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Segmentation of Tongue shapes during Vowel Production in MR 
Images based on Statistical Modelling 

 

Abstract 

Quantification of the anatomic and functional aspects of the tongue is pertinent to analyse 

the mechanisms involved in speech production. Speech requires dynamic and complex articulation 

of the vocal tract organs, and the tongue is one of the main articulators during speech production. 

Magnetic Resonance (MR) imaging has been widely used in speech related studies. Moreover, the 

segmentation of such images of speech organs is required to extract reliable statistical data. 

However, standards solutions to analyse a large set of articulatory images have not yet been 

established. Therefore, this article presents an approach to segment the tongue in 2D MR images 

and statistically model the segmented tongue shapes. The proposed approach assesses the 

articulator morphology based on an Active Shape Model, which captures the shape variability of 

the tongue during speech production. To validate this new approach, a dataset of mid-sagittal MR 

images acquired from four subjects was used, and key aspects of the shape of the tongue during 

the vocal production of relevant European Portuguese (EP) vowels were evaluated. 

 

Keywords: Medical Imaging; speech imaging; image analysis; image segmentation; image-based 

modelling. 
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1. Introduction 

Voice and speech production are one of the most complex neuromuscular physiological 

functions of the human body. Speech is a dynamic process, which comprises air phonation through 

the glottis to generate sounds. These sounds are then modified by changes in the configuration of 

the vocal tract, and consequently different vowels and consonants are produced. The phenomenon 

entails that the shape of the vocal tract is altered by the dynamic shape variations of the structures 

that delimit it 1. Among these structures, a key articulator is the tongue.  

The tongue is an organ that is primarily composed of skeletal muscle tissue and it occupies 

the greater part of the oral cavity and oropharynx. The tongue plays a critical role in breathing, 

feeding and speech. It is posteriorly attached to the floor of the oral cavity, namely via tendons and 

other neighbouring muscles. Moreover, the tongue is a muscular hydrostat, i.e. an arrangement of 

incompressible agonist and antagonist muscles without any rigid structure for the muscles to act 

upon, making the mechanisms of its deformation even more challenging to understand 2. 

To analyse the shape of the tongue and its articulatory movements during the production of 

different sounds is pertinent to extract speech information and thus be able to analyse the 

anatomic origin of speech disturbances. Speech therapists, require the analysis of speech-related 

anatomies through medical images in order to analyse speech articulation of vocal organs, such as 

the tongue. Furthermore, the quantification of tongue movements may also be used to provide 

information on how humans acquire new strategies for speaking tasks to compensate for losses in 

function caused by disease, surgical interventions and/or aging. Figure 1 shows the relevant 

anatomies related to the vocal tract during speech production on Magnetic Resonance (MR) 

image. 

 

< Figure 1 should be around here > 

 

The segmentation of vocal tract structures in medical images is therefore, highly important 

for quantitative analysis of speech dynamics. Quantitative studies require the processing and 

analysis of large datasets to retrieve meaningful information. However, many such segmentations 
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are carried out manually making therefore, the results susceptible to human reproducibility error. 

Furthermore, such manual segmentations are extremely time consuming, especially when 

tomographic or dynamic imaging modalities, such as MR or Ultrasound (US) imaging, are used as 

they generate huge amounts of image data. Thus, semi- or fully-automatic approaches suitable for 

the segmentation of images acquired during speech production are required in order to facilitate 

the tasks of professionals in these areas. The segmentation of the different shapes that the tongue 

assumes in MR images is required for the extraction of the articulatory anatomic configurations that 

characterize distinct speech sounds. 

From a Computational Vision perspective, shape configuration is the key aspect in the 

analysis of the shape of speech structures. Therefore, the integration of a priori knowledge into the 

segmentation framework is appropriate. Statistical Shape Models (SSMs) have the ability to 

capture prior information about the shape of the object under study that can be used in the 

segmentation of the object. One of the most prominent approaches among SSMs is the Active 

Shape Model (ASM) proposed by Cootes et al. (1995).  

In the present study, the potential of the ASM to segment the different tongue shapes in a set 

of MR images depicting speech articulations of European Portuguese (EP) sounds acquired under 

sustained phonation is evaluated. In addition, the viability of the statistical model built to capture 

the variability of the tongue shape in the same MR image dataset is analysed. The statistical data 

retrieved can be used to complement speech studies. Therefore, in this work, 18 MR images of 2 

subjects and 9 EP sounds were used to build an ASM, and 11 MR images of 2 different subjects 

producing 6 of the 9 sounds used in the ASM building process were used to evaluate the 

segmentation results. These results were compared against manual annotations made by an 

expert, and the results confirmed that the ASM is a promising model to segment the human tongue 

in MR images during speech production, particularly if the original MR images are smoothed by 

applying a denoising filter. To the best of the authors' knowledge, this is the first study that 

explores the use of a denoising filter in order to improve the segmentation of the human tongue 

during speech production in MR images by an ASM.  
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2. Related Work 

Extracting information related to the shape of the vocal tract and associated structures during 

speech production from MR images is a relatively new field of research. Image-based studies 

aiming at characterizing several languages phrases, and specific sounds have been reported in the 

literature 3–5. The extensive research presented in the literature associated to the segmentation 

and modelling of the vocal tract, is mainly due to the relatively easy segmentation of the air/tissue 

boundaries of the vocal tract in MR images. For example, Ventura et al. (2012) proposed a 

morphological modelling method of the vocal tract to analyse speaker-specific movement patterns. 

Miller et al. (2014) presented a study on the morphological differences of pitch, related to the 

shape of vocal structures based on an ASM. The results assessed the mean behaviour and 

variability that characterises the conjoint movements occurring in the vocal tract structures. 

The first tongue image-based reports used US imaging 6, and later on, X-Ray image-based 

analyses were presented 7. Despite the advances in MR imaging technology regarding soft tissue 

contrast, which are now considered the state-of-the-art for studies regarding the vocal tract and 

related structures, the segmentation of the tongue is still a highly challenging task because of its 

location in close vicinity to other soft tissues, and therefore requires a higher soft tissue contrast 

and/or more competent segmentation algorithms.  

Voice and speech related tongue studies are commonly focused on investigating the 

description of the articulatory dynamics and corresponding acoustic production 8 and on clinical 

research related to the complete physiology, neurophysiology, and structural interplay of the 

muscular hydrostat complex that is the tongue. The related literature includes studies on intensity-

based segmentation 9–12 and statistical model-based segmentation 4,13.  

The analysis of tongue shapes from MR images has been studied using manual annotations 

that were analysed based on principal component analysis (PCA) and mesh representations 

associated to specific sounds 14. However, efforts towards the segmentation of the shape of the 

tongue through less user-dependent methods have also been proposed. Peng et al. (2010) 

presented a method based on active contours, using a PCA model built from a single patient, 

which was only able to partially segment the tongue contours, mainly the tongue dorsum. Later on, 
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Eryildirim and Berger complemented the previous method by adding coverage of the tongue root 

and frenulum to the segmentation result 15.  

Also, statistical models have been used to investigate the shape of the tongue, modelling the 

shape variability via a parametric set of equations, and describing the statistical information of the 

deformations suffered by image-derived shape contours 16. Moreover, ASMs have also proven 

useful in applications for other bio-structures, such as the brain 17 and heart 18.  

The ASM is based on a Point Distribution Model (PDM) that compactly learns the space of 

plausible shapes of an object from a set of known shape contours, and a Profile Appearance 

Model (PAM) that captures the boundary appearance information variability in the corresponding 

training images. To the best of the authors' knowledge, the first study that applies a PDM to 

characterize the shape of the tongue and its movements in MR images acquired during speech 

production was presented by Vasconcelos et al. (2009). However, MR images are characterized by 

Additive White Gaussian Noise (AWGN) that makes visualization and segmentation difficult. In 

fact, intensity inconsistencies may be presented in MR images due to noise, which potentially 

compromises the adequate identification of the tongue boundaries, particularly when using 

computational segmentation algorithms. In the case of the ASM, these intensity inconsistencies 

can affect the ability of the PAM to search for the true boundaries of the object and therefore affect 

the efficient segmentation results. Consequently, the approach in this article includes a denoising 

step of the original MR images, which is followed by the segmentation task based on an ASM built 

from the training dataset 19. Then, the ASM is guided towards the true boundaries of the tongue 

during the segmentation process based on more reliable image intensity and gradient information.  

Compared to the studies found in the literature, the approach presented in this article has 

some advantages: (i) it allows successful 2D segmentations of tongue shapes in MR images 

independently of tongue size, which is feasible due to the analysis performed in the model 

coordinate space; (ii) it is based on a minimal user initialisation of the segmentation process that 

does not require advanced knowledge of the morphology of the vocal tract, mainly in relation to the 

tongue; (iii) the model built can be used in statistical studies of inter-speaker variability and to 

assess statistically speech impairment differences in tongue articulation. 
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3. Methods 

3.1. Image Dataset 

The images used here were acquired from a Siemens MAGNETOM Trio 3.0 Tesla (3.0T) 

system and head and neck array coils: a 32-channel head coil and a 4-channel neck matrix coil, 

respectively. The T1-weighted sagittal slices were obtained using Turbo Spin Echo Sequences 

with an acquisition duration of approximately 10.6 s and a thickness of 3 mm, according to the 

following parameters: a repetition time of 7.6 ms, an echo time of 2.87 ms, a flip angle = 5º, a 

square field of view (FOV) of 240 mm, a matrix size of 256x256 pixels, a resolution of 1.067 pixels 

per mm and a pixel spacing of 0.94 mm x 0.94 mm. Two male (denoted here as OM and AA) and 

two female (denoted in here as LF and IF) volunteers, aged between 30 and 47 years old (36 ± 

6.59 years), with no record of speech disorders, were placed in a supine position. To allow 

intercommunication during image acquisition and to reduce MR acoustic noise, headphones were 

used. The speech corpus consisted of a set of 9 images per subject, during sustained articulations 

of 9 European Portuguese sounds, which consisted of 3 oral vowels in vowel sustention in two 

tones: normal and high pitch phonation, and consonant-vowel (CV) contexts: /pi/, /pa/ and /pu/. 

The image acquisition process was designed and performed to obtain morphologic data 

covering the maximum range possible of the positions of the articulators in order to characterize 

and reconstruct EP speech sounds. Thus, the MR sagittal data was able to capture the main 

aspects of the shape and position of the different articulators involved, such as the tongue, lips and 

velum. The acquired images of the sound set represent the configurations in which the tongue 

assumes 9 stable and distinct positions in the oral cavity. Three examples of such positions are 

depicted in Figure 1. 

To obtain a reliable ASM, the sounds to be used in the training process of the statistical 

model should adequately represent the variability of the shapes taken by the tongue. Additionally, 

each shape of the tongue presented in the training set should be described by a group of labelled 

landmark points that convey important features of the structure. Thus, the key articulation points 

that need to be identified in each training MR image are: the tip, which usually rests against the 
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incisors; the margin; the body; the dorsum, which has a convex shape that contacts with the 

palate; the inferior surface and the root. 

 

3.2. Image pre-processing 

MR images are characterized by noise that is highly dependent on the acquisition time. A 

suitable compromise between image quality and image acquisition time was considered in the 

present study. Additionally, in order to eliminate noise and enhance the boundaries, a Non-Local 

Means (NLM) denoising algorithm was applied to each MR image used in this study. 

NLM is a nonlinear filter based on a weighted average of the image pixels inside a search 

window. The NLM method used in this study is an enhanced version of the original NLM algorithm 

as suggested by Tristán-Vega et al. (2012), which was tested with the dataset under study in order 

to establish a proper trade-off between noise removal and boundary preservation. Considering an 

empirical noise power (𝜎) equal to 0.1 and an attenuation correction parameter proportional to the 

differences between local neighbourhoods, the NLM method used here was applied to each 

original MR image of the dataset under study and presented an adequate computational 

processing time. 

 

3.3. Point Distribution Model  

The main objective of a statistical shape model is to describe statistically the shape 

variations of a non-rigid object in a representative training dataset, where each shape, which is a 

contour here, is defined by a set of points, which are commonly designated as landmarks. Hence, 

a PDM conveys the different shapes of an object from collections of landmarks that define the 

contours of the different shapes presented in the training dataset. Thus, given a set of 𝐾 pairs 𝐷 =

{(𝐼, 𝑐).}.01
|3 , with each pair containing the training image 𝐼. and the corresponding set of contour 

landmarks 𝑐., a PDM learns the mean shape of the object under study and the acceptable shape 

variations in relation to that same mean shape 21. 
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In this study, the shape of the tongue was statistically modelled by a PDM using a set of 18 

MR images (𝐾 =	18). The manual annotation of the points in the training images requires a 

comprehensive knowledge of the object in question, as the behaviour of the resultant model 

depends on the suitability of these points. Hence, the manual selection of the points was carried 

out by one of the authors who is highly knowledgeable in medical imaging and in the anatomy of 

the oral cavity, thus providing confidence in the model under construction. 

The methodology used to build the PDM is shown in Figure 2. The set of points was chosen 

to include a set of 16 relevant morphologic points of the tongue: two points on the lingual frenulum 

(anterior and posterior), one point on the tip, one point on the root, six points along the body, and 

six points along the inferior surface of the tongue. Figure 3 shows the aforementioned set of points 

on a MR image with a fictitious line connecting these points in order to visualize the anatomy of the 

object in question more easily. 

 

< Figures 2 and 3 should be around here > 

 

The manually annotated contours were converted into 𝑁 evenly distributed points, defining 

each a 𝑘-th contour vector: 𝑐. = 	 (𝑥1, 𝑥8, … , 𝑥:, 𝑦1, 𝑦8, … , 𝑦:), where 𝑐<. = {𝑥<, 𝑦<}<01
|:  are the 

coordinates of the 𝑛-th contour point. The set of all 𝐾 contours is centred, using translation, rotation 

and scaling transformations, in order to minimize the sum of the squared distances between the 

points to the origin using Procrustes Analysis, followed by PCA applied to the matrix of the shape 

vectors: 

𝑀 = 	 [𝑥1::1 ; 𝑦1::1 , … , [𝑥1::3 ; 𝑦1::3 ])C.            (1) 

The PCA is performed in order to analyse the contours in the space of the shape variations. 

Thus, using Singular Value Decomposition (SVD), the covariance matrix, defined by 1
8:
𝑀𝑀C, is 

obtained as: 

1
8:
𝑀𝑀C = 𝑃Σ𝑃C,                (2) 
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where 𝑃 is a matrix whose column vectors represent the set of orthogonal modes of shape 

variation, i.e. the eigenvectors, and Σ is a diagonal matrix containing the corresponding singular 

values, i.e. the eigenvalues. After the computation of the mean shape and covariance matrix of the 

model, equation (2) can be rearranged in order to compute the set of eigenvalues (𝑑𝑖𝑎𝑔(Σ)) and 

eigenvectors (𝑃) that characterize each shape assumed by the object in the training set. This 

notation is transposed into the PDM notation, whereas any training and/or intermediate shape 

configuration 𝑥 can be approximated as: 

𝑥 ≈ 𝑥 + 𝑃L𝑏L,                  (3) 

where 𝑥 represents the mean shape of the model,	𝑃L the matrix of the corresponding eigenvectors, 

and 𝑏L the eigenvalues vector. The basis of the PCA lies in the principle that the magnitude of each 

eigenvalue and the corresponding eigenvector has a proportional magnitude that explains the 

shape variability observed in the training set. Hence, the set of eigenvalues (diag(Σ)) is organized 

in a descendant order of magnitude, and the model retains the most significant i eigenvalues 

according to: 

𝑏L = 	 diag(Σ1:R):		
STUV(WX)Y

XZ[
STUV(WX)\

XZ[
≥ 𝑣	%.            (4) 

Then, by ordinal correspondence, the corresponding eigenvectors 𝑃L are selected, and the 

PDM is therefore, able to explain a known shape variance 𝑣, which is usually retained from 90 to 

99.5%.  

 

3.4. Profile Appearance Model 

The Profile Appearance Model is defined based on the annotated contours using the 

corresponding intensity information. Hence, for each set of contours, the intensity information that 

characterizes the local context of the object’s boundary is obtained from grey-level intensity 

profiles. Assuming that there is connectivity between the contour points, the perpendicular direction 

along the contour can be explored to find the boundary of the object. Then, along the perpendicular 

direction at each contour point, the image pixels are sampled using a fixed step size 𝑙, originating 

profiles of length 2𝑙 + 1. Similar to the PDM building process, for each contour point 𝑐<., of point 𝑛 
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and k-th training image 𝐼., an intensity profile 𝑔<. is extracted from each 𝑘-th image and their 

corresponding gradient information is organized into a matrix to which PCA is applied in order to 

calculate the PAM according to: 

𝑔 ≈ 𝑔 + 𝑃b𝑏b ,                (5) 

where 𝑔 denotes the mean intensity profile, 𝑏b the most significant 𝑖 eigenvalues (Eq. 4), and 𝑃b 

the matrix of the corresponding 𝑖 eigenvectors. Hence, the model obtained explains the intensities 

and texture variation of the points of the training contours.  

 

3.5. Segmentation based on an Active Shape Model  

A total of 𝑁 = 64 interpolated points represented each training shape used to build the ASM 

in this study. The transformation that each of the ASM modelled contours underwent consisted in a 

translation, scaling and rotation. These pose transformations were applied in the segmentation of 

the modelled object in test images. 

In order to use the developed semi-automated tongue segmentation approach, the user 

defines initially four points in the MR image to be segmented: the lowest point of the anterior wall of 

the tongue, the tip, the highest point of the dorsum and the root of the tongue, as shown in Figure 

4. These points were chosen according to two criteria: (i) minimal user interaction and (ii) they are 

associated to anatomical points that can be easily identified. The defined points are then used in 

the initialization of the ASM that is built through the minimization of a Weighted Least Squares 

(WLS) fitting towards their equivalents in the shape model, modelling the key points in the model 

with weights equal to 1 (one). The following steps to segment the shape of the tongue in a test MR 

image are fully automatic. 

 

< Figure 4 should be around here > 

 

The segmentation technique used here is an iterative optimization technique for ASMs which 

allows initial estimates of pose, scale and shape of the modelled object to be adjusted in a test 

image. The stages of this iterative segmentation approach can be summarized into the following 
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steps: i) at each point of the model, the necessary movement to displace that point to a better 

position is calculated; ii) changes in the overall position, orientation and scale of the model that 

best satisfy the displacements are found; iii) finally, by calculating the required adjustments for the 

shape parameters, residual differences are used to deform the shape of the model towards the 

desired shape. The iterative segmentation methodology was implemented using a multi-resolution 

search approach. For the intensity profile model fitting process performed in step i), first it is 

necessary to define the best match regarding the image intensity pattern that together with all other 

profiles in the profiles matrix yields maximum matrix fit in each iteration of the process. The best 

profile match generates a new set of contour points 𝑥Rc that are then transformed by the PDM into 

a plausible tongue shape. Following the classical ASM procedure, starting from the mean shape of 

the model built, each point is moved along the direction perpendicular to the contour in order to 

minimize the residual distances between the new 𝑥Rc and previous 𝑥 point locations: 

𝛿𝑥 = (𝑥 − 𝑥Rc).                (6) 

The objective culminates in finding the new shape parameters 𝑏 that minimize the residuals 

of the new intensity profile point positions 𝑥Rc, as 𝐸 𝛿𝑥C𝛿𝑥 = 𝐸 𝑏L + δ𝑏L . Taking into account that 

the eigenvector matrix 𝑃 is orthonormal, and considering the inverse PDM equation, this problem is 

simplified as: 

𝛿𝑥 ≈ 𝑥 + 𝑃Lδ𝑏L 	⇔ 	δ𝑏L = 𝑃LC𝑃L
i1
𝑃LC𝛿𝑥	 ⇔ 	δ𝑏L = 𝑃C𝛿𝑥 .        (7) 

The update of the shape parameters 𝑏L is performed iteratively, until convergence. 

 

4. Results 

The proposed approach automatically builds Active Shape and Profile Appearance Models 

for the segmentation of the shape of the tongue in new MR images, i.e. in MR images not included 

in the training image dataset.  

As already mentioned, the four initialization points in the MR image to be segmented were 

chosen to facilitate their identification by non-expert users, and their main use is to define the 
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geometrical limits of the tongue presented in the input MR image. A maximum of 25 iterations was 

allowed in the segmentation process, and 11 test images were segmented and analysed. 

 

4.1. Pre-Processing 

The denoised images presented clearer and homogeneous depictions of the oral cavity and 

tongue pixels with improved intensity distributions than those of the original images. The result of 

the denoising algorithm on an example image can be seen in Figure 5, which also shows the noise 

present in the original images. The noise content image, which was obtained by subtracting the 

denoised images from the originals, shows the eliminated intensity inhomogeneities present in 

different regions of the original image. The main purpose of the denoising algorithm was to smooth 

this noise effect. This smoothing led to a more efficient optimization of the profile intensity 

boundary search during the segmentation process, as is confirmed by the results presented in the 

next section.  

 

< Figure 5 should be around here > 

 

To assess the efficacy of the denoising algorithm used, the Mean Squared Error (MSE) and 

Peak Signal to Noise Ratio (PSNR) quality metrics were used. The results from these metrics 

evaluating the efficiency of the NLM algorithm are presented in Table I.  

 

< Table I should be around here > 

 

4.2. Active shape model-based segmentation 

A total of 11 test MR images of 3 distinct EP speech sounds acquired from 2 different 

subjects were segmented by the proposed statistical based approach. 

The suitability of key aspects of the ASM method in segmenting the tongue in MR images 

during speech production was analysed in terms of retained variance percentage, type of search 

and number of search profile pixels. Thus, two Active Shape Models were built, one with 𝑣 =	95% 
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and another one with 𝑣 =	99% of retained variance, and search profiles of 7 and 17 pixels long 

were tested. The optimal intensity profile was 7 pixels long combined with the ASM of 99% of 

variance retention. The effect of variability captured by each of the eight modes of variation is 

illustrated in Figure 6. 

 

< Figure 6 should be around here > 

 

As aforementioned, the ASM built here was applied to segment 11 MR images not included 

in the training image dataset. Figure 7 presents the segmentations obtained for two of these MR 

images, which are associated to the simplest and the most complex shapes of the tongue under 

study (on the top and bottom rows, respectively). Hence, in each case of Figure 7, the results of 

the segmentation at the initial step, at the two intermediate steps and the final result, i.e. at the final 

step, are seen overlapped with the corresponding manual annotation. The accuracy of the 

computational segmentations achieved by the proposed approach was also quantitatively 

assessed based on pixel mean MSE and standard deviation relatively to the manual annotations 

made by an expert. The results found are shown in Table II. 

 

< Figure 7 and Table II should be around here > 

 

5. Discussion 

Imaging technology available nowadays can meaningfully support the interpretation of 

muscle interactions of the tongue during both normal and disordered speech production. Most 

medical studies that involve ASMs in MR images are usually related to the localization and 

characterization of bones and organs; however, the current study concerns the human tongue. The 

proposed segmentation approach successfully segments the shape of the tongue in MR images 

acquired during speech production by combining a semi-automatic initialization approach with an 

Active Shape Model, using combined shape and appearance intensity and texture learning. 
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The quality of an ASM can be assessed by analysing the shape variance attained by varying 

the individual eigenvalues, also referred to as modes of variability, usually between -3𝜎 to +3𝜎. A 

correctly built ASM comprises major shape variations in higher magnitude modes, i.e. higher 

eigenvalues. Hence, this analysis was performed by analysing the first most significant modes of 

variability.  

The effects on varying the first 8 modes of variation of the model built are shown in Figure 6. 

The first mode comprises movements of the whole body of the tongue, mainly associated with the 

rotation of its shape, specifically with the forward and backward movements of the frenulum and tip 

presented in the training images, that have the greatest shape variations in these directions and 

influence the whole set of contour points. These changes are associated with the horizontal 

spreading in the production of the open front unrounded vowel [a] in Portuguese words like /casa/ 

(home).  

 The second variation mode is particularly associated with movements of the whole body of 

the tongue simultaneously along the vertical and horizontal axes. This captures the spreading and 

narrowing combined with upward and downward movements of the upper and posterior boundaries 

of the tongue presented in the training set. In the third variation mode, it is possible to observe 

changes in the movements of the upper section of the tongue. The former changes convey the 

narrowing of the upper posterior wall for the pronunciation of the close front unrounded vowel [i] in 

Portuguese words such as /riso/ (laughter). These varying shapes are complemented by a 

compensative inferoanterior movement of the frenulum section of the tongue. In the fourth variation 

mode, the movements of the curvature of the upper walls are captured and are complemented by a 

compensative inferoposterior movement. This shape conformation comes, for instance, from the 

production of the close back rounded vowel [u] from the Portuguese word /tu/ (you), which implies 

the upper posterior movement of the tongue dorsum and lower anterior movement of the base. 

Finally, the fifth and sixth variation modes captured subtle movements of the horizontal width of the 

lower and posterior portion of the tongue specifically, which complements the movements 

described by the third and fourth variation mode in minor pose details. The following modes of 

variance describe more subtle changes in the horizontal width.  
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From the results reported in Table II, it is possible to conclude that the NLM algorithm aided 

the model in finding the correct boundaries over the whole extent of the tongue. The intensity 

inconsistencies often hindered the model from finding the true boundaries of the tongue by moving 

towards high gradient magnitudes instead that were not part of the tongue contour; however, this 

can be avoided by denoising the original MR images. Table II also shows that the model with 99% 

of retained variability, obtained the best segmentation results. 

Figure 7 shows that the rotation of the tongue tip and consequently the tongue body were 

successfully captured in the segmentation as well as the finer details of the different curvatures of 

the frenulum and dorsum. The intensity profile directions in the classical ASM are determined by 

the order in which the points are numbered; i.e., by the position of the previous and the following 

points relative to the current point. Nevertheless, the initialization process of the proposed 

segmentation approach, when done correctly, allows the model to adapt towards the correct 

boundaries. 

ASMs for segmentation are very susceptible to noise and lack of boundary definition, which 

was successfully overcome by the pre-processing step included in the developed approach. The 

segmentation was also improved by the up-sampling of the contour points used in the definition of 

the shapes assumed by the tongue during speech production, along with the learning of the 

intensity and gradient information of the boundaries to be detected. These factors allowed the 

model to learn the edge context information located within the real boundaries, in order to 

converge towards the boundaries of interest in fewer iterations. Finally, adequate adaptation of the 

model built using new images was achieved by the shape prior knowledge imposed by this type of 

statistical model. 

A similar analysis concerning the shape of the human tongue was made by Vasconcelos et 

al. (2009), who developed statistical shape models from a MR image dataset representative of EP 

oral vowels. In their study, the authors analysed the shape variability of the tongue of one male 

subject based on an ASM with 7 modes of variability, and the distribution of the first four modes of 

variation were similar to the ones obtained in this study 22. In addition, Vasconcelos et al. (2012) 

presented an ASM to segment the vocal tract, and the contours obtained partly described the 
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upper and posterior sections of the surface of the tongue. Hence, the study conducted by these 

authors resulted in a shape statistical model that captured the shape of the tongue variability 

observed in the dataset used in the first mode of variation of the ASM built. The findings of this 

work suggest that the tongue is a central articulator in speech production, which indicates that the 

shape behaviour analysis of this articulator, as presented in this work, is important.  

A quantitative comparison between the proposed method and other methods in the literature 

shows that our method is comparable to the one by Zhang et al. (2016). These authors indicated 

an average root-mean-square error (RMSE) of 0.74, which is comparable to the mean RMSE of 

1.52 obtained using the proposed segmentation method. Peng et al. (2010) addressed the 2D 

segmentation of part of the tongue contour and their results are in accordance with ours. To the 

best of our knowledge, there are no other works in the literature that segment the complete 2D 

tongue contour. Therefore, our proposed method complements the existing studies by facilitating 

the successful 2D segmentation of the complete tongue boundary, including the inferior tongue 

walls. Moreover, the accuracy of the proposed method can be enhanced by enlarging the speech 

corpus used when building the ASM.  

Nevertheless, the ASM used in this work was able to convey the statistical information of the 

shape of the human tongue from the MR images used here successfully, despite the large range of 

tongue shapes and anatomic sizes produced by the different subjects during EP speech 

production. 

 

6. Conclusions 

The ability of an Active Shape Model to properly convey the statistical information regarding 

the shape of the human tongue in MR images during speech production and to segment it in new 

images was assessed in this study. Hence, this work analysed the ability of a Point Distribution 

Model to capture the statistical variation of the shape of the tongue that characterizes the 

articulation of vocalic European Portuguese sounds. After which, an evaluation of the results of the 

segmentation of the tongue in new MR images acquired during EP speech production was 

performed. The results obtained confirm that the ASM used here is promising to achieve both 
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goals, i.e. convey statistical information about the shape of the tongue and its movements and to 

segment the tongue in new MR images acquired during speech production. However, for 

enhanced segmentation results, the input MR images should be properly denoised.  

The approach in this work is useful in speech rehabilitation, namely, to recognize 

compensatory tongue movements during speech production in MR images. This knowledge is 

useful to understand speech production disorders in children, acquired speech impairments and 

speech impairment of oral cancer patient. 

In future works, the proposed segmentation approach can be adapted to segment 2D 

dynamic MR image sequences and a larger image dataset should undoubtedly bring 

improvements. Statistical models, such as ASMs, have been shown to achieve good segmentation 

results when combined with robust initialization approaches, which can be achieved, for example, 

by using machine learning algorithms. Specifically, Marginal Space Deep Learning (MSDL) is an 

emerging technique used to align the mean shape of a model based on deep learning neural 

networks for object localization, and sequential estimation of the pose and scale parameters to be 

used in the ASM fitting 23. Nevertheless, the proposed segmentation approach has proven to have 

potential as a tool for speech shape analysis; namely, for the evaluation of the shape of the tongue 

and movement patterns during speech production, as well as to improve the knowledge about the 

physiology of this organ that still needs to be further explored.  
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TABLE CAPTIONS 
 
Table 1. The results of the quality metrics PSNR and MSE for noise reduction by the NLM 

algorithm on each training and test image. 

 

Table 2. The mean squared (MSE), standard deviation (mean ± std) errors and Jaccard 

Similarity Index (JC) of tongue shapes segmented by the ASM model retaining 95% variability 

(ASM _95%_NLM), and the ASM model retaining 99% variability in each original test image 

(ASM_99%_original), and in each denoised test image (ASM _99%_NLM), relatively to the manual 

annotations. 

 

  



 23 

 

FIGURE CAPTIONS 
 
Figure 1. On the left, a MR mid-sagittal image (slice) indicating the vocal tract organs during 

a vowel production; On the right, MR images of a female under sustained phonation of the vowel 

utterances: /pa/, /pi/ and /pu/. 

 

Figure 2. Methodology used to build a statistical shape model. 

 

Figure 3. Initial set of landmark points manually defined on a MR image connected by line 

segments to facilitate their visualization: two lingual frenulum points (1-2), tongue tip (3), six points 

along the tongue body (4-9), tongue root (10), and six points along the inferior surface of the 

tongue (11-16). 

 

Figure 4. Example of landmark reference points used in the initialization of the ASM model. 

 

Figure 5. Denoising of an example image: on the left, original MR image; in the centre, the 

resultant image after the application of the used NLM denoising algorithm; on the right, the noise 

residuals present in the original image. 

 

Figure 6. Effect on the tongue shape by varying (±	3 std) each of the first 8 modes of 

variation (𝜆i) of the PDM built with 99% of retained variability. 

 

Figure 7. Segmentation results obtained in two MR test images: one from a male (top row) 

and the other from a female (bottom row). In each case, the initial shape of the model built, the 

model after the 5th and 15th segmentation iterations, and the final segmentation obtained (in blue) 

with the corresponding manual annotations (in red) are shown. 
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Table 1. 

Training dataset 
Subject PSNR MSE 
pu-LF 37.673 1.71E-04 
a2-LF 37.285 1.87E-04 
a-LF 37.479 1.79E-04 
i-LF 37.585 1.74E-04 

i2-LF 37.674 1.71E-04 
u-LF 37.863 1.64E-04 
pi-LF 35.451 2.85E-04 
pa-LF 35.412 2.88E-04 
a-OM 35.214 3.01E-04 

a2-OM 35.096 3.09E-04 
pa-OM 35.060 3.12E-04 
pi-OM 35.072 3.11E-04 
pu-OM 35.155 3.05E-04 
i-OM 35.104 3.09E-04 

i2-OM 35.089 3.10E-04 
u-OM 35.125 3.07E-04 

u2-OM 35.153 3.05E-04 
Test dataset 

a-AA 40.273 9.39E-05 
i-AA 39.964 1.01E-04 
u-AA 39.985 1.00E-04 

pa_AA 34.623 3.45E-04 
pi_AA 34.652 3.43E-04 
pu_AA 34.691 3.40E-04 
pa_IF 35.299 2.95E-04 
pi_IF 35.233 3.00E-04 
pu_IF 35.243 2.99E-04 
u_IF 37.974 1.59E-04 
i_IF 35.543 2.79E-04 
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Table 2. 

Image ASM _95%_NLM ASM_99%_original ASM_99%_NLM 

 MSD JC MSD JC MSD JC 

AA_a 3.82±2.21 0.85 2.57 ±2.04 0.89 2.71±1.63 0.93 

AA_i 6.58±8.09 0.75 4.70±2.49 0.83 4.81±1.32 0.81 

AA_u 3.21±2.62 0.87 3.44±1.83 0.87 1.21±3.32 0.96 

AA_/pa/ 4.23±3.36 0.78 3.56±2.06 0.86 3.55±1.02 0.89 

AA_/pu/ 5.52±4.85 0.76 2.31±2.3 0.88 1.54±2.78 0.96 

AA_/pi/ 1.98±1.34 0.90 4.34±2.61 0.84 1.55±2.78 0.95 

IF_/pa/ 3.65±4.20 0.84 5.11±6.50 0.78 2.94±3.24 0.92 

IF_/pi/ 7.98±1.34 0.72 2.51±3.21 0.87 1.54±2.00 0.97 

IF_/pu/ 4.87±5.40 0.80 2.41±1.14 0.89 2.32±3.45 0.92 

IF _u 5.02±1.03 0.78 1.9±0.11 0.93 2.02±1.43 0.95 

IF _i 2.04±3.3 0.87 7.02±4.09 0.77 4.27±3.12 0.81 
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