A surface with canonical map of degree 24

Carlos Rito

Abstract

We construct a complex algebraic surface with geometric genus $p_{g}=3$, irregularity $q=0$, self-intersection of the canonical divisor $K^{2}=24$ and canonical map of degree 24 onto \mathbb{P}^{2}. 2010 MSC: 14J29.

1 Introduction

Let S be a smooth minimal surface of general type with geometric genus $p_{g} \geq 3$. Denote by $\phi: S \rightarrow \mathbb{P}^{p_{g}-1}$ the canonical map and let $d:=\operatorname{deg}(\phi)$. The following Beauville's result is well-known.

Theorem 1 ([Be]). If the canonical image $\Sigma:=\phi(S)$ is a surface, then either:
(i) $p_{g}(\Sigma)=0$, or
(ii) Σ is a canonical surface (in particular $p_{g}(\Sigma)=p_{g}(S)$).

Moreover, in case (i) $d \leq 36$ and in case (ii) $d \leq 9$.
Beauville has also constructed families of examples with $\chi\left(\mathcal{O}_{S}\right)$ arbitrarily large for $d=2,4,6,8$ and $p_{g}(\Sigma)=0$. Despite being a classical problem, for $d>8$ the number of known examples drops drastically. Tan's example [Ta, §5] with $d=9$ and Persson's example [Pe with $d=16, q=0$ are well known. Du and Gao DG] show that if the canonical map is an abelian cover of \mathbb{P}^{2}, then these are the only possibilities for $d>8$. More recently the author has given examples with $d=12$ [Ri2] and $d=16, q=2$ (Ri3].

In this paper we construct a surface S with $p_{g}=3, q=0$ and $d=24$, obtained as a \mathbb{Z}_{2}^{4}-covering of \mathbb{P}^{2}. The canonical map of S factors through a \mathbb{Z}_{2}^{2} covering of a surface with $p_{g}=3, q=0$ and $K^{2}=6$ having 24 nodes, which in turn is a double covering of a Kummer surface.

Notation

We work over the complex numbers. All varieties are assumed to be projective algebraic. A $(-n)$-curve on a surface is a curve isomorphic to \mathbb{P}^{1} with self-intersection $-n$. Linear equivalence of divisors is denoted by \equiv. The rest of the notation is standard in Algebraic Geometry.

Acknowledgements

The author would like to thank an anonymous referee for suggestions to improve the exposition of the paper.

This research was partially supported by FCT (Portugal) under the project PTDC/MAT-GEO/0675/2012, the fellowship SFRH/BPD/111131/2015 and by CMUP (UID/MAT/00144/2013), which is funded by FCT with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020.

$2 \quad \mathbb{Z}_{2}^{n}$-coverings

The following is taken from Ca , the standard reference is Pa .
Proposition 2. A normal finite $G \cong \mathbb{Z}_{2}^{r}$-covering $Y \rightarrow X$ of a smooth variety X is completely determined by the datum of

1. reduced effective divisors $D_{\sigma}, \forall \sigma \in G$, with no common components;
2. divisor classes L_{1}, \ldots, L_{r}, for $\chi_{1}, \ldots, \chi_{r}$ a basis of the dual group of characters G^{\vee}, such that

$$
2 L_{i} \equiv \sum_{\chi_{i}(\sigma)=-1} D_{\sigma} .
$$

Conversely, given 1. and 2., one obtains a normal scheme Y with a finite $G \cong \mathbb{Z}_{2}^{r}$-covering $Y \rightarrow X$, with branch curves the divisors D_{σ}.

The covering $Y \rightarrow X$ is embedded in the total space of the direct sum of the line bundles whose sheaves of sections are the $\mathcal{O}_{X}\left(L_{i}\right)$, and is there defined by equations

$$
u_{\chi_{i}} u_{\chi_{j}}=u_{\chi_{i} \chi_{j}} \prod_{\chi_{i}(\sigma)=\chi_{j}(\sigma)=-1} x_{\sigma}
$$

where x_{σ} is a section such that $\operatorname{div}\left(x_{\sigma}\right)=D_{\sigma}$.
The scheme Y can be seen as the normalization of the Galois covering given by the equations

$$
u_{\chi_{i}}^{2}=\prod_{\chi_{i}(\sigma)=-1} x_{\sigma}
$$

and Y is irreducible if $\left\{\sigma \mid D_{\sigma}>0\right\}$ generates G.
For a covering $\pi: Y \rightarrow X$ with ramification divisor R, the Hurwitz formula $K_{Y}=\pi^{*}\left(K_{X}\right)+R$ holds. Let us describe the canonical system for the case where π is a \mathbb{Z}_{2}^{2}-covering with smooth branch divisor. We have branch curves D_{1}, D_{2}, D_{3} and relations $2 L_{i} \equiv D_{j}+D_{k}$, for all permutations (i, j, k) of $\{1,2,3\}$. The covering π factors as

$$
\phi: Y \rightarrow W_{i}, \quad \varphi: W_{i} \rightarrow X
$$

where φ is the double covering corresponding to L_{i}. Let R_{i} be the ramification divisor of ϕ. One has

$$
K_{Y} \equiv \phi^{*}\left(K_{W_{i}}\right)+R_{i} \quad \text { and } \quad K_{W_{i}} \equiv \varphi^{*}\left(K_{X}+L_{i}\right),
$$

which gives

$$
K_{Y} \equiv \pi^{*}\left(K_{X}+L_{i}\right)+\frac{1}{2} \pi^{*}\left(D_{i}\right), \quad i=1,2,3
$$

Finally we notice that taking the quotient by a subgroup H of the Galois group of the covering corresponds to considering the subalgebra generated by the line bundles L_{χ}^{-1}, where χ ranges over the characters orthogonal to H.

3 The construction

We show in the Appendix the existence of reduced plane curves C_{6} of degree 6 and C_{7} of degree 7 through points p_{0}, \ldots, p_{5} such that:

- C_{7} has a triple point at p_{0} and tacnodes at p_{1}, \ldots, p_{5};
- C_{6} is smooth at p_{5}, has a node at p_{0} and tacnodes at p_{1}, \ldots, p_{4};
- the branches of the tacnode of C_{j} at p_{i} are tangent to the line T_{i} through $p_{0}, p_{i}, j=1,2, i=1, \ldots, 4 ;$
- the branches of the tacnode of C_{7} at p_{5} are tangent to C_{6};
- the singularities of $C_{6}+C_{7}$ are resolved via one blow-up at p_{0} and two blowups at each of p_{1}, \ldots, p_{5}.

Step 1 (Construction)
Consider the map

$$
\mu: X \longrightarrow \mathbb{P}^{2}
$$

which resolves the singularities of the curve C_{7}. Then μ is given by blow-ups at

$$
p_{0}, p_{1}, p_{1}^{\prime}, \ldots, p_{5}, p_{5}^{\prime}
$$

where p_{i}^{\prime} is infinitely near to p_{i}. Let $E_{0}, E_{1}, E_{1}^{\prime}, \ldots, E_{5}, E_{5}^{\prime}$ be the corresponding exceptional divisors (with self-intersection -1).

Let x, y, z, w be generators of the group \mathbb{Z}_{2}^{4} and

$$
\psi: Y \longrightarrow X
$$

be the \mathbb{Z}_{2}^{4}-covering defined by

$$
\begin{gathered}
D_{x}:=\widetilde{T}_{1}-E_{0}-2 E_{1}^{\prime}, \\
D_{y}:=\widetilde{T}_{2}-E_{0}-2 E_{2}^{\prime}, \\
D_{z}:=\widetilde{C}_{6}-2 E_{0}-\sum_{1}^{4}\left(2 E_{i}+2 E_{i}^{\prime}\right)-2 E_{5}^{\prime}, \\
D_{w}:=\widetilde{C}_{7}+\widetilde{T}_{4}-4 E_{0}-\sum_{1}^{3}\left(2 E_{i}+2 E_{i}^{\prime}\right)-\left(2 E_{4}+4 E_{4}^{\prime}\right)-\left(2 E_{5}+2 E_{5}^{\prime}\right), \\
D_{x y}:=\widetilde{T}_{3}-E_{0}-2 E_{3}^{\prime}, \\
D_{x z}:=\cdots:=D_{z w}:=0,
\end{gathered}
$$

We note that each of the divisors $D_{x}, D_{y}, D_{x y}$ and $\widetilde{T}_{4}-E_{0}-2 E_{4}^{\prime}$ (contained in D_{w}) is a disjoint union of two (-2)-curves.

For $i, j, k, l \in\{-1,1\}$, let $\chi_{i j k l}$ denote the character which takes the value i, j, k, l on x, y, z, w, respectively. There exist divisors $L_{i j k l}$ such that

$$
\begin{equation*}
2 L_{i j k l} \equiv \sum_{\chi_{i j k l}(\sigma)=-1} D_{\sigma}, \tag{1}
\end{equation*}
$$

thus the covering ψ is well defined. Since there is no 2-torsion in the Picard group of X, then ψ is uniquely determined. The surface Y is smooth because the curves $D_{x}, \ldots, D_{x y}$ are smooth and disjoint. Division of the equations (1) by 2 gives that the $L_{i j k l}$ are according to the following table. For instance $L_{-1111} \equiv \widetilde{T}-E_{0}-E_{1}^{\prime}-E_{3}^{\prime}$.

	\widetilde{T}	E_{0}	E_{1}	E_{1}^{\prime}	E_{2}	E_{2}^{\prime}	E_{3}	E_{3}^{\prime}	E_{4}	E_{4}^{\prime}	E_{5}	E_{5}^{\prime}
L_{-1111}	(1	-1	0	-1	0	0	0	-1	0	0	0	0
L_{1-111}	1	-1	0	0	0	-1	0	-1	0	0	0	0
L_{-1-111}	1	-1	0	-1	0	-1	0	0	0	0	0	0
L_{11-11}	3	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	-1
L_{-11-11}	4	-2	-1	-2	-1	-1	-1	-2	-1	-1	0	-1
L_{1-1-11}	4	-2	-1	-1	-1	-2	-1	-2	-1	-1	0	-1
$L_{-1-1-11}$	4	-2	-1	-2	-1	-2	-1	-1	-1	-1	0	-1
L_{111-1}	4	-2	-1	-1	-1	-1	-1	-1	-1	-2	-1	-1
L_{-111-1}	5	-3	-1	-2	-1	-1	-1	-2	-1	-2	-1	-1
L_{1-11-1}	5	-3	-1	-1	-1	-2	-1	-2	-1	-2	-1	-1
$L_{-1-11-1}$	5	-3	-1	-2	-1	-2	-1	-1	-1	-2	-1	-1
L_{11-1-1}	7	-3	-2	-2	-2	-2	-2	-2	-2	-3	-1	-2
$L_{-11-1-1}$	8	-4	-2	-3	-2	-2	-2	-3	-2	-3	-1	-2
$L_{1-1-1-1}$	8	-4	-2	-2	-2	-3	-2	-3	-2	-3	-1	-2
$L_{-1-1-1-1}$	(8)	-4	-2	-3	-2	-3	-2	-2	-2	-3	-1	-2

Step 2 (Invariants)
Since

$$
K_{X} \equiv-3 \widetilde{T}+E_{0}+\sum_{1}^{5}\left(E_{i}+E_{i}^{\prime}\right)
$$

then

$$
\begin{gathered}
\chi\left(\mathcal{O}_{Y}\right)=16 \chi\left(\mathcal{O}_{X}\right)+\frac{1}{2} \sum\left(L_{i j k l}^{2}+K_{X} L_{i j k l}\right)= \\
=16-1-1-1+0-1-1-1+0-1-1-1+0-1-1-1=4
\end{gathered}
$$

For the computation of

$$
p_{g}(Y)=p_{g}(X)+\sum h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{i j k l}\right)\right)
$$

let

$$
\begin{gathered}
\mathcal{T}_{1}:=\left(\widetilde{T}_{4}-E_{0}-2 E_{4}^{\prime}+E_{5}-E_{5}^{\prime}\right) \\
\mathcal{T}_{2}:=\left(\widetilde{T}_{2}+\widetilde{T}_{3}+\widetilde{T}_{4}-3 E_{0}-\sum_{2}^{4} 2 E_{i}^{\prime}+E_{5}-E_{5}^{\prime}\right), \\
\mathcal{L}_{1}:=\left|3 \widetilde{T}-E_{0}-\sum_{1}^{3}\left(E_{i}+E_{i}^{\prime}\right)-E_{4}-E_{5}\right|
\end{gathered}
$$

and

$$
\mathcal{L}_{2}:=\left|2 \widetilde{T}-\left(E_{1}+E_{1}^{\prime}\right)-E_{2}-E_{3}-E_{4}-E_{5}\right|
$$

Each of $\mathcal{T}_{1}, \mathcal{T}_{2}$ is a disjoint union of (-2)-curves intersecting negatively $K_{X}+$ $L_{11-1-1}, K_{X}+L_{1-1-1-1}$, respectively, thus we have

$$
\left|K_{X}+L_{11-1-1}\right|=\mathcal{T}_{1}+\mathcal{L}_{1}
$$

and

$$
\left|K_{X}+L_{1-1-1-1}\right|=\mathcal{T}_{2}+\mathcal{L}_{2}
$$

We show in the Appendix that \mathcal{L}_{1} has only one element and \mathcal{L}_{2} is empty. Hence

$$
h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{11-1-1}\right)\right)=1
$$

and

$$
h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{1-1-1-1}\right)\right)=0
$$

Analogously

$$
h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{-11-1-1}\right)\right)=h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{-1-1-1-1}\right)\right)=0
$$

It is easy to see that

$$
h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{11-11}\right)\right)=h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{111-1}\right)\right)=1
$$

and

$$
h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{i j k l}\right)\right)=0
$$

for the remaining cases. We conclude that

$$
p_{g}(Y)=0+1+1+1=3 .
$$

Now we compute the self-intersection of the canonical divisor for the minimal model S of Y. The divisor

$$
\xi_{1}:=\frac{1}{2} \psi^{*}\left(\sum_{1}^{3}\left(\widetilde{T}_{i}-E_{0}-2 E_{i}^{\prime}\right)\right)
$$

is a disjoint union of $8 \times 6=48(-1)$-curves and the divisor

$$
\xi_{2}:=\frac{1}{2} \psi^{*}\left(\widetilde{T}_{4}-E_{0}-2 E_{4}^{\prime}+E_{5}-E_{5}^{\prime}\right)
$$

is a disjoint union of $8 \times 3=24(-1)$-curves.
The covering ψ factors through the double covering $\varphi: W \rightarrow X$ with branch locus $D_{z}+D_{w}$. We have $K_{W} \equiv \varphi^{*}\left(K_{X}+L_{11-1-1}\right)$, hence the Hurwitz formula gives

$$
K_{Y} \equiv \xi_{1}+\psi^{*}\left(K_{X}+L_{11-1-1}\right)
$$

Thus one of the canonical curves of Y is

$$
\xi_{1}+2 \xi_{2}+\psi^{*}(\mathcal{C})
$$

where \mathcal{C} is the unique element in the linear system \mathcal{L}_{1} defined above. From $\xi_{1} \xi_{2}=\xi_{1} \psi^{*}(\mathcal{C})=\psi^{*}(\mathcal{C})^{2}=0$ and $\xi_{2} \psi^{*}(\mathcal{C})=24$, we get $K_{Y}^{2}=-48$. We show in the Appendix that the curve \mathcal{C} is irreducible, therefore $\psi^{*}(\mathcal{C})$ is nef and then $K_{S}^{2}=24$.

Step 3 (The canonical map)
The divisors

$$
D_{z}, D_{w}, D_{z w}
$$

define a \mathbb{Z}_{2}^{2}-covering

$$
\rho: U \rightarrow X .
$$

We have

$$
\chi\left(\mathcal{O}_{U}\right)=4 \chi\left(\mathcal{O}_{X}\right)+\frac{1}{2} \sum\left(L_{11 k l}^{2}+K_{X} L_{11 k l}\right)=4+0+0+0=4
$$

and

$$
p_{g}(U)=p_{g}(X)+\sum h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}+L_{11 k l}\right)\right)=0+1+1+1=3
$$

The surface U is the quotient of Y by the subgroup H generated by x, y. The group H acts on the minimal model S of Y with only isolated fixed points, so S / H is the canonical model \bar{U} of U and then

$$
K_{U}^{2}=6
$$

Finally we want to show that the canonical map of U is of degree 6 onto \mathbb{P}^{2}. It suffices to verify that the canonical system has no base component nor base points. The canonical system of U is generated by the divisors

$$
\begin{aligned}
K_{1} & :=\frac{1}{2} \rho^{*}\left(D_{z}\right)+\rho^{*}\left(K_{X}+L_{111-1}\right) \\
K_{2} & :=\frac{1}{2} \rho^{*}\left(D_{w}\right)+\rho^{*}\left(K_{X}+L_{11-11}\right) \\
K_{3} & :=\frac{1}{2} \rho^{*}\left(D_{z w}\right)+\rho^{*}\left(K_{X}+L_{11-1-1}\right) .
\end{aligned}
$$

Denote by $\vartheta_{1}, \ldots, \vartheta_{4}$ the four (-1)-curves

$$
\frac{1}{2} \rho^{*}\left(\widetilde{T}_{4}-E_{0}-2 E_{4}^{\prime}\right)
$$

and by $\vartheta_{5}, \vartheta_{6}$ the two (-1)-curves

$$
\frac{1}{2} \rho^{*}\left(E_{5}-E_{5}^{\prime}\right)
$$

Let

$$
\pi: U \rightarrow U^{\prime}
$$

be the contraction to the minimal model and $q_{1}, \ldots, q_{6} \in U^{\prime}$ be the points obtained by contraction of $\vartheta_{1}, \ldots, \vartheta_{6}$. If κ is an effective canonical divisor of U^{\prime}, then

$$
H:=\pi^{*}(\kappa)+\vartheta_{1}+\cdots+\vartheta_{6}
$$

is a canonical curve of U. So, the multiplicity of a curve ϑ_{i} in H is 1 if and only if the curve κ does not contain the point q_{i}.

Since the multiplicity of $\vartheta_{5}+\vartheta_{6}$ in K_{1} is 1 , the points q_{5}, q_{6} are not base points of the canonical system of U^{\prime}. The multiplicity of $\vartheta_{1}+\cdots+\vartheta_{4}$ in K_{2} is 1 , so also the points q_{1}, \ldots, q_{4} are not base points of the canonical system of U^{\prime}. Now to conclude the non-existence of other base points, it suffices to show that the plane curves

$$
\mu \circ \rho\left(K_{i}\right), \quad i=1,2,3,
$$

have common intersection $\left\{p_{0}, p_{1}, \ldots, p_{5}\right\}$ and their singularities are no worse than stated. This is done in the Appendix. Here we just note that these curves are

$$
T_{4}+C_{6}, \quad C_{7}, \quad T_{4}+C_{3},
$$

where C_{3} is the plane cubic corresponding to the unique element in the linear system \mathcal{L}_{1}, defined in Step 2 above.

Step 4 (Conclusion)
The \mathbb{Z}_{2}^{4}-covering $\psi: Y \rightarrow X$ factors as

$$
Y \xrightarrow{4: 1} U \xrightarrow{4: 1} X .
$$

Since $p_{g}(Y)=p_{g}(U)=3$ and the canonical map of U is of degree 6 , then the canonical map of Y is of degree 24.

Remark 3. Consider the intermediate double covering $\epsilon: Q \rightarrow X$ of ρ with branch locus D_{z}. Then Q is a Kummer surface: each divisor $\epsilon^{*}\left(\widetilde{T}-E_{0}-2 E_{i}^{\prime}\right)$ is a disjoint union of four (-2 -curves. The surface U contains 24 disjoint (-2)-curves A_{1}, \ldots, A_{24}, the pullback of $\sum_{1}^{3} \epsilon^{*}\left(\widetilde{T}_{i}-E_{0}-2 E_{i}^{\prime}\right)$, such that the covering $Y \rightarrow U$ is a \mathbb{Z}_{2}^{2}-Galois covering ramified over the divisors

$$
A_{1}+\cdots+A_{8}, \quad A_{9}+\cdots+A_{16}, \quad A_{17}+\cdots+A_{24}
$$

Appendix

The following code is implemented with the Computational Algebra System Magma BCP, version V2.21-8.

First we compute the curves C_{6} and C_{7} referred in Section 3 We choose the points p_{0}, \ldots, p_{5} with a symmetry axis and compute the curves using the Magma function LinSys given in Ri1.

```
A<x,y>:=AffineSpace(Rationals(),2);
P:=[A![0,0],A![2,2],A![-2,2],A![3,1],A![-3,1],A![0, 5]];
M1:=[[2],[2, 2],[2,2],[2, 2],[2,2],[1,1]];
M2:=[[3], [2,2], [2,2], [2, 2], [2, 2], [2,2]];
T:=[[],[[1, 1]],[[-1,1]],[[3,1]],[[-3,1]],[[1,0]]];
J6:=LinSys(LinearSystem(A,6),P,M1,T);
J7:=LinSys(LinearSystem(A,7),P,M2,T);
C6:=Curve(A,Sections(J6)[1]);
C7:=Curve(A,Sections(J7)[1]);
```

We consider the projective closure of the curves and verify that they are irreducible and the singularities are exactly as stated.

```
P2<x,y,z>:=ProjectiveClosure(A);
C6:=ProjectiveClosure(C6);
C7:=ProjectiveClosure(C7);
IsAbsolutelyIrreducible(C6);
IsAbsolutelyIrreducible(C7);
```

```
SingularPoints(C6 join C7);
HasSingularPointsOverExtension(C6 join C7);
[ResolutionGraph(C6,P[i]):i in [1..#P-1]];
[ResolutionGraph(C7,P[i]):i in [1..#P]];
[ResolutionGraph(C6 join C7,P[i]):i in [1..#P]];
```

To clarify the situation at the origin, we use:

```
d:=DefiningEquation(TangentCone(C7,A![0,0]));
```

d eq $\mathrm{y} *\left(\mathrm{x}^{\wedge} 2+40585383 / 1587545 * \mathrm{y}^{\wedge} 2\right)$;
thus the singularity is ordinary.
The defining polynomials of C_{6} and C_{7} are

```
289*x^6+754326*x^4*y^2+2610657*x^2*y^4+1906344*y^6-2013848*x^4*y*z
-17946576*x^2*y^3*z-22212504*y^5*z+1336400*x^4*z^2
+35856160*x^2*y^2*z^2+89326224*y^4**^2-22270208*x^2*y*z^3
-146421504*y^3*z^3+295936*x^2*z^4+84049920*y^2*z^4
and
8683464*x^6*y-494984955*x^4*y^3-1064093674*x^2*y^5-558251235*y^7
-11358312*x^6*z+1253331746*x^4*y^2*z+8340957732*x^2*y^4*z
+7286240034*y^6*z-920312219*x^4*y*z^2-17394911410*x^2*y^3*z^2
-32292289971*y^5*z^2+179839940*x^4*z^3+11716330200*x^2*y^2*z^3
+55580514660*y^4*z^3-1270036000*x^2*y*z^4-32468306400*y^3*z^4
```

Now we show that the linear system \mathcal{L}_{1}, defined in Step 2 above, has exactly one element. Let L_{1} be the corresponding linear system of plane cubics. By parameter counting, $\operatorname{dim}\left(L_{1}\right) \geq 0$. If $\operatorname{dim}\left(L_{1}\right) \geq 1$, then one of its curves contains the line T_{3}, because

$$
\left(\widetilde{T}_{3}-E_{0}-E_{3}-E_{3}^{\prime}\right)\left(3 \widetilde{T}-E_{0}-\sum_{1}^{3}\left(E_{i}+E_{i}^{\prime}\right)-E_{4}-E_{5}\right)=0
$$

The other component of this curve is a conic, but one can verify that the conic through p_{4} tangent to the lines T_{1}, T_{2} at p_{1}, p_{2}, which is given by the equation

$$
x^{2}-9 y^{2}+32 y-32=0
$$

does not contain the point p_{5}. We compute the unique plane cubic C_{3} in L_{1} and show that it is irreducible:

```
M:=[[1],[1,1],[1,1],[1, 1], [1,0],[1,0]];
J3:=LinSys(LinearSystem(A, 3) ,P,M,T);
#Sections(J3) eq 1;
C3:=ProjectiveClosure(Curve(A,Sections(J3)[1]));
IsAbsolutelyIrreducible(C3);
```

The defining polynomial of C_{3} is

```
17*x^3-924*x^2*y-153*x*y^2-996*y^3+1164*x^2*z
+544*x*y*z+6516*y^2*z-544*x*z^2-7680*y*z^2
```

To conclude that the linear system \mathcal{L}_{2}, defined in Step 2, is empty, it suffices to note that the conic C through p_{1}, \ldots, p_{5} is not tangent to the line T_{1} at the point p_{1}. An equation for C is

$$
-12 x^{2}+11 y^{2}-93 y+190=0
$$

Finally we verify that the curves

$$
T_{4}+C_{6}, \quad C_{7}, \quad T_{4}+C_{3},
$$

referred in the end of Section 3 have intersection $\left\{p_{0}, p_{1}, \ldots, p_{5}\right\}$:

```
T4:=Curve(P2,x+3*y);
PointsOverSplittingField((T4 join C6) meet C7 meet (T4 join C3));
and the singularities are no worse than stated:
```

```
[ResolutionGraph(T4 join C3 join C6 join C7,p):p in P];
```

To clarify the situation at the origin, we use:

```
TC:=TangentCone(T4 join C3 join C6 join C7,P2![0,0,1]);
DefiningEquation(TC) eq y*(x+3*y)*(x + 240/17*y)
*(x^2 + 82080/289*y^2)*(x^2 + 40585383/1587545*y^2);
```

thus the singularity is ordinary.

References

[Be] A. Beauville, L'application canonique pour les surfaces de type général, Invent. Math., 55 (1979), no. 2, 121-140.
[BCP] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), no. 3-4, 235-265.
[Ca] F. Catanese, Differentiable and deformation type of algebraic surfaces, real and symplectic structures, Symplectic 4-manifolds and algebraic surfaces, vol. 1938 of Lecture Notes in Math., Springer, Berlin (2008), 55167.
[DG] R. Du and Y. Gao, Canonical maps of surfaces defined by abelian covers, Asian J. Math., 18 (2014), no. 2, 219-228.
[Pa] R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math., 417 (1991), 191-213.
[Pe] U. Persson, Double coverings and surfaces of general type, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977), vol. 687 of Lecture Notes in Math., Springer, Berlin (1978), 168-195.
[Ri1] C. Rito, On the computation of singular plane curves and quartic surfaces, arXiv:0906.3480 [math.AG] (2009).
[Ri2] C. Rito, New canonical triple covers of surfaces, P. Am. Math. Soc., 143 (2015), no. 11, 4647-4653.
[Ri3] C. Rito, A surface with $q=2$ and canonical map of degree 16, Michigan Math. J., 66 (2017), no. 1, 99-105.
[Ta] S.-L. Tan, Surfaces whose canonical maps are of odd degrees, Math. Ann., 292 (1992), no. 1, 13-29.

Carlos Rito
Permanent address:
Universidade de Trás-os-Montes e Alto Douro, UTAD
Quinta de Prados
5000-801 Vila Real, Portugal
www.utad.pt, crito@utad.pt
Temporary address:
Departamento de Matemática
Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre 687
4169-007 Porto, Portugal
www.fc.up.pt, crito@fc.up.pt

