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Abstract:  

This works deals with the identification of preferential site-specific activation at a model 

Pt surface during a multiproduct reaction. The (110)-type steps of a Pt(332) surface were 

selectively marked by attaching isotope-labeled 13CO molecules to them, and ethanol 

oxidation was probed by in situ Fourier transform infrared spectroscopy in order to 

precisely determine the specific sites at which CO2, acetic acid, and acetaldehyde were 

preferentially formed. The (110) steps were active for splitting the C-C bond but 

unexpectedly, we provide evidence that the pathway of CO2 formation was preferentially 

activated at (111) terraces, rather than at (110) steps. Acetaldehyde was formed at (111) 

terraces at potentials comparable to those for CO2 formation also at (111) terraces, while 

the acetic acid formation pathway only became active when the (110) steps were released 

by the oxidation of adsorbed 13CO, at potentials higher than for the formation of CO2 at 

(111) terraces of the stepped surface.  
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Description of the relationships between reaction activation pathways and specific 

sites at solid surfaces is a demanding task that is necessary for improving understanding 

of the chemistry of heterogeneous (electro)catalysis at the molecular level. As early as 

1925, Taylor1 pointed out that real solid catalysts possess non-equivalent sites, which 

today are characterized as steps/defects, close-packed domains, ad-atoms, holes, and so 

on.2 These different local surface crystallographic orientations are surrounded by 

different chemical environments and can vary in activity along the catalyst surface.3 

Consequently, the catalytic activity at the macroscopic scale results from the 

contributions of sites with different activities. This means that the identification of 

specific sites in multi-product reactions becomes more challenging, because in the 

mechanisms of these reactions, different reaction pathways may compete for the same 

active sites, with the various catalytic activities affecting the overall reaction rate.  

Information on the identity of active sites is essential for understanding the nature of 

factors limiting the efficiency of a catalyst.4 This is a key issue in energy conversion 

technology, as in the case of the electrocatalytic oxidation of ethanol, a convenient 

candidate for use in low temperature fuel cells. The use of infrared spectro-

electrochemistry techniques to monitor the products of ethanol electro-oxidation at a Pt 

single crystal5 revealed that it is a surface structure-sensitive reaction. From the catalytic 

viewpoint, one challenge in ethanol electro-oxidation is that almost all catalysts leave the 

C-C bond intact,6,7 resulting in reaction products such as acetic acid or acetaldehyde that 

are associated with lower exploitation of the ethanol energy capacity. So, from the energy 

conversion perspective, it is desirable to tune the reaction pathway toward CO2, and 



beyond this, as a fundamental scientific question, it is important to understand the factors 

that favor or hinder it. The pathway to CO2 requires cleavage of the C-C bond, with this 

reaction step being more favorable at step/defect sites than at (111) planes.8,9 Therefore, 

steps/defects have been proposed to be the only active sites for the formation of CO2 

during ethanol oxidation,8,10 while the pathway towards acetic acid has been suggested to 

be highly active on the (111) planes.11 Additionally, insight into the reaction mechanism 

of ethanol oxidation has been achieved using isotope-labeled ethanol, evidencing the 

existence of preferential routes in ethanol dissociation/oxidation.12-14 However, it is 

important to note that in previous work, there has been no control over the identity of the 

active sites and their relationships with specific reaction products or with the activation 

of the reaction pathway. An elegant methodology to identify active sites involves the 

selective blocking/marking of sites, but this is not a simple task, because the species used 

to block/mark active sites may affect the chemistry (reactivity, catalytic activity, etc.) of 

neighboring sites, as occurs with ad-atoms blocking sites.15 Ideally, a neutral 

blocking/marking species should be employed, such as a “marked” reaction intermediate. 

Here, we overcome that difficulty by selectively marking the (110)-type steps of a stepped 

(111) Pt surface using isotope-labeled 13CO, followed by examination of the activities of 

the remaining sites towards different reaction products coming from the ethanol electro-

oxidation. In the course of ethanol electro-oxidation, COads appears as a reaction 

intermediate,5 so the 13COads deliberately attached at the (110) steps acts as both a site-

specific species marker and a neutral/natural intermediate in the CO2 pathway. 

A well characterized Pt(332) stepped surface was employed, consisting of a 5-atom 

wide (111) terrace, periodically interrupted by monoatomic (110) steps, as shown in the 

hard sphere model in Figure 1, where the structure corresponding to (110) monoatomic 

steps is represented by a square, while the structure corresponding to the (111) terraces is 



represented by a hexagon. The Pt(332) crystal was prepared as described previously.16 

The selection of this surface was based on its easier CO step sites decoration and its 

terraces width that was neither too short nor too long. The experimental details are 

provided in the Supporting Information.  
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Figure 1. Cyclic voltammograms of Pt(332) in 0.1 M HClO4, obtained at 50 mV s-1. 

Black line: blank; red line: 13CO only on (110) steps. The data include a hard sphere 

model of Pt(332).  

 

Figure 1 shows the cyclic voltammogram of Pt(332) in 0.1 M HClO4 (black line) and 

the voltammogram obtained when the 13C16O (henceforth denoted 13CO) was selectively 

attached at the (110) steps (red line). The protocol used to obtain 13CO only on the (110) 

steps consisted of voltammetric partial oxidation of a full 13CO adlayer. Briefly, a full 

adlayer of 13CO was prepared at the electrode, after which the CO adlayer was oxidized 

by applying several voltammetric cycles, limiting the upper potential in order to avoid 

oxidation of the entire 13CO adlayer at once. The oxidation of the CO adlayer at the (111) 

stepped Pt surface consisting of (110) steps preferentially occurred at the (111) terraces, 

with the CO oxidation at (110) steps only starting after all the CO at the (111) terraces 

had been oxidized. Then, since the COads in the remaining layer behaved as an immobile 

species during its oxidation,17 it was possible to acquire 13CO in the residual 13CO layer 



only at the row of (110) steps. In Figure 1, the reversible peaks at ~0.128 V (black line) 

correspond to hydrogen adsorption/desorption at (110) steps. For the experiment with 

13CO only on (110) steps, only these features were suppressed in the hydrogen region. All 

the features below these processes at ~0.128 V corresponded to hydrogen 

adsorption/desorption at the (111) terraces. In Figure 1, all these sites were fully freed of 

13COads, as shown by comparison of the red line with the black line.  

A typical voltammetric profile of 10 mM ethanol oxidation on a stepped Pt surface is 

presented in Figure 2 (red line), together with a blank voltammogram (black line). The 

(110) steps were indicative of low adsorption of ethanol at that concentration. All the 

(111) terraces remained completely unaltered, showing that the (111) terraces were less 

active for ethanol adsorption/dissociation than the steps, at least at low potentials. The 

protagonist action of the (111) terraces in ethanol oxidation was evidenced by the 

experiments shown in Figure 2, which compares voltammograms for ethanol oxidation at 

bare Pt(332) (red line) and Pt(332) with COads selectively attached at the (110) steps (blue 

line). In order to carry out these experiments, after the preparation of (110) steps 

decorated with CO (normal CO), the electrode was polarized at 0.100 V and an aliquot of 

ethanol was added directly into the electrochemical cell, to a concentration of 10 mM. In 

order to analyze the data in Figure 2, it is opportune to mention that by using stripping 

voltammetry, in acid media the CO oxidation at the (110) steps of a stepped Pt single 

crystal with (111) terraces only develops maximum activity at ~0.72 V.17 In Figure 2 

(blue line), all the (110) steps were previously fully blocked by COads, so the only sites 

available to participate in the ethanol oxidation/dissociation were the (111) terraces. 

However, it can be seen that in the presence (blue line) and absence (red line) of CO 

previously attached at the steps, the voltammograms were virtually identical between ~0.2 

and ~0.5 V. This similarity suggested a predominant participation of (111) terraces in the 



overall current density for ethanol oxidation at potentials above ~0.35 V, especially if it 

is considered that at potentials lower than ~0.72 V, the (110) steps were blocked by 

COads.17 The molecular factors controlling this behavior are elucidated in Figures 3-4. 
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Figure 2. Ethanol (10 mM) electro-oxidation at Pt(332) in 0.1 M HClO4, at 50 mV s-1, in 

the presence (blue line) and absence (red line) of COads previously deposited at the (110) 

steps. Inset: voltammograms for the blank (black line) and for (110) steps decorated with 

CO (orange line). 

 

The acquisition of in situ FTIR spectra (Figure 3) employed the following 

experimental protocol. Firstly, the Pt(332) electrode in the FTIR cell was fully covered 

with isotope-labeled 13CO by bubbling 13CO gas into the cell for 5 min, followed by 

purging the solution with Ar for 25 min. A partial 13CO stripping experiment was then 

performed, in which 13CO only remained at the (110) steps. In the experiment of Figure 

3, the decorated 13CO surface is that shown in Figure 1 (red line). Then, an aliquot of 

ethanol was added directly into the solution, to a concentration of 10 mM, while 

maintaining the potential at 0.100 V. The electrode was pressed against the prismatic 

optical window (CaF2) to record in situ spectra (200 interferograms and resolution of 8 

cm-1) from 0.100 to 0.800 V, in intervals of 25 mV. Here, the series of spectra are shown 

for potentials above 0.400 V.  
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Figure 3. Spectra for ethanol (10 mM) electro-oxidation at Pt(332) with the (110) steps 

selectively decorated with 13CO. The reference spectrum was recorded at 0.400 V.  

 

Two CO2 band frequencies can be seen in Figure 3, one at 2343 cm-1, due to the CO2 

coming from the oxidation of COads derived from ethanol dissociation, and another at 

2277 cm-1, due to the 13CO2 coming from the oxidation of 13CO that was previously 

attached at the (110) step sites. The band at 2343 cm-1 appeared at a lower potential 

(~0.500 V) than the potential at which the band at 2277 cm-1 appeared (~0.625 V). This 

enabled precise discrimination of the preferences for the activation pathways of CO2 

formation at two different active sites, which were the (110) step sites (where the 13CO2 

was formed) and the (111) terrace sites (where the normal CO2 was formed) at the same 

catalyst surface containing these non-equivalent sites. Another important band appeared 

at ~1280 cm-1, attributed to the combined C-O stretching and OH deformation of the 

COOH group of acetic acid.18 This band appeared at ~0.625 V, the same potential at 

which the oxidation of 13COads at the (110) steps started. This suggested that the activation 

pathway of CO2 formation at the step sites and the acetic acid activation pathway were 

not independent. In previous experiments, acetic acid was always detected at potentials 



after the start of the CO2 activation pathway,9 but the reasons for this behavior will be 

clarified in this work. The band at 1415 cm-1, which appeared at ~0.625 V, was attributed 

to symmetric O-C-O stretching of the COO- group. The band at ~1715 cm-1 corresponded 

to C=O stretching of acetaldehyde or acetic acid (CHO or COOH groups).11 Since the 

band at ~1715 cm-1 appeared at ~0.575 V, before the acetic acid band at ~1280 cm-1, it is 

reasonable to suppose that the acetaldehyde formation pathway was activated even when 

all the (110) steps were fully blocked with 13CO, which is consistent with the activation 

pathway of acetaldehyde formation at the (111) terrace sites of the stepped Pt surface. 

Bands at ~2030 cm-1 and ~2070 cm-1 were due to the stretching frequencies of linearly 

bonded CO at the (111) terraces. The spectra showed dominance of the 12CO band over 

the 13CO band, with the latter not being detected in the spectra. The spectra for the 

13CO/12CO mixture evidenced the predominance of dipole-dipole coupling at the CO 

adlayer,19 with the intensity of the higher 12COads band frequency being reinforced at the 

expense of the 13COads band.20,21 This might explain the absence of the 13COads band in 

Figure 3. Moreover, using a Pt(533)  Pt(s)-[4(111)(100)] 22 surface and different 

proportions of 13CO/12CO, due to the phenomena of transfer intensity,20,21 the band 

intensity related to 13COads at steps gradually decreased as the CO coverage at (111) 

terraces increased.22 Figure S3 shows spectra for the 13CO/12CO mixture. In the spectra 

shown in Figure 3, the bending mode of water appeared at ~1600 cm-1. 

Similarly for 100 mM ethanol (Figure 4), all the (110) steps were selectively decorated 

with 13CO. It can be seen that the spectra exhibited trends similar to those in Figure 3, but 

with higher band intensities at 2343 cm-1, due to the CO2 from ethanol oxidation, and at 

around ~1280 cm-1 and 1415 cm-1, because the generation of products was higher.  
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Figure 4. Spectra for 100 mM ethanol electro-oxidation at Pt(332) with the (110) steps 

selectively decorated with 13CO. The reference spectrum was recorded at 0.400 V.  

 

As described in the literature,8-10 compared to the (111) terraces, the experiments 

confirmed that the (110) step sites were more capable of catalyzing cleavage of the C-C 

bond of the ethanol molecule at low potentials, and calculations suggest that breaking of 

the C-C bond requires a substantial ensemble of atoms on the surface.23 Concerning site-

specificity, the results revealed other properties of the step sites in ethanol oxidation and 

the protagonist role of (111) terraces at low potentials. The in situ FTIR spectra (Figures 

3-4) showed that although the (111) terraces provided only weak C-C bond cleavage, 

these sites were much more effective in the activation pathway for CO2 formation at low 

potential (~0.525 V), compared to the catalytic activity of the (110) step sites (where CO2 

formation started at ~0.625 V). This discrimination of the catalytic activities of non-

equivalent sites toward the same reaction product (CO2) was successfully revealed by the 

experimental strategy of chemically marking the (110) step sites by attachment of 13CO 

from the gas phase. This procedure precisely mirrored the attachment of a natural reaction 



intermediate at selected active sites (the (110) steps at a Pt(332) stepped surface), leaving 

all the other sites characterized as (111) terraces free for evaluation of their catalytic 

properties during ethanol oxidation. According to the spectra shown in Figures 3-4, the 

pathway to acetaldehyde formation was activated even when all the (110) steps were fully 

blocked with 13CO, meaning that acetaldehyde was formed at (111) terraces at potentials 

below ~0.62 V.  

The unexpected higher catalytic activity for CO2 formation at (111) terraces could not 

be attributed specifically to the terraces themselves. It was previously observed that CO2 

generation at “infinite” (111) planes was low and only occurred above ~0.7 VRHE.11 In the 

present case, CO2 formation at (111) terraces was observed at ~0.525 V, implying that 

the catalytic properties of “infinite” (111) plane surfaces differed greatly from those at 

stepped surfaces of the (111) plane. It is likely that the properties of the (111) terraces 

were modified by the steps, due to the Smoluchwski effect.24 This involves the charge 

distribution at the steps, with a lack of it at the top side and accumulation of it at the 

bottom side, as a surface dipole. The steps probably modified the catalytic properties of 

the (111) terraces, making them the most favorable locations for activation of the COads 

oxidation pathway. Therefore, although the steps were most effective in cleaving the C-

C bond to form COads, their ability to convert COads to CO2 was lower, compared to the 

(111) terraces at the stepped Pt surface. Hence, if COads is conceived as a catalytic poison, 

its adsorption at steps had a greater catalyst poisoning effect than at the (111) flat 

structure. This easier conversion of COads to CO2 at (111) terraces probably involved the 

carbon of the alcoholic group, which is more reactive than the ethyl group.25  

Comparison of the potentials for CO2 formation at the (111) terraces (Figures 3-4) 

showed that CO2 formation unequivocally preceded the appearance of acetic acid. From 

a mechanistic perspective, both CO2 and acetic acid formation require the transfer of one 

external oxygen atom derived from a water molecule. According to the thermodynamics 



(Table 1), the acetic acid pathway presents a standard potential E0 ≃ 0.058 VSHE, while 

for the CO2 pathway E0 ≃ 0.085 VSHE, and for acetaldehyde E0 ≃ 0.246 VSHE.  

 

Table 1. Standard Potentials a (E0/ VSHE) and the Number of Exchanged Electrons (ne-) 

for the Electrochemical Oxidation of Ethanol. 

electrochemical reaction  E0  𝑛𝑒− 

H3C-CH2OH(l) + 3H2O(l) ⇄ 2CO2(g) + 12H+ + 12e-  0.085  12  

H3C-CH2OH(l) + H2O(l) ⇄ H3C-COOH(l) + 4H+ + 4e-  0.058  4  

H3C-CH2OH(l) ⇄ H3C-CHO(l) + 2H+ + 2e-  0.246  2  
aCalculated from standard thermodynamic data.26 

 

Based on the expected standard potentials, the pathways to acetic acid and CO2 were 

almost equally preferable. However, the results showed that the acetic acid pathway was 

accidentally hindered by COads poisoning at the steps. At low potentials (E < 0.6 V), acetic 

acid formation apparently did not occur at the (111) plane of stepped Pt surfaces, and only 

started when the steps were freed. The steps acted to change the mechanism of acetic acid 

formation at the (111) plane, which was not favored (at low potentials) at the (111) planes 

of the stepped surface. 

In conclusion, we show that the protagonist effect of the (111) terraces is induced by 

the presence of steps. The step sites presented different functionalities at non-equivalent 

surface sites during the electrocatalysis of ethanol oxidation, modifying the activity of 

(111) terraces for the CO2 formation pathway at low potentials, and changing the 

mechanism of acetic acid formation. The preferential activation of the CO2 pathway at 

the (111) terraces indicated that these locations were most suitable for the transfer of 

external oxygen required for formation of CO2, rather than acetic acid at (110) steps or 

even at (111) terraces. 
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