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ABSTRACT

The human behaviour analysis has been a subject of study in various fields of science (e.g. sociology,

psychology, compürer science). Specificallf the automated understanding of the behaviour of both

individuals and groups remains a very challenging problem from üe sensor systems to alificial
intelligence rechniques. Being aware of the extent of the topic, the objective of this paper is to review

the state of the art focusing on machine learning techniques and computer vision as sensor system to

üe artificial intelligence techniques. Moreover, a lack of review comparing üe level of abstraction

in terms of activities duration is found in the literature. In üis paper, a review of the methods and

techniques based on machine learning to classify group behaviour in sequence of images is presented-

The review takes into account the different levels of understanding and the number of people in the

group.
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1. INTRODUCTION

Nowadays, video surveillance of people is a widely used tool because there are many cameras that

facilitate the capture and storage of video. Most of these products are dependent on an operator to

analyze the content of stored information. Knowing this limitation, it is necessary to provide systems

of video surveillance that make possible the automatic identification of behavior. These types of
system can be carried out using computer vision techniques, since they allow the identification of
pattems of people behaüor in an unsupervised manner as gestures, movements and activities among

others. In general terms, machine learning, it is possible to model the behavior of people in open

or closed spaces such as universities, shopping malls, parks or streets, and then analyze them using

automatic leaming methods-
There are currently many researches on Human Behavior Analysis such as, (Azorin-Lopez

et al., 2015) that have resulted in the identification of va¡ious types of people's behavio¡ in video

sequences. These behaviors have been classified from the simplest to the most complex taking into

account their dúation, from seconds to hours. For these behaviors, a classification has been proposed

in (Chaaraoui et al.,2012).
The objective of this paper is to provide a classiñcation of human behavior analysis proposals

taking into account the size of the group or crowd, identifying the number of people that comprises
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it, the type of behavior detected, the level of abstraction (from simple actions to complex behaviors)
and the techniques used for its treatment and analysis. The most important public datasets are also
reviewed which are used to test algorithms there exist several shrdies on the identification of human
behaviors such as (Chaaraoui et al.,2Ol2), (Cardinaux et al., 201 l), (Turaga et al., 2008), (Ryoo &
Aggarwal,2008). In (Mihaylova et al., 2014) a taxonomy of groups with fewer and more members is
established, in addition the methods to analyze them are specified- There are works such as (Climent-
Pérez et al.,2014), *üere it is proposed to analyze the behavior of crowds by classifying them into
two levels, macro and micro. Despite research efforts to analyze behaüor in groups and crowds, we
still have many ftonts on this subject for researchers.

The organization of the paper is as follow: Section 2. Aspects of human behavior, levels of
semantics and datasets; Section 3- Classification of the state ofthe art proposals: finally, conclusions
and possible future works.

2. ASPECTS OF HUMAN BEHAVIOR ANALYSIS

In this section, üe main aspects of the human behavior analysis are explained. First, we will present

the different levels of understanding and later the main datasets available for experimentation.

2.1. Oescription of Human Behavior Types and Semantics
(Gesture, Motions, Activities, Behavior)

In order to identify human behavior according to the level of abstraction and understanding the data
has to be classified depending on üe meaning, duration and complexi§ of tasks performed by humans-

Classifications of activities have taking as its main reference üe level of complexity of them,

from the easiest to the most complex. The complexity factor is directly related to the time duration of
the activity, generally, an activity is considered complex ifit has a longer duration. In (Vishwakarma

& Agrawal, 2013) four levels related to their semantics:

Level 1 (Gestures): Basic movements of parts of the body that last a time. Examples of gesh-ues

can be movements ofthe hand, arm, fcrot or head among others.
Level 2 (Actions): Also called atomic, consists of actions performed by a single person, their
duration is larger than a gestue. An example of actions could be walking, running, jumping.
Level 3 (Interaction): In this category human-human or human-otrject interaction activities
are performed. Examples ofthese interactions can be two people dancing, kissing, running one

behind another, children playing, people cycling.
Level 4 (Group Activity): At this level of description it conforms to two or more groups
of people, one or more objects can intervene in the scene. An athletic race, basketball team

forwarding, pedestrians crossing a street, a football game, a fight in a stadium can be examples

of group activities.

Another taxonomy of human behavior that classifies it according to üe complexity and duration
time is propos€d in (Chaaraoui et al., 2012). In this approach, the analysis is classifietl on the degree

of semantics in four levels:

Lerel I (Motion): Detection in seconds or frames-
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Levet 2 (Action): Detection of simple tasks in terms of seconds. The human can interact with
objects, or be sitting, standing, walking-
Level 3 (Activity): These are tasks from of minutes to hous. They constitute the sequence of
actions, such as cleaning a room, washing a vehicle.
Level 4 (Behavior): This is the higher level ofunderstanding since its duration time can be hours

and days. Example behavior can be daily routines ofa person, personal habits, and mix of two
activities in logical sequence.
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Both taxonomies described above are based on the daily activities of people, taking into account

impofant factors such as the level of semantics, the duration and the activities composed of other
simpler parts such as movements and actions. They described the levels/orders of behavior f¡om the

simple movements lasting s€conds, to complex activities performed by people for several minutes,
hours and even days- The aim of the researchers has been to propose a general classification human
behavior- There are other classification, however, in this work we are going to base our proposal on

these focused on group and crowd behavior classification

2.2. Special¡zed Datasets

In (Blunsden & Fisher, 20 I 0) Blunsden and Fisher presented a set of datasets which include sequences

for individual and group behavior which are part ofthe BEHAVE project and include some form of
ground truth- Since this paper is focused on group and crowd analysis, the individual datasets are not

studied, but authors refer to the original paper for further details-
In group analysis, there are tbree datasets belongilg to BEHAVE project: CAVIAR, CVBASE,

ETISEO. Examples of behavior detected in üese datasets are: InGroup (The people are in a group

and not moving very much), Approach(Two people or groups with one (or both) approaching the
other), WalkTogether (People walking together), Meet (Two or more people meeting one another),

Split (Two or more people splitting from one anoüer), Iglore (Ignoring ofone another), Chase (One

group chasing another), Fight (Two or more groups fighting), Run:Together (The group is running
together), Follo*'ing (Being followed).

In this paper we analyze the behavíor of groups and crowds such as pedestrians, crowds in
public places such as stadiums or squares, interactions of large and small groups, sport actions such
as soccer and basketball, and others. The datasets used by the researchers are numerous, being the

main ones the following: BEHAVE, BIWI, VSPETS, ETH, DGPI, UHD, HMDB, SponsVU, PETS,
UNM, ViF, Bus STATIONS, Subway STATIONS, oüers. Also in some cases the researchers use

their own datasets or videos obtained on YouT[be. In (Chaquet et al., 2013) it is proposed a study
and dataset classification taking into account the behaviors, number of people involved, techniques
used to recognize behaviors, types of scene, year of publication, among oüer characteristics- F¡om
this study, an absence of RGB-D (Color and depth) datasets is shown.

With the objective of studying human behavior, in the last years se\€ral public datasets have been

created- In these dataset, video sequences with contents of several activities in different scenarios and
situations are stored. There are also sites dedicated to study particular activities such as a movement or
action of a sport, identification of abandoned objects, or daily activities (ADL) such as having a cup
of coffee, detection offalls of human, gait study, gesture analysis. These studies are directly related
to public datasets, where tests of the algoriüms and techniques used in each case are performed,
in certain studies more than one dataset is used to check the accuracy of the recognition systems
developed, in other cases it is used custom datasets or the resea¡cher's own, video sequences obtained
in public places like bus stations or trains, also of people who carry out activities in squares, streets

and commercial centers of a city, are also used. There a¡e l'ery feu, studies that use YouTube as a

source for video footage for research.

Performing video analysis studies require effort and time for resea¡chers; thousands of man-hours
are used for the labeling of the different situations üat need to be identified in a video. Currently, in
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3. CLASSIFICATION OF THE LEVEL OF UNDERSTANDING OF GROUPS

To analyze human behavior by using video surveillance cameras, a system based on computer vision
requires following a series of ordered steps as suggested in (Banos et aI., 2013). This paper aims to
organize a classification of human behavior according to üe number ofpeople that make up a group
of crowd, and the techniques, algorithms or frameworks used for analysis. The reviewed papers are
presented in Table 2. The most relevant proposals in our opinion, regarding the number of references to
the paper and its relation to crowd and group behavior study, are more deeply explained in this section.

Human behavior analysis (HBA) investigations have different applications: improving the quality
of life of human beings, in aspects such as support in the health area to detect unusual behaviors, for
example falls ofelderly people ir assisted living environments (AAL) (Bruckner et al., 2012), (Banos
et al., 2013), (Cardinaux et al., 201 l); surveillance of pedestrians, fights, people running, assaults,

ingesting liquor in putrlic places, for example.
The classification of tasks performed by humans described in the previous section is analyzed

in (Ca¡dinaux et al., 201l) according to the level of semantics (in ascending order according to the
duration time of this is): Movement (seconds), actions (seconds, minutes), activity (minutes, hou¡s),
behavior (hours, days). Each of these tasks must be recognized and modeled, using different techniques,
algorithms and other tools suitable for this task.

Turaga et al. (Turaga et al., 2008) proposed a scale of recognition of human activities from
simple (actions) to complex (activities), for actions called simple uses (Non-Parametric, Volumetric,
and Parametric), for activities called complex uses (Graphical Models, Syntactic, and Knowledge
Based). Another organization proposal for recognition of activities is set out in (Banos et al., 2013),
where it proposes the Chain of Activity Recognition. This approach divides the recognition process

into different procedu¡es, which are: Data Acquisition, Preprocessing, Segmentation, Characteristic
extraction, Classification, Decision. Most curent research focuses on the last two procedures of this
proposal and is often referred to as the learning and decision phases.

In the studies about human behavior of groups and crowds analyzed, it was found that there are

few works dealing with RGBD camers and analysis of human behavior using 3D information. It is
important to highlight the work of Wu et al. (Wu et al., 2015). They proposed the MoSIF method is

combined with HMM (Wu et al-, 2015) to analyze video sequences obtained from a Microsoft Kinect
RGBD device. The accuracy obtained is 6O7c for 36OO video sequences. However, according to the
authors, a better fesult could be obtained if they used more videos to improve learning.

The methods ofclassification can be supervised and not supervised, and can be used individually
or combined using boosting tecbniques.

On the subject of behavior and trajectories of groups of people there are also some approaches

that are based on (HBA) study individuall¡ for example: to recognize activities of groups of people

we use the Group Activity Descriptor Vector (GADV) Proposed in (Azorin-Lopez et a1.,2016). This
method has as its predecessorthe Activity Description Vector (AVD) revised in (Azorin-Lopez et al.,

2016), (Azorin-Lopez et al-, 2014), and aims to recognize human behavior in advance.

3.1. Features of a Groups and Crowds

For example, And¡ade et al- (Andrade et al., 2fi)6a) detected behavior of a crowd in different
scenarios considered unusual or an emergency, usually provoked by a minority of people in the
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cities, it is common to find camcorden capturing video that are later stored. Howevef, all this large
amount of information is not available for public access and experimentation.

The main datasets used in Table I as reference in the present work are described below, they
speciff dataset name, üe type of behavio¡ üe general and specific characteristics how frames per
second, video size, actions (Boxing, Clapping, Waving, Walking, Jogging, Running). We can also
specify if the scene is inside or outside, that identify the dataset:
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crowd. These behaviors are coded in Hid- den Markov Models (HMM) with mixture of Gaussians
output (MOGHMMs), detecting wiüin the differcnt scenes according to their density of people that
conform it. It shoukl be considered üat the system must be previously trained to detect a type of
behavior considered normal that uzually have the majority of members of a crowd analyzed. Analyzing
specifically the modeling of dense crowds is still an open problem of researchers.

In a public space, where there are a lot ofpeople, the behaviorcould be analyzed by two variables:
actions and duration.

A general trend could be noticed and described as the actions considered normal ones have an

extended dumtion -.. a general trend that would be described as that the behaviors considered normal
ones have an extended du¡ation, in which most people make up the crowd, while the behaviors
considered abnormal are caused by few people in the croud and in shof times of du¡ation- For the
study of these types of behaviors, Hu et al. (Hu et al-, 2013) proposed to use a statistical exploration
method analyzing the video in a separate way as sliding windows in which the behavion considered
anomalous are detected, taking into account that the algorithm used in this technique requires
monitoring.

As we have previously described in order to understand the behavior of crowd, we must take into
account the social behavior of the masses, since in this one can observe patterns of behavior that can
be modeled by computer studying their structure and special charaoerisücs as proposed in (Ge et al.,
2009). This study analyzes the human activity of medium level in tie granularity, that is to say in the
number of people that conform it based on algorithms for the detection of pedestrians and üacking of
several moving objects. A particular fact is that the study considers small groups of people traveling
together considering the hierarchy of smaller to larger size of the group. It takes into account the
proximity of pain of people and their speed when walking in a paficular scene. According to (Ge

et al., 2009), a group is formed from two people, in addition it must feet other parameters such as: if
they are within 2, 13 meters of each other and not separated by another in the middle, have the same

speed up to within 0,15 meters per second, and is kaveling in the same direction wiüin 3 degrees.

When a member of the group stops fulfilling these characteristics or complies with them, it can be
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said üat he or she is inside or outside üe group. The conditions for a group to become crowded bave

not been precisely defined by researchers, howeve¡ what if it is clear is how a crowd is analyzed,

among the main fean¡fes of analysis are; Treat it as a single mass and detect morement considered

abnormal, count the number of heads, studies about crowd are: (Rodriguez, Ahmed & Shah, 2008),

(Junior, Musse &Jung,20l0), (Li, Mahadevan & Vasconcelos, 2014), (Zhan, Monekosso, Remagnino

et al., 2008), (Zhou, Tang & Wang, 2013).
The datasets can be chosen by the researchers according to theif criteria, taking into account the

suitability for their objective. The data are grouped into two categories the heterogeneous, referring
to the general activities and the specific when these actions have a special treatment. A third category

is included in (Chaquet et aI.,2013), which specify techniques for motion capture such as the use of
infrared, thermal and motion capture (MOCAP).

3.2. Behavior of Groups and Crowds

This paper shows in Table 2 a classification of the group size according to the number of members and

the activities that each type ofgroup performs, besides specifying the methods, algorithms and forms
of recognition that can be used for their study, the order of the table is made according to the level

of semantics and the name of üe author. We can see the following analyzed fields: Ref = Reference

to the article, CL = Classification (G = Group (number of people) if exist, and C = Crowd), TE =
Technique, D = Dataset, LA = Level Abstraction- In the column LA = Level Abstraction we show

th¡ee levels of abstraction: Mot = Motion, Act = Action, Actv = Activity, also two automatic tasks,

CP = Count-People and Tra = Tracking.
The classification of the papers analyzed according to the number of people that make up the

groupings is GROUP and CROWD. Group is defined as the rapprochement of two or more people in
a given site and performing an action or activity, C¡owd is grouping a number ofpeople over a group

with large groupings that usually performs simultaneous activiües. The types of behaviors analyzed

using video surveillance a¡e limited and specific in reladon to the whole universe ofbehaviors that a

group or multitude of people can have in a real environment- The behaviors analyzed most frequently
in the papers are üe following:

Tracking, trajectories, bicyclist, pedestrian, skateboarders, count people in a group or crowd,
street fights, interaction objects-people, motions or actions in sports, human actions (walking, jogging,

running, boxing, hand waving and hand clapping). The DATASETS frequently used for the tests of
the techniques, algorithms and systems developed to analyze the behavior of groups and crowds are

the following: BEHAVE, BIWI, CAVIAR, VSPETS, ETH, DGPI, UHD, HMDB, Sportsvu, PETS,

UNM, ViF, Bus STATIONS, Subway STATIONS, othen. Also in some cases the resea¡chers use

their own DATASETS or videos obtained on YouTube. Based on the information analyzed in the
papers, it is possible to propose a classification according to the level of abstraction of the analyzed

human behavior of groups and crowds according to the case, in order of shortest to longest duration
of behavior we propoe five levels of abstraction:

Motion, Action, Activity, Count-People and Tracking. The techniques or methods frequently used

to analyze human behavior of groups and multitudes using video surveillance are as follows: Bag

of Words, Deep Neural Networks, Hidden Markov Models, Monte C¿ulo, Gaussian Mixture Model,
Multiple Human Tracking, and Support Vector Machines. Also, many of the authors adopt custom
names for their methods and techniques used in research, another option used by researchers to name

a particular method or technique is the combination of one or more algorithms. The topics covered
in this paper are mainly groups of small and large people (between 2 up to 50 people), pedestrians,

crowds (over lfi) people), sports teams (basketball and soccer), people walking in parks, metro

stations and buses- Most researchers perform functionality tests of their humal behavior recognition
algorithms, methods or systems in one or more specialized DATASETS, few jobs that can display
real-time video sequence analysis results.

15
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4. CONCLUSION AND FUTURE DIRECTIONS

In this work, üe human behavior of groups and crowds has been approached taking into account the

degree of semantics and especially the size of people that integr-¿te the goup or crowd, in addition has

been considered behaviors like: Spons rcams of soccer and basketball, pedestrians, groups of people in
metro and bus stations, people grouped in parks and squares. We propose a classification of behavior
of groups and crowds according to degree of semantics has been carried out in three types: Motion,
Action, Activity, also tr*o automatic tasks, Count-People and Tracking. It has included techniques

and algorithms that researchers use for analysis, and has included üe datasets used, which in most
of üe investigations are traditional and in a few cases custom datasets or YouTube videos are used.

In the next works is important to address the issue of video sequences with RGBD cameras, as

this type of technology is currently in increasing use.
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