
 
 

Faculdade de Engenharia da Universidade do Porto 

 

 
 

Integration of optical communications in an 
underwater docking station 

Helder José Baldaia Esteves 

FINAL VERSION 

Dissertation formulated in the scope of  
Master’s in Electrical and Computer Engineering 

Automation major  
 
 

Supervisor: Nuno Alexandre Lopes Moreira da Cruz 
Co-supervisor: José Carlos dos Santos Alves 

 
 

February of 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/154835729?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

 

 

ii 
 

© Helder Esteves, 2018 

 

 



iii 
 

Abstract 

Underwater optical communication is a recent emerging technology that allows autonomous 

underwater vehicles to transfer information at close-range efficiently. It offers a higher data-

transfer rate and a lower latency than acoustic means. For this reason, this technology shows 

potential over short-range communication, improving cases such as the underwater docking ma-

neuvers by adding a feedback system. However, the harshness of the underwater environment 

poses a new problem to the reliability of this mean. This dissertation introduces a communication 

protocol based on an error-correction control mechanism. The proposed solution implements a 

hybrid automatic repeat request type II with incremental redundancy. Reed-Solomon was used as 

part of the forward error-correction. Comparisons between common usage of fixed code rates and 

the proposed solution feature an increase of up to 45% in efficiency for the latter, while maintain-

ing the same decoding capability as the lowest fixed code rate. Results also report that the error 

control system can handle localization errors from the AUV effectively, showing that the system is 

able to correct locations related to a difference of 2 encoding bytes effectively. 



 
 

 

 

iv 
 

 



v 
 

Contents 

Abstract ....................................................................................................... iii 

Contents ........................................................................................................ v 

Figure list .................................................................................................... vii 

Table list ...................................................................................................... ix 

Symbols and Abbreviations ............................................................................... xi 

Chapter 1 - Introduction .............................................................................. 1 

1.1 Objective............................................................................................. 2 

Chapter 2 - Literature review........................................................................ 3 

2.1 Underwater docking strategies................................................................... 3 

2.2 Error-correction coding ............................................................................ 8 

2.3 Conclusion ......................................................................................... 15 

Chapter 3 - Material and method ................................................................... 17 

3.1 Requirements ..................................................................................... 17 

3.2 System architecture .............................................................................. 18 

3.3 Material ............................................................................................ 20 

3.4 Proposed solution ................................................................................. 21 

3.5 Proof of concept .................................................................................. 40 

3.6 Simulation method ............................................................................... 43 

3.7 Conclusion ......................................................................................... 46 

Chapter 4 - Results and discussion ................................................................. 47 

4.1 Fixed Reed-Solomon coding rates ............................................................. 47 

4.2 Proposed system .................................................................................. 51 

Chapter 5 - Conclusions .............................................................................. 59 

5.1 Completed tasks .................................................................................. 59 

5.2 Contributions ...................................................................................... 60 

5.3 Future work ........................................................................................ 61 

Appendix ..................................................................................................... 63 

Experimental error test (test.py) ..................................................................... 64 

Master (master.py) ...................................................................................... 66 

Slave (slave.py) – Changed functions ................................................................. 77 

Reed-Solomon simulations (sim_rs.py) ............................................................... 82 

References ................................................................................................... 85 

Annex – Licenses ........................................................................................... 89 



 
 

 

 

vi 
 

 
  



vii 
 

Figure list 

Figure 2.1: Water absorption spectrum ............................................................................. 6 

Figure 2.2: Radiation schemes for the respective blue and green ends ........................................ 6 

Figure 2.3: Overview of the optical system design ................................................................ 7 

Figure 2.4: Packet to be sent ....................................................................................... 12 

Figure 2.5: Packet received ......................................................................................... 12 

Figure 2.6: Chase combining - Packet received after retransmission request................................ 12 

Figure 2.7: Incremental Redundancy - Packet sent after retransmission request ........................... 13 

Figure 3.1: Example case of master establishing connection while the slave does not ..................... 18 

Figure 3.2: Device coverage at different ranges ................................................................. 19 

Figure 3.3: Setup for simulations – diagram and respective photo ............................................ 20 

Figure 3.4: Overview of the packet design ........................................................................ 23 

Figure 3.5: Packet encoded with maximum 18 FEC symbols .................................................... 25 

Figure 3.6: Packet with punctured FEC symbols ................................................................. 25 

Figure 3.7: Packet padded with arbitrary X symbols ............................................................ 25 

Figure 3.8: Buffer design ............................................................................................ 27 

Figure 3.9: ACK in a data request command ...................................................................... 29 

Figure 3.10: NAK in a data request command .................................................................... 30 

Figure 3.11: Dealing with a timeout in a data request command .............................................. 31 

Figure 3.12: Final ACK timeout ..................................................................................... 32 

Figure 3.13: ACK/NAK Packets ...................................................................................... 32 

Figure 3.14: Main function – Master ................................................................................ 34 

Figure 3.15: Main function – Slave .................................................................................. 35 

Figure 3.16: Send function - Master ................................................................................ 37 

Figure 3.17: Get_data function – Master .......................................................................... 39 

Figure 3.18: Running the master program ......................................................................... 40 

Figure 3.19: First outputs (Top output – master end; Bottom output – slave end) .......................... 41 

Figure 3.20: Code output – example of packet transmitted 1 .................................................. 41 

Figure 3.21: Code output – example of packet transmitted 2 .................................................. 42 

Figure 3.22: Code output – ARQ response ......................................................................... 42 

Figure 4.1: Fixed code-rate decoding capability – 9/11 (10000 packets simulated)......................... 48 

Figure 4.2: Undetected errors during decoding – 9/11 (10000 packets simulated) – Scaled to 20% ....... 48 

Figure 4.3: Fixed code-rate decoding capability – 9/17 (10000 packets simulated)......................... 49 

Figure 4.4: Fixed code-rate decoding capability – 1/3 (10000 packets simulated) .......................... 49 

Figure 4.5: Proposed system’s decoding capability – case scenario 1 (10000 packets simulated) ......... 51 

Figure 4.6: Efficiency plot - case-scenario 1 (10000 packets simulated) ..................................... 52 

Figure 4.7: Proposed system’s decoding capability - case-scenario 2 (10000 packets simulated) ......... 53 

Figure 4.8: Efficiency plot - case-scenario 2 (10000 packets simulated) ..................................... 53 

Figure 4.9: Header and ARQ decoding capability (10000 packets simulated) ................................ 55 

Figure 4.10: Evolution of N-K with FEC control (2000 packets simulated) – PA=0.08, PR=0.1 .............. 56 

Figure 4.11: Evolution of N-K with FEC control (2000 packets simulated) – PA=0.1, PR=0.08 .............. 57 
  



 
 

 

 

viii 
 

 



ix 
 

Table list 

Table 2.1: List of recent optical modems developed ................................................... 5 

Table 3.1: Decoding rates for each packet size ....................................................... 22 

Table 3.2: Experimental error test – 100 trials for each n .......................................... 28 
  



 
 

 

 

x 
 

 



 

xi 
 

Symbols and Abbreviations 

Abbreviation list 

ACK  Acknowledge 

APD  Avalanche photodiode 

ARQ  Automatic repeat request 

AUV  Autonomous underwater vehicle 

AWGN Additive white Gaussian noise 

BCH  Bose–Chaudhuri–Hocquenghem 

BER  Bit error rate 

BSC  Binary symmetric channel 

COBS Consistent overhead byte stuffing 

FEC  Forward error correction 

HDLC High-level data link control 

IDE  Integrated development environment 

IR  Incremental redundancy 

LDPC Low-density parity-check 

LED  Light emitting diode 

NAK  Not acknowledge 

OOK On-off keying 

PC  Personal computer 

PD  Photodiode 

PPP  Point-to-point protocol 

ROV  Remotely operated vehicle 

RPi2 Raspberry Pi 2 

RS  Reed-Solomon 

Rx  Receiver 

SBL  Short baseline 

SER  Symbol error rate 

SNR  Signal-to-noise ratio 

Tx  Transmitter 

UART Universal asynchronous receiver-transmitter 

UWOC Underwater optical communication 

 

Symbol list 

μ  Mean of a normal distribution 

σ  Variance of a normal distribution 

Η  Efficiency 
  



 
 

 

 

xii 
 

 



 

 

Chapter 1 - Introduction 

 

It is known that the surface of the earth can be monitored easily at any time thanks to satellite 

technology. This is not the case for the underwater environment, as light has difficulty penetrating 

the depths of seas and oceans. As a result, technology specifically tailored to monitor this envi-

ronment has been developed. Autonomous underwater vehicles (AUV) and remotely operated ve-

hicles (ROV) are forms of unmanned underwater drones which can perform tasks with or without 

human intervention. This technology has shown to be at a level where it is possible to autono-

mously perform various underwater missions such as controlling the state of the surrounding envi-

ronment. Among these two types of drones, AUVs are object of increasing development since ROVs 

need cables to operate, which limits their ability in scenarios that, for example, have many ob-

stacles in the surroundings. Notwithstanding, although AUVs have more potential, not only the 

battery life is still a very restrictive factor for this technology, but also communication faces a 

new challenge without cabled connections. This implies that they need to surface to be able to 

recharge, taking more time to complete an operation and driving the costs higher. An underwater 

docking station, where the AUV can dock to recharge, exchange information and receive new or-

ders is an emerging concept that has established its potential during the last two decades [1]. This 

development reduces the cost and avoids handling of the surfacing of the AUV which proves dan-

gerous not only in turbulent waters, but also in situations where there is high naval traffic. Nev-

ertheless, the challenge of maintaining efficient and reliable underwater communications remains 

for the AUV technology. The most widespread solution for this problem comprises of acoustic 

methods [2]. Although this method handles long distance communication reliably, it is not used 

for short-ranges due to high latency and low data rate. Since short-range communication is not 

made acoustically, close-range positioning systems are also limited. For this reason, the docking 

of AUVs in underwater stations requires different approaches that do not rely solely on acoustic 

positioning mechanisms [3]. Still, although these strategies prove effective under normal circum-

stances, during times where changing currents or even unknown events happen, AUVs would ben-

efit from having a feedback mechanism or a communication system while docking [4,5]. 

A newer technology, optical communication, became a solution for fast short-range communi-

cation [6]. It is based on the simple idea of using light to transfer information from one end to the 



 
 
2  Introduction 

 

 
 

other. This can be used not only to transfer information at high data rates, but also to aid the 

docking sequence substantially in unpredictable situations. Compared to acoustic, optical commu-

nication allows for a much greater data rate, making this option very viable in underwater envi-

ronments in the near-future. Nonetheless, while it presents great advancements in the AUV tech-

nology, it is highly dependent on its implementation process. For this motive, they require careful 

planning to avoid losing or transferring incorrect information. Research involving robust communi-

cation protocols have been made for cabled and airborne networks, however, the uniqueness of 

the underwater environment poses a new set of problems [7]. This environment calls for efficient 

and reliable communication protocols, with well-thought designs capable of handling different 

limitations such as: 

- Variable scattering of light photons and water absorption, lowering the received power. 

- Environmental noise, ranging from high signal-to-noise ratio (SNR) in the deep ocean to 

low SNR in the coastal waters. 

- Different channel behaviors, with shadow zones completely impairing the communication, 

to simply bit to byte losses due to SNR. 

- Battery-reliant applications, requiring low power designs to avoid unnecessary battery 

depletion. 

As a means to surpass these obstacles with utmost efficiency, this dissertation proposes a ro-

bust communication protocol using optical means. 

1.1 Objective 

The main purpose of this dissertation is to develop a robust optical communication protocol 

between an underwater station and an AUV. Throughout the project, it is imperative that tests 

are conducted and performed in a wide variety of scenarios. 

To reach this goal, a list of sub-goals is considered: 

- System analysis, by understanding how and in which circumstances the communication 

should be available. 

- Study and improve the communication link by adding adequate algorithms and techniques.  

- Design of the communication protocol at transport layer that suits most optical devices. 



 

 
 

Chapter 2 - Literature review 

This chapter presents an overview of the major scientific advances for underwater docking 

strategies and error-correction coding. 

2.1 Underwater docking strategies 

The clear majority of AUVs existent in the present are of cruising type, which move predomi-

nantly in the horizontal axis and require a minimum forward velocity to maintain controllability. 

For this motive, most underwater stations are cone or cylinder-shaped, serving itself as a guide 

for this type of AUVs to dock [8,9]. Hovering type AUV’s may move both horizontally and vertically, 

however, being a recent technology, docking strategies are still being developed. 

2.1.1 Acoustic and visual techniques 

Acoustic-based docking strategies are commonly found in underwater stations since sound 

waves prove reliable over medium to long distances. Docking with acoustic techniques proves dif-

ficult because, as the AUV gets closer to the station, the more feedback there must be. Due to 

inherent limitations of sound waves, such as low bandwidth, high latency, and low data rate, the 

expected level of accuracy is not met [2,10]. It is possible to have an idea through [11] that among 

16 devices, the highest rate of data transfer is 150kbps over 120m, and the highest distance is 

10km with a data transference of 5kbps. Other options are available but not only are they cost 

ineffective, but also consume more power than the standard devices [2].  In acoustic communica-

tion, a recent AUV development achieved an accuracy of 0.2𝑚 ±  0.05% up to 7𝑚, requiring 3 

beacons so that the triangulation could be effectively accurate [12]. However, for a small-sized 

AUV (width ≤ 0.20𝑚) a higher accuracy might be needed. 

Unlike acoustic techniques, visual-based strategies are less common, but their accuracy during 

the docking sequence makes this option appealing. These strategies are usually accompanied by 

the acoustic systems, making a hybrid between visual (for short-ranges) and acoustic (for long 

ranges) [13]. Visual sensing uses the on-board camera to identify light beacons and guide the AUV 

according to the location of these, using feature detection mechanisms. In [14] it is possible to 



 
 
4  Literature review 

 

 
 

see an implementation of this method for a hovering-type underwater station, by following a sim-

ple set of vision-based algorithms to perform the docking sequence. Article [3] presents an imple-

mentation with three light beacons of distinct colors which can be identified by the AUV. As it has 

been tested in the previous work, this optical strategy has a remarkable accuracy of 2 millimeters 

in the horizontal coordinates and 15 millimeters in the vertical coordinate. Still, instead of simply 

using a visual technique which can only be applied to the docking maneuver in stable conditions, 

a short-range communication technique could not only aid the docking maneuver, but also imple-

ment a feedback mechanism. 
  



 
 

Underwater docking strategies  5 
 

 

2.1.2 Optical modems 

Recent advances in AUV technology show that optical communication has potential over short 

to medium ranges. Articles [6,11] make a comparison between several types of communication 

possible underwater. Acoustic communication, as mentioned above, has limiting properties, such 

as the speed of sound, which is close to 1500m/s. Compared to light speed in water (2,3*108 m/s), 

acoustic lags in data transmission rate. Optical communication systems can transfer data in the 

orders of Mbit/s to Gbit/s, with a range of up to 200m in the best cases, as well as being very cost-

efficient and low-power. Due to these values, data transmission on a real-time basis is possible, 

which could, for example, be used to control the AUV in the docking phase if the situation requires 

it. 

In Table 2.1, a list of the most recent optical modems and their specifications is presented. 

Since cost-effective solutions are preferred, only light emitting diode (LED) based constructions 

are shown. It is important to note that as of October 2017, the price range of the components from 

Thorlabs are: 

- Light emitting diode (LED) (405 - 680 nm): 6,45€ to 52€ [15]. 

- Avalanche photodiode (APD) (400 - 1000 nm): 995€ to 1.069€ [16]. 

- Photodetector (PD) (350 - 1100 nm): 12,50€ to 95,50€ [17]. 

 

Table 2.1: List of recent optical modems developed 

# Power 
(W) 

Range (m) Transmission 
rate (Mbit/s) 

T/R Type Aperture Ref 

1 12~24 10 0.16~1.6 LED/PD 12º [18] 

2 N/A 8 0.92 LED/PD N/A [19] 

3 16,5 100 5 LED/APD <30º [20] 

4 2~10 1,60~2,30 1 LED/PD <30° [11] 

 

Observing the table at first glance, it is possible to see a significant difference in range for 

device number 3. This is thanks to the usage of the APD, which is highly sensible. However, as seen 

before, the cost for these devices are high in comparison to regular PDs. Other devices have rea-

sonable measurements, which appear sufficient for docking range. Device number 1 shows a higher 

range than 4, but in turn it has a smaller aperture size and requiring more power to transmit. Since 

there is more information available through device number 4, it will be used as an example to 

analyze these optical modems. 

System analysis 

For device number 4 from Table 2.1, two colors are used, blue and green, for bidirectional 

communication. The choice of colors was made based on Figure 2.1 (taken from [21]). The absorp-

tion is much less effective in the visible light spectrum, especially in the blue-green area. 



 
 
6  Literature review 

 

 
 

 
Figure 2.1: Water absorption spectrum 

Considering the results observed in [11], for the same transmitted power, the radiation dia-

gram follows the Figure 2.2 for the blue and green ends respectively: 

 
Figure 2.2: Radiation schemes for the respective blue and green ends 

Observations can be made from this figure: 

- The variation of received power is very different for different angles, which requires 

different strategies to compensate for these changes. 

- The maximum range seen in blue and green ends differ in about 1m, which must be dealt 

with accordingly. 

In Figure 2.2, the green end has a much smaller range than the blue end. This means that, for 

example, at the range of 1,50m for the conditions tested in [11], the blue end might be more 

reliable than its counterpart. This suggests different settings must be used for each color end. 

There are two factors to have in mind while thinking of a solution in terms of which end should 

each color be implemented: 

- The green end has less range for the same transmitted power as blue. 

- The blue end can get information across more easily due to lower absorption. 



 
 

Underwater docking strategies  7 
 

 

Optical devices that use bidirectional configurations are composed of a transmission (Tx) layer 

and a receiver (Rx) layer. The Tx layer is comprised by a LED light source and a MOSFET light 

source driver. The Rx layer uses a PD light detector to receive the signal, which is then amplified 

and filtered accordingly, followed by a comparator to implement the on-off keying (OOK) modu-

lation. Constructions using LED/PD combos or similar should be implemented using the diagram 

from Figure 2.3. 

 
Figure 2.3: Overview of the optical system design 

It is possible to observe from this diagram that optical devices interconnect to a microprocessor 

which processes data from a higher level, which in the case of the AUV end, connects to the core, 

and for the underwater station, it connects to the station’s system (represented as DATA in the 

figure). As it was mentioned previously, to manage the underwater environment’s harsh conditions, 

a robust communication protocol should be of concern as the optical devices are introduced. This 

work is done mostly at transport level on the microprocessor that processes the data. 

In terms of connection, the optical devices are only comprised of Tx and Rx layers, as Figure 

2.3 demonstrates. This design constraint limits the device choice from the microprocessor, since 

it requires an asynchronous communication with two wires. Being present in most devices, univer-

sal asynchronous transmitter-receiver (UART) serial communication is the most appealing for this 

task. As a final note, half-duplex communication should also be accounted for, as systems of lower 

cost tend to be unable to transmit at full-duplex [11,18]. 

  



 
 
8  Literature review 

 

 
 

2.2 Error-correction coding 

Error-correction mechanisms are required to implement a robust communication channel. 

There are three types of error correction systems: 

- Automatic repeat request (ARQ). 

- Forward error correction (FEC). 

- Hybrid ARQ. 

From [6], it is possible to observe that underwater communication protocols use mostly either 

an ARQ system, or a FEC algorithm for error-control mechanisms. Therefore, to be able to assess 

which system is better for this type of channel, a study on these is required. 

2.2.1 Automatic repeat request 

ARQ is an error-control method in which every segment of data transmitted must be acknowl-

edged by the receiver in a certain time window. This system is used to avoid losing data unneces-

sarily in channels of variable conditions. There are three types of ARQ systems [22]: 

- Stop-and-wait. 

- Go-back-N. 

- Selective-repeat. 

Assuming there are no timeouts, stop-and-wait is a type of ARQ system that waits for a response 

from the other side every time a transmission is sent. If an acknowledge (ACK) is received, the 

next transmission is sent. Otherwise, if a not-acknowledge (NAK) is received, it means that the 

information was corrupted, so the sender resends the packet. This is the simplest form of ARQ 

known. 

Go-back-N is a special case of sliding window protocol, in which the sender keeps track of the 

sequence numbers of packets to be sent by a window 𝑥, and every time there is a request for 

retransmission (NAK), the sender goes back 𝑁 packets sent (such that 𝑁 < 𝑥), and retransmits all 

𝑁 packets again. 

Selective-repeat is another special case of the sliding window protocol, in which the sender 

also keeps track of the sequence numbers of packets to be sent by a window 𝑥, but in this case, 

when a NAK is received, the sender only sends the packet that was not-acknowledged. This is an 

upgrade from Go-back-N, as only the packet 𝑁 is sent, while the other needs to resend all 𝑁 pack-

ets. 

However, since full-duplex is required to be able to send packets without waiting for a response, 

Go-back-N and Selective-repeat are restricted to the stop-and-wait behavior in half-duplex com-

munication. 
  



 
 

Error-correction coding  9 
 

 

2.2.2 Forward error correction 

FEC is a technique used for correcting errors in transmissions over noisy communication chan-

nels. The main idea is that the transmitter encodes a message with redundant information so that 

the data can be recovered after being affected by errors. 

 These algorithms can be divided in two main categories: 

- Convolutional codes. 

- Block codes. 

A study featuring these two types is shown below.1 

Convolutional codes 

Convolutional codes are a category of error-correcting algorithms that generate parity symbols 

through the convolution of a Boolean polynomial over the message to be encoded. Due to the 

nature of the polynomials used, these codes process data on a bit-by-bit basis. They are identified 

by having a constraint length K, where r parity bits are produced from the convolutional process. 

In this method, only the r bits are transmitted. One of the main advantages of convolutional coding 

is the use of soft decision decoding, where decoded bits are read as a probability of being 1 or 0. 

However, in situations where, for example, energy consumption needs to be avoided, then this 

feature is disadvantageous, as more data is needed to transmit information. In recent advances, 

Turbo codes and low-density parity-check (LDPC) codes are replacing old convolutional codes, due 

to their simplicity and efficiency [24]. These codes perform best when applied to parallel types of 

communication, where the bits that form a byte are sent separately, so it is more probable that 

single-bit errors occur. 

Block codes 

Block codes are the convolutional algorithms’ counterpart, processing data in packs of bits 

(bytes) rather than bit-by-bit. The most basic example of these codes is block repetition, in which 

the data is merely repeated. Other examples are Hamming codes and other multidimensional par-

ity check codes, which prove effective against burst errors, in contrast to convolutional codes 

[25,26]. These types of algorithms are more appealing for an underwater optical communication 

(UWOC) channel, where all data is sent through one source only, due to this channel using serial 

communication, where burst errors are more common than single-bit errors. This is because there 

is only one wire for byte transmission. Burst errors are also far more likely to happen in an UWOC 

link not only because the photodiodes may capture intense noise in shallow waters, but also high 

rapid variations may occur to the channel in busy locations. By means of [26], a study presenting 

                                                 
1 Detailed description of the error-correcting mechanisms can be seen in “Error-Correction 

Coding and Decoding” [23]. 



 
 
10  Literature review 

 

 
 

comparison between low-density parity check (LDPC), Reed-Solomon (RS) and Bose–Chaudhuri–

Hocquenghem (BCH) algorithms shows that RS vastly outperforms the other algorithms in cases 

where burst errors are more prominent. If processing power is not a problem, RS codes may achieve 

up to 50% more decoding than its peers for burst errors, possibly correcting a bit error rate (BER) 

of up to 1x10-2 in this case. The results show that there is an 8-dB improvement in SNR for a BER 

of 10-4. Due to the nature of the channel and the reliability of RS codes, a study specific to these 

codes is conducted. 

Reed-Solomon Coding 

The encoding procedure assumes a packet of (N, K) symbols, where N is the total packet length, 

K is the data length, and the encoding symbols are then generated with a N-K rate. The (N, K) pair 

may also appear in the form of coding rates, with 𝐾 𝑁⁄ . The combination of K words does not 

necessarily need to be in order to be able to reconstruct all the N words. The following process 

will be used to describe the encoding and decoding process of the Reed-Solomon error correction 

algorithm. The original procedure for the encoding technique of Reed-Solomon is described in [27]. 

A message is mapped as an array 𝑥 = [ 𝑥1, 𝑥2, … , 𝑥𝑘]  ∈ 𝐹𝑘 to a polynomial 𝑝𝑥, being 

𝑝𝑥(𝑎) = ∑ 𝑥𝑖 . 𝑎𝑖−1

𝑘

𝑖=1

 

Which then is evaluated 𝑥 points, resulting in the following code: 

𝐶(𝑥) = [𝑝𝑥(𝑎1), 𝑝𝑥(𝑎2), … , 𝑝𝑥(𝑎𝑛)] 

𝐶(𝑥) is a function that satisfies 𝐶(𝑥) = 𝑥. 𝐴 for the following matrix A with elements from the 

field 𝐹𝑘 

𝐴 = [

1 ⋯ 1
⋮ ⋱ 𝑎𝑛

𝑘−2

𝑎1
𝑘−1 ⋯ 𝑎𝑛

𝑘−1
] 

The encoded message is determined as 𝐴, and sent over the channel. It should also be noted 

that RS codes do not need to be standardized. Shortening of RS codes is a common technique to 

allow smaller sizes to be encoded. On the same note, a technique known as puncturing makes it 

possible to omit certain encoded parity symbols. 

Although there is one way to encode the message in Reed-Solomon, the decoding procedure 

can be done in many ways. Still, the decoding process can be generally done in five steps: 

1. Syndrome calculation. Using an algorithm such as Berlekamp-Massey it is possible to 

quickly detect if the message is corrupted to generate a warning before it decodes. 

2. Taking the syndromes polynomial, the erasure locator takes place. The same algorithm 

locates the bytes that are in error. 

3. The next step comprises of an evaluator, to address how much the message was corrupted, 

while analyzing if it is possible to decode the message. 

4. Following the previous processes is the storage of the known errors in a magnitude poly-

nomial, which is used to subtract the errors in the message to decode it successfully. 



 
 

Error-correction coding  11 
 

 

5. Repair the message by executing a subtraction of the previous polynomial with the mes-

sage received. 

RS codes can correct erasures (where symbol error locations are known) at a 𝑡 = 𝑁 − 𝐾 rate. 

This means that a certain erasure in a message can be corrected if at least one FEC symbol is 

present. Errors (where symbol error locations are unknown), however, can correct messages at a 

rate  𝑡 2⁄ . 

As the RS coding algorithm is explained, the remaining issue is to know what is the best (N, K) 

pair. In most cases, the choice of (N, K) pair is done arbitrarily, left to the designer of the protocol 

to test and simulate the various possibilities [28–30]. In [28], a showcase of a pair (255,129) RS 

code was used in to test the improvement of an UWOC channel with a BER of magnitudes 10-4, 

achieving an improvement in SNR of 8db. From [29], tests were conducted using RS(255,129) and 

RS(255,223). This shows a gain of 6 and 4 dB respectively. In contrast, articles such as [31,32] 

avoid the usage of such notations by implementing an adaptive coding based either on external 

functions or based on the data length. Article [32] presents a study with fixed coding rates, such 

as the ones mentioned above, versus adaptive coding rate for an underwater acoustic communi-

cation network. Results present three different links with different distances. The RS code rate 

changes to adapt this distance difference. For example, for the distance of 340m, the punctured 

RS code was 0.41, while the fixed code rate was 4/5. Comparison between these two schemes 

show that variable RS code rates are greater in terms of both efficiency and reliability. 

 

 

  



 
 
12  Literature review 

 

 
 

2.2.3 Hybrid automatic repeat request 

Hybrid ARQ is a system that uses both ARQ and FEC mechanisms [33]. Article [32] demonstrates 

how implementing this system in a very noisy channel can accomplish a reliable communication 

channel. Using Reed-Solomon as FEC coding, results show that for the channel with the most noise, 

packet success rate increases from 75% to ~90%. In general, there are two types of hybrid ARQ 

available. 

Type I is the simplest way of implementing this system. It first adds a simple parity check to 

each transmission. If a NAK is received, then the retransmission adds error-correcting information 

to the packet. 

Type II is a strategy that differs in the way retransmissions are performed. The first packet is 

transmitted with a simple parity checking code, just as type I. However, when a retransmission is 

requested, there are two ways of handling this. 

The first is chase combining, where the same packet is sent with the same FEC information, 

but the receiver combines the packets to increase the chances of decoding. Take the packet to be 

sent in Figure 2.4 as an example, where the “1” and “2” are redundant bytes of RS. 

 
Figure 2.4: Packet to be sent 

At the receiver side, the packet arrives with the structure of Figure 2.5. 

 
Figure 2.5: Packet received 

As seen previously, two RS bytes added to a message may decode one error. Since the message 

has two errors, it cannot decode it, so a NAK is sent from the receiver side. The packet is then 

retransmitted. At the receiver side, once again, the packet that arrived is as seen in Figure 2.6. 

 
Figure 2.6: Chase combining - Packet received after retransmission request 

By combining the letters that do not contain errors, the packet can be successfully decoded, 

avoiding yet another retransmission. 

The second way to handle retransmissions in type II hybrid ARQ is by incremental redundancy 

(IR). When there is a request for a retransmission from the receiver side, the sender does not send 

the packet with the same information, rather, it sends only FEC coding to be appended to the 

previously transmitted packet. 

Taking the example seen from Figure 2.4 and the packet received at the receiver side in Figure 

2.5, the receiver sends a NAK in the same manner. However, differing from the chase combining 

strategy, the retransmission is as shown in Figure 2.7 



 
 

Error-correction coding  13 
 

 

 
Figure 2.7: Incremental Redundancy - Packet sent after retransmission request 

As it can be seen, only FEC symbols are sent. As this gets appended to the previous packet, it 

is now able to decode successfully. In this case, the packet sent is much smaller than the previous 

case, saving energy and increasing transmission speed. 

Nevertheless, the creation of a hybrid ARQ system implies a new problem to be solved: variable 

FEC coding. This means, for example, that packet number 1 will have a pair of RS(64, 38) and 

packet number 2 will be sent with RS(64, 40). Supposing that packet number 1 is sent at a given 

moment, and that the receiver is configured by default to accept a packet with 12 parity bytes, 

then it will not be able to receive a packet with 10 FEC bytes without an additional strategy. Since 

the knowledge on how many additional FEC bytes is required on both the transmitter and receiver 

sides, it should be natural that a packet design containing this information is essential. There are 

two ways of achieving this result. 

Packet encapsulation 

Packet encapsulation consists in delimiting the packet with a character such that when it gets 

captured by the receiver, it represents the end of a packet. This means that the character used 

for delimitation must not be used either in the message or in the FEC coding. 

In [34], high-level data link control (HDLC) uses bit stuffing for packet encapsulation. Using 

the flag sequence 01111110, it marks the start and ending of each packet. To make sure this 

sequence does not appear in the data itself, it encodes the information in a way that whenever 

five adjacent ones are observed, it follows with a zero. This way, there are no six consecutive 

ones in the message. The decoding process reverses this operation: whenever a zero follows five 

ones, the zero is deleted, and when six ones are observed, it is interpreted as a special framing 

sequence. The process of increasing data in a binary fashion for the sake of delimiting packet is 

called “bit stuffing” and increases the data size. In the worst case, HDLC framing can add 20% of 

overhead to the data itself. 

As opposed to bit stuffing, point-to-point protocol (PPP)  uses a byte stuffing technique [35]. 

It uses the same binary sequence as HDLC for packet encapsulation (01111110). The algorithm 

restricts this symbol by replacing values of 0x7E (01111110) with two bytes: 0x7D 0x5E. In the data, 

appearances of 0x7D are replaced by 0x7D 0x5D. The same way as HDLC, the decoding process 

performs the reverse operation: whenever it sees the 0x7D, it deletes that byte and executes a 

XOR operation with 0x20 and the next byte to obtain the original sequence. As the worst-case 

scenario for this protocol, it can double the message length. 

From [36], consistent overhead byte stuffing (COBS) shows a comparison between these two 

algorithms, while introducing a new one. COBS takes the data up until 255 bytes as input and 

outputs a message in the range [1,255] by eliminating all zeros. The zero can then be used to 

delimitate packets. The overhead of the worst-case scenario for this algorithm is merely one byte. 



 
 
14  Literature review 

 

 
 

This expected overhead makes this algorithm appealing versus its peers, however, a problem is of 

concern with these encapsulation alternatives. If, for example, COBS was chosen to be imple-

mented, then both the data and FEC bytes would have to be encapsulated. In a very noisy channel, 

the byte that is left because of packet encapsulation could be affected, compromising the whole 

packet. 

Header 

A header is a portion of the packet that precedes its body and contains additional information. 

Analyzing [31,32,37], using a header to evaluate the packet’s structure is the most used strategy 

among hybrid ARQ schemes. A header containing the sequence number, the number of FEC bytes 

and the number of data bytes is added to let the receiver know what the size of each partition is. 

The overhead of this setup depends on the number of bytes added to the header, as it must have 

its own FEC partition to avoid packet loss on the header itself. As reviewed before, using RS as 

FEC, then in a header of 3 bytes, 6 additional bytes are required to correct errors in all three bytes. 

The total overhead in a packet then becomes then 3+6=9 bytes. Comparing these strategies, the 

header alternative appears to be more appealing, as it is more robust against using a delimitation 

that is susceptible to corruption. However, the design must be studied to reduce overhead cost. 
  



 
 

Conclusion  15 
 

 

2.3 Conclusion 

This chapter reviewed the underwater docking strategies which are used currently, while an-

alyzing the recent technology and how it can benefit the docking maneuver. 

Following this study, the error-correction coding techniques were researched in order to im-

plement a robust version of the optical communication technology. 

It is now possible to use the reviewed literature to effectively design the protocol intended. 
  



 
 
16  Literature review 

 

 
 

 



 

 
 

Chapter 3 - Material and method 

The implementation method is shown below, divided into the following sections: requirements, 

system architecture, material, proposed solution, proof of concept, and finally simulation method. 

3.1 Requirements 

Implementing a robust communication system requires additional coding for the exchange of 

information, either by parity checking, either by error correction algorithms. ARQ systems are also 

known to be extremely reliable as it is simply a much-needed feedback mechanism on the com-

munication channel. With these options available, there was a need to establish the boundaries of 

the proposed solution. Below is a list of the requirements set for this dissertation: 

- Maximum efficiency: adding ARQ responses and additional FEC drives the power consump-

tion up as more bytes are sent, which hinders efficiency.  

- Maximum reliability: on a channel where BER is irregular, there are cases where a very 

reliable communication is required. 

- Controllable: full control over the AUV is desirable since the system will also be used to 

override the AUV’s automatic docking scheme. 

- Half-duplex communication system: the system should implement a mechanism to avoid 

simultaneous transmissions to be applied in most devices of lower cost.  

- System testing: the proposed solution should be simulated with different case-scenarios 

to test both reliability and efficiency. 

For the maximum efficiency and maximum reliability requirements, a means for comparison 

must be established. Since the usage of fixed code rates is common in underwater communication 

[32], comparisons will include these designs. 

  



 
 
18  Material and method 

 

 
 

3.2 System architecture 

The system architecture presents the core of the structure and which algorithms were used. 

As it was stated in the requirements, half-duplex communication was needed. For this reason, a 

master-slave architecture was proposed. In this type of design, the slave side is always responding 

to the other, and cannot act on its own, while the master end is the one sending commands and 

making requests. Adhering to the controllable requirement, full control over the AUV was also 

desirable, so having the master sit at the station’s side ensures this feature. This implies that the 

AUV will not be able to establish communication on its own and can only respond to requests made 

from the station. This proposal fixed upcoming problems such as the issue of having the AUV and 

the station trying to establish connection simultaneously, adhering to the half-duplex requirement.  

In the case of the devices from [11], the blue end should be implemented in the station, as 

the extensive range of the blue device would be cut down to the green device’s range if it were 

implemented in the AUV side as seen in Figure 3.1, since as a slave it cannot initiate any commu-

nication without the master’s request.  

 
Figure 3.1: Example case of master establishing connection while the slave does not 

Another observation that was made from the optical devices is that they require different 

approaches according to the relative location between the two ends. As means of demonstration, 

it is fair to mention that the maximum power output is in the angles of 0º to 15º. Taking the value 

of 15º for the blue radiation scheme as an example, the distance covered by the device at 1,80m 

is about tan(15º) × 1,80𝑚 × 2 ≅ 0,96𝑚, while at short distances, for example at 0,3m it covers 

tan(15º) × 0,3𝑚 × 2 ≅ 0,16𝑚, as it can be seen in Figure 3.2. This creates two different situations 

in which the AUV might be in. 



 
 

System architecture  19 
 

 

 
Figure 3.2: Device coverage at different ranges 

- Far field: the distance covered by the optical device is large enough to tolerate localiza-

tion errors, so the most evident problem is the low power which creates errors in the 

messages. 

- Near field: the distance covered is now smaller, where misalignment issues are the most 

evident problem. This translates to a behavior where there is communication without 

errors due to high power reception, then suddenly no reception at all. 

This suggested that using a system that is reliable to both noise and transmission failures was 

a good starting point as the system architecture. Reviews from literature show that both FEC 

coding and ARQ systems are respectively solutions to these problems. For this reason, the chosen 

error-correcting mechanism was hybrid ARQ, as the ARQ system handles efficiently the case where 

timeouts may occur in the near field and FEC coding handles the case where low SNR occurs in the 

far field. The type of hybrid ARQ scheme used is the type II with incremental redundancy, as the 

reduction of energy consumption in retransmissions adheres to the maximum efficiency require-

ment. As the type of ARQ system, stop-and-wait was used, to abide to the half-duplex requirement. 

The FEC coding chosen was Reed-Solomon, which proves to be very reliable in cases where burst 

errors occur, which is the case for UWOC. However, these choices required manipulation of the 

transmitted data so that it can withstand the harshness of the underwater conditions. 

 
  



 
 
20  Material and method 

 

 
 

3.3 Material 

Two Raspberry Pi 2, Model B (RPi2) were used to simulate the UWOC channel [38]. The most 

important feature that was searched for was the integrated UART serial interface (device with the 

name “ttyAMA0”), since, as it was previously mentioned in the literature, it can be used to imple-

ment the optical communication devices. A Linux-based operating system named Raspbian (version 

4.9) was installed on these microprocessors. 

Physically, the setup consists of two wires connecting to the UART pins of the RPi2s, and one 

wire for the common ground, Figure 3.3. This creates an ideal communication channel which can 

then be used to recreate a controlled version of the UWOC channel via software. A PC is connected 

to both RPi2s through a switch using ethernet cables.  

 

 
Figure 3.3: Setup for simulations – diagram and respective photo 

The protocol was written in Python (version 2.7), with the following external libraries being 

used: 

- A pure-python Reed Solomon encoder/decoder [39]. 

- Python serial port access library [40]. 

Besides these libraries, Matplotlib [41] was used as a simulation tool. 

The final program for the master and the slave ends are displayed in the appendix. License for 

the external libraries are annexed. 



 
 

Proposed solution  21 
 

 

3.4 Proposed solution 

A detailed study featuring the design of the system had to be made before the implementation 

and conception of the protocol, an essential part of software creation. Firstly, packet design took 

place, explaining how the information is manipulated before a transmission. It followed with an 

investigation of the channel model for UWOC, to apply the error-correction algorithms effectively. 

Afterwards, the implementation of FEC coding was planned. Then the ARQ system was described 

in detail. Finally, as the strategy was ready to be employed, diagrams for the main functions of 

the protocol were made. 

3.4.1 Packet design 

A packet is a method of grouping data in a way that can be transported safely in a network. 

The packets that transport the data in this protocol had to have flexibility as its core attribute, 

since variable FEC coding was implemented with the introduction of the hybrid ARQ system. Packet 

length was then left variable to achieve this flexibility. This was only possible using either packet 

encapsulation or a header, as seen in the literature. The header proved to be more effective 

against its peers in a channel where SNR values might be low, as it does not use specific characters 

that can be easily corrupted during the transmission. The packet design considered contains the 

following information: header, header FEC, sequence number, data, and data FEC. The header 

had to contain the minimum amount of information, as it presents a constant overhead in the 

transmission. For this reason, only the information on packet length is transmitted. This way, the 

header itself became 1-byte long. With only this information, extra measures had to be taken. 

From the receiver side, as the header is decoded, the only information available is the packet 

length. With this, taking the packet length 𝑎 as an equation 

a = 1 + 𝑥 + 𝑦, (1) 

where there is a constant of 1 indicating the sequence number, x the number of data, and y 

the number of FEC symbols. As a solution to such a problem, it was possible to standardize lengths 

to be able to make the various sections identifiable. Since the usage of UWOC should accept all 

kinds of data (from short commands to video requests), it was limited to segments of 8, 64 and 

236 symbols. 

The sequence number is a symbol that contains additional information and is appended to the 

data segment. It serves two purposes: 

- Avoid mixing packets that were already decoded by alternating a sequence number. 

- Indicate the end of a transmission. 

In the end of a transmission, the final packet does not always fit the data that needs to be 

sent. This happens because the smallest data segment that can be sent is 8 bytes. For this motive, 

the packet needs to pad the missing symbols with arbitrary bytes to be recognized by the receiver. 



 
 
22  Material and method 

 

 
 

This sequence number contains the number of symbols that are padded so the receiver can remove 

them. If it is not the final packet sent, then the sequence byte alternates between two numbers. 

In the end, the sequence number reserves the integers from 0 to 7 for the final packet, and alter-

nate between two arbitrary numbers in the middle of a transmission. Integers 8 and 9 were chosen. 

Variable y, being the number of FEC bytes, is added according to the data length. For 8 bytes 

of data (+1 sequence byte), the maximum number of FEC bytes caps at 18 symbols, since in the 

worst-case situation it can correct 9 errors. For reference purposes, below is a table containing 

the decoding rates for each packet, with a maximum of 18 FEC bytes: 

 

Table 3.1: Decoding rates for each packet size 

Packet size Decoding rate 

8+1 
18/2

8 + 1
× 100 ≅ 100% 

64+1 
18/2

64 + 1
× 100 ≅ 13,8% 

236+1 
18/2

236 + 1
× 100 ≅ 3,5% 

 

As an example, using the equation in 5 as a model for the incoming packets, the following 

procedure takes place for a packet that arrived with length 15 bytes: 

1st: 15 < 64 =>  x = 8 + 1 

2nd: 𝑦 = 15 − (8 + 1) = 6 

So, 

1 + 8 + 6 = 15 

For now, the header, data, sequence byte and data FEC have been handled. What is left is to 

know how to protect the header against errors, which is the header FEC. Looking at the packet, 

the worst-case scenario is using the packet with 9 bytes with an additional 18 bytes. As such, the 

relation of the data to FEC is 
9

18
=

1

2
 in this case. So, the header was designed to implement 2 

additional FEC symbols. 

With this, the overall packet design for the communication is shown in Figure 3.4. 

 



 
 

Proposed solution  23 
 

 

 
Figure 3.4: Overview of the packet design 

Since the data transmission is handled reliably with this packet design, it then was necessary 

to characterize the communication channel in a way that can handle the addition of FEC efficiently.  



 
 
24  Material and method 

 

 
 

3.4.2 Channel modeling 

The communication link had to be modeled in order to apply a coding strategy that suits the 

underwater channel. According to [42], the closest noise model for an UWOC is additive white 

gaussian noise (AWGN) channel. However, being a model that describes events on a specific envi-

ronment and the properties of an optical device, it was avoided, so that the protocol could be 

generalized. A binary symmetric channel (BSC) model was used instead, as they prove to be effec-

tive with Reed-Solomon’s error-correcting characteristics [32]. For this motive, the symbol error 

rate (SER)was the variable tested. In a BSC model, the probability of symbol error is given by 

𝑃𝑠 = ∑ (
𝑚
𝑖

) 𝑃𝑏
𝑖 (1 − 𝑃𝑏)𝑚−𝑖

𝑚

𝑖=1

, (2) 

where 𝑚 = 𝑙𝑜𝑔2(𝐿 + 1) with L being the number of bits in a symbol. Taking the principles be-

hind this equation, for a pair (N, K) of RS-encoded packets, the probability of not decoding a 

packet can be expressed as 

𝑃𝑛𝑑𝑒𝑐 = ∑ (
𝑁
𝑘

) 𝑃𝑠
𝑘(1 − 𝑃𝑠)𝑁−𝑘

𝑁

𝑘=
𝑁−𝐾

2
+1 

, (3) 

where k is the maximum number of symbols that can be corrected. 

With the model of the communication channel studied, the application of the error-correction 

algorithms had to be considered. 
  



 
 

Proposed solution  25 
 

 

3.4.3 Error-correction systems 

The error-correction systems discussed in the literature required additional planning, as they 

needed to be fine-tuned. Three implementations are presented: incremental redundancy, adap-

tive error-correction, and an error-correction control mechanism which was proposed. 

Incremental redundancy mechanism 

Hybrid ARQ uses incremental redundancy as a retransmission mechanism, which was discussed 

in the error-correction coding section of the literature. This means that every retransmission made 

contains only additional FEC coding symbols. Reed-Solomon features a puncturing technique which 

allows a part of the encoded symbols to be omitted during a transmission. For simplification pur-

poses, take the example pair (13,9).  Firstly, the packet is pre-processed with (27,9) as shown in 

Figure 3.5. 

 
Figure 3.5: Packet encoded with maximum 18 FEC symbols 

Secondly, the intended transmission is buffered by taking only the first 13 bytes and afterwards 

sent, as seen in Figure 3.6. 

 
Figure 3.6: Packet with punctured FEC symbols 

At the receiver side, the missing encoder symbols are replaced with arbitrary symbols so that 

the pair becomes (27,9) again. At the decoder, the padded symbols in the packet are marked as 

erasures, representing errors whose locations are known, Figure 3.7. 

 
Figure 3.7: Packet padded with arbitrary X symbols 

This allows the algorithm to “correct” the padded bytes at a rate 𝑡 = 𝑁 − 𝐾, as opposed to 

errors which are corrected at a rate 
𝑡

2
. As such, with the missing FEC bytes “corrected,” the algo-

rithm can then correct the rest of the message as intended. 

Adaptive error-correction 

Based on the literature [32], the choice of (N, K) pair was left variable, which was possible by 

shortening the RS code. This is conceivable through the camera that’s used to record missions and 

in certain cases be used to guide the AUV to the docking station. With this, it is plausible to assess 



 
 
26  Material and method 

 

 
 

the relative height to the underwater station, feeding it to the protocol [43]. This was seen as an 

assumption, as it uses other modules of the AUV available. By implementing a map of the locations 

where the AUV might be in, along with the SER for each location, it is possible to retrieve them at 

a later stage to create a flexible (N, K) pair. This way, the FEC acts according to the location, 

avoiding standardized notations which might not be of use in all situations. This, however, is not 

directly accessible by the station modem end so it needs to request this information from the AUV. 

Since this error map relies on a SER that is associated to a location, it is highly reliant on the 

environment it is in. This means that for each unique environment, the symbol error rate for each 

location must be calculated beforehand. Finally, the relationship between the SER and the opti-

mum coding rate is an issue that remains. 

Assuming that the channel’s conditions do not change during a packet transmission, the prob-

ability of the receiver decoding a packet is given by equation (3) from channel modeling. From the 

requirements, priority to either decoding capability or efficiency had to be given. As the objective 

of this dissertation is to apply a reliable communication protocol, reliability was favored. Firstly, 

packets of higher lengths had to be limited to high decoding chances. Since the probability of not 

decoding a packet never reaches 0 practically, packets of 64+1 and 236+1 were applied if 𝑃𝑛𝑑𝑒𝑐 <

0.005 for a maximum of 18 FEC symbols. However, equation (3) could not be used for packets of 

236+1, as the number of symbols is too large to process in a binomial cumulative distribution 

function. An approximation to normal cumulative distribution was done instead with the following 

equation [44] 

𝑃𝑛𝑑𝑒𝑐 = 1 −
1

2
[1 + 𝑒𝑟𝑓 (

𝑥

√2
)] , (4) 

where erf is the error function and x is given by 

𝑥 =
𝑘 − 𝑐 − 𝜇

𝜎
, (5) 

with 𝑘 =
𝑁−𝐾

2
+ 1, 𝜇 = √𝑁𝑃𝑠, 𝜎 = √𝑁𝑃𝑠(1 − 𝑁𝑃𝑠) and 𝑐 = 0.5 (continuity correction). 

Iterations of these two equations for a value of 𝑃𝑛𝑑𝑒𝑐 < 0.005 showed that for 237-sized packets, 

P𝑛𝑑𝑒𝑐
237 = 0.00499 with P𝑠

237 = 0.0179, and for 65-sized packets, P𝑛𝑑𝑒𝑐
65 = 0.004957 with P𝑠

65 = 0.0596. 

Since the larger packets were delineated to very low error decoding probabilities, reliability is 

ensured. At this moment, only efficiency needed to be ensured. Given a 𝐾 𝑁⁄  code rate, efficiency 

at a probability 𝑃𝑠 can be expressed as 

𝛨 =
𝐾

𝑁
(1 − 𝑃𝑛𝑑𝑒𝑐(𝑁, 𝐾)), (6) 

With this, the code rate 𝐾 𝑁⁄  should be maximizing 𝛨. For a data size 𝐾, the optimum packet 

size 𝑁 with 𝑁 − 𝐾 = 2𝑡 is given by  

𝛨 = 𝑎𝑟𝑔𝑚𝑎𝑥 [
𝐾 + 2𝑡

𝑁
(1 − 𝑃𝑛𝑑𝑒𝑐(𝑁, 𝐾))]

𝑡=1

𝑡=
18
2

, 𝑡 ∈ ℕ, (7) 



 
 

Proposed solution  27 
 

 

The relationship between a code rate 𝐾 𝑁⁄  and symbol error probability 𝑃𝑠 was then established. 

Although the adaptive error-correction is a mechanism which chooses the best (N, K) pair, it 

relies on the accuracy of the AUV location, which might not be always correct. 

Proposal of error-correction control 

As mentioned in the literature, acoustic-based localization techniques at close-range are not 

always reliable. Despite aiding the communication protocol, relying solely on the locations the 

AUV provides can be detrimental for efficiency. As such, an error-correction control mechanism 

that can assess the quality of the communication from a higher level was proposed. Using the ARQ 

system that is part of the design to provide quality control can increase not only efficiency, but 

reliability as well. A global circular buffer was created to store information from the ARQ system 

as shown in Figure 3.8. 

 

Figure 3.8: Buffer design 

With the scheme of the buffer created, only the controlling method was needed. Taking equa-

tion (3) from channel modeling and equation (4) from adaptive error-correction, it was possible to 

assess the probability of a retransmission for a given (N, K) pair, as it is the same as 𝑃𝑛𝑑𝑒𝑐. This 

implies that for a specified window 𝑛, the amount of first order ACKs vs NAKs is 

𝑁𝐴𝐾𝑠

𝐴𝐶𝐾𝑠 + 𝑁𝐴𝐾𝑠
= 𝑃𝑛𝑑𝑒𝑐 ∙ 𝑛, (8) 

This means that for a certain 𝑃𝑠 that the AUV feeds the protocol, a related 𝑃𝑛𝑑𝑒𝑐 such that N-K 

maximizes efficiency (refer to adaptive error-correction) is calculated. However, if there is a dis-

crepancy between the SER given by the AUV and the real 𝑃𝑠, then according to the proposal, the 

associated 𝑃𝑛𝑑𝑒𝑐 also changes.  

With this, the only issue remaining is the choice of the window  𝑛. If 𝑛 is too small, then the 

chance of the controller changing the code rate wrongly increases. Yet, if the 𝑛 is too large, then 

it will take a long time to act when there is a discrepancy of probabilities. For this reason, a test 

was conducted to understand what the experimental error is for each choice. An arbitrary point 

𝑃𝑠 = 0.08 was chosen to be tested. From equation (7), the pair (N, K) associated is (11, 9), with 

𝑃𝑛𝑑𝑒𝑐 = 0.218. The code used to simulate these values can be seen in the appendix. Table 3.2 is 

the test results, where 100 trials were made for each n shown. 



 
 
28  Material and method 

 

 
 

Table 3.2: Experimental error test – 100 trials for each n 

Number of packets 

n 

Max difference 

max|E-T| 

Experimental error 

|E-T|/n  (%) 

10 3.82 38.2 

100 11.19 11.2 

1000 32.90 3.3 

10000 112.99 1.1 

 

In this table, E is the number of experimental packets decoded for each n and T is the theo-

retical value calculated using equation (3) with 𝑃𝑛𝑑𝑒𝑐 ∙ 𝑛. This suggests that not only is a window n 

required for the FEC control, there must also be a variable that implements a tolerance according 

to the n used. 

At this point it was possible to send data in a variable packet with variable FEC bytes, as well 

as a being able to control of the (N, K) pair according to the number of retransmissions made. 

However, the way that the protocol handles the ARQ system is an issue that is still unresolved. 

The next part will describe how the system handles the usage of ACKs, NAKs, and timeouts.  



 
 

Proposed solution  29 
 

 

3.4.4 Automatic repeat request system 

As part of the system architecture, an ARQ stop-and-wait system was also implemented. This 

part presents how the ARQ protocol was employed. Figure 3.9 displays a representation of how 

the communication channel reacts to the reception of an ACK, as well as what happens when the 

master (station) requests information from the slave (AUV). In this case, a packet containing a 

command (shown as CMD) is sent from the master side. Upon arrival at the slave end, it decodes 

this packet and processes it. Since it is a command that requests information, no ACK is sent back, 

as it is replaced by a packet containing data. This sets the master in receive mode, which is now 

the one sending ARQ responses to the slave. 

 
Figure 3.9: ACK in a data request command 

Figure 3.10 represents a similar representation for a NAK reception. As it has been mentioned 

before, a NAK is fruit of undecodable packet at the reception and requests more FEC bytes to be 

sent. It should be noted that a retransmission after a NAK is only made if the number of FEC 



 
 
30  Material and method 

 

 
 

symbols does not reach its maximum, because in this case it only spends more energy to transmit 

information, decreasing efficiency. 

 
Figure 3.10: NAK in a data request command 

Figure 3.11, likewise, characterizes the timeout version of the ARQ system. Timeouts represent 

two situations: 

- The packet sent is lost. 

- The ARQ response sent after the receiving end gets the packet is lost. 

From the figure, the first transmission shows a failure in transmission from the packet. Here, 

the slave does not receive it so only the master will timeout. From the perspective of the slave, 

nothing has happened yet. The second transmission reaches the slave, but here, the ACK or NAK 

fails to arrive at the master, starting both timeout counters. The timeout at the slave is not trig-

gered since it starts its countdown at a later stage and gives enough room to receive the retrans-

mission from the master. 



 
 

Proposed solution  31 
 

 

 
Figure 3.11: Dealing with a timeout in a data request command 

Following these schemes, the only issue left to resolve was the situation where the transmission 

has ended. The connection is over when there is no more information sent over the channel. Still, 

there is no exact way to know if the last ACK or NAK of a transmission is received successfully by 

the transmitting end. This means that a function that implements a final timeout counter had to 

be added, so that the receiving end may resend the ACK or NAK if the other end did not get it, as 

shown in Figure 3.12. 



 
 
32  Material and method 

 

 
 

   
Figure 3.12: Final ACK timeout 

In the next part, the design of the ACKs and NAKs that were portrayed in the ARQ scheme are 

presented. 

ARQ Packet design 

If the packets and headers sent are controlled by the number of FEC bytes, then ACKs and NAKs 

follow a similar structure. The ARQ packet design implements the same logic as the header, as 

seen in Figure 3.13. 

 
Figure 3.13: ACK/NAK Packets 



 
 

Proposed solution  33 
 

 

It should also be stated that the choice of symbols for the ACK and NAK were made based on 

the condition that the header of a packet is always above 9 bytes, since it is the minimum packet 

length. This selection prevents mixing headers with ARQ responses.  



 
 
34  Material and method 

 

 
 

3.4.5 Code design 

The code design is a planning of the program in the form of diagrams (flowcharts). It encom-

passes 4 parts: the master: main(), master: send(), master: get_data(), and slave: main(). 

Master: main() 

The main function is the first step ran when executing the program, Figure 3.14. It emulates a 

command-line terminal that infinitely receives inputted data and processes them for testing pur-

poses. The inputs are treated in two steps: the first is used to retrieve the AUV location and set 

the FEC according to the SER. The second transmits the intended data. If a request for data was 

issued, then the final transmission is a packet instead of an ACK, as stated in the automatic repeat 

request sub-chapter. This packet received is then passed to get_data() function, which switches 

the mode to receiver. 

 
Figure 3.14: Main function – Master  



 
 

Proposed solution  35 
 

 

Slave: main() 

The main function of the slave end implements the reverse process of the master’s main() 

function, Figure 3.15. It listens indefinitely for packets, parsing data the same way as get_data() 

function from master. If the message sent from master contains a request, then the slave enters 

transmission mode, where it sends the requested data. 

 
Figure 3.15: Main function – Slave 

  



 
 
36  Material and method 

 

 
 

send() 

The send function implements the code to transmit packets to the other end, Figure 3.16. It 

starts by getting the SER associated with the location, which is declared in a structured file. For 

simulation purposes, the locations were divided in lengths of 10cm of range and angles [0,20] 

and ]20,40], however, it needs to be fine-tuned when implemented on a real case-scenario. If it 

is the first use, then the location is yet unavailable for the master side. The minimum 2 bytes are 

then added to the message, relying on the ARQ system to manipulate the required FEC symbols. 

Otherwise, if the location is available, then the associated SER is used to optimize the FEC, while 

also being measured by the error-correction control (refer to error-correction systems).  

The next step comprises of segmenting the data according to both the SER and data length. If 

a file that is larger than 236 bytes is sent, then it is divided in packets of 236+1 only if the location 

of the AUV allows it. Otherwise smaller packets are used instead. 

As the sequence number gets appended to the packet, it is alternated if it is not the last 

transmission, otherwise it contains the number of padded symbols as mentioned in packet design.  

Afterwards, the packet is encoded with maximum 18 FEC bytes, which can then be manipulated 

according to the location. As the incremental redundancy scheme describes, the packet must be 

punctured if the data and encoded symbols are to be sent. Otherwise, if it is a retransmission, 

only FEC bytes are sent, using the header as an alternating sequence number. This is done by using 

the integers below 7 which are free. With this, the retransmission system is also reliable against 

timeouts. 

After the packet is sent, the program waits for an ARQ response coming from the other end. If 

an ACK is received, the program writes to the global circular buffer (refer to error-correction 

systems) a 1 and sends the next packet available. If a NAK is received, it is registered as a 0 in the 

buffer and it increases a local count. This count is used to select the FEC bytes to be sent after a 

NAK. The retransmission is discontinued if the number of FEC bytes has reached the maximum for 

the current packet, as mentioned in the automatic repeat request system. However, if the sender 

cannot read a response until the timeout, then the same packet is retransmitted while increasing 

timeout count, canceling the transmission if it reaches the maximum. In cases where the packet 

sent was a request, the acknowledge comes in form of data. This is detected if the header is a 

number above 9. Otherwise, if an ACK is received, the function repeats the process if there is 

more data to be sent or end the transmission. 



 
 

Proposed solution  37 
 

 

 
Figure 3.16: Send function - Master  



 
 
38  Material and method 

 

 
 

get_data() 

The get_data() function implements the reverse action from the send(). It listens to packets 

from the other end, processes them, and then sends a response, Figure 3.17. 

Based on the header, the function reads the packet from the serial buffer and tries to decode 

it. If it is undecodable, an internal NAK count is increased. On the same note, if the NAK count 

reached the maximum, it should terminate the connection based on the automatic repeat request 

system’s ending timeout scheme. Otherwise, if the packet is decoded successfully, then the se-

quence number is checked to understand if the packet was already decoded. 

It then proceeds to remove the padded symbols if it is the last packet, append the decoded 

data to a buffer and sends an ACK. However, if it is not the last packet, then the function should 

wait for another transmission, which starts with the header. The transmission is discontinued if 

the timeout is triggered at any point. 



 
 

Proposed solution  39 
 

 

 
Figure 3.17: Get_data function – Master 

  



 
 
40  Material and method 

 

 
 

3.5 Proof of concept 

The implementation of the protocol went through the process of coding. As mentioned at the 

start of this chapter, the code for the master and slave ends are presented in the appendix. In this 

section, screenshots of the program’s output are shown directly from the integrated development 

environment (IDE), where the protocol was developed. The program for the master and slave ends 

should be started the same way as any other Python scripts. For example, to run the program in 

the master side, one should navigate to the folder where the program is located through the com-

mand line, then execute the following command: 

> sudo python master.py 

With this, the following message should be seen, Figure 3.18. 

 
Figure 3.18: Running the master program 

After the program is started, it waits for commands to be inputted infinitely. At the slave side, 

although it logs and prints information at the output section, the program is not directly accessible, 

since it only responds to requests from the master. 

The program contains the following commands: 

> send [message]: sends a message to the slave end and displays it. 

> getfile [file]: requests file from the slave end. 

> location: updates the location of the of slave and prints it. 

The error map file is also located in the same folder as the main program and presents the 

subsequent structure: 

Relative height group, Relative angle group, Symbol error rate 

As an example, considering the following entry: 

30,20,0.00029 

This line represents the relative height of the AUV, which is in the interval 30~40 cm, with the 

angle higher than 20º. This location has a SER of 0.00029 which is the rate to be returned. 
  



 
 

Proof of concept  41 
 

 

3.5.1 First Output 

As a first simulation, the text “This is a test message.” was sent. The exchange between the 

master and slave ends is shown in Figure 19. 

 

 
Figure 3.19: First outputs (Top output – master end; Bottom output – slave end) 

To simplify the explanation, the image is divided in its relevant segments. It should be noted 

that whenever “\x” appears in the output, it represents a hexadecimal number with the following 

two characters. 

Section A of  Figure 3.19 signifies a request for the location. Having the packet design men-

tioned before in mind, the first line of this section is explained in Figure 3.20. 

 
Figure 3.20: Code output – example of packet transmitted 1 

The data is sent as “gl,” which are the initials for “Get Location.” As it can be seen, the 

sequence number is equal to the number of zeros used to pad the packet since the message is too 

short. It also sends the minimum 2 FEC symbols because the master still doesn’t have the location 



 
 
42  Material and method 

 

 
 

of the AUV. At the slave end, the first 3 bytes are received, being the header. After it decodes the 

header, it then reads the rest of the packet based on the header. After decoding the packet, the 

information is parsed, which the slave recognizes as being a request for data. The slave then sends 

the requested packets right away, as mentioned before (no ACK is sent here). This process turns 

the master into a receiver temporarily. The data received can be seen in this section as the loca-

tion output. With the location, the SER can be now retrieved from the error map. 

After receiving the location, the master now sends the command with the FEC bytes tuned, 

passing to section B of Figure 3.19. The message to be sent has the structure of Figure 3.21. 

 
Figure 3.21: Code output – example of packet transmitted 2 

As it can be seen, this packet contains the information “sm This ,” where “sm” is the command 

to be recognized by the slave. The message is encoded with 4 FEC bytes this time due to the 

location. “This is a test message.” is sent over 4 packets of 8. The ARQ response is displayed as in 

Figure 3.22. 

 
Figure 3.22: Code output – ARQ response 

The figure follows the structure mentioned in the ARQ Packet design chapter. An ACK is rep-

resented as 0x07, while a NAK is 0x08. Since the message was successfully sent, it is displayed at 

the slave end’s output, bottom Figure 3.19. 
  



 
 

Simulation method  43 
 

 

3.6 Simulation method 

Simulations were conducted by following the requirements for this dissertation. Reliability and 

efficiency were used as simulation parameters.  

3.6.1 Fixed Reed-Solomon coding rates 

The reliability of the RS algorithm was tested using predefined code rates, which could then 

be used as comparison to the theoretical values and the proposed solution. The probability of 

having a packet error while decoding can be seen in the channel modeling, equation (3). This can 

be used to get the probability of decoding a packet, given a symbol error probability 𝑃𝑠 

𝑃𝑑𝑒𝑐 = 1 − ∑ (
𝑁
𝑘

) 𝑃𝑠
𝑘(1 − 𝑃𝑠)𝑁−𝑘

𝑁

𝑘=
𝑁−𝐾

2
+1 

, (9) 

Since RS corrects data on a byte level, tests were directed on a symbol-basis, rather than in 

bits. The simulation platform for this part is shown in the appendix. 
  



 
 
44  Material and method 

 

 
 

3.6.2 System simulations 

Tests involved editing the master end’s program for the proposed solution. This way, simula-

tions could be performed to test the slave end’s (AUV) parameters. Similar to the program written 

above, the following vectors were created: 

1. # Number of decoded packets   
2. dec=[0] * lpe   
3. # Number of incorrect packets   
4. idec=[0] * lpe   
5. # Number of decoded headers 
6. hdec=[0] * lpe   
7. # Number of retransmissions   
8. naks=[0] * lpe   
9. # Number of uncoded packets without error   
10. ndec=[0] * lpe   
11. # Total number of symbols received   
12. nsym=[0] * lpe   
13. # Array of data lengths received (used to calculate efficiency)  
14. veff=[0] * lpe   

Where “lpe” is the length of the probabilities’ array to be tested. Analogous to the RS testing 

algorithm, these arrays were populated by introducing them on key points of the program. For 

example, for the case of decoded packet count, the following edit was made: 

1. ...   
2. # Try decoding   
3. rs_packet=packet + ''.join(b'0' for x in range(18-nk))   
4. p = reedsolo.rs_correct_msg(rs_packet, 18, 0, 2, [i for i in range(header,(dlengt

h+18))])[0]   
5. # Compare to original packet   
6. if p == original:   
7.     dec[i]+=1   
8. ...   

The channel’s symbol error rate was recreated by using the random() function from Python 

just before the packet is sent, implemented the following way: 

1. ...   
2. # Channel simulation   
3. for x,y in enumerate(en):   
4.     # Add errors based on probability to be tested   
5.     if random.random() < pe[i]:   
6.         # Avoid writing a symbol that is the same as the original   
7.         if en[x]!=1:   
8.             en[x]=1   
9.         else:   
10.             en[x]=0   
11.    
12. send_loop_tout(en)   
13. ...   

In this case, “en” is a packet that has been encoded with the error correction algorithm. 

Finally, after the arrays are populated, the plots were made using the same method from the 

RS’ simulation case. 



 
 

Simulation method  45 
 

 

Reliability 

Probabilities 𝑃𝑠 were sampled in the interval ]0,1[. Since each iteration of 𝑃𝑠 requires n packets 

to be sent, processing could’ve been an issue if too many points were tested, so only the following 

probabilities were tested: 

# Probability of errors 

pe = [0.001, 0.01, 0.03, 0.05, 0.1, 0.15, 0.25, 0.40, 0.5] 

Efficiency 

Efficiency was calculated based on the following formula 

Η =
𝐷𝑎𝑡𝑎 × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑜𝑑𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑃𝑎𝑐𝑘𝑒𝑡 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 + 𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
× 100, (10) 

where Η is the efficiency in percent and “Data” is the number of symbols that are part of the 

message. 

Error-correction control simulations 

Simulations conducted above present results according to each probability given. However, as 

described before, the AUV does not possess perfect localization techniques. The error-correction 

control system accounts for the failure of these systems, monitoring the transmission at all times 

to control the quality of the communication. The reliability of this feature was tested through two 

case-scenarios where the probability that is passed to the FEC control is different from the one 

used to simulate the channel’s errors, which can be seen in the code above. 



 
 
46  Material and method 

 

 
 

3.7 Conclusion 

In this chapter, a system engineering approach was used to develop the optical communication 

protocol described. The process followed the key features presented below: 

- Analyzation of the requirements for this project. 

- Design of the system architecture. 

- Implementation of the protocol. 

- Simulation and verification of the results. 

The results and respective discussion of the simulations are revealed in the next chapter. 

  



 

 
 

Chapter 4 - Results and discussion 

In the present chapter, the results from the simulations according to the methodology de-

scribed before are shown. The measurements presented below test the Reed-Solomon algorithm 

and the proposed solution. These tests were made with 10000 packets sent in all cases except for 

the error-correction control system. 

4.1 Fixed Reed-Solomon coding rates 

As mentioned in the requirements, fixed Reed-Solomon code rates were the first tests to be 

performed, with the objective of being used for comparison against variable FEC coding. Three 

code-rates were tested, 9 11⁄ ≅ 0.8, 9 17⁄ ≅ 0.5 and 1 3⁄ ≅ 0.3, which is equivalent to decoding rates 

of 1 9⁄ , 4
9⁄  and 9 9⁄ . The simulations are respectively shown in Figures 4.1, 4.3, 4.4, with the per-

centage of decoded packets as a function of symbol error probability, which is a theoretical equiv-

alent to symbol error rate. Figure 4.2 presents the number of undetected errors as a function of 

symbol error probability, scaled to 20%. In the drawn plots, “Uncoded” is the simulation using no 

FEC coding, “Theory” is the result of the formula present in the simulation method for a given 

probability, and “Experimental” shows the result of the executed algorithm. 

 



 
 
48  Results and discussion 

 

 
 

 
Figure 4.1: Fixed code-rate decoding capability – 9/11 (10000 packets simulated) 

 
Figure 4.2: Undetected errors during decoding – 9/11 (10000 packets simulated) – Scaled to 20% 

 



 
 

Fixed Reed-Solomon coding rates  49 
 

 

 
Figure 4.3: Fixed code-rate decoding capability – 9/17 (10000 packets simulated) 

 
Figure 4.4: Fixed code-rate decoding capability – 1/3 (10000 packets simulated) 

The results are as expected. All the experimental values coincide with the theoretical values, 

which proves that the number of packets used to test is acceptable. Among these three simulations, 

only the first case (code rate 9/11) shows undetected errors, Figure 4.2. This is explained by the 

fact that the code rate 9/11 uses 2 FEC bytes. As stated by the singleton bound, the maximum 



 
 
50  Results and discussion 

 

 
 

number of errors that the algorithm can detect is 𝑛 − 𝑘 + 1 = 11 − 9 + 1 = 3. High symbol error 

probabilities can easily overcome this bound in a 11-packet size, which results in higher undetected 

errors. 
  



 
 

Proposed system  51 
 

 

4.2 Proposed system 

The proposed system’s simulations were led to test if the requirements were met while emu-

lating the program in a practical situation. The simulations below test two case-scenarios: a situ-

ation where only small packets are received and another where variable packet lengths are re-

ceived. Besides case-scenarios, tests also include: header and ARQ, and error-correction control. 

4.2.1 Case-scenario 1: small packets 

This scenario will emulate a situation where only commands are received, which are usually 

lower than 8 bytes. It can be interpreted as a common situation from the master’s side, which will 

mostly be used to send short messages and requests. Two plots can be seen below: Figure 4.5 

shows the percentage of decoded packets and Figure 4.6 displays the efficiency of the proposed 

solution for small packets. 

 

 
Figure 4.5: Proposed system’s decoding capability – case scenario 1 (10000 packets simulated) 



 
 
52  Results and discussion 

 

 
 

 
Figure 4.6: Efficiency plot - case-scenario 1 (10000 packets simulated) 

The results observed are as expected, showing that despite being irregular, not only does the 

proposed solution possess the same decoding capability as the fixed RS’ lowest code rate, but it 

also has an efficiency close to the highest fixed RS code rate. The irregular behavior of the plot 

can be explained by the fact that the N-K values must be multiples of 2. Not only that, the line of 

the efficiency plot is slightly lower than the code rate 9/11 because maximum reliability must be 

ensured first. 
  



 
 

Proposed system  53 
 

 

4.2.2 Case-scenario 2: variable-length packets 

As an addition to the case-scenario above, now variable packet sizes are allowed. This can be 

seen as the slave side, which will most likely be the one sending large data such as images and 

video. In the same manner, Figure 4.7 shows the percentage of decoded packets and Figure 4.8 

displays the efficiency of the proposed solution for variable length packets. 

 
Figure 4.7: Proposed system’s decoding capability - case-scenario 2 (10000 packets simulated) 

 
Figure 4.8: Efficiency plot - case-scenario 2 (10000 packets simulated) 



 
 
54  Results and discussion 

 

 
 

The results show that using variable packet lengths increases efficiency of the system, which 

was to be expected, since packets of higher dimensions feature lower ratio of overhead. However, 

the equation (3) from channel modeling needs to be interpolated to limit the packet sizes. If more 

iterations were made, better approximations could be observed, further increasing the efficiency 

of the proposed solution. 
  



 
 

Proposed system  55 
 

 

4.2.3 Header and ARQ decoding 

Figure 4.9 shows the decoding capability of the header and the ARQ system, as they both 

possess the same design. The coding rate of the header is 1
3⁄ , which represents a decoding rate 

of 1. 

 
Figure 4.9: Header and ARQ decoding capability (10000 packets simulated) 

Results show that the design of the header can be successfully attached to the packets without 

hindering efficiency, as its decoding capability outperforms the system’s decoding ability in both 

cases tested above. However, the header in the proposed system is not adequate for multi-byte 

errors. This is because, being 3 bytes long, it can only decode one error in any of those three bytes. 
  



 
 
56  Results and discussion 

 

 
 

4.2.4 Error-correction control system 

Figure 4.10 and Figure 4.11 test the capability of the FEC control mechanism through two case-

scenarios where 2000 packets were sent in total. For the first simulation, the parameters used 

were: 𝑃𝑠
𝐴 = 0.08, which is the apparent error probability that is fed to the error-correction control, 

and 𝑃𝑠
𝑅 = 0.1, the real error probability. These two probabilities correspond to code rates of 9/11 

and 9/13 respectively. Based on the Table 3.2 from the error-correction systems, the chosen pa-

rameters were: 𝑛 = 1000 and 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 33. The plot below displays the N-K values from the 

from the code rates 𝑁 𝐾⁄   as a function of the number of packets sent in a transmission. 

 
Figure 4.10: Evolution of N-K with FEC control (2000 packets simulated) – PA=0.08, PR=0.1 

The intended value on the plot was calculated using the equation (9) from the variable error-

correction sub-chapter for 𝑃𝑠
𝑅. 

For the second case-scenario, the proposed error-correction system was simulated with the 

probabilities reversed, Figure 4.11. Here, 𝑃𝑠
𝐴 = 0.1 and 𝑃𝑠

𝑅 = 0.08. 



 
 

Proposed system  57 
 

 

 
Figure 4.11: Evolution of N-K with FEC control (2000 packets simulated) – PA=0.1, PR=0.08 

As it can be seen, the FEC control is robust against disparities from the probabilities given by 

the AUV and the real one, as both test-cases converged to the intended value. However, this error-

correction control system can only correct location differences when it doesn’t represent a differ-

ence of |(𝑁 − 𝐾)𝐴 −  (𝑁 − 𝐾)𝑅| > 2. This is because after the correction, there isn’t a probability 

for the FEC control to base on. 
  



 
 
58  Results and discussion 

 

 
 

 



 

 
 

Chapter 5 - Conclusions 

The proposed solution proves to be as reliable as the lowest Reed-Solomon’s code rate, which 

presents a decoding rate of 1. Still, it is observed a maximum increase of 45% in efficiency in 

comparison to the same code rate. This proves that the requirements have been met, as well as 

the objectives proposed at the beginning of this dissertation. The design of the header and ARQ 

packets also proves to be dependable, with a maximum of 37% increase in packet decoding capa-

bility against the tested case-scenarios. The implementation of the error-correction control also 

proves to be essential, as the AUV’s localization system should not be entirely relied upon. Results 

have shown that the system is able to correct SERs related to a difference of 2 encoding symbols. 

It should be noted that although the design of the protocol was done for optical devices of lower 

cost, implementation of this system is independent of the devices, given that fine-tuning is made 

beforehand. 

5.1 Completed tasks 

The objectives proposed for this dissertation were completed through several tasks: 

- Analysis of the system, with the observation of different behaviors for the near and far 

field of the optical beams. 

- Research of the different algorithms used in recent projects for error-control, in both 

land and underwater environments. 

- Investigation of the various aspects to be implemented in the protocol, such as the main 

system architecture, design of the packets, channel modeling, error-correction systems, 

automatic repeat requests, and the design of the code. Here, an enhancement to the 

adaptive error-correction mechanism was proposed. 

- Implementation of the program, coded in two separate ends: master and slave. 

- Coding of the simulation platform, with an analysis of what should be tested. 

- Simulation of the protocol in diverse situations. 
  



 
 
60  Conclusions 

 

 
 

5.2 Contributions 

Major contributions from this dissertation include: 

- Creation of the error-correction control system, able to handle the uncertainty of the 

AUV localization. 

- Implementation of a communication protocol using hybrid ARQ type II with incremental 

redundancy in Python that handles both near and far-field behaviors. 

Aside from the major contributions, the following sub-contributions were made: 

- Creation of a testing platform to calculate the experimental errors for a given number of 

packets. 

- Creation of a simulation platform for Reed-Solomon algorithms. 

- Implementation of an adaptive error-correcting mechanism based on the BSC model. 

- Design of a robust 1-byte header long for variable packet lengths in a communication line 

type of PPP. 
  



 
 

Future work  61 
 

 

5.3 Future work 

Although the goals for this dissertation have been achieved in its entirety, it is still possible to 

further improve the work done. Below is a list of improvements that could build upon the results 

in order to enhance the capabilities of the protocol. 

- Using either the sequence byte or one more byte to encode location information from the 

AUV in the packet might drastically improve the communication line, once the master 

end would be able to receive location updates close to real-time. 

- Editing the header to implement the functionality of the sequence number, reducing the 

constant overhead. This is possible by using the integers between the N-K symbols, which 

need to be multiples of 2. 

- Increasing the capability of the error-correction control by simulating a probability after 

a correction, which could potentially correct higher probability discrepancies. 

- Adding the application layer, where a hierarchy-based system would select the code rate 

based on how important a message is, while adding more features such as file compression 

with the purpose of sending over noisy channels. 

- Optimizing the speed of the protocol by using a more complex language such as C and 

implementing faster functions with an enhanced design, able to process data for high-

speed communications. 

Aside from these improvements, using the program on a real-case scenario to fine-tune the 

protocol would ensure a quality communication line for optical devices. 
  



 
 
62  Conclusions 

 

 
 

 



 

 
 

Appendix 

In this chapter, the code developed to implement the optical communication protocol is pre-

sented.2 It is divided in four parts: 

- Experimental error test (test.py), comprehending the code to test the experimental val-

ues required for the proposed error-correction control. 

- Master (master.py), implementing the main functions required to function in the station’s 

end. 

- Slave (slave.py) – Changed functions, implementing the main functions required to func-

tion in the AUV’s end. Only the changed functions are displayed from master, as most of 

the program is identical. 

- Reed-Solomon simulation (sim_rs.py), containing the main simulation platform for the 

Reed-Solomon algorithm. 

  

                                                 
2 A full-version of the code can be seen at https://github.com/helderjbe1/ocp. 



 
 
64  Appendix 

 

 
 

Experimental error test (test.py) 

1. import reedsolo   
2. import random   
3.    
4. # Factorial of a number   
5. def factorial(n):return reduce(lambda x,y:x*y,[1]+range(1,n+1))   
6.    
7. # Calculation of packet decoding error probability   
8. def PDEP(p, N, nk):   
9.     min = (nk/2)+1   
10.     pdep=0   
11.     for k in range(min, N+1):   
12.         pdep += (float(factorial(N))/(factorial(k)*factorial(N-k)))*(p**k)*((1-

p)**(N-k))   
13.        
14.     return pdep   
15.    
16. # Init reedsolomon tables   
17. reedsolo.init_tables(0x11d)   
18.    
19. # Probability of error   
20. pe = 0.08   
21.    
22. # Number of trials   
23. n= 100   
24.    
25. # Number of packets to test   
26. narr= 1   
27.    
28. # Packet to be tested   
29. nk = 2   
30. packet=reedsolo.rs_encode_msg('123456789', nk)   
31. l=len(packet)   
32.    
33. # Decoding number array   
34. dec=[0] * n   
35.    
36. # Get theoretical values   
37. # Probabilities of decoding   
38. pt = 1-PDEP(pe, l, nk)   
39. # Multiply by packets   
40. dect= pt*narr   
41.    
42. for num in range(n):       
43.     # Simulation loop   
44.     for i in range(narr):   
45.         en = packet[:]   
46.         # Channel simulation   
47.         for x,y in enumerate(en):   
48.             # Add errors based on probability to be tested   
49.             if random.random() < pe:   
50.                 # Avoid writing a symbol that is the same as the original   
51.                 if en[x]!=1:   
52.                     en[x]=1   
53.                 else:   
54.                     en[x]=0   
55.                
56.         # Test if decodable   
57.         try:   
58.             de = reedsolo.rs_correct_msg(en, nk)[0]   
59.             # Correct decoding?   
60.             if de == packet[:-nk]:   
61.                 dec[num]+=1   
62.         except reedsolo.ReedSolomonError:   



 
 

Experimental error test (test.py)  65 
 

 

63.             continue   
64.        
65. # dec - Decoded number   
66. # dect - Theoretical value   
67. print max(dec)-dect   
68. print min(dec)-dect   

  



 
 
66  Appendix 

 

 
 

Master (master.py) 

1. import serial   
2. import logging   
3. import cmd   
4. import csv   
5. import cStringIO   
6. import reedsolo   
7. import time   
8. import os   
9. import math   
10.    
11. ################ SETUP   
12.    
13. # Logging init   
14. logging.basicConfig(   
15.     filename='master.log',   
16.     format='%(asctime)s %(message)s',   
17.     datefmt='%m/%d/%Y %I:%M:%S %p',   
18.     level=logging.DEBUG   
19.     )   
20.    
21. # Set up serial port   
22. ser = serial.Serial(   
23.     port='/dev/ttyAMA0',   
24.     baudrate=921600,   
25.     parity=serial.PARITY_NONE,   
26.     stopbits=serial.STOPBITS_ONE,   
27.     bytesize=serial.EIGHTBITS,   
28.     #inter_byte_timeout=0.1,   
29.     timeout=0   
30. )   
31.    
32. # Init precomputed tables for Reed Solomon   
33. reedsolo.init_tables(0x11d)   
34.    
35. # Pre-generation of polynomials for faster encoding   
36. gen=reedsolo.rs_generator_poly_all(19)   
37.    
38. ################ DEFINES   
39.    
40. # Protocol bytes   
41. ACK = b'\x07'   
42. NAK = b'\x08'   
43. ack_pack = reedsolo.rs_encode_msg(ACK, 2, 0, 2, gen[2])   
44. nak_pack = reedsolo.rs_encode_msg(NAK, 2, 0, 2, gen[2])   
45. #For send mode a cancel with packet length must be issued to be recog-

nized by the receiver   
46.    
47. # Relative location of the AUV. Init with None   
48. # Height, angle   
49. loc = [None, None]   
50.    
51. # Error map file (CSV)   
52. mapFile='error_map'   
53.    
54. # Timout management   
55. TOUT_recv=0.7 # Timeout seconds for ARQ system   
56. TOUT_send=0.5 # Timeout seconds for send function   
57.    
58. # Limits of the packets (SER)   
59. lim236 = 0.0179   
60. lim64 = 0.0596   
61.    
62. # Updater vars   



 
 

Master (master.py)  67 
 

 

63. updater_n = 200   
64. updater_tol = 6   
65. # Init circular buffer   
66. updater_buf = [-1 for init1 in range(updater_n)]   
67. updater_prob = 0   
68. updater_count = 0   
69. updater_key = 1   
70. updater_lastloc = loc   
71.    
72. ############################################   
73.    
74. # Shutdown properly   
75. def shutdown():   
76.     logging.debug('Shutdown request')   
77.     logging.shutdown()   
78.     ser.flushOutput()   
79.     ser.flushInput()   
80.     ser.close()   
81.     exit()   
82.    
83. # Init function   
84. def init():   
85.     # Serial port initialization   
86.     if ser.isOpen():   
87.         try:   
88.             ser.flushInput() #flush input buffer   
89.             ser.flushOutput()#flush output buffer   
90.         except Exception, ef:   
91.             print ("Error flushing buffers")   
92.             logging.error("Error flushing buffers")   
93.             return 0   
94.     else:   
95.         print ("Error opening serial port")   
96.         logging.error("Error opening serial port")   
97.         return 0   
98.            
99.     return 1   
100.    
101. # Factorial of a number   
102. def factorial(n):return reduce(lambda x,y:x*y,[1]+range(1,n+1))   
103.    
104. # Calculation of packet decoding error probability (binomial form)   
105. def PDEP(p, N, nk):   
106.     min = (nk/2)+1   
107.     pdep=0   
108.     for k in range(min, N+1):   
109.         # Calculate PDP with the formula from literature   
110.         pdep += (float(factorial(N))/(factorial(k)*factorial(N-

k)))*(p**k)*((1-p)**(N-k))   
111.        
112.     return pdep   
113.    
114. # Cumulative distribution function   
115. def CDF(x):   
116.     return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0   
117.    
118. # Approximation of binomial cdf with continuity correction   
119. def NPDEP(p, N, nk):   
120.     min = (nk/2)+1    
121.     return 1-CDF((min-0.5-(N*p))/math.sqrt(N*p*(1-p)))   
122.    
123. # Iteration of the best N-K values   
124. def NK(p, K):   
125.     nkarr= [0] * 9   
126.     for i in range(9):   
127.         nk = (i+1)*2   



 
 
68  Appendix 

 

 
 

128.         if K >= 100:   
129.             nkarr[i] += (float(K)/(nk+K)) * (1-NPDEP(p, (K+nk), nk))   
130.         else:   
131.             nkarr[i] += (float(K)/(nk+K)) * (1-PDEP(p, (K+nk), nk))   
132.        
133.     nk = (nkarr.index(max(nkarr))+1)*2   
134.        
135.     # Limit packets of 237 to 4 bytes to avoid singleton bound errors   
136.     return nk+2 if nk<=2 and K>=100 else nk   
137.    
138. # Interpolate the locations given by the AUV so that it's possi-

ble to group the ByER (byte error rate)   
139. # for the angle, it's divided in two parts: from 0~20 and >20   
140. # for the height, it is grouped in steps of 10cm.   
141. # all of the values on the error map might be changed with ease in the fu-

ture.   
142. def interpolate():   
143.     if loc == [None, None]:   
144.         return [None, None]   
145.     else:   
146.         grouph = int(math.floor(float(loc[0])/10)*10)   
147.         groupa = 0 if loc[1]<20 else 20   
148.         return [grouph, groupa]   
149.    
150. # Search inside the csv file for the location   
151. # Error map file structure:   
152. # [Height group], [Angle group], [Initial error rate]   
153. def get_fec():   
154.     l = interpolate()   
155.     if l == [None, None]:   
156.         return 0   
157.        
158.     reader = csv.reader(open(mapFile+'.csv', 'rb'), delimiter=',')   
159.     for row in reader:   
160.         if l[0]==int(row[0]) and l[1]==int(row[1]): #col 1 and 2   
161.             return float(row[2])   
162.            
163.     return 0   
164.    
165. # Updater ( Error-correction control )   
166. # Checks last updater_n bytes to see if there is a discre-

pancy between the amount of NAKs and ACKs, based on the probability of packet er-
ror   

167. # type: 0 if NAK, 1 if ACK   
168. def updater(type, p=0):   
169.     global updater_buf   
170.     global updater_count   
171.     global updater_key   
172.     global updater_prob   
173.     global updater_lastloc   
174.        
175.     # Check if location changed first and reset if it has   
176.     if loc != updater_lastloc:   
177.         updater_key = 1   
178.         updater_count = 0   
179.         updater_buf = [-1 for new in range(updater_n)]   
180.         updater_lastloc = loc   
181.            
182.     if updater_key and p>0:   
183.         if p < lim236:   
184.             nk = NK(p, 237)   
185.             updater_prob = NPDEP(p, 237+nk, nk)   
186.         elif p < lim64:   
187.             nk = NK(p, 65)   
188.             updater_prob = PDEP(p, 65+nk, nk)   
189.         else:   



 
 

Master (master.py)  69 
 

 

190.             nk = NK(p, 9)   
191.             updater_prob = PDEP(p, 9+nk, nk)   
192.         updater_key = 0   
193.                
194.     # Update buffer   
195.     if updater_count == 0:   
196.         updater_buf[updater_buf.index(-1)] = type   
197.            
198.         # Check if buffer full   
199.         if -1 not in updater_buf:   
200.             cnt = updater_buf.count(0)   
201.             if cnt > updater_prob * updater_n + round(updater_tol/2.0):   
202.                 updater_count += 2   
203.             elif cnt < updater_prob * updater_n - round(upda-

ter_tol/2.0) :   
204.                 updater_count -= 2   
205.    
206. # Non-blocking header read with variable timeouts.   
207. # tout: timeout value   
208. # returns: header decoded, error, or None   
209. def hread(tout):   
210.     start = time.time()   
211.     while tout<=0 or (time.time() - start) < tout:   
212.         if ser.inWaiting() >= 3:   
213.             try:   
214.                 #sim   
215.                 r = ser.read(3)   
216.                 if ord(r[0])>9:   
217.                     print("Received header: %s\n" % repr(r))   
218.                 else:   
219.                     print("Received response: %s\n" % repr(r))   
220.                 header = reedsolo.rs_correct_msg(r, 2)[0]   
221.                    
222.                 return ord(header)   
223.             except reedsolo.ReedSolomonError as e:   
224.                 return 'Error'   
225.                
226.     ser.flushInput   
227.     return None   
228.    
229. # Non-blocking header read with variable timeouts.   
230. # val: amount of bytes to read   
231. # returns: packet read, error or None   
232. def pread(val):   
233.     # If it's a retransmission, pass the value to 2   
234.     if val == 3:   
235.         val = 2   
236.     start = time.time()   
237.     while time.time() - start < TOUT_recv:   
238.         if ser.inWaiting() >= val:   
239.             return ser.read(val)   
240.                
241.     ser.flushInput   
242.     return None   
243.    
244. # Terminator of a communication exchange   
245. # Reads until timeout and if something is read then send a response accor-

dingly   
246. # mode: 1- ACK, 0 - NAK   
247. def terminator(mode):   
248.     while True:   
249.         r = hread(TOUT_recv)   
250.         if r!=0 and r!=None:   
251.             if mode==1: #ACK   
252.                 ser.write(ack_pack)   
253.             else:   



 
 
70  Appendix 

 

 
 

254.                 ser.write(nak_pack)   
255.         else:   
256.             return   
257.    
258. # Get data when a request is sent   
259. def get_data(header, file=None):   
260.     seq_last=int(100) # Random number different from 1   
261.     buffer=[]   
262.     retr_seq = 0 # Retransmission sequence   
263.        
264.     while True:   
265.         # Test if there was no error in request sent   
266.         if header==None:   
267.             print("In function get_data(): Error receiving what was re-

quested")   
268.             logging.critical("In function get_data(): Error recei-

ving what was requested")   
269.             return None   
270.         elif header=='Error':   
271.             ser.flushInput()   
272.             ser.write(nak_pack)   
273.             header=hread(TOUT_recv)   
274.             continue   
275.         elif 6 < header < 9:   
276.             # It is an ACK or a NAK   
277.             print("In function get_data: Expected data, ARQ res-

ponse found")   
278.             logging.critical("In function get_data: Expec-

ted data, ARQ response found")   
279.             return None   
280.         else:   
281.             break   
282.        
283.     while True:   
284.         # Check if it's a retransmission   
285.         temp = pread(header)   
286.         if temp==None:   
287.             print("In function get_data: Expected packet")   
288.             logging.critical("In function get_data: Expected packet")   
289.             return None   
290.            
291.         # Check if it's a retransmission   
292.         if 2 <= header <= 3:   
293.             # It's a retransmission   
294.             if retr_seq != header: # Append the FEC sym-

bols only if the sequence is different from the last one   
295.                 packet += temp   
296.                 header = len(packet)   
297.         else:   
298.             packet = temp   
299.            
300.         # Calculate N-K based on packet length   
301.         if header >= 237: # 236+1 packet   
302.             dlength = 237   
303.         elif 65 <= header < 237: # 64+1 packet   
304.             dlength = 65   
305.         else: # 8+1 packet   
306.             dlength = 9   
307.                
308.         nk = header-dlength   
309.            
310.         # header = data + current FEC   
311.         # dlength = data   
312.         # nk = FEC   
313.         # dlength + 18 = max packet   
314.         try:   



 
 

Master (master.py)  71 
 

 

315.             # Parse sequence number and data   
316.             if nk>0:   
317.                 rs_packet=packet + ''.join('0' for x in range(18-nk))   
318.                 p = reedsolo.rs_correct_msg(rs_pac-

ket, 18, 0, 2, [i for i in range(header,(dlength+18))])[0]   
319.                 seq = p[0]   
320.                 data = p[1:]   
321.             else:   
322.                 seq = ord(packet[0])   
323.                 data= packet[1:]   
324.                
325.             if seq!=seq_last:   
326.                 # Remove zeros padded for last packet   
327.                 if 0 < seq <= 7:   
328.                     data=data[:-seq]   
329.                        
330.                 if file is None:   
331.                     buffer.append(data.decode('utf-8'))   
332.                 else:   
333.                     open(file, "ab+").write(data)   
334.                        
335.                 seq_last=seq   
336.                
337.             # Send ACK   
338.             ser.write(ack_pack)   
339.                
340.             if seq <= 7:   
341.                 terminator(1) # Respond to communication attempts by sen-

ding out an ACK   
342.                 if file is None:   
343.                     return b"".join(buffer)   
344.                 else:   
345.                     print ("File received successfully")   
346.                     logging.debug("In function get_data: File recei-

ved successfully")   
347.                     return 1   
348.                
349.         except (reedsolo.ReedSolomonError, ZeroDivisionError):   
350.             # Send NAK   
351.             ser.write(nak_pack)   
352.                
353.             if nk==18: # Maximum FEC bytes reached   
354.                 print("In function get_data: Maximum NAK reached")   
355.                 logging.critical("In function get_data: Maximum NAK re-

ached")   
356.                 terminator(0) # Respond to communication attempts by sen-

ding out a NAK   
357.                 return None   
358.            
359.         # Read header   
360.         while True:   
361.             header = hread(TOUT_recv)   
362.                
363.             if header==None:   
364.                 print("In function get_data: Connection timed out")   
365.                 logging.critical("In function get_data: Connection ti-

med out")   
366.                 return None   
367.             elif header=='Error':   
368.                 ser.flushInput()   
369.                 ser.write(nak_pack)   
370.                 continue   
371.             elif 6 < header < 9:   
372.                 # It is an ACK or a NAK   
373.                 print("In function get_data: Expected data, ARQ res-

ponse found")   



 
 
72  Appendix 

 

 
 

374.                 logging.critical("In function get_data: Expec-
ted data, ARQ response found")   

375.                 return None   
376.             else:   
377.                 break   
378.    
379. # Loop to test the timeout on the send function   
380. def send_loop_tout(packet):   
381.     tout_count=0   
382.     while True:   
383.         # Send packet   
384.         ser.write(packet)   
385.            
386.         # Get the answer from the AUV   
387.         while True:   
388.             answer = hread(TOUT_send)   
389.             if answer==None:   
390.                 tout_count+=1   
391.                 if tout_count > 1:   
392.                     updater(0)   
393.                    
394.                 # Test for timeout count   
395.                 if tout_count>=2:   
396.                     return None   
397.                 else:   
398.                     break   
399.             else:   
400.                 return answer   
401.    
402. # Send function:   
403. # stream: data stream to send   
404. # length: length of the object   
405. def send(stream, length):   
406.     # Initializing the stream   
407.     stream=cStringIO.StringIO(stream)   
408.        
409.     # Sequence init   
410.     seq = 20   
411.        
412.     # FEC rate calculation and packet distribution from error map   
413.     fec_rate=get_fec()   
414.     updater(-1, fec_rate)   
415.        
416.     # Divide the data into packets.   
417.     # As the maximum FEC bytes allowed in a packet is 18, the ma-

ximum fec bytes to add to a 8+1   
418.     # message is 18 (corrects 9 errors, fec rate becomes 1).   
419.     # With the same reasoning, on a 64+1 packet, the ma-

ximum code rate is 0.13, and for   
420.     # a 236+1 packet it becomes 0.03. However, limitati-

ons should be done in order to prevent   
421.     # errors with the ARQ system, so the code rate should be lo-

wer than the actual maximum to allow   
422.     # NAKs to be used.   
423.     data236 = 0.0   
424.     data64 = 0.0   
425.     data8 = 0.0   
426.     if fec_rate < lim236:   
427.         data236 = math.floor(length/236)   
428.         data64 = math.floor((length%236)/64.0)   
429.         data8 = math.ceil(((length%236)%64)/8.0)   
430.     elif fec_rate < lim64:   
431.         data64 = math.floor(length/64.0)   
432.         data8 = math.ceil((length%64)/8.0)   
433.     else:   
434.         data8 = math.ceil(length/8.0)   



 
 

Master (master.py)  73 
 

 

435.        
436.     # Send packets loop   
437.     while True:   
438.         # Declare data packet sizes   
439.         if data236 > 0:   
440.             data = stream.read(236)   
441.             data236 -= 1   
442.         elif data64 > 0:   
443.             data = stream.read(64)   
444.             data64 -= 1   
445.         elif data8 > 0:   
446.             data = stream.read(8)   
447.             data8 -= 1   
448.                
449.             # Last 8 bytes   
450.             if (data236+data64+data8) == 0:   
451.                 # For last packet, sequence number = 8 - len(data)   
452.                 seq = 8 - len(data)   
453.                 data = data + ((8 - len(data))*'\x00')   
454.         else:   
455.             return 1   
456.         # From this block get: data / len(data)   
457.            
458.         # Alternate sequence number if not last packet   
459.         if seq >= 9:   
460.             seq=8   
461.         elif seq == 8:   
462.             seq=9   
463.         # From this block get: seq (1 byte)   
464.    
465.         # How many FEC bytes to add to the packet? FEC must be multi-

ples of 2 for error correction   
466.         fec_bytes = NK(fec_rate, (len(data)+1)) + updater_count   
467.            
468.         if fec_bytes > 18:   
469.             fec_bytes = 18   
470.         elif fec_bytes < 2:   
471.             fec_bytes = 2   
472.            
473.         #Init vars   
474.         nak_count = 0   
475.         first_packet = []   
476.            
477.         #NAK loop   
478.         while True:   
479.             # Send two bytes of FEC for every count of NAK   
480.             if nak_count > 0:   
481.                 fec_bytes+=2   
482.                
483.             # Detect maximum and minimum of fec bytes   
484.             if fec_bytes == 0:   
485.                 fec_bytes = 2   
486.             elif fec_bytes > 18:   
487.                 logging.critical('In function send(): FEC bytes re-

ached maximum')   
488.                 print ("In function send(): FEC bytes already maximum")   
489.                 return None   
490.             # From this block get: fec_bytes (number of fec_by-

tes to add)   
491.                
492.             # Encode packet with fec_bytes bytes   
493.             # Pre-process Reed-Solomon packet with full 18 bytes   
494.             if nak_count > 0:   
495.                 # Send only the two bytes needed (Hybrid ARQ IR)   
496.                 fec_packet = first_packet[-(18-fec_bytes+2):-(18-fec_by-

tes)] if fec_bytes < 18 else first_packet[-2:]   



 
 
74  Appendix 

 

 
 

497.             else:   
498.                 first_packet = reedsolo.rs_en-

code_msg(chr(seq)+data, 18, 0, 2, gen[18])   
499.                 if fec_bytes == 18:   
500.                     fec_packet = first_packet   
501.                 else:   
502.                     fec_packet = first_packet[0:-(18-fec_bytes)]   
503.             # From this block get: packet (final packet con-

taining seq + msg + cobs + fec   
504.                
505.             # Add header according to packet (alternate as the seq num-

ber for retransmissions)   
506.             packet=reedsolo.rs_encode_msg(chr(len(fec_pac-

ket)+(nak_count%2)), 2, 0, 2, gen[2])   
507.             packet.extend(fec_packet)   
508.                
509.             #sim   
510.             print("Packet to be sent: %s\n" % repr(packet))   
511.    
512.             # Sending of packet and timeout checking   
513.             answer = send_loop_tout(packet)   
514.             if answer == None:   
515.                 # Header returned None   
516.                 logging.critical("In function send(): Max ti-

meouts while getting response.")   
517.                 print("Timeout while sending data")   
518.                 return None   
519.             elif answer == 'Error':   
520.                 # Header undecodable   
521.                 nak_count+=1   
522.                 if nak_count > 1:   
523.                     updater(0)   
524.                 continue   
525.                
526.             # Parse and decode answer - if undecodable resend packet   
527.             if answer == ord(ACK):   
528.                 if nak_count == 0:   
529.                     # Update only if it's within the various pac-

kets' range   
530.                     if (fec_rate < lim236 and data236 > 0) or (lim236 <= f

ec_rate < lim64 and data64 > 0) or (fec_rate >= lim64):   
531.                         updater(1)   
532.                 break   
533.             elif answer == ord(NAK):   
534.                 nak_count+=1   
535.                 if nak_count == 1:   
536.                     # Update only if it's within the various pac-

kets' range   
537.                     if (fec_rate < lim236 and data236 > 0) or (lim236 <= f

ec_rate < lim64 and data64 > 0) or (fec_rate >= lim64):   
538.                         updater(0)   
539.             else:   
540.                 if nak_count == 0:   
541.                     # Update only if it's within the various pac-

kets' range   
542.                     if (fec_rate < lim236 and data236 > 0) or (lim236 <= f

ec_rate < lim64 and data64 > 0) or (fec_rate >= lim64):   
543.                         updater(1)   
544.                            
545.                 return answer   
546.                
547.     print("In function send(): Unexpected error occured")   
548.     logging.critical("In function send(): Unexpected error occured")   
549.     return None   
550.    
551. def location():   



 
 

Master (master.py)  75 
 

 

552.         global loc   
553.            
554.         # Get the current AUV location and store in global vars   
555.         location=get_data(send("gl", 2))   
556.         if location!=0 and location!=1 and location!=None:   
557.             lst=location.split()   
558.         else:   
559.             return 0   
560.            
561.         loc[0]=int(lst[0])   
562.         loc[1]=int(lst[1])   
563.            
564.         if loc == [None, None]:   
565.             logging.debug("> Location set: Height: N/A Angle: N/A")   
566.             print("Height: N/A Angle: N/A")   
567.         else:   
568.             logging.debug("> Location set: Height: %s, An-

gle: %s" %(loc[0], loc[1]))   
569.             print("Height: %s, Angle: %s" %(loc[0], loc[1]))   
570.                
571.         return 1   
572.    
573. # CMD shell - Gets user input command and parses it infinitely   
574. # Options implemented:   
575. # send [msg] - sends a command message (example of motor control)   
576. # location - request AUV location (example of error map con-

trol and other uses)   
577. # getfile [file] - request file from AUV (example of longer use of commu-

nication - can request logs)   
578. class OCP(cmd.Cmd):   
579.     intro = 'Welcome to the optical communication proto-

col shell.   Type help or ? to list commands.\n'   
580.     prompt = '> '   
581.        
582.     def do_send(self, *arg):   
583.         'send [msg]'   
584.         logging.debug('> send %s' % arg)   
585.            
586.         if location():   
587.             send("sm " + arg[0], 3+len(arg[0]))   
588.         else:   
589.             print("Failed to retrieve AUV location")   
590.             return   
591.        
592.     def do_location(self, arg):   
593.         'location'   
594.         logging.debug('> location')   
595.         if location()==0:   
596.             print("Failed to retrieve AUV location")   
597.             return   
598.            
599.     def do_getfile(self, arg):   
600.         'getfile [file]'   
601.         logging.debug('> getfile %s' % arg)   
602.         if location():   
603.             #sim   
604.             start= time.time()   
605.             get_data(send("fg " + arg, 3+len(arg)), arg)   
606.             print (time.time()-start)   
607.         else:   
608.             print("Failed to retrieve AUV location")   
609.             return   
610.            
611.     def emptyline(self):   
612.         pass   
613.        



 
 
76  Appendix 

 

 
 

614. def main():   
615.     if init()==0:   
616.         shutdown()   
617.            
618.     OCP().cmdloop()   
619.    
620. if __name__ == '__main__':   
621.     try:   
622.         main()   
623.     except KeyboardInterrupt:   
624.         shutdown()   

  



 
 

Slave (slave.py) – Changed functions  77 
 

 

Slave (slave.py) – Changed functions 

main(): 

1. def main():   
2.     if init()==0:   
3.         shutdown()   
4.        
5.     while True:   
6.         # Read indefinitely   
7.         reader= hread(0)   
8.         if reader==0:   
9.             ser.flushInput()   
10.             continue   
11.            
12.         # Read data   
13.         data=get_data(reader)   
14.            
15.         if data==None:   
16.             continue   
17.         else:   
18.             data=data.split() # Get command   
19.                
20.         # Parse data   
21.         if data[0]=='gl':   
22.             tosend=str(loc[0]) + " " + str(loc[1])   
23.             send(tosend, len(tosend))   
24.         elif data[0]=='fg':   
25.             if data[1]!=None and os.path.isfile(data[1]):   
26.                 send(open(data[1], 'rb'), os.stat(data[1]).st_size, type=1)   
27.             else:   
28.                 continue   
29.         elif data[0]=='sm':   
30.             # ACK needs to be sent, as there is no DATA to send   
31.             ser.write(ack_pack)   
32.             terminator(1)   
33.             print('Message sent from master: %s' % ' '.join(data[1:]))   
34.             logging.debug('Message sent from master: %s' % ' '.join(data[1:]))   
35.         else:   
36.             terminator(1) # Send ACK   

get_data(): 

1. def get_data(header):   
2.     seq_last=int(100) # Random number different from 1   
3.     buffer=[]   
4.     retr_seq = 0 # Retransmission sequence   
5.        
6.     while True:   
7.         if header=='Error':   
8.             ser.flushInput()   
9.             ser.write(nak_pack)   
10.             header=hread(TOUT_recv)   
11.             continue   
12.         elif 6 < header < 9:   
13.             # It is an ACK or a NAK   
14.             print("In function get_data: Expected data, ARQ response found")   
15.             logging.critical("In function get_data: Expected data, ARQ res-

ponse found")   
16.             return None   
17.         else:   
18.             break   
19.        



 
 
78  Appendix 

 

 
 

20.     while True:   
21.         temp = pread(header)   
22.         if temp==None:   
23.             print("In function get_data: Expected packet")   
24.             logging.critical("In function get_data: Expected packet")   
25.             return None   
26.            
27.         # Check if it's a retransmission   
28.         if 2 <= header <= 3:   
29.             # It's a retransmission   
30.             if retr_seq != header: # Append the FEC symbols only if the se-

quence is different from the last one   
31.                 packet += temp   
32.                 header = len(packet)   
33.         else:   
34.             packet = temp   
35.            
36.         # Calculate N-K based on packet length   
37.         if header >= 237: # 236+1 packet   
38.             dlength = 237   
39.         elif 65 <= header < 237: # 64+1 packet   
40.             dlength = 65   
41.         else: # 8+1 packet   
42.             dlength = 9   
43.                
44.         nk = header-dlength   
45.            
46.         # header = data + current FEC   
47.         # dlength = data   
48.         # nk = FEC   
49.         # dlength + 18 = max packet   
50.         try:   
51.             # Parse sequence number and data   
52.             if nk>0:   
53.                 rs_packet=packet + ''.join('0' for x in range(18-nk))   
54.                 p = reedsolo.rs_correct_msg(rs_pac-

ket, 18, 0, 2, [i for i in range(header,(dlength+18))])[0]   
55.                 seq = p[0]   
56.                 data = p[1:]   
57.             else:   
58.                 seq = ord(packet[0])   
59.                 data= packet[1:]   
60.                
61.             if seq!=seq_last:   
62.                 # Remove zeros padded for last packet   
63.                 if 0 < seq <= 7:   
64.                     data=data[:-seq]   
65.                        
66.                 buffer.append(data.decode('utf-8'))   
67.                 seq_last=seq   
68.                    
69.             if seq <= 7:   
70.                 return b"".join(buffer)   
71.                
72.             # Reset retransmission sequence   
73.             retr_seq = 0   
74.             # Send ACK   
75.             ser.write(ack_pack)   
76.                
77.         except (reedsolo.ReedSolomonError, ZeroDivisionError):   
78.             # Send NAK   
79.             ser.write(nak_pack)   
80.                
81.             if nk==18: # Maximum FEC bytes reached   
82.                 print("In function get_data: Maximum NAK reached")   
83.                 logging.critical("In function get_data: Maximum NAK reached")   



 
 

Slave (slave.py) – Changed functions  79 
 

 

84.                 terminator(0) # Respond to communication attempts by sen-
ding out a NAK   

85.                 return None   
86.            
87.         # Read header   
88.         while True:   
89.             header = hread(TOUT_recv)   
90.                
91.             if header==None:   
92.                 print("In function get_data: Connection timed out")   
93.                 logging.critical("In function get_data: Connection timed out")   
94.                 return None   
95.             elif header=='Error':   
96.                 ser.flushInput()   
97.                 ser.write(nak_pack)   
98.                 continue   
99.             elif 6 < header < 9:   
100.                 # It is an ACK or a NAK   
101.                 print("In function get_data: Expected data, ARQ res-

ponse found")   
102.                 logging.critical("In function get_data: Expec-

ted data, ARQ response found")   
103.                 return None   
104.             else:   
105.                 break   

send(): 

1. def send(stream, length, type=0):   
2.     # Initializing the stream   
3.     if not type:   
4.         stream=cStringIO.StringIO(stream)   
5.        
6.     # Sequence init   
7.     seq = 20   
8.        
9.     # FEC rate calculation and packet distribution from error map   
10.     fec_rate=get_fec()   
11.     updater(-1, fec_rate)   
12.        
13.     # Divide the data into packets.   
14.     # As the maximum FEC bytes allowed in a packet is 18, the maximum fec by-

tes to add to a 8+1   
15.     # message is 18 (corrects 9 errors, fec rate becomes 1).   
16.     # With the same reasoning, on a 64+1 packet, the ma-

ximum code rate is 0.13, and for   
17.     # a 236+1 packet it becomes 0.03. However, limitations should be done in or-

der to prevent   
18.     # errors with the ARQ system, so the code rate should be lower than the ac-

tual maximum to allow   
19.     # NAKs to be used.   
20.     data236 = 0.0   
21.     data64 = 0.0   
22.     data8 = 0.0   
23.     if fec_rate < lim236:   
24.         data236 = math.floor(length/236)   
25.         data64 = math.floor((length%236)/64.0)   
26.         data8 = math.ceil(((length%236)%64)/8.0)   
27.     elif fec_rate < lim64:   
28.         data64 = math.floor(length/64.0)   
29.         data8 = math.ceil((length%64)/8.0)   
30.     else:   
31.         data8 = math.ceil(length/8.0)   
32.        
33.     # Send packets loop   



 
 
80  Appendix 

 

 
 

34.     while True:   
35.         # Declare data packet sizes   
36.         if data236 > 0:   
37.             data = stream.read(236)   
38.             data236 -= 1   
39.         elif data64 > 0:   
40.             data = stream.read(64)   
41.             data64 -= 1   
42.         elif data8 > 0:   
43.             data = stream.read(8)   
44.             data8 -= 1   
45.                
46.             # Last 8 bytes   
47.             if (data236+data64+data8) == 0:   
48.                 # For last packet, sequence number = 8 - len(data)   
49.                 seq = 8 - len(data)   
50.                 data = data + ((8 - len(data))*'\x00')   
51.         else:   
52.             return 1   
53.         # From this block get: data / len(data)   
54.            
55.         # Alternate sequence number if not last packet   
56.         if seq >= 9:   
57.             seq=8   
58.         elif seq == 8:   
59.             seq=9   
60.         # From this block get: seq (1 byte)   
61.            
62.         # How many FEC bytes to add to the packet? FEC must be multi-

ples of 2 for error correction   
63.         fec_bytes = NK(fec_rate, (len(data)+1)) + updater_count   
64.            
65.         if fec_bytes > 18:   
66.             fec_bytes = 18   
67.         elif fec_bytes < 2:   
68.             fec_bytes = 2   
69.            
70.         #Init vars   
71.         nak_count = 0   
72.         first_packet = []   
73.            
74.         #NAK loop   
75.         while True:   
76.             # Send two bytes of FEC for every count of NAK   
77.             if nak_count > 0:   
78.                 fec_bytes+=2   
79.                
80.             # Detect maximum and minimum of fec bytes   
81.             if fec_bytes == 0:   
82.                 fec_bytes = 2   
83.             elif fec_bytes > 18:   
84.                 logging.critical('In function send(): FEC bytes reached ma-

ximum')   
85.                 print ("In function send(): FEC bytes already maximum")   
86.                 return None   
87.             # From this block get: fec_bytes (number of fec_bytes to add)   
88.                
89.             # Encode packet with fec_bytes bytes   
90.             # Pre-process Reed-Solomon packet with full 18 bytes   
91.             if nak_count > 0:   
92.                 # Send only the two bytes needed (Hybrid ARQ IR)   
93.                 fec_packet = first_packet[-(18-fec_bytes+2):-(18-fec_by-

tes)] if fec_bytes < 18 else first_packet[-2:]   
94.             else:   
95.                 first_packet = reedsolo.rs_en-

code_msg(chr(seq)+data, 18, 0, 2, gen[18])   



 
 

Slave (slave.py) – Changed functions  81 
 

 

96.                 if fec_bytes == 18:   
97.                     fec_packet = first_packet   
98.                 else:   
99.                     fec_packet = first_packet[0:-(18-fec_bytes)]   
100.             # From this block get: packet (final packet con-

taining seq + msg + cobs + fec   
101.                
102.             # Add header according to packet (alternate as the seq num-

ber for retransmissions)   
103.             packet=reedsolo.rs_encode_msg(chr(len(fec_pac-

ket)+(nak_count%2)), 2, 0, 2, gen[2])   
104.             packet.extend(fec_packet)   
105.             # Sending of packet and timeout checking   
106.             answer = send_loop_tout(packet)   
107.             if answer == None:   
108.                 # Header returned None   
109.                 logging.critical("In function send(): Max ti-

meouts while getting response.")   
110.                 print("Timeout while sending data")   
111.                 return None   
112.             elif answer == 'Error':   
113.                 # Header undecodable   
114.                 nak_count+=1   
115.                 if nak_count > 1:   
116.                     updater(0)   
117.                 continue   
118.                
119.             # Parse and decode answer - if undecodable resend packet   
120.             if answer == ord(ACK):   
121.                 if nak_count == 0:   
122.                     # Update only if it's within the various pac-

kets' range   
123.                     if (fec_rate < lim236 and data236 > 0) or (lim236 <= f

ec_rate < lim64 and data64 > 0) or (fec_rate >= lim64):   
124.                         updater(1)   
125.                 break   
126.             elif answer == ord(NAK):   
127.                 nak_count+=1   
128.                 if nak_count == 1:   
129.                     # Update only if it's within the various pac-

kets' range   
130.                     if (fec_rate < lim236 and data236 > 0) or (lim236 <= f

ec_rate < lim64 and data64 > 0) or (fec_rate >= lim64):   
131.                         updater(0)   

  



 
 
82  Appendix 

 

 
 

Reed-Solomon simulations (sim_rs.py) 

1. import reedsolo   
2. import random   
3. import matplotlib   
4. matplotlib.use("Pdf")   
5. import matplotlib.pyplot as plt   
6.    
7. # Factorial of a number   
8. def factorial(n):return reduce(lambda x,y:x*y,[1]+range(1,n+1))   
9.    
10. # Calculation of packet decoding probability   
11. def PDP(p, N, nk):   
12.     min = (nk/2)+1   
13.     pdp=0   
14.     for k in range(min, N+1):   
15.         # Calculate PDP with the formula from literature   
16.         pdp += (float(factorial(N))/(factorial(k)*factorial(N-k)))*(p**k)*((1-

p)**(N-k))   
17.        
18.     return 1-pdp   
19.    
20. # Init   
21. reedsolo.init_tables(0x11d)   
22.    
23. # Probability of errors   
24. #pe = [0.1, 0.25, 0.5, 0.75, 1]   
25. pe = [0.001, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.25, 0.40, 0.5]   
26. petrace=pe+[1]   
27. # Number of packets to test for each probability   
28. n= 10000   
29.    
30. #nkarr= [2]   
31. nkarr= [2,8,18]   
32.    
33. for nfig in range(len(nkarr)):   
34.     # Packet to be tested   
35.     nk=nkarr[nfig]   
36.     packet=reedsolo.rs_encode_msg('123456789', nk)   
37.     #packet=reedsolo.rs_encode_msg('1', nk)   
38.     l=len(packet)   
39.    
40.     dec=[0] * (len(pe)+1)   
41.     ndec=[0] * (len(pe)+1)   
42.     idec=[0] * (len(pe)+1)   
43.        
44.     # Simulation loop   
45.     for i, inum in enumerate(pe):   
46.         print('Progress: %d/%d' % (i+1, len(pe)))   
47.         for j in range(n):   
48.             en = packet[:]   
49.             # Channel simulation   
50.             for x,y in enumerate(en):   
51.                 # Add errors based on probability to be tested   
52.                 if random.random() < pe[i]:   
53.                     # Avoid writing a symbol that is the same as the original   
54.                     if en[x]!=1:   
55.                         en[x]=1   
56.                     else:   
57.                         en[x]=0   
58.                
59.             if en[:-nk] == packet[:-nk]:   
60.                 ndec[i]+=1   
61.                    
62.             # Test if decodable   



 
 

Reed-Solomon simulations (sim_rs.py)  83 
 

 

63.             try:   
64.                 de = reedsolo.rs_correct_msg(en, nk)[0]   
65.                 # Correct decoding?   
66.                 if de == packet[:-nk]:   
67.                     dec[i]+=1   
68.                 else:   
69.                     idec[i]+=1   
70.             except reedsolo.ReedSolomonError:   
71.                 continue   
72.        
73.     # Get theoretical values   
74.     # Probabilities of decoding   
75.     pt = [PDP(m, l, nk) for y,m in enumerate(pe)]   
76.     # Multiply by packets   
77.     dect= [a*n for y,a in enumerate(pt)] + [0]   
78.        
79.     # ndec - Uncoded number   
80.     # dec - Decoded number   
81.     # dect - Theoretical value   
82.     # idec - Incorrect decoding   
83.     print dec   
84.        
85.     # Plotting 1   
86.     print ('Plotting...')   
87.     fig, ax = plt.subplots()   
88.     ax.plot(petrace, [(ndec[plt1]/float(n))*100 for plt1 in range(len(petrace))],

 'k--', label="Uncoded")   
89.     ax.plot(petrace, [(dect[plt2]/float(n))*100 for plt2 in range(len(petrace))],

 'k:', label="Theory")   
90.     ax.plot(petrace, [(dec[plt3]/float(n))*100 for plt3 in range(len(petrace))], 

'kx', label="Experimental")   
91.     ax.legend(loc=0)   
92.     plt.axis([petrace[0],petrace[-1] , 0, 100])   
93.     plt.xscale('log')   
94.     plt.yscale('linear')   
95.     plt.xlabel('P(symbol error)')   
96.     plt.ylabel('Decoded packets (%)')   
97.     plt.grid(True)   
98.     print ('Saving...')   
99.     plt.savefig(('sim-rs-%d.jpg' % nfig), bbox_inches='tight')   
100.     #plt.savefig(('sim-rs-header-arq-

%d.jpg' % nfig), bbox_inches='tight')   
101.        
102.     # Plotting 1   
103.     print ('Plotting...')   
104.     fig, ax = plt.subplots()   
105.     ax.plot(petrace, [(idec[plt4]/float(n))*100 for plt4 in range(len(petr

ace))], 'k-', label="Inc decodings")   
106.     plt.axis([petrace[0], petrace[-1], 0, 20])   
107.     plt.xscale('log')   
108.     plt.yscale('linear')   
109.     plt.xlabel('P(symbol error)')   
110.     plt.ylabel('Undetected errors (%)')   
111.     plt.grid(True)   
112.     print ('Saving...')   
113.     plt.savefig(('sim-rs-%d-inc.jpg' % nfig), bbox_inches='tight')   
114.     #plt.savefig(('sim-rs-%d-header-arq-

inc.jpg' % nfig), bbox_inches='tight')   

 

  



 
 
84  Appendix 

 

 
 

 

 



 

 
 

References 

1.  Pan-Mook Lee, Bong-Hwan Jeon, and Sea-Moon Kim, "Visual servoing for underwa-
ter docking of an autonomous underwater vehicle with one camera," in Proc. MTS/IEEE 
OCEANS, San Diego, 2003, pp. 2195-2200. 

2.  L. Paull, S. Saeedi, M. Seto, and H. Li, "AUV Navigation and Localization: A Review," IEEE 
Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131-149, Dec. 2013. 

3.  N. A. Cruz, A. C. Matos, R. M. Almeida, and B. M. Ferreira, "A lightweight docking station for 
a hovering AUV," 2017 IEEE Underwater Technology (UT), Busan, pp. 1-7, Apr. 2017. 

4.  G. Wang, J. Han, X. Wang, and D. Jing, "Improvement on vision guidance in AUV docking," in 
Conf. OCEANS 2016 - Shanghai, Shanghai, 2016, pp. 1-6. 

5.  S. Martin et al., "Characterizing the critical parameters for docking unmanned underwater 
vehicles," in Proc. OCEANS 2016 MTS/IEEE Monterey, Monterey, 2016, pp. 1-7. 

6.  H. Kaushal, and G. Kaddoum, "Underwater Optical Wireless Communication," IEEE Access, 
vol. 4, pp. 1518-1547, Apr. 2016. 

7.  A. A. Khan, M. H. Rehmani, and M. Reisslein, "Cognitive Radio for Smart Grids: Survey of 
Architectures, Spectrum Sensing Mechanisms, and Networking Protocols," IEEE Communica-
tions Surveys & Tutorials, vol. 18, no. 1, pp. 860-898, Sep. 2015. 

8.  T. Zhang, D. Li, and C. Yang, “Study on impact process of AUV underwater docking with a 
cone-shaped dock,” Ocean Engineering, vol. 130, pp. 176–187, Jan. 2017. 

9.  L. Wu, Y. Li, S. Su, P. Yan, and Y. Qin, “Hydrodynamic analysis of AUV underwater docking 
with a cone-shaped dock under ocean currents,” Ocean Engineering, vol. 85, pp. 110–126, 
Jul. 2014. 

11.  B. M. C. Silva, "Underwater optical communication: an approach based on LED,” 2015, Dis-
sertation. 

12.  Z. Yue and T. Wang, "Navigation and positioning system design of an AUV underwater dock-
ing," in Conf. 2016 IEEE/OES China Ocean Acoustics (COA), Harbin, 2016, pp. 1-6. 

13.  N. Farr, A. Bowen, J. Ware, C. Pontbriand, and M. Tivey, "An integrated, underwater optical 
/acoustic communications system," in Conf. OCEANS 2010 IEEE - Sydney, Sydney, 2010, pp. 
1-6. 

14.  Y. Sato, T. Maki, K. Masuda, T. Matsuda, and T. Sakamaki, "Autonomous docking of hovering 
type AUV to seafloor charging station based on acoustic and visual sensing," in Conf. 2017 
IEEE Underwater Technology (UT), Busan, 2017, pp. 1-6. 



 
 
86  References 

 

 
 

15.  Unmounted LEDs [Internet]. [accessed 2017 Oct 10]. Available from: 
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2814 

16.  Si Avalanche Photodetectors [Internet]. [accessed 2017 Oct 10]. Available from: 
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6686 

17.  Unmounted Photodiodes [Internet]. [accessed 2017 Oct 10]. Available from: 
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=285 

18.  P. Góis et al., "Development and validation of blue ray, an optical modem for the MEDUSA 
class AUVs," in Conf. 2016 IEEE Third Underwater Communications and Networking Confer-
ence (UComms), Lerici, 2016, pp. 1-5. 

19.  D. Wen, W. Cai, and Y. Pan, "Design of underwater optical communication system," in Conf. 
OCEANS 2016 - Shanghai, Shanghai, 2016, pp. 1-4. 

20.  S. Hu, L. Mi, T. Zhou, and W. Chen, “Viterbi equalization for long-distance, high-speed un-
derwater laser communication,” Optical Engineering, vol. 56, no. 7, p. 076101, Jun. 2017. 

21.  Water absorption spectrum [Internet]. [accessed 2018 Jan 11]. Available from: 
http://www1.lsbu.ac.uk/water/water_vibrational_spectrum.html#d 

22.  Shu Lin, D. J. Costello, and M. J. Miller, "Automatic-repeat-request error-control schemes," 
IEEE Communications Magazine, vol. 22, no. 12, pp. 5-17, Dec. 1984. 

23.  M. Tomlinson, C. J. Tjhai, M. A. Ambroze, M. Ahmed, and M. Jibril, “Error-Correction Coding 
and Decoding,” Signals and Communication Technology, 2017. 

24.  B. Tahir, S. Schwarz, and M. Rupp, "BER comparison between Convolutional, Turbo, LDPC, 
and Polar codes," in Conf. 2017 24th International Conference on Telecommunications (ICT), 
Limassol, 2017, pp. 1-7. 

25.  S. Kumar, and R. Gupta, "Performance comparison of different forward error correction cod-
ing techniques for wireless communication systems," International Journal of Computer Sci-
ence and Technology (IJCST), vol. 2, no. 3, pp. 553-557, 2011. 

26.  L. Lopacinski, J. Nolte, S. Buechner, M. Brzozowski, and R. Kraemer, "Improved turbo product 
coding dedicated for 100 Gbps wireless terahertz communication," in Conf. 2016 IEEE 27th 
Annual International Symposium on Personal, Indoor, and Mobile Radio Communications 
(PIMRC), Valencia, 2016, pp. 1-6. 

27.  I. S. Reed, and G. Solomon, “Polynomial Codes Over Certain Finite Fields,” Journal of the 
Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300–304, 1960. 

28.  W. C. Cox, J. A. Simpson, C. P. Domizioli, J. F. Muth, and B. L. Hughes, "An underwater 
optical communication system implementing Reed-Solomon channel coding," in Conf. 
OCEANS 2008, Quebec City, Quebec City, 2008, pp. 1-6. 

29.  J. A. Simpson, W. C. Cox, J. R. Krier, B. Cochenour, B. L. Hughes, and J. F. Muth, "5 Mbps 
optical wireless communication with error correction coding for underwater sensor nodes," 
in Conf. OCEANS 2010 MTS/IEEE SEATTLE, Seattle, 2010, pp. 1-4. 

30.  P. Shrivastava, and U. P. Singh, "Error detection and correction using Reed Solomon Codes," 
International Journal of Advanced Research in Computer Science and Software Engineering 
(IJARCSSE), vol. 3, no. 8, pp. 965-969, Aug. 2013. 

31.  S. Choi, and K. G. Shin, "A class of adaptive hybrid ARQ schemes for wireless links," IEEE 
Transactions on Vehicular Technology, vol. 50, no. 3, pp. 777-790, May 2001. 



 
 

  87 
 

 

32.  R. Diamant, and L. Lampe, "Adaptive Error-Correction Coding Scheme for Underwater Acous-
tic Communication Networks," IEEE Journal of Oceanic Engineering, vol. 40, no. 1, pp. 104-
114, Jan. 2014. 

33.  L. Ma, and Y. Wei, "An Incremental Redundancy HARQ Scheme for Polar Code," arXiv preprint, 
arXiv:1708.09679, 2017. 

34.  H. Schumny, "ECMA 1983/84," Computers and Standards, vol. 3, no. 3-4, pp. 199-206, 1984. 

35.  W. Simpson, “RFC 1662: PPP in HDLC-like Framing,” 1994. 

36.  S. Cheshire, and M. Baker, "Consistent overhead byte stuffing," IEEE/ACM Transactions on 
Networking, vol. 7, no. 2, pp. 159-172, Apr. 1999. 

37.  H. Nasir et al., "CoDBR: Cooperative Depth Based Routing for Underwater Wireless Sensor 
Networks," in Conf. 2014 Ninth International Conference on Broadband and Wireless Compu-
ting, Communication and Applications, Guangdong, 2014, pp. 52-57. 

38.  Raspberry Pi 2, Model B [Internet]. [accessed 2017 Oct 10]. Available from:  https://cdn-
shop.adafruit.com/pdfs/raspberrypi2modelb.pdf 

39.  T. Filiba, “reedsolomon: A pure-python Reed Solomon encoder/decoder,” GitHub, GitHub 
Repository, 2017. Available from: https://github.com/tomerfiliba/reedsolomon. 

40.  C. Liechti, “pyserial: Python serial port access library,” GitHub, GitHub Repository, 2017. 

Available from: https://github.com/pyserial/pyserial. 

41.  J. D. Hunter, "Matplotlib: A 2D Graphics Environment," Computing in Science & Engineering, 
vol. 9, no. 3, pp. 90-95, May 2007. 

42.  F. Schill, U. R. Zimmer, and J. Trumpf, "Visible spectrum optical communication and distance 
sensing for underwater applications," Proc. ACRA, 2004, pp. 1-8. 

43.  B. Ferreira, A. Matos, and N. Cruz, "Single beacon navigation: Localization and control of the 
MARES AUV," in Conf. OCEANS 2010 MTS/IEEE SEATTLE, Seattle, 2010, pp. 1-9. 

44.  C. Grinstead, and J. Snell, “Introduction to probability,” American Mathematical Soc., pp. 
212-218, 2012. 

 
  



 
 
88  References 

 

 
 

 

 



 

 
 

Annex – Licenses 

Water absorption spectrum 

Figure 2.1 

 

As stated on the web page: 

 

This work is licensed under a Creative Commons Attribution 

-Noncommercial-No Derivative Works 2.0 UK: England & Wales License 

 

Reed-Solomon python library 

 

As stated in the LICENSE file of the repository: 

 

Released to the public domain. Original implementation can be found at 

http://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders 
  

http://en.wikiversity.org/wiki/Reed%E2%80%93Solomon_codes_for_coders


 
 
 

 

 
 

PySerial 

 

As stated in PySerial’s official website (https://pythonhosted.org/pyserial/appendix.html#li-

cense): 

Copyright (c) 2001-2015 Chris Liechti <cliechti@gmx.net> All Rights Re-

served. 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions are met: 

- Redistributions of source code must retain the above copyright notice, 

this list of conditions and the following disclaimer. 

- Redistributions in binary form must reproduce the above copyright 

notice, this list of conditions and the following disclaimer in the docu-

mentation and/or other materials provided with the distribution. 

- Neither the name of the copyright holder nor the names of its con-

tributors may be used to endorse or promote products derived from this 

software without specific prior written permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS 

IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIB-

UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 

POSSIBILITY OF SUCH DAMAGE. 

mailto:cliechti%40gmx.net

