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Chapter 1

Introduction

Preferences are present in many tasks in our daily lives. Buying the right
car, choosing a suitable house or even deciding on the food to eat, are trivial
examples of decisions that reveal information, explicitly or implicitly, about
our preferences. Hence, extracting and modeling preferences can provide
us with invaluable information about the choices of a group of persons or
individuals. However, this problem is non-trivial because, quite often, pref-
erences depend on different context and options available [83]. Moreover, in
areas like e-commerce, which typically deal with decisions from thousands of
users, the acquisition of preferences can be a difficult task [57].

For that reason, artificial intelligent methods have been increasingly impor-
tant for the discovery and automatic learning of preferences [47]. In particu-
lar, a subfield of machine learning which focuses on the study and modeling
of preferences is Preference Learning.

In this thesis, we focus on one subtask of Preference Learning (introduced in
Section 1.1), the prediction and analysis of preferences given a predefined set
of objects/labels, commonly referred to as Label Ranking (Section 1.2).

1.1 Preference Learning

Preference Learning is an emerging subfield of machine learning that focuses
on the study and modeling of preferences1. Preference learning methods

1A comprehensive overview of the state-of-the-art in the field of preference learning can
be found in the Preference Learning book [57].

1



2 CHAPTER 1. INTRODUCTION

are conceptually different from standard machine learning problems such as
classification or regression, as it can involve the prediction of more complex
structures [7]. Classification and regression problems focus on the prediction
of single values, while preference learning methods are designed to predict
the order, or ranking, of a set of objects by relative importance.

In this field, the term preference is not strictly referring to preferences of
individuals, but can also represent more general order relations. In turn, this
flexibility gives an important advantage to the paradigm of preference-based
learning, like extracting knowledge which, otherwise, would be harder [14].
However, without loss of generality, the discussion will focus on the more
traditional type of preferences for easier interpretation.

Preferences can be extracted in an explicit way. As an illustrative example,
a person who claims to prefer apples to pears, represented as:

apples � pears

is giving information about an explicit preference. In [81], 5000 Japanese
people were asked to order 10 types of sushi by preference.

However, sometimes, information about preference is only implicitly given.
Going back to the fruit example, if someone picks bananas from a basket
containing apples, pears and bananas, one can implicitly infer that:

bananas � apples ∧ bananas � pears

One real example can be found in [114], where preferences are implicitly
taken from clicking behavior of users.

Regardless of how preferences are extracted, they can be given as relative
or absolute. Relative preferences cannot be quantifiable (e.g. sorting fruit by
taste: bananas � apples � pears) [57]. On the other hand, absolute pref-
erences are given in a quantitative form (e.g. the cost of the fruit: bananas
= 2$, pears = 1$, apples = 3$). Despite its different nature, in preference
learning all types of preferences are combined in the same learning perspec-
tive [57].

In terms of modeling the preferences, there are two main approaches, learn-
ing utility functions and learning preference relations [57]. Learning utility
functions, is learning to assign a relevance score to each object, which can
later be ordered by comparison. Learning preference relations, is to learn
the relative order relations between the objects being studied. This type
of approach can be difficult to learn in cases where there are many objects
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to order [42]. For example, consider the ordering of web pages by search
engines [78]. In such cases, it is easier to rely on methodologies that learn
utility functions.

In short, preference learning, is to learn from empirical data with implicit
or explicit preferences. These preferences are explored by preference mining
methods [57]. Preference learning is also about predicting preferences in new
scenarios, when good generalizations from the given data are possible.

Preference learning can be divided into three main categories [57], object
ranking, instance ranking and label ranking.

Object ranking The goal in the object ranking task is to output the rank-
ing of a given set of objects, that, in theory, can be infinitely large. It can
be considered a regression task whose target variables are orders [82]. A
practical example are the lists of ordered web pages generated by search en-
gines [78, 114]. In these case, utility functions are trained to assign a score
to each newly given object [57].

Instance ranking In instance ranking, the setting is similar to ordinal
classification [23], where an instance belongs to a class, among a finite set
of classes with a natural order [57]. As an example, consider the assignment
of conference papers to categories like: reject, weak reject, weak accept and
accept [57].

Instance ranking is a generic term for bipartite [89] and multipartite [59]
ranking.

In this thesis, we focus on the label ranking task (Section 1.2) and its appli-
cations.

1.2 Label Ranking

Label ranking is a sub-field of preference learning [57, 26, 123] which studies
the problem of learning a mapping from instances to rankings over a finite
number of predefined labels. It can be considered a variant of the conven-
tional classification problem [26]. While in classification the goal is to assign
examples to a specific class, in label ranking we are interested in assigning
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a complete preference order of the labels to every example. If this is not
possible, incomplete orders can also be assigned to some examples [28].

There are two approaches to tackle label ranking data [6, 24]. Reduction tech-
niques (Section 1.2.3), also known as decomposition methods, divide the prob-
lem into several simpler problems (e.g. ranking by pairwise comparisons [56]).
Direct methods (Section 1.2.4) treat the rankings without any transformation
(e.g. decision trees adapted for the label ranking task [120, 26] or case-based
approaches for label ranking [17, 24]).

Label ranking has been used in different applications, mainly for predictive
tasks. For example, in meta-learning [16], to predict a ranking of a set of
algorithms according to the best expected accuracy on a given dataset. In
microarray analysis [74], to find patterns in genes from Yeast on different
micro-array experiments. And also in image categorization [58], to predict
the relative importance of categories of elements in landscape pictures (e.g.
beach, sunset, field, fall foliage, mountain and urban).

1.2.1 Definition

Given an instance x from the instance space X, the goal is to predict the
ranking of the labels L = {λ1, . . . , λk} associated with x [74]. The ranking
can be represented as permutation or as an ordered vector.2 The permu-
tation, denoted as π, contains numbers from 1 to k, where 1 indicates the
first position and k the last one (e.g. π = (1, 2, 3, 4)). The ordered vector
represents the objects with an operator indicating the order of the preference
(e.g. λa � λb � λc � λd).

The goal in label ranking is to learn the mapping X→ Ω, where Ω is defined
as the permutation space. However, as in classification, we do not assume
the existence of a deterministic X → Ω mapping. Instead, every instance is
associated with a probability distribution over Ω [26]. This means that, for
each x ∈ X, there exists a probability distribution P(·|x) such that, for every
ranking π ∈ Ω, P(π|x) is the probability that π is the ranking associated
with x. The training data contains a set of instances D = {〈xi, πi〉}, i =
1, . . . , n, where xi is a vector containing the values xji , j = 1, . . . ,m of m
independent variables, A, describing instance i and πi is the corresponding
target ranking.

Rankings can be either total or partial orders.

2Both notations will be used interchangeably in this dissertation.
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Total orders A strict total order over L is defined as:3

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa}

which represents a strict ranking [123], a complete ranking [57], or simply a
ranking. A strict total order can also be represented as a permutation π of
the set {1, . . . , k}, such that π(a) is the position, or rank, of λa in π. For
example, the strict total order λ1 � λ2 � λ3 � λ4 can be represented as
π = (1, 2, 3, 4).

However, in real-world ranking data, we do not always have clear and unam-
biguous preferences, i.e. strict total orders [15]. Hence, sometimes we have
to deal with indifference (∼) and incomparability (⊥) [42]. For illustration
purposes, let us consider the scenario of elections. If a voter feels that two
candidates have identical proposals, then her preference can be expressed
as indifferent, so they are assigned the same rank (i.e. a tie). To represent
ties, we need a more relaxed setting, called non-strict total orders, or simply
total orders, over L, by replacing the binary strict order relation, �, with the
binary partial order relation, �:

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa}

These non-strict total orders can represent partial rankings (rankings with
ties) [123]. For example, the non-strict total order λ1 � λ2 ∼ λ3 � λ4 can
be represented as π = (1, 2, 2, 3).

Additionally, real-world data may lack preferences data regarding two or
more labels, which is known as incomparability. Continuing with the elections
example, if the voter is familiar with the proposals of λa but not those of λb,
she is unable to compare them, λa ⊥ λb. In other words, the voter cannot
decide whether the candidates are equivalent or select one as her favorite. In
this case, we can use partial orders.

Partial orders Similar to total orders, there are strict and non-strict par-
tial orders. Let us consider the non-strict partial orders (which can also be
referred to as partial orders) over L:

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa ∨ λa ⊥ λb}

We can represent partial orders with subrankings [70]. For example, the
partial order λ1 � λ2 � λ4 can be represented as π = (1, 2, 0, 4), where 0
represents that λ3 is incomparable to the others, i.e. λ1, λ2, λ4 ⊥ λ3.

3For convenience, we say total order but in fact we mean a totally ordered set. Strictly
speaking, a total order is a binary relation.
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1.2.2 Evaluation

Given an instance xi with label ranking πi and a ranking π̂i predicted by a
label ranking model, several loss functions on Ω can be used to evaluate the
accuracy of the prediction. One such function is the number of discordant
label pairs:

D (π, π̂) = #{(a, b) |π (a) > π (b) ∧ π̂ (a) < π̂ (b)}

If there are no discordant label pairs, the distance D = 0. On the other hand,
the function to define the number of concordant pairs is:

C (π, π̂) = #{(a, b) |π (a) > π (b) ∧ π̂ (a) > π̂ (b)}

These concepts are used in the definition of several metrics that can be used
for evaluation in label ranking:

Kendall Tau Kendall’s τ coefficient [85] is the normalized difference be-
tween the number of concordant, C, and discordant pairs, D:

τ (π, π̂) =
C − D

1
2
k (k − 1)

where 1
2
k (k − 1) is the number of possible pairwise combinations,

(
k
2

)
. The

values of this coefficient range from [−1, 1], where τ (π, π) = 1 (i.e. when the
rankings are equal) and τ(π, π−1) = −1 if π−1 denotes the inverse order of π
(e.g. π = (1, 2, 3, 4) and π−1 = (4, 3, 2, 1)). Kendall’s τ can also be computed
in the presence of ties, using τB [5].

Gamma coefficient If we want to measure the correlation between two
partial orders (subrankings), or between total and partial orders, we can use
the Gamma coefficient [93]:

γ (π, π̂) =
C − D
C +D

Note that the Gamma coefficient is identical to Kendall’s τ coefficient in the
presence of strict total orders, because, in this case, C+D = 1

2
k (k − 1).
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Spearman distance One other commonly used measure is the Spearman’s
rank correlation coefficient [118]. It is defined as:

ρ (π, π̂) = 1− 6dS (π, π̂)

k (k2 − 1)

where dS is the squared sum of rank differences, also referred as Spearman
distance [82]:

dS (π, π̂) =
k∑
a=1

(π (a)− π̂ (a))2

In other words, the Spearman’s rank correlation coefficient is the normalized
version of the Spearman distance into the interval [−1, 1].

Weighted rank correlation measures Sometimes it is more important
to predict the items in the top ranks than the ones ranked lower. For in-
stance, when predicting the ranking of financial analysts to choose which ones
to follow [6], it is more important to predict the best ones correctly than the
worst ones. That is because it would not be very wise to follow the rec-
ommendations of the worst analysts. Thus, labels could be associated with
cost and benefit values, which determine the real value of the ranking. For
instance, to follow a given analyst, I have to buy the stocks he recommends.
On the other hand, following different analysts will likely yield different gains
or losses in the market. The empirical evaluation of ranking methods will
only be useful in practice if these issues are taken into account.

In these cases, a weighted rank correlation coefficient can be used. They
are typically adaptations of existing similarity measures, such as a weighted
version of the Spearman’s rank coefficient [110].

In terms of evaluation techniques, the usual resampling strategies, such as
holdout or cross-validation, can be used to estimate the accuracy of a label
ranking algorithm [26]. The accuracy of a label ranker can be estimated by
averaging the values of any of the measures explained here, over the rankings
predicted for a set of test examples.

To assess the significance of differences between models, using paired tests di-
rectly is not advised, since straightforward paired tests on multiple methods
might reject the null hypothesis due to random chance [43]. For this reason,
two-step statistical tests are usually performed [17, 26]. The first step, con-
sists of a Friedman test, where the null hypothesis is that all learners have
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equal performance. If this hypothesis is rejected, a two-tailed sign test to
compare learners such as the Dunn’s Multiple Comparison Procedure [104]
is performed.

1.2.3 Reduction techniques

Because label ranking is a relatively new field in machine learning, some
methods were basically approaching a reduction to a classification or regres-
sion problem [24], i.e. Reduction techniques. One great advantage of the
reduction is that it makes a label ranking problem viable to be transformed
into classification [74] or regression [41] problems. Also, reduction techniques
can be quite efficiently implemented and easily applied for distributed sys-
tems [124]. On the other hand, there are also some disadvantages.

One option is to reduce the problem to the prediction of the best label (multi-
label classification). This, however, will come with loss of information [23].
Assume we have the ranking of 3 algorithms in two scenarios: Alg1 � Alg2 �
Alg3 and Alg2 � Alg1 � Alg3. A classifier, by focusing on the best one,
will struggle to predict the most accurate, while a ranker will conclude that
algorithms 1 and 2 perform better than 3.

One most commonly accepted reduction technique is to decompose rankings
into binary preference relations, referred to as pairwise comparisons [74].
In simple words, it consists into reducing the problem of ranking into sev-
eral classification problems. Examples of that are: Ranking by Pairwise
Comparison (RPC) [74], Likelihood Pairwise Comparisons (LPC) [44] and
Rule-based Label Ranking [64]. However, it has been noted that minimizing
the classification error on several binary problems is not always equivalent
to minimizing a loss function on rankings [23].

Ranking by Pairwise Comparisons

The method Ranking by Pairwise Comparisons (RPC) [74] is a well known
reduction technique in the label ranking field. In simple terms, RPC can be
divided in two phases, prediction of pairwise preferences and derivation of
the rankings [74].

Before the first step, one needs to decomposed rankings into pairwise com-
parisons for each pair of labels of the form:

(λa, λb) ∈ L, 1 ≤ a < b ≤ k
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Considering that L = {λ1, . . . , λk}, there will be k(k−1)
2

different pairwise
comparisons.

The first step is to learn a classification model from the training data for
each pair of labels. This is, considering each pairwise comparison as a class,
a separate model, Mab, is called to learn a mapping of the form:

xi →
{

1 if λa � λb
0 if λb � λa

}
, xi ∈ D

This mapping can be done by any classifier at hand [74].

This approach has the advantage that it can be used with partial rankings.
For any instance xi, where nothing is known about the preference relation of
a pair of labels (λa, λb) ∈ L, the modelMab ignores xi in the training.

As a matter of choice, this can be easily adapted to deal with the interval
[0, 1]. This will result in a valued preference relation, vprx, for every instance
x ∈ X:

vprx (λa, λb)

{
Mab if a < b

1−Mab if a > b

Finally, there is the aggregation step, where the predictions are combined to
derive the rankings. Given the predicted pairwise comparisons for each x,
the simplest approach is to order the labels, considering the predictions of
the modelMab as weights. Each label λa is ranked depending on the sum of
the weights: ∑

λa 6=λb

vprx (λa, λb)

This task may not be trivial as there are possibilities of ties. In this regard,
there are some well studied and documented approaches [55, 74]. However,
one simple approach is to favor the most common classes according to the
class distribution [74].

1.2.4 Direct approaches

Direct methods treat the rankings without any transformation. Hence, avoid-
ing some of the problems of the reduction approaches [23], mentioned in
Section 1.2.3. In this section, we outline some direct approaches for label
ranking problems which have been proposed in recent years.
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The most prominent approaches in the label ranking field are based on
probabilistic distribution of rankings, like Mallow’s Model [26] or Plackett-
Luce [24]. These probabilistic methods estimate the conditional probability
P(π|x) from the training data. This gives methods the advantage that, be-
sides predicting a ranking, also provide a reliability score [24].

Case-based methods are also highly competitive direct approaches in label
ranking (e.g. k -Nearest Neighbor [17, 26]). In [17] a nearest neighbor ap-
proach was proposed to deal with the problem of meta-learning. From a
different perspective, in [24], the authors combined case-based with proba-
bilistic models using the Instance-Based Label Ranking method.

A different group of label ranking methods tackle the ranking similarities with
distance-based approaches (e.g., [120, 36, 116]). A relatively recent example
is a neural networks adaptation proposed with Multilayer Perceptron for
Label Ranking [116]. Also, in the naive Bayes for Label Ranking method [6],
the prior probabilities of the rankings are similarity-based. In this cases,
ranking correlation measures, like Kendall’s τ coefficient [85] or the Spearman
distance [82], are used to calculate the distance between rankings. These so-
called distance-based models, make the prediction problem more similar to
a regression task, where the difference between two rankings is similar to the
error in a regression setting.

Tree-based models are popular in label ranking [120, 115, 26]. Decision trees
are known to be competitive methods which are relatively easy to inter-
pret [26]. In [120], Predictive Clustering Trees, successfully combine hier-
archical clustering with decision trees for predicting rankings. Probabilistic
models are combined in the tree generation to derive the nodes in Label
Ranking Trees [26].

1.3 Contributions of this thesis

In this section, we give an overview of the contributions of this thesis, and its
motivations. As mentioned in Section 1.2, there are two main approaches to
the problem of label ranking [6, 24]. Decomposition approaches which divide
the problem into several simpler problems and Direct methods that treat the
rankings as target objects without any transformation. We focus more on
direct methods but we also propose decomposition approaches.

The first part of this PhD project extends the work started with the MSc
thesis [33] of the candidate. In the latter, Label Ranking Association Rules
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(LRAR) were proposed [36]. LRARs are based on traditional Association
Rules, redefining the support and confidence measures, in order to take into
account the nature of label rankings. However, in the MSc project the em-
pirical study was limited and little information about the behavior of LRARs
was obtained. In the PhD project, this work was consolidated, namely to
better understand how the rules perform in extreme conditions and in which
cases are correctly applied (Section 1.3.1).

In this project we also addressed the lack of pre-processing methods that are
specific to label ranking problems. LRARs, like Association Rules, cannot
handle numeric data directly, which needs to be discretized beforehand. We
proposed two discretization approaches that are specific for label ranking
problems (Section 1.3.2). Both approaches are based on a new measure of
ranking entropy which was developed as part of this work.

The new measure of ranking entropy was also the basis for a third contri-
bution. We proposed Entropy Ranking Trees (Section 1.3.3), which is an
adaptation to the problem of label ranking of a Top-Down Induction of De-
cision Trees algorithm. Based on this new algorithm, we made a fourth
contribution, which is an ensemble method for label ranking. The algorithm
is Label Ranking Forests (Section 1.3.3), which, as the name indicates, is an
adaptation of Random Forests for label ranking.

There is not much work on descriptive pattern mining of label rankings and
preference data. We address this shortcoming with two additional contribu-
tions, Pairwise Association Rules and Exceptional Preferences Mining (Sec-
tion 1.3.4), which are two rule-based methods.

Most empirical studies on label rankings are based on a set of benchmark
datasets, in the KEBI Data Repository [26]. These were generated from other
datasets which were not original label ranking problems. Given the process
of transformation used, it is unclear whether these datasets are useful to
assess the quality of label ranking methods. Thus, the final contribution
of this thesis are two swap randomization techniques for the label ranking
task (Section 1.3.5). The proposed methods were used to investigate the
usefulness of the available label ranking datasets.

1.3.1 Label Ranking Association Rules

Association Rules mining is used to discover interesting relationships between
attributes in large databases [2]. An association rule has the form A → B,
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meaning that when the set of values A is observed in the data, there is a
chance of observing B.

Although association rules were originally developed for descriptive tasks,
their success has quickly lead to their adaptation for prediction problems.
The motivation for adapting Association Rules (AR) for classification is that,
a classification rule model built from such an unrestrained set of rules, can
potentially be more accurate than the ones using a greedy search approach
[97].

Label Ranking Association Rules [33] were proposed as a predictive approach
for label ranking [36]. The main adaptations to the original algorithm were
on the support and confidence measures, which were modified to take into
account the similarity between rankings.

The method proposed originally to mine LRAR has a parameter. Such pa-
rameter, works as a threshold that determines what should and should not
be considered a sufficiently similar pair of rankings, in order to be covered
by the same rule. However, the impact of that parameter in the results was
not investigated originally. In Chapter 2, we consolidate the original work by
discussing results of the analysis on the values of this parameter. The type
of questions we investigate is, whether there is a rule of thumb to select its
value or it is data-specific.

1.3.2 Discretization

As in any machine learning task, data preparation is essential for the devel-
opment of accurate label ranking models. For instance, some algorithms are
unable to deal with numeric variables, such as the basic versions of Naive
Bayes and Association Rules [102, 4], in which case numeric variables should
be discretized beforehand.

While there has been a significant development of learning algorithms for
label ranking in recent years, there are not many pre-processing methods
specifically for this task. Following the adaptation of Association Rules for
Label Ranking, the development of a suitable discretization method was
paramount. Without such a method, it would not be possible to adequately
analyze data with numerical variables.

Discretization, from a general point of view, is the process of partitioning
a given interval into a set of discrete sub-intervals. It is normally used to
split continuous intervals into two or more sub-intervals which can then be
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treated as nominal values. When we transform continuous intervals into
discrete sub-intervals, regardless of the splits taken, generally leads to a loss of
information [60]. In theory, a good discretization should have a good balance
between the loss of information and the number of partitions [90].

Discretization methods are typically organized into two groups, supervised
and unsupervised, depending on whether or not they involve the target vari-
able, respectively. In prediction problems, supervised methods usually pro-
duce more useful discretizations than unsupervised methods [46].

The difference in nature between the target variable in classification and label
ranking problems implies that supervised discretization methods developed
for classification are not suitable for LR. For this reason, two methods, based
on a well-known supervised discretization approach for classification, were
proposed as part of this PhD research. The original method, Minimum
Description Length Partition (MDLP) [54], uses a measure of entropy from
information theory, known as Shannon entropy [54].

The first proposed approach, Minimum Description Length Partition for
Ranking (MDLP-R) [40] (Chapter 3), uses a ranking entropy measure based
on the similarities between rankings. This ranking entropy is the equivalent
of the Shannon entropy for label ranking problems. A simpler and improved
measure of entropy was latter proposed and implemented in a new method,
EDiRa (Entropy-based Discretization for Ranking) [39] (Chapter 3).

1.3.3 Tree-based models

Tree-based models are popular for a number of reasons, including how they
can clearly express information about the problem, because their structure is
relatively easy to interpret even for people without a background in learning
algorithms. They have been used in classification [111], regression [20] and
also label ranking [120, 26] tasks.

On the other hand, ensemble methods, which use multiple learning algo-
rithms, usually compensate some loss in interpretability with significant ac-
curacy improvements [19]. One of the most popular approaches are ensembles
of trees, such as Random Forests [19].

Our contributions concerning the development of tree-based models for label
ranking are a new variant of decision trees and the adaptation of the random
forests algorithm for this task.
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Entropy Ranking Trees Decision trees, like ID3 [111], grow in a top-
down recursive partitioning scheme that iteratively splits data into smaller
subsets [102]. This splits are performed such that each node divides the
data into increasingly more homogeneous subsets, in terms of the target
variable. The search for the best split point tries to optimize a given splitting
criterion, such as the information gain [102]. Information gain measures the
difference in entropy between the previous and current state relatively to a
target variable.

By implementing the previously proposed ranking entropy measure (Sec-
tion 3) in the splitting process, we proposed a novel ranking tree approach,
Entropy Ranking Trees [35] (Chapter 4). The goal is to obtain leaf nodes that
contain examples with target rankings as homogeneous as possible.

Label Ranking Forests Adapting Random Forests to label ranking comes
in a natural way based on any decision trees approach for label ranking.
Motivated by the success of Random Forests in terms of improved accuracy
for classification and regression problems [13], we proposed a Random Forest
approach for label ranking, Label Ranking Forests [32] (Chapter 4).

1.3.4 Descriptive mining for label ranking

Preference learning approaches can benefit from the analysis of descriptive
methods [57]. In label ranking, only recently, a few descriptive approaches
for mining label ranking data have been proposed [70, 122]. In [70], the
authors suggest an approach using association rules that search for patterns
exclusively in rankings (i.e. the independent variables are ignored). In [122],
a ranked tiling approach to search for patterns in the ranking scores, i.e.
ranks, is suggested.

The available label ranking mining approaches focus exclusively on the tar-
get ranking, and do not relate its values to the values of the independent
variables. However, we believe that much valuable information can be ex-
tracted by taking both into account. For example, consider we discover that
in 80% of the cases sushi A is preferred to sushi B. By taking independent
variables into account, we might actually find that females prefer sushi B to
sushi A, but males, which represent 80% of the population, prefer sushi A to
sushi B. For that reason, we propose two approaches for mining label ranking
data.
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Exceptional Preferences Mining In Chapter 5, we propose an approach
for finding deviating patterns in label rankings, in the context of Subgroup
Discovery [88], referred to as Exceptional Preferences Mining. The aim of
Subgroup Discovery is to discover subgroups for which the target shows an
unusual distribution, as compared to the overall population in the data [88].

In the context of label ranking, we need to determine to what extent the
subgroups show different preferences, and whether any of these preferences
are in conflict with the average behavior. To that end, we developed three
quality measures, Pairwise, Labelwise and Norm. Each of them strives to
find subgroups where the preference relations are exceptional from slightly
different perspectives.

The Pairwise measure identifies subgroups with strong deviating preferences
between pairs of labels. The Labelwise measure identifies subgroups where
at least one particular label is exceptionally under- or over-appreciated. Fi-
nally, the Norm quality measure will give more relevance to subgroups where
several, or all, labels deviate strongly.

Pairwise Association Rules Association rules use a set of descriptors to
represent meaningful subsets of the data [69], hence providing an easy inter-
pretation of the patterns mined. We propose an approach that decomposes
rankings into pairwise comparisons and then looks for meaningful associa-
tions rules of the form:

A→ {λa � λb ∨ λa ⊥ λb ∨ λa = λb|λa, λb ∈ L}

which we refer as Pairwise Association Rules (Chapter 2). 4

1.3.5 Label Ranking Data

Due to the lack of benchmark LR datasets, 16 semi-synthetic datasets were
adapted from multi-class and regression datasets from the UCI repository
and Statlog project [26]. For each multi-class problem, an LR dataset (re-
ferred to as type A problem) was created by training a Naive Bayes and the
target was replaced with a ranking based on the probability score of each

4For similar reasons, Label Ranking Association Rules can also be used for mining
label ranking data. However, the fact that these search exclusively for complete ranking
patterns, can be seen as a limitation.
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class. Additionally, for each regression problem, the ranking target was cre-
ated based on the values of a set of selected numerical attributes (type B
problems).

This set of 16 datasets has been used by the majority and the contributions
in the Label Ranking field [28, 27, 116, 64]. However, it is unclear if the type
B datasets contain any meaningful relations between the target rankings
and independent variables. Additionally, the rankings in type A problems
represent the preferences of an agent, which in this case is the naive Bayes
classifier. Therefore, the bias in these algorithms seems too strongly de-
fined and, thus, their ability to represent real world distributions of data is
questionable.

In many data mining applications, swap randomizations techniques are used
together with statistical tests to validate the significance of findings [62]. Us-
ing a similar concept, we can investigate the usefulness of type B datasets.
For this purpose, we propose two swap randomization methods specific for
the label ranking datasets, ranking permutations and labelwise permuta-
tions.

Ranking permutations Randomly permuting the rankings is a natural
adaptation of the methods used in classification [63]. By doing so, we want
to test the strength of the relation between independent variables and targets
in the data. After the permutation, because we break this relation, we can
measure how the label ranking learners behave and compare with the results
on the original data. If the differences are not significant, we can conclude
that there is no real relation between independent variables and targets.

Labelwise permutations In [19], each attribute was permuted at a time
to measure the impact of variables for prediction, in terms of misclassification
rate. We propose a similar method by applying the same concept to each
individual label (Chapter 6). We define labelwise permutation as the process
of permuting the ranks of a specific label. This enables us to test if the
amount of information in the independent variables about the rank of the
selected label is significant. By comparison with the original data (without
permutations), statistical significance tests can be used to assess the relevance
of each label.

The number of benchmark datasets for label ranking is still relatively small.
A final contribution of this project is the adaptation from a multivariate
regression problem into a label ranking dataset (Chapter 5). We adapted
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the dataset from the COIL 1999 Competition Data, taken from the UCI
Repository [96], concerning the frequencies of algae populations in different
environments, which we refer to as Algae.

1.4 Thesis outline

This thesis is presented as a series of papers in the form of self-contained
chapters. These are either papers that have been published or that have been
submitted for publication. The dissertation consists of 6 chapters following
this introductory chapter.

Chapter 2, Preference Rules [37], presents an empirical study on Label Rank-
ing Association Rules and Pairwise Association Rules. This paper, which has
been submitted to the Information Fusion journal, is an extension of previous
work, Mining Association Rules for Label Ranking [36].

Chapter 3, Entropy-based discretization methods for ranking data [39], presents
a supervised approach to discretize datasets with target rankings. This chap-
ter, which is published in the Information Sciences journal, is based on pre-
liminary work published in the proceedings of the Discovery Science 2013
conference, Singapore [40].

In Chapter 4, Label Ranking Forests [32], we can find a successful adaption
of ensembles of trees for label ranking problems, which has been published
in the Expert Systems journal. This work is an extension to the prelimi-
nary work published in EPIA 2015, in which Entropy Ranking Trees, were
proposed [35].

Chapter 5, Exceptional Preferences Mining [34], proposes an approach to look
for exceptional behavior in label ranking datasets. This paper is published
in the proceedings of the Discovery Science 2016 conference held in Bari,
Italy.

Chapter 6, Permutation Tests for Label Ranking [38], presents a smaller con-
tribution where, semi-synthetic datasets used in Label Ranking community,
where evaluated with different tests. This chapter is published in the local
proceedings of the BENELUX conference on artificial intelligence 2015.

Finally, Chapter 7, gives an overview of the main contributions and findings
in this PhD dissertation.
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Chapter 2

Preference Rules

Cláudio Rebelo de Sá, Paulo Azevedo, Carlos Soares,
Aĺıpio Mário Jorge, Arno Knobbe

submitted to Information Fusion Journal, 2016

Abstract

In this paper we investigate two variants of association rules for preference
data, Label Ranking Association Rules and Pairwise Association Rules. Label
Ranking Association Rules (LRAR) are the equivalent of Class Association
Rules (CAR) for the Label Ranking task. In CAR, the consequent is a single
class, to which the example is expected to belong to. In LRAR, the consequent
is a ranking of the labels. The generation of LRAR requires special support
and confidence measures to assess the similarity of rankings. In this work, we
carry out a sensitivity analysis of these similarity-based measures. We want
to understand which datasets benefit more from such measures and which pa-
rameters have more influence in the accuracy of the model. Furthermore, we
propose an alternative type of rules, the Pairwise Association Rules (PAR),
which are defined as association rules with a set of pairwise preferences in
the consequent. While PAR can be used both as descriptive and predictive
models, they are essentially descriptive models. Experimental results show
the potential of both approaches.

19
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2.1 Introduction

Label ranking is a topic in the machine learning literature [57, 26, 123] that
studies the problem of learning a mapping from instances to rankings over
a finite number of predefined labels. One characteristic that clearly dis-
tinguishes label ranking problems from classification problems is the order
relation between the labels. While a classifier aims at finding the true class
on a given unclassified example, the label ranker will focus on the relative
preferences between a set of labels/classes. These relations represent relevant
information from a decision support perspective, with possible applications in
various fields such as elections, dominance of certain species over the others,
user preferences, etc.

Due to its intuitive representation, Association Rules [4] have become very
popular in data mining and machine learning tasks (e.g. Mining rankings [70],
Classification [97] and even Label Ranking [36], etc). The adaptation of AR
for label ranking, Label Ranking Association Rules (LRAR) [36], are simi-
lar to their classification counterpart, Class Association Rules (CAR) [97].
LRAR can be used for predictive or descriptive purposes.

LRAR are relations, like typical association rules, between an antecedent
and a consequent (A → C), defined by interest measures. The distinction
lies in the fact that the consequent is a complete ranking. Because the
degree of similarity between rankings can vary, it lead to several interesting
challenges. For instance, how to treat rankings that are very similar but
not exactly equal. To tackle this problem, similarity-based interest measures
were defined to evaluate LRAR. Such measures can be applied to existing
rule generation methods [36] (e.g. APRIORI [4]).

One important issue for the use of LRAR is the threshold that determines
what should and should not be considered sufficiently similar. Here we
present the results of sensitivity analysis study to show how LRAR behave in
different scenarios, to understand the effect of this threshold better. Whether
there is a rule of thumb or this threshold is data-specific is the type of ques-
tions we investigate here. Ultimately we also want to understand which pa-
rameters have more influence in the predictive accuracy of the method.

Another important issue is related to the large number of distinct rankings.
Despite the existence of many competitive approaches in Label Ranking,
Decision trees [120, 26], k -Nearest Neighbor [17, 26] or LRAR [36], prob-
lems with a large number of distinct rankings can be hard to predict. One
real-world example with a relatively large number of rankings, is the sushi
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dataset [81]. This dataset compares demographics of 5000 Japanese citizens
with their preferred sushi types. With only 10 labels, it has more than 4900
distinct rankings. Even though it has been known in the preference learn-
ing community for a while, no results with high predictive accuracy have
been published, to the best of our knowledge. Cases like this have motivated
the appearance of new approaches, e.g. to mine ranking data [70], where
association rules are used to find patterns within rankings.

We propose a method which combines the two approaches mentioned above [36,
70], because it can could contribute to a better understanding of the datasets
mentioned above. We define Pairwise Association Rules (PAR) as associa-
tion rules with one or more pairwise comparisons in the consequent. In this
work we present an approach to identify PAR and analyze the findings in
two real world datasets.

By decomposing rankings into the unitary preference relation i.e. pairwise
comparisons, we can look for sub-ranking patterns. From which, as explained
before, we expect to find more frequent patterns than with complete rank-
ings.

LRAR and PARs can be regarded as a specialization of general association
rules that are obtained from data containing preferences, which we refer to
as Preference Rules. These two approaches are complementary in the sense
that they can give different insights from preference data. We use LRAR and
PAR in this work as predictive and descriptive models, respectively.

The paper is organized as follows: Sections 2.2 and2.3 introduce the task
of association rule mining and the label ranking problem, respectively; Sec-
tion 2.4 describes the Label Ranking Association Rules and Section 2.5 the
Pairwise Association Rules proposed here; Section 2.6 presents the exper-
imental setup and discusses the results; finally, Section 2.7 concludes this
paper.

2.2 Association Rule Mining

An association rule (AR) is an implication: A → C where A
⋂
C = ∅ and

A,C ⊆ desc (X), where desc (X) is the set of descriptors of instances in the
instance space X, typically pairs 〈attribute, value〉. The training data is
represented as D = {〈xi〉}, i = 1, . . . , n, where xi is a vector containing the
values xji , j = 1, . . . ,m of m independent variables, A, describing instance i.
We also denote desc(xi) as the set of descriptors of instance xi.
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2.2.1 Interest measures

There are many interest measures to evaluate association rules [106], but typ-
ically they are characterized by support and confidence. Here, we summarize
some of the most common, assuming a rule A→ C in D.

Support percentage of the instances in D that contain A and C:

sup (A→ C) =
#{xi|A ∪ C ⊆ desc(xi), xi ∈ D}

n

Confidence percentage of instances that contain C from the set of in-
stances that contain A:

conf (A→ C) =
sup (A→ C)

sup (A)

Coverage proportion of examples in D that contain the antecedent of a
rule: coverage [65]:

coverage (A→ C) = sup (A)

We say that a rule A→ C covers an instance x, if A ⊆ desc (x).

Lift measures the independence of the consequent, C, relative to the an-
tecedent, A:

lift (A→ C) =
sup(A→ C)

sup(A) · sup(C)

Lift values vary from 0 to +∞. If A is independent from C then lift(A →
C) ∼ 1.

2.2.2 APRIORI Algorithm

The original method for induction of AR is the APRIORI algorithm, pro-
posed in 1994 [4]. APRIORI identifies all AR that have support and confi-
dence higher than a given minimal support threshold (minsup) and a min-
imal confidence threshold (minconf ), respectively. Thus, the model gener-
ated is a set of AR, R, of the form A → C, where A,C ⊆ desc (X), and
sup(A → C) ≥ minsup and conf (A → C) ≥ minconf . For a more detailed
description see [4].
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Despite the usefulness and simplicity of APRIORI, it runs a time consuming
candidate generation process and needs substantial time and memory space,
proportional to the number of possible combinations of the descriptors. Ad-
ditionally it needs multiple scans of the data and typically generates a very
large number of rules. Because of this, many alternative methods were previ-
ously proposed, such as hashing [107], dynamic itemset counting [21], parallel
and distributed mining [108] and mining integrated into relational database
systems [119].

In contrast to itemset-based algorithms, which compute frequent itemsets
and rule generation in two steps, there are rule-based approaches such as
FP-Growth (Frequent pattern growth method) [67]. This means that, rules
are generated at the same time as frequent itemsets are computed.

2.2.3 Pruning

AR algorithms typically generate a large number of rules (possibly tens of
thousands), some of which represent only small variations from others. This
is known as the rule explosion problem [80] which should be dealt with by
pruning mechanisms. Many rules must be discarded for computational and
simplicity reasons.

Pruning methods are usually employed to reduce the amount of rules without
reducing the quality of the model. For example, an AR algorithm might find
rules for which the confidence is only marginally improved by adding further
conditions to their antecedent.Another example is when the consequent C of
a rule A→ C has the same distribution independently of the antecedent A.
In these cases, we should not consider these rules as meaningful.

Improvement A common pruning method is based on the improvement
that a refined rule yields in comparison to the original one [80]. The improve-
ment of a rule is defined as the smallest difference between the confidence of
a rule and the confidence of all sub-rules sharing the same consequent:

imp(A→ C) = min(∀A′ ⊂ A, conf (A→ C)− conf (A′ → C))

As an example, if one defines a minimum improvement minImp = 1%, the
rule A′ → C will be kept if conf (A′ → C) − conf (A → C) ≥ 1%, where
A ⊂ A′.

If imp(A→ C) > 0 we say that A→ C is a productive rule.
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Significant rules Another way to prune non productive rules is to use
statistical tests [125]. A rule is significant if the confidence improvement
over all its generalizations is statistically significant. The rule A → C is
significant if ∀A′ → C,A′ ⊂ A the difference conf (A→ C) − conf (A′ → C)
is statistically significant for a given significance level (α).

2.3 Label Ranking

In Label Ranking (LR), given an instance x from the instance space X, the
goal is to predict the ranking of the labels L = {λ1, . . . , λk} associated with
x [74]. A ranking can be represented as a strict total order over L, defined
on the permutation space Ω.

The LR task is similar to the classification task, where instead of a class we
want to predict a ranking of labels. As in classification, we do not assume
the existence of a deterministic X → Ω mapping. Instead, every instance is
associated with a probability distribution over Ω [26]. This means that, for
each x ∈ X, there exists a probability distribution P(·|x) such that, for every
π ∈ Ω, P(π|x) is the probability that π is the ranking associated with x. The
goal in LR is to learn the mapping X→ Ω. The training data contains a set
of instances D = {〈xi, πi〉}, i = 1, . . . , n, where xi is a vector containing the
values xji , j = 1, . . . ,m of m independent variables, A, describing instance i
and πi is the corresponding target ranking.

The rankings can be either total or partial orders.

Total orders A strict total order over L is defined as:1

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa}

which represents a strict ranking [123], a complete ranking [57], or simply a
ranking. A strict total order can also be represented as a permutation π of
the set {1, . . . , k}, such that π(a) is the position, or rank, of λa in π. For
example, the strict total order λ1 � λ2 � λ3 � λ4 can be represented as
π = (1, 2, 3, 4).

However, in real-world ranking data, we do not always have clear and unam-
biguous preferences, i.e. strict total orders [15]. Hence, sometimes we have

1For convenience, we say total order but in fact we mean a totally ordered set. Strictly
speaking, a total order is a binary relation.
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to deal with indifference and incomparability. For illustration purposes, let
us consider the scenario of elections, where a set of n voters vote on k can-
didates. If a voter feels that two candidates have identical proposals, then
these can be expressed as indifferent so they are assigned the same rank (i.e.
a tie).

To represent ties, we need a more relaxed setting, called non-strict total
orders, or simply total orders, over L, by replacing the binary strict order
relation, �, with the binary partial order relation, �:

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa}

These non-strict total orders can represent partial rankings (rankings with
ties) [123]. For example, the non-strict total order λ1 � λ2 = λ3 � λ4 can
be represented as π = (1, 2, 2, 3).

Additionally, real-world data may lack preference data regarding two or more
labels, which is known as incomparability. Continuing with the elections
example, the lack of information about one or two of the candidates, λa
and λb, leads to incomparability, λa ⊥ λb. In other words, the voter cannot
decide whether the candidates are equivalent or select one as the preferred,
because he does not know the candidates. Incomparability should not be
confused with intrinsic properties of the objects, as if we are comparing
apples and oranges. Instead, it is like trying to compare two different types
of apple without ever having tried either. In this cases, we can use partial
orders.

Partial orders Similarly to total orders, there are strict and non-strict
partial orders. Let us consider the non-strict partial orders (which can also
be referred to as partial orders) over L:

{∀ (λa, λb) ∈ L|λa � λb ∨ λb � λa ∨ λa ⊥ λb}

We can represent partial orders with subrankings [70]. For example, the
partial order λ1 � λ2 � λ4 can be represented as π = (1, 2, 0, 4), where 0
represents λ1, λ2, λ4 ⊥ λ3.

2.3.1 Methods

Several learning algorithms were proposed for modeling label ranking data
in recent years. These can be grouped as decomposition-based or direct.
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Decomposition-based methods divide the problem into several simpler prob-
lems (e.g., multiple binary problems). An example is ranking by pairwise
comparisons [57] and mining rank data [70]. Direct methods treat the rank-
ings as target objects without any decomposition. Examples of that include
decision trees [120, 26], k -Nearest Neighbors [17, 26] and the linear utility
transformation [68, 41]. This second group of algorithms can be divided into
two approaches. The first one contains methods that are based on statis-
tical distributions of rankings (e.g. [26]), such as Mallows [91], or Plackett-
Luce [24]. The other group of methods are based on measures of similarity
or correlation between rankings (e.g. [120, 6]).

LR-specific preprocessing methods have also been proposed, e.g. MDLP-
R [40] and EDiRa [39]. Both are direct methods and based on measures
of similarity. Considering that supervised discretization approaches usually
provide better results than unsupervised methods [46], such methods can
be of a great importance in the field. In particular, for AR-like algorithms,
such as the ones proposed in this work, which are typically not suitable for
numerical data.

For more information on label ranking learning methods, more information
ca be found in [57].

Label Ranking by Learning Pairwise Preferences

Ranking by pairwise comparisons basically consists of reducing the prob-
lem of ranking into several classification problems. In the learning phase,
the original problem is formulated as a set of pairwise preferences prob-
lem. Each problem is concerned with one pair of labels of the ranking,
(λi, λj) ∈ L, 1 ≤ i < j ≤ k. The target attribute is the relative order be-
tween them, λi � λj. Then, a separate modelMij is obtained for each pair of

labels. Considering L = {λ1, . . . , λk}, there will be h = k(k−1)
2

classification
problems to model.

In the prediction phase, each model is applied to every pair of labels to obtain
a prediction of their relative order. The predictions are then combined to
derive rankings, which can be done in several ways. The simplest is to order
the labels, for each example, considering the predictions of the models Mij

as votes. This topic has been well studied and documented [55, 74].
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2.3.2 Evaluation

Given an instance xi with label ranking πi and a ranking π̂i predicted by a LR
model, several loss functions on Ω can be used to evaluate the accuracy of the
prediction. One such function is the number of discordant label pairs:

D (π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) < π̂(b)}

If there are no discordant label pairs, the distance D = 0. Alternatively, the
function to define the number of concordant pairs is:

C (π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) > π̂(b)}

Kendall Tau Kendall’s τ coefficient [85] is the normalized difference be-
tween the number of concordant, C, and discordant pairs, D:

τ (π, π̂) =
C − D

1
2
k (k − 1)

where 1
2
k (k − 1) is the number of possible pairwise combinations,

(
k
2

)
. The

values of this coefficient range from [−1, 1], where τ (π, π) = 1 if the rankings
are equal and τ(π, π−1) = −1 if π−1 denotes the inverse order of π (e.g.
π = (1, 2, 3, 4) and π−1 = (4, 3, 2, 1)). Kendall’s τ can also be computed in
the presence of ties, using tau-b [5].

An alternative measure is the Spearman’s rank correlation coefficient [118].

Gamma coefficient If we want to measure the correlation between two
partial orders (subrankings), or between total and partial orders, we can use
the Gamma coefficient [93]:

γ (π, π̂) =
C − D
C +D

Which is identical to Kendall’s τ coefficient in the presence of strict total
orders, because C +D = 1

2
k (k − 1).

Weighted rank correlation measures When it is important to give
more relevance to higher ranks, a weighted rank correlation coefficient can
be used. They are typically adaptations of existing similarity measures, such
as ρw [110], which is based on Spearman’s coefficient.
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These correlation measures are not only used for evaluation estimation, they
can be used within learning [36] or preprocessing [39] models. Since Kendall’s
τ has been used for evaluation in many recent LR studies [26, 40], we use it
here as well.

The accuracy of a label ranker can be estimated by averaging the values of
any of the measures explained here, over the rankings predicted for a set
of test examples. Given a dataset, D = {〈xi, πi〉}, i = 1, . . . , n, the usual
resampling strategies, such as holdout or cross-validation, can be used to
estimate the accuracy of a LR algorithm.

2.4 Label Ranking Association Rules

Association rules were originally proposed for descriptive purposes. However,
they have been adapted for predictive tasks such as classification (e.g., [97]).
Given that label ranking is a predictive task, the adaptation of AR for label
ranking comes in a natural way. A Label Ranking Association Rule (LRAR)
[36] is defined as:

A→ π

where A ⊆ desc (X) and π ∈ Ω. LetRπ be the set of label ranking association
rules generated from a given dataset. When an instance x is covered by the
rule A → π, the predicted ranking is π. A rule rπ : A → π, rπ ∈ Rπ, covers
an instance x, if A ⊆ desc(x).

We can use the CAR framework[97] for LRAR. However this approach has
two important problems. First, the number of classes can be extremely large,
up to a maximum of k!, where k is the size of the set of labels, L. This means
that the amount of data required to learn a reasonable mapping X → Ω is
unreasonably large.

The second disadvantage is that this approach does not take into account
the differences in nature between label rankings and classes. In classifica-
tion, two examples either have the same class or not. In this regard, label
ranking is more similar to regression than to classification. In regression,
a large number of observations with a given target value, say 5.3, increases
the probability of observing similar values, say 5.4 or 5.2, but not so much
for very different values, say -3.1 or 100.2. This property must be taken
into account in the induction of prediction models. A similar reasoning can
be made in label ranking. Let us consider the case of a data set in which
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ranking πa = (1, 2, 3, 4) occurs in 1% of the examples. Treating rankings
as classes would mean that P (πa) = 0.01. Let us further consider that the
rankings πb = (1, 2, 4, 3) , πc = (1, 3, 2, 4) and πd = (2, 1, 3, 4), which are ob-
tained from πa by swapping a single pair of adjacent labels, occur in 50% of
the examples. Taking into account the stochastic nature of these rankings
[26], P (πa) = 0.01 seems to underestimate the probability of observing πa.
In other words it is expected that the observation of πb, πc and πd increases
the probability of observing πa and vice-versa, because they are similar to
each other.

This affects even rankings which are not observed in the available data. For
example, even though a ranking is not present in the dataset it would not
be entirely unexpected to see it in future data. This also means that it is
possible to compute the probability of unseen rankings.

To take all this into account, similarity-based interestingness measures were
proposed to deal with rankings [36].

2.4.1 Interestingness measures in Label Ranking

As mentioned before, because the degree of similarity between rankings can
vary, similarity-based measures can be used to evaluate LRAR. These mea-
sures are able to distinguish rankings that are very similar from rankings
that are very very distinct. In practice, the measures described below can be
applied to existing rule generation methods [36] (e.g. APRIORI [4]).

Support The support of a ranking π should increase with the observation
of similar rankings and that variation should be proportional to the similarity.
Given a measure of similarity between rankings s(πa, πb), we can adapt the
concept of support of the rule A→ π as follows:

suplr(A→ π) =

∑
i:A⊆desc(xi)

s(πi, π)

n

Essentially, what we are doing is assigning a weight to each target ranking πi
in the training data that represents its contribution to the probability that
π may be observed. Some instances xi ∈ X give a strong contribution to the
support count (i.e., 1), while others will give a weaker or even no contribution
at all.
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Table 2.1: An example of a label ranking dataset.

π1 π2 π3

TID A1 (1, 3, 2) (2, 1, 3) (2, 3, 1)
1 L 0.33 0.00 1.00
2 L 0.00 1.00 0.00
3 L 1.00 0.00 0.33

Any function that measures the similarity between two rankings or permu-
tations can be used, such as Kendall’s τ [85] or Spearman’s ρ [118]. The
function used here is of the form:

s(πa, πb) =

{
s′(πa, πb) if s′(πa, πb) ≥ θ

0 otherwise
(2.1)

where s′ is a similarity function. This general form assumes that below a
given threshold, θ, is not useful to discriminate between different rankings,
as they are so different from πa. This means that, the support suplr of
A→ πa will be based only on the items of the form 〈A, πb〉, for all πb where
s′(πa, πb) > θ).

Many functions can be used as s′. However, given that the loss function we
aim to minimize is known beforehand, it makes sense to use it to measure
the similarity between rankings. Therefore, we use Kendall’s τ as s′.

Concerning the threshold, given that anti-monotonicity can only be guar-
anteed with non-negative values [109], it implies that θ ≥ 0. Therefore we
think that θ = 0 is a reasonable default value, because it separates between
the positive and negative correlation between rankings.

Table 2.1 shows an example of a label ranking dataset represented according
to this approach. Instance ({A1 = L, π3}) (TID=1) contributes to the sup-
port count of ruleitem 〈{A1 = L}, π3〉 with 1, as expected. However, that
same instance, will also give a contribution of 0.33 to the support count of
ruleitem 〈{A1 = L}, π1〉, given their ranking similarity. On the other hand,
no contribution to the support of ruleitem 〈{A1 = L}, π2〉 is given, because
these rankings are clearly different. This means that suplr (〈{A1 = L}, π3〉) =
1+0.33

3
.

Confidence The confidence of a rule A→ π comes in a natural way if we
replace the classical measure of support with the similarity-based suplr.

conf lr (A→ π) =
suplr (A→ π)

sup (A)
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Improvement Improvement in association rule mining is defined as the
smallest difference between the confidence of a rule and the confidence of
all sub-rules sharing the same consequent [80]. In LR it is not suitable to
compare targets simply as equal or different (Section 2.4). Therefore, to im-
plement pruning based on improvement for LR, some adaptation is required
as well. Given that the relation between target values is different from clas-
sification, as discussed in Section 2.4.1, we have to limit the comparison
between rules with different consequents, if S ′ (π, π′) ≥ θ.

Improvement for Label Ranking is defined as:

implr(A→ π) = min(conf lr(A→ π)− conf lr(A
′ → π′))

for ∀A′ ⊂ A, and ∀ (π, π′) where S ′ (π′, π) ≥ θ. As an illustrative example,
consider the two rules r1 : A1 → (1, 2, 3, 4) and r2 : A2 → (1, 2, 4, 3), where
A2 is a superset of A1, A1 ⊂ A2. If S ′ ((1, 2, 3, 4) , (1, 2, 4, 3)) ≥ θ then r2 will
only be kept if, and only if, conf (r1)− conf (r2) ≥ minImp.

Lift The lift measures the independence between the consequent and the
antecedent of the rule [9]. The adaptation of lift for LRAR is straightforward
since it only depends the concept of support, for which a version for LRAR
already exists:

lift lr(A→ π) =
suplr(A→ π)

sup(A) · suplr(π)

2.4.2 Generation of LRAR

Given the adaptations of the interestingness measures proposed, the task
of learning LRAR can be defined essentially in the same way as the task
of learning AR, i.e. to identify the set of LRAR that has a support and a
confidence higher than the thresholds defined by the user. More formally,
given a training set D = {〈xi, πi〉}, i = 1, . . . , n, the algorithm aims to create
a set of high accuracy rules Rπ = {rπ : A → π} to cover a test set T =
{〈xj〉}, j = 1, . . . , s. If Rπ does not cover some xj ∈ T , a DefaultRanking
(Section 2.4.3) is assigned to it.
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Implementation of LRAR in CAREN

The association rule generator we are using is CAREN [10]. 2 CAREN imple-
ments an association rule algorithm to derive rule-based prediction models,
like CAR and LRAR. For Label Ranking datasets, CAREN derives associa-
tion rules where the consequent is a complete ranking.

CAREN is specialized in generating association rules for predictive mod-
els and employs a bitwise depth-first frequent pattern mining algorithm.
Rule pruning is performed using a Fisher exact test [10]. Like CMAR [95],
CAREN is a rule-based algorithm rather than itemset-based. This means
that, frequent itemsets are derived at the same time as rules are generated,
whereas itemset-based algorithms carry out the two tasks in two separated
steps.

Rule-based approaches allow for different pruning methods. For example,
let us consider the rule A → λ, where λ is the most frequent class in the
examples covering A. If sup (A→ λ) < minsup then there is no need to
search for a superset of A, A∗, since any rule of the form A∗ → λ,A ⊂ A∗

cannot have a support higher than minsup.

CAREN generates significant rules [125]. Statistical significance of a rule is
evaluated using a Fisher Exact Test by comparing its support to the support
of its direct generalizations. The direct generalizations of a rule A→ C are
∅ → C and (A \ {a})→ C where a is a single item.

The final set of rules obtained define the label ranking prediction model,
which we can also refer as the label ranker.

CAREN also employs prediction for strict rankings using consensus ranking
(Section 2.4.3), best rule, among others.

2.4.3 Prediction

A very straightforward method to generate predictions using a label ranker
is used. The set of rules Rπ can be represented as an ordered list of rules,
by some user defined measure of relevance:

< rπ1 , rπ2 , . . . , rπt >

As mentioned before, a rule r∗π : A∗ → π∗ covers (or matches) an instance xi ∈
T , if A∗ ⊆ desc(xi). If only one rule, r∗π, matches xi, the predicted ranking

2http://www4.di.uminho.pt/~pja/class/caren.html

http://www4.di.uminho.pt/~pja/class/caren.html
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for xi is π∗. However, in practice, it is quite common to have more than one
rule covering the same instance xi, R∗π (xj) ⊆ Rπ. In R∗π (xj) there can be
rules with conflicting ranking recommendations. There are several methods
to address those conflicts, such as selecting the best rule, calculating the
majority ranking, etc. However, it has been shown that a ranking obtained
by ordering the average ranks of the labels across all rankings minimizes the
euclidean distance to all those rankings [84]. In other words, it maximizes
the similarity according to Spearman’s ρ [118]. This can be referred to as
the average ranking [17].

Given any set of rankings {πi} (i = 1, . . . , s) with k labels, we compute the
average ranking as:

π (j) =

s∑
i=1

πi (j)

s
, j = 1, . . . , k (2.2)

The average ranking π can be obtained if we rank the values of π (j) , j =
1, . . . , k. A weighted version of this method can be obtained by using the
confidence or support of the rules in R∗π (xj) as weights.

Default rules

As in classification, in some cases, the label ranker might not find any rule
that covers a given instance xj, so R∗π (xj) = ∅. To avoid this, we need to
define a default rule, r∅, which can be used in such cases:

{∅} → default ranking

A default class is also often used in classification tasks [66], which is usually
the majority class of the training set D. In a similar way, we could define
the majority ranking as our default ranking. However, some label ranking
datasets have as many rankings as instances, making the majority ranking
not so representative.

As mentioned before, the average ranking (Equation 2.2) of a set of rankings,
minimizes the distance to all rankings in that set [84]. Hence we can use the
average ranking as the default ranking.



34 CHAPTER 2. PREFERENCE RULES

2.4.4 Parameter tuning

Due to the intrinsic nature of each different dataset, or even of the pre-
processing methods used to prepare the data (e.g., the discretization method),
the maximum minsup/minconf needed to obtain a rule set Rπ, that covers
all the examples, may vary significantly [98]. The trivial solution would be,
for example, to set minconf = 0 which would generate many rules, hence
increasing the coverage. However, this rule would probably lead to a lot of
uninteresting rules as well, as the model would overfit the data. Then, our
goal is to obtain a rule set Rπ which gives maximal coverage while keeping
high confidence rules.

Let us define M as the coverage of the model i.e. the coverage of the set of
rules Rπ. Algorithm 1 represents a simple, heuristic method to determine
the minconf that obtains the rule set such that a certain minimal coverage
is guaranteed minM .

Algorithm 1 Confidence tuning algorithm

Given minsup and step
minconf = 100%
while M < minM do

minconf = minconf − step
Run CAREN with (minsup,minconf ) and determine M

end while
return minconf

This procedure has the important advantage that it does not take into ac-
count the accuracy of the rule sets generated, thus reducing the risk of over-
fitting.

2.5 Pairwise Association Rules

Association rules use a sets of descriptors to represent meaningful subsets of
the data [69], hence providing an easy interpretation of the patterns mined.
Due to the intuitive representation, since its first application in the market
basket analysis [2], they have become very popular in data mining and ma-
chine learning tasks (Mining rankings [70], Classification [97], Label Ranking
[36], etc).
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LRAR proved to be an effective predictive model, however they are designed
to find complete rankings. Despite its similarity measures, which take into
account possible ranking noise, it does not capture subranking patterns be-
cause it will always try to infer complete rankings. On the other hand,
association rules were used to find patterns within rankings [70], however,
they do not relate it with the independent variables. Besides, in [70], the
consequent is limited to one pairwise comparison.

In this work, we propose a decomposition method to look for meaningful
associations between independent variables and preferences (in the form of
pairwise comparisons), the Pairwise Association Rules (PAR), which can be
regarded as predictive or descriptive model. We define PAR as:

A→ {λa � λb ∨ λa ⊥ λb ∨ λa = λb|λa, λb ∈ L}

where, as in the original AR paper [4], we allow rules with multiple items,
not only in the antecedent but also in the consequent, i.e. PAR can have
multiple sets of pairwise comparisons in the consequent.

Similarly to RPC (Section 2.3.1), we decompose the target rankings into
pairwise comparisons. Therefore, PAR can be obtained from data with strict
rankings, partial rankings and subrankings. 3

Contrary to LRAR, we use the same interestingness measures that are also
used in typical AR approaches, instead of the similarity-based versions de-
fined for LR problems, i.e. sup, conf, etc. This allows PAR to filter out
non-frequent/interesting patterns and makes it more difficult to derive strict
rankings. When methods cannot find interesting rules with enough pair-
wise comparisons to define a strict ranking, partial rankings, subrankings or
even with sets of disjoint pairwise comparisons can be found. This is, inter-
est measures are defining the borders between what the model will keep or
abstain.

Abstention is used in machine learning to describe the option to not make
a prediction when the confidence in the output of a model is insufficient.
The simplest case is classification, where the model can abstain itself to
make a decision [11]. In the label ranking task, a method that makes partial
abstentions was proposed in [28]. A similar reasoning is used here both for
predictive and descriptive models.

More formally, let us define D = {〈xi, πi〉}, i = 1, . . . , n where πi can be a
complete ranking, partial ranking or a sub-ranking. For each π of size k we

3To derive the PAR, we added a pairwise decomposition method to the CAREN [10]
software.
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can extract up to h pairwise comparisons. We consider 4 possible outcomes
for each pairwise comparison:

• λa � λb

• λb � λa

• λa = λb (indifference)

• λa ⊥ λb (incomparability)

As an example, a PAR can be of the form:

A→ λ1 � λ4 ∧ λ3 � λ1 ∧ λ1 ⊥ λ2

The consequent can be simplified into λ3 � λ1 � λ4 or represented as a
subranking π = (2, 0, 1, 3).

2.6 Experimental Results

In this section we start by describing the datasets used in the experiments,
then we introduce the experimental setup and finally present the results
obtained.

2.6.1 Datasets

The data sets in this work were taken from KEBI Data Repository in the
Philipps University of Marburg [26] (Table 2.2).

To illustrate domain-specific interpretations of the results, we experiment
with two additional datasets. We use an adapted dataset from the 1999 COIL
Competition [96], Algae [34], concerning the frequencies of algae populations
in different environments. The original dataset consisted of 340 examples,
each representing measurements of a sample of water from different Euro-
pean rivers on different periods. The measurements include concentrations
of chemical substances like nitrogen (in the form of nitrates, nitrites and
ammonia), oxygen and chlorine. Also the pH, season, river size and its flow
velocity were registered. For each sample, the frequencies of 7 types of algae
were also measured. In this work, we considered the algae concentrations as
preference relations by ordering them from larger to smaller concentrations.
Those with 0 frequency are placed in last position and equal frequencies are
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Table 2.2: Summary of the datasets

Datasets type #examples #labels #attributes Uπ
bodyfat B 252 7 7 94%
calhousing B 20,640 4 4 0.1%
cpu-small B 8,192 5 6 1%
elevators B 16,599 9 9 1%
fried B 40,769 5 9 0.3%
glass A 214 6 9 14%
housing B 506 6 6 22%
iris A 150 3 4 3%
segment A 2310 7 18 6%
stock B 950 5 5 5%
vehicle A 846 4 18 2%
vowel A 528 11 10 56%
wine A 178 3 13 3%
wisconsin B 194 16 16 100%

Algae (COIL) 316 7 10 72%
Sushi 5000 10 10 98%

represented with ties. Missing values in the independent variables were set
to 0.

Finally, the Sushi preference dataset [81], which is composed of demographic
data about 5000 people and sushi preferences is also used. Each person sorted
a set of 10 different sushi types by preference. The 10 types of sushi, are a)
shrimp, b) sea eel, c) tuna, d) squid, e) sea urchin, f) salmon roe, g) egg h)
fatty tuna, i) tuna roll and j) cucumber roll. Since the attribute names were
not transformed in this dataset, we can make a richer analysis of it.

Table 2.2 presents a simple measure of the diversity of the target rankings,
the Unique Ranking’s Proportion, Uπ. Uπ is the proportion of distinct target
rankings for a given dataset. As a practical example, the iris dataset has 5
distinct rankings for 150 instances, which results in Uπ = 5

150
≈ 3%.

2.6.2 Experimental setup

Continuous variables were discretized with two distinct methods: (1) Entropy-
based Discretization for Ranking data (EDiRa) ([39]) and (2) equal width
bins. EDiRa is the state of the art supervised discretization method in La-
bel Ranking, while equal width is a simple, general method that serves as
baseline.
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The evaluation measure used in all experiments is Kendall’s τ . A ten-fold
cross-validation was used to estimate the value for each experiment. The gen-
eration of Label Ranking Association Rules (LRAR) and PAR was performed
with CAREN [10] which uses a depth-first based approach.

The confidence tuning Algorithm 1 was used to set parameters. We consider
that 5% seems a reasonable step value because the minconf can be found
in, at most, 20 iterations. Given that a common value for the minsup in
Association Rules (AR) mining is 1%, we use it as default for all datasets.
We define the minM as 95% to get a reasonable coverage, and minImp = 1%
to avoid rule explosion.

In terms of similarity functions, we use a normalized Kendall τ between the
interval [0, 1] as our similarity function s (Equation 2.1).

2.6.3 Results with LRAR

In the experiments described in this section we analyze the performance from
different perspectives, accuracy, number of rules and average confidence as
the similarity threshold θ varies. We expect to understand the impact of using
similarity measures in the generation of LRAR and provide some insights
about its usage.

LRAR, despite being based on similarity measures, are consistent with the
classical concepts underlying association rules. A special case is when θ = 1,
where, as in CAR, only equal rankings are considered. Therefore, by varying
the threshold θ we also understand how similarity-based interest measures
(0 ≤ θ < 1) contribute to the accuracy of the model, in comparison to
frequency-based approaches (θ = 1).

We would also like to understand how some properties of the data relate the
sensitivity to θ. We can extract two simple measures of ranking diversity
from the datasets, the Unique Ranking’s Proportion (Uπ), mentioned before,
and the ranking entropy [39].

Sensitivity analysis

Here we analyze how the similarity threshold θ affects the accuracy, number
and quality (in terms of confidence) of LRAR.
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Figure 2.1: Average accuracy (Kendall τ) of CAREN as the θ varies

Accuracy In Figure 2.1 we can see the behavior of the accuracy of CAREN
in terms of θ. It shows that, in general, there is a tendency for the accuracy
to decrease as θ gets closer to 1. This happens in 12 out of the 14 datasets
analyzed. On the other hand, in 9 out of 14 datasets, the accuracy is rather
stable in the range θ ∈ [0, 0.6].

If we take into consideration that the model ignores all similarities between
rankings for θ = 1, the observed behavior seems to favor the similarity-
based approach. In line with that, two extreme cases can be seen with fried
and wisconsin datasets, where CAREN was not able to find any LRAR for
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θ = 1. 4

Let us consider the accuracy range, the maximum accuracy minus the mini-
mum accuracy. To find out which datasets are more likely to be affected by
the choice of θ, we can compare their ranking entropy with the measured ac-
curacy range from Figure 2.1. In Figure 2.2 we compare the accuracy range
with the ranking entropy [39]. We can see that, the higher the entropy, the
more the accuracy can be affected by the choice of θ.

Results seem to indicate that, when mining LRAR in datasets with low
ranking entropy, the choice of θ is not so relevant. On the other hand, as the
entropy gets bigger, a reasonable value should be 0 ≤ θ ≤ 0.6.

One interesting behavior can be found in the dataset fried. Despite the
fact that it has a very low proportion of unique rankings, Uπ (fried) = 0.3%
(Table 2.2) its entropy is quite high (Figure 2.2). For this reason, it makes it
more sensitive to θ, as seen in Figure 2.1. On the other hand, iris and wine,
with very low entropy, seem unaffected by θ.

Number of rules Ideally, we would like to obtain a small number of rules
with high accuracy. However, such a balance is not expected to happen fre-
quently. Ultimately, as accuracy is the most important evaluation criterion,
if a reduction in the number of rules comes with a high cost in accuracy,
it is better to have more rules. Thus, it is important to understand how
the number of LRAR varies with the similarity threshold θ, while taking the
impact in the accuracy of the model into account as well.

In Figure 2.3 we see how many LRAR are generated per dataset as θ varies.
The majority of the plots, 10 out of 14, show a decrease in the number of
rules as θ gets closer to 1. As discussed before, the accuracy in general also
decreases as θ ≥ 0.6, so let us focus on θ ∈ [0, 0.6].

In the interval θ ∈ [0, 0.6], the number of rules generated is quite stable in
9 out of 14 datasets. In the first half of this interval, θ ∈ [0, 0.3], it is even
more remarkable for 13 datasets.

We expect the number of rules to decrease as θ increases, however, results
show that the number of rules does not decrease so much, especially for val-
ues up to 0.3. This is due to the fact that θ is also used in the pruning step
(Section 2.4.1), reducing the number of rules against which the improvement
of an extension is measured and, thus, increasing the probability of an ex-

4The default rule was not used in these experiments because it is not related with θ.
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Figure 2.2: Measured accuracy range (Kendall τ) of CAREN in comparison to
ranking entropy.

tension not being kept in the model. This means that, minImplr is being
effective in the reduction of LRAR.

As mentioned before, implr (A→ π) not only compares rules A′ → π where
A′ ⊂ A, but also rules A→ π′ where S ′ (π′, π) ≥ θ. In other words, with the
minImplr we are pruning LRAR with similar rankings too.

These results do not lead to any strong conclusions about the ideal value for
θ regarding the number of rules. However, they are in line with the previous
analysis of accuracy.

Minimum Confidence As mentioned before, we use a greedy algorithm to
automatically adjust the minimum confidence in order to reduce the number
of examples that are not covered by any rule. This means that the method has
to adapt the value of minconf per dataset per θ, as seen in Figure 2.4.

In general, the minconf decreases in a monotonic way as θ increases. As
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θ ≈ 1 the minconf gets to its minimum with 13 out of 14 datasets, which
is consistent with the accuracy plots (Figure 2.1). This means that, if we
want to generate rules with as much confidence as possible, we should use
the minimum θ, i.e. θ = 0.
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Figure 2.4: Mininum confidence adjusted to CAREN as the θ varies

Support versus accuracy We vary the minimum support threshold, minsup,
to test how it affects the accuracy of our learner. A similar study has been
carried out on CBA [75]. Specifically, we vary the minsup from 0.1% to 10%,
using a step size of 0.1%. Due to the complexity of these experiments, we
only considered the six smallest datasets.
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In general, as we increase minsup the accuracy decreases, which is a strong
indicator that the support should be small (Figure 2.5). All lines are mono-
tonically decreasing, i.e. either the values remain constant or they decrease
as minsup increases.

From a different perspective, the changes are generally very small for minsup ∈
[0.1%, 1.0%]. Considering that lower minsup generate potentially more rules,
we recommend minsup = 1% as a reasonable value to start experiments
with.

Discretization techniques To test the influence of the discretization method
used, we performed the same analysis using a non-supervised discretization
method, equal width. In general, the accuracy had the same behavior, as
a function of θ, as with EDiRa, i.e. the results are highly correlated (Fig-
ure 2.6). However, the supervised approach is consistently better. These
results add further evidence that EDiRa is a suitable discretization method
for label ranking [39].

Similar behavior was observed concerning the number of rules generated and
the minimum confidence.
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Figure 2.6: Ranking accuracy (Kendall τ) of CAREN after the discretization of
data using equal width and EDiRa. This plot aggregates all the experiments carried
out, concerning different issues, which means that each dataset is represented
multiple times, with different parameter settings.

Summary It is well known that general, simple rules to set parameters
of machine learning algorithms do not exist. Nevertheless it is good to
know where reasonable values lie. Hence, we think that θ ∈ [0.5, 0.6] and
minsup = 1% are good default values for LRAR with CAREN. In terms of
the discretization methods, our results confirm that a supervised approach,
such as EDiRa, is a good choice.

2.6.4 Results with PAR

In this work we use PAR, as a descriptive model, to find patterns concerning
subsets of labels. We focus in the descriptive task for two reasons. One is
to make the approach more simple and the other one is because this comple-
ments with the predictive LRAR approach.
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The minimum support and confidence presented here are defining the absten-
tion level of the model. The minsup and minconf were adjusted manually
to generate a small set of rules between 150 to 200.

In the generation of PAR, we set the minimum lift to 1.5. Despite that many
interesting rules were found, due to space limitations we only present the
most relevant.

Algae data Using the Algae dataset, we found 179 PARs with minsup = 2
and minconf = 90. With sup = 2.2% and conf = 100% the rule with the
highest lift (approx. 6) was:

Riversize = small ∧ pH ≥ 37.9 ∧ Flowvelocity = high∧
Chloride ≥ 3.4 ∧ Nitrates&Ammonia ≥ 18.5

→ L6 � L2 ∧ L5 � L7 ∧ L2 � L7

The consequent of this rule can be represented as L6 � L2 � L7∧L5 � L7.
Considering that the labels represent algae populations, this rule states that
it is always true that, under these conditions, type 6 is more prevalent than
type 2. It also states that type 7 is less prevalent than types 2, 5 and 6.

The second rule with highest lift, with sup = 3.1% and conf = 91% is:

Flowvelocity = medium ∧ Nitrates&Ammonia < 18.5∧
Nitrogenasnitrates < 7.9

→ L1 � L7 ∧ L7 � L3

The target of this rule is the partial ranking L1 � L7 � L3.

If this PAR was used for prediction, the subranking π = (1, 0, 3, 0, 0, 0, 2)
would have been the prediction.

Sushi data When analyzing the sushi dataset we got 166 rules with minconf =
70% and the minsup = 1%. With a lift of 1.95 the following rule was
found:

Ageinterval = 15− 19 ∧ Sex = Male ∧ Livedin = Eastern Japan

→ egg � seaurchin ∧ shrimp � seaurchin

In the whole dataset, 37% of the people show this relative preferences egg �
seaurchin∧shrimp � seaurchin. This PAR shows that this number almost
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double (72%), if we consider males from Eastern Japan, aged between 15−
19.

A related rule was also found concerning a different group of people, with
different age and from a different region (sup = 1.1%, conf = 71.6% and
lift = 1.65):

Ageinterval = 30− 39 ∧ Sex = Male∧
Livesin = Western Japan ∧ Changedcity = Yes

→ seaurchin � egg∧
fattytuna � tunaroll∧
tunaroll � cucumberroll∧
fattytuna � egg

This rule includes one relative preference found in this group, seaurchin �
egg, which is the opposite to what was observed in the previous rule. Based
on this information, we analyzed the data and found out that 75% of people
that live in Eastern Japan prefer egg to seaurchin while 84% of people from
Western Japan prefer seaurchin to egg.

2.7 Conclusions

In this paper we address the problem of finding association patterns in label
rankings. We present an extensive empirical analysis on the behavior of a
label ranking method, the CAREN implementation of Label Ranking Asso-
ciation Rules. The performance was analyzed from different perspectives,
accuracy, number of rules and average confidence. The results show that,
similarity-based interest measures contribute positively to the accuracy of
the model, in comparison to frequency-based approaches, i.e. when θ = 1.
The results confirm that LRAR are a viable label ranking tool which helps
solving complex label ranking problems (i.e. problems with high ranking
entropy). The results also enabled the identification of some values for the
parameters of the algorithm that are good candidates to be used as default
values.

Results also seem to indicate that, the higher the entropy, the more the
accuracy can be affected by the choice of θ. An user can measure the ranking
entropy of a dataset beforehand and adjust θ accordingly.

Additionally, we propose Preference Association Rules (PAR), which are as-
sociation rules where the consequent represents multiple pairwise preferences.
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We illustrated the usefulness of this approach to identify interesting patterns
in label ranking datasets, which cannot be obtained with LRAR.

In future work, we will use PAR for predictive tasks.
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Entropy-based discretization
methods for ranking data
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Abstract

Label Ranking problems are becoming increasingly important in Machine
Learning. While there has been a significant amount of work on the devel-
opment of learning algorithms for LR in recent years, there are not many
pre-processing methods for LR. Some methods, like Naive Bayes for LR and
APRIORI-LR, cannot handle real-valued data directly. Conventional dis-
cretization methods used in classification are not suitable for LR problems,
due to the different target variable. In this work, we make an extensive anal-
ysis of the existing methods using simple approaches. We also propose a new
method called EDiRa for the discretization of ranking data. We illustrate the
advantages of the method using synthetic data and also on several benchmark
datasets. The results clearly indicate that the discretization is performing as
expected and also improves the results and efficiency of the learning algo-
rithms.

49
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3.1 Introduction

Research in Label Ranking (LR) has been increasing over the last few years [116,
36, 27, 28, 123, 127]. Label Ranking (LR) studies the problem of learning a
mapping from instances to rankings over a finite number of predefined labels.
An example of an LR problem is the ranking of a set of restaurants according
to the preferences of a given person. It can be considered as a variant of the
conventional classification problem [26]. However, in contrast to a classifica-
tion setting, where the objective is to assign examples to a specific class, in
LR we are interested in assigning a complete preference order of the labels
to every example. An additional difference is that the true (possibly partial)
ranking of the labels is available for the training examples.

As in any machine learning task, data preparation is essential for the devel-
opment of accurate LR models. For instance, some algorithms are unable
to deal with numeric variables, such as the basic versions of Naive Bayes
and Association Rules [102, 4], in which case numeric variables should be
discretized beforehand. Discretization, from a general point of view, is the
process of partitioning a given interval into a set of discrete sub-intervals. It
is normally used to split continuous intervals into two or more sub-intervals
which can then be treated as nominal values. In theory, a good discretization
should have a good balance between the loss of information and the number
of partitions [90]. While there has been a significant amount of work on
the development of learning algorithms for LR in recent years, there are not
many pre-processing methods specifically for this task.

Discretization methods are typically organized in two groups, depending on
whether or not they involve target variable information. These are usu-
ally referred to as supervised and unsupervised discretization, respectively.
Previous research found that the supervised methods produce more useful
discretizations than unsupervised methods [46]. The difference in nature be-
tween the target variable in classification and in LR problems implies that
supervised discretization methods developed for the former are not suitable
for the latter. In fact, in classification, two target values (i.e., classes) are
either equal or different, while in LR, the difference between two rankings is
closer to a continuous function, similar to the error in a regression setting. In
this work, we make an extensive empirical analysis of the existing methods.
We also propose a new method based on Minimum Description Length Prin-
ciple (MDLP) [54] for the discretization of ranking data. The new method
of supervised discretization for ranking data, which we refer to as EDiRa
(Entropy-based Discretization for Ranking), follows the line of work in [40].
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Based on MDLP for classification, it adapts the concept of entropy to LR
based on the distance between rankings.

We also make an extensive study of the Minimum Description Length Prin-
ciple for Ranking data (MDLP-R) method proposed in [40], which is also
based on MDLP [54]. This analysis includes varying its parameter to assess
how it affects the performance of the learner.

Finally we present a comparison between the newly proposed approach EDiRa
and MDLP-R, along with the original MDLP (i.e. for classification). The
results observed show that EDiRa behaves better in many scenarios and is
also more robust.

The paper is organized as follows: Section 3.2 introduces the LR problem
and the learning algorithms used in this paper. Section 3.3 introduces dis-
cretization and Section 3.4 describes the method proposed here. Section 3.5
presents the experimental setup and discusses the results. Finally, Section
3.6 concludes this paper.

3.2 Label Ranking

The LR task is similar to classification. In classification, given an instance
x from the instance space X, the goal is to predict the label (or class) λ to
which x belongs, from a predefined set L = {λ1, . . . , λk}. In LR, the goal is
to predict the ranking of the labels in L that are associated with x [74]. A
ranking can be represented as a total order over L defined on the permutation
space Ω. In other words, a total order can be seen as a permutation π of the
set {1, . . . , k}, such that π(a) is the position of λa in π.

As in classification, we do not assume the existence of a deterministic X→ Ω
mapping. Instead, every instance is associated with a probability distribution
over Ω [26]. This means that, for each x ∈ X, there exists a probability
distribution P(·|x) such that, for every π ∈ Ω, P(π|x) is the probability that
π is the ranking associated with x. The goal in LR is to learn the mapping
X → Ω. The training data contains a set of instances D = {〈xi, πi〉}, i =
1, . . . , n, where xi is a vector containing the values xji , j = 1, . . . ,m of m
independent variables describing instance i and πi is the corresponding target
ranking.

Given an instance xi with label ranking πi, and the ranking π̂i predicted by
an LR model, we evaluate the accuracy of the prediction with a loss function



52 CHAPTER 3. DISCRETIZATION

on Ω. One such function is the number of discordant label pairs,

D(π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) < π̂(b)}

If normalized to the interval [−1, 1], this function is equivalent to Kendall’s
τ coefficient [85], which is a correlation measure where D(π, π) = 1 and
D(π, π−1) = −1 (π−1 denotes the inverse order of π).

The accuracy of a model can be estimated by averaging this function over
a set of examples. This measure has been used for evaluation in recent
LR studies [26, 40] and, thus, we will use it here as well. However, other
correlation measures, like Spearman’s rank correlation coefficient [118], can
also be used.

Given the similarities between LR and classification, one could consider
workarounds that treat the label ranking problem essentially as a classifica-
tion problem. One such workaround is Ranking As Class (RAC) [40], which
replaces the rankings with classes:

∀πi ∈ Ω, πi → λi.

This approach allows the use of all pre-processing and prediction methods
for classification in LR problems.

3.2.1 Association Rules for Label Ranking

Label Ranking Association Rules (LRAR) [36] are a straightforward adapta-
tion of Class Association Rules (CAR):

A→ π

where A ⊆ desc (X) and π ∈ Ω. Where desc (X) is the set of descriptors of
instances in X, typically pairs 〈attribute, value〉. Similar to how predictions
are made with CARs in CBA (Classification Based on Associations) [97],
when an example matches the antecedent of the rule, A → π, the predicted
ranking is π.

If the RAC approach is used, the number of classes can be extremely large,
up to a maximum of k!, where k is the number of labels in L. This means
that the amount of data required to learn a reasonable mapping X→ Ω can
be very large.

Alternatively, mining of LRAR uses similarity-based support and confidence
measures [36].
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Similarity-based Support and Confidence

Given a measure of similarity s(πa, πb), the support of the rule A → π is
defined as follows:

suplr(A→ π) =

∑
i:A⊆desc(xi)

s(πi, π)

n
(3.1)

This essentially assigns a weight to each target πi in the training data, that
represents its contribution to the probability that π may be observed.

The similarity function is of the form:

s(πa, πb) =

{
s′(πa, πb) if s′(πa, πb) ≥ θsup

0 otherwise
(3.2)

where s′ is itself a similarity function between rankings. Any function that
measures ranking similarity, such as Kendall’s τ or Spearman’s ρ, can be
used as s′. This general form assumes that below a given threshold, θsup, it
is not useful to discriminate between different similarity values, as they are
too different from πa anyway.

The confidence of a rule A→ π is obtained simply by replacing the measure
of support with the new one:

conflr (A→ π) =
suplr (A→ π)

sup (A)

In a similar way to conf in classical Association Rule Mining [71], conflr (A→ π),
can be interpreted as the conditional probability of finding π givenA, P(π|A).

As in [36], we use Kendall τ to measure the similarity between rankings in
our experiments.

3.2.2 Naive Bayes for Label Ranking

Naive Bayes for Label Ranking (NBLR) [6] is an LR method based on the
naive Bayes Classifier. It uses a measure of probability adapted for rankings,
based on similar reasoning to the one underlying APRIORI-LR. This adapted
probability measure is plugged directly into the naive Bayes algorithm to
generate a LR model.
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The prior probability of a ranking π is defined in [6] as the mean similarity
between π and all the others:

PLR(π) =

∑n
i=1 ρ(π, πi)

n

where ρ is the Spearman rank correlation coefficient [118]. This assumes
that the larger the number of rankings similar to π there are, the higher the
probability to observe π. Similarly, the conditional probability of the value i
of attribute j, vji given ranking π is defined as:

PLR(vji |π) =

∑
i:xji=vji

ρ(π, πi)

|{i : xji = vji }|

Given an observation xi, the Naive Bayes for LR outputs the ranking π̂ with
the highest PLR(π|xi) value:

π̂ = arg max
π∈ΠL

PLR(π|xi)

where PLR(π|xi) is the estimated posterior probability of ranking π:

PLR(π|xi) = PLR(π)
m∏
j=1

PLR(xji |π)

3.3 Discretization

Discretization methods define intervals or ranges in continuous variables
which allows them to be used as nominal variables by learning algorithms.
Discretization is of great relevance since several algorithms can improve their
performance by using discretized data [53], even those that can discretize
variables on-the-fly [54], such as the ID3 discretizer [112].

The main issue in discretization is the choice of the intervals, because a con-
tinuous variable can be discretized in an infinite number of ways. An ideal
discretization method finds a reasonable number of cut points that split the
data into meaningful intervals. For classification datasets, a meaningful in-
terval should be coherent with the class distribution along the variable.

Discretization approaches can be divided along several dimensions:
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Top-down/Bottom-up Discretization methods with a Top-down or Bottom-
up approach start by sorting the dataset with respect to the variable which
will be discretized. In the Top-down approach, the method starts with an
interval containing all points. Then, it recursively splits the intervals into
sub-intervals, until a stopping criterion is satisfied. One example is MDLP
method [54].

In the Bottom-up approach, the method starts with the maximal number of
intervals (i.e., one cut point between each pair of adjacent values) and then
iteratively merges them until a stopping criterion is satisfied. One well-known
Bottom-up method is ChiMerge [86].

Static/Dynamic A dynamic discretization method acts on-the-fly, while
the learner is building the model. Static methods discretize the data before
the learning method starts to run. The latter are independent from the
learning methods whereas the dynamic methods only have access to data as
it is provided by the learner. Most of the discretization methods are static,
such as ChiMerge [86] or MDLP [54]. An example of a dynamic method is
how the ID3 algorithm deals with numeric variables [112].

Univariate/Multivariate Univariate methods, like MDLP [54], discretize
one attribute at a time while multivariate ones, such as MVD [12] or SMDNS [76],
can discretize two or more variables simultaneously. The latter can be useful
when there are high levels of interaction between attributes [60].

Supervised/Unsupervised The discretization methods can use the val-
ues of the target variable, when available, or not. These options are referred
to as supervised and unsupervised respectively. The unsupervised methods
ignore the classes of the objects and divide the interval into a user-defined
number of bins. Examples of the latter are the EqualWidth and EqualFre-
quency discretizations [60]. The supervised methods, like MDLP [54] or [73],
take into account the distribution of the class labels in the discretization pro-
cess. Previous research shows that the supervised methods tend to produce
better discretizations than the unsupervised ones [46].

It is not an easy task to determine which discretization technique is the best
because several criteria can be used to evaluate their performance [60]. These
include direct measures, such as the number of intervals generated, the pro-
cessing time and inconsistency [99], and indirect ones, such as measurement
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of the accuracy of classification algorithms on the discretized data. How-
ever, some tests have been done with the most well-known algorithms and
the results indicate that ChiMerge [86], MDLP [54], Zeta [72], Distance [22],
and Chi2 [99] are among the best ones [60]. Based on these results and on
the fact that it is one of the most commonly used methods, we decided to
adapt MDLP to discretize ranking data. A first adaptation of this method
for LR was already introduced, named MDLP-R [40] (Section 3.4). However,
as shown below, this method can be improved.

3.3.1 Entropy-based methods

Several methods perform discretization by optimizing entropy [29, 54]. In
classification, class entropy is a measure of uncertainty in a finite interval of
classes and it can be used as an evaluation metric.

The entropy of classes used in the original MDLP method [54], which derives
from the Shannon entropy, is defined as:

Ent (S) = −
K∑
i=1

P (Ci, S) log (P (Ci, S)) (3.3)

where P (Ci, S) stands for the proportion of examples with class Ci in a
subset S, and K is the number of distinct classes in S and

P (Ci, S) =
#Ci
nS

where nS is the number of instances in subset S.

A good partition is such that it minimizes the overall entropy in its subsets.
Likewise, in discretization, a good partition of the continuous variable mini-
mizes the class entropy in the subsets of examples it creates. It is well known
that the optimal cut points must be between instances of distinct classes [54].
In practical terms, the class information entropy is calculated for all possi-
ble partitions and compared with the entropy without partitions. This can
be done recursively until some stopping criterion is satisfied. The stopping
criteria can be defined by a user or by a heuristic method like MDLP.

Minimum Description Length Principle MDLP [54] is a well-known
method used to discretize continuous attributes in classification tasks. It
measures the information gain of a given split point by comparing the values
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of entropy before and after the partition. For each split point considered,
the entropy of the initial interval is compared with the weighted sum of the
entropy of the two resulting intervals. Given an interval S:

Gain (A, T ;S) = Ent (S)− |S1|
nS

Ent (S1)− |S2|
nS

Ent (S2)

where |S1| and |S2| are the number of instances on the left side (S1) and
the number of instances on the right side (S2), respectively, of the cut point
T in attribute A. The decision criterion for accepting or rejecting a new
partition by MDLP is given by the Minimum Description Length Principle
Cut (MDLPC) [54].

MDLPC Criterion The partition induced by a cut point T for a set S of
nS examples is accepted iff

Gain (A, T ;S) >
log2 (nS − 1)

nS
+

∆ (A, T ;S)

nS

where ∆ (A, T ;S) is equal to:

log2

(
3K − 2

)
− [KEnt (S)−K1Ent (S1)−K2Ent (S2)]

and K,K1, K2 is the number of distinct target values in S, S1, S2 respec-
tively.

3.4 Discretization for Label Ranking

A supervised discretization method for LR should take into account the speci-
ficities of its type of target, namely rankings. Two properties, in particular,
are important: how many different rankings are present in the subset and
how similar they are to each other. To adapt MLDP for LR, an entropy
measure should be used that accounts for these two properties [40].

In this work, we compare two different adaptations of the Shannon entropy
for rankings with the regular MDLP after an RAC transformation. These
entropy measures use MDLPC as a stopping criterion, in the same way as it
is used for classification. First we describe the adaptations of the entropy for
rankings and then we show how to integrate it with MDLP.
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Table 3.1: Example dataset Dex - Small artificial dataset with noise in the rank-
ings.

TID x1 π λRAC

1 0.1 (1,2,4,3,5) a
2 0.2 (1,2,3,4,5) b
3 0.3 (2,1,3,4,5) c
4 0.4 (1,3,2,4,5) d
5 0.5 (1,2,3,5,4) e
6 0.6 (5,4,3,1,2) f
7 0.7 (4,5,3,2,1) g
8 0.8 (5,3,4,2,1) h

3.4.1 Adapting the concept of entropy for rankings

In this section, we explain how the adapted versions of entropy for LR can be
used. We start by a motivation of the approach with a discussion of the use
of the concept of entropy in LR. We then show in detail how the heuristic
adaptation of entropy for rankings behaves.

Let us consider a very simple synthetic dataset Dex, presented in Table 3.1.
In this dataset, we have eight distinct rankings in the target column π. Even
though they are all distinct, the first five rankings are very similar (the label
ranks are mostly in ascending order), the last three are also very similar to
each other (descending order), but the first group is very different from the
second. Without any further considerations, it is natural to assume that an
optimal split point for x1 should lie between values 0.5 and 0.6 (instances 5
and 6).

In the RAC approach, the rankings are transformed into eight distinct classes
as shown in column λRAC . The natural split point identified earlier is com-
pletely undetectable in column λRAC . As shown in Equation 3.3, the entropy
of a set of classes depends on the relative proportion of a class. If we measure
the ranking proportion in the same way, we get:

P
(
λRACi , Dex

)
= 1/8, ∀λRACi ∈ Dex

This example illustrates why the concept of entropy cannot be applied di-
rectly to rankings. In fact, the problem we are facing here is the same as
in the adaptation of the concept of support for LRAR in APRIORI-LR [36]
(Equation 3.4). Hence, a similar line of reasoning as the one in Section 3.2.1
can be followed here. The uncertainty associated with a certain ranking
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decreases in the presence of similar – although not equal – rankings. Fur-
thermore, this decrease is proportional to that distance. To take this into
account, we can use the distance-based ranking proportion of ranking πi in
set S [40]:

Pπ (πi, S) =

∑nS

j=1 s (πi, πj)∑K
i=1

∑nS

j=1 s (πi, πj)
(3.4)

where

s(πa, πb) =

{
s′(πa, πb) if s′(πa, πb) ≥ θdisc

0 otherwise
(3.5)

and θdisc is the threshold parameter of the similarity measure, equivalent to
the threshold for similarity support, θsup, in Equation 3.2. As in [40], we
use Kendall τ as s′, by default, and the negative correlations are ignored
(Section 3.2.1), i.e. θdisc ≥ 0.

However, this approach alone is not enough to give a fair measure for the
entropy of rankings. The entropy of the set of classes {λ1, λ2} is the same as
{λ1, λ3} or {λ2, λ3}. This happens because, λ1 is as different from λ2 as λ2

is from λ3. However, in LR, the difference between two rankings is closer to
a continuous function. Considering these two sets:

1)S1 = {π1 = (1, 2, 3, 4, 5) , π2 = (1, 2, 3, 5, 4)}

2)S2 = {π1 = (1, 2, 3, 4, 5) , π3 = (5, 4, 3, 2, 1)}

the distance-based ranking proportion of π1 relative to sets S1 and S2, using
Kendall τ as a similarity measure, for S1 and S2 is, respectively:

Pπ (π1,S1) =
s (π1, π1) + s (π1, π2)

s (π1, π1) + s (π1, π2) + s (π2, π1) + s (π2, π2)
=

=
1 + 0.8

1 + 0.8 + 0.8 + 1
= 0.5 (3.6)

and

Pπ (π1,S2) =
s (π1, π1) + s (π1, π3)

s (π1, π1) + s (π1, π3) + s (π3, π1) + s (π3, π3)
=

=
1 + 0

1 + 0 + 0 + 1
= 0.5. (3.7)

Since the ranking proportions will be the same in both cases, the entropy will
also be the same. If we decompose these rankings into pairwise-comparisons,
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Table 3.2: Pairwise-comparisons perspective.

Pairwise π1(1,2,3,4,5) π2(1,2,3,5,4) π3(5,4,3,2,1)

λ1 � λ2 true true false
λ1 � λ3 true true false
λ1 � λ4 true true false
λ1 � λ5 true true false
λ2 � λ3 true true false
λ2 � λ4 true true false
λ2 � λ5 true true false
λ3 � λ4 true true false
λ3 � λ5 true true false
λ4 � λ5 true false false

we obtain the 10 label comparisons presented in Table 3.2. π1 matches 9
pairs with π2, but it does not match any with π3.

Another issue that must be taken into account when adapting entropy for
rankings is that, as in any probabilistic phenomenon, ranking data is ex-
pected to contain some noise. Noise in rankings may be caused by different
reasons. For example, if a total ranking results from the combination of a
set of incomplete pairwise preferences, it may not be an entirely accurate
representation of the true ranking. Or, give a set of items (e.g. products) as-
sociated with an utility function (e.g. price), when asked to rank those items
according to the utility function, different experts might provide slightly dif-
ferent rankings. The differences can arise due to imperfect or incomplete
access to information [92]. As an example, instances 6, 7 and 8 in Dex could
represent the same “real” ranking, say (5, 4, 3, 2, 1), but perceived by differ-
ent experts. Additionally, as the number of labels increases, we expect that
the probability of being affected by noise is also higher. For simplicity, in
this work, we assume all different sources of noise have similar manifestations
and, thus, are treated in the same way.

Considering that entropy is a measure of disorder, we believe that a measure
of entropy for rankings should generate lower values for sets with similar
rankings (low noise) and higher values for sets with different rankings (high
noise).
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MDLP-R

As discussed in [40], MDLP-R addresses the issues discussed earlier. It is
based on an adaptation of entropy for rankings EntLR, which is defined
as:

EntLR (S) =
K∑
i=1

Pπ (πi, S) log (Pπ (πi, S))× log (Q (πi, S)) (3.8)

where K is the number of distinct rankings in S and Q (πi, S) is the average
similarity of the ranking πi with the rankings in the subset S:

Q (πi, S) =

∑nS

j=1 s (πi, πj)

nS

where s is a similarity measure (Equation 3.5). Additionally, abs (log (Q (πi, S)))
can be seen as a dispersion measure around πi. If a lot of rankings in S are
similar to πi, Q (πi, S) will be close to 1. On the other hand, low values
are obtained when there are no rankings in S that are similar to πi. As a
practical example, using this measure on the sets mentioned before, S1 and
S2, we get, Q (π1,S1) = 0.90 and Q (π1,S2) = 0.50. Which will result in
abs (log (0.90)) = 0.105 and abs (log (0.5)) = 0.693, as expected.

The value of EntLR depends strongly on the threshold θdisc. If the similarity
measure, s (πi, πj), generates negative correlations, Q (πi, S) may, under cer-
tain conditions, be negative. Since the log of negative values is not defined,
the domain of the parameter θdisc is defined as: 0 ≤ θdisc ≤ 1. Alternatively,
this limitation is not required if the value of s is rescaled to the interval [0, 1]
(Equation 3.5).

In our example, the value of EntLR on the sets S1 and S2 is EntLR (S1) ≈
0.073 and EntLR (S2) ≈ 0.480, respectively. Intuitively, this makes more
sense than the values obtained using MDLP with RAC, which is the same
for the two sets EntRAC (S1) = EntRAC (S2) ≈ 0.693.

EDiRa

Here, we propose a new entropy measure for rankings which is more simple
and intuitive than MDLP-R and has no parameters. This new measure can
be divided into two parts. The first part is the Shannon entropy as defined
in [54] (Equation 3.3). The second part is a dispersion measure which makes
the entropy measure more sensitive to overall similarity between the rankings
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in the set S. It is expressed as an average of the similarity measure, s′,
normalized between 0 and 1.

While, in MDLP-R, the proportion in entropy is similarity-based, the new
measure uses the standard proportion as in classification, P (πi, S). In fact,
some tests indicated that, in this particular approach, the two types of pro-
portions yielded equivalent results. 1 This means that the second part of
the formula has a stronger impact on the similarity level. For this reason
we decided to keep the simplest approach, both from a theoretical and a
computational perspective, which is the standard proportion.

In the second part of the expression, which represents the homogeneity of the
rankings in the subset S, we use log

(
kt (S)

)
. Where kt (S) is the average

normalized 2 Kendall τ distance in the subset S:

kt (S) =

∑K
i=1

∑nS

j=1
τ(πi,πj)+1

2

K × nS

As an example, kt (S1) = 0.95 and kt (S2) = 0.50

This leads to the new expression to compute the entropy of rankings:

EntLR2 (S) =
K∑
i=1

P (πi, S) log (P (πi, S)) log
(
kt (S)

)
(3.9)

where K is the number of distinct rankings in S. This measure makes the
discretization method more robust to noise, as shown in Section 3.5. The
values of this new measure on the example sets S1 and S2 are EntLR2 (S1) ≈
0.036 and EntLR2 (S2) ≈ 0.480. These values show that this new entropy is
consistent with the previous one.

Given that Kendall τ is a measure of the proportion of the concordant pairs
of labels, this entropy measure can still work with partial orders, as long as
there is at least one pairwise comparison per instance. However, in this work,
we focus on total orders.

Two different discretization methods can be created simply by replacing the
standard entropy measure by each of the two new measures in the entropy of
rankings in the MDLP presented in [54]. In terms of taxonomy (Section 3.3),
MDLP-R and EDiRa are, thus, in the same category as MDLP, namely Top-
down, Static, Univariate and Supervised.

1In the interest of space, we opted to omit these results.
2Since similarity measures for rankings, such as Kendall τ and Spearman ρ, are defined

in the interval [−1, 1], we rescale their to the interval [0, 1] by adding 1 and dividing by 2.
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3.5 Experimental Results

In this paper, we are investigating discretization methods, which are hard to
evaluate directly. Thus, they are evaluated here as pre-processing methods
to the APRIOR-LR [36] and NBLR [6] algorithms. The experimental study
is divided into three parts. In the first part, we perform experiments on
benchmark datasets to gain some understanding about how the parameter
θdisc affects the performance of MDLP-R. The second part consists of exper-
iments on controlled artificial datasets to investigate whether the methods
are performing as expected. The third part tests the discretization methods
with the APRIORI-LR algorithm and NBLR on datasets from the KEBI
Data Repository [26] (Table 3.3).

For these experiments in particular, it is useful to define a simple measure of
the diversity of the target rankings, which we refer to as Unique Ranking’s
Proportion, Uπ. Uπ is the proportion of distinct target rankings for a given
dataset (Table 3.3). As a practical example, the iris dataset has 5 distinct
rankings for 150 instances, which will result in a Uπ = 5

150
≈ 3%. This means

that all the 150 rankings are duplicates of these 5.

We believe that datasets with high Uπ should be more difficult to discretize
using the RAC approach because the number of classes is very high. The ex-
periments performed in the artificial datasets (Section 3.5.2) provide evidence
that support this observation.

Table 3.3: Summary of the datasets.

Datasets type #examples #labels #attributes Uπ
bodyfat B 252 7 7 94%
calhousing B 20,640 4 4 0.1%
cpu-small B 8,192 5 6 1%
elevators B 16,599 9 9 1%
fried B 40,769 5 9 0.3%
glass A 214 6 9 14%
housing B 506 6 6 22%
iris A 150 3 4 3%
segment A 2310 7 18 6%
stock B 950 5 5 5%
vehicle A 846 4 18 2%
vowel A 528 11 10 56%
wine A 178 3 13 3%
wisconsin B 194 16 16 100%
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The evaluation measure is Kendall’s τ and the performance of the methods
was estimated using ten-fold cross-validation. In Section 3.5.2 the experi-
ments were repeated ten times, due to the random nature of the changes
made to the data. For the generation of Label Ranking Association Rules
(LRAR), we used an extension of CAREN [10] for LR.

3.5.1 Sensitivity to the θdisc parameter

The entropy of a set of rankings varies depending on the value of the θdisc
threshold (Equation 3.8), sometimes significantly affecting its value. The first
set of experiments investigates how that affects the accuracy of the learning
methods. We did experiments with APRIORI-LR on KEBI datasets for
different θdisc thresholds, varying θdisc from 0 to 1 by steps of 0.1.
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Figure 3.1: Accuracy of APRIORI-
LR (expressed in terms of Kendall τ)
as θdisc varies, in datasets where the
distinct rankings represent less than
5% of the data. (Uπ < 5%)
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Figure 3.2: Accuracy of APRIORI-
LR (expressed in terms of Kendall
τ) as θdisc varies, in datasets where
the distinct rankings represent more
than 5% of the data. (Uπ ≥ 5%)

The results indicate that θdisc plays an important role in the behavior of
MDLP-R. Which, on the other hand, will influence the accuracy of APRIORI-
LR. To better understand how to adjust θdisc for any given dataset, it is useful
to divide the datasets into two distinct groups: 1) Uπ < 5% (Figure 3.1) and
2) Uπ ≥ 5% (Figure 3.2).

The most interesting impact of splitting the datasets by high and low Uπ is
that they seem to behave differently. For the first group (Figure 3.1) as θdisc
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increases, the accuracy of APRIORI-LR increases for most of the datasets
and very rarely decreases the accuracy. On the other hand, in Figure 3.2
we can see that increasing θdisc has the opposite effect on the second group.
This means that when there are only a few distinct rankings in the data,
the method can be less sensitive to the ranking similarities. As the value
of the parameter increases, the method tends to fit every distinct ranking
into a different bin. This should work as long as there is a reasonable small
number of distinct rankings. A lower θdisc threshold allows the method to
group larger ranges into each bin. In datasets with higher Uπ, as the method
is more robust to noise, it should create better partitions, i.e. by grouping
the “closer” rankings together in the same bins.

This analysis shows that θdisc plays an important role in the effectiveness of
the partitions made by MDLP-R. Also, by measuring Uπ, we can get some
clues about a reasonable value for θdisc.

3.5.2 Results on Artificial Datasets

Table 3.4: Discretization results using the MDLP, MDLP-R and EDiRa methods.

Partitions
TID x1 π MDLP-R/EDiRa MDLP

1 0.1 (1,2,4,3,5) 1 1
2 0.2 (1,2,3,4,5) 1 2
3 0.3 (2,1,3,4,5) 1 3
4 0.4 (1,3,2,4,5) 1 4
5 0.5 (1,2,3,5,4) 1 5
6 0.6 (5,4,3,1,2) 2 6
7 0.7 (4,5,3,2,1) 2 7
8 0.8 (5,3,4,2,1) 2 8

Results obtained with artificial datasets can give more insight about how
the discretization methods perform. Table 3.4 compares the intervals dis-
cretized by the MDLP-R and MDLP on the very simple dataset presented in
Table 3.1. As expected, since there are eight distinct rankings, the RAC ap-
proach with MDLP for classification will see eight distinct classes and break
the dataset into eight intervals. MDLP-R and EDiRa, however, can identify
the similarities of rankings, and split the dataset into two intervals.

For a more thorough analysis, we follow the experimental setup used in [40]
with some variations. The synthetic datasets are based on a simple set with
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100 examples, containing one independent variable with value 1 for the first
example, 2 for the second, and so on, and the target rankings are distributed
in the following order:

• Examples 1 to 38: variations of π1 = (10, 2, 3, 4, 5, 6, 7, 8, 9, 1)

• Examples 39 to 75: variations of π2 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Examples 76 to 100: variations of π3 = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1)

The natural breakpoints for this dataset are T1 = 38.5 and T2 = 75.5 which
were intentionally chosen to avoid trivial partitions. However, considering
that π1 is much closer to π2 than to π3, T2 should have a bigger impact in
the total entropy than T1. In order to test the advantages of our method
in comparison with the RAC approach, we intentionally introduced noise in
the target rankings, by performing several swaps. Each swap is an inversion
of two consecutive ranks in every ranking of the data. For each ranking, the
choice of the pairs to invert is random. Swaps will be done repeatedly, to
obtain different levels of noise.

We performed experiments which vary the number of swaps from 0 to 150.
As the number of random swaps increases, the proportion of unique rankings
Uπ should also increase. Therefore it becomes harder to learn an accurate
model. In the following experiments, Uπ grows very rapidly, as any number
of swaps bigger than 5 produce a Uπ ≥ 99%.

In [40], minconf was fixed to 50% in all APRIORI-LR runs and minsup =
0.1%. When APRIORI-LR cannot find at least one LRAR to rank a new
instance it predicts a default ranking. Here, we use a different approach.
As the default rule is only used as a last resort, for a fair comparison of the
methods, the minimum confidence (minconf ) is adjusted with a simple greedy
method (Algorithm 2), so that Cov ≥ 95%, where Cov is the proportion of
test examples covered by the model, i.e. with a prediction not generated
by the default rule. For each run, a different minconf can be found, so the
values presented in Table 3.5 are the average of the 10 runs.

Figure 3.3 (top graph) shows the effect of varying the number of swaps on
the ranking accuracy obtained by APRIORI-LR with the three different dis-
cretization methods, MDLP, MDLP-R and EDiRa. The graph, clearly indi-
cates that the discretization with EDiRa (orange line) leads to better results
for APRIORI-LR, than with the other two. While for lower number of swaps,
the difference is not so evident, as the noise increases, the other methods are
increasingly more affected by it than EDiRa.

The two ranking discretization methods, MDLP-R and EDiRa, behave simi-
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Figure 3.3: Accuracy (Top) and its Standard Deviation (Bottom) of the
APRIORI-LR (expressed in terms of Kendall τ) as a function of the number of
swaps and its standard deviation, for MDLP (black dotted line), MDLP-R (blue
dashed line) and EDiRa (orange line).
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Figure 3.4: Comparison of the average number of partitions generated by MDLP
(black dotted line), MDLP-R (blue dashed line) and EDiRa (orange line).
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Figure 3.5: Comparison of the number of rules generated by APRIORI-LR after
discretization with MDLP (black dotted line), MDLP-R (blue dashed line) and
EDiRa (orange line).
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Algorithm 2 Parameter tuning method.

minconf ← 100%
minsup← 1%
Cov ← 0%
while Cov < 95% do

function APRIORI-LR(minconf,minsup)
return Cov

end function
if Cov < 95% then

mconf ← mconf − 5
end if

end while
return minconf

larly between 0 to 20 swaps, with equivalent accuracies obtained by APRIORI-
LR (as it can be seen in the top graph in Figure 3.3 by the overlapping lines).
However, from that point on, MDLP-R starts to behave worst, in terms of
APRIORI-LR accuracy, than EDiRa and even MDLP.

If we analyze Figure 3.3 (bottom graph) representing the standard deviation
over the 10 repetitions of the results presented in the top graph, there is addi-
tional information in favor of MDLP-R and EDiRa. The standard deviation
of the results of these methods is smaller in the presence of small amounts of
noise (until approximately 30 swaps for MDLP-R and 80 swaps for EDiRa).
This means that EDiRa is the most reliable method in this scenario.

One great advantage of using EDiRa can be seen in Figure 3.4, which rep-
resents the number of partitions made by the methods for different values
of the number of swaps. For any number of swaps up to 80, approximately,
EDiRa makes two partitions, which means that the split point choice is in-
variant to greater amounts of noise than MDLP-R and MDLP. This will
result in a smaller number of rules generated by APRIORI-LR, as supported
by the graph in Figure 3.5. In this scenario, EDiRa makes APRIORI-LR
much more efficient because it will use less than 10% of the rules, relatively
to MDLP, and even gets slightly better accuracy. Furthermore, fewer rules
means that the model is easier to interpret by humans, which is an important
requirement in many applications [94].

In Figure 3.6, we can see how the average minconf (determined by Algo-
rithm 2) evolves as the number of swaps increase. Intuitively, we expect that
fewer partitions will produce rules with lower confidence as we increase the
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Figure 3.6: Comparison of the average minconf used by APRIORI-LR with the
three discretization methods. MDLP (black dotted line), MDLP-R (blue dashed
line) and EDiRa (orange line).
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noise. These values are in agreement with the observed graphs, in particular
with Figure 3.4.

Remember that we aim to decrease the entropy of the system by making
partitions. However, as the level of noise increases the relationship between
the independent variable and the target becomes weaker and, at some point,
random. Ideally, a supervised discretization method should be able to detect
this phenomenon. This is exactly what we observe in Figure 3.4 for EDiRa,
when the number of swaps is greater than 100, which in a ranking of 10 labels
will probably lead to a random target ranking, it stops making partitions.
On the other hand, from around 20 swaps, MDLP-R starts to make more
and more partitions, resulting in worst accuracy for APRIORI-LR.

Finally, in Figure 3.7 we are able to see how the different methods measure
entropy for the same data. It is interesting to realize that, in the graph of 0
swaps, the methods behave similarly. As we increase the number of swaps,
we start to see how the behaviors diverge. For 6 swaps or more MDLP cannot
identify any obvious partitions, which explains the flat line of the method in
Figure 3.4. On the other hand, for MDLP-R and EDiRa the partitions are
still very clear up to 50 swaps.

Taking into account that the two rankings used to generate the target rank-
ings for examples 1 to 75 are more similar to each other than to the ranking
used in the remaining examples, it makes more sense to observe lower values
near T2 than near T1. The graphs for 1 to 10 swaps in Figure 3.7 show that
MDLP-R is giving very similar values for this two cut points, while EDiRa
clearly indicates that T2 is the most important cut.

In previous work, [40], MDLP-R was performing better than MDLP in most
of the results but this is not observed in Figure 3.3. This is due to the use
in these experiments of a different setup and different parameters from the
ones used in [40]. The tuning of minconf leads to an increase of accuracy for
APRIORI-LR with an MDLP discretization, which outperforms the results
obtained with MDLP-R. We believe that the main reason is that from a
certain level of noise (more than 20 swaps) MDLP-R is overfitting. This
observation is supported by Figure 3.4, where the number of partitions grows
up to almost 50 partitions for very noisy scenarios. This number of partitions
represents almost %50 of the number of instances in these experiments. Still,
for smaller levels of noise, MDLP-R is a better choice in comparison to MDLP,
as the accuracy of APRIORI-LR is higher, even though, using fewer rules
Figure 3.5.

All of these results are good indicators that EDiRa creates more meaningful
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intervals for ranking data.

3.5.3 Results on Benchmark Datasets

In this section, we describe experiments carried out with two algorithms
which are more suitable for nominal rather than continuous variables, APRIORI-
LR [36] and NBLR [6]. Finally, we also briefly discuss how the methods
behave using different similarity measures.

Results with APRIORI-LR

In these experiments, we used a similar experimental setup to the one in [40].
Given that the majority of the datasets have less than 1000 instances and we
want to avoid overfitting, the minimum support (minsup) was set to 1% in-
stead of 0.1%. For the minconf, we use the method proposed in Section 3.5.2
(Algorithm 2).

Table 3.5: Results obtained by APRIORI-LR with MDLP, MDLP-R and EDiRa
discretization on benchmark datasets. The mean accuracy is represented in terms
of Kendall’s tau, τ .

MDLP MDLP-R EDiRa
τ mconf #rules #part τ mconf #rules #part τ mconf #rules #part

bodyfat .087 28 748 59 .000 5 744 80 .139 24 144 2
calhousing .291 35 113 7 .193 26 89 106 .272 35 107 9
cpu-small .414 37 209 3 .399 38 302 37 .429 35 332 4
elevators .646 60 206 3 .465 45 678 116 .669 60 714 4
fried .749 35 1,733 6 .523 24 1,019 20 .706 25 1,281 12
glass .815 90 52 3 .825 99 510 10 .800 87 43 2
housing .720 57 373 10 .762 66 465 22 .715 56 210 5
iris .944 93 24 3 .941 85 31 4 .906 83 31 3
segment .891 90 3,415 13 .891 85 1,887 36 .895 90 3467 7
stock .868 81 324 11 .834 78 340 19 .858 80 315 8
vehicle .827 94 4,506 4 .782 87 2,282 14 .812 94 4,664 4
vowel .668 74 4,013 14 .568 59 1,881 112 .648 63 794 3
wine .937 100 617 2 .884 100 1,549 6 .937 100 1,028 2
wisconsin .268 41 1,058 44 .220 38 1149 76 .404 52 10,550 2
average τ .651 - - - .591 - - - .656 - - -
standard dev τ .276 - - - .301 - - - .251 - - -

Table 3.5 shows that EDiRa improves the APRIORI-LR accuracy in the
benchmark datasets when compared to MDLP-R. With this new method, the
average number of partitions (#part) is drastically reduced in all datasets.

Comparing EDiRa with MDLP, we observe that both methods lead to very
similar accuracy. We would like to give particular attention to the two
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datasets where Uπ is very big namely bodyfat and wisconsin. The datasets
have Uπ = 94% and Uπ = 100% respectively. The average number of par-
titions with EDiRa in these two datasets is much smaller than with MDLP
while the accuracy of APRIORI-LR has a major increase.

Another important fact that can be observed in Table 3.5 is that every time
that APRIORI-LR generated more rules with EDiRa than with MDLP-R,
there is an increase in the accuracy. This is true for datasets calhousing,
cpu-small, elevators, fried, segment, vehicle and wisconsin.

Results with NBLR

The second LR algorithm tested was an adaptation of the simple naive Bayes
algorithm for Label Ranking [6]. This adaptation of the algorithm cannot be
used with numeric variables.

Table 3.6: Results obtained for naive Bayes for Label Ranking with MDLP,
MDLP-R and EDiRa discretization on benchmark datasets. (The mean accuracy
is represented in terms of Kendall’s tau, τ).

MDLP MDLP-R EDiRa
τ #part τ #part τ #part

bodyfat .060 59 .081 80 .175 2
calhousing .293 7 .322 106 .286 9
cpu-small .397 3 .408 37 .400 4
elevators .611 3 .580 116 .602 4
fried .823 6 .897 20 .896 12
glass .759 3 .675 10 .717 2
housing .742 10 .777 22 .684 5
iris .889 3 .876 4 .836 3
segment .711 13 .712 36 .702 7
stock .736 11 .742 19 .719 8
vehicle .657 4 .682 14 .657 4
vowel .686 14 .497 112 .616 3
wine .786 2 .794 6 .786 2
wisconsin .346 44 .268 76 .394 2

average τ .607 - .593 - .605 -
standard dev τ .240 - .245 - .213 -

Table 3.6 shows the accuracy of this algorithm for the benchmark datasets.
In this case, there is no clear winner among any of the three discretization
methods available. However, the results obtained with EDiRa seem to be
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more consistent as the standard deviation of the accuracy shows. This indi-
cates that EDiRa is more reliable than the other methods.

Additionally, if we observe the two datasets with the highest Uπ, which are
expected to be the hardest for the methods, the best accuracy is obtained
with EDiRa.

Using a different similarity measure

As mentioned in Section 3.4.1, any ranking similarity measure can be used
for MDLP-R or EDiRa. Similar results to the ones presented in Table 3.5
and Table 3.6, were obtained using Spearman ρ as similarity measure. In
the interest of space, we do not present those results. However, to illustrate
them, we present in Figure 3.8 how the accuracy obtained by APRIORI-
LR follows the same behavior for both discretization methods using the two
similarity measures.

3.6 Conclusions

In this paper, we presented an extensive study of discretization for LR prob-
lems. Despite the increase in research on LR, most papers focus on the
development of new algorithms and, thus, little attention has been paid to
pre-processing methods. We carried out a detailed analysis on MDLP-R. We
also introduced a new method for supervised discretization in LR problems,
EDiRa, based on an improved measure of entropy. Both methods use differ-
ent entropy measures which were adapted to take into account the similarity
of rankings.

An analysis of MDLP-R in terms of the similarity threshold parameter θdisc
was performed to better understand its behavior. It was clear that, in simple
scenarios, MDLP-R deals with noisy ranking data according to expectation
and that θdisc plays a major role in it. However, in more complex situations,
MDLP-R tends to overfit the data.

The new method, EDiRa, was motivated by the need for increased sensitivity
to the homogeneity of rankings in a set. The results show that EDiRa is a
viable LR discretization method which clearly outperforms MDLP-R.

We believe that the measure of entropy for rankings proposed here, despite its
heuristic nature, makes sense and may be more generally useful in LR. This
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Figure 3.8: Comparison of the accuracy (in terms of Kendall τ) of APRIORI-LR
in the datasets from Table 3.3. The data was discretized with MDLP-R (circles)
and EDiRa (squares), using Kendall (vertical-axis) and Spearman (horizontal-axis)
similarity measures as s′.
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new measure and EDiRa bring new possibilities for processing ranking data
and can motivate the creation of new methods for LR learning that cannot
deal with continuous data. Furthermore, even though it was developed in
the context of the LR task, it can be also applied to other fields such as
regression since it is based on a distance measure such as Kendall τ .

We also investigated the robustness of the methods to the measure of ranking
similarity used. We compared two different measures, observing that the
results are very similar.

Empirical tests were carried out on benchmark problems from the KEBI
repository. These datasets are adapted from UCI classification problems.
Although they can be used for the development of methods, such as in this
and many other LR papers, it is essential for the field that the methods are
tested on real LR problems like meta-learning or predicting the rankings of
financial analysts [6].
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Abstract

The problem of Label Ranking is receiving increasing attention from several
research communities. The algorithms that have been developed/adapted to
treat rankings of a fixed set of labels as the target object, include several dif-
ferent types of decision trees (DT). One DT-based algorithm, which has been
very successful in other tasks but which has not been adapted for label rank-
ing is the Random Forests (RF) algorithm. RFs are an ensemble learning
method that combines different trees obtained using different randomization
techniques. In this work, we propose an ensemble of decision trees for La-
bel Ranking, based on Random Forests, which we refer to as Label Ranking
Forests (LRF). Two different algorithms that learn DT for label ranking are
used to obtain the trees. We then compare and discuss the results of LRF with
standalone decision tree approaches. The results indicate that the method is
highly competitive.

79
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4.1 Introduction

Label Ranking (LR) is an increasingly popular topic in the machine learning
literature [116, 36, 27, 28, 123]. LR studies a problem of learning a mapping
from instances to rankings over a finite number of predefined labels. It can be
considered a natural generalization of the conventional classification problem,
where the goal is to predict a single label instead of a ranking of all the
labels [26].

Some application of Label Ranking approaches are [74]: Meta-learning [16],
where we try to predict a ranking of a set of algorithms according to the
best expected accuracy on a given dataset; Microarray analysis [74] to find
patterns in genes from Yeast on five different micro-array experiments (spo,
heat, dtt, cold and diau); Image categorization [58] of landscape pictures from
several categories (beach, sunset, field, fall foliage, mountain, urban).

There are two main approaches to the problem of LR: methods that trans-
form the ranking problem into multiple binary problems and methods that
were developed or adapted to treat the rankings as target objects, without
any transformation. An example of the former is the ranking by pairwise
comparisons [74]. Examples of algorithms that were adapted to deal with
rankings as the target objects include decision trees [120, 26], naive Bayes [6]
and k -Nearest Neighbor [17, 26]. Some of the latter adaptations are based
on statistical distribution of rankings (e.g., [24]) while others are based on
ranking distance measures (e.g., [120, 36]).

Tree-based models have been used in classification [111], regression [20] and
also label ranking [120, 26, 35] tasks. These methods are popular for a
number of reasons, including how they can clearly express information about
the problem, because their structure is relatively easy to interpret even for
people without a background in learning algorithms.

In classification, combining the predictive power of an ensemble of trees of-
ten comes with significant accuracy improvements [19]. One of the earli-
est examples of ensemble methods is bagging (a contraction of bootstrap-
aggregating) [18]. In bagging, an ensemble of trees is generated and each
one is learned on a random selection of examples from the training set. A
popular ensemble method is Random Forests [19] which combines different
randomization techniques.

Considering the success of Random Forests in terms of improved accuracy
for classification and regression problems [13], some approaches have been
proposed to deal with different targets, such as bipartite rankings [30]. Label
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Ranking Forests should also be seen as a potential robust approach for LR.
Adapting RF to Label Ranking can be a straightforward process once you
have adapted decision trees.

In this work, we propose an approach of ensemble learners which we refer to
as Label Ranking Forests (LRF). The proposed method is a natural adap-
tation of Random Forests for LR, combining the task-independent RF algo-
rithm with the traditional algorithm for top-down induction of decision trees
adapted for label ranking. The available adaptations of decision tree algo-
rithms for LR include Label Ranking Trees (LRT) [26], Ranking Trees [115]
and Entropy-based Ranking Trees [35]. Considering that the set of trees,
in most cases, predict distinct rankings, one should also take into account
ranking aggregation methods.

This paper extends previous work [35], in which we proposed a new version of
decision trees for LR, called the Entropy-based Ranking Trees and empirically
compared them to existing approaches. The main contribution in this paper
is the new Label Ranking Forests algorithm, which is an adaptation of the
RF ensemble method, using Entropy-based Ranking Trees as the base level
algorithm. The results indicate that LRF are competitive with state of the
art methods and improve the accuracy of standalone decision trees. An
additional contribution is an extension of the original experimental study on
Entropy-based Ranking Trees, by analyzing model complexity.

4.2 Label Ranking

In this section, we start by formalizing the problem of label ranking (Sec-
tion 4.2.1) and then we discuss the adaptation of the decision trees algorithm
for label ranking (Section 4.2.2) and one such adaptation, Entropy Ranking
Trees (Section 4.2.3).

4.2.1 Formalization

The Label Ranking (LR) task is similar to classification. In classification,
given an instance x from the instance space X, the goal is to predict the label
(or class) λ to which x belongs, from a predefined set L = {λ1, . . . , λk}. In
LR, the goal is to predict the ranking of the labels in L that is associated
with x [74]. A ranking can be represented as a total order over L defined on
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the permutation space Ω. A total order can be seen as a permutation π of
the set {1, . . . , k}, such that π(a) is the position of λa in π.

As in classification, we do not assume the existence of a deterministic X→ Ω
mapping. Instead, every instance is associated with a probability distribution
over Ω [26]. This means that, for each x ∈ X, there exists a probability
distribution P(·|x) such that, for every π ∈ Ω, P(π|x) is the probability
that π is the ranking associated with x. The goal in LR is to learn the
mapping X → Ω. The training data is a set of instances D = {〈xi, πi〉}, i =
1, . . . , n, where xi is a vector containing the values xji , j = 1, . . . ,m of m
independent variables describing instance i and πi is the corresponding target
ranking.

Given an instance xi with label ranking πi, and the ranking π̂i predicted by an
LR model, we can evaluate the accuracy of the prediction with loss functions
on Ω. Some of these measures are based in the number of discordant label
pairs:

D(π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) < π̂(b)}

If normalized to the interval [−1, 1], this function is equivalent to Kendall’s τ
coefficient, which is a correlation measure whereD(π, π) = 1 andD(π, π−1) =
−1, where π−1 denotes the inverse order of π (e.g. π = (1, 2, 3, 4) and π−1 =
(4, 3, 2, 1)).

The accuracy of a model can be estimated by averaging this coefficient over
a set of examples. Other correlation measures, such as Spearman’s rank
correlation coefficient [118], have also been used [17]. Although we assume
total orders, it may be the case that two labels are tied in the same rank (i.e.
πi(a) = πi(b), a 6= b). In this case, a variation of Kendall’s τ , the tau− b [5]
can be used.

4.2.2 Ranking Trees

Tree-based models have been used in classification [111], regression [20], and
label ranking [120, 26, 35] tasks. These methods are popular for a number
of reasons, including how they can clearly express information about the
problem, because their structure is relatively easy to interpret even for people
without a background in learning algorithms. It is also possible to obtain
information about the importance of the various attributes for the prediction
depending on how close to the root they are used.

The Top-Down Induction of Decision Trees (TDIDT) algorithm is commonly
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used for induction of decision trees [102]. It is a recursive partitioning algo-
rithm that iteratively splits data into smaller subsets which are increasingly
more homogeneous in terms of the target variable (Algorithm 3). A split is a
test on one of the attributes that divides the dataset into two disjoint subsets.
For instance, given a numerical attribute x2, a split could be x2 ≥ 5. Given
a splitting criterion that represents the gain in purity obtained with a split,
the algorithm chooses the split that optimizes its value in each iteration. In
its simplest form, the TDIDT algorithm only stops when the nodes are pure,
i.e., when the value of the target attribute is the same for all examples in the
node. This usually causes the algorithm to overfit, i.e., to generate models
that capture the noise in the data, as well as the regularities that are of
general usefulness. One approach to address this problem is to introduce a
stopping criterion in the algorithm that tests whether the best split is signif-
icantly improving the quality of the model. If not, the algorithm stops and
returns a leaf node. The algorithm is executed recursively for the subsets of
the data obtained based on the best split until the stopping criterion is met.
A leaf node is represented by a value of the target attribute generated by a
rule that solves potential conflicts in the set of training examples that are in
the node. That value is the prediction that will be made for new examples
that fall into that node. In classification, the prediction rule is usually the
most frequent class among the training examples.

Algorithm 3 TDIDT algorithm

Input: Dataset D
BestSplit = Test of the attributes that optimizes the SPLITTING CRI-
TERION
if STOPPING CRITERION == TRUE then

Determine leaf prediction based on the target values in D
Return a leaf node with the corresponding LEAF PREDICTION

else
LeftSubtree = TDIDT(D¬BestSplit)
RightSubtree = TDIDT(DBestSplit)

end if

The adaptation of this algorithm for label ranking involves an appropriate
choice of the splitting criterion, stopping criterion and the prediction rule
(Algorithm 3).

Splitting Criterion The splitting criterion is a measure that quantifies
the quality of a given partition of the data. It is usually applied to all the



84 CHAPTER 4. LR FORESTS

Table 4.1: Illustration of the splitting criterion

Attribute Condition=true Condition=false
values rank corr. values rank corr.

x1 a 0.3 {b, c} -0.2
b 0.2 {a, c} 0.1
c 0.5 {a, b} 0.2

x2 < 5 -0.1 ≥ 5 0.1

possible splits of the data that can be made with tests on the values of
individual attributes.

In Ranking Trees (RT) the goal is to obtain leaf nodes that contain ex-
amples with target rankings as similar between themselves as possible. To
assess the similarity between the rankings of a set of training examples, the
mean correlation between them is calculated using Kendall, Spearman or any
other ranking correlation coefficient. The quality of the split is given by the
weighted mean correlation of the values obtained for the subsets, where the
weight is given by the number of examples in each subset.

For simplicity, if we ignore the weights, the splitting criterion of ranking trees
is illustrated both for nominal and numerical attributes in Table 4.1. The
nominal attribute x1 has three values (a, b and c). Therefore, three binary
splits are possible. For the numerical attribute x2, a split can be made in
between every pair of consecutive values. In this case, the best split is x1 = c,
with a mean correlation of 0.5, in comparison to a mean correlation of 0.2
for the remaining, i.e., the training examples for which x1 = {a, b}.

Stopping Criterion The stopping criterion is used to determine if it is
worthwhile to make a split or if there is a significant risk of overfitting [102].
A split should only be made if the similarity between examples in the sub-
sets increases substantially. Let Sparent be the similarity between the ex-
amples in the parent node and Ssplit the weighted mean similarity in the
subsets obtained with the best split. The stopping criterion is defined as
follows [115]:

(1 + Sparent) ≥ γ(1 + Ssplit) (4.1)

Note that the relevance of the increase in similarity is controlled by the γ
parameter. A γ ≥ 1 does not ensure increased purity of child nodes. On the
other hand, small γ values require splits with very large increase in purity,
which means that the algorithm will stop the recursion early.
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Table 4.2: Illustration of the prediction rule

λ1 λ2 λ3 λ4

π1 1 3 2 4
π2 2 1 4 3
π 1.5 2 3 3.5
π̂ 1 2 3 4

Prediction Rule The prediction rule is a method to generate a prediction
from the (possibly conflicting) target values of the training examples in a
leaf node. In LR, the aggregation of rankings is not so straightforward as
in other tasks (e.g. classification or regression) and is known as the ranking
aggregation problem [126]. It is a classical problem in social choice literature
[31] but also in information retrieval tasks [51]. A consensus ranking mini-
mizes the distance to all rankings [84]. A simple approach, which we adopted
in this work, is to compute the average ranking [17] of the predictions. It
is calculated by averaging the rank for each label λj, π (j) =

∑
i πi (j) /n.

The predicted ranking π̂ is the ranking π of the labels λj obtained based on
the average ranks π (j). Table 4.2 illustrates the prediction rule used in this
work.

4.2.3 Entropy Ranking Trees

Recently, we proposed an alternative approach to decision trees for ranking
data, the Entropy-based Ranking Trees (ERT) [35]. ERT uses an adaptation
of Information Gain (IG) [39] to assess the splitting points and the Minimum
Description Length Principle Cut (MDLPC) [54] as the stopping criterion.
To explain this method, we start by presenting the IG for rankings measure
and then the adapted splitting and stopping criteria.

Decision trees for classification, such as ID3 [111], use Information Gain (IG)
as a splitting criterion to determine the best split points. IG is a statistical
property that measures the gain in entropy, between the prior and actual
state [102]. In this case, we measure it in terms of the distribution of the
target variable, before and after the split. In other words, considering a set
S of size nS, since entropy, H, is a measure of disorder, IG is basically how
much uncertainty in S is eliminated after splitting on a numerical attribute
xa:

IG (xa, T ;S) = H (S)− |S1|
nS

H (S1)− |S2|
nS

H (S2)
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where |S1| and |S2| are the number of instances on the left side (S1) and the
number of instances on the right side (S2), respectively, of the cut point T
in attribute xa.

In cases where S is a set of rankings, we can use the entropy for rankings
[39] which is defined as:

Hranking (S) =
K∑
i=1

P (πi, S) log (P (πi, S)) log
(
kt (S)

)
(4.2)

where P (πi, S) is the proportion of rankings equal to πi in S, K is the number
of distinct rankings in S and kt (S) is the average normalized Kendall τ [85]
distance in the subset S:

kt (S) =

∑K
i=1

∑n
j=1

τ(πi,πj)+1

2

K × nS
.

As in Section 4.2.2, the leaves of the tree should not be forced to be pure.
Instead, a stopping criterion should be used to avoid overfitting and be ro-
bust to noise in rankings. Given an entropy measure, the adaptation of the
splitting and stopping criteria comes in a natural way. As shown in [39],
the MDLPC Criterion can be used as a splitting criterion with the adapted
version of entropy Hranking. This entropy measure also works with partial
orders, however, in this work, we only use total orders.

4.3 Random Forests

Random Forests (RF) [19] are an ensemble method originally proposed for
classification and regression problems. It essentially consists of the generation
of multiple decision trees obtained using different randomization techniques.
The set of predictions made by each of these trees is then aggregated to
obtain the prediction of the ensemble.

The RF algorithm is related to another popular ensemble method by the
same author, Bagging [18], which stands for bootstrap-aggregating. This is
an ensemble method that takes a predefined number s of samples (without
replacement) from the training data to construct s models. Given a new
example, s predictions are generated, which are then aggregated, usually
with average or mode, to obtain a combined prediction.
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RF can be regarded as an extension of bagging. Given a forest size s and
a training dataset D, a set of bootstrap samples, {D′1 . . . , D′s} is generated
by sampling with repetition from D. A decision tree is learned from each
{D′1 . . . , D′s}, which is grown in a slightly different way from the original. At
each node, only a random subset of the m features can be used for splitting.
In classification, the number of random features used in each split is usually√
m and in regression log2m. This results in what is usually referred to

as random trees. As in bagging, each of the s random trees makes predic-
tions on the test data, which are then combined using a suitable aggregation
method.

One of the reasons for the popularity of RF lays in the fact that they have few
parameters to tune and can be applied to various tasks [117]. They require
a simple implementation and even with small sample sizes it usually gives
accurate results. Moreover, considering that it uses s independent learners,
it can be parallelized.

One of the reasons that makes RF a popular approach is that it is possible
to take advantage of the algorithm to assess variable importance [61].

4.3.1 Label Ranking Forests

Considering the success of Random Forests in terms of improved accuracy for
classification and regression problems, some approaches have been proposed
to deal with different targets, such as bipartite rankings [30]. Label Ranking
Forests should also be seen as a potential robust approach for LR. Adapting
RF to Label Ranking can be a straightforward process once you have adapted
decision trees.

Thus, we propose a new ensemble LR algorithm, the Label Ranking Forests
based on Random Forests. With this approach, we expect to increase the
accuracy of Label Ranking tree methods.

In classification and regression, the aggregation of predictions is done in a
simple way, mode and mean, respectively. However, as discussed in Sec-
tion 4.2.2, the aggregation of rankings is not so straightforward. Like in
Ranking Trees, we use the average ranking [17] to aggregate the predic-
tions.

Given the similarity of the LR task to classification, the number of random
subset features we use in each split is

√
m, the same value that is used in RF

for classification.
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When the algorithm is not able to find a good split on any of the
√
m selected

features for the root node, it looks for a split on all the m features instead.
This prevents the random feature selection mechanism from generating empty
trees.

4.4 Empirical Study

In this section we describe the empirical study to investigate the performance
of LRF and the tree methods used at the base level. We start by describ-
ing the experimental setup (Section 4.4.1), then the results of the base-level
algorithms (Section 4.4.2) and finally the results of the new algorithm (Sec-
tion 4.4.3).

4.4.1 Experimental setup

The experiments are carried out on datasets from the KEBI Data Repository
at the Philipps University of Marburg [26] that are typically used in LR
research (Table 4.3). They are based on classification and regression datasets,
obtained using two different transformation methods: A) the target ranking
is a permutation of the classes of the original target attribute, derived from
the probabilities generated by a Naive Bayes classifier; B) the target ranking
is derived for each example from the order of the values of a set of numerical
variables, which are then no longer used as independent variables. A few basic
statistics of the datasets used in our experiments are presented in Table 4.3.
Although these are somewhat artificial datasets, they are quite useful as
benchmarks for LR algorithms.

A simple measure of the diversity of the target rankings is the Unique Rank-
ing’s Proportion, Uπ. Uπ is the proportion of distinct target rankings for a
given dataset (Table 4.3). As a practical example, the iris dataset has 5
distinct rankings for 150 instances, which yields Uπ = 5

150
≈ 3%. This means

that all the 150 rankings are duplicates of these 5.

The code for all the experiments presented in this paper has been written in
R [113].1

The generalization performance of the LR methods was estimated using a
methodology that has been used previously for this purpose [74]. The eval-

1The code is available at https://github.com/rebelosa/labelrankingforests.

https://github.com/rebelosa/labelrankingforests
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Table 4.3: Summary of the KEBI datasets

Datasets type #examples #labels #attributes Uπ
autorship A 841 4 70 2%
bodyfat B 252 7 7 94%
calhousing B 20,640 4 4 0.1%
cpu-small B 8,192 5 6 1%
elevators B 16,599 9 9 1%
fried B 40,769 5 9 0.3%
glass A 214 6 9 14%
housing B 506 6 6 22%
iris A 150 3 4 3%
pendigits A 10,992 10 16 19%
segment A 2310 7 18 6%
stock B 950 5 5 5%
vehicle A 846 4 18 2%
vowel A 528 11 10 56%
wine A 178 3 13 3%
wisconsin B 194 16 16 100%

uation measure is Kendall’s τ and the performance of the methods was esti-
mated using ten-fold cross-validation.

4.4.2 Results with Label Ranking Trees

We evaluate the two variants of ranking trees described earlier: ranking trees
(RT) and entropy ranking trees (ERT) (Sections 4.2.2 and 4.2.3). The RT
algorithm has a parameter γ, that can affect the accuracy of the model.
Based on previous results, we use γ = 0.98 for RT [35].

Table 4.4 presents the results obtained by the two decision tree approaches,
RT and ERT, in comparison to the results for Label Ranking Trees (LRT),
that are reproduced from the original paper [26]. We note that we have
no information about the depth of the trees obtained with the latter and
thus such information is omitted in Table 4.4. Even though LRT performs
best in most of the cases presented, both RT and ERT are also competitive
methods.

Figure 4.1 shows how much smaller ERT trees are, in general. By generating
smaller trees, ERT provides more interpretable models when compared with
RT. An exception is the calhousing dataset, where ERT generates larger
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Table 4.4: Results obtained for Ranking Trees on KEBI datasets (the mean
accuracy is represented in terms of Kendall’s tau, τ ; the best mean accuracy values
are in bold)

RT ERT LRT
mean mean mean

accuracy depth accuracy depth accuracy
authorship .883 8.0 .889 4.0 .882
bodyfat .111 11.9 .182 2.7 .117
calhousing .182 1.0 .291 11.6 .324
cpu-small .458 17.2 .437 6.1 .447
elevators .746 18.9 .757 7.9 .760
fried .797 20.2 .774 13.2 .890
glass .871 8.2 .854 3.0 .883
housing .794 12.9 .704 3.4 .797
iris .963 4.3 .853 2.0 .947
pendigits .871 14.0 .838 5.9 .935
segment .929 12.0 .901 5.0 .949
stock .897 10.8 .859 5.0 .895
vehicle .817 11.0 .787 4.1 .827
vowel .833 12.5 .598 3.6 .794
wine .905 4.0 .906 2.0 .882
wisconsin .334 10.0 .337 2.3 .343
average .712 11.1 .685 5.1 .730

trees. However, in this case, the increase in size is justified by a reasonable
increase of accuracy (Table 4.4).

To compare different ranking methods, we use a combination of Friedman’s
test and Dunn’s Multiple Comparison Procedure [104], which has been used
before for this purpose [17]. First we run the Friedman’s test to check whether
the results are different or not, with the following hypotheses:

H0 : The distributions of Kendall’s τ are equal

H1 : The distributions of Kendall’s τ are not equal

Using the Friedman test (implemented in the stats package [113]) we ob-
tained a p-value < 1%, which shows strong evidence against H0. This means
that there is a high probability that the three methods have different perfor-
mance.

Thus, we tested which of the three methods are different from one another
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Figure 4.1: Comparison of the average depth of the trees obtained with RT (blue)
and ERT (red) on KEBI datasets

with the Dunn’s Multiple Comparison Procedure [104]. Using the R package
dunn.test [45], we tested the following hypotheses for each pair of methods
a and b:

H0 The distributions of Kendall’s τ for a and b are equal

H1 The distributions of Kendall’s τ for a and b are not equal

Table 4.5 indicates that there is no statistical evidence that the methods are
different. The statistical tests confirm our observation that, although LRT
generally obtains better results than RT and ERT, the latter approaches are
competitive.

Table 4.5: Dunn’s test results (p-values)

RT ERT LRT
RT 0.22 0.37
ERT 0.22 0.13
LRT 0.37 0.13
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4.4.3 Results with Label Ranking Forests

We generated forests with 100 trees and aggregated the predicted rankings
with the average ranking method [17]. Table 4.6 presents the results obtained
by the Label Ranking Forests using RT and ERT, referred to as LRF-RT and
LRF-ERT, respectively.

The average depth of the trees for LRF-RT is, for most cases, smaller than
that of the tree obtained with the RT algorithm, while the accuracy is better.
On average, for each 0.019 increase in accuracy there was a decrease of 1.8 in
the average depth of the trees. One exception is the elevators dataset, with
suffered a significant decrease in accuracy by using the LRF method.

The comparison between ERT and LRF-ERT leads to different observations.
The average depth of the trees increases when using LRF. This can be ex-
plained by the fact that the measure of entropy for rankings used in ERT
is very robust to noise in rankings [39]. Hence, it requires a larger amount
of dissimilarity in a set of rankings to find a partition. As noted in Sec-
tion 4.4.3 (Figure 4.1) the depth of the trees is much smaller with ERT than
with RT.

In Figure 4.2, we can observe how much the accuracy increases/decreases
with LRF when compared to the corresponding base-level trees alone. In the
vast majority of datasets, there is some improvement in accuracy. The only
exception is the elevators dataset, as mentioned above.

Using the same statistical tests as before (Section 4.4.2), we compare LRF-RT
and LRF-ERT with the RT, ERT and LRT methods. With the Friedman’s
test we got a p-value < 1%, which shows strong evidence against H0. Then,
now that we know that there are some differences between the 2 methods
we will test which are different from one another with the Dunn’s Multiple
Comparison Procedure (Table 4.7). Since we got a p-value around 25%,
between LRF-RT and the LRF-ERT, we cannot conclude that there is no
statistical evidence that the methods are different.

On the pairwise comparisons of the methods Table 4.8, we measure how
many times each method wins, in terms of accuracy. In this analysis, we
conclude that Label Ranking Forests using RT give the best results, proving
the effectiveness of the approach.

On the other hand, even though LRF-ERT shows some improvement in terms
of accuracy relatively to ERT, it did not behave much better than RT or
LRT (Table 4.8). Again, this might be caused by the fact that the measure
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Figure 4.2: Accuracy gained/lost per dataset for using the ensemble method
LRF, instead of standalone decision trees RT (blue) and ERT (red) on KEBI
datasets

of entropy for rankings used in ERT is very robust to noise. For this reason,
the depth of trees in LRF-ERT is, on average, 70% the depth of trees in
LRF-RT. While this can be an advantage in terms of Label Ranking Trees,
in Label Ranking Forests it is less relevant because it is hard to interpret 100
trees per dataset.

4.5 Conclusions

In this work, we propose an ensemble of decision tree methods for Label
Ranking, called Label Ranking Forests (LRF). The method is tested with two
different base-level methods Ranking Trees (RT) and Entropy-based Ranking
Trees (ERT). We present an empirical evaluation using well known datasets
in this field. We also extend the analysis from previous work for tree-based
methods, RT and ERT, and compare with the state of the art Label Ranking
Trees (LRT) approach.

The analysis on the decision trees shows that both RT and ERT are valid and
competitive approaches. While RT usually gives better accuracy, on the other
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Table 4.6: Results obtained for Label Ranking Forests on KEBI datasets, using
two different label ranking trees, RT and ERT (the mean accuracy is represented
in terms of Kendall’s tau, τ ; the best mean accuracy values are in bold)

LRF-RT LRF-ERT
mean mean

accuracy depth accuracy depth
authorship .912 8.3 .906 7.7
bodyfat .212 10.6 .211 5.3
calhousing .185 1.0 .294 8.3
cpu-small .469 13.9 .471 7.8
elevators .605 10.0 .721 9.5
fried .887 15.5 .841 14.5
glass .874 6.0 .849 2.7
housing .780 10.9 .699 3.7
iris .973 4.9 .933 2.3
segment .930 10.8 .917 5.2
stock .892 9.9 .869 5.5
vehicle .850 10.0 .849 9.4
vowel .844 11.5 .701 4.9
wine .932 4.3 .925 2.8
wisconsin .460 8.8 .429 3.7
average .720 9.1 .708 6.2

hand, ERT generates trees with much smaller depth (around 50% less, in
comparison to RT). Our results were also compared with the published results
for Label Ranking Trees (LRT) [26]. LRT has in general better accuracy than
RT and ERT, however, statistical tests showed that none of the methods is
significantly different. This means that both RT and ERT are competitive
approaches, and, since they are distance-based methods, we can also say that
this kind of approaches is worth pursuing.

The two ensemble approaches, LRF-RT and LRF-ERT, used the base rank-
ing tree models RT and ERT, respectively. Similarly to the application of
Random Forests to other tasks, there was a general increase in accuracy when
compared to the corresponding base-level methods. The results confirm that
both LRF-RT and LRF-ERT are highly competitive LR methods. LRF-RT,
in particular, stands out as a clear winner in terms of accuracy.

As future work, we might improve the comparison with LRT method [26],
by implementing it and testing it both as learning algorithm and as the
base-level method for Label Ranking Forests. Also, LRF can potentially
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Table 4.7: Dunn’s test for all the methods (p-values)

RT ERT LRT LRF-RT LRF-ERT

RT 0.23 0.34 0.31 0.44
ERT 0.23 0.13 0.11 0.28
LRT 0.34 0.13 0.46 0.29
LRF-RT 0.31 0.11 0.46 0.25
LRF-ERT 0.44 0.28 0.29 0.25

Table 4.8: Pairwise comparisons of the methods in terms of win statistics.

RT ERT LRT LRF-RT LRF-ERT Total (Rank)

RT 9 6 3 7 25 (4)
ERT 6 3 2 4 15 (5)
LRT 9 12 7 9 37 (2)
LRF-RT 12 13 8 13 46 (1)
LRF-ERT 8 11 6 2 27 (3)

produce similar benefits as the Random Forest method, in terms of feature
selection or input variable importance measurement, when applied to LR
datasets. Finally, the experiments in this paper were carried out on a set of
standard benchmark datasets, which represent artificial LR problems. We
plan to apply these approaches on real world datasets e.g. related with user
preferences [81].
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Abstract

Exceptional Preferences Mining (EPM) is a crossover between two subfields
of datamining: local pattern mining and preference learning. EPM can be
seen as a local pattern mining task that finds subsets of observations where
the preference relations between subsets of the labels significantly deviate from
the norm; a variant of Subgroup Discovery, with rankings as the (complex)
target concept. We employ three quality measures that highlight subgroups
featuring exceptional preferences, where the focus of what constitutes ‘excep-
tional’ varies with the quality measure: the first gauges exceptional overall
ranking behavior, the second indicates whether a particular label stands out
from the rest, and the third highlights subgroups featuring unusual pairwise
label ranking behavior. As proof of concept, we explore five datasets. The re-
sults confirm that the new task EPM can deliver interesting knowledge. The
results also illustrate how the visualization of the preferences in a Preference
Matrix can aid in interpreting exceptional preference subgroups.

97
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5.1 Introduction

Consider a survey where detailed preferences of sushi types have been col-
lected, along with demographic details of the respondents. For each example
in the dataset, we have personal details (age, gender, income, etc.) as well as
a set of sushi types, ordered by preference [81]. By mapping the demographic
attributes and unusual preferences, marketeers would be able to target key
demographics where specific sushi types have greater potential.

The study of preference data has been approached from a number of per-
spectives, grouped under the name Preference Learning (PL) (e.g., as Label
Ranking [39, 25, 123]). Typically, the aim is to build a global predictive
model, such that the preferences can be predicted for new cases. However,
in several areas, such as marketing, there is also great value in identifying
subpopulations whose preferences deviate from the norm. If some sushi type
is markedly under preferred by a certain age group or in a certain region,
then the vendor can develop specific strategies for those groups. Finding
coherent groups of customers to focus on is an invaluable part of promotion
strategies.

Arguably the most generic setting for discovering local, supervised devia-
tions is that of Subgroup Discovery (SD) [88]. The aim of SD is to discover
subgroups in the data for which the target shows an unusual distribution, as
compared to the overall population [88]. SD is generic in the sense that the
actual nature of the target variable can be quite diverse [1, 79, 121]. In this
paper, we develop a Subgroup Discovery approach that focuses on a deviation
target concept representing preferences over a fixed set of labels.

5.1.1 Main Contributions

This work provides focus specifically on the discovery of meaningful sub-
groups with exceptional preference patterns (see Section 5.4). We propose
three quality measures for this purpose, reflecting different facets of interest-
ingness one might have about the unusual preferences. All quality measures
contrast the ranking of the labels in the subgroup with the ranking of the
labels in the entire dataset; they differ in the granularity of the measured de-
viation. A subgroup is deemed interesting by the first quality measure if the
overall ranking is exceptional, by the second quality measure if one particu-
lar label behaves exceptionally, and by the third quality measure if a single
pair of labels displays exceptional behavior. Hence, Exceptional Preferences
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Mining provides subgroups displaying exceptional ranking behavior; different
quality measures allow for this exceptional behavior to either encompass the
entire label space, or focus on more local peculiarities.

5.2 Label Ranking

Label Ranking (LR) studies the problem of learning a mapping from instances
to rankings over a finite number of predefined labels [74]. It can be considered
a variant of the conventional classification problem [26]. However, in contrast
to a classification setting, where the objective is to assign examples to a
specific class, in LR we are interested in assigning a complete preference
order of the labels to every example.

More formally, in classification, given an instance x from the instance space
X, the goal is to predict the label (or class) λ to which x belongs, from a
predefined set L = {λ1, . . . , λk}. In Label Ranking, the goal is to order the
labels in L by their association with x. A ranking is a total order over L
defined on the permutation space Ω. A total order can be represented as a
permutation π of the set {1, . . . , k}, such that π(a) is the position of λa in
π.

A total order

λπ(1) �
x
λπ(2) �

x
. . . �

x
λπ(k)

is associated with every instance x ∈ X, representing a ranking π ∈ Ω. In
cases where the orders are partial, they are represented as rankings with
ties [57].

The goal in label ranking is to learn the mapping X→ Ω. The training data
is defined as D, which is a bag of n records of the form x = (a1, . . . , am, π),
where {a1, . . . , am} is set of values from m independent variables A1, . . . ,Am
describing instance x and π is the corresponding target ranking.

Pairwise comparisons have been used to decompose LR or Multi-Label prob-
lems into binary problems [74]. In LR, the most relevant approach is Ranking
by Pairwise Comparisons (RPC) [56], which decomposes the LR problem into
a set of binary classification problems. Then, a learning method is trained
with all examples for which either λi � λj or λj � λi is known [56]. The
resulting predictions are then combined to predict a total or partial ranking
[25].
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Recently, some approaches have been suggested for mining preferences and
ranks [70, 122]. These approaches tackle different problems from the one we
propose in this paper. In [70], the authors suggest an approach to mine the
rankings with association rules that search for subranking patterns, while our
approach relates the ranking patterns with descriptors (otherwise referred to
as independent variables). From a different perspective, [122] suggests a
ranked tiling approach to search for rank patterns, whereas we are interested
in the preference relations derived from the ranks.

5.3 Subgroup Discovery and Exceptional Model

Mining

Subgroup Discovery (SD) [88] is a data mining framework that seeks subsets
(satisfying certain user-specified constraints) of the dataset where something
exceptional is going on. In SD, we assume a flat-table dataset D, which is a
bag of n records of the form x = (a1, . . . , am, t1, . . . , t`). We call {a1, . . . , am}
the descriptors and {t1, . . . , t`} the targets, and we denote the collective do-
main of the descriptors by A. We are interested in finding interesting sub-
sets, called subgroups, that can be formulated in a description language D.
In order to formally define subgroups, we first need to define the following
auxiliary concepts.
Definition 1 (Pattern and coverage). Given a description language D, a
pattern p ∈ D is a function p : A → {0, 1}. A pattern p covers a record x iff
p(a1, . . . , am) = 1.

Patterns induce subgroups, and subgroups are associated with patterns, in
the following manner.
Definition 2 (Subgroup). A subgroup corresponding to a pattern p is the
bag of records Sp ∈ D that p covers:

Sp = {x ∈ D | p (a1, . . . , am) = 1}

For simplicity, we will loosely identify pattern and subgroup with each other.

The exact choice of the description language is left to the domain expert
or analyst. A typical choice is the use of conjunctions of conditions on at-
tributes. Restricting the findings of SD from all subsets to only subgroups
that can be defined in such a way, ensures results of the following form:

Age ≥ 30 ∧ Likes = Salmon Roe is unusual
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Restricting the search from subsets to subgroups, combined with a sensible
choice of description language, ensures that SD delivers subgroups that are
defined in terms of attributes of the dataset. This means that the results are
delivered in a form with which dataset domain experts are familiar. In other
words, the focus of SD lies on delivering interpretable results.

Formally, the interestingness of a subgroup can be measured using all in-
formation available in its associated pattern. In practice, it depends on the
task we are trying to solve. Therefore, we should define one or more quality
measures to assess the interestingness we want to explore.
Definition 3 (Quality Measure). A quality measure is a function ϕ : D →
R.

In the most common form of pattern mining, frequent itemset mining [3],
interestingness is measured by the frequency of the pattern. Subgroup Dis-
covery [88], on the other hand, measures interestingness in a supervised form.
One designated target t1 is identified in the dataset, and subgroup interesting-
ness is gauged by an unusual distribution of that target. Hence, considering
that a poll revealed that the majority of Japanese people like Fatty tuna
sushi, an interesting subgroup could refer to a group of people for which the
majority prefers Tuna roll :

Age ≥ 30 ∧ Lives in region = Hokkaido ⇒ Likes = Tuna roll

If instead of a single target, multiple targets t1, . . . , t` are available, and
if we are not interested in finding unusual target distribution, but unusual
target interaction, we can employ Exceptional Model Mining (EMM) [48,
49] instead of SD. EMM is instantiated by selecting two things: a model
class and a quality measure. Typically, a model class is defined to represent
the unusual interaction between multiple targets we are interested in. A
specific quality measure that employs concepts from that model class must
be defined to express exactly when an interaction is unusual and, therefore,
interesting.

The target concept at hand in this paper has only one target object t, which
resembles SD. However, that target object is a label ranking π ∈ Ω, as defined
in Section 5.2. Hence it represents unusual interactions between multiple
individual labels, which is more consistent with EMM.
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5.3.1 Traversing the Search Space

Typically, subgroups are found by a level-wise search through attribute space
[100]. We define constraints on single attributes and define the corresponding
subgroups as those records satisfying each one of those constraints.

The actual phenomenon of the data that a given quality measure favors,
depends on the target concept (binary, numeric, preferences, . . . ). For very
small subgroups, one easily finds an unusual distribution of the target. To fa-
vor larger subgroups, one defines the quality measure such that it balances the
exceptionality of the target distribution with the size of the subgroup.

SD approaches have been developed for binary, nominal [1] and numeric
target variables [77, 79], as well as for targets encompassing multiple at-
tributes [121]. However, none of the previous approaches is able to capture
all the sets of preferences that can be derived from rankings within an SD
framework.

5.4 Exceptional Preferences Mining

Exceptional Preferences Mining (EPM) is the search for subgroups with devi-
ating preferences. Exactly what constitutes an interesting deviation in pref-
erences is governed by the employed quality measure, and can be inspired by
the application at hand.

When the number of labels is large, the search for preference patterns can
be hard to analyze and visualize. A real world example is the Sushi dataset
[81], which represents the preferences of 5 000 persons over 10 types of sushi.
Even this relatively modest number of sushi types can be ranked in a large
number of combinations: more than 98% of the 5 000 rankings present in this
dataset are unique. This illustrates why it can be more difficult to directly
learn a ranker that associates a reliable complete ranking for any subset in
X when the number of labels is large.

In EPM, we want to search for strong preference behavior. However, in cases
like the Sushi dataset, it is difficult to get strong total orders, due to the
low number of ranking repetitions. In other words, searching for subgroups
where all types of sushi are consistently ranked in this exact same order can
be unfruitful. For this reason, we also propose lower-granularity measures
that focus on one label versus the others (Labelwise). That is, we look
for subgroups where at least one type of sushi is often preferred to all the
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others. As an example, if a subgroups ranks tekka-maki consistently in the
top 3 while the majority in the dataset ranks it in the last 3, this measure
will find it to be very interesting. We also propose a measure of even lower
granularity, focusing on label versus label (Pairwise) preferences. This means
that, if most people display a preference tamago � kappa-maki, a subgroup
where most people prefer kappa-maki � tamago will be deemed interesting
by this measure.

Our assumption is that, even though over 98% of the total rankings in the
Sushi dataset are unique, there is plenty of information present in these
rankings: the partial orders and pairwise comparisons can reveal interesting
subgroups.

5.4.1 Preference Matrix

Let us define a function, ω, assigning a numeric value to the pairwise com-
parison of the labels λ and λ̂:

ω
(
λ, λ̂
)

=


1 if λ � λ̂ (λ preferred to λ̂)

−1 if λ ≺ λ̂ (λ̂ preferred to λ)

0 if λ ∼ λ̂ (λ indifferent to λ̂)

n/a if λ ⊥ λ̂ (λ incomparable to λ̂)

Note that, by definition, ω
(
λ, λ̂
)

= −ω
(
λ̂, λ
)

. We can use ω to represent

a ranking π as a Preference Matrix (PM), Mπ:

Mπ (i, j) = ωπ (λi, λj)

Mπ is, by definition, an antisymmetric matrix with tr (Mπ) = 0. PMs can
natively represent partial or incomplete orders but can also be aggregated
to represent sets of rankings from an entire dataset D or subgroup S. To
aggregate the entries, the mean or the mode can be used.

Aggregation of a PM for sets of rankings

The PM of a set of rankings from a dataset D with n rankings, MD, aggre-
gated with the mean is:

MD (i, j) =
1

n

∑
π∈D

Mπ (i, j)
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Table 5.1: Example dataset D̂. The first column is the only descriptor. The
subsequent four columns represent the preferences among four labels, by providing
their ranks. An alternative representation is presented in the rightmost section of
the table.

A1
π

alternative π
λ1 λ2 λ3 λ4

0.1 4 3 1 2 λ3 � λ4 � λ2 � λ1

0.2 3 2 1 4 λ3 � λ2 � λ1 � λ4

0.3 1 4 2 3 λ1 � λ3 � λ4 � λ2

0.4 1 3 2 4 λ1 � λ3 � λ2 � λ4

The PM of the example dataset D̂ (cf. Table 5.1) is the following:

MD̂ =


0 0 0 0.5
0 0 −1 0
0 1 0 1
−0.5 0 −1 0


This representation enables easy detection of strong partial order relations
in a set. If row i has all the values very close to 1, then λi is highly preferred
in this group. If entry MD̂ (i, j) = 1 or MD̂ (i, j) = −1, then all rankings in

D̂ agree that λi � λj or λi ≺ λj, respectively.

All the elements of D̂ reveal distinct total preferences, but λ3 is always pre-
ferred to λ2, which is easily verified by checking that MD̂ (3, 2) = 1. In the

ranking representation of D̂, this fact follows from four distinct combinations
of ranks: rank 3 > 1, rank 2 > 1, rank 4 > 2 and rank 3 > 2 (this informa-
tion is found in the two columns below λ2 and λ3). Conversely, λ4 is never
preferred to λ3, which is represented by MD̂ (4, 3) = −1. In some cases, the
overall trend is not as clear (e.g. λ1 is preferred to λ4 but not always) and in
other cases, there is no trend at all (e.g. λ1 and λ2).

Representing a set of rankings as a PM has another advantage over the
traditional permutation representation: it enables simple measurement of
labelwise (by rows/columns of the PM) and pairwise (by single entries of the
PM) distances (see Section 5.4.2).

From the PM of a subgroup S, one can derive a new ranking πS. How to do
so is a non-trivial question, which has received a lot of attention in several
research fields with similar types of matrix [74]. The straightforward way is
to sum the rows of the PM and then assign a score to each corresponding
label. Higher values correspond to a relatively more preferred label.
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The generation of a PM is basically a pairwise decomposition problem. The
complexity is O (sk2) per subgroup, where s is the size of the subgroup and
k the number of labels in the ranking. Even though any number of labels
is theoretically permitted in label ranking, in practice the number of labels
is usually smaller than 20. Hence, the generation of PMs should not be an
issue in terms of computational time.

We use a visual representation of PM that is a set of colored tiles (cf. Fig-
ure 5.1). Each tile represents an entry of the PM. The entries of a PM can
vary from −1 to 1. The negative entries of the matrix are represented with
red tiles, the positive with green tiles, and 0 is represented in white. The
colored tiles fade out as they get closer to 0.

Figure 5.1: PM representation of the set of rankings in D̂ (cf. Table 5.1). Dark
green tiles represent 1 and dark red tiles represent -1.

5.4.2 Characterizing Exceptional Subgroups

The table has now been set to formally define the quality measures for EPM,
which will evaluate how exceptional the preferences are in the subgroups.
A subgroup can be considered interesting both by the amount of deviation
(distance) and by its size (number of records covered by the subgroup, cf.
Section 5.3) [52]. Since, reasonable quality measures should take both these
factors into account, we divide the quality measures into two parts: the
distance component and the size component.

QMS = sizeS · distanceS
In order to allow direct comparisons between different quality measures, both
components are normalized to the interval [0, 1]. A common measure for the
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size in Subgroup Discovery is
√
s [87]. To normalize, we use the square root

of the fraction of the dataset covered by S: sizeS =
√
s/n.

Before introducing the distance components, let us first define a distance
matrix LS, as the distance matrix between the PMs MS and MD:

LS =
1

2
(MD −MS)

where S ⊆ D (division by 2 limits the distance to the interval [−1, 1]). We can
measure different properties of LS and represent them with a numeric value.
This way we get an indicator of the quality of the distance of preferences for
a subgroup. Consider the subgroup Ŝ1 : A1 ≥ 0.3, which covers the last two
cases from our example dataset D̂. Its PM is:

MŜ1
=


0 1 1 1
−1 0 −1 0
−1 1 0 1
−1 0 −1 0


The first row clearly reveals that λ1 is always preferred to all other labels in
this subgroup. If we compute the difference matrix LŜ1

we get:

LŜ1
=


0 −0.5 −0.5 −0.25

0.5 0 0 0
0.5 0 0 0
0.25 0 0 0


The difference matrix LŜ1

shows that the behavior of λ1 is exceptional in

Ŝ1.

Only subgroups for which we can infer at least one pairwise preference are
considered interesting in Exceptional Preferences Mining. That is, subgroups
with a PM containing only zeros are not considered interesting.

As we are interested in subgroups with exceptional preferences, we use the
distance matrix LS to measure exceptionality. The distance measures we
employ here typically consider a particular subset of the cells of the distance
matrix LS.

Norm

Maximizing the distance of preferences is also maximizing the magnitude of
LS. The most fundamental mathematical way to measure the magnitude of
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a vector or matrix is the norm. Hence we can use the Frobenius norm of LS
as a distance measure.

Norm(S) =
√
s/n · ||LS||F =

√
s/n ·

√√√√ k∑
i=1

k∑
j=1

L (i, j)2

If one is searching for preference deviations in general, one should use the
Norm quality measure, as it considers all the PM entries at the same time.
After the subgroups are found, ideally, we can derive a complete ranking from
their PMs. The overall deviation can be due to one label deviating strongly
or from multiple labels deviating less strongly.

Labelwise

An interesting task in the PL field is the labelwise analysis [25]. Instead
of focusing on a whole ranking, it focuses on the preference behavior from
the perspective of individual labels. A data analyst might be interested in
finding if a particular label λ behaves substantially different according to
most members in a subgroup S, compared to its behavior on the overall
dataset. Hence, the fact that only one label behaves differently, disregarding
the interaction between the other labels, can also be interesting. We can
measure the distance of each label, in subgroup S, by computing the norm
of the rows from LS. Since in this case we are interested in exceptionality of
only one label, we consider the maximum value found:

Labelwise(S) =
√
s/n · max

i=1,...,k

1

(k − 1)

k∑
j=1

L (i, j)

Pairwise

Another well-studied task in PL is Pairwise Preferences [74] which decom-
poses the preferences into pairs label-vs-label. In situations where there are
not even exceptional labelwise preferences, one can still search for localized
preference strongholds. If we are interested in subgroups with, at least one
pair with distinctive preference behavior, we can employ the following quality
measure:

Pairwise(S) =
√
s/n · max

i,j=1,...,k
L (i, j)
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This quality measure is the least restrictive of this set: a subgroup is inter-
esting if one pair of labels interacts unusually, disregarding all other label
interactions.

5.5 Experiments

We incorporate Exceptional Preferences Mining in the Cortana1 software
package [101]. This package delivers a generic framework for SD, implements
several SD instances, and offers many generic features allowing for different
SD approaches. The description language consists of logical conjunctions of
conditions on single attributes.

Our experiments use a standard beam search approach. Since the Subgroup
Discovery algorithm itself is not the topic of this paper, we will skip over the
algorithmic details, but they can be found elsewhere: the relevant pseudo-
code is given in [48, Algorithm 1]. The most influential parameters are set
as follows: we use a relatively generous search width w (also known as beam
width or beam size) of 100, allowing for a relatively broad (albeit heuris-
tic) search, and a maximum search depth d of 2, which keeps the resulting
subgroups interpretable. We explore some striking subgroups found with the
quality measures on a variety of datasets, providing evidence of the versatility
of our work.

All the findings we present in this paper have gone through the DFD valida-
tion procedure [50] with 100 copies, and all have been found significant at a
significance level of α = 1%.

5.5.1 Datasets

Statistics regarding the datasets used in this work are shown in Table 5.2.
The majority are Label Ranking datasets from the KEBI Data Repository
at Philipps University of Marburg [26]. These datasets were adapted from
multi-class and regression problems both from the UCI repository [96] and
the Statlog collection [26]. In the process, the features were normalized, and
their names were replaced by A1, A2, . . . , Am. Therefore, on these datasets,
the reported subgroups cannot be interpreted on the original dataset domain,

1http://datamining.liacs.nl/cortana.html

http://datamining.liacs.nl/cortana.html
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whereas for general datasets, this interpretability is a key feature of Excep-
tional Preference Mining. We choose to experiment with these datasets any-
way, since they are well-known in the preference learning community.

For illustrating domain-specific interpretation of the results, we experiment
with two further datasets. We adapt the COIL 1999 Competition Data
from UCI [96]. This dataset concerns the frequencies of algae populations
in different environments. We refer to this dataset as Algae. The original
COIL dataset consists of 340 examples, each representing measurements of
a sample of water from different European rivers in different periods. The
measurements include concentrations of chemical substances such as nitrogen
(in the form of nitrates, nitrites and ammonia), oxygen and chlorine. Also
the pH, season, river size and flow velocity are registered. For each sample,
the frequencies of 7 types of algae are also measured. In this work, we
consider the algae concentrations as preference relations by ordering them
from larger to smaller concentrations. Those with 0 frequency are placed in
last position and equal frequencies are represented with ties. Missing values
are set to 0.

Our final dataset is the Sushi preference dataset [81], which is composed of
demographic data about 5 000 people and sushi preferences. Each person
sorts a set of 10 different sushi types by preference. The 10 types of sushi,
are a) shrimp, b) sea eel, c) tuna, d) squid, e) sea urchin, f) salmon roe,
g) egg h) fatty tuna, i) tuna roll and j) cucumber roll. Since the attribute
names were not transformed in this dataset, we can make a richer analysis
of it.

Table 5.2: Dataset details. The column Uπ represents the percentage of unique
rankings.

Datasets #examples #labels #attributes Uπ
Cpu-small 8 192 5 6 1%
Elevators 16 599 9 9 1%
Wisconsin 194 16 16 100%
Algae (COIL) 316 7 10 72%
Sushi 5 000 10 10 98%

For all the experiments, all results and statistical tests are completed in
less than 5 minutes on an Intel Core 2 Duo CPU @ 2.93GHz with 4GB
RAM.
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5.5.2 Results

We start this section by presenting a discovery which provides an exemplary
demonstration of one advantage of the PM representation.

Elevators dataset

Figure 5.2 shows the subgroup with highest score found with the Norm qual-
ity measure in the Elevators dataset. Considering the base matrix, which has
information from all the rankings in the dataset, we conclude that e, f, g, h
have fixed relative positions: e � g � f � h. This information is not easy to
obtain with the usual representations of rankings, but is clearly revealed in
the PM representation. In fact, 13 403 from a total of 16 599 rankings have
e � g � f � h. This illustrates how the visual ranking representation in a
PM can be very useful for supporting predictive methods and for data explo-
ration. The subgroup, A6 ≥ 0.436, covering 7 048 instances, had a norm of
0.0028. It shows a distinct behavior between the sets of labels a, b, c, d and
the set e, f, g, h. In the whole data, labels a, b, c, d are a bit more desirable
than e, f, g, h. However, in the subgroup, the latter are clearly preferred to
a, b, c, d.

Figure 5.2: PM representation of the dataset Elevators (base matrix), the sub-
group A6 ≥ 0.436 (subgroup matrix) and the difference (difference matrix).

Wisconsin

Using the Norm quality measure on the Wisconsin dataset, we obtain 30
subgroups, the 1st-ranked of which (it happens to occur at depth 1 in the
search) is represented in Figure 5.3. The base matrix reveals that the dataset
has balanced preferences, by the low intensity of the colored tiles. The red
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rows of the PM of subgroup A5 ≤ −0.527 (Subgroup Matrix in Figure 5.3)
indicate a strong behavior of the labels f, h and i. The PM reveals that
labels f, h, i are consistently ranked lower than the other labels in this specific
subgroup. Since PMs are antisymmetric, the 3 green columns represent the
same phenomena but from the perspective of the other labels. If we focus

Figure 5.3: PM representation of the dataset Wisconsin (Base Matrix) and the
subgroup A5 ≤ −0.527 (Subgroup Matrix).

on these 3 labels, we can see that tile (f, h) is white, which means f and
h are equivalent. On the other hand, tiles (i, f) and (i, h) are green, which
means that i � f and i � h. If one had to guess a reliable partial order
from this subgroup using only the PM, a logical choice would be to say that
a, b, c, d, e, g, j, k, l,m, n, o, p � i � f, h.

Algae

With the Algae dataset, we obtain results about the concentrations of algae
with the Norm measure. One such example is that during Spring, the types
of algae a, b and c are much more common in rivers than the others. This
can be easily concluded by studying the PM representation of the subgroup
(Figure 5.4). This subgroup has a norm of 0.010647. On the other hand, we
also see an interesting behavior during the Autumn season, with a norm of
0.01058.

With the Labelwise measure, we find more than 400 subgroups, the best of
which is presented in Figure 5.5. The PM clearly reveals the effect of the
Labelwise quality measure: in the subgroup, the label a is strongly preferred
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Figure 5.4: PM representation of the subgroups Season = Spring (left subgroup
matrix) and Season = Autumn (right subgroup matrix) from the Algae dataset.

over all others, while the image is much more nuanced over the whole dataset.
If we ignore the label a, the PMs for both the overall dataset and the subgroup
are rather bland, and their difference is not very pronounced. But for this
one particular label a, the behavior on the subgroup is extremely clear-cut,
and the Labelwise quality measure picks up on that effect.

Figure 5.5: PM representation of the dataset Algae (base matrix) and the sub-
group V 10 ≤ 59 ∧ V 6 ≤ 11.867 (subgroup matrix), with difference matrix on the
right.

Sushi

With the Labelwise measure, we find 149 subgroups on the Sushi dataset. We
present the best subgroup using this measure in Figure 5.6. The subgroup



5.6. CONCLUSIONS 113

(Males over 30 years) shows a preference for Sea Urchin, since the majority of
men rank this sushi type in the top 4. By contrast, in the whole population,
more than half rate it between 5th to 10th, and every fifth person rate it in
last place.
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Figure 5.6: Percentage of ranks for Sea Urchin (Sushi dataset) for all individuals
in comparison to the subgroup (males older than 30 years).

Cpu-small

On the Cpu-small dataset, the subgroup A6 ≥ 0.127 ranks the best for
the Pairwise quality measure. Around 80% of the 2 221 instances of this
subgroup agree that a � d, in contrast to the 30% in the whole dataset of
8 192 instances.

5.6 Conclusions

We introduce Exceptional Preferences Mining (EPM), a supervised local pat-
tern mining task where the target concept is a ranking of a fixed set of labels.
The result of this task is a set of subgroups, which are coherent subsets of the
dataset that can be described in terms of a conjunction of few conditions on
an attribute, where the label preferences are exceptional in some sense.

The relevant statistics on a set of preference relations is collected in the
cells of a Preference Matrix (PM). A PM is compiled for the entire dataset,
and for each subgroup under consideration. A subgroup whose PM deviates
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significantly from the PM for the whole dataset is then considered to be in-
teresting. We define three quality measures for EPM that instantiate this
concept of ‘interesting’ to different levels of granularity. The Norm quality
measure deems a subgroup interesting if the full set of preference relations is
substantially displaced. The Labelwise quality measure highlights subgroups
where any one label interacts exceptionally with the other labels, agnostic of
how those other labels interact with each other. The Pairwise quality mea-
sure finds a subgroup interesting if any one pair of labels display exceptional
preference relations. Hence, by choosing the appropriate quality measure,
EPM delivers subgroups featuring preference relations that are exceptional
at your preferred scope.

The experiments with the Norm quality measure on the Elevators dataset
illustrate the value of the PM visualization. The PM, as displayed in Figure
5.2, clearly indicates that there are strong relations between a subset of the
available labels. We learn that quite frequently, labels e, f, g, h have fixed
relative positions: e � g � f � h. This information is not easy to obtain
with the usual representations of rankings, but is clearly revealed through
the PM visualization. The experiments with the Labelwise quality measure
on the Sushi dataset illustrate the relative merit of this quality measure: it
focuses on subgroups where one particular label is exceptionally under- or
overappreciated. The subgroup presented has a penchant for Sea Urchin (cf.
Figure 5.6). The Pairwise measure shows its potential on the Cpu-small
dataset by identifying a subgroup with strong exceptional preferences with
respect to the pair of labels a and d.

As we argued in Section 5.3, one of the main benefits of a local pattern
mining method such as EPM is that it delivers interpretable results. That
means that the resulting subgroups are ideally suited to instigate real-world
policies and actions. However, due to the employed preprocessing in the
KEBI datasets (cf. Section 5.5.1), interpretation of results on those datasets
falters. Only the experiments on the Algae and Sushi datasets allow a more
extensive exploration of interpretable results. In future work, we would be
interested in evaluating EPM on more label ranking datasets that come with
interpretable attributes.
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Abstract

In recent years, many Label Ranking (LR) methods have been proposed, along
with an increasing number of datasets. The validation of these algorithms
has been done empirically, as is usual in Machine Learning, by testing them
on a set of benchmark datasets. Due to the scarcity of real-world LR data,
most of the experiments are based on LR datasets that were adapted from
classification and regression datasets from the UCI repository and Statlog
project. In this work, we want to test how strong is the relation between the
target rankings and independent variables. In other supervised learning tasks,
target swap randomization methods have been used to test it. We propose
two target swap randomization approaches for LR and apply them on KEBI
datasets. Our results show that there are meaningful relations between the
independent variables and the target rankings and that the relative importance
of each label in a ranking varies in some cases.

117
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6.1 Introduction

The study of label ranking is receiving increased attention [27, 36, 28, 116, 64].
Label Ranking (LR) studies the problem of learning a mapping from instances
to rankings over a finite number of predefined labels. It can be considered a
variant of the conventional classification problem [26]. However, in contrast
to a classification setting, where the objective is to assign examples to a
specific class, in LR we are interested in predicting the (possibly incomplete)
true preference order of the labels for every example. This means that the
true ranking of the labels is available for the training examples.

Due to the lack of benchmark LR datasets, 16 semi-synthetic datasets were
proposed in [26]. They are based on multi-class and regression datasets
from the UCI repository and Statlog project. For multi-class problems, also
referred as type A, the naive Bayes classifier was trained to give a probability
score to each class, and the true ranking is based on that score. For the
regression problems, type B, some numeric attributes were normalized and
the true ranking was based on the relative order of their values.

Since then, this set of 16 datasets has been used by the majority and the most
influential contributions in the Label Ranking field [28, 27, 116, 64]. However,
it is unclear if the type B datasets contain any real relations between the
target rankings and independent variables. While type A can be interpreted
as the preferences of an agent, which in this case is the naive Bayes classifier,
on type B, the relations is application-specific and it is unclear whether it
exists or not. To test whether such a relation exist, we expect to find strong
statistical validation of it.

In many data mining applications, Swap Randomizations techniques are used
together with statistical tests to validate the significance of findings [62]. Af-
ter swapping the position of the values along the attributes, the resulting
models are compared with the ones obtained from the original data. There-
fore, statistical significance tests can be used to validate the latter.

In this work, we investigate the usefulness of the type B datasets from the
KEBI data repository by comparison to type A. For that purpose, we pro-
pose two swap randomization methods specific for the LR task. Our results
show that both types of semi-synthetic data have relevant preference infor-
mation.

The paper is organized as follows: Section 6.2 introduces the LR problem.
Section 6.3 introduces the swap randomization and Section 6.4 describes
the method proposed here. Section 6.5 presents the experimental setup and
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discusses the results. Finally, Section 6.6 concludes this paper.

6.2 Label Ranking

The LR task is similar to classification. In classification, given an instance
x from the instance space X, the goal is to predict the label (or class) λ to
which x belongs, from a predefined set L = {λ1, . . . , λk}. In LR, the goal is
to predict the ranking of the labels in L that are associated with x [74]. A
ranking can be represented as a total order over L defined on the permutation
space Ω. In other words, a total order can be seen as a permutation π of the
set {1, . . . , k}, such that π(a) is the position of λa in π.

As in classification, we do not assume the existence of a deterministic X→ Ω
mapping. Instead, every instance is associated with a probability distribution
over Ω [26]. This means that, for each x ∈ X, there exists a probability
distribution P(·|x) such that, for every π ∈ Ω, P(π|x) is the probability
that π is the ranking associated with x. The goal in LR is to learn the
mapping X → Ω. The training data is a set of instances D = {〈xi, πi〉}, i =
1, . . . , n, where xi is a vector containing the values xji , j = 1, . . . ,m of m
independent variables describing instance i and πi is the corresponding target
ranking.

Given an instance xi with label ranking πi, and the ranking π̂i predicted by
an LR model, we evaluate the accuracy of the prediction with a loss function
on Ω. One such function is the number of discordant label pairs,

D(π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) < π̂(b)}

If normalized to the interval [−1, 1], this function is equivalent to Kendall’s
τ coefficient [85], which is a correlation measure where D(π, π) = 1 and
D(π, π−1) = −1 (π−1 denotes the inverse order of π).

The accuracy of a model can be estimated by averaging this function over
a set of examples. This measure has been used for evaluation in recent
LR studies [26, 40] and, thus, we will use it here as well. However, other
correlation measures, like Spearman’s rank correlation coefficient [118], can
also be used.
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6.2.1 IB-PL

Instance-Based Placket-Luce (IB-PL) is an highly competitive method in
label ranking proposed in [24]. It is a local prediction method based on
the nearest neighbor estimation principle. Given a new instance x̂ it uses the
{π1, . . . , πK} rankings associated with the K nearest neighbors to predict the
ranking π̂ associated with x̂. The estimation of π̂ is made using a Maximum
Likelihood Estimation of the Plackett-Luce (PL) model which assumes that
the rankings have been produced independently of each other.

6.2.2 APRIORI-LR

APRIORI-LR is an algorithm that generates Label Ranking Association Rules
(LRAR) [36] which are a straightforward adaptation of Class Association
Rules (CAR): A → π Where A ⊆ desc (X) and π ∈ Ω. Where desc (X)
is the set of descriptors of instances in X, typically pairs 〈attribute, value〉.
Similar to how predictions are made with CARs in CBA (Classification Based
on Associations) [97], when an example matches the antecedent of the rule,
A→ π, the predicted ranking is π.

6.2.3 Datasets

Even though Label Ranking potentially has a large number of practical ap-
plications [74], before the KEBI datasets, there were not many datasets avail-
able [26]:

• Meta-learning [17] on which we try to predict a total ranking of a set of
algorithms accordingly to the best expected accuracy for each dataset.

• Microarray [74] which provides information of genes from Yeast on five
different micro-array experiments (spo, heat, dtt, cold and diau).

• Image categorization [58] of landscape pictures from several categories
(beach, sunset, field, fall foliage, mountain, urban).

To solve this problem, the KEBI Label Ranking data repository was cre-
ated [26]. Data from the UCI repository and Statlog collection was trans-
formed into Label Ranking data using the following two procedures:

type A The multi-label data is used in the training of a naive Bayes clas-
sifier. The predicted class probabilities are ranked by decreasing order
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for each example, which will result in a label ranking. (To avoid incom-
plete rankings, the labels with lower indexes are ranked first in case of
ties)

type B With the regression data, the process consisted of transforming some
attributes into labels. A selected set of attributes are normalized and
then ranked by descent order for each example. The remaining at-
tributes will then be used to predict the rankings. As some of the
attributes are correlated, this transformation is believed to keep a re-
lation between predictors and rankings.

While the type A rankings can be interpreted as the preferences of a classifier,
namely the naive Bayes, the interpretation on type B is not so clear. As
mentioned in [26], type B datasets lead to more difficult learning problems.
In this work, we analyze both data types.

6.3 Swap Randomization

Swap randomization consists of the creation of randomized datasets {D′i}i=1,...,s

from a given dataset D to compare and validate the findings of data min-
ing algorithms. We can maintain the margins of the attributes of D in all
{D′i}i=1,...,s by swapping the position of the values per attribute (see Fig-
ure 6.1).

ID Att

1 A

2 A

3 C

4 B

ID Att

1 B

2 C

3 A

4 A

Figure 6.1: Illustration of a swap randomization per attribute.

Given an interest measure ai, for example the accuracy of a learning method,
an estimation of {ai}i=1,...,s can be obtained for {D′i}i=1,...,s, respectively. Con-
sidering aD as the estimation of a in the dataset D by a given method, if aD
deviates significantly from the distribution of {ai}i=1,...,s we can consider aD
to be significant, otherwise we do not consider it to be relevant [62].
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The same concept has also been widely used in the classification task to
validate classifiers [63, 103], and is commonly referred to as the permuta-
tion test. The p-value can be seen as the fraction of {D′i}i=1,...,s where the
classifiers obtained better results than in D. In other words, this procedure
measures to what extent the accuracy of classifiers could have been due to
chance [105]. The null hypothesis assumes that there is no relation between
the independent variables and the targets.

If we reverse the interpretation, we can also use learning methods to assess
the information contained in the datasets. By using more than one learner
we can avoid the bias of the methods.

6.4 Validating ranking data with permuta-

tion tests

Swap Randomization is used to verify the significance of Data Mining discov-
eries from any given method [62]. If we use the same concept and randomly
permute the position of the target attribute relatively to the independent
variables, we should be able to verify if the relation attribute-target is also
meaningful. While the target class has only one dimension, the target rank-
ing has k dimensions. This property allows us to make partial permutations
i.e. we permute the ranks of one label while leaving the remaining ranks
unchanged. The different approaches are detailed below.

6.4.1 Random permutation of rankings

Randomly permuting the rankings is a natural adaptation of the methods
used in classification like in [63]. By randomly permuting the target rankings,
we want to test the strength of the relation X→ Ω in the data, as exemplified
in Table 6.2. After the permutation, since we break this relation, we can
measure how the LR learners behave and compare with the results on the
original data. If the differences are not significant, we can conclude that
there is no real relation X → Ω. Otherwise, we can statistically show that
the attributes-ranking relations are meaningful.
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ID Att Ranking

1 A a > c > b

2 A a > b > c

3 C c > b > a

4 B c > a > b

ID Att Ranking

1 A c > a > b

2 A c > b > a

3 C a > b > c

4 B a > c > b

Figure 6.2: Illustration of a permutation of rankings.

6.4.2 Random permutation of labels

In LR the target can be seen as a multidimensional variable, from which both
labelwise and pairwise levels of information can be extracted. We refer to a
labelwise permutation when the ranks of a specific label are permuted.

By permuting one label at a time, we can assess the importance of each label
by dataset. We can then compare the distributions of the permuted labels
with the non-permuted results.

In [19], each attribute was permuted at a time to measure the impact of
variables in prediction, in terms of misclassification rate. The results in [19]
indicated that some variables did not contribute to increase the predictive
power of the method used, while others were very important. Similarly, in
our approach to labels, we test if similar conclusions can be drawn, but in
terms of relevance of the labels of rankings.

We would like to note that this process will never lead to a completely dif-
ferent ranking from the original, since only the relation of one label versus
the others is affected per ranking. This is exactly what we intend here, in
order to test the relevance of a label at a time. The process is exemplified in
Figure 6.3, where the label a is permuted within the rankings.

6.5 Experiments

We use two LR algorithms, APRIORI-LR [36] and IB-PL [24]. The perfor-
mance of the methods is estimated using a ten-fold cross-validation in terms
of Kendall’s τ . The data for APRIORI-LR was discretized with equal width
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ID Att Ranking

1 A a > c > b

2 A a > b > c

3 C c > b > a

4 B c > a > b

ID Att Ranking

1 A c > a > b

2 A b > c > a

3 C a > c > b

4 B c > b > a

Figure 6.3: Illustration of a labelwise permutation of the label a.

discretization with 4 bins.

Table 6.1: Summary of the datasets.

Datasets type #examples #labels #attributes

bodyfat B 252 7 7
calhousing B 20,640 4 4
cpu-small B 8,192 5 6
elevators B 16,599 9 9
glass A 214 6 9
housing B 506 6 6
iris A 150 3 4
segment A 2310 7 18
stock B 950 5 5
vehicle A 846 4 18
vowel A 528 11 10
wine A 178 3 13
wisconsin B 194 16 16

To compare the results, we used the t.test function from the stats package
[113] with a confidence level of 95%. In Section 6.5.1 we use the standard t-
test approach and in Section 6.5.2 a paired t-test. The p-values are mentioned
below.

To check whether the mean accuracy in the original data is better or not, we
use the following hypotheses:

H0 The mean accuracy is equivalent in both original and permuted datasets.

H1 The mean accuracy on the original datasets is better than the average
accuracy on the permuted datasets.
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If the p-value < 5%, we reject H0.

6.5.1 Ranking permutations

For each dataset, we performed 100 random permutations of the targets and
measured the accuracy for APRIORI-LR and IB-PL. Then we compared with
10 repetitions on the original data. The distributions for IB-PL are shown
in Figure 6.4.
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Figure 6.4: Distribution of the accuracy of IB-PL on randomized rankings (blue)
and original data (red).

In Figure 6.4 it is clear that in most datasets the distribution of the accuracy
on the permuted datasets is less than the accuracy with the original dataset.
When the difference is big, it indicates that the algorithm is not being able
to find relevant patterns in the randomized datasets. The statistical tests
indicated that for all the cases, there is a significantly better mean accuracy



126 CHAPTER 6. PERMUTATIONS

on the original datasets, with p-values � 1%. Very identical results were
obtained using the APRIORI-LR algorithm.

6.5.2 Labelwise permutations

In this part of the experiments, we permuted one label at a time with 10
repetitions. By comparing it to the 10 repetitions on the original data, we
can statistically test whether the latter are better.

Even though we used two LR methods, if we can statistically show that at
least one method yielded better results with the original data than with a
label permuted, then we do not need to consider the other on that particular
label.
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Figure 6.5: Distribution of the accuracy of APRIORI-LR on vehicle dataset per
permuted label and original data.

In Figure 6.5 it is clear that the distribution of the accuracy with any label
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permuted is less than the accuracy on the original dataset. Therefore it seems
that there are no doubts about the importance of each label for the accuracy.
Also, from Figure 6.5 it is clear how label 4, when randomized, affects the
accuracy in a more extreme way than the remaining labels. Statistical tests
confirm that with p-values� 1% using both APRIORI-LR and IB-PL.
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Figure 6.6: Distribution of the accuracy of APRIORI-LR on glass dataset per
permuted labels and original data.

In the results obtained with the glass dataset, on Figure 6.6, the difference
is not clear and the distribution of some randomized labels overlaps the
distribution with the original data. However, statistical tests indicated that
the distribution on the original data is significantly better.

On the other hand, it is also very interesting how labels 3 and 6 have a much
higher impact on the accuracy for this model than the others. Similar to [19],
we can suggest a level of relevance by label, using this approach.

Figure 6.7 gives the accuracy distribution of IB-PL per label permuted and
with the original dataset. In this case, statistical tests obtained a p-value
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< 5% for all the permuted labels except for label 6. Also APRIORI-LR failed
to obtain a p-value < 5% for the same label.

This seems to indicate that label 6 does not have a very relevant relation with
the other labels. This is somewhat expected from type B datasets rather than
type A. Since in the former, some attributes were transformed into labels of
a ranking, if these come from attributes that are not strongly related with
the remaining, the label rank should also be measured as irrelevant.

0

2

4

6

0

2

4

6

0

2

4

6

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0

1

2

3

4

0

2

4

6

8

0

10

20

30

Label 1
Label 2

Label 3
Label 4

Label 5
Label 6

Label 7
original

(all)

0.12 0.16 0.20

Kendall Tau

C
ou

nt

L1

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

Label 7

original

(all)

Figure 6.7: Distribution of the accuracy of IB-PL on the bodyfat dataset per
permuted label and original data.

Due to space limitations we do not present results for all datasets, but instead
we show the most relevant which are also representative of the others.
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6.6 Conclusions

In this work, we show that, even though KEBI datasets have a semi-synthetic
nature, they carry relevant preference information that can be learned by
contemporary label rankers. In particular, there were no obvious differences
between the type A and type B datasets. Statistical tests showed that the
prediction models over this datasets are not due to chance.

This work also proposes a simple way to measure the relevance of each label
on the prediction accuracy, based on the work of [19]. We also found out
that some labels seem to affect the accuracy more than other, such as in the
glass and vehicle dataset.

This methods can also be used on real world datasets too, in order to give a
richer analysis. For example, by measuring the relative importance of each
label or determining which algorithm is more resistant to noise in rankings
[39]. In the future, we intend to propose a specific method to assess the
relevance of ranking data with a proper statistical framework.



130 CHAPTER 6. PERMUTATIONS



Chapter 7

Conclusions

In this thesis, we addressed label ranking problems with popular data mining
techniques. In most cases, typical data mining approaches had to be adapted
to better explore the complexity of the object of study, the rankings. Ranking
are objects with multiple dimensions. Hence, one challenge is to define the
border between similar and distinct rankings (Chapter 2). On the other
hand, this multi-dimensionality allowed us to explore different facets of the
rankings (Chapter 5 and Chapter 6).

We proposed methods that are either direct or reduction techniques. Consid-
ering the results obtained, we believe that direct and reduction approaches
complement each other by providing different perspectives of the label rank-
ing problem (Chapter 5).

Whenever applicable, we compared our findings with the state-of-the-art la-
bel ranking approaches. The good results obtained demonstrate that the pro-
posed approaches are meaningful and competitive. In particular, the adapta-
tion of one popular approach for classification and regression tasks, Random
Forests, led to a highly competitive label ranking method (Chapter 4).

Label Ranking Association Rules were proposed as a predictive approach
for label ranking [36]. In Chapter 2, we consolidated the work on Label
Ranking Association Rules and presented an extensive empirical analysis
of its behavior. The performance was analyzed from different perspectives,
such as accuracy, number of rules and average confidence. The results show
that, for label ranking datasets in general, similarity-based interest measures
contribute positively to the accuracy of the model. Results also seem to
indicate that the higher the entropy of the rankings on a dataset, the more
the accuracy can be affected by the similarity threshold. This can be used
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as an indicator for setting the threshold according to the characteristics of
the data.

In Chapter 3, we proposed two supervised discretization approaches for label
ranking. The two methods, based on a well-known supervised discretiza-
tion approach for classification, are referred to as Minimum Description
Length Partition for Ranking (MDLP-R) and Entropy-based Discretization
for Ranking (EDiRa). Both use different heuristic measures of entropy, based
on the Shannon entropy [54], to discretize numeric variables.

An analysis of MDLP-R was performed in terms of the similarity threshold
parameter. It was clear that, in simple scenarios, MDLP-R deals with noisy
ranking data appropriately and that the threshold plays a major role in its
behavior. When there are only a few distinct rankings in the data, the
method can be less sensitive to the ranking similarities. We also observed
that, in more complex situations, MDLP-R tends to overfit the data.

For comparison, a supervised discretization method for classification was
also used, recurring to a Ranking As Class transformation [39]. Hence, the
original MDLP discretization method for classification was also used in label
ranking problems. However, as expected the latter failed to distinguish very
similar, but not equal, rankings [39]. This RAC transformation also comes
with the problem that, the number of classes can be extremely large, up to
a maximum of k!, where k is the number of labels in L.

Concerning the second method proposed, EDiRa, the experiments indicate
that this is a more stable and efficient method when compared to MDLP-R.
An analysis of EDiRa shows that it clearly outperforms MDLP-R and does
not have the problem of overfitting, in the presence of noisy ranking data,
as its predecessor. The proposed supervised discretization approaches can
motivate the creation of new methods that, otherwise, could not deal with
continuous data.

The measure of entropy used in EDiRa is more simple and showed better
sensibility to ranking than the previous one. We also believe that, despite
its heuristic nature, makes sense and may be more generally useful in label
ranking. Furthermore, it can be also applied to other fields (e.g. regression)
since it is based on a distance measure such as Kendall τ .

In Chapter 4, this measure of entropy was implemented in the splitting pro-
cess of a decision tree, giving rise to a novel ranking tree approach, Entropy
Ranking Trees. We also implemented and analyzed an improved version of
Ranking Trees [115].
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An analysis of the behavior concluded that both are valid and competi-
tive approaches. In general, Entropy Ranking Trees generated trees with
much smaller depth than Ranking Trees. On the other hand, Ranking Trees
had better accuracy. Statistical tests showed that none of the methods
is significantly different from the state-of-the-art approach, Label Ranking
Trees [26].

As a natural extension of this work, and considering the success of Random
Forests for classification and regression tasks [13], we proposed Label Rank-
ing Forests in Chapter 4. Two versions were proposed. One approach used
Ranking Trees as base model and the other used Entropy Ranking Trees.
We observed a clear improvement of the accuracy in comparison to the cor-
responding base methods. The results confirmed that Label Ranking Forests
are highly competitive label ranking methods.

In Chapter 5 we introduced Exceptional Preferences Mining for mining label
ranking data. It consists of a supervised local pattern mining task where the
target concept is a ranking of a fixed set of labels. The result of this task is
a set of subgroups, described as a conjunction of conditions, where the label
preferences are exceptional in some sense. Three quality measures were de-
veloped to measure different kinds of exceptionality in preferences, Pairwise,
Labelwise and Norm. A discussion of the relative merits, drawbacks, and foci
of the quality measures was provided, including guidelines regarding when
to use which measure.

One of the main benefits of a local pattern mining method such as Excep-
tional Preferences Mining is that it delivers interpretable results. That means
that the resulting subgroups are ideally suited to instigate real-world policies
and action. In particular, the experiments on the Algae and Sushi datasets
provided a valuable exploration of the data with interpretable results. In
terms of visualization of rankings, the Preference Matrix visualization was
able to reveal information that was not easy to obtain with the usual repre-
sentations of rankings.

In Chapter 2, we proposed Pairwise Association Rules (PAR) as a decom-
position method for mining label ranking datasets. Pairwise Association
Rules successfully found interesting subranking patterns in both the Algae
and Sushi datasets. The results clearly show the potential of this relaxed
approach that finds subsets of data for which, some parts of rankings are
frequently observed. This approach is more relaxed than Label Ranking
Association Rules, in the sense that it does not force to find complete rank-
ings. In future research, Pairwise Association Rules could also be used for
predictive tasks.



134 CHAPTER 7. CONCLUSIONS

In Chapter 6, we investigated the usefulness of the type B datasets from the
KEBI repository, and proposed two swap randomization methods specifically
for label ranking datasets. As in [62], we used statistical tests to validate the
significance of the findings.

We conclude that, even though KEBI datasets have a semi-synthetic nature,
they carry relevant preference information that can be learned by contempo-
rary label rankers. In particular, there were no obvious differences between
the type A and type B datasets.

As a side note, one minor contribution was the adoption of the Algae dataset
(Chapter 5). This dataset, originally for multi-regression problems (referred
as COIL 1999 Competition Data [96]), was approached in this thesis from
a label ranking perspective. Here, the set of frequencies of the algae were
interpreted as rankings. This led to a different approach of the problem,
where we want to understand in which conditions some algae prevail and
others not.

We proposed Preference Rules, as a generic term of association rules for min-
ing ranking data. Label Ranking Association Rules and Pairwise Association
Rules can be regarded as specialization of general association rules that han-
dle ranking data. We strongly believe that such a distinction is important
to emphasize the complexity of the rankings, in comparison to other type of
targets [57].

As future work, we believe that PAR have potential to be used as predictive
models. However, a straightforward implementation might not give satisfac-
tory results since pairwise conflicts can appear (e.g. A→ λ1 � λ2∧λ2 � λ1).
For this, proper aggregation techniques must be used. Also, giving the un-
usual structure of PAR, with multiple items in the consequent, appropriate
interest measures can be developed to handle this type of rules [8].

In our opinion, Exceptional Preferences Mining, can be useful in other fields,
other than the ones explored in this work (Chapter 5). For example, in the
discovery of profiles with same voting trends. Also, as we broaden the scope
of Exceptional Preferences Mining, more quality measures can be developed
to better suit the problems at hand.



135

List of Acronyms

DM Data Mining

AR Association Rules

LR Label Ranking

LRAR Label Ranking Association Rules

PAR Pairwise Association Rules

MDLP Minimum Description Length Principle

MDLP-R Minimum Description Length Principle for Ranking data

EDiRa Entropy-based Discretization for Ranking data

RAC Ranking As Class
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[33] C. R. de Sá. Mining association rules for label ranking. Master’s thesis,
Faculty of Sciences, University of Porto, 2010.
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[59] J. Fürnkranz, E. Hüllermeier, and S. Vanderlooy. Binary decomposition
methods for multipartite ranking. In Machine Learning and Knowledge
Discovery in Databases, European Conference, ECML PKDD 2009,
Bled, Slovenia, September 7-11, 2009, Proceedings, Part I, pages 359–
374, 2009.
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Nederlandse Samenvatting

Voorkeuren hebben altijd een rol gespeeld in ons dagelijks leven. Het kopen
van de juiste auto, het kiezen van een geschikt huis, en zelfs beslissen wat
te eten, zijn enkele triviale voorbeelden van keuzes die expliciet of impliciet
iets vertellen over onze voorkeuren. De recente trend om alsmaar groeiende
hoeveelheden data te verzamelen geldt ook voor data over voorkeuren.

Het extraheren en modelleren van voorkeuren levert ons waardevolle infor-
matie over de keuzes van groepen en individuen. In gebieden als e-commerce,
die typisch gaan over de keuzes van duizenden mensen, kan het vastleggen
van voorkeuren een moeilijke taak zijn. Om deze redenen zijn methoden
uit de kunstmatige intelligentie (specifieker, het machinaal leren) van toe-
nemend belang voor het ontdekken en automatisch leren van modellen over
voorkeuren.

Het deelgebied van machinaal leren dat zich richt op de studie en het mo-
delleren van voorkeuren staat bekend als Preference Learning (PL). We kij-
ken specifiek naar een deeltaak binnen PL, namelijk Label Ranking (LR).
Kort gezegd, een LR dataset bestaat uit een verzameling observaties, be-
schreven door attributen (de onafhankelijk variabelen), en een ordening over
een (eindige) verzameling labels (de afhankelijke variabele). In LR zijn we
gëınteresseerd in het voorspellen van de ordening van de labels, gebaseerd op
de waarden van de onafhankelijk variabelen.

In dit promotieproject zijn meerdere aanpakken voor het LR-probleem voor-
gesteld en geanalyseerd. We onderzochten Label Ranking Association Rules
(LRAR), wat het LR-equivalent is van de Class Association Rules. Een
LRAR is een associatieregel waarvan de items gebaseerd zijn op waarden
voor de onafhankelijke variabelen, en de conclusie van de regel een ordening
over de labels voorstelt. Verder stelden we de zogenaamde Pairwise Asso-
ciation Rules (PAR) voor, die gedefinieerd zijn als associatieregels waarvan
de conclusie een verzameling van paarsgewijze voorkeuren weergeeft. PAR
kunnen, net als LRAR, zowel beschrijvend als voorspellend gebruikt worden.
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Onze analyse is echter gericht op de beschrijvende eigenschappen, terwijl de
LRAR vooral gemodelleerd zijn als voorspellende modellen.

Het is algemeen bekend dat preprocessing (het voorbewerken van data) een
belangrijke component is van machinaal leren. Dit is net zo zeer het geval
voor LR als voor elke andere machinaal leren taak. Om een voorbeeld te
noemen: LRAR, net als associatieregels, kunnen niet direct met numerieke
data omgaan, zodat de data vooraf gediscretiseerd moet worden. Er be-
stond echter nog niet zo’n methode voor het geval van LR. Om die reden
stelden we twee LR-specifieke discretisatiemethoden voor. Beide methoden
zijn gebaseerd op nieuwe maten voor de entropie van ordeningen (ranking
entropy).

Het grootste deel van dit project is gericht op methoden voor het ontdekken
van patronen. Echter, gezien de de populariteit van beslisboommethoden en
hoe deze methoden inzichtelijk informatie over de taak kunnen weergeven,
introduceerden we Entropy Ranking Trees. Hoewel eerdere methoden beston-
den voor het aanpassen van beslisboomalgoritmen aan LR, was het natuurlijk
om vanuit een maat voor de entropie van ordeningen te onderzoeken hoe deze
in deze algoritmen gëıntegreerd konden worden. Een andere erg populaire
modelleeraanpak is die van de ensemble learning. Specifiek het Random
Forest (willekeurige woud) algoritme is zeer succesvol gebleken, maar was
nog nooit aangepast naar LR. Het betreft hier een ensemble-methode die
verschillende bomen combineert die op willekeurige manier verkregen zijn.
We stelden dus een ensemble voor Label Ranking voor die gebaseerd is op
Random Forest, genaamd Label Ranking Forest.

Onze zoektocht door het veld van de preference learning werd voortgezet
met het ontdekken van lokale patronen. De taak heet Exceptional Pattern
Mining (het ontdekken van uitzonderlijke patronen) en kan gezien worden als
het ontdekken van lokale patronen over deelverzamelingen van de observaties
waarvan de voorkeursverhoudingen tussen een deel van de labels afwijken van
de norm. In andere woorden, het is een variant op de zogenaamde Subgroup
Discovery taak, waarbij de doelvariabele een ordening betreft. We gebruiken
drie kwaliteitsmaten die subgroepen benadrukken die uitzonderlijke voorkeu-
ren vertonen, waarbij de specifieke nadruk wat betreft ‘uitzonderlijk’ verschilt
per maat. De resultaten tonen ook aan hoe de visualisatie van voorkeuren
in een voorkeursmatrix (Preference Matrix) kan helpen bij het interpreteren
van subgroepen van uitzonderlijke voorkeuren.

Als laatste suggereerden we een aanpak voor het testen van de relatie tus-
sen ordeningen en de onafhankelijke variabelen in een LR dataset. Zoals in
andere leertaken met toezicht (supervised learning) is randomiseren van de
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doelvariabele door middel van omwisselen (swap randomisation) gebruikt om
deze test te doen. We stelden twee manieren voor om dit te doen voor LR,
en hebben ze toegepast op LR datasets.

De experimentele resultaten tonen het potentieel van de genoemde aanpak-
ken.
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English Summary

Preferences have always been present in many tasks in our daily lives. Buying
the right car, choosing a suitable house or even deciding on the food to eat, are
trivial examples of decisions that reveal information, explicitly or implicitly,
about our preferences. The recent trend of collecting increasing amounts of
data is also true for preference data.

Extracting and modeling preferences can provide us with invaluable infor-
mation about the choices of groups or individuals. In areas like e-commerce,
which typically deal with decisions from thousands of users, the acquisition
of preferences can be a difficult task. For these reasons, artificial intelligence
(in particular, machine learning) methods have been increasingly important
to the discovery and automatic learning of models about preferences.

The subfield of machine learning which focuses on the study and modeling of
preferences is Preference Learning (PL). We focus on one subtask of PL,
Label Ranking (LR). In simple terms, a LR dataset consists of a set of
observations described by attributes (independent variables) and a ranking of
a (finite) set of labels (target or dependent variable). In LR, we are interested
in predicting the ranking of the labels for a new observation based on the
values of the independent variables.

In this Ph.D. project, several approaches were analyzed and proposed to
deal with the LR problem. We investigated Label Ranking Association Rules
(LRAR), which are the equivalent of Class Association Rules for the LR task.
A LRAR is an association rule, where the items are based on the values of the
independent values and the right-hand side is a ranking of the labels. Fur-
thermore, we proposed Pairwise Association Rules (PAR), which are defined
as association rules with a set of pairwise preferences in the consequent. Like
LRAR, PAR can be used both as descriptive and predictive models. How-
ever, our analysis of PAR has focused on its descriptive properties, while
LRAR have been essentially studied as predictive models.

153



154 ENGLISH SUMMARY

Preprocessing methods are well known to be an essential part of machine
learning processes. This is true for LR as for any other machine learning task.
For example, LRARs, like association rules, cannot handle numeric data
directly, which needs to be discretized beforehand. However, no LR-specific
methods existed. Hence, we proposed two discretization approaches that are
specific for LR problems. Both approaches are based on new measures of
ranking entropy.

Most of this project has focused on pattern mining methods. However, given
the popularity of decision tree methods and how these can clearly express in-
formation about the problem, we proposed Entropy Ranking Trees. Although
previous approaches existed to adapting decision tree (DT) algorithms for
LR, having proposed a measure of ranking entropy, we found it natural to
investigate its integration on DT algorithms. Another very popular model-
ing approach is ensemble learning. In particular, the Random Forests (RF)
algorithm has been very successful but was not adapted for LR. RF are an
ensemble learning method that combines different trees obtained using differ-
ent randomization techniques. Hence, we proposed an ensemble of decision
trees for Label Ranking, based on Random Forests, which we refer to as
Label Ranking Forests (LRF).

We continued our journey on the field of preference learning by combining
it with local pattern mining. The task is named Exceptional Preferences
Mining (EPM) and can be seen as a local pattern mining task that finds
subsets of observations where the preference relations between subsets of the
labels significantly deviate from the norm. In other words, it is a variant of
Subgroup Discovery, with rankings as the target. We employed three quality
measures that highlight subgroups featuring exceptional preferences, where
the focus of what constitutes ‘exceptional’ varies with the measure. The
results also illustrate how the visualization of the preferences in a Preference
Matrix can aid in interpreting exceptional preference subgroups.

Finally, we proposed an approach to test the relation between the rankings
and independent variables in LR datasets. As in other supervised learning
tasks, target swap randomization methods have been used to test it. So, we
proposed two target swap randomization approaches for LR and apply them
on LR datasets.

Experimental results show the potential of the approaches mentioned.



Resumo

É comum lidarmos com preferências no nosso dia-a-dia. Quando compramos
um carro, procuramos uma casa ou mesmo quando decidimos o que comer, es-
tamos a tomar decisões que revelam informação sobre as nossas preferências.
Nos dias que correm, cada vez mais dados são recolhidos, onde se incluem
também dados sobre preferências.

A extracção e a criação de modelos de preferências, podem fornecer in-
formações valiosas sobre determinados grupos ou indiv́ıduos. Em áreas de
negócio como o comércio electrónico, que lidam com informações de milhares
de utilizadores, a modelação de preferências pode constituir um desafio. Por
isso, métodos de Inteligência Artificial (em particular, machine learning),
têm sido cada vez mais usados para a descoberta e aprendizagem automática
de modelos sobre preferências.

A área de machine learning que lida a modelação e estudo de preferências
é chamada de Preference Learning (PL). O tema deste doutoramento, foca
em uma sub-área de PL denominada de Label Ranking (LR). Em LR, os
dados consistem em observações constitúıdas por atributos (variáveis inde-
pendentes) e rankings de um conjunto finito de objetos (target ou variáveis
dependentes). O objectivo é prever esses rankings para novas observações,
baseando-se nos valores fornecidos das variáveis independentes. Neste traba-
lho, foram propostas várias abordagens ao problema de LR.

Exploramos as Label Ranking Association Rules (LRAR), que são equivalen-
tes às Class Association Rules no contexto de LR. Por definição, uma LRAR
é uma regra de associação onde o antecedente é um conjunto de itens base-
ados nos valores das variáveis independentes, e o consequente é um ranking.
Com uma estrutura semelhante, também propusemos as Pairwise Associa-
tion Rules (PAR), definidas como regras de associação onde o consequente
é um conjunto de pairwise comparisons. Tal como as LRAR, as PAR po-
dem ser usadas como abordagens descritivas e como modelos de previsão.
No entanto, a nossa análise foca-se nas propriedades descritivas das PAR,
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enquanto que as LRAR foram usadas como modelos preditivos.

Métodos de pré-processamento são uma parte essencial nos processos de ma-
chine learning. As LRAR, tal como regras de associação comuns, não con-
seguem lidar directamente com variáveis numéricas, que, por sua vez, têm
que ser discretizadas à priori. Dado que não existiam métodos de discre-
tização especificamente para dados de LR, foram propostas duas abordagens
baseadas em medidas de entropia de rankings.

Apesar de a maior parte deste trabalho focar em métodos de pattern mining,
tendo em conta a popularidade de métodos como árvores de decisão e pela
forma clara como expressam informação, propusemos as Entropy Ranking
Trees. Mesmo já existindo árvores de decisão para LR, uma vez que tinha
sido proposta a medida de entropia de rankings, achamos natural estudar
a sua integração neste modelos. Outra abordagem também muito popular
em machine learning é ensemble learning. Nomeadamente, um algoritmo
denominado Random Forests (RF), tem sido bem sucedido, mas nunca tinha
sido adaptado para LR. O método de RF, combina vários modelos de árvores
de decisão que são geradas usando algumas técnicas de randomização. Por
isso, propusemos ensembles de árvores de decisão, baseados em RF, que
chamamos de Label Ranking Forests.

Continuamos a nossa jornada na área de PL, combinando-a com técnicas de
local pattern mining. O método, a que chamamos de Exceptional Preferen-
ces Mining (EPM), pode ser visto como uma técnica de local pattern mining
que encontra sub-conjuntos de observações onde as preferências se desviam
do normal. Por outras palavras, é uma variante de Subgroup Discovery, em
que os rankings são o target. Par isso, foram propostas três medidas (quality
measures) que procuram sub-conjuntos que apresentem preferências consi-
deradas excepcionais. Os resultados obtidos realçam também uma forma
proposta de representar preferências, a Preference Matrix.

Por último, apresentamos formas de testar a relação entre variáveis indepen-
dentes e rankings, em dados de LR. Uma técnica denominada target swap
randomization, também aplicada em problemas de classificação, foi imple-
mentada para este tipo de testes. Além disso, também foram propostas duas
variantes, baseadas em target swap randomization, para se adequarem melhor
ao problema.

Os resultados experimentais apresentados demonstram o potencial dos métodos
aqui propostos.
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