 

sp. is particularly rich in linoleic and linolenic acids that, besides lutein, may contribute to the 

best IC25 values attained against O2
•- [23].  

Ethanolic and acetonic extracts from Gloeothece sp. seem interesting from an antioxidant 

point of view. In terms of scavenging capacity, the ethanolic extract attained the best results 

against DPPH• and O2
•-, while acetonic was the most effective against ABTS•+ and •NO. 

These extracts have distinct contents of carotenoids and PUFA, which may explain the 

paired results. Ethanol extract is indeed richer in PUFA (13.219 ± 0.233 mgFA.gDW 
-1 – 76.4% 

corresponding to linolenic acid and 17% of linoleic acid) than in carotenoids (1.258 ± 0.022 

µgcarotenoid.gDW
-1 – 65.3% of lutein and 9.7% β-carotene); and acetonic extract is richer in 

carotenoids (1.806 ± 0.080 µgcarotenoid.gDW 
-1 – 78.8% of lutein and 13.9% of β-carotene) than 
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in PUFA (2.317 ± 0.106 mgFA.gDW 
-1 – 55.5% of linolenic acid and 11% linoleic acid). This 

pattern was not observed in Sc. obliquus (M2-1) extracts; in fact, each extract exhibited a 

specific antioxidant activity. The acetonic extract was the most interesting in the ABTS•+ 

assay, maybe due to its distinctive content in lutein (1.392 ± 0.034 µgcarotenoid.gDW 
-1 – 46.8% 

of total carotenoids). On the other hand, the hexane:isopropanol (3:2) extract exhibited a 

great activity in the DPPH• assay and ethanolic extract in the •NO assay, but these two 

extracts have 3-fold less carotenoids than the acetonic extract – although PUFA rank within 

the same magnitude. Ethyl lactate exhibited the best IC25 in O2
•- assay (300 µg.mL-1) 

between Sc. obliquus (M2-1) extracts, perhaps due to the great affinity of this solvent to 

lutein, which may exert an influence on its antioxidant activity. 

 

2.4. Conclusions  
 
Concerning total antioxidant capacity, ethanol Gloeothece sp. extracts performed best in 

DPPH• and O2
•- assays, possibly due to its content in PUFA (76.4% of linolenic acid) and 

carotenoids (65.3% of lutein and 9.7% of β- carotene). Similarly, the acetonic extract attained 

good results in ABTS•+ and •NO assays, and probably for the same reasons, i.e. its content 

in carotenoids (78.8% of lutein and 13.9% of β-carotene) and PUFA (55.5% of linolenic acid 

and 11% of linoleic acid). Gloeothece sp. is a prokaryotic microalga poorly studied so far, so 

the findings of this study may justify further exploitation of its antioxidant potential – once it 

appears promising toward nutraceutical formulations. 
Sc. obliquus (M2-1) also seems to be a promising source of antioxidant-rich extracts. The 

acetone extract exhibited the best antioxidant capacity in ABTS•+ assay, likely associated to 

its content in carotenoids, 47% of which is lutein. Note that the hexane:isopropanol (3:2) 

extract also exhibited the best result of antioxidant capacity in the DPPH• assay.  

Solvents used in extraction of lipidic components seem to be critical upon antioxidant 

performance – which appears to hinge, in particular, on the balance between carotenoids 

and PUFAs. However, further studies are warranted to confirm whether said compounds are 

by themselves responsible for the good performance recorded in antioxidant assays, or 

some form of interaction/synergism exists between them. 

In terms of lipidic components extraction, acetone is the most suitable to extract 

carotenoids at large, and ethanol stands out in PUFA extraction regardless of microalga 

species. 
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THIS MANUSCRIPT STILL IN PROCESS. 

Abstract Cancer ranks as one of the top causes of death. However some strategies based 

on chemoprevention are able to block the cancer development, indeed some antioxidant 

compounds, such as carotenoids and poli-unsaturated fatty acids (PUFA) were identified as 

chemoprevention agents. Microalgae are photosynthetic organism than naturally produce 

these lipidic compounds under certain conditions.  

The main goal of this study is to ascertain if lipidic microalgal extracts with previous proved 

antioxidant capacity, are able to exert antitumoural capacity against gastric cancer, and how 

it may be related to their concentration in carotenoids and PUFA. 

Thus, extracts from Gloeothece sp. biomass were obtained with several solvents, such as 

ethanol, acetone, hexane:isopropanol (3:2) (HI) and ethyl lactate and then tested for their 

ability to modulate two gastric cancer cell lines, AGS and MKN45. 

First, the capacity of extracts to modulate cancer cell lines viability was ascertained by 

Sulforhodamine B assay, and established the inhibitory concentrations (IC50) of each extract. 

It was found that extracts exhibited effects in a concentration- dependent manner; however 

HI attained the lowest IC50 for both cell lines.  

At the same time, extracts biochemical composition in terms of carotenoid and PUFA, 

assessed by HPLC-DAD and GC-FID, revealed that each extract entailed a unique profile in 

carotenoids and PUFA. 

This study still is in processing, so all results in term of extracts antitumor features still are 

preliminary. However, evaluating extracts cell death features (by TUNEL assay) it was found 

a capacity of HI and ethyl lactate extracts to induce cell death in both in AGS and MKN45 

lines. Also same extracts revealed anti-proliferative effects in the tested gastric cancer cell 

lines.  

 

Key words: lutein, β-carotene, C18:3n3, C18:2n6  
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3.1. Introduction 

 

Nowadays, cancer constitutes one of the leading causes of death. Carcinogenesis of 

common epithelial tumours, like stomach, is a slow process that could start twenty years 

before the first symptoms appear. This long period is very suitable for using chemopreventive 

strategies that block the development of invasive and/or metastatic disease. Cancer research 

has been mainly focused on the search for curative treatments, and few studies have aimed 

to develop preventive strategies that can be useful in the long period of tumour development. 

In this regard, cancer chemoprevention with the use of natural, synthetic or biological 

substances may be able to suppress or prevent either the initial phase of carcinogenesis or 

the progression of neoplastic cells to cancer (Talero et al. 2015, Castro-Puyana et al. 2016).  

Therefore, search of bioactive compounds from natural sources with health benefits is 

in high demand being at present an intense field of research aiming to develop new 

functional foods and/or nutraceuticals.  

Among all the natural sources, microalgae have raised an enormous interest. 

Extensive screening of marine microalgae has led to the isolation and chemical 

determination of over 15,000 bioactive compounds such as fatty acids, sterols, phenolic 

compounds, terpenes, enzymes, polysaccharides, alkaloids, toxins and carotenoids (Pasquet 

et al. 2011). Indeed, these microorganisms possess an extra biotechnological advantage. 

Due to their huge metabolic plasticity, they can be used as natural bioreactors to synthesise 

compounds with health benefits, namely carotenoids and polyunsaturated fatty acids 

(Guedes, Amaro and Malcata 2011, Castro-Puyana et al. 2016).  

Major carotenoids with antioxidant capacity have been extensively evaluated with 

regards to their cancer chemopreventive ability. Some of them, like β- carotene, lutein, 

violaxanthin, zeaxanthin, and fucoxanthin, have exhibited anti-proliferative capacity against 

different cancer cells (Tanaka, Shnimizu and Moriwaki 2012, Talero et al. 2015). These 

carotenoids, or ethanolic extracts rich in carotenoids, have been isolated from microalgae 

species such as Chaetoceros calcitrans, Nannochloropsis oculata or Dunaliella tertiolecta, 

Muriellopsis sp, Scenedesmus almeriensis, Chlorella protothecoide, C. zofingiensis, C. 

citriforme and Neospongiococcus gelatinosum (Cha, Koo and Lee 2008, Guedes, Amaro and 

Malcata 2011, Pasquet et al. 2011, Castro-Puyana et al. 2016, Sheu et al. 2008, Amaro et al. 

2013). Evidences state that β-carotene may act against some cancer cell lines due its 

antioxidant function (Talero et al. 2015), and that this capacity may be due to its growth 

inhibitory and pro-apoctotic effects (Palozza et al. 2005). Studies with animal models of colon 

carcinogenesis reinforced these results, with dietary supplementation with β-carotene having 

anticancer effects (Choi et al. 2006). These effects have been shown to be dose-dependent, 
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with the highest doses being harmful and having a proliferative effect on cancer cells (Talero 

et al. 2015, Raju et al. 2005). 

Reports suggest that another carotenoid, lutein may also present anticarcinogenic 

actions due to its ability to interact with the mutagens 1-nitropyrene and aflatoxin B1 (AFB1) 

and for stimulating certain genes involved in T-cell transformations activated by mitogens, 

cytokines and antigens (Gonzalez de Mejia, Ramos-Gomez and Loarca-Pina 1997, Tanaka 

et al. 2012, Park et al. 1999).  

Likewise, polyunsaturated fatty acids (PUFA) were shown to possess anticancer 

potential on several in vitro studies (Das 2007). Cis-unsaturated fatty acids such as γ-

linolenic acid (GLA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), and 

docosahexaenoic acid (DHA) were shown to selectively kill tumour cells without harming the 

normal cells (Das 2007, Das and Madhavi 2011). Oleic acid (OA), linoleic acid (LA), α-

linolenic acid (ALA) have also been reported as having  inhibited growth of 

methylcholanthrene-induced sarcoma cells (Ramesh and Das 1998, Das 1991). These facts 

may have contributed to the idea that high intake of n-3 PUFA has tumoural inhibitory effects 

(Sauer, Dauchy and Blask 2000). 

Hence, extraction of microalgal lipidic components, carotenoids and PUFA, appears to 

be crucial in the attempt to maximize their added value for further nutra- and pharmaceutical 

formulations. This makes it critical to combine an appropriate, selective, cost-effective, and 

environmental-friendly extraction procedures with legal requirements regarding use of food-

grade solvents and processes (Amaro et al. 2015). Therefore, food Generally Recognized as 

Safe (GRAS) solvents with lower toxicity should be selected to obtain extracts. 

Gloeothece sp. is a prokaryotic colonial microalga scarcely studied. Screening 

programs for discovery of bioactive compounds from prokaryotic microalgae have shown that 

cyanobacteria represent an untapped bioresource for a diverse range of secondary 

metabolites (Prasanna et al. 2010). Recent advances show that its extracts are rich in lipidic 

components with proved antioxidant capacity (Amaro et al. 2015), thus, this microalga was 

selected for this study as an enforcement to find new sources or bioactive compounds. 

 

3.2. Material and methods 
 

3.2.1. Microorganism source and growth conditions 

 

Gloeothece sp. (ATCC 27152) was acquired from ATCC — American Type Culture 

Collection (USA), and cultivated using Blue Green Medium (BG11) (Stanier et al. 1971). For 

each 4 L batch biomass production, a pre-inoculum with an initial optical density of 0.1 (at 
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560 nm or 680 nm for Gloeothece sp.) was cultivated for 10 days in 800 mL of buffered 

BG11 medium, with Tri-(hydroxymethyl)-aminomethane hydrochloride (Tris-HCl) aimed at 

maintaining a constant pH of 8. This pre-inoculum ensured that the microalga is at 

exponential growth phase by the time of inoculation. A continuous illumination with 

fluorescent BlOLUX lamps, with intensity of 250 µmolphoton.m-2.s-1, was guaranteed, as well as 

air bubbling at a flow rate of 0.5 L.min-1. 

The biomass production was performed during 14 days, collected by centrifugation at 4000 

rpm for 10 min, freeze-dried and stored under nitrogen. 

 

3.2.2. Extract preparation 

Gloeothece sp. extracts were obtained from 200 mg of lyophilized biomass with four food 

grade solvents: ethanol (99.6% purity), acetone (99.6% purity), a mixture (3:2) of 

hexane/isopropanol (99.6 and 99.8% purity respectively) and ethyl lactate (97% purity). Each 

extraction was performed in triplicate, in a triple stage extraction at a ratio of 1:60 (DW/V), at 

40 ºC and 250 rpm for 20 min, as performed before (Amaro et al. 2015) . To remove cells 

debris, extracts were then centrifuged at 2000 rpm for 10 min and filtered by 0.45 µm pore 

size. Solvent were removed by rotavapor and extracts stored under nitrogen, at -20 °C in the 

dark prior to analyses.  

 

3.2.3. Anticancer effects of lipid crude extracts 

 

3.2.3.1. Cell culture 

Human gastric carcinoma cell lines MKN45 (obtained from the Japanese Cancer Research 

Bank; Tsukuba, Japan) and AGS (obtained from ATCC, USA) were maintained in RPMI1640 

(Invitrogen, Thermo Fisher Scientific, Waltham, MA) supplemented with 10 % FBS (Lonza, 

Basel, Switzerland) and kept at 37 ºC in a humidified 5 % CO2 incubator. 

 

3.2.3.2. Cancer cell viability Sulforhodamine B assay 

MKN45 and AGS (1x104) were seeded in 96-wells plates and treated for 48 h with 

different concentrations of microalgal extracts (0 to 550 µg/mL whenever possible) or DMSO 

(AppliChem, Darmstadt, Germany) as treatment control (0.05 % v/v). Then the cells were 

fixed by adding 50 μL of 50 % cold trichloroacetic acid (Merck Millipore, Kenilworth, NJ, USA) 

to each well and incubating the plates at 4ºC for 1 hour. After the fixation step, the plates 

were washed three times with deionized water and allowed to dry at room temperature. The 

cells were then stained with 50 μL of 4 % sulforhodamine B (Sigma-Aldrich, St. Louis MO, 

USA) (SRB) in 1 % acetic acid (Mallinckrodt Baker, Deventer, Holland) for 30 min and 
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thereafter washed three times with deionized water. Once the plates were dry, the cells were 

solubilized with 100 μL of 10 mM unbuffered Tris Base (Sigma-Aldrich, St. Louis MO, USA) 

and the optical density at 510 nm was measured using the fluorimeter SynergyTM 4 Multi-

Mode Microplate Reader (Biotek, Winooski, VT, USA). 

 

3.2.3.3. Cancer cell death TUNEL assay 

MKN45 and AGS were cultured in 6-well plates (7.5x105) and treated with the microalgal 

extracts at the IC50 for 48 h using DMSO (AppliChem, Darmstadt, Germany) as control 

treatment. Cells were washed, trypsinized and the pellet obtained was fixed in 3 mL of ice-

cold methanol for 15 min. After that time, cells were washed and resuspended in 500 μL of 

PBS. Incubation with TUNEL reaction mix (1:9:10 in relation to the Dilution Buffer reagent, 

according to manufacture instructions, In Situ Cell Death Detection Kit Fluorescein, Roche, 

Mannheim, Germany) occurred for 1 h at 37 ºC in the dark after which data was acquired 

using a BD Accuri C6 flow cytometer (BD Biosciences, San Jose CA, USA). 

 

3.2.3.4. Cancer proliferative assay 

MKN45 and AGS were cultured in 6-well plates (7.5x105) and treated with the microalgal 

extracts at the IC50 for 48 h using DMSO (AppliChem, Darmstadt, Germany) as control 

treatment. 5-bromo-2'-deoxyuridine (BrdU) (BrdU labelling and detection kit 1, Roche, 

Mannheim, Germany) was incorporated in the cell culture medium at the ratio of 1:1000, for 1 

h at 37 ºC. Immediately after incubation, the cells were harvested, washed with PBS, fixed in 

1 mL of ice-cold methanol for 30 min, washed again and resuspended in 500 μL of PBS. This 

was followed by the incubation with 1 mL of HCl (Mallinckrodt Baker, Deventer, Holland) 4 M 

for 20 min, two washing steps with PBS, a blocking step (PBS containing 0.5 % Tween 20 

and 0.05 % BSA) and finally the incubation step with the primary antibody against BrdU 

(1:20, Bu20a, Dako, Glostrup, Denmark) for 1 h at room temperature. Afterwards, the cells 

were further washed with PBS and incubated with the secondary antibody labelled with FITC 

(1:200, polyclonal rabbit anti-mouse, Dako, Glostrup, Denmark) for 30 min, washed two 

times and  suspended in 500 μL of Data acquisition was performed using a BD Accuri C6 

flow cytometer (BD Biosciences, San Jose CA). 

 

3.2.4. Chemical characterization of extracts 

 

3.2.4.1. Determination of polyunsaturated fatty acids profile  

Extracts resuspended in DMSO at the IC50 values of concentration (μg.mL-1) were 

lyophilized and the residue submitted to direct transesterification in order to produce fatty 
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acid methyl esters according to the acidic method described by Lepage and Roy (Lepage 

and Roy 1984), after modifications introduced by Cohen et al. (Cohen, Vonshak and 

Richmond 1988). Heptadecanoic (C17:0) acid was used as internal standard and acetyl 

chloride as catalyst. Esters were analysed in a GC Varian Chromapack CP-3800 gas 

chromatograph (GC), using a flame ionization detector, and quantified with the software 

Varian Star Chromatography WorkStation (Version 5.50). A silica CP-WAX 52 CB (Agilent) 

column was used, and helium was employed as carrier gas in splitless mode. Injector and 

detector were maintained at 260 and 280 °C, respectively, and the oven heating program 

was as described in Table 1. Chromatographic grade standards of fatty acids in methyl ester 

form CRM47885 (Supelco) were used for tentative identification, based on retention times: 

C13:0, C14:0, C14:1, C15:0, C15:1, C16:0, C16:1, C17:0, C17:1, C18:0, C18:1 n9-cis + 

trans, C18:2n6, C18:2n6 c, C18: n6, C18:3n3, C20:0, C20:1, C20:5n3, C21:0, C22:0, C22:2, 

C22:1n9. The mean of the results from the aforementioned chemical assays was used as a 

datum point. 

 

Table 3.1. Oven heating program for fatty acid identification. 
 

T (ºC) Rate (ºC.min-1) Holding time 
(min) 

Time 
(min) 

100 - 5 5 
180 6 0 18.33 
200 2 0 28.33 
205 0.5 0 38.33 
230 1 0 63.33 
233 0.5 0 69.33 
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3.2.4.2. Extracts carotenoids content 

To ascertain the extracts carotenoids content high-performance liquid chromatography 

(HPLC) was employed as analytical technique as used before (Guedes eta al., 2011c). 

Extracts as obtained in 2.2. section were resuspended in DMSO at the values of IC50 and 

then freeze-died and then resuspendend in injection method’ solvent. β-apo-carotenol 

(Sigma) was used as internal standard. The carotenoid profile was produced in a Merck-

Hitachi HPLC system, equipped with a Diode Array Detector (DAD) Merck-Hitachi L-7450, to 

resolve, detect and identify the various chemical compounds of interest. The absorption 

spectra were recorded between 270 and 550 nm. The stationary-phase was a 4 x 250 mm 

Purospher Star RP-18e (5μm) column (Merck). The mobile-phase was constituted by solvent 

A—ethyl acetate, and solvent B—acetonitrile/water at 9:1 (v/v), both from VWR, at various 

volumetric ratios along elution time, for an overall flow rate of 1 mL min-1. The following 

gradient was used: 0–31 min (0–60% A); 31–46 min (60% A); 46–51 min (60–100% A); 51–

55 min (100% A); 55–60 min (100-0% A); and 60–65 min (0% A). The elution times of the 

chromatographic standards were: lutein 14.4 min, and β-carotene 34.4 min. Standards were 

purchased in CarotNature, Lutein (No. 0133, Xanthophyll, (3R,3’R,6’R)‐β,ɛ‐Carotene‐3,3’‐diol 

with 5% Zeaxanthin and purity of 96%), β-carotene (No. 0003, β, β ‐Carotene) with 96% 

purity) and β-apo-carotenol (No. 0482, 8’‐Apo‐ β ‐caroten‐8’‐al) with 97%, purity). 

Identification was by comparison of retention times and UV–visible photo-diode array 

spectra, following a procedure a procedure detailed elsewhere (Guedes et al. 2011a). 

 

3.3. Results and discussion 
 

Cancer is characterized by an uncontrollable imbalance between the rate of cell 

proliferation and apoptosis, making it crucial to find a therapy capable to restore this balance, 

by reducing cancer cell growth and/or promoting cell death.  

AGS and MKN45 are the two most studied human gastric adenocarcinoma cell lines 

(Ran et al. 2004, Bargiela-Iparraguirre et al. 2016)  

Due to the evidences that supports the capacity of carotenoids and PUFA to exert 

antitumoural effect, the capacity of microalgal extracts rich in these families of compounds, 

obtained from Gloeothece sp. biomass, were tested for their ability to promote cancer cells 

death or to supress their proliferation. 

However, this work still is on-going, so, some results are purely indicative as it will be 

stated. 
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3.3.1.  Cancer cell viability evaluation by Sulforhodamine B assay 

The effect of microalgal extracts in in vitro cancer cell viability upon AGS and MNK45 

gastric cancer cell lines was established by Sulforhodamine B assay (SRB). This test uses 

the protein-binding dye SRB to indirectly assess cell growth (Vichai and Kirtikara 2006, 

Azevedo et al. 2013). 

Extracts were resuspended in a universal solvent, DMSO, which is cytotoxic from 

certain concentration on.  Therefore, several concentrations of this solvent were tested and a 

percentage of 0.25 was found not to exert any effect upon cells (data not shown). Thereafter, 

extracts were resuspended to a final concentration as not to exceed 0.25% DMSO in the cell 

growth medium.  

However, DMSO presented a different solvent capacity to each dry extract. Therefore, 

maximum extract concentrations tested was 400, 380, 440 and 550 μg.mL-1, for acetone, 

ethanol, HI and ethyl lactate dry extracts, respectively.  

For each extract, a dose response curve was established using the two different cell 

lines, allowing the determination of extracts’ concentration causing a cell growth inhibition of 

50%, as shown in Table 2. 

Regarding the results obtained (Table 2), HI extract particularly outstands due to the 

lowest IC50 values achieved for both cancer cell lines, reaching values of at least 5-fold lower 

when compared to the other extracts. Acetone extract also seemed to possess a potent 

effect upon AGS cell viability, although not so strong as HI. 

 

Table 3.2. IC50 (µg.mL-1) values of Gloeothece sp. extracts on cell viability in sulforhodamine 

B assay for the gastric cancer cell lines AGS and MKN45.  

 

IC50 (µg.mL-1) 

 
AGS  MKN 45 

Ethanol 241,0 ± 22,5  262,8 ± 47,7 

Acetone 114,4 ± 6,4  290,8 ± 20,3 

Hexane:Isopropanol 3:2 (v/v) 23,2 ± 1,9  41,8 ± 3,7 

Ethyl lactate 209,3 ± 11,0  266,9 ± 2,8 

 

Hence, IC50 values discovered for each extract in each cell line were used to perform the 

cancer cell death and proliferation assay. 
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3.3.4.  Biochemical characterization of extracts 

One goal of this study was to find a possible correlation between antitumoural extracts 

capacity with their content in PUFA and carotenoids.  

Thus, fatty acids and carotenoids content was determined, by GC-FID and HPLC-DAD 

respectively, for the extracts concentration responsible for the IC50 in each cell line. As 

expected, due to the results obtained before in Chapter 2, solvents exhibit different 

capacities in Gloeothece sp. lipidic components extractability. Thus, obtained extracts 

revealed to hold a unique profile in carotenoids an FA. 

In terms of FA content, the ethyl lactate extract stands out due to the high content on  

palmitic acid (PA, C16:0) – c.a. 70 % of total FA. On other hand, acetone extract possess 

almost all fatty acids in the same order of amount, only with the exception of C 18:3n6 (GLA) 

which its content is very low. Ethanol extract showed to contain high amounts of C18.3n3, 

median concentrations of C18:1 n9 and C18:2 n6 t, and traces amounts of PA. In the 

opposite, HI extracts contain all identified fatty acid but in a very low content compared with 

other extracts.  
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Fig. 3.1. Fatty acids content in each extract XX Ethanol,     Acetone, XX Hexane:isopropanol 
(HI) (3:2) and XX Ethyl lactate in each IC50 values of concentration (mgFA.mgE.mL-1) used to 
test anticancer effects of lipid crude extracts against A) AGS cells and B) MNK45 cells. 
 

In terms of carotenoids concentrations, results show that although lutein is the most 

abundant carotenoid, its concentration is very different in each extract (Fig. 2). Lutein attains 

higher concentration in acetone extracts followed by ethanol, HI and ethyl lactate. β-carotene 

seems to be the second most extracted compound, however, in contrast to lutein, it was not 

present in the ethyl lactate extract. Neoxanthin was the carotenoid present at lowest 

concentration, and it was detected neither in HI nor in ethyl lactate extracts. 

 

A 

B 
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Fig. 2- Carotenoids content     Neoxanthin,     Lutein,     β-carotene in each IC50 values of 
concentration (mgcarot.mgE.mL-1) used to test anticancer effects of lipid crude extracts against 
A) AGS cells and B) MNK45 cells. 

 

3.3.2. Antitumor features of microalgal extracts  

 

3.3.3.1.Cancer cell death TUNEL assay 

TUNEL is a common method for detecting DNA fragmentation that may result from cell 

death, either by apoptotis or necrosis (Elmore 2007). 

Induction of DNA fragmentation in AGS and MKN45 cells treated with IC50 of extracts, 

after 48 h of treatment, was examined via TUNEL detection assay. A preliminary assay (data 

A 

B 
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not show) revealed that the most promising extracts promoting cell death were HI and ethyl 

lactate, thus, so far, only these two extracts were used in subsequent studies. 

Currently, this assay is still running, however, preliminary results (Fig. 3), indicated that 

both extracts at IC50, although in a low rate, are able to induce cell death in both cell lines. 

Additionally, it seems that MKN cell line is more resistant to induced cell death than AGS 

tumour cells. Likewise, data so far suggests a higher capacity of cell death induction of  ethyl 

lactate than HI extracts. 

However, due to the low number of replica performed so far, is not possible to achieve 

any statistical conclusion. 

 

 
Fig. 3.3. AGS an MKN45 cell death, quantified by fold change), induced by XX 
Hexane:isopropanol (HI) (3:2) and      Ethyl lactate extracts using      DMSO as negative 
control. 
 

3.3.3.2. Cancer cell proliferation assay 

This assay is based in cell label-incorporation into their replicating DNA of BrdU that 

can be further detected by immunofluorescence. For a quantative approach, samples were 

analysed by flow cytometry. Hence, in comparison to a negative control it is possible to infer 

the effect of a pro/anti-proliferative compound when incubated with a cancer cell line. 

Thus, anti-proliferative features of IC50 HI and ethyl lactate extracts were ascertained in 

AGS and MK45 cell lines. 

Currently, this assay is still running, but preliminary results, obtained so far are 

depicted in Fig. 4. 

Results appear to reveal that HI and ethyl lactate extracts have the capacity to reduce 

cancer cell proliferation, in comparison to the control performed with DMSO.  In AGS cells, 

both extracts at IC50 seemed to reduce cell proliferation in 1.8-fold. Similarly, in MKN 45 
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proliferation appear to be reduced in 1.6 and 1.3-fold in the presence on HI and ethyl lactate 

extracts, respectively.  

However, at this stage, it was not possible to apply any statistical analysis of the data 

as the results presented are from a single experiment. More replicas are now needed to 

achieve any concrete assumption. 

 

Fig. 3.4. Flow cytometric analysis of cell proliferation percentage (%) of AGS and MKN 45 
treated with IC50 of    Hexane:isopropanol (HI) (3:2) and    Ethyl lactate extracts, using XX 
DMSO as negative control. 

 

3.3.4.  Correlation between extracts antitumor features and their biochemical profile 

Several studies have suggested carotenoids as antitumor agents, exerting effects on 

cancer cell either by i) tumour inhibition promoted by β-Carotene upon hepatic cancer cells, 

and ii) growth inhibition endorsed by lutein in prostate, mammary, and in colon cancer, as 

reviewed  before (Guedes et al. 2011).  

However, to the moment, there are not studies relating carotenoids’ antitumor effects 

upon AGS or MKN45 gastric cancer cell lines. 

Concerning fatty acids, particularly the poli-unsaturated belonging to class of ω-3s and 

ω-6s, there is a great deal of variation in terms of antitumor capacity. Some studies support 

that ω-3s, such as EPA and DHA, are associated with cancer suppression, while ω-6s, 

particularly AA, is generally associated to cancer promotion (Yang, Huang et al. 2004, Xu 

and Qian 2014). Additionally, it seems that effects of fatty acids vary accordingly with the 

cancer cell line in study (Yang, Huang et al. 2004, Xu and Qian 2014). 

Nevertheless, until complete evaluation of extracts’ antitumor effects, it is not possible 

to accurately correlate it with extract composition, however, some prevision could be made 

based on other studies. 

Results seem to indicate that both cell lines present a decrease in proliferation when in 

contact with HI and ethyl lactate extracts. 
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However, apparently, while in AGS cell line both extracts present similar results; in 

MKN45 cell line, HI extract seem to induce a higher decrease in cancer cell proliferation than 

ethyl lactate extract.  

Regarding the lipidic content of the extracts, the results have shown that ethyl lactate 

extract presents a higher concentration of FA than HI extract, but a lower concentration of 

carotenoids.  

Additionally, AGS and MKN45 lines show a distinct response to the compounds, 

indicating that different cell lines may respond differently to the same anti-proliferative 

compounds. This reinforces that in fact the antitumoural effect of a certain compound is not 

only dependent on the compound itself, but also on the intrinsic characteristics of cancer cell. 

 

3.4. Conclusions 

This study still is ongoing, but some conclusions may be attained by now. So far, 

Gloeothece sp. extracts obtained with ethanol, acetone, hexane:isopropanol (3:2) (HI) and 

ethyl lactate are able to modulate cell viability of both tested gastric cancer cell lines, AGS 

and MKN, in a concentration dependent-manner. However, HI extract exerted the best effect 

attaining the lowest IC50 for both cell lines.  

Extracts’ biochemical composition revealed a diverse concentration in carotenoid and 

PUFA present at values of IC50 for both gastric cell lines. 

Preliminary results disclose some cancer cell death-promoting effect of HI and ethyl 

lactate upon AGS and MKN45 as well as anti-proliferative effects. Furthermore, AGS cell line 

appears to be more sensitive to the extracts’ anti-proliferative effects than MKN45 

Hence, further studies are needed to disclose the antitumoural capacity of microalgae 

extract compounds. 
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Abstract A laboratory-made continuous pressurized solvent extraction system (CPSE) was 

built and optimized for extraction of carotenoids and/or fatty acids (with putative antioxidant 

capacity) from microalgae Gloeothece sp. Biomass amount, solvent flow-rate/pressure, 

temperature and solvent volume – including extract fractioning and degree of recirculation, 

were sequentially addressed as operation parameters, using a food GRAS solvent – ethanol. 

Carotenoids and fatty acids were identified by HPLC-DAD, respectively, and antioxidant 

capacity was assessed by ABTS•+ and DPPH• methods.  

For lipidic compounds extraction, 60 °C and 180 bar were the best operating conditions. 

Collection in different volume fractions permitted carotenoid-rich extracts, particularly rich in 

lutein, PUFA and antioxidant compounds. Recirculation of ca. 8% of the maximum solvent 

volume tested as 3 cycles increased 1.7-fold the lutein and 11-fold the β-carotene contents. 

Using 5 cycles of recirculation, C18:2 n6 t was increased 7.4-fold. When compared to a 

conventional extraction method, ultrasound assisted extraction (UAE), CPSE proved superior 

in terms of extraction yields. 

 

Keywords: microalga, pressurized liquid extraction, lutein, β-carotene, antioxidant 
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4.1. Introduction 
 

Microalgae, including cyanobacteria, play an increasing role in science and industry 

due to the wide range of commercial and novel products obtainable therefrom (Pulz and 

Gross 2004). Some of the most important, and well established in the market, are 

carotenoids and fatty acids (Taucher et al. 2016). In general, applications of carotenoids can 

be divided into three main groups: i) natural dyes in food and feed industry, ii) feed additives 

in aquaculture and poultry farming, iii) and pharmaceutical and cosmetics sectors, due to the 

underlying capacity to inhibit several diseases associated with their antioxidative properties 

(Guedes et al 2011a and Taucher et al. 2016). Interest in microalgal fatty acids has also 

emerged in recent decades, for their potential therapeutic uses in disease prevention, 

nutritional applications or biofuel production (Amaro et al. 2011 and Guedes et al. 2011a). 

In microalgae, carotenoids and PUFA are generally located in the intracellular space or 

accumulated in organelles (e.g. pigments), vesicles or in the cytoplasm itself. The presence 

of a cell wall surrounding the cells, and especially of an intact cytoplasmic membrane that 

acts as a semipermeable barrier, hampers extraction of such compounds (Vanthoor-

Koopmans et al. 2013) – so this tends to become a costly step. Traditionally, extraction of 

microalgae bioproducts has been chiefly conducted from dried biomass with organic or 

aqueous solvents, depending on the polarity of the target compound (Ceron et al. 2008 and 

Luengo et al. 2014). Traditional solvent extraction techniques are widely applied throughout 

industry, but they require large quantities of organic solvents, are labor-intensive, and can 

expose extracts to excessive heat, light and oxygen – thus promoting isomerization and 

oxidation of labile compounds. Moreover, they require extra energy input to recover the 

solvents, and may contaminate the algal solids, thereby restricting options for their end uses 

(Iqbal and Theegala 2013). In this regard, such new technologies as pressurized liquid 

extraction (PLE) have emerged and bear a number of advantages. A typical PLE system 

pressurizes and accelerates passage of solvent through the matrix, thus improving speed 

and extraction efficiency of desired compounds. It resorts to conventional solvents at 

controlled temperature and pressure, requires less solvent and shorter extraction times, and 

keeps samples in an oxygen- and light-free environment – making it particularly useful for the 

nutraceutical industry (Carabias-Martinez et al. 2005 and Mustafa et al. 2012). Moreover, 

application of pressure permits use of temperatures above the solvent atmospheric boiling 

point, and reduces solvent surface tension thus enabling penetration of solvent into the 

matrix pores. It results in matrix disruption that enhances mass transfer of the compound 

from the sample to the solvent, thus improving extraction efficiency (Mustafa et al. 2012). 

Several studies have demonstrated the advantage of using high pressure and temperature 

with forced flow of solvent for extraction of natural compounds from solid and semi-solid 
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matrices by PLE (Castro-Puyana et al. 2016, Denery et al. 2004, Guedes et al. 2013, Herrero 

et al. 2006, Pieber et al. 2012 and Taucher et al. 2016). However, PLE has not been widely 

applied as a routine tool in natural product extraction due the high cost associated, coupled 

with its requirements for dedicated infrastructure and operation. Furthermore, most 

commercial instruments only allow static extractions, in which a fixed volume of solvent, 

under the desired conditions of pressure and temperature, contacts the sample for a given 

time; hence, equilibria between those sample components still bound to the matrix and those 

already solubilized in the solvent will likely be reached, but the efficiency of the extraction 

process cannot be increased beyond this point (Herrero et al. 2013). Another less 

advantageous characteristic of PLE is the use of extreme temperatures up to 135-200 °C, 

and pressures up to 200 bar or even higher (Luthria 2008). These conditions may prompt 

formation of pyropheophytins, a chlorophyll derivate not naturally present in the original 

sample, but possessing antimutagenic features as reported for Chlorella vulgaris (Herrero et 

al. 2013). 

This study focused on a laboratory-made, continuous pressurized solvent extraction 

(CPSE) system, designed to improve the economics of microalgae bioactive compound 

extraction – while simplifying the overall extraction process, thus being useful for the 

nutraceutical and pharmaceutical industries. Instead of use of said extreme temperatures 

and pressures, this system resorts to moderate temperatures (40–70 °C) and pressures (70–

260 bar), well within the range of operational temperatures and pressures employed in large-

scale operation systems (Iqbal and Theegala 2013). Therefore, the aim of this study was to 

develop a low cost lab-made system with continuous pressurized solvent system, possessing 

a high versatility and permitting control of flow rate, temperature and flow operating mode – 

in order to maximize extraction of compounds known for their antioxidant capacity (such as 

carotenoids and fatty acids) from microalgal biomass, attempting to overcome the PLE 

constraints. 

 
4.2. Material and methods 
 

4.2.1. Microalga source and biomass production 

Gloeothece sp. (ATCC 27152) was obtained from ATCC (American Type Culture 

Collection) (USA). Batch cultures thereof were cultivated in 5 L-flasks containing 4.5 L of 

medium, at 25 ºC, using Blue Green medium (BG11) (Stanier et al. 1971), buffered with Tri-

(hydroxymethyl)-aminomethane hydrochloride (Tris-HCl) 25 mM, at pH 8. Continuous 

illumination was provided via fluorescent BlOLUX lamps (250 µmolphoton.m−2.s−1), and air was 

bubbled at a flow rate of 0.5 L.min−1. To ensure the microalga was in the exponential growth 
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phase, a pre-inoculum at an initial optical density of 0.1 at 680 nm was used for 10 days in 

800 mL of the same medium. After 14 days of growth, biomass was dewatered, freeze-dried 

and stored under nitrogen in a desiccator prior to utilization. 

 

2.2. Continuous pressurized solvent extraction 

The lab-made continuous pressurized solvent extraction system (CPSE) at stake was 

built so as to allow a pressurized solvent to pass through a column containing microalgal 

biomass, at a pre-set temperature. As depicted in Fig. 1, it is mainly composed of an HPLC 

solvent injection pump (Hitachi L-2130, Japan) that pressurizes solvent at a set flow-rate in 

the range of 0.1–10 mL.min-1 and a pressure up to 360 bar; a hollow column filled with 

microalgal biomass and an excipient; and a temperature-controlled chamber that allows the 

system be kept at the desired temperature.  

 

Fig. 4.1. Scheme of the lab continuous pressurized solvent extraction (CPSE) system. This 
system is composed by a A) solvent reservoir, B) temperature controlled chamber; C) HPLC 
solvent injection pump; D) pre-heating coil; E) extraction column; and F) extract reservoir. 
 

The ethanol reservoir is kept at the desired temperature and pumped by the HPLC 

solvent injection pump at a pre-set flow rate, and sent to a stainless pre-heating coil 1 m-long 

and an internal diameter of 1 mm – which guarantees that solvent is at the desired 

temperature before entering the extraction column. The column placed inside the 

temperature-controlled chamber is 15 cm-long, with an internal diameter of 50 mm and 

closed with end fittings. The exit tube is 2 m-long, with an internal diameter of 50 µm, and 

keeps the system pressurized; it ends in the extract reservoir. The entire system was tested 

for leaks at the maximum operating pressures and temperatures. The system allows flushing 

of solvent in the tubes at the end of each assay, without the need for any inert gas (e.g. N2); 

and the whole system is closed, thus avoiding contact with O2. Between runs, the entire 

system was cleaned with fresh solvent to avoid any extract carryover.  

In each assay, the extraction column was filled in consecutive layers of inert Ottawa 

sand, Gloeothece sp. freeze-dried biomass and another layer of Ottawa sand. It is important 
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to ensure that particle size is as small as possible. This has been shown to enhance 

extraction efficiency by shortening diffusion paths (Turner et al. 2001). Gloeothece sp. 

freeze-dried biomass was standardized by a mortar-aided previous extraction. Note that 

solvent, pre-heating coil and column were placed in the temperature-controlled chamber and 

pre-heated at the desired temperature, to assure that the whole system remains at constant 

temperature for at least 5 min. 

 

4.2.2.1. Optimization of extraction conditions 

The conditions of operation of this CPSE system were optimized sequentially: 1) 

amount of biomass in extractor; 2) solvent flow/pressure (mL.min-1); 3) temperature (ºC); and 

4) total volume of solvent used (mL). As the optimization steps were progressing, the 

conditions were being redefined based on the results obtained so far. 

Selection of the correct solvent is one of the most crucial factors affecting pressurized 

extraction. The targeted compounds were fatty acids and carotenoids; based on an earlier 

study (Amaro et al. 2015) and similar studies (Cha et al. 2010, Jaime et al. 2010, Mustafa et 

al. 2012 and Pieber at al. 2012), ethanol was chosen as solvent. Besides its relatively low 

environmental impact, it has a positive net energy balance and a generally recognized as 

safe (GRAS) status – an extra advantage for its applicability in the nutraceutial industry 

(Mustafa et al., 2012). 

To establish the biomass amount to perform extractions, 50, 100 and 150 mg of freeze-

dried biomass were assayed with (at medium-low temperatures and solvent flow rates of 40 

ºC and 2 mL.min-1, respectively). The influence of solvent flow was studied at the best 

biomass amount, so four conditions were tested – 1, 2, 3 and 4 mL.min-1. Once the best 

combination of biomass amount and solvent flow was attained, several system temperatures 

were tested, viz. 30, 40, 50, 60 and 70 ºC. Until this point, all solvent used was circulated in 

continuous flow; in order to reduce use of solvent volume, this final condition was optimized 

afterwards. Consequently, the extract was collected in several fractions along the extraction 

process, and its content in PUFA, carotenoids and antioxidant capacity were determined. 

Then, the minimum volume of extract that contains the major amount of the target 

compounds was established, to tentatively improve extraction efficiency, and its recirculation 

in the CPSE system was tested – via several cycles of recirculation, 2, 3, 4 and 5, that 

correspond to 4, 8, 12, 16 and 20 min. The system was purged at the end of each cycle, and 

extracts assayed for the aforementioned parameters. 

All extractions were performed in triplicate, and extract dry mass was ascertained 

under N2 atmosphere. Aliquots of the same extract were used to determine contents of fatty 

acids and carotenoids, as well as their antioxidant capacity. 
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4.2.3. Utrasound assisted extraction  

Ultrasound-assisted extraction was performed with 50 mg of biomass, by sequential 

addition of 2 mL of ethanol and cell disruption by 15 min of sonication, until a final volume of 

12 mL was reached. Between each addition, the extract was stirred for 20 min at 250 rpm, 

centrifuged at 20,000 rpm for 5 min, and supernatant (extract) collected and stored at 4ºC. 

To completely remove cells debris, extracts were filtered through 0.45 µm pore size, and 

then stored under nitrogen, at -20 °C and in darkness, prior to analysis. 

 

4.2.4. Antioxidant scavenging capacity assessment of extracts  

 

4.2.4.1. ABTS+• scavenging capacity 

An aliquot of extracts, obtained as described above, was evaporated and the residue 

re-suspended in ethanol:water, 50:50 (v/v) to a final concentration of 1 mg.mL−1. The ABTS+• 

radical-scavenging capacity of the extracts was assessed in triplicate, as described by 

Guedes et al. (2013). For quantification, a calibration curve using a known antioxidant – 

Trolox, was prepared, so antioxidant capacity of extract was expressed as μg.mL-1 of Trolox 

with similar scavenging capacity. 

 

4.2.4.2. DPPH• scavenging capacity 

An aliquot of each extract was likewise evaporated, and the residue resuspended in 

methanol to a final concentration of 5 mg.mL−1. In this spectrophotometric assay, the 

scavenging reaction was measured after incubation for 30 min of 1 mL DPPH with 125 μL of 

sample (Amaro et al., 2015). Measures were performed at 515 nm, and quantification was 

performed as described above. 

 

4.2.5. Compound identification 

 

4.2.5.1. Determination of carotenoids profile 

To identify, and then quantify carotenoids (including β-carotene and lutein, in 

particular), high-performance liquid chromatography (HPLC) was employed as analytical 

technique (Guedes et al. 2011b). An aliquot from each extract was evaporated and 

suspended to a concentration of 15 mg.mL-1, and β-apo-carotenol (Sigma) was used as 

internal standard. The carotenoid profile was produced in a Merck-Hitachi HPLC system, 

equipped with a Diode Array Detector (DAD) Merck-Hitachi L-7450, to resolve, detect and 

identify the various chemical compounds of interest. The absorption spectra were recorded 

between 270 and 550 nm. The stationary-phase was a 4 x 250 mm Purospher Star RP-18e 
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(5μm) column (Merck). The mobile-phase was constituted by solvent A — ethyl acetate, and 

solvent B — acetonitrile/water at 9:1 (v/v), both from VWR, at various volumetric ratios along 

elution time, for an overall flow rate of 1 mL min-1. The following gradient was used: 0–31 min 

(0–60 % A); 31–46 min (60 % A); 46–51 min (60–100 % A); 51–55 min (100 % A); 55–60 min 

(100-0 % A); and 60–65 min (0 % A). The elution times of the chromatographic standards 

were: lutein 14.4 min, and β-carotene 34.4 min. Standards were purchased in CarotNature, 

Lutein (No. 0133, Xanthophyll, (3R,3’R,6’R)‐β,ɛ‐Carotene‐3,3’‐diol with 5 % Zeaxanthin and 

purity of 96 %), β-carotene (No. 0003, β, β ‐Carotene) with 96 % purity) and β-apo-carotenol 

(No. 0482, 8’‐Apo‐ β ‐caroten‐8’‐al) with 97 %, purity). Identification was by comparison of 

retention times and UV–visible photo-diode array spectra, following a procedure detailed by 

Guedes et al. (2011b).  

 

4.2.5.2. Determination of fatty acid profile 

Fatty acid methyl esters were produced from an evaporated aliquot of each extraction 

obtained by direct transesterification — according to the acidic method described by Lepage 

and Roy (1984), after modifications introduced by Cohen et al. (1988), using heptadecanoic 

(C17:0) acid as internal standard and acetyl chloride as catalyst. Esters were analysed in a 

GC Varian Chromapack CP-3800 gas chromatograph (GC), using a flame ionization 

detector, and quantified with the software Varian Star Chromatography WorkStation (Version 

5.50). A silica CP-WAX 52 CB (Agilent) column was used, and helium was employed as 

carrier gas in splitless mode. Injector and detector were maintained at 260 and 280 °C, 

respectively, and the oven heating program was as described in Table 1. Chromatographic 

grade standards of fatty acids in methyl ester form CRM47885 (Supelco) were used for 

tentative identification, based on retention times: C13:0, C14:0, C14:1, C15:0, C15:1, C16:0, 

C16:1, C17:0, C17:1, C18:0, C18:1 n9-cis + trans, C18:2 n6, C18:2 n6 c, C18:3 n6, C18:3 

n3, C20:0, C20:1, C20:5 n3, C21:0, C22:0, C22:2, C22:1 n9. The mean of the results from 

the aforementioned chemical assays was used as a datum point. 

 

Table 4.1. Oven heating program for fatty acid identification. 
 

T (ºC) Rate 
(ºC.min-1) 

Holding time 
(min) 

Time 
(min) 

100 - 5 5 
180 6 0 18.33 
200 2 0 28.33 
205 0.5 0 38.33 
230 1 0 63.33 
233 0.5 0 69.33 
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4.2.6. Statistical analysis 

The experimental data were analysed using GraphPad Prism v. 5.0. A first diagnostic 

unfolded a non-normal distribution of the data, so 1-way ANOVA with Tukey’s multi-

comparison test was used to assess variances between different extract in terms of 

carotenoid content and antioxidant capacity, and two-way ANOVA with the same multi-

comparison test in fatty acid content for extraction conditions. Since each datum point had 

been replicated, a representative measure of variability was available in all cases to support 

said statistical analyses. 

 

4.3. Results and discussion 
 
4.3.1. Optimization of biomass amount 

Extraction techniques are relevant not only for industrial recovery of metabolites, but 

also for analytical sample preparation – and the general trend is development of faster, more 

efficient, less expensive and greener methodologies. Sample preparation is one of the 

bottlenecks of analytical procedures, due the difficulty of implementation. As stated by the 

“Green Analytical Chemistry” (GAC) principles, it should take in consideration: 1) reduction of 

sample amount; 2) simultaneous extraction of multiple compounds; and 3) increase in 

automation processes (De La Guardia 2011). An ideal pressurized liquid extraction should 

use the minimum amount of food grade solvents for a selective extraction of bioactive 

compounds, while preserving their chemical structure. It should also exhibit great versatility 

and efficiency, since the physicochemical properties of solvents (e.g. density, diffusity, 

viscosity and dielectric constant) can be modified by changing pressure and/or temperature 

of solvent, thus modifying the solvating power (Herrero et al. 2013). Hence, the main purpose 

of our extraction system is to obtain the maximum amount of lipidic compounds, namely 

carotenoids and/or fatty acids, with the minimum expense of resources such as energy, 

solvents and feedstock.  

The first step was to establish the minimum amount of biomass to be used. Three 

amounts of freeze-dried biomass of Gloeothece sp. were tested: 50, 100 and 150 mg. The 

selected biomass amount should maintain the proportionality between biomass and 

compounds in extract. Therefore, such parameters as extract mass yield, carotenoids and 

PUFA contents, and antioxidant capacity were determined. At this point, average values of 

flow and temperatures were used: 2 mL.min-1 and 40 ºC. Furthermore, solvent volume was 

established following a prior assay using 150 mg of biomass (maximum biomass tested). 

Extraction was under continuous flow, and extract was collected in batches of 25 mL. The 

volume was set as 150 mL after 2 consecutive batches not presenting any visual coloration, 
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thus guaranteeing that solvent was in surplus to extract pigments – data not shown. Despite 

compounds like fatty acids not being totally extracted, volumes higher than 150 mL would 

increase costs with no significant extra benefits. 

In terms of extract yield, and by establishing the quotient extract mass/biomass 

amount, there were not significant differences in the mass of extract obtained (p < 0.05) – ca. 

22.6 ± 0.7 %, indicating that there is proportionality between biomass used and mass of 

extract obtained. In general, the same was observed by analysing the content in fatty acids, 

carotenoids and antioxidant capacity of extracts – see Table 2. Note that data are presented 

as a ratio of content per biomass amount tested. 

 

Table 4.2. Average extract content in fatty acids (μgFattyAcids.mgbiomass
-1), carotenoids 

(mgcarotenoids.L-1.mgbiomass
-1) and antioxidant capacity (trolox equivalent (TE) mg.mgextract

-1. 
mgbiomass

-1) ± standard deviation, obtained at each amount of biomass tested (50, 100 and 
150 mg), at 40 ºC and under a solvent flow-rate of 2 mL.min-1 (P=142 bar). 

 

 Biomass (mg) 

 50 100 150  

Fatty acids 
(μgFA.mgB

-1) 

14:0 5.4 ± 0.6a 4.9 ± 1.0a 4.4 ± 0.5a 

16:0 24.6 ± 3.9a 23.0 ± 0.7a 23.3 ± 2.2a 

18:0 0.3 ± 0.0a 0.5 ± 0.1a 0.1 ± 0.0a 

18:1 n9 17.6 ± 3.0a 12.3 ± 3.7a 13.3 ± 2.5a 

18:2 n6 t 19.8 ± 3.6a 14.6 ± 1.0a 18.8 ± 2.0a 

18:2 n6 c 0.3 ± 0.0a 0.0 ± 0.0a 0.3 ± 0.0a 

18:3n6 0.9 ± 0.1a 0.5 ± 0.0a 0.4 ± 0.0a 

18:3 n3 36.6 ± 5.4ª,b 27.1 ± 2.7b 39.3 ± 3.3a 

Carotenoids 
(mg.L-1.mgb

-1) 

Lutein 2.16 ± 0.14 1.15 ± 0.06 1.39 ± 0.18 

β-Carotene 0.16 ± 0.00a 0.13 ± 0.02a 0.12 ± 0.01a 

Antioxidant 
capacity 

(mgTE.mgE
-1. mgB

-1) 

ABTS 129.4 ± 2.6 102.7 ± 8.0 70.1 ± 5.5 

DPPH 3.1 ± 0.1 1.9 ± 0.4a 1.9 ± 0.5a 
a–c Means within the same row, without a common superscript, are significantly different (p < 0.05). 

 

Other carotenoids besides lutein and β-carotene, and also fatty acids were extracted – 

yet for analysis and comparison of extraction conditions, only these were considered due 

their representativeness. The total antioxidant capacity of the extracts was assessed by two 

total scavenging assays: ABTS+• and DPPH•. These two assays were chosen based on 
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earlier experience (Amaro et al. 2015), due namely to their different sensibility either for 

carotenoids, as ABTS+• or to fatty acids as DPPH•. 

Upon inspection of Table 2, it is clear that use of 50 mg of biomass is the most 

appropriate, thus avoiding unnecessary spending of biomass. 

 

4.3.2. Optimization of solvent flow-rate 

As stated before, the next stage was to optimize the solvent flow-rate, so 1 (Q1), 2 

(Q2), 3 (Q3), and 4 mL.min-1 (Q4) were tested. System pressure increases as flow increases, 

so pressures of 72, 210 and 260 bar were reached, respectively. Note that previous results in 

the biomass optimization stage were generated at 2 mL.min-1 (Q2) under a pressure of 142 

bar. Pressure facilitates transport of solvent to hard-to-reach corners, pores, surfaces and 

matrices (Cooney et al. 2009, Iqbal and Theegal 2013). Hence, it results in matrix disruption, 

and so enhances mass transfer of the compound from the sample to the solvent (Mustafa et 

al. 2012). However, in terms of extract yield, differences between tested flow-rates, 17.1 ± 

0.95 % for Q1, were not statistically significant; 21.2 ± 2.1 % for Q2; 18.9 ± 1.3 % for Q3; and 

19.5 ± 1.8 % (mE/mB) for Q4.  

Several studies focusing on bioactive natural product extraction have pointed at the nil 

influence of extraction pressure; yet, the only reason they set an extraction high pressure is 

to maintain its liquid state due the high solvent temperatures used (100-160ºC), but its 

influence was not further addressed (Turner 2011, Herrero et al. 2013). However, lower 

temperatures were used in this study due the existence of thermolabile compounds; upon 

analysis of the extracts obtained (see Fig.2), it appears that flow-rate/pressure exerts a 

positive effect: particularly in the case of Q3 in fatty acid extraction, an average increase of 3-

fold compared to Q1 was noticed; or Q4 in lutein extraction – for which an increase of 1.3-

fold was apparent, as compared to Q1. Although selection of a suitable extraction solvent will 

probably be the most important step in optimizing PLE for microalgal metabolite extractions 

(Iqbal and Theegal 2013), the pressure played an important role in the case of lutein 

(Guedes et al. 2013) – and as observed in this study, also in fatty acid extraction. It has been 

shown that elevated pressures reduce the dielectric constant of immiscible solvents to values 

that better match the polarity of the lipids (Cooney et al. 2009; Herrero et al. 2006, Iqbal and 

Theegal 2013). With regard to β-carotene, the solvent flow rate (Q) did not unfold any 

relevant effect (Fig. 2B). 
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Fig. 4.2. Biochemical profile of extracts obtained from 50 mg-biomass in the various solvent 
flows tested at 40 ºC. A) Fatty acid profile expressed as μgFA. mL-1.mgExtract

-1 obtained in XX 
Q1 (1 mL.min-1);     Q2 (2 mL.min-1);     Q3 (3 mL.min-1) and     Q4 (4 mL.min-1) at 40ºC; (bars 
for a common fatty acid, without a common superscript, are significantly different, p < 0.05); 
B) Carotenoids (equivalent of PI mg.L-1)      Lutein and XXβ-carotene content (bars without a 
common superscript are significantly different, p < 0.05); and C) Antioxidant capacity 
expressed in trolox equivalent (TE) per extract mass, mg.mgextract

-1, obtained in     ABTS and 
XX DPPH assays. 

 

Nevertheless, a decreasing trend upon PUFA extraction was observed using Q4 (P of 

260 bar). A similar effect was observed by Guedes et al. (2013); when pressure increases, it 

may cause an increase in fluid density. This may, in turn, cause a double effect: an increase 

in solvent solvating power, and a reduced interaction between solvent and matrix, thus 

decreasing the diffusion coefficient at higher density. This phenomenon has been already 

described for other microalgae and metabolites (Macías-Sánchez et al. 2005, 2010 and 

Turner et al. 2001). 

As expected, the antioxidant capacity of the extracts obtained varied according to their 

content in carotenoids and fatty acids – see Fig. 2. Hence, the antioxidant capacity as 

assessed by the ABTS•+ assay revealed no differences between extracts – except for Q4, 

which exhibited a higher concentration in antioxidant compounds, probably reflecting its 
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higher lutein content. In DPPH• assay, Q3 and Q1 extracts attained the best results, probably 

due to being richer in fatty acids.  

Consistent with the effect upon compound extraction, Q3 flow rate was selected to 

proceed with our study.  

 

4.3.3. Optimization of temperature 

Once biomass amount and solvent flow rate were defined, the next stage was testing 

the influence of temperature on solvent extraction system in terms of lipidic compounds.  

Solvent pressure varies with increasing temperature due to a decrease in viscosity, so 

pressure varied as 212, 210, 195, 180, and 168 bar, at 30, 40, 50, 60 and 70 ºC respectively, 

despite using the same flow rate Q3 (3 mL.min-1). Temperature increases the solvent 

potential by accelerating diffusion rates (Denery et al. 2004). Moreover, thermal energy helps 

overcome the cohesive (solute-solute, i.e. lipids-lipids) interactions and adhesive (solute-

matrix, i.e. lipids-cell matrix) interactions (Cooney et al. 2009, Iqbal and Theegal 2013). 

Therefore, increasing the thermal energy increases the motion of the molecules, and so 

decreases the molecular interactions associated with hydrogen bonds, van der Waals forces, 

and dipole interactions – thus resulting in faster and easier extraction (Cooney et al. 2009).  

Consequently, temperatures of 30, 40, 50, 60 and 70 ºC were employed for the 

extraction of compound, using 50 mg of biomass at Q3. Only 70 ºC was observed to lead to 

an increase of mass extract yield, ca. of 52 %, when compared to the other temperatures 

that reached an average of 44.4 ± 2.8 % mE/mB – data not shown.  

In fatty acid extraction (Fig. 3A), one may conclude in general that extraction at 60 ºC 

produced a better yield than at other temperatures tested. When compared to the lowest 

yield obtained at 30 ºC, an increase of 2.6-fold was found for C16:0, 3.3-fold for C18:1n9, 

3.5-fold for C18:2n6 trans, 2.7-fold for C18:3n6 cis, and 16-fold for C18:3 n3. As seen before, 

diffusion rates increase roughly from 2- to 10-fold when the temperature is increased from 25 

ºC upwards (Iqbal and Theegal. 2013). 

At 70 ºC, lipids extraction was significantly lower than at 60 ºC. Although use of higher 

temperatures has been claimed to enhance fatty acids extraction (Iqbal and Theegal 2013, 

Pieber at al. 2012), the pressures used were lower than those selected in this work. Maybe 

the increase of temperature reduces solvent density considerably at this pressure, thus 

reducing the solvent-lipids contact – and resulting in net lower lipid mass transfer rates 

(Halim et al. 2011). Lipids may also deteriorate by cleavage of carbon-oxygen bonds in fatty 

acids, due to its sensitivity to temperature at the set pressure (Fournier et al. 2006, Iqbal et 

al. 2013). At 50 ºC, an unexpected low extraction yield was attained. This may have occurred 

due to a complex interaction of non-equilibrium in mass transfer, due a change in solvent 
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density to set pressure, as observed before with microalgal carotenoid extraction (Guedes et 

al. 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3. Extracts biochemical profile obtained from 50 mg biomass, at Q3, in the 
various extraction temperatures tested. A) Fatty acid profile expressed as μgFA.ml-
1mgExtract

-1 obtained at    30 ºC,    40 ºC,    50 ºC,    60 ºC,    70 ºC (bars for a common 
fatty acid, without a common superscript, are significantly different, p < 0.05); B) 
Carotenoids content     Lutein and     β-carotene expressed in equivalent of PI mg.L-

1(bars without a common superscript are significantly different, p < 0.05); C) 
Antioxidant capacity of extracts obtained in XXABTS and    DPPH assays, expressed 
in trolox equivalent (TE) per extract mass (mgTE.mgextract

-1) (bars for the same assay, 
without a common superscript, are significantly different, p < 0.05). 

 

Carotenoid recovery yield was maximum within the range 50-60 ºC for lutein, thus 

unfolding an increase in mass transfer rate with temperature – and indicating that 60 ºC is 

the most appropriate temperature, as reported previously (Jaime et al. 2010, Guedes et al. 

2013, Macías-Sánchez et al. 2010). Nevertheless, temperature had no strong influence upon 

extraction of β-carotene, as its concentration was similar in extracts obtained within the range 

of 40-70 ºC, but larger when compared to those obtained at 30 ºC. Temperature affects 

viscosity and solubility of solvents, but it may also promote isomerization and decomposition 
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of labile target chemicals (Denery et al. 2004) – thus explaining the slight decrease in lutein 

concentration observed at 70 ºC (Fig. 3A).  

In view of the above, the optimum temperature is ca. 60 °C, as indicated previously by 

Taucher et al. (2016). 

Several pieces of evidence show that antioxidant capacity measured by ABTS•+ of such 

microalga extracts as Haematococcus pluvialis seems to be related to their free carotenoid 

content, mainly lutein as it dominates overall concentration (Guedes at. al. 2011b, Jaime et 

al. 2010 and Herrero et al. 2006); whereas a decrease in the antioxidant capacity seems to 

be related to the lower carotenoid content of the extracts (Jaime et al, 2010). Therefore, as 

expected, the antioxidant profile of ABTS•+ (Fig. 3C) is similar to that obtained for carotenoids 

(Fig. 3B). 

On the other hand, fatty acids may also contribute to the antioxidant activity, in addition 

to carotenoids – as reported by Cerón et al. (2006). This fact was observed when the DPPH 

assay was used (Fig. 3C). Moreover, other compounds with antioxidant capacity (not 

identified) may have been co-extracted – like chlorophylls, phenolic compounds or other 

hydrophilic compounds with recognized antioxidant capacity (Cha et al. 2010). 

 

4.3.4. Optimization of solvent total volume 

The use of low solvent volumes in PLE extraction is one of its key points supporting its 

applicability at industrial scale (Pieber et al. 2012). As stated before, the volume used so far 

was in excess – so in a first attempt to reduce and find the optimum solvent volume, the 150 

mL was collected in distinct and sequential fractions to ascertain compound concentration. In 

a preliminary assay, more than 60% of mass extract was concentrated in the first 8.3 % of 

solvent volume (12.5 mL). Hence, the volume was collected in 3 fractions, 1st faction of 12.5 

mL (1F), 2nd fraction 12.5 mL (12.5) and the 3rd of 125 mL (3F), along the extraction routine. 

In the last fraction, the mass of extract was so low that precluded its subdivision in more 

fractions. The extract mass yields in 1F, 2F and 3F were 17.2 ± 0.1, 4.5 ± 0.4 and 6.9 ± 1.2 

% me/mb, obtained under the (so far) optimized conditions of temperature and solvent flow, 

60 ºC and Q3 (3 mL.min-1), respectively. 

After analysing the content in fatty acids (Fig. 4A), it appears that the longer and more 

unsaturated the fatty acids are, the harder their extraction, thus requiring more solvent matrix 

contact; at these conditions, more volume is needed to extract them. Although the fatty acid 

concentration lies between 1.25- to 4-fold higher in 3F than in 1F, the volume in 1F 

represents 10% of 3F. Nonetheless, high fatty acid concentration in 3F could be useful if the 

extraction purpose is to obtain an extract rich in C16:0 or unsaturated fatty acids 
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Fig. 4.4- Extracts biochemical profile obtained from 50 mg biomass, at 60 ºC and Q3, in the 
sequentially collected volume fractions. A) Fatty acid profile expressed as μgFA. mL-1.mgExtract    
XX 1F (12,5 mL),    2F (12,5 mL),    3F (125 mL) (bars for a common fatty acid, without a 
common superscript, are significantly different, p < 0.05); B) Carotenoid content,     Lutein 
and   β-carotene expressed in equivalent of PI, mg.L-1 (bars for a common carotenoid, 
without a common superscript, are significantly different, p < 0.05; C) Antioxidant capacity of 
the extract obtained in     ABTS and     DPPH assays expressed in trolox equivalent (TE) per 
extract mass, mgTE.mg-1 (bars for the same assay, without a common superscript, are 
significantly different, p < 0.05). 

 

Carotenoid content of extracts (Fig. 4B) indicates that both lutein and β-carotene are 

mostly concentrated in 1F. As observed with fatty acids, if the purpose is to extract solely 

lutein, 2F is the most appropriate fraction – even if 3F lutein is present to the same level; in 

terms of volume used, it represent ca. 8-fold less than in 3F. Similarly, 1F contains 28-fold 

more than 3F in terms of β-carotene extracted and volume used. 

Based on the above results pertaining to antioxidant capacity measurements (Fig. 4C), 

a high antioxidant capacity would be expected particularly with ABTS•+ in 1F, due its high 

concentration in carotenoids (Amaro et al. 2015). Note that this antioxidant assay was 

performed at an extract concentration of 1 mg.mL-1; hence, besides carotenoids, it may 

contain other non-antioxidant compounds that could have been co-extracted to a large scale, 

thus lowering carotenoid concentration in the extract (and, consequently, the overall 
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antioxidant capacity). For the opposite reason, a higher concentration of carotenoids and 

unsaturated fatty acids in F3 may explain the best antioxidant capacity as per the ABTS•+ 

assay. On the other hand, the higher antioxidant capacity of 3F as per the DPPH assay is 

consistent with its fatty acid profile. 

Briefly, the volume fraction divisions may provide an extra improvement toward multiple 

compounds extraction. The first fraction contains the highest concentration in lutein; 

however, if the goal is to achieve a pure extract of these carotenoids, then 2F is the most 

appropriate – due to its low content in fatty acids. In other words, 3F provides a fatty acid-rich 

extract possessing high antioxidant capacity. 

 

4.3.4.1. Cycles of extract recirculation  

As observed before, the optimum length of an extraction process depends on the time 

needed to build up the equilibrium between the compound concentration in the sample matrix 

and the solvent (Taucher et al. 2016). Therefore, an attempt to increase the contact between 

solvent and matrix until solvent saturation is in order, without increasing the solvent volume – 

so 1F was tested in several cycles of recirculation. The time needed to obtain 1F was 4 min, 

so times of extract recirculation of 8, 12, 16 and 20 min were tested – corresponding to 2C, 

3C, 4C and 5C, respectively. As concluded from the extract yields obtained, the volume of 

solvent used at 1F was not saturated, due an average increase of 21 % from 1F to 2C or 3C, 

and a greater one at 4C or 5C, ca. 65 % (data not shown). 

As expected, the fatty acid concentration increased with the number of cycles; 

compared to 1F, fatty acids had the following extraction improvement using 5C: 3-fold for 

18:1n9, 5-fold for C 18:2n6t, and 9-fold for C18:3n3 (Fig .5). Although PLE systems usually 

work in sequential cycles of static volume, this effect was observed before by Pieber et al. 

(2012) in fatty acid recovery – but not so far using the recirculation of extract itself for several 

cycles.  
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Fig. 4.5-- Extracts biochemical profile obtained from 50 mg biomass, at 60 ºC and Q3, in in 
tested cycles of recirculation. A) Fatty acid profile expressed as μgFA.mL-1mgExtract obtained in 
XX 1C (4 min),    2C (8 min),    3C (12 min),    4C (16 min),    5C (20 min), (bars for a 
common fatty acid, without a common superscript, are significantly different, p < 0.05); B) 
Carotenoid content in XX Lutein and    β-carotene) expressed in equivalent of PI, mg.L-1 
(bars for a common carotenoid, without a common superscript, are significantly different p < 
0.05); C) Antioxidant capacity of the extracts obtained in X ABTS and XXDPPH assays 
expressed in trolox equivalent (TE) per extract mass, mgTE.mg-1. 

 

This phenomenon was also observed in carotenoid extraction: lutein content increased 

1.4-fold from 1F to 3C. In the case of β-carotene, the increase was significantly more 

pronounced; it had an increase of 10-fold from 1C to 3C. The yield of carotenoids starts to 

level out after 12 min (3C) of extraction; with additional cycles, the extraction is most likely 

desorption/diffusion controlled, as pointed out by Mustafa et al. (2012). A too long extraction 

time may also cause degradation of carotenoids if extraction is conducted in a single step 
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(Mustafa et al., 2012), thus explaining the decrease of β-carotene concentration in extraction 

cycles longer than 3C (Fig.5). 

The antioxidant capacity of tested extract cycle of recirculation accordingly followed the 

carotenoid profile, proving that these compounds had a more pronounced effect; in fact, 3C 

attained the best results, either in ABTS•+ or in DPPH•, surpassing even the contribution of 

fatty acids in this last assay. 

 
4.3.5. Comparison of lab-made CPSE system with ultrasound assisted extraction 

Finally, the lab-made CPSE system was optimized, and the best conditions for 

carotenoid and/or fatty acid extraction were found toward minimum use of resources. 

Common PLE has been widely compared to other extractions techniques, such as 

maceration, ultrasound assisted extraction (UAE) or Soxhlet extraction. Advantages of PLE 

arise chiefly from lower volume, shorter extraction time and potential for automation (Herrero 

et al. 2013). In this work, UAE was selected for comparison of results obtained with our 

CPSE system – and carefully conducted to avoid isomerization and degradation of 

compounds. The same amount of biomass was extracted with 12 mL of ethanol, as 

described above. As shown in Table 3, compound concentration and antioxidant capacity 

obtained in CPLE system are superior or equal to those obtained in the UAE, in agreement 

with other authors (Cha et al. 2010 and Plaza et al. 2008). Hence, this extraction system 

offers the advantage of permitting better extraction rates, in a shorter time and in a single 

step. Comparing the traditional UAE extraction method with the CPLE, one realizes that it is 

possible to achieve time savings in carotenoid extraction of the order of 8.7–fold, with an 

extraction improvement of 2.3-fold for lutein and 15-fold for β-carotene (using the same 

volume and 3C recirculation). The increase of the antioxidant capacity of extracts was not so 

significant, as a mere 1.3-fold was noticed via ABTS•+, while DPPH• unfolded the same 

values as with UAE. In fatty acid extraction, the same was observed when comparing UAE 

with CPLE; the latter could achieve higher yields, particularly useful if the purpose is to 

extract individual or overall fatty acids. However, the conditions of CPLE are not the same 

than UAE; using the maximum volume of extraction (150 mL) at Q3 and 60 ºC, the extract 

obtained is particularly rich in fatty acids.  
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Table 4.3. Comparison of results obtained during optimization of CPLE system, with 

ultrasound-assisted extraction. Better results pertaining to extraction of each particular 

compound are marked in bold. 
 

  Extraction methods tested 

 Ultrasound 
assisted 

extraction 
(12 mL) 

Continuous pressurized solvent extraction 
system 

 Q3, 60 ºC 
(150 mL) 

Volume 
fractions (1F) 

Recirculation 
Cycles 

Fatty acids 

14:0 9.9 ± 1.4ª,b 27.3 ± 0.0 6.5 ± 0.2ª,c 10.0 ±1.9 (5C)b,c 

16:0 38.5 ± 4.1a 157.8 ± 2.0 44.0 ± 0.3ª,b 50.8±2.5 (5C)b 

16:1 2.9 ± 0.2a 6.1 ± 0.6a 0.0 ± 0.0a 2.9±1.5 (5C)a 

18:0 0.9 ± 0.2a 4.1 ± 0.8a 1.0 ± 0.1a 1.5 ± 0.6 (5C)a 

18:1 n9 23.5 ± 0.9 134.9 ± 16.8 10.3 ± 1.0 33.8 ± 8.7 (5C) 

18:2 n6 t 18.8 ± 2.0a 3.2 ± 0.0b 4.9 ± 0.1b 23.8 ± 5.2 (5C)a 

18:2 n6 c 4.8 ± 0.1a 70.5 ± 1.1 0.0 ± 0.0a 1.8 ± 1.1 (5C)a 

18:3 n6 6.1 ± 1.1a 6.7 ± 0.6a 4.9 ± 0.5a 3.3 ± 1.3(5C)a 

18:3 n3 2.9 ± 0.1a 69.1 ± 1.5 3.1 ± 0.2a 27.9 ± 4.2 (5C) 

Carotenoids 
(mg.L-1) 

Lutein 1.22 ± 0.18 1.72 ± 0.22a 2.07 ± 0.13a 2.9 ± 0.1 (3C) 

β-Carotene 0.10 ± 
0.01a 0.13 ± 0.03a 0.14 ± 0.01a 1.5 ± 0.1(3C) 

Antioxidant 
capacity(mgT

E.mge
-1) 

ABTS 121.6 ± 
6.2a 167.6 ± 21.8b 117.9 ± 3.7a 168.7 ± 4.3 

(3C)b 

DPPH 395.1 ± 
10.9a 186.1±34.1 398.9±6.7a 423.4±10.6 

(3C)a 

a–c Means within the same row, without a common superscript, are significantly different (p < 0.05). 

 
4.4. Conclusions  

 
Our low cost, laboratory scale CPSE system proved versatile and effective in bioactive 

compound extraction. In general, the optimum temperature and pressure were 60 °C and 

180 bar for extraction of lipidic compounds. Collecting the extract as sequential volume 

fractions produced separate extracts rich in carotenoids, lutein, PUFA and antioxidant 

compounds. An extract recirculation (12.5 mL, 8,3 % of total volume tested) for 3 cycles 

increased 1.7-fold lutein and 11-fold β-carotene contents, while 5 cycles permitted C 18:2 n6 
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t be increased 7.4-fold. When compared to ultrasound assisted extraction (UAE), our CPSE 

proved more efficient. 

 

Acknowledgements  

A PhD fellowship (ref. SFRH/BD/62121/2009) for author Helena M. Amaro, supervised 

by author F.X.M. and co-supervised by authors I.S.P. and A.C.G., was granted by Fundação 

para a Ciência e Tecnologia (FCT, Portugal), under the auspices of ESF and Portuguese 

funds (MEC). A postdoctoral fellowship (ref. SFRH/BPD/72777/2010) was granted to author 

A.C.G., supervised by author F.X.M. and co-supervised by author I.S.P., also under the 

auspices of ESF and MEC. 

This work was financially supported by: Project POCI-01-0145-FEDER-006939 

(Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE 

funded by FEDER through COMPETE2020 - Programa Operacional Competitividade e 

Internacionalização (POCI)  – and by national funds through FCT - Fundacão para a Ciencia 

e a Tecnologia; by ZEBRALGRE (PTDC/CVT-WEL/5207/2014), by national funds through 

FCT supported by COMPETE 2020: POCI-01-0145-FEDER-016797; and by the Structured 

Program of R&D&I INNOVMAR - Innovation and Sustainability in the Management and 

Exploitation of Marine Resources, reference NORTE-01-0145-FEDER-000035, namely 

within the Research Line NOVELMAR – Novel marine products with biotechnological 

applications, within the R&D Institution CIIMAR (Interdisciplinary Centre of Marine and 

Environmental Research), supported by the Northern Regional Operational Programme 

(NORTE2020), through the European Regional Development Fund (ERDF). 

 

References 
 
Amaro H.M., Guedes A.C.; Malcata F.X., 2011. Advances and perspectives in using microalgae to produce 

biodiesel. Appl. Energy 88,3402-3410. 
Amaro H.M., Fernandes F., Valentão P., Andrade P.B., Sousa-Pinto I., Malcata F.X., Guedes A.C., 2015. Effect of 

Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece 
sp. on Antioxidant Scavenging Capacity Thereof. Mar. Drugs 13,6453-6471. 

Carabias-Martinez R., Rodriguez-Gonzalo E., Revilla-Ruiz P., Hernandez-Mendez J., 2005. Pressurized liquid 
extraction in the analysis of food and biological samples. J. Chromatogr. A 108,:1-17. 

Castro-Puyana M., Pérez-Sánchez A., Valdés A., Ibrahim O.H.M., Suarez-Álvarez S., Ferragut J.A., Micol V., A. 
Cifuentes, E. Ibáñez, V. García-Cañas, 2016. Pressurized liquid extraction of Neochloris oleoabundans for 
the recovery of bioactive carotenoids with anti-proliferative activity against human colon cancer cells. Food 
Res. Int. In press 

Cerón M.C., García-Malea M.C., Rivas J., Acien F.G., Fernández J.M., Del Río E., Guerrero M.G., Molina, E., 
2006. Antioxidant activity of Haematococcus pluviales cells grown in continuous culture as a function of 
their carotenoid and fatty acid content. Appl. Microb. Biotech. 74,1112-1119. 

Cerón M.C., Campos I., Sánchez J.F., Acién F.G., Molina E., Fernández-Sevilla J.M., 2008. Recovery of Lutein 
from Microalgae Biomass: Development of a Process for Scenedesmus almeriensis Biomass. J. Agricult. 
Food Chem. 56,11761-11766. 

134 
 



PART III                                                                                                                                                                                          CHAPTER 4 

 

Cha K.H., Kang S.W., Kim C.Y., Um B.H., Na Y.R., Pan C.H., 2010. Effect of pressurized liquids on extraction of 
antioxidants from Chlorella vulgaris. J. Agric. Food Chem. 58,4756-61. 

Cohen Z., Vonshak A., Richmond A., 1988. Effect of environmental conditions on fatty acid composition of the red 
alga Porphyridium cruentum: Correlation to growth rate. J. Phycol. 24,328–332. 

Cooney M., Young G., Nagle N., 2009. Extraction of bio-oils from microalgae. Sep. & Purif. Rev. 38,291-325. 
Denery J.R, Dragull K., Tang C.S, Li Q.X., 2004. Pressurized fluid extraction of carotenoids from Haematococcus 

pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal. Chim. Acta, 501,175-181. 
Fournier V., Destaillats F., Juaneda P., Dionisi F., Lambelet P., Sebedio J.L., Berdeaux O., 2006. Thermal 

degradation of long-chain polyunsaturated fatty acids during deodorization of fish oil. Eur. J. Lipid Sci. 
Technol. 108,33-42. 

de la Guardia M., Armenta S., 2011. Origins of Green Analytical Chemistry. Compr. Anal. Chem. 57,1-23. 
Guedes A.C., Amaro H.M., Malcata F.X., 2011c. Microalgae as sources of carotenoids. Mar. Drugs 9,625-644. 
Guedes A.C., Amaro H.M., Pereira R.D., Malcata F.X., 2011b. Effects of temperature and pH upon growth and 

antioxidant content of the microalga Scenedesmus obliquus. Biotechnol. Prog. 7,1218-1224. 
Guedes A.C., Amaro H.M., Malcata F.X., 2011a. Microalgae as sources of high added- value compounds – a brief 

review of recent work. Biotechnol. Prog. 27,597-613. 
Guedes A.C., Gião M.S., Matias A.A, Nunes A.V.M., Pintado M.E., Duarte C.M.M., Malcata F.X., 2013. 

Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedesmus 
obliquus for use in food processing. J. Food Eng. 116,478-482. 

Guedes A.C., Amaro H.M., Gião M.S., Malcata F.X., 2013. Optimization of ABTS radical cation assay specifically 
for determination of antioxidant capacity of intracellular extracts of microalgae and cyanobacteria. Food 
Chem. 138,638-643. 

Halim R., Gladman B., Danquah M.K., Webley P.A., 2011. Oil extraction from microalgae for biodiesel production. 
Biores. Technol. 102,178-185. 

Herrero M., Jaime L., Martn-lvarez P.J., Cifuentes C., Ibez E., 2006. Optimization of the extraction of antioxidants 
from Dunaliella salina microalga by pressurized liquids. J. Agric. Food. Chem. 54,5597-603. 

Herrero M., Catro-Puyana M., Mendiola J. A., Ibañez E., 2013. Compressed fluids (SFE, PLE and SWE) for the 
extraction of bioactive compounds. Trends ana. Chem. 43, 67-83. 

Herrero M., Jaime L., Martín-Álvarez P. J., Cifuentes A., Ibáñez E., 2006. Optimization of the extraction of 
antioxidants from Dunaliella salina microalga by pressurized liquids J. Agric. Food Chem. 54,5597-5603. 

Iqbal J. and Theegala C., 2013. Optimizing a continuous flow lipid extraction system (CFLES) used for extracting 
microalgal lipids. GCB Bioen. 5,327-337. 

Jaime L., Rodríguez-Meizoso I., Cifuentes A., Santoyo S., Suarez S., Ibáñez E., Señorans F.J., 2010. 
Pressurized liquids as an alternative process to antioxidant carotenoid extraction from Haematococcus 
pluvialis microalga Lebensm.Wiss.Technol. 43,105-112. 

Lepage, G.; Roy, C., 1984. Improved recovery of fatty acid through direct transesterification without prior 
extraction or purification. J. Lipid Res. 25, 1391-1396. 

Luengo E., Martínez J.M., Coustets M., Álvarez I., Teissié J., Rols M.-P., Raso J.A., 2015. Comparative Study on 
the Effects of Millisecond- and Microsecond-Pulsed Electric Field Treatments on the Permeabilization and 
Extraction of Pigments from Chlorella vulgaris. J. Memb. Biol. 248,883-891. 

Luthria D.L., 2008. Influence of experimental conditions on the extraction of phenolic compounds from parsley 
(Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chem. 107,745-752. 

Macías-Sánchez M.D., Mantell C., Rodríguez M., Martínez de la Ossa E., Lubián L.M., Montero O., 2005. 
Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from 
Dunaliella salina. Talanta 77,948-952. 

Macías-Sánchez M.D., Fernandez-Sevilla J.M., Acién Fernández F.G., Cerón García M.C, Molina Grima E., 
2010. Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem. 123,928-
935. 

Mustafa A., Turner C., 2012. Pressurized liquid extraction as a green approach in food and herbal plants 
extraction: A review. Anal. Chim. Acta. 703,8-18. 

Mustafa A., Trevino L.M., Turner C., 2012. Pressurized Hot Ethanol Extraction of Carotenoids from Carrot By-
Products. Molecules 17,1809-1818. 

Pieber S., Schober S., Mittelbach M., 2012. Pressurized fluid extraction of polyunsaturated fatty acids from the 
microalga Nannochloropsis oculata. Biomass and Bioenergy 47,474-482. 

Plaza M., Avalo B., Cifuentes A., Ibáñez E., 2008. Pressurized liquid extraction and ultrasound-assisted extraction 
of functional ingredients from Chlorella vulgaris. Chemical characterization using HPLC-DAD and GC-MS. 
Poster Comunication in the 11th European Meeting on Supercritical Fluids. 

135 
 



PART III                                                                                                                                                                                          CHAPTER 4 

 

Pulz O., Gross W., 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 
65,635-648. 

Taucher J., Baer S., Schwerna P., Hofmann D., Hümmer M., Buchholz R. and Becker A., 2016. Cell Disruption 
and Pressurized Liquid Extraction of Carotenoids from Microalgae. J. Thermodyn. Catal. 7,1. 

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., 1999. Antioxidant activity applying the improved ABTS 
radical cation decolorization assay. Free Radic. Biol. Med. 26,1231–1237. 

Stanier R.Y., Kunisawa R., Mandel M., Cohen-Bazire G., 1971. Purification and properties of unicellular blue-
green algae (order Chlorococcales). Bacteriol. Rev. 35,171-205. 

Turner C., King J.W., Mathiasson L., 2001. Supercritical fluid extraction and chromatography for fat-soluble 
vitamin analysis. J Chrom. A 936,215-237. 

136 
 



 
 
 
 
 
 
 
 
 
 

CHAPTER 5 
Fluorescent light vs. LED for Gloeothece sp. in biomass and high 

value-metabolite production – a promising approach from blue 
biotechnology? 

 



 



PART III                                                                                                                                                                                          CHAPTER 5 

 

Fluorescent light vs. LED for Gloeothece sp. in biomass and high value-metabolite 
production – a promising approach from blue biotechnology? 

 
Helena M. Amaro1,2, Fernando Pagels3, Joana Azevedo1, I. Sousa Pinto1,3, F. Xavier Malcata4,5, A. Catarina 

Guedes1* 

*Corresponding author: A. Catarina Guedes, acatarinaguedes@gmail.com, Tel.: (+351) 22 340 18 00; Fax: (+351) 

22 339 06 08 

 
1 CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos 

Bragas 289, 4050-123 Porto, Portugal, 
2 ICBAS – Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 

4050-313, Portugal 
3FCUP – Faculty of Science, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal 
4Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal 
5LEPABE – Laboratory of Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto 

Frias, s/n, 4200-465 Porto, Portugal 

 

THIS MANUSCRIPT IS SUBMITTED FOR PUBLICATION IN ALGAL RESEARCH. 

Abstract Light plays a crucial role in photosynthetic microalgae,s and the use of specific 

wavelengths is a key-point for biomass production and biochemical composition. 

The effects of different LED wavelengths were analysed in microalgal cultivation as an 

alternative of fluorescent lamps (FL).  

Blue (B) and red (R) LEDs, and two combinations thereof (BR) were studied in terms of 

Gloeothece sp. biomass (X), carotenoids and fatty acids (FA) production, as well as 

antioxidant compounds (AC) capacity. Given the LEDs that presented better results, infrared 

(IR) LEDs were added, and their influence assessed on the various parameters studied. 

B induces high biomass productivity (PX) with the greatest contents in FA composition in 

comparison to other tested LEDs. Cultures illuminated by R attained the best AC values. BR 

(40:60) promoted biomass richer in carotenoids, particularly lutein and β-carotene. IR, 

coupled with BR (40:60) and R, enhanced PX and FA content, while changing carotenoids 

and AC profile production over time.  

Our results reveal, in general, that LED can be a valid alternative to FL for decreasing costs, 

and enhancing biomass and high value-product synthesis. 

 

Key Words: cyanobacteria, infra-red, lutein, β-carotene, C18:3 n3, antioxidant capacity 
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1. Introduction 
 

Despite some species being able to undergo mixotrophic metabolism, microalgae are 

essentially photosynthetic organisms – so light is the essential form of energy needed for 

their existence. Light is composed by a large spectrum, but only the visible part apparently 

contains photosynthetic active radiation (PAR). Said part ranges from the violet (380 nm) to 

the far red at (750 nm), with a photon of blue light (about 400 nm) being more energetic than 

of red light (around 700 nm).  

To fully understand how light affects microalga growth and biochemical composition, it 

is essential to understand the metabolic starting point of photoautotrophic microorganism – 

photosynthesis. To harvest light energy, photosynthetic organisms possess three major 

classes of pigments: chlorophylls (Chl), carotenoids and phycobilins – organized in light 

harvesting complexes (LHC). All types of LHC are composed by a core and reaction centre 

pigment – composed by Chl a, a subtype of chlorophyll present in all oxygenic 

photoautotrophs with absorption peaks; and light-harvesting antennae, composed by 

pigments such as other subtypes of Chl (b or c) and carotenoids, composing the so-called 

accessory (or antennae) pigments that allows the range of light absorption to be extended 

(Fig. 1) (Richmond 2008). Carotenoids represent a large group of biological chromophores, 

with an absorption range 400–550 nm. They play several roles in the photosynthetic 

apparatus, functioning as (i) accessory light-harvesting pigments transferring excitation to 

Chl a, (ii) structural entities within the light-harvesting and reaction centre pigment–protein 

complexes; and (iii) molecules required for protection against excess irradiance, chlorophyll 

triplets and reactive oxygen species. In prokaryotic microalga (cyanobacteria), the major 

antennae are composed by phycobilins (phycoerythrobilin, phycocyanobilin and 

phycourobilin). Hence, cyanobacteria are able to utilize red, yellow and green light – and, to 

a lesser extent, blue light (Schulze et al. 2014).  

The thylakoid membrane, where photosynthesis occurs, contains five major 

complexes: light-harvesting antennae, photosystem II (PS II) and photosystem I (PS I) (both 

containing a reaction centre), cytochrome (Cytb6 f) and ATP synthase. The primary function 

of the antenna systems is light-harvesting and energy transfer to the photosynthetic reaction 

centres (Richmond 2008). Two major classes of light-harvesting pigment–protein complexes 

can be identified there: (i) hydrophilic phycobiliproteins, found in cyanobacteria attached to 

the protoplasmic side of the thylakoid membrane; and (ii) hydrophobic pigment–protein 

complexes, such as LHC II and LHC I, containing chlorophylls and carotenoids, as depicted 

in Fig. 1. 
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Fig. 5.1. Schematic representation of prokaryotic microalga pigment antenna complex, and 
its composition in terms of pigment and photosystems I (PSI) and II (PSII). 

 

In cyanobacteria, the light-harvesting antenna serving PS I is exclusively constituted by 

chlorophyll a, while PS II is mainly composed of phycobilisome. PSII has a relatively larger 

optical absorption cross-section compared to PS I, which is excited by chlorophyll a. To 

balance the electron flow between PS II and PS I, cyanobacteria generally have more PS I 

reaction centres than PS II – a deed altered both by light intensity and spectral distribution. 

Although blue and red lights are most effectively absorbed by photosynthetic pigments, 

photoregulation of microalgae is not limited to the photosynthetic apparatus. Many 

photoreceptors, i.e. pigments that absorb light and transduce light signals, are also actively 

involved in triggering various light responses that are independent of the photosynthetic 

apparatus – as is the case of those first detected in prokaryotic genes encoding 

phytochrome-like proteins in cyanobacteria, as depicted in Fig. 2 (Wilde et al. 1997, Dring 

1988). Among all types of photoreceptors, red/far-red light absorbing phytochrome is 

unusual, due to its photoreversibility. This blue protein pigment can switch between two 

interconvertible forms, Pr (inactive form, with an absorption peak in the red region of the 

650–680 nm spectrum) and Pfr (active form) (Dring 1988). When Pr is exposed to red light, it 

is converted to (the physiologically active) blue-green form, Pfr, thus triggering several 

biochemical responses.  

Also, blue light has proven to influence gene expression and several metabolic 

pathways in algae and plants, via photoreceptors such as cryptochromes, phototropins, 

aureochromes, and neochromes (Beel et al. 2012); it is also responsible for endogenous 

breakdown of carbohydrate reserves (Kamiya and Saitoh 2002, Schulze et al. 2014). Hence, 

light quality can determine the other biophysical and physiological properties of microalgae, 

as briefly summarized in Fig. 2  
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Fig. 5.2. Schematic representation of selected metabolic pathways of prokaryotic microalgae 
that are affected by light spectrum in BL- blue light, FRL- far-red light and RD- red light. 
 

As found in the specialized literature, blue light promotes chlorophyll synthesis and 

chloroplast formation in Chlorella (Dring 1988), and induces nitrate and nitrite uptake in 

Monoraphidium braunii (Aparicio and Quinones 1991). Red and far-red lights showed to 

affect growth, cell size, and photosynthesis rate of microalgae. For example, red light 

emitting diode (LED) revealed to reduce cell volume of C. vulgaris without changing the total 

biomass yield when compared to fluorescent light (Lee and Palsson 1996). When 

supplemented to a daylight fluorescent lamp, far-red light induced much larger cell volume in 

Dunaliella bardawil cultivation than obtained with single daylight lamps, but cell population 

and chlorophyll concentration decreased (Sánchez-Saavedra, Jiménez and Figueroa 1996). 

Moreover, continuous red lighting in C. pyrenoidosa culture enhanced growth and ethylene 

production, whereas long-term far-red lighting inhibited both (Kreslavsky, Kobzar and 

Muzafarov 1997).  

Therefore, light quality appears as a key point for microalgal growth and biochemical 

composition. If the most proper light source is elected, it will be possible to manipulate the 

microalgal biomass in terms of optimum biomass productivity, as well as content of high 

value metabolites for specific uses – particularly for high-end markets (Schulze et al. 2014). 

Fluorescent lighting is the most common light source employed in microalgae cultivation, but 

it possesses a width light spectrum – and (as seen before) the range of photosynthetic active 

radiation is more restricted, thus making them energetically inefficient (besides their energy 

cost and unwanted heat production). If the light source has a narrow spectral output that 

overlaps the photosynthetic absorption spectrum, emission of light at unusable frequencies 

will be eliminated, thus improving overall energy conversion(Schulze et al. 2016). Among the 

light sources currently available, LEDs are the only ones that meet the foregoing criteria. 

LEDs are light and small enough to fit into virtually any photobioreactor; other advantages 

include longer life-expectancy, lower heat generation and higher conversion efficiency. In 
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addition, LEDs have narrow light emission spectra, between 20 and 30 nm, which can be 

matched to photosynthetic needs (Chen et al. 2011, Yeh and Chung 2009). 

Recent years have witnessed an increased interest in replacing fluorescent lighting by 

LED for microalga production, but still are important gaps in the knowledge of how 

microalgae respond to light exist. The combined use of LEDs for microalgal cultivation or 

general metabolic response patterns was only partly investigated to date, and very few 

studies have focused on prokaryotic microalgae (Schulze et al. 2014). To help fill in the gaps 

found in the current state of the art, the present study was aimed at understanding whether 

use of LED lighting is a feasible alternative to fluorescent lamps (FL). The effects of light 

quality upon growth rate and biochemical composition of Gloeothece sp., particularly blue 

and red LEDs and FL, were accordingly ascertained in terms of carotenoids and fatty acids. 

These compounds, particularly the former, have been described as potent antioxidant 

agents, with proved health and industrial applications – so antioxidant compound production 

was assessed (Guedes, Amaro and Malcata 2011, Pulz and Gross 2004, Guedes, Amaro 

and Malcata 2011, Guedes et al. 2011, Mazza et al. 2007). Moreover, the effect of infrared 

light on microalga growth and composition is essentially unknown, so this study implemented 

an innovative way of testing.  

 

5.2. Material and methods 
 

5.2.1. Microalga source and growth conditions 

Gloeothece sp. (ATCC 27152) obtained from ATCC (American Type Culture 

Collection) (USA), was maintained at 25ºC in Blue Green (BG11) medium (Stanier et al. 

1971). A pre-inoculum was cultivated for 10 days, with an initial optical density of 0.1 at 680 

nm, in 800 mL of BG11, set at pH 8 buffered with Tri-(hydroxymethyl)-aminomethane 

hydrochloride (Tris-HCl) 25 mMM. A continuous illumination with fluorescent BlOLUX lamps 

with intensity of 100 µmolphoton.m−2.s−1 was assured, as well as air bubbling at a flow rate of 

0.5 L.min−1.  

Light conditions assays, tested in batch biological triplicates, were performed in 1800 

mL of culture, also with an initial optical inoculum density of 0.1 at 680 nm. Medium, bubbling 

conditions and continuous illumination were the same as with the pre-inoculum , except for 

the light source.  

 

5.2.2. Light emission conditions 

Monochromatic blue (B) (peak at 440 nm with a range of 420–470 nm) and red (R) 

(peak at 660 nm with a range of 600-700 nm) were tested, as well as two dichromatic LED 
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percentage compositions of red and blue – RB 60:40, % and RB 50:50, %. The influence of a 

near-infrared LED (peak at 862 nm, with a range of 800-900 nm) was tested with the most 

promising LED conditions.  

For a better understanding of how LED affects microalgae cultivation, a common 

microalga light source was used as a comparison – fluorescent BlOLUX lamps.  

In all experiments, the same light intensity was used either in monochromatic or 

dichromatic light source – 100 µmolphoton.m−2.s−1, established by light measurement via light 

sensor WALZ (US-SQS/L), equipped with a logger WALZ (ULM-500). 

Microalgal growth LED assay were performed in climate chambers (Aralab 600 S), 

equipped with removable LED panels containing blue, red and infrared LEDs. In each assay, 

a uniform light distribution was provided by spot lights, as well as by establishing the correct 

distance of cultures to the light source, as depicted in Fig. 3. The study conducted with 

fluorescent light was performed with BlOLUX lamps in climate chamber Aralab 750 E. 

A Spectrometer OCEAN OPTICS (USB2000+) with a flat sensor was used to ascertain 

each light spectrum. 

 

 

Fig. 5.3. Schematic representation of experimental set-up – one of two lighting parallel 
panels used for Gloeothece sp. cultivation under LED light (A) and fluorescent light (B), and 
their respective light wavelengths, LEDs (C) and Fluorescent lamps Osram Biolux (D). 
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5.2.3. Biomass quantification 

For each biological triplicate, cultivated under the light conditions above, biomass 

growth was monitored (in duplicate) along time by optical density (OD), established 

spectrophotometrically at 680 nm (Schimadzu UV-1800), and by dry weight (DW). The later 

was determined by filtering a certain volume of culture through preconditioned GF/C glass 

fiber filters (Whatman, UK), and further drying at 100ºC till constant weight. The specific 

growth rate (μmax) was also determined by a numerical regression to the experimental data, 

and the biomass doubling time (td) was calculated as td = (ln 2)/μmax. Biomass productivity 

(Px) was calculated using the variation between initial and final values of DW (g.L-1), referred 

to the underlying exponential phase period, according to Px (t) = X0[(exp(μmax.t)-1)/t], where t 

denotes actual sampling time and X0 denotes initial biomass concentration. 

 

5.2.4. Antioxidant capacity assessment 

Two millilitres of each batch (in triplicate) was centrifuged, at 4000 rpm for 5 min, and 

the pellet was resuspended and homogenized in 2 mL of a mixture of ethanol and water (1:1, 

v/v). Cells were then crushed in an Ultra Turrax T 18 basic homogenizer (Ika) at 14,000 rpm 

for 30 s, and centrifuged at 4000 rpm for 5 min; and the supernatant (intracellular extract) 

was collected separately. 

The radical-scavenging capacity of the microalgal intracellular extracts was assessed, 

in triplicate, via the ABTS radical cation (ABTS•+) assay, following the method described 

elsewhere (Guedes et al. 2013). For quantification, a calibration curve using a known 

antioxidant – Trolox, was established, so antioxidant capacity was expressed as trolox 

equivalents (TE) per dry weight (DW) of biomass μgTE.mL-1.g-1. 

 

5.2.5. Compound Identification 

 
5.2.5.1. Carotenoids identification 

To identify and quantify carotenoids (including β-carotene and lutein, in particular) 

produced by Gloeothece sp, a high-performance liquid chromatography (HPLC) system was 

employed as before (Guedes et al. 2011). 

Under all light conditions, microalgal cell-free extracts were prepared from each 

biological triplicates using 20 mL of centrifuged culture sampled over culture time. The pellet 

was resuspended in the same volume of acetone (99.6% purity), and added with sodium 

sulfate (Sigma) and β-apo-carotenol (Sigma) as internal standard. Cells were then disrupted 

by sonication for 15 min; and the extract filtered and evaporated in a rotavapor. The residue 

was then resuspended in a mixture of acetone and ethyl acetate at 9:1 (v/v) prior to injection. 
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The carotenoids profile was obtained via a Merck-Hitachi HPLC system, equipped with 

a equipped Diode Array Detector (DAD) Merck-Hitachi L-7450 to resolve, detect, and identify 

the various chemical compounds of interest. The absorption spectra were recorded between 

270 and 550 nm, and the stationary-phase was a 4 x 250 mm Purospher Star RP-18e (5μm ) 

column (Merck). The mobile-phase was constituted by solvent A—ethyl acetate, and solvent 

B—acetonitrile/water at 9:1 (v/v), both from VWR, at various volumetric ratios along elution 

time, under an overall flow rate of 1 mL min-1. The following gradient was used: 0–31 min (0–

60% A); 31–46 min (60% A); 46–51 min (60–100% A); 51–55 min (100% A); 55–60 min 

(100-0% A); and 60–65 min (0% A). The carotenoids elution times of the chromatographic 

standards were: neoxanthin 7.4 min, violoxanthin 8.4 min, lutein 14.4 min, and b-carotene 

34.4 min. Standards were purchased in CarotNature, Lutein (No. 0133, Xanthophyll, 

(3R,3’R,6’R)‐β,ɛ‐Carotene‐3,3’‐diol with 5% Zeaxanthin and purity of 96%), β-carotene ((No. 

0003, β, β ‐Carotene) with 96% purity) and β-apo-carotenol ((No. 0482, 8’‐Apo‐ β ‐caroten‐8’‐

al) with 97%, purity). Identification was achieved by comparison of retention time and UV–

visible photo-diode array spectra, following the procedure detailed elsewhere (Guedes et al. 

2011). 

 

5.2.5.2. Determination of fatty acid profile 

By the end of each light condition experiment, biomass triplicates were harvested, by 

sedimentation and then centrifugation at 4000 rpm for 5 min, prior to lyophilisation.  

Fatty acid methyl esters were produced from 100 mg of biomass by direct 

transesterification—according to the acidic method adopted previously (Guedes et al. 2011), 

using heptadecanoic (C17:0) acid as internal standard and acetyl chloride as catalyst. Esters 

were analysed in a GC Varian Chromapack CP-3800 gas chromatograph, using a flame 

ionization detector, and quantified with the program Varian Star Chromatography 

WorkStation (Version 5.50). A silica CP-WAX 52 CB (Agilent) column was used, and helium 

was employed as carrier gas in splitless mode. Injector and detector were maintained at 260 

and 280 °C, respectively, and the oven heating program was as described in Table 1.  
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Table 5.1. Oven heating program for fatty acids identification. 

T (ºC) 
Rate (ºC.min-

1) 

Holding time 

(min) 

Time 

(min) 

100 - 5 5 

180 6 0 18.33 

200 2 0 28.33 

205 0.5 0 38.33 

230 1 0 63.33 

233 0.5 0 69.33 

240 4 14.3 90 

 

Chromatographic grade standards of fatty acids in methyl ester form CRM47885 

(Supelco) were used for tentative identification, based on comparison of retention times: 

C13:0, C14:0, C14:1, C15:0, C15:1, C16:0, C16:1, C17:0, C17:1, C18:0, C18:1 n9-cis + 

trans, C18:2 n6, C18:2 n6 c, C18:3 n6, C18:3 n3, C20:0, C20:1, C20:5 n3, C21:0, C22:0, 

C22:2, and C22:1 n9. The mean of the results from the aforementioned chemical assays was 

used as a datum point. 

 

5.2.6. Statistical analysis 

The experimental data were analysed using GraphPad Prism V. 5.0. A first diagnostic 

unfolded a non-normal distribution of the data, so 1-way ANOVA with Tukey’s multi-

comparison test was used to assess variances between different light conditions on growth 

parameters, and two-way ANOVA with the same multi-comparison test in carotenoids, fatty 

acids content and antioxidant capacity for each light condition. Since each datum point had 

been replicated, a representative measure of variability was available in all cases to support 

said statistical analyses. 

 

5.3. Results and discussion 
 
5.3.1. Effects of light source on biomass production 
 

Light is an essential factor for microalgae growth, and light spectral quality and intensity 

must be considered when choosing the right light source for their cultivation. Spectral quality 

is defined by the absorption spectrum of chlorophylls and other photosynthetically active 

pigments, such as phycobilins and carotenoids, and its energy absorption is dependent on 

their chemical nature (Teo et al. 2014, Carvalho et al. 2011, Lee 1999). Chlorophylls, 

particularly Chl a, that is present in all microalgae, have two major spectrum absorption 

bands at blue (450–475 nm) and red (630–675 nm). However, it is important to notice that 
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each microalga species has its particular preference on growth for a particular balance of 

absorption bands, so there is not a universal formula of light spectra that can be applied to all 

microalga towards optimum growth or metabolite synthesis (Schulze et al. 2014, Schulze et 

al. 2016). This discrepancy over the effect of a wavelength on microalgal growth between 

species has been often described in the literature, thus suggesting that the influence of light 

wavelength on the production of microalgal biomass is species-dependent (Chen et al., 

2010; Das et al., 2011). Nevertheless, studies indicated that blue and red wavelengths are 

the chief responsible for different metabolic and physiological responses as those described 

before in C. vulgaris (Kim et al. 2014).  

For an optimum growth, light intensity should be delivered equally over the culture 

surface and with adequate amount of PAR to enable photons to reach the cell in the culture 

(Lee 1999). An excessive intensity may lead to photooxidation and photoinhibition, while low 

light levels will become growth-limiting (Fu et al. 2013). Due to this, the light intensity at 

which culture growth becomes saturated is an important factor in determining light utilization 

efficiency; microalgal light saturation usually begins at an  incident light intensity around 200 

µmol m-2 s-1(Carvalho et al. 2011), so a light intensity was chosen for this study that would 

avoid this situation, i.e. 100 µmol m-2 s-1. 

Microalgal biomass production was monitored by culture DW and OD. For a further 

easier and faster biomass growth evaluation, a correlation was successful applied (R2 > 

0.98) – data not shown. The selection of wavelength for OD measurement was based on the 

highest absorption culture peak, which may not match the optimal growth microalga 

wavelength. This is due the fact that cell absorption spectra include contributions of all 

cellular components able to absorb or scatter light, yet they may not contribute to the light-

harvesting processes needed for photosynthesis – thus masking the true light requirements 

for growth of a specific microalga (Schulze, Barreira et al. 2014). 

As expected, the prokaryotic microalga Gloeothece sp. exhibited different behaviours 

under different light conditions in terms of biomass production along time – as depicted on 

Fig 4A. Following inspection of the growth parameters tested (Fig. 4B), the shorter 

duplication time (td) – 2.54 d, higher specific growth rate (μmax) – 0.2735 d-1, and higher P(X) 

– 0.132 g.L-1d-1 indicated that  blue LED is the more suitable for biomass production, even 

overrating the ones obtained under fluorescent light. Recall that P(X) was calculated under 

the exponential phase; otherwise, red LED would have yielded the best biomass productivity 

along the 27 d of culture. However, profitable biomass production required the fastest and 

highest biomass production, so P(X) was calculated and plotted as shown in Fig. 4B in order 

to equalize culture time.  
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Fig 5.4. Microalgal growth curves (A) for each light condition        B,        R,         BR (40:60), 
XXX  BR (50:50),         F; and (A) biomass production parameters      μmax (d-1),      td (d) and 
XX P(X) biomass productivity (mg.L-1.d-1) analysed for each light condition B (blue LED), R 
(red LED), BR (40:60, %, LED), BR (50:50, %, LED) and F (fluorescent lamps). Bars for the 
same parameter without a common superscript, are significantly different (p < 0.05). 

 

5.3.2.  Effects of light source on microalga biochemical composition 

 

5.3.2.1 Effects of light source on carotenoids production 

Evidence has shown that some carotenoids can be overproduced by microalga in 

response to stressful light conditions (Fu et al. 2013); hence, a well-designed LED lighting 

may lead to an efficient and sustainable production of carotenoids, such as β-carotene and 

lutein. 

Biosynthesis of carotenoids is complex and coordinated with the biogenesis of 

chlorophylls and proteins of the photosynthetic apparatus (Bohne and Linden 2002). As 

emphasized before, such carotenoids as β-carotene and lutein play a central role in PS II, 

harvesting blue light and transferring energy to photosystem reaction centres, while 
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protecting the photosynthetic apparatus against photo-oxidative damage by deactivating 

reactive oxygen species (ROS) and thus reducing ROS formation under excess light (Fu et 

al. 2013, Jahns and Holzwarth 2012). 

In this study Gloeothece sp. carotenoids production was strongly affected by the light 

source, as apparent in Fig. 5. Xanthophylls such as neoxanthin, violoxanthin and lutein, and 

β-carotene were quantified along time under the different light spectrum conditions. All of 

them exhibit two peaks of production, the first in the early exponential phase (from day 1 to13 

d) and another in the stationary phase (from day 13 to 25), as observed in Fig. 5. This may 

be due the stressful conditions that cells are submitted to in said stages. In the exponential 

phase, cells are at a very low density, and thus very exposed to light – so they trigger their 

secondary metabolism, i.e. carotenoids production, in order to stabilize the cell structure and 

aid in the function of photosynthetic complex. Conversely, the microalgal culture attains a 

state of nutrients starvation in the stationary phase, and the cell density reaches such values 

that cells self-shading areas inside the culture vessel increase, so cells stresses for light 

harvesting. Consequently, cells responded again by increasing carotenoids production in 

attempt to improve light harvesting (Guedes et al. 2011, Sánchez Mirón et al. 2002). This 

behaviour is fairly typical of microalgae, and may explains the presence of a peak in 

carotenoids production in the plain stationary phase – as perceived as seen in Fig. 5 around 

20 –25th day of culture. 

Since one of main goals of this study was to assess whether the use of LED can 

replace fluorescent light in microalga production, the maximum content of carotenoids at the 

exponential phase under fluorescent light is marked to facilitate comparison of results. 

Observing Fig. 5, it is possible to witness that Gloeothece culture – under monochromatic or 

dichromatic LED, attained a higher production of carotenoids than under fluorescent light. 

Furthermore, red light (as expected) seems to play a role upon all carotenoids production, 

either as monochromatic LED – particularly on violoxanthin (9.54 ± 1.24 mg.L-1.gDW
-1) and 

lutein (45.66 ± 5.98 mg.L-1.gDW
-1) at day 6; or in conjugation with 40% blue light in production 

of neoxanthin (12.5 ± 3.2 mg.L-1.gDW
-1 at day 6) and lutein (38.31 ± 4.92 mg.L-1.gDW

-1,day 6). 

As detected in plants (although not been fully studied), the mechanism of action of the 

monochromatic red light may affect terpenoid production (the basis molecule of carotenoids) 

in the chloroplast through phytochrome activation (Darko et al. 2014). In particular, the 

dichromatic conjugation of RB (60:40) seems to induce synthesis of β-carotene (from 6 to 

20th day, between 9.06 ± 1.12 and 14.27 ± 0.75 mg.L-1.gDW
-1), as observed before in D. salina 

(Fu et al. 2013); and additional red or blue LED caused stress, by activating the xanthophyll 

cycle – although blue light is less stressful than red light. Production of violoxanthin attained 

values as high as those produced under red LED, but under dichromatic RB (50:50) in plain 
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stationary phase, at day 20 (10.63 ± 0.39 mg.L-1.gDW

-1) and day 25 (11.27 ± 0.35 mg.L-1.gDW
-

1)  

 
Fig. 5.5. Microalgal carotenoids production (mg.L-1.gDW

-1) g A) Neoxanthin, B) Violoxanthin, 
C) Lutein and D) β- carotene, under the different light sources     B (blue LED),     R (red 
LED),    BR (50:50, %, LED),     BR (40:60, %, LED) and XX F (fluorescent lamps). 
Maximum carotenoids production attained in exponential phase under fluorescent lamps is 
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marked for comparison with use of LEDs. Bars on each day without a common superscript, 
are significantly different (p < 0.05). 

 

As observed in microalgal growth under monochromatic LED, there is not a consensus on 

which light spectrum is more suitable to improve carotenoids production. Some studies claim 

that blue light induces production of astaxhantin in Haematococcus pluvialis (Katsuda et al. 

2004); others show production of a larger pool of xanthophylls and higher Chl a content 

compared to red LEDs, at low light intensities, in the case of Phaeodactylum tricornutum 

(Schellenberger Costa et al. 2013); still others invoked a higher carotenoid/chlorophyll ratio 

under red LED when compared to blue or green LEDs in Botryococcus braunii Bot-144 

cultures (Baba et al. 2012). Other authors refer that β-carotene and lutein accumulation is 

increased when red light is supplemented with blue in Dunaliella salina (Fu et al. 2013) – in 

agreement with our results. A justification of such phenomena lies on an analogy with plants 

– light signal transduction of blue light may be different from that of red light, and plants 

usually have different photoreceptors/domains (some blue light- and others red light-

regulated). However, these photoreceptors could over-lapp, and thus distinct functions may 

explain disparate responses (Chory 2010). 

 

5.3.2.2. Effects of light source on PUFA production 

Interest in microalgal fatty acids has emerged in many fields in recent years, for their 

potential for therapeutic uses or nutritional applications – e.g. omega 3 and 6 like C18:3 n3 

(α-linolenic acid, ALA), C18:2 n6 (Linoleic acid, LA), C18:3 n6 (ɤ -linolenic acid, GLA), or 

even omega 9 C 18:1 n9 (Oleic acid, OA) (Guedes et al. 2011).  

Light is one of the keys factor that affects fatty acids production by microalgae, so it 

can be used as a tool to enhance production and increase the potential of microalga 

exploitation (Teo et al. 2014, Guedes et al. 2010).  

In an attempt to ascertain how light spectrum affects fatty acids microalgal content, in 

all light conditions, the biomass was collected and freeze-died when the culture reached the 

4th day of the stationary phase. Fatty acid methyl esters (FAMES) were then generated and 

quantified by GC-FID, and the main results are depicted in Fig. 6. Under fluorescent light, 

Gloeothece sp. cultures have higher neutral lipid content. However, comparing only the LED 

light conditions tested under the monochromatic blue LED, this microalga produces more 

fatty acids relative to other LEDs tested –e.g. 1.7-fold more C16:0 (34.26 ± 3.08 µgFA.mL-

1.mgDW
-1) and 1.9-fold more C18:2 n6 trans (0.21 ± 0.01 µgFA.mL-1.mgDW

-1) than dichromatic 

LEDs, and 1.6-fold more C18:3 n3 (24.31 ± 3.58 µgFA.mL-1.mgDW
-1) than all other LEDs 

tested.  
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Fig 5.6. Microalgal fatty acids production (µgFattyAcid.mL-1.mgDW
-1) under the different light 

sources     B (blue LED),     R (red LED),     BR (50:50, %, LED),     BR (40:60, %, LED) and 
XX F (fluorescent lamps). Bars for each fatty acid, without a common superscript, are 
significantly different (p < 0.05). 

These effects of blue LED were observed before in Tetraselmis sp. and in 

Nannochloropsis sp. by Teo et al. (2014) (Teo et al. 2014). Yoshioka et al. (2012) (Yoshioka 

et al. 2012) also found that Isochrysis galbana attained maximum lipid content under blue 

LED, probably because the enzymes affecting the carbon dioxide rates in microalgae are 

basically under control of blue light. The higher the enzyme activity, the higher the 

accumulation of triglycerides under blue LED light (Roscher and Zetsche 1986).  

 

5.3.2.3. Effects of light source on antioxidant capacity of intracellular extracts 
 

Hydrogen peroxide (H2O2) is the most common oxidative product of photosynthesis, 

photorespiration, respiration and other metabolic processes in plants and microalgae. 

Therefore, light may contribute to the increase of microalgae oxidative stress for being a 

result of the photosynthetic process. Hence, production of antioxidant is triggered to 

scavenge free radicals, chelate catalytic metals and act as oxygen scavengers. Some 

microalgae contain several enzymatic and non-enzymatic antioxidant protection systems to 

constrain the concentration of reactive species of oxygen (ROS), in attempts to protect 

themselves from damage. Compounds like phenolic acids, tocopherols, terpenoids, 

alkaloids, phycobilin pigments and carotenoids were accordingly described to overcome said 

harmful effects and restore intracellular equilibrium (Guedes et al. 2011, Ho et al. 2014, 

Guedes et al. 2011).  

To evaluated the effect of light spectrum on antioxidant compounds (AC) production, 

for each light condition assay, samples were taken along time as biological triplicates, and 
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antioxidant capacity was assed also in triplicate by ABTS•+assay. Upon inspection of the 

results in Fig. 7, it is possible to notice that light spectrum has an effect on AC production. 

Again, for easier comparison of results, the maximum production of AC by Gloeothece sp. in 

the exponential phase under fluorescent light is marked. Gloeothece sp. under red light 

attained again a higher content of AC, particularly in days 8, 18 and 20, with a maximum of 

2.95 ± 0.14 mgTE.mL-1.gDW
-1. Higher results than under fluorescent light were as well found 

when using dichromatic LED illumination in days 4, 18, 25 and 32 at BR (50:50) – with values 

between 2.27 ± 0.0784 and 2.73 ± 0.08 mgTE.mL-1.gDW
-1, and days 8, 18 and 20 days under 

BR (40:60), 2.34 ± 0.11 and 2.44 ± 0.184 mgTE.mL-1.gDW
-1, respectively. Recalling Fig. 4, it is 

possible to conclude that these days correspond to the exponential phase (days 4 and 8) and 

the stationary phase (days 18, 20, 25 and 32). As seen before in section 3.2, cells are under 

stress in these two growth phases, either due the excess or limitation of light energy; hence, 

an internal cell oxidative stress may enhance the antioxidant compound mechanism of 

production in attempts to restore oxidative equilibrium. Under B LED, Gloeothece sp. 

production of AC exhibited a different behaviour compared to other light conditions; besides 

its content being lower , it exhibited an almost constant production profile along time, with an 

average of 1.25 ± 0.12 mgTE.mL-1.gDW
-1 – with the exception of the first and last day of 

cultivation, with 2.31 ± 0.11 and 1.72 ± 0.06 mgTE.mL-1.gDW
-1, respectively. Another point 

worthy of notice is the very low values of AC content under R and BR (40:60) until the 4th day 

of culture. The same did not happen in BR (50:50), so a higher ratio between B:R may 

induce more stress, and more AC with consequently be produced at startup. 

Among their several functions in light harvesting, carotenoids contribute to cell 

structure stabilization by neutralizing reactive oxygen species and dissipating excess energy. 

As observed before, lutein is the major carotenoid produced by Gloeothece sp.; in view of 

early evidence with Scenedesmus sp. reported by Guedes et al. (2011) (Guedes et al. 2011) 

and in attempts to determine whether these two events are related, the profile of production 

of lutein and AC were compared – as depicted in Fig. 8. For most light condition (B, BR 

(50:50) and FL), their production profile are similar along time, so carotenoids, or lutein more 

specifically, may have a strong contribution to antioxidant capacity as described before in 

Scenedesmus obliquus (Guedes et al. 2011). However, under R LED (Fig. 8 C) and slightly 

in BR (40:60), a poorer correlation was found; despite the similarity between profiles, they 

present different times for peak production, thus leading to the conclusion that other 

compounds besides carotenoids, bearing antioxidant capacity, are synthesized by R light; 

this is the case of phycocyanin, as observed long ago in Synechococcus sp. by Tanako et al. 

(Takano et al. 1995), or phenolics compounds observed in lettuce leaves (Li and Kubota 

2009). 
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Fig 5.7. Microalgal antioxidant capacity (mgTE.mL-1.mgDW
-1) over time and under different light sources     B (blue LED),     R (red LED), XX BR 

(50:50, %, LED),    BR (40:60, %, LED) and    F (fluorescent lamps). Bars for in each light condition without a common superscript, are 
significantly different (p < 0.05). 
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Antioxidant compounds have received in recent decades a growing interest in the 

market due to their several roles: e.g. in human health as therapeutic aids (i.e. prevention or 

control of several diseases), as an ingredient in functional food, or even as food preservative 

(Guedes, Amaro et al. 2011).  

 

 

Fig 5.8. Microalgal profile of production of lutein (       ) and antioxidant (       ) capacity over 
time under different light conditions A) blue LED, B) red LED, C) BR 50:50, %, LED, D) BR 
40:60, %, LED and E) fluorescent lamps.  

 

5.3.3. Influence of infra-red LED on microalga growth and biochemical composition 

As seen before, only the visible range of light spectrum is photosynthetically active. Up 

to now, the farthest wavelengths studied on photosynthetic organisms were in the range of 

far-red (630-750 nm); beside its low energy, it seems to exert some effects on Dunaniella 
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bardawil (Sánchez-Saavedra et al. 1996). Far red photons appeared to induce high growth 

rates and smaller cells, by accelerating the cell cycle in many microalgae of diverse 

evolutionary lines. They can suppress volumetric biomass production when supplementing a 

broadband light source, because they regulate light-harvesting mechanisms in microalgae 

(Schulze et al. 2014, Sánchez-Saavedra et al. 1996). 

However, effects of infrared (IR) radiation (750-1000 nm) on photosynthetic 

performance have remained quite unexplored. A few studies reported on the ability of a 

photosynthetic bacterium, Rhodopseudomonas capsulate, to harvest monochromatic light at 

860 nm; photons are apparently absorbed by bacteriochlorophyll, a pigment with a higher 

affinity for light than carotenoids (Richmond 2008). More recently, it was found that the 

cyanobacterium Acaryochloris marina is the only known prototroph harbouring chlorophyll 

(Chl) – which permits a good adaptation to growth under both visible and near infrared 

irradiance (Behrendt et al. 2012). 

In this study, Gloeothece sp. growth under LEDs proved that this light source can be a 

good alternative to fluorescent lighting; it indeed promotes growth and increases carotenoids 

and antioxidant production, particularly under monochromatic R or dichromatic BR (40:60) 

LEDs. Hence, the effect of an extra near infra-red radiation (800-900 with a peak at 862 nm) 

was tested, when added to the aforementioned LEDs, upon Gloeothece sp. growth, and 

carotenoids, AC and fatty acids production.  

 

5.3.3.2. Influence of infra-red LED on Gloeothece sp. growth  

Infrared light (IR) caused different effects when coupled with different LEDS – as per 

observation of Fig 9. When combined with R, the P(X) decreased 4-fold and td increased 

2.41 fold. When added to BR (40:60), P(X) was enhanced 1.96-fold and td decreased 2-fold 

with BR (40:60). However, infrared light produced an increase in μmax in conjugation with R 

an BR (40:60), i.e. 1.3-fold and 1.9-fold, respectively, as already observed with 

cyanobacterium Acaryochloris marina (Behrendt et al. 2012). Therefore, infrared light may be 

used in conjugation with BR (40:60) to enhance biomass production. 
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Fig 5.9. Microalgal growth curves for each light condition (A)XXX R,XXX R+IR, (B)XXX   BR 
(40:60),XXX BR (40:60)+IR and microalgal biomass production parameters XX μmax (d-1), XX 
td (d) and XX P(X) biomass productivity (mg.L-1.d-1) analysed for each light condition B (blue 
LED), R (red LED), BR (40:60, %, LED), BR (50:50, %, LED) and F (fluorescent lamps). Bars 
for the same parameter and for the same light condition with and without IR without a 
common superscript, are significantly different (p < 0.05). 

 

5.3.3.3. Influence of infra-red LED on Gloeothece sp. biochemical composition  

Recent results are scarce about the influence of infrared light on carotenoids 

production; and the farthest wavelength tested was far-red radiation, which proved to 

significantly increase carotenoids content in Dunaniella bardawil (Sánchez-Saavedra et al. 

1996). The effect of infrared light on each carotenoids production along time was tested in 

conjugation with R and BR 40:60, as depicted in Fig 10. Unlike D. bardawil with far-red light, 

a wavelength of 860 nm induced a decrease of Gloeothece sp. carotenoids production when 

conjugated with both LEDs. The profile of production of all carotenoids was different when IR 

radiation was added; both R+IR and BR+IR only had a peak of production in the plain 

exponential phase, at day 25 and day 15, respectively. A single exception occurred under 

R+IR in β-carotene production, with two equal peaks of production at day 6 and 20. 
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Fig 5.10. Effect of infra-red LED on microalgal carotenoids production along time, when 
conjugated with the       R (red LED);        R+IR (red LED) and          BR (40:60, %, LED),  
XXX   BR+IR (40:60, %, LED).  
 

However, it was observed that IR affects differently the production of fatty acids, as 

depicted in Fig. 11. When this radiation is added to R or BR in Gloeothece sp. cultures, the 

lipid production is increased, but this phenomenon is more pronounced in conjugation with 

BR – where it increases (on average) 1.7-fold each fatty acids production. On the other hand, 

the effect of IR when added to R LED is only statistically significant (P˂0.05) in terms of 

increase on C 16:0, C18:3 n3 and C18:3 n6. Note that IR radiation had a significant role in 

the stimulation of production particularly of C18:3 n6. 
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Fig 5.11. Microalgal fatty acids production (mgFattyAcid.mL-1.mgDW

-1) under light sources XX R 
(red LED),      BR (50:50, %, LED), and combined with infrared LED       R+IR and XX BR+IR 
(40:60, %, LED). Bars for same fatty acid without a common superscript, are significantly 
different (p < 0.05). 
 

In terms of AC production, R+IR and BR (60:40)+IR presented a different a profile of 

production along time when compared to their counterparts without IR. In conjugation with R 

LED, IR seems to increase their production in the stationary phase – where a peak of 

production occurred at day 27. Together with BR radiation, IR induced a constant production 

of only at day 4 and 15, corresponding to the plain exponential and stationary phases of 

Gloeothece sp. growth, respectively. Unlike previous results, encompassing single 

monochromatic or dichromatic B and/or R illumination, it was not possible to correlate 

carotenoids to AC production when IR radiation is added, although a peak of production of 

carotenoids and AC arose by 25th day of cultivation under BR + IR. These findings indicate 

that IR radiation may induce production of other AC than carotenoids.  
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Fig 5.12. Effect of infrared LED on microalgal antioxidant capacity (mgFattyAcid.mL-1.mgDW
-1) 

over time when combined with R LED (A) and BR (40:60) LED (B). R (     ); R+IR (      ), BR 
(40:60) (      ), BR+IR (40:60) (      ). 

 

5.4. Conclusion 

LEDs appear promising as light source alternative toward biomass and metabolites 

production by Gloeothece. For biomass production, the blue LED is the most appropriate; the 

microalga grows faster than under FL, and accumulates a higher content in fatty acids. When 

using BR (40:60) LEDs, it is possible to obtain biomass rich in carotenoids, particularly lutein 

and β-carotene, besides AC; however, only a slightly higher content in antioxidants was 

obtained with R, although its P(X) was lower. When added to BR (40:60, %), IR LEDs 

enhanced biomass production as well as fatty acids content. They also changed carotenoids 

profile of production, as well as AC.  

 

Acknowledgements  

A PhD fellowship (ref. SFRH/BD/62121/2009) for author Helena M. Amaro (co-supervised by 

A.C.G) and a postdoctoral fellowship (ref. SFRH/BPD/72777/2010) to author A. Catarina 

Guedes, both supervised by author F. Xavier Malcata and co-supervised by author I.S.P., 

were granted by Fundação para a Ciência e Tecnologia (FCT, Portugal), under the auspices 

of ESF and Portuguese funds (MEC).  

This work was financially supported by project POCI-01-0145-FEDER-006939 from LEPABE 

(Laboratory for Process Engineering, Environment, Biotechnology and Energy) – and by 

project ZEBRALGRE PTDC/CVT-WEL/5207/2014 from CIIMAR (Interdisciplinary Centre of 

Marine and Environmental Research), both funded by FEDER funds through 

COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI), by 

national funds through FCT - Fundação para a Ciência e a Tecnologia). It was also was 

161 
 



 

sponsored in the framework of the Structured Program of R&D&I INNOVMAR - Innovation 

and Sustainability in the Management and Exploitation of Marine Resources, reference 

NORTE-01-0145-FEDER-000035, namely via the Research Line NOVELMAR – Novel 

marine products with biotechnological applications, within the R&D Institution CIIMAR, 

supported by the Northern Regional Operational Programme (NORTE2020), through the 

European Regional Development Fund (ERDF).  

ARALAB lent a climate chamber S600PL, equipped with LED, to make this study possible. 

 

References 

Aparicio, P. J. & M. A. Quinones (1991) Blue Light, a Positive Switch Signal for Nitrate and 
Nitrite Uptake by the Green Alga Monoraphidium braunii. Plant Physiol, 95, 374-8. 

Baba, M., F. Kikuta, I. Suzuki, M. M. Watanabe & Y. Shiraiwa (2012) Wavelength specificity 
of growth, photosynthesis, and hydrocarbon production in the oil-producing green 
alga Botryococcus braunii. Bioresour Technol, 109, 266-70. 

Beel, B., K. Prager, M. Spexard, S. Sasso, D. Weiss, N. Muller, M. Heinnickel, D. Dewez, D. 
Ikoma, A. R. Grossman, T. Kottke & M. Mittag (2012) A flavin binding cryptochrome 
photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii. 
Plant Cell, 24, 2992-3008. 

Behrendt, L., V. Schrameyer, K. Qvortrup, L. Lundin, S. J. Sørensen, A. W. D. Larkum & M. 
Kühl (2012) Biofilm Growth and Near-Infrared Radiation-Driven Photosynthesis of the 
Chlorophyll d-Containing Cyanobacterium Acaryochloris marina. Applied and 
Environmental Microbiology, 78, 3896-3904. 

Bohne, F. & H. Linden (2002) Regulation of carotenoid biosynthesis genes in response to 
light in Chlamydomonas reinhardtii. Biochim Biophys Acta, 1579, 26-34. 

Carvalho, A. P., S. O. Silva, J. M. Baptista & F. X. Malcata (2011) Light requirements in 
microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol 
Biotechnol, 89, 1275-88. 

Chen, C. Y., K. L. Yeh, R. Aisyah, D. J. Lee & J. S. Chang (2011) Cultivation, 
photobioreactor design and harvesting of microalgae for biodiesel production: a 
critical review. Bioresour Technol, 102, 71-81. 

Chory, J. (2010) Light signal transduction: an infinite spectrum of possibilities. Plant J, 61, 
982-91. 

Darko, E., P. Heydarizadeh, B. Schoefs & M. R. Sabzalian (2014) Photosynthesis under 
artificial light: the shift in primary and secondary metabolism. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 369. 

Dring, M. J. (1988) Photocontrol of Development in Algae. Annual Review of Plant 
Physiology and Plant Molecular Biology, 39, 157-174. 

Fu, W., O. Guethmundsson, G. Paglia, G. Herjolfsson, O. S. Andresson, B. O. Palsson & S. 
Brynjolfsson (2013) Enhancement of carotenoid biosynthesis in the green microalga 
Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl 
Microbiol Biotechnol, 97, 2395-403. 

Guedes, A. C., H. M. Amaro, C. R. Barbosa, R. D. Pereira & F. X. Malcata (2011) Fatty acid 
composition of several wild microalgae and cyanobacteria, with a focus on 
eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. 
Food Research International, 44, 2721-2729. 

Guedes, A. C., H. M. Amaro, M. S. Giao & F. X. Malcata (2013) Optimization of ABTS radical 
cation assay specifically for determination of antioxidant capacity of intracellular 
extracts of microalgae and cyanobacteria. Food Chem, 138, 638-43. 

162 
 



 

Guedes, A. C., H. M. Amaro & F. X. Malcata (2011) Microalgae as Sources of Carotenoids. 
Marine Drugs, 9, 625. 

Guedes, A. C., H. M. Amaro & F. X. Malcata (2011) Microalgae as sources of high added-
value compounds—a brief review of recent work. Biotechnology Progress, 27, 597-
613. 

Guedes, A. C., H. M. Amaro, R. D. Pereira & F. X. Malcata (2011) Effects of temperature and 
pH on growth and antioxidant content of the microalga Scenedesmus obliquus. 
Biotechnol Prog, 27, 1218-24. 

Guedes, A. C., L. A. Meireles, H. M. Amaro & F. X. Malcata (2010) Changes in Lipid Class 
and Fatty Acid Composition of Cultures of Pavlova lutheri, in Response to Light 
Intensity. Journal of the American Oil Chemists' Society, 87, 791-801. 

Ho, S. H., M. C. Chan, C. C. Liu, C. Y. Chen, W. L. Lee, D. J. Lee & J. S. Chang (2014) 
Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus 
FSP-3 using light-related strategies. Bioresour Technol, 152, 275-82. 

Jahns, P. & A. R. Holzwarth (2012) The role of the xanthophyll cycle and of lutein in 
photoprotection of photosystem II. Biochim Biophys Acta, 1817, 182-93. 

Kamiya, A. & T. Saitoh (2002) Blue-light-control of the uptake of amino acids and of 
ammonia in Chlorella mutants. Physiol Plant, 116, 248-254. 

Katsuda, T., A. Lababpour, K. Shimahara & S. Katoh (2004) Astaxanthin production by 
Haematococcus pluvialis under illumination with LEDs. Enzyme and Microbial 
Technology, 35, 81-86. 

Kim, D. G., C. Lee, S. M. Park & Y. E. Choi (2014) Manipulation of light wavelength at 
appropriate growth stage to enhance biomass productivity and fatty acid methyl ester 
yield using Chlorella vulgaris. Bioresour Technol, 159, 240-8. 

Kreslavsky, V. D., E. F. Kobzar & E. N. Muzafarov (1997) Effect of red radiation, kinetin and 
linuron on growth and ethylene production in Chlorella. Biologia Plantarum, 39, 427-
430. 

Lee, C.-G. (1999) Calculation of light penetration depth in photobioreactors. Biotechnology 
and Bioprocess Engineering, 4, 78-81. 

Lee, C.-G. & B. Ø. Palsson (1996) Photoacclimation of Chlorella vulgaris to Red Light from 
Light-Emitting Diodes Leads to Autospore Release Following Each Cellular Division. 
Biotechnology Progress, 12, 249-256. 

Li, Q. & C. Kubota (2009) Effects of supplemental light quality on growth and phytochemicals 
of baby leaf lettuce. Environmental and Experimental Botany, 67, 59-64. 

Mazza, M., M. Pomponi, L. Janiri, P. Bria & S. Mazza (2007) Omega-3 fatty acids and 
antioxidants in neurological and psychiatric diseases: an overview. Prog 
Neuropsychopharmacol Biol Psychiatry, 31, 12-26. 

Pulz, O. & W. Gross (2004) Valuable products from biotechnology of microalgae. Appl 
Microbiol Biotechnol, 65, 635-48. 

Richmond, A. 2008. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. 
Wiley. 

Roscher, E. & K. Zetsche (1986) The effects of light quality and intensity on the synthesis of 
ribulose-1,5-bisphosphate carboxylase and its mRNAs in the green alga 
Chlorogonium elongatum. Planta, 167, 582-6. 

Sánchez-Saavedra, M. P., C. Jiménez & F. L. Figueroa (1996) Far-red light inhibits growth 
but promotes carotenoid accumulation in the green microalga Dunaliella bardawil. 
Physiologia Plantarum, 98, 419-423. 
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6.1. General discussion 

The biotechnology of microalgae has gained considerable importance in recent 

decades, with applications ranging from simple biomass production for food and feed to 

valuable products for pharmaceutical/nutraceutical uses (Pulz and Gross 2004); 

extracts from microalgal biomass have meanwhile gained a firm position on the market 

(Cohen 1999).  

Microalgal PUFA and carotenoids have indeed a very promising biotechnological 

market for both food/feed, or for pharmacological formulation or health-promoting (Pulz 

and Gross 2004, Ryckebosch, Bruneel et al. 2014). Martek (USA) and Nutrinova 

(German) were the first companies to announce production of DHA products from 

microalgal biotechnology for human consumption and other applications (Pulz and 

Gross 2004). Furthermore, purified PUFA, as EPA and DHA obtained from the 

dinoflagellate Crypthecodinium,have been added to infant milk formulas in Europe, and 

as feed for hens (like heterotrophically grown Schizochytrium resp. Cryptecodinium) in 

order to produce ”OMEGA” eggs (Pulz and Gross 2004). Microalgae were also 

considered a good supplier of γ-linolenic acid, which conveyed an innovative approach 

to the health food market in 90’s (Radmer 1996, Apt and Behrens 1999). Microalgal 

lipid-based cosmetics, like creams or lotions, formulated with ethanolic microalgal 

supercritical CO2-extracts, began to gain commercial importance due their provision of 

both nourishing and protecting effects to the skin (Muller-Feuga, Moal et al. 2003). 

Mostly due their antioxidant capacity, microalgal carotenoids started to be incorporated 

in cosmetics for preservation and protection purposes particularly as sun-screens. 

Furthermore, they are considered functional food/nutraceuticals; the radical-scavenging 

capacity of microalgal products is still gaining interest, especially in the beverage 

segment and in pharmaceutical applications for the therapy of such oxidation-

associated diseases as inflammations (Pulz and Gross 2004, Chacón-Lee and 

González-Mariño 2010). 

For most said applications, the market is still expanding, so the biotechnological 

use of microalgae will likely extend into new areas. Major contributions to bioactive 

compound libraries have accordingly been made, as well as assessments on their 

potential for cultivation at industrial scales. However, the development of innovative 

and efficient bioprocesses remains an obstacle to economical commercialization at 

large scale. There are still some constrains in microalgal biotechnology that may delay 

its full exploitation, thus hamering the full potential of microalga to be taken advantage 
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of – particularly with regard to potential pharmaceutical/nutraceutical applications. Two 

such bottlenecks are metabolite extraction and subsequent concentration/purification. 

Extraction costs of microalgal intracellular metabolites are high; usually the 

downstream separation stages may account for 50%–80% of the total production costs, 

depending on the biochemical characteristics of the compound and the purity ratio 

intended. (Li, Ghasemi Naghdi et al. 2014, Cuellar-Bermudez, Aguilar-Hernandez et al. 

2015). Despite the worldwide increasing interest in microalgae compounds, there is no 

optimum standardized method for their extraction. Remember that microalgae are 

characterized by a huge biodiversity – and this includes thick-walled green or red 

algae, silicified diatoms, cyanobacteria with multi-layered walls, red algae with wall-

bound exopolysaccharides and armored dinoflagellates, which need to be broken to 

perform extraction (Porra 1991). Another important pre-requisite for microalgal 

metabolite extraction is the easy solubilisation of molecules of a wide polarity range. At 

laboratory scale, it is tempting to use strong solvents to extract targeted molecules. 

However, some of them, e.g. acetone, chloroform, dimethyl acetamide, dimethyl 

formamide, dimethyl sulfoxide and methanol, are unsuitable for industrial scale due to 

safety considerations (low lethal dose, carcinogenic, harmful, irritant or toxic features) 

(Jeffrey, Mantoura et al. 1997).  

Therefore, there is an urgent need to combine appropriate, quick, selective, cost-

effective, and environment-friendly extraction procedures to obtain bioactive 

compounds abiding to legal requirements, including use of food-grade solvents, and 

processes that allow their incorporation in food and health industries. 

One method that can aid in purification of microalgal compounds is increasing 

their content in the microalgal cell itself by redirecting the cell metabolism towards 

synthesis. 

As presented in the state of the art, environmental factors are a good tool to 

redirect microalgal metabolism towards the intended compounds, or enhance the 

biomass production by stimulating the growth rate of microalgae (Guedes, Meireles et 

al. 2010). Between the many parameters available are temperature, pH and light. Light 

in particular raises several issues, associated with the most common light source – 

fluorescent lamps. Besides high costs of maintenance, they are undesirable sources of 

heat, thus inducing extra costs in medium cooling (Schulze, Barreira et al. 2014). 

Therefore, the work presented in this thesis consisted of an attempt to overcome 

the aforementioned two limiting parameters in microalgal biotechnological production of 

bioactive compounds – extraction and intracellular concentration. In view of the 

pharmacological and/or health benefits associated with antioxidant and antitumor 

bioactivities, this thesis was focused on microalgal metabolites possessing these 
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characteristics – i.e. carotenoids and PUFA. Our efforts were based on the following 

approaches: 

I) Ascertain the solvent influence on lipidic components (carotenoids and PUFA), 

in terms of recovery and bioactivities therein; 

II) Optimize the extraction conditions of said lipidic components, in terms of 

temperature and pressure, using the solvent(s) selected in I); and 

III) Attempt to optimize purification of said lipidic components, by increasing their 

cell content via light quality as tool to redirect microalgal metabolism. 

 

The first goal (I) was attained as described in Chapter 2. The effect of selected 

food GRAS solvents (acetone, ethanol, hexane:isopropanol (3:2) and ethyl lactate) on 

extractability of lipidic components was ascertained using two species of microalga 

biomass entailing different cell complexities, an eukaryote – Scenedesmus obliquus 

(M2-1), and a prokaryote– Gloeothece sp. Concomitantly, the extracts obtained were 

tested for antioxidant scavenging capacity towards 4 different radicals, two that reveal 

total antioxidant capacity (DPPH• and ABTS•+) and two other related to two radicals 

usually produced by human natural metabolism (O2
•- and •NO); this allowed a more 

comprehensive characterization of their bioactive capacity.  

As expected, the chemical nature of solvents used in extraction of lipidic 

components appears critical upon antioxidant performance, probably due to the 

underlying balance between carotenoids and PUFAs.  

In both microlagal species, acetone achieved in general the best performance in 

extraction of carotenoids, particularly lutein – in Gloeothece sp. as 65.3% of quantified 

carotenoids, and in Sc. obliquus as 47% of quantified carotenoids. Gloeothece sp. 

acetone extracts attained also good results in ABTS•+ and •NO assays, and Sc. 

obliquus exhibited the best antioxidant capacity in ABTS•+. However, this solvent was 

not the best to extract PUFA, particularly in Gloeothece sp. In this species, ethanol 

extracted PUFA 5.7-fold higher than acetone, particularly with regard to ALA. 

Selective extraction of specific carotenoids, such as xanthophyls (lutein and 

neoxanthin) by ethanol, lutein by ethyl lactate in Sc. obliquus, and PUFAs by ethyl 

lactate in Gloeothece sp., was observed in this study. The main goal was then to select 

a solvent able to exhibit a good performance in extraction of both carotenoids and 

PUFA, while exhibiting good antioxidant capacity; coupled to the fact of being easily 

handled in lab and susceptible to scaleup without restrictions arising from to 

physicochemical characteristics. Ethanol was accordingly selected for posterior 

studies. 
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Gloeothece sp. extracts showed to be active against all radicals tested, whereas 

Sc. obliquus (M2-1) ones did not seem to affect particularly •NO, with one exception (HI 

3:2). Gloeothece sp. is a prokaryotic microalga poorly studied so far, so exploration of a 

new source of microalgal bioactive capacities may appear as a promising challenge 

toward new nutraceutical formulations. All these arguments together supported 

selection of Gloeothece sp. as model for studies thereafter. 

 

As discussed in the state of the art, there are evidences collected from a large 

number of studies that confirm the positive effects of antioxidants in prevention and 

control of growth of certain tumours, either by acting as a chemopreventive agent when 

incorporated in the diet or as by inducing cell tumour apoptosis and thus inhibiting 

cancer cell growth/proliferation. Some of these compounds were identified as 

carotenoids or PUFA. 

Therefore, extracts were tested for their antitumor activities (as shown in Chapter 

3), departing from the positive results in antioxidant activity achieved in Chapter 2. Two 

gastric cancer cell lines, AGS and MNK45, served as a model to evaluate extract 

bioactivity. 

Preliminary result revealed that all such extracts were able to interfere with 

cancer cell viability, although to different extents. In order to find how extracts affect the 

cells, assays on cancer cell death and proliferation were performed. Although the study 

still is on processing,  preliminary results reveal that EL and HI extracts appear to be 

the most promising ones due their cell death and anti-proliferative effects upon the two 

tested gastric cancer cell lines. 

Once the extractability of microalgal lipidic components via ethanol, and the 

bioactivities in the extracts obtained were confirmed, one proceeded to II) optimization 

of the extraction of said compounds via manipulation of temperature (T) and pressure 

(P), as described in Chapter 4. Obtained ata indicated that these two parameters were 

effective in acceleration and improvement of extraction in pressurized liquid extraction 

(PLE) and supercritical fluid extraction (SFE) systems. However, the excessively high 

temperatures utilized may constitute a drawback for the thermolabile compounds, 

further to the excessive cost incurred in equipment purchase, maintenance and 

operation. 

Therefore, a laboratory-made continuous pressurized solvent extraction (CPSE) 

system was built – which, beyond its lower cost, proved versatile and effective in 

bioactive compound extraction yield (and associated antioxidant properties). After a 

step-by-step process of optimization of all variables involved (i.e. biomass amount, flow 
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rate/pressure, temperature, and volume of solvent), 60 °C and 180 bar were found as 

optimum temperature and pressure, respectively, for extraction of lipidic compounds. 

Concomitantly, the total antioxidant capacity was monitored by the two methods used 

before, i.e. DPPH• and ABTS•+.  

The aforementioned system was developed so as to permit solvent recirculation 

for many cycles, as desired in attempts to maximize the solvent capacity and reduce 

the volume of solvent employed. To attain the correct volume of recirculation, the total 

volume was collected in several fractions. Their biochemical analysis revealed that 

each fraction was particularly rich in a specific group of compounds; for instance, while 

the fist extract fraction (1F) attained a content rich carotenoids (lutein and β-carotene) 

and PUFA, the second fraction (2F) was chiefly composed of lutein and PUFA, and the 

third fraction contained lutein, β-carotene and high contents of C 16:0, C 18:1 n9, 

C18:2 n6t, C 18:3 n3 and C20.5 n3. These findings are particularly interesting, as a 

single extraction process will permit pre-separation of compounds – thus alleviating the 

complementary need of purification. 

Since the main goal here was to optimize extraction, a certain number of cycles 

was found to be effective without inducing degradation of compounds and keeping their 

antioxidant bioactivity. An extract recirculation for 3 cycles increased 1.7-fold lutein and 

11-fold β-carotene content, while 5 cycles of recirculation permitted C 18:2 n6 t be 

increased 7.4-fold – when compared to a single cycle. Furthermore, this CPSE system 

proved more efficient than a conventional ultrasound assisted extraction (UAE) 

apparatus; CPSE with 3C extracted 4-fold more lutein and 5C extracted 14-fold more 

β-carotene. 

At this point, it was possible to achieve extracts rich in carotenoids and 

characterized by high antioxidant capacity, using 12.5 mL of ethanol, 50 mg of 

Gloeothece sp. biomass, and 3C of recirculation in the CPSE system, as well as an 

extract rich in PUFA with 5C or recirculation; this permitted goal II) be attained. 

Toward the III) goal, i.e. increasing the lipidic components of the cell in the first 

place, light was used as tool to redirect microalgal metabolism. 

As discussed along Chapter V, light quality (spectrum) interferes with many 

metabolic mechanisms (including obviously photosynthesis), and may stimulate 

production of carotenoids and PUFA under certain narrow wavelengths of the visible 

spectrum. Note that the utilization of a light source that emits wavelengths beyond the 

range of photosynthetic active radiation harvested by microalgae means a waste of 

energy, and undesirable heat production when powering the most common forms of 

microalga culture lightning – fluorescents lamps (FL). Since light emitting diode (LED) 
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technology is of common use nowadays, their application in microalgal production is in 

order; it is small enough to fit into virtually any photobioreactor, holds a longer life-

expectancy, reduces heat generation and enhances conversion efficiency. It has 

narrow light emission spectra, between 20 and 30 nm, which can be matched with 

photosynthetic and other metabolic pathway needs, as discussed in Chapter 5. 

The effects of specific wavelengths were accordingy scrutinized: red, blue and 

two different mixtures thereof were tested upon Gloeothece sp. growth, as well as 

production of carotenoids and PUFA, and associated antioxidant capacity (AC).  

Albeit several studies made available in recent years, we found (see Chapter 5), 

that effects of light are species-dependent; a thorough study of such effects upon 

synthesis of carotenoids and PUFA by ous elected species is thus essential for 

eventua further exploitation at large scale. For Gloeothece sp. biomass production, 

blue LED is the most appropriate – and growth is even faster than under FL. Blue light, 

in comparison to other LEDs tested, also provides higher cellular content of fatty acids. 

If the goal is to obtain Gloeothece sp. biomass rich in carotenoids, Blue:Red (BR) 

(40:60) LEDs are the most indicated; they particularly enhance the content of lutein and 

β-carotene, and concomitantly the AC. Under red light, biomass attained slightly higher 

contents in antioxidants – although biomass productivity was lower.  

An attempt to better understand the role of infrared (IR) light was also pursued; 

this LED was tested only in addition to BR (40:60) and R, once they proved to be the 

most promising regarding AC. Together with BR (40:60), it enhanced biomass 

production, as well as fatty acids content – while it induced changes in AC profile of 

production along time, yet reaching similar maximum concentrations. 

Besides being a promising alternative to FL, particularly B, R and BR (40:60, %), 

LEDs have proven a useful tool to improve (desired) metabolite concentration in 

Gloeothece sp. cells. 

 

6.2. Concluding remarks 

The work developed in this thesis was part of an effort to help overcome existing 

limitations upon intracellular concentration and extraction yield of microalgal bioactive 

metabolites (with potential pharmaceutical/nutraceutical applications). 

The main conclusions drwan may be summarized as follows: 

- The several food GRAS solvents tested for extraction:  

I) were able to extract lipidic components, yet to different extents in terms of 

carotenoids and PUFA;  
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II) possesses some kind of antioxidant capacity, but ethanolic extracts 

appeared as the most promising – due to higher amounts of carotenoids and 

PUFA, while exhibiting low IC50 antioxidant capacity against all radicals tested; 

III) those obtained with ethyl lactate and hexane:isopropanol (3:2) revealed 

antitumor effects upon two gastric cancer cell lines, probably due to their 

contents in carotenoids and PUFA.  

Therefore, said extracts may be considered for larger-scale nutraceutical or 

pharmaceutical application based on their bioactivities. 

 

- The CPSE system developed:  

I) was effective, quicker and more economical in extraction of lipidic 

components, when compared to a conventional extraction method;  

II) temperature, pressure and solvent recirculation were optimized for 

extraction of carotenoids, PUFA, and compounds bearing high antioxidant 

capacity (which correlated with the content of lipidic compounds).  

III) continuous circulation of ethanol is possible, and allowed collection of 

different extracts, particularly concentrated in lipidc compounds, thus avoiding 

complementary steps of purification. 

 

- Use of blue (B), red (R) and/or a combination thereof BR (40:60) LEDs for 

Gloeothece sp. cultivation: 

 I) enhanced biomass productivity,  

II) enhanced intracellular concentration of carotenoids and PUFA,  

III) improved antioxidant capacity, and  

IV) an extra infra-red LEDs added to R and BR 60:40 enhanced carotenoid 

and PUFA concentrations. 

 

It is therefore possible to optimize conditions for Gloeothece sp. biomass 

production, either with fluorescent lamps or LEDs, towards lipidic compound eventual 

extraction, bearing antioxidant and antitumor potential, as depicted in Fig. 1 and Table 

1. 
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Component concentration Extraction operating 
condition Component concentration Extraction operating 

condition 

Fa
tty

 a
ci

ds
 

(μ
g F

A.
m

L-1
m

g E
xt

ra
ct

) 

14:0 27.3 ± 0.0 P (bar): 180 (Q3) 
T (ºC): 60 
Vethanol (mL): 150 

C
ar

ot
en

oi
ds

 
(m

g.
L-1

) 

Lutein 2.9 ± 0.1 

P (bar): 180 (Q3) 
T (ºC): 60 
Vethanol (mL): 12,5 
Circulation Cycles: 3 

16:0 157.8 ± 2.0 β-Carotene 1.5 ± 0.1 

16:1 2.9±1.5 P (bar): 180 (Q3) 
T (ºC): 60 
Vethanol (mL): 12,5 
Circulation Cycles: 5 

Total 
carotenoids 4.4 

18:0 1.5 ± 0.6 

A
nt

io
xi

da
nt

 
ca

pa
ci

ty
 

(m
g T

E.m
g e

-1
) 

ABTS 168.7 ± 4.3  
18:1 n9 134.9 ± 16.8 

P (bar): 180 (Q3) 
T (ºC): 60 
Vethanol (mL): 150 

DPPH 398.9 ± 6.7 

P (bar): 180 (Q3) 
T (ºC): 60 
Vethanol (mL): 12,5 
Circulation Cycles: 1 

18:2 n6 t 23.8 ± 5.2 

18:2 n6 c 70.5 ± 1.1 

18:3n6 3.3 ± 1.3 
P (bar): 180 (Q3) 
T(ºC): 60 
Vethanol (mL): 12,5 
Circulation Cycles: 5 

    

18:3 n3 69.1 ± 1.5 P (bar): 180 (Q3) 
T(ºC): 60 
Vethanol (mL): 150 

    

Total fatty 
acids 479.7 

    

Fig. 6.1. Schematic representation of recommended growth and extraction 
conditions to obtain microalgal bioactive lipidic extracts of Gloeothece sp., either via 
classic extraction or continuous pressurized solvent extraction (CPSE). 
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Table 6.1- Gloeothece sp. light growth parameters at 25 ºC and pH 8, using LED 

as light source (R- red; BR (40:60)- blue:red (40:60), BR (40:60)+IR- blue:red (40:60) + 
infrared) under an intensity of 100 µmolphoton.m−2.s−1, to improve lipidic component 
intracellular concentration and reduce culture time. 

Cell components LEDs parameters 
Maximum values 

attained in shortest 
culture  

Maximum values 
attained under 

fluorescent light 

Biomass production 
LED: B 
texponential phase (d):t1-t8 

td:2.54 d 
µmax: 0.2735 d-1 

P(X): 0.132 g.L-1d-1 

td: 3.24d 
µmax: 0.2143 d-1 
P(X):0.1355 g.L-1d-1 

C
ar

ot
en

oi
ds

 
m

g.
L-1

.g
D

W
-1

 

Neoxanthin LED: BR(40:60)  
tculture(d): 6 12,47 ± 3,12 8.34 ± 0.04 

Violoxanthin LED: R 
tculture(d): 6 9,54 ± 1,24 8.23 ± 0.02 

Lutein LED: R 
tculture(d):6 45,66 ± 5,98 37.85 ± 1.39 

β- carotene LED: BR (40:60)  
tculture(d): 13 13,11 ± 0,37 9.88 ± 0.35 

Fa
tty

 a
ci

ds
 

m
g F

at
ty

Ac
id
.m

L-1
.m

g D
W

-1
 

C16:0 
LED: R+IR 

tculture(d): 28 
33,03 ± 0,55 70.21 ± 0.93 

C18:1 (n-9) LED: R+IR 
tculture(d): 28 39,44 ± 3,16 45.52 ± 0.79 

C18:2 (n-6t) LED: R+IR 
tculture(d): 28 32,61 ± 0,01 54.14 ± 2.34 

C18:3 (n-6) 
LED: R+IR or  
BR (40:60)+IR 
tculture(d): 28 

5,10 ± 0,32 8.36 ± 0.42 

C18:3 (n-3) 
LED: R or BR 
(40:60)+IR 

tculture(d): 28 

27,98 ± 1,59 49.09 ± 0.70 

Intracellular 
antioxidant 

capacity 
mgTE.mL-1.mgDW

-1 

ABTS 
LED: R 
tculture(d):8, 18, 20 2,85 ± 0,17 2.15 ± 0.06 

 

6.3. Future perspectives 
 

Several windows of opportunity for future research were open along the studies 

reported in this thesis, mainly in what concerns to the 3 key areas addressed under 

scrutiny: extraction, nature of bioactivities, and productivity of metabolites. Some 

suggestions of future work are described next. 
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6.3.1. Extraction of microalgal metabolites 

In Chapter 2, a number of selected solvents were tested; however, it would be 

interesting to ascertain whether other solvent systems would be more effective toward 

extraction of specific microalgal components. 

It was not fully clear how carotenoid and PUFA concentrations affect antioxidant 

capacity, and if there are synergistic effects between compounds. On the other hand, it 

is known that certain concentrations of carotenoids or PUFA may entail pro-oxidation 

effects. Hence, it would be helpful to fractionate the obtained extracts in several 

portions and test their bioactivities, and repeat this procedure with those fractions 

exhibiting better activity, as this might aid in identification of compound or group of 

compounds responsible therefor. 

In order to attain a more comprehensive characterization of Gloeothece sp. 

extracts, it would be helpful to identify other compounds that could also be contributing 

to antioxidant and antitumor bioactivities; this includes phycobiliproteins that may attain 

ca. 60% of the total protein content and 20% of the dry cell weight in cyanobacteria. 

They have indeed been considered as a potent pharmacological and medicinal agent, 

due to their antioxidant capacity (Soni, Trivedi et al. 2008).  

 

6.3.2. Bioactivities of microalgal extracts 

Several pieces of evidence reviewd above indicated that the anti-inflammatory 

activity of carotenoids is intimately associated with antioxidant and antitumor capacity 

(Amaro, Barros et al. 2013, Catarina Guedes, Amaro et al. 2013). Given the antioxidant 

capacity of lipidic components attained in this study, it should be interesting to test the 

extracts as described in Chapter 2 for their anti-inflammatory and antibacterial capacity, 

due the reasons presented below. 

In chapter 3, antitumor effects of Gloeothece sp. extracts against two gastric lines 

were ascertained. Previous evidences indicates that infection by bacterium 

Helicobacter pylori is the primary cause of gastric cancer development (Liu and Lee 

2003) – such that it is classified as a type I carcinogen by the International Agency for 

Research on Cancer. This microorganism colonizes the stomach of half the worlwide 

population, and is associated not only with distal gastric cancer, but also with gastric 

and duodenal peptic ulcer diseases, type B gastritis, and gastric mucosa-associated 

lymphoid tissue (MALT) lymphoma (Perez-Perez, Rothenbacher et al. 2004). In 

addition, the first stages of H. pylori infection are based on inflammatory processes that 

may, in the most severe cases, lead to gastric cancer. Hence, a treatment capable of 

reducing the rate of progression from infection by H. pylori to gastric cancer – through 
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the inflammation state induced thereby, is critical to discontinue the canonical 

carcinogenic pathway. 

Moreover, infection by H. pylori has been correlated with increased oxidative 

stress in the gastric mucosa (Kupcinskas, Lafolie et al. 2008). Hence, diets rich in 

antioxidants, or their use as dietary supplements have received increasing attention 

toward chemoprevention. A recent study revealed that a Chlorococcum sp. carotenoid-

based diet reduced the mucosal bacterial load associated with systemic immune 

response modification in Helicobacter pylori-infected BALB/c mice (Liu and Lee 2003).  

As seen before, experimental evidence suggests that carotenoids may be able to 

reduce or modulate excessive ROS/RNS, with a consequent favorable impact upon 

inflammatory processes – and without the negative effects that usually accompany 

classical pharmaceutical strategies of intervention (Guedes, Amaro et al. 2011). 

Additionally, several studies have unfolded the anti-inflammatory effects of a few 

carotenoids, including violoxanthin, β-carotene and lutein, and of (phenolic) carnosic 

acid in inhibiting production of pro-inflammatory mediators (Hadad and Levy 2012)  

In particular, violaxanthin – the major carotenoid in Chlorella ellipsoidea, showed 

to be a promising anti-inflammatory agent (Soontornchaiboon, Joo et al. 2012). Lutein 

and zeaxanthin have also been found to enhance the immune function 

(Lakshminarayana, Sathish et al. 2010) by decreasing LPS-induced NO production by 

50%, in RAW 264.7 mouse macrophage cells (Rafi and Shafaie 2007). It was also able 

to scavenge ROS generated during the inflammatory process; inhibit pro-inflammatory 

mediators; and decrease the level of intracellular H2O2 accumulation, by scavenging 

superoxide (Kijlstra, Tian et al. 2012). Furthermore, β-carotene possesses anti-

inflammatory activity via its function as inhibitor of redox-based processes, probably 

due to its antioxidant potential (Bai, Lee et al. 2005). This carotenoid has been tested in 

vivo and in vitro, and was demonstrated to inhibit production of inflammation in RAW 

264.7 mice cell line. 

 

6.3.3. Increasing cell metabolite concentration using light as a tool 

As studied in Chapter 5, the light spectrum proved to serve as a useful tool in 

microalgal metabolism manipulation. Wavelengths corresponding to red (R) and blue 

(B) light are the major factor affecting photosynthesis and other metabolic pathways; 

however, only two combinations of said spectrum bands were considered. Therefore, a 

study of the influence of other combinations of such bands may be useful toward 

understanding and optimizing production of carotenoids and PUFA. Since the influence 
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of infra-red spectrum on said compound production was found to be favourable, further 

efforts should be developed to study its influence upon microalgal metabolism. 

Evidence also exists that LED flashing (or pulsed) light can increase biomass 

production, thus allowing microalgae to exceed the proposed maximum photosynthetic 

efficiency by up to 17% (Schulze, Barreira et al. 2014).Hence, testing this type of light 

supply could contribute to better understand the light effects upon cyanobacterium 

metabolite production and qrowth (as happens with Gloeothece sp.). 
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