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Mitochondrial levels determine variability in cell
death by modulating apoptotic gene expression

Silvia Marquez-Jurado® !, Juan Diaz-Colunga', Ricardo Pires das Neves?, Antonio Martinez-Lorente34,
Fernando Almazan', Radl Guantes® & Francisco J. Iborra® '®

Fractional killing is the main cause of tumour resistance to chemotherapy. This phenomenon
is observed even in genetically identical cancer cells in homogeneous microenvironments. To
understand this variable resistance, here we investigate the individual responses to TRAIL in a
clonal population of Hela cells using live-cell microscopy and computational modelling. We
show that the cellular mitochondrial content determines the apoptotic fate and modulates the
time to death, cells with higher mitochondrial content are more prone to die. We find that all
apoptotic protein levels are modulated by the mitochondrial content. Modelling the apoptotic
network, we demonstrate that these correlations, and especially the differential control of
anti- and pro-apoptotic protein pairs, confer mitochondria a powerful discriminatory capacity
of apoptotic fate. We find a similar correlation between the mitochondria and apoptotic
proteins in colon cancer biopsies. Our results reveal a different role of mitochondria in
apoptosis as the global regulator of apoptotic protein expression.
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ariability in resistance of tumour cells to chemother-

apeutic agents has been usually associated with genetic

intra-tumoural heterogeneity. However, it is becoming
increasingly clear that the non-genetic differences between cells
also play a prominent role in the response and resistance of
tumours to treatments'™>. There are many potential factors
driving this non-genetic heterogeneity. Some are context depen-
dent, influenced by the microenvironment and extracellular
matrix properties surrounding the individual cells*6, while oth-
ers are originated by differences in the internal state of each cell’.
The relative contribution of external and internal factors is
unclear and depends on the characteristics of each tumour.
Nevertheless, intrinsic cell-to-cell differences are able to elicit
highly variable responses by themselves. For instance, minimising
context dependence by growing genetically identical HeLa cells in
a homogeneous medium still shows very heterogeneous responses
to drug perturbations® or apoptosis-inducing ligands’. Therefore,
it is important to identify which factors are responsible for the
drastic differences in phenotypic outcome when genetically
identical cells are subjected to the same stimulus.

Anti-cancer apoptotic therapy eventually results in the activa-
tion of two major mechanisms, the intrinsic and extrinsic path-
ways, which culminate in the activation of effector caspases
(Caspase-3 and 7), chromatin condensation, DNA fragmentation
and finally cell death. The intrinsic pathway is directly activated
by non-receptor-mediated signals, such as those caused by viral

TRAIL

infection, toxins, free radicals or radiation. These stimuli induce
mitochondrial outer membrane permeabilisation (MOMP) and
the release of pro-apoptotic proteins from the mitochondria to
the cytoplasm. The extrinsic route is triggered by the binding of
specific ligands (FAS ligand (FASL), tumour necrosis factor
(TNF) or TNF-related apoptosis-inducing ligand (TRAIL)) to the
death receptors located at the plasma membrane. This binding
activates Caspase-8 that directly cleaves and activates the effector
caspases, and also cleaves Bid protein inducing MOMP (Fig. 1a).
Therefore, there is a crosstalk between both pathways in which
the mitochondria play a central role in effector caspase
activation'”.

Although MOMP is considered the point-of-no-return to cell
death, that rapidly releases pro-apoptotic proteins to the c]yto-
plasm and activates Caspase-3 and 9 within a few minutes!!~!3
individual cells show large variability in the time elapsed between
the apoptotic stimulus and MOMP (spanning a range of 4-20 h
depending on stimulus type and strength)® !4 1>, This cell-to-cell
variability in the time to apoptotic commitment has been
attributed to pre-existing variability in the amount of the proteins
involved in the apoptotic pathway”.

Variability in protein levels in genetically identical cells can be
originated by two different mechanisms, stochasticity in the
biochemical reactions involved in the gene expression cycle
(intrinsic or gene specific noise) or from fluctuations in cellular
components and metabolites affecting many genes (extrinsic or
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Fig. 1 Apoptotic variability in fate and time to death of Hela cells exposed to TRAIL. a Cartoon of the main protein network of the extrinsic apoptotic
pathway. CytoC cytochrome C; Pore, mitochondrial membrane permeabilisation (MOMP); Bax 4, activation and oligomerisation process of Bax to form the
mitochondrial pore. b Apoptotic fraction of Hela cells after 24 h of TRAIL treatment (O, 2, 4, 8, 16, 32, 63, 125, 250 ng ml™. Apoptotic cells were
quantified by visual inspection of phase contrast images (grey bars) and by FACS using Annexin V (FITC)-PI double staining (black dots). Around 300 cells
for each TRAIL dose were inspected to obtain the apoptotic fraction. Error bars are standard deviation of three independent experiments. Data are
representative of three independent experiments ¢ Distributions of times to death after TRAIL treatment. Times to death were obtained by tracking cells in
24-h time-lapse experiments. Between 100 and 200 cells were analysed at each TRAIL dose to obtain the distributions. d Analysis of the variability in time
to death at different TRAIL doses using two different statistical measures: the coefficient of variation (CV, blue) and the mean-scaled interquartile range

(IQR, red). Error bars are computed by bootstrapping
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global noise)'®. The correlation in times to death observed
between recently born sister cells® !4 suggests that the variability
in TRAIL-induced apoptosis must be caused by cellular factors
that globally affect gene expression’. Previous data from our lab
showed that the heterogeneity in mitochondrial content accounts
on average for 50% of the variability observed in cellular protein
levels!”. In addition, the cascade of molecular events driving
programmed cell death is an energy-dependent process'®. Mito-
chondrial content is highly variable from cell-to-cell'® 2° and
follows an asymmetric redistribution between daughter cells after
division?’. Recently, it has been shown that, at least in yeast,
mitochondria are partitioned between daughter cells to achieve
similar concentrations?!, segregating in proportion to the avail-
able cytoplasmic volume like passively segregating RNAs and
proteins. Taken together these observations, the amount and/or
functionality of mitochondria in individual cells could be one
important cellular factor responsible for cell-to-cell differences in
apoptosis times and resistance to death.

In this work, we study the impact of heterogeneity in mito-
chondrial content on the outcome of TRAIL-induced apoptosis in
HeLa cells. We demonstrate that the amount of mitochondria is a
good cellular biomarker for TRAIL sensitivity. The mitochondrial
content of each cell influences the abundance of apoptotic pro-
teins, determining its apoptotic fate and modulating its time to
death. In addition, a strong correlation between mitochondrial
content and apoptotic proteins levels was also observed in colon
cancer biopsies, suggesting that mitochondrial mass is a good
prognosis biomarker.

Results
Variability in the response to TRAIL-induced apoptosis.
TRAIL is a TNF family ligand that binds death receptor-4 (DR4)
and DR5 on the cell surface and activates the extrinsic pathway of
programmed cell death. TRAIL has been considered a promising
chemotherapeutic agent due to its selectivity against tumour cells.
However, many tumours show a high rate of resistance to TRAIL,
severely limiting its efficiency in therapy??. To study the origin of
this variable response to TRAIL treatment, we first assessed the
apoptotic response of a clonal population of HeLa cells to variable
TRAIL doses. The fraction of dead cells after 24h of TRAIL
addition was measured using two different methods, by visual
inspection of phase contrast images and by FACS using Annexin
V (FITC)-PI double staining. Both procedures gave very similar
response curves with a sensitive region between 4 and 63 ng ml™!
of TRAIL (Fig. 1b). For doses larger than 63 ng mI~1, the fraction
of dead cells remains approximately constant (~35%), leaving a
large fraction of cells surviving to TRAIL treatment. To exclude
the possibility that the fractional killing was due to TRAIL
degradation or inactivation, the supernatants of different TRAIL
treatments were collected and tested for apoptotic activity,
showing no decreased killing efficiency (Supplementary Fig. 1).
Another important observation was that many cells, both survi-
vors and apoptotic, divided after TRAIL addition. To discard a
possible effect of TRAIL on the cell cycle, we compared the dis-
tribution of division times in cells both treated and non-treated
with TRAIL (Supplementary Fig. 2) and no significant effect of
TRAIL on cell cycle was observed (P> 0.3 for two-sample
Kolmogorov-Smirnov tests between control and treated samples).
Next, we focused on the variability in times to death for
different TRAIL concentrations, using time-lapse movies (Fig. 1c).
At low TRAIL concentrations, a large spread with similar
probabilities for long and short times to death was observed,
while at higher doses, average and spread of the distribution
decreased, although some cells still displayed long times to death.
To quantify the variability in time to death, we used two statistical
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measures: the standard deviation divided by the average, or
coefficient of variation (CV), and the inter-quartile range (IQR)
divided by the average, which removes the effect of outliers in the
spread of the distribution. Both measures showed that the
variability in time to death changed with TRAIL dose (Fig. 1d).
The IQR was larger at low doses, due to the effect of ‘flatness’ in
the probability of time to death, while the CV increased at large
doses, indicating a noticeable effect of a few outliers with large
apoptosis times.

As TRAIL-treated cells seem to progress normally through the
cell cycle, we further investigated a possible influence of cell
division on apoptosis and times to death. While practically all
survivor cells divided in the 24-h time-lapse after TRAIL addition
(between 85% and 100% in the range of doses analysed), only a
fraction of the apoptotic cells underwent division. Cells that
divided before dying had longer times to death than non-dividing
apoptotic cells (Supplementary Fig. 3a). Moreover, for the subset
of apoptotic cells that divided, death times were positively
correlated to division times (Supplementary Fig. 3b). These biases
may reflect an influence of cell division on the time to apoptosis,
for instance delaying apoptosis, or be simply a consequence of the
fact that cells with fast commitment to death after TRAIL addition
do not have time to divide before dying. To distinguish between
these two possibilities, we simulated a “null” cell ensemble
implying no causal relation between cell cycle stage and time to
death, which reproduced both the difference in apoptosis times
between dividing and non-dividing cells (Supplementary Fig. 3a)
and the observed correlation between death and division times
(Supplementary Fig. 3c). This indicates that apoptotic and cell
cycle programs are not coupled in our system. Moreover, and in
agreement with previous reports” 1>, we found that the majority of
sister cells had the same fate and very similar times to death
(Pearson correlation >0.8, Supplementary Fig. 3d).

Taken together, our results confirm the presence of a threshold
that must be overcome to induce MOMP??. The height and rate
of approach to this threshold depend both on the levels of active
receptors, since survival probability and death times are larger at
low TRAIL doses, and on the cell’s internal state, since for a given
TRAIL dose both cell fate and time to death are variable from cell
to cell.

Mitochondrial content discriminates cell fate. Mitochondria
affect gene expression in a global manner!” and are central nodes
in the apoptotic route. This drove us to study the influence of
mitochondrial content on the probability of cell death. We
stained HeLa cells with MitoTracker Green FM (MG), which was
previously shown to be a faithful reporter of mitochondrial
mass!” and has negligible phototoxic effects (Supplementary
Fig. 4). Then, we treated the cells with different doses of TRAIL
and imaged for 24 h at 15 min intervals. For each cell, we mea-
sured the integrated intensity of MG signal in the initial image
and then we manually tracked it to assess its fate. The mito-
chondrial contents of surviving and dead cells were clearly dif-
ferent at all TRAIL doses, the cells with more mitochondria were
more prone to die (Fig. 2a). This indicated that the mitochondrial
level alone can be a good marker of apoptotic cell fate. To
quantify the performance of mitochondrial content as a classifier
of cell fate, we calculated the Receiver Operator Characteristic
(ROC) curves using the probability distributions of mitochondrial
mass in apoptotic and survivor cells (Fig. 2b). The area under the
ROC curve (AUC) summarises the trade-off between the prob-
ability of correct and incorrect classification, and varies between
0.5 (random guessing) and 1 (perfect classifier). The ROC curves
indicated that mitochondrial content is a good classifier of cell
fate at all TRAIL doses analysed (Fig. 2b).
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Fig. 2 Influence of mitochondrial content on apoptotic cell fate and times to
death. Hela cells stained with MG (as mitochondrial mass marker) were
treated with different doses of TRAIL. After TRAIL addition, the cells were
imaged for 24 h every 15 min. For each dose, we randomly selected cells
from different images, quantified their initial mitochondrial mass by
integrating MG intensity, and manually tracked their fate. Typically, we
gathered ensembles of 250-300 cells so as to achieve between 100 and
150 apoptotic cells per dose. a Boxplots of mitochondrial levels of alive
(white) and dead (grey) Hela cells after 24 h of treatment. Mitochondrial
values are normalised to average (grey line). Data are representative of six
independent experiments. b Analysis of mitochondrial content as a binary
classifier (death/life) of cell fate. To calculate the performance of
mitochondria as classifier, the Receiver Operator Characteristic curve
(ROC) and area under the curve (AUC) were represented and calculated
for the different TRAIL doses. ¢ Correlation between mitochondrial levels
and time to death in apoptotic single cells treated with 32 ng mI™ of TRAIL.
The red line is an exponential fit and the shaded area indicates the
confidence region for the fit. d Boxplots of time to death for Hela cells with
mitochondrial levels in the first quartile (Low mito, grey) and in the fourth
quartile (High mito, white). Each boxplot was calculated with 30 cells.
Boxes cover the range from the lower to the upper quartile of the data.
Whiskers indicate maximum and minimum values, excluding outliers which
are plotted as individual grey crosses. Horizontal lines inside the boxes
represent median values, and notches indicate 95% confidence intervals for
the median

Mitochondrial content also discriminates cell death by other
apoptotic inducers like TNF-o, which triggers the extrinsic
pathway, and cycloheximide (CHX) and 5,6-dichloro-1-p-D-
ribofuranosylbenzimidazole (DRB) which block translation and
transcription respectively, causing cell damage and activating the
intrinsic apoptotic route (Supplementary Fig. 5).

Mitochondrial mass modulates variability in time to death. We
also analysed whether there is an influence of mitochondrial mass
on times to death. This effect is difficult to see since, on one hand,
the mitochondrial levels of apoptotic cells are already biased to
high values (Fig. 2a). On the other hand, times to death have not
much variability at large TRAIL doses (Fig. 1c) while at low doses
differences in receptor levels and activity may also contribute
significantly to variability in apoptosis times. To avoid these
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problems, we focused on an intermediate TRAIL dose (32 ng ml
1) in the sensitive region of the dose-response curve (Fig. 1b). As
shown in Fig. 2c, there is a weak but noticeable correlation
between mitochondrial content and times to death (Spearman
correlation —0.47). Apoptotic cells with mitochondrial levels in
the first (Low) and fourth (High) quartiles showed statistically
significant differences in their times to death (Fig. 2d, Wilcoxon
test p=107°). The cells with high mitochondrial content died on
average in 3 h (with an IQR between 2 and 5h), while the cells
with low mitochondrial levels had a wider range of times to death
with an average of 6 h.

In summary, these results show that apoptotic cells have
significantly higher mitochondrial content than resistant cells,
indicating that the amount of mitochondrial mass is a proxy for
commitment to apoptosis.

Mitochondrial content impacts apoptotic proteins expression.
Since heterogeneity in mitochondrial content is responsible for
around 50% of total protein variability!”, we quantified the
influence of mitochondrial mass on the amounts of transcripts
and proteins involved in the extrinsic apoptotic pathway. To
assess the impact of mitochondrial levels on transcripts, HeLa
cells were sorted in two fractions with high and low levels of
mitochondria, and total RNA was deep sequenced. As previously
described!”> 24, we observed a global scaling of the transcriptome
abundance between both subpopulations, where cells in the
fraction with high mitochondrial levels contained around three
times more RNA than cells in the low fraction (Supplementary
Fig. 6). The apoptotic genes followed this general trend with fold-
changes in expression around the average value of the whole
transcriptome (Fig. 3a). Since changes in transcription have a
variable impact at the protein level?>, we used immunolabelling to
quantify the correlation between mitochondrial and protein
amounts in single HeLa cells. We stained non-treated HeLa cells
with a reporter of mitochondrial mass (CMXRos)!” and different
apoptotic protein antibodies. Some proteins of the apoptotic
route were strongly correlated with mitochondria while others
had weaker correlations (Fig. 3b). We calculated the mitochon-
drial contribution to variability (MCV) as a ratio of two vari-
abilities, the variability of the original protein distribution
(Fig. 3b, right panels, black distributions) and the variability of
the protein distribution once the linear correlation with mito-
chondrial content has been removed (Fig. 3b, right panels, blue
distributions). Specifically, MCV = (1-(CV4.; /CV))x100, where
CV is the coefficient of variation of the original distribution and
CV e the coefficient of variation of the de-trended distribution.
Similarly to other protein families'”, mitochondrial content
contributed with around 50% to the total variability in the levels
of apoptotic proteins (Fig. 3¢c). However, strong differences were
detected in mitochondrial-protein correlations between the two
partners of some pairs of pro- and anti-apoptotic proteins,
especially the pairs Bax/Bcl-2 and Bid/Mcl-1. These data indicate
that a large part of the variability observed at the protein level in
the apoptotic route is a consequence of cell-to-cell heterogeneity
in mitochondrial content.

Computational model of the apoptotic pathway. Variability in
apoptotic time and fate arises from the complex interplay
between pro- and anti-apoptotic proteins. To investigate how the
influence of mitochondria on protein levels mediates apoptotic
variability, we extended and modified a previous kinetic model of
the apoptotic route that has been tested in HeLa cells'? 262°, The
model input is the concentration of TRAIL ligand, as well as the
initial levels of key proteins of the apoptotic route (Fig. 1a).
Natural variability in apoptosis probability and time to death
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Fig. 3 Influence of mitochondrial content on apoptotic MRNAs and protein
abundances. a Logarithmic fold-change in mRNA expression of apoptotic
genes between subpopulations of cells with low and high mitochondrial
content. Hela cells labelled with MG were sorted in two populations
according to their mitochondrial content, and RNA extracted and
sequenced (three independent sorting experiments were performed). The
solid line corresponds to the average fold-change of the whole genome
(~10,000 genes). The shaded region is the fold-change standard deviation
across the whole genome. Red bars denote pro-apoptotic mRNAs and blue
bars, anti-apoptotic. Error bars are standard deviations of three biological
replicates for each gene. b Scatter plots of mitochondrial mass and protein
levels in single Hela cells (black dots). Here, we show a pro-apoptotic
protein (Bid, upper panel) with a high correlation with the mitochondrial
content and an anti-apoptotic protein (Mcl-1, lower panel) with smaller
correlation. Blue lines represent regression lines. The corresponding
distributions of protein levels are shown in grey in the right panels. The co-
variation with mitochondrial content is removed (blue dots) to estimate the
fraction of protein variance not due to mitochondrial levels (blue
distributions). € Mitochondrial contribution to global variability in protein
levels from different apoptotic genes, as defined in the main text. Pairs of
antagonistic pro-apoptotic (red) and anti-apoptotic (blue) proteins are
shown next to each other. Ensembles of 200-300 cells for each protein
antibody were used to estimate the mitochondrial contribution to variability

arises by sampling the initial conditions in protein levels before
TRAIL addition from experimental distributions’. It was pre-
viously described that including correlations between protein
pairs along the apoptotic pathway improved the predictive power
of the model?’. These pairwise correlations may be due to direct
or indirect interactions, co-regulation by common transcription
factors of both proteins or to another common source of gene
expression modulation, as we have shown to be the case with
mitochondrial content (Fig. 3b, ¢, Supplementary Methods,
Supplementary Sofware 1 and Supplementary Table 3).

A direct way to include the effect of mitochondrial-protein
correlations in the model is by sampling from the protein
distributions according to the mitochondrial levels. Figure 4a
summarises the model workflow. Details of model calibration and
parameters are provided in Supplementary Methods and
Supplementary Tables 1 and 2. First, we assigned to each cell of
the simulated ensemble a random mitochondrial level sampled
from the distribution of experimental CMXRos values (Fig. 4b).
Then, for each protein in the apoptotic route, we chose a number
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of molecules according to a log-normal distribution with mean
and standard deviation determined by the particular
mitochondria—protein correlation (Fig. 4c and Supplemen-
tary Methods). Once the initial conditions have been set for the
whole ensemble, we need a criterion to decide the apoptotic fate
for each simulated cell. To implement this decision, we noticed
that recent experimental results have established that the
activation rate of Caspase-8 (Casp8) defines a threshold
separating surviving and dead subpopulations®’, which is
independent of TRAIL dose. Within our model, we fit this
activity threshold to reproduce the probability of death/life at a
sensitive dose (32 ng ml™). Those cells whose maximum rate in
Casp8 activation overcomes this threshold were considered as
apoptotic (Fig. 4d, red lines) while cells below the threshold were
considered survivors (Fig. 4d, blue lines). The numerical
simulations showed that cells with initially larger mitochondrial
levels had higher Casp8 activity rates (Fig. 4e). Finally, the other
readout of the model to be compared with experimental data is
the time to death for the apoptotic cells. In our model, time to
death is taken as the time at which Smac protein reaches 90% of
saturated cytosolic levels (Fig. 4f).

Once mitochondrial—protein correlations were included in the
model, it qualitatively reproduced all of our experimental findings
(Fig. 5). In particular, by fitting the Casp8 activity threshold to
reproduce the experimental survival probability at 32 ngml™! of
TRAIL, the simulated dose-response curve followed the trend of
the experimental one in the whole range of TRAIL doses,
including the sensitive region between 8 and 63 ng ml~! (Figs. 5a
and 1b). Similar to the experimental results, the distributions of
times to death showed a large spread for low TRAIL doses, while
for large doses the majority of cells died within the first 4 h after
TRAIL addition, with the exception of a few outliers with long
times to death (Figs. 5b and 1c). Model simulations corroborated
that mitochondrial levels were able to discriminate cell fate, with
AUC values similar to those of the experimental samples (Fig. 5c).
Finally, we analysed within our modelling framework the
influence of mitochondrial content on apoptosis times. In
agreement with the experimental data, cells with low mitochon-
drial content had systematically longer times to death than cells
with high mitochondrial mass (Fig. 5d).

Mitochondrial heterogeneity and key in variable TRAIL
response. To gain an insight into the effect introduced by
mitochondria—protein co-variation on times to death, we simu-
lated two extreme scenarios. In one case, the protein abundance
was solely determined by mitochondrial content (correlation
coefficient p=1), and in the other one, the protein amount was
completely independent of mitochondria (p=0) (Fig. 6a). The
simulation of a perfect mitochondria—protein correlation showed
that the times to death followed an inverse non-linear trend with
mitochondrial mass, with longest times to death corresponding to
cells with low mitochondrial levels (Fig. 6a, red dots). An imperfect
correlation between mitochondria and apoptotic proteins scattered
times of apoptosis with large deviations around this trend (Fig. 6a,
black crosses and grey dots), suggesting that times to death were
very sensitive to small changes in protein amount. Therefore, any
additional source of protein variability besides mitochondria may
also have an impact on the time to death.

To better understand the role of mitochondria—protein co-
variation on cell fate, we studied whether the levels of specific
proteins of the apoptotic route can discriminate fate with similar
accuracy as mitochondrial levels. Hence, we calculated the
performance of each apoptotic protein as a classifier of death/
life (Fig. 6b, hollow bars). With the exception of Casp8, whose
activation rate is used as a discrimination threshold, the
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performance of the rest of the proteins in the pathway was worse
than that of mitochondria. However, the pro-apoptotic proteins
Bid and Bax had discrimination power similar to that of
mitochondria. It may be possible that the levels of these two
proteins were key determinants of cell death, and the good
classification performance of mitochondrial mass arises because
of its high co-variation with these specific proteins (Fig. 3c). To
investigate this possibility, we repeated the discrimination
analysis, sampling protein levels independently of mitochondrial
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mass (Fig. 6b, filled bars), showing that no single protein was a
proper classifier by itself (AUC < 0.7). These results reinforce the
view that mitochondrial mass is an underlying variable that
‘predicts’ TRAIL-induced apoptosis by its global effect on protein
abundance.

We notice that at very low TRAIL doses (4 ngml™!) where
receptors are far from being saturated by the ligand, the
discriminatory capacity of mitochondria for cell fate seems to
improve (Figs. 2b and 5c). Since DR5 receptor levels are
correlated to mitochondrial mass (Fig. 3c), it is possible that at
these low doses, receptor abundance plays a role in cell death. To
test this possibility, we repeated the discrimination analysis
shown in Fig. 6b at different TRAIL doses and including only the
experimentally observed correlation between mitochondrial and
receptor levels (Supplementary Fig. 7). At sensitive and saturating
doses (32 and 250 ng ml™), receptor levels have no discrimina-
tory capacity, but at the lowest dose (4 ngml™!), receptor levels
are able to partially discriminate cell fate, which may influence the
discriminatory capacity of mitochondria.

Finally, we investigated whether cellular fate after the apoptotic
stimulus is more sensitive to co-variation of specific proteins with
mitochondrial content. We carried out a sensitivity analysis®! of
discrimination performance (AUC) for each protein in the
pathway, changing its correlation with mitochondria (Supple-
mentary Methods). As expected, the highest sensitivity corre-
sponds to Casp8, whose activity sets the threshold for cell fate
discrimination in the model® * (Fig. 6c). Moreover, changes in
the correlation of the pro-apoptotic proteins Bax and Bid with
mitochondria also affected cell fate discrimination, a tighter
correlation with mitochondria improved classification perfor-
mance. Interestingly, their anti-apoptotic partners (Bcl-2 and
Mcl-1, respectively) showed negative sensitivity, decreasing
classification performance with larger mitochondria—protein
correlation. This negative sensitivity was observed in all the
anti-apoptotic proteins in the route (Fig. 6c). This sensitivity
analysis indicates, on one hand, that if mitochondrial levels are
relevant for apoptotic fate, they should exert a tighter control on
the abundance of pro-apoptotic proteins, while the levels of anti-
apoptotic proteins should be freed from mitochondrial regulation.
A higher correlation with mitochondrial mass would effectively
couple the abundance of anti-apoptotic proteins to that of the
pro-apoptotic proteins, and thus would reduce the discriminating
power. On the other hand, it seems that mitochondrial control of
protein abundance is especially important for Casp8 and the pre-
MOMP pairs of pro- and anti-apoptotic proteins Bid/Mcl-1 and

Fig. 4 Computational model workflow and key modelling aspects. a
Computational model workflow. b Distribution of mitochondrial levels. We
initialise a population of cells with heterogeneous mitochondrial levels
sampling from a log-normal distribution of mean and width obtained from
the experimental CMXRos distribution. € Sampling of initial protein levels.
For each protein in the apoptotic pathway, we assign to every cell a protein
copy number conditioned by its mitochondrial level. The black line along the
vertical axis represents the total protein distribution and the blue line, the
protein distribution conditioned by the indicated mitochondrial value
(vertical blue line). d Casp8 activation rate. The decision about the cell fate
(death/life) is defined by a threshold (horizontal black line) in the rate of
Casp8 activation. Cells with maximum activation rates (circles) below the
threshold (blue trajectories) are considered as survivors whereas cells that
overcome the activation threshold (red lines and circles) are assumed to
die after MOMP. e Casp8 maximum activation rate depends on the cell
mitochondrial content. Each black dot is a simulated cell (only cells that
undergo MOMP before 24 h are shown). The regression line is shown in
red. f Smac dynamics. Time to death is defined as the time at which
cytosolic Smac reaches 90% of its maximum level
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Fig. 5 Coupling protein variability to mitochondrial mass is enough to
explain apoptosis outcome. a Fraction of simulated apoptotic cells after 24
h of treatment with TRAIL at the indicated doses. Error bars are computed
by bootstrapping. b Distributions of apoptosis times at different TRAIL
doses from model simulations. ¢ Analysis of mitochondrial content as a
binary classifier (death/life) of cell fate from model simulations. d Boxplots
of time to death for simulated Hela cells with mitochondrial levels in the
first quartile (Low mito, grey) and in the fourth quartile (High mito, white)
at different doses of TRAIL. Each dose was simulated with an ensemble of
10,000 cells. Boxes cover the range from the lower to the upper quartile of
the data. Whiskers indicate maximum and minimum values, excluding
outliers which are plotted as individual grey crosses. Horizontal lines inside
the boxes represent median values, and notches indicate 95% confidence
intervals for the median

Bax/Bcl-2, while its influence on other nodes of the apoptotic
pathway may not be so relevant.

Overall, these results suggested that an optimal cell fate
discrimination by mitochondria may occur in a regime where
co-variation of mitochondria with the pro-apoptotic proteins Bax
and Bid is maximal, while their anti-apoptotic partners Bcl-2 and
Mcl-1 are de-correlated from mitochondrial mass. Therefore, we
calculated the AUC for the two pre-MOMP pairs Bax/Bcl-2 and
Bid/Mcl-1 as a function of the MCV at the protein level. We
achieved this by sweeping different combinations of
mitochondria—protein correlations for the Bax/Bcl-2 or Bid/Mdl-
1 pairs while keeping the rest of the correlations at their
experimental values. We found that an optimal fate discrimination
performance takes place at a high MCV between mitochondria and
the pro-apoptotic protein, pp.,x Or pgia close to 1, and low
correlation with their anti-apoptotic partners (Fig. 6d). In contrast,
discrimination performance substantially decreased for high MCV
of the anti-apoptotic proteins with mitochondria, ppq., Or Py
close to 1. The experimentally measured values were in a regime of
close to optimal discrimination (Fig. 6d, black crosses).

Mitochondrial mass determines apoptotic proteins in tumours.
Our combined experimental and modelling approach has shown
that the mitochondrial content predicts apoptotic fate as a con-
sequence of its influence on the levels of apoptotic proteins. We
used a clonal population of HeLa cells to eliminate genetic
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sources of variability, and homogeneous culture conditions to
minimise effects from the microenvironment. In solid tumours,
these factors may substantially contribute to variability in resis-
tance to apoptotic drugs. However, we wanted to test whether the
same sources of non-genetic heterogeneity in cultured HeLa cells
could be found in the individual cells of solid tumours. We fol-
lowed the same immunolabelling strategy used for HeLa cells to
quantify heterogeneity in mitochondrial and protein content, and
their correlation. We stained paraffin sections from colon cancer
biopsies of three individuals with antibodies against Aconitase 2
as a reporter of mitochondrial mass and, simultaneously, against
one of the proteins Bax, Bcl-2, Bid, Mcl-1, Smac, XIAP, Casp8
and Bar (Fig. 7a). These proteins were selected because they
constitute pairs of pro- and anti-apoptotic proteins whose cor-
relation with mitochondria had the highest discriminatory power
of apoptotic fate in HeLa cells. Similar to the clonal HeLa cell
population, tumoural cells from colon cancer exhibit variability in
both mitochondria and apoptotic protein levels (Fig. 7b). After
calculating the MCV in protein, we also observed a high corre-
lation of mitochondrial mass with the abundance of specific
proteins. Moreover, the pro-apoptotic protein in all the protein
pairs tested showed higher correlation with mitochondria than
the anti-apoptotic partner (Fig. 7c). This result suggests that the
mitochondrial content may also determine variability in resis-
tance and apoptotic fate of cells in solid tumours, and constitutes
a first step towards the assessment of mitochondrial mass as a
biomarker for diagnosis and prognosis in cancer.

Discussion

A major problem in cancer treatment is chemoresistance. Some
chemotherapeutic agents successfully remove most of the bulk
tumour but fail to eliminate a minor population of innately drug-
resistant cells that continue growing and cause cancer relapse.
This variability in behaviour and response is to a large extent due
to heterogeneity in the molecular signatures of cancer cells within
a tumour. This phenomenon is known as intra-tumoural het-
erogeneity and can be caused by non-genetic and genetic
factors® % 32733, There is increasing evidence that a large fraction
of the variability observed at the level of transcripts and proteins
in mammalian cells is determined by phenotypic state and
population context”> 36,

The apoptotic pathway is a complex network of proteins
involving non-sequential organisation and competing molecular
signals that ultimately lead to a binary death/life decision for each
single cell?®>. To address this complexity, we adopted a systems
level approach involving single-cell experiments and computa-
tional modelling. Our experiments revealed that the mitochon-
drial content discriminates apoptotic cell fate at the single-cell
level, and modulates the abundance of all proteins of the apop-
totic route, albeit in different ways. To account for the role of
mitochondrial content on protein variability, we modified a pre-
existing model of the extrinsic apoptotic pathway?’. Constraining
the possible values of the apoptotic proteins by mitochondrial
levels, the model reproduced all our experimental observations.
Furthermore, our simulations indicate that the power of mito-
chondrial mass as a death/life classifier depends on differences in
tuning specific pro- and anti-apoptotic protein levels. Interest-
ingly, these differences were also observed in cells from colon
cancer tumours.

There are biological reasons to single out mitochondrial con-
tent, and possibly functionality, as a cellular determinant of
programmed cell death. Apoptosis is a physiological process
“designed” to eliminate damaged or abnormal cells and to
maintain tissue homoeostasis. In that sense, one possibility is that
cells with high mitochondrial mass can induce more damage in
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Fig. 6 Model simulations unveil the effect of protein-mitochondria correlations in the apoptosis outcome. a Effect of global modulation of
mitochondria-protein correlations on times to death. Red dots: perfect correlation (p =1) between mitochondria and protein abundances. Black crosses:
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corresponds to a situation where increasing a particular mitochondria-protein correlation decreases the discrimination performance. d Discrimination
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DNA than cells with low mitochondria, because mitochondria are
the major cellular source of reactive oxygen species (ROS). In line
with this, ROS levels scale with mitochondrial content in HeLa
cells (Supplementary Fig. 8a). However, there is also a strong
linear correlation between antioxidant levels and mitochondrial
abundance (Supplementary Fig. 8b). This suggests that although
cells with more mitochondria produce more ROS, it is balanced
by the cell’s thiol defence (Supplementary Fig. 8c and d). For that
reason, when HeLa cells were exposed to NAC, in order to build
more antioxidant defences, we did not observe changes in the
death index (Supplementary Fig. 8e). However, when the anti-
oxidant defences (thiols) of the cell are removed by diamide,
apoptotic susceptibility to TRAIL increases until all cells are kil-
led. These facts strongly suggest that the higher cell death of cells
with high mitochondria is not due to these cells being exposed to
more ROS than low mitochondria cells.

Alternatively, mitochondria also modulate the ratios of many
metabolites such as ATP/ADP, acetyl-CoA/CoA, NAD+/NADH
and NADP+/NADPH, which can act as metabolic checkpoints
for cell death®. It may be the case that cells with larger mito-
chondrial mass have a metabolic status with more imbalanced
metabolite ratios, that prime them for death after a severe stress.
The results presented here suggest that global metabolic control
of programmed cell death is achieved in a ‘passive’ way by
exploiting the fact that mitochondrial content modulates protein
abundance.

Mitochondrial levels contribute differently to the variability of
the proteins in the apoptotic pathway, with stronger control on
the abundance of specific pro-apoptotic proteins that are key for
triggering MOMP and activation of Casp8, but weak co-variation
with their anti-apoptotic partners. Modelling indicates that this
dependence of key pro- and anti-apoptotic proteins confers
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mitochondria a high discriminatory capacity for apoptotic fate.
Supporting this finding, apoptotic susceptibility can be deter-
mined by the levels of pre-MOMP pro-apoptotic proteins of the
BH3 family®® while the levels of anti-apoptotic proteins are
considered as a ‘buffer’ to protect cells against basal levels of pro-
death signals that are encountered in normal physiological con-
ditions®”. In line with this, tumours with cells in which pro-
apoptotic signalling was highly primed showed a better clinical
response to different chemotherapeutic agents*’.

There is more evidence in the literature connecting mito-
chondrial mass and functionality to apoptotic fate and response
to chemotherapy. For instance, leukaemia cells have been found
to have a larger mitochondrial mass, a greater mitochondrial
DNA copy number and a higher rate of oxygen consumption
than normal hematopoietic cells, and were selectively killed by
drugs inhibiting mitochondrial protein synthesis*!. On the other
hand, downregulating mitochondrial function by retrograde sig-
nalling promotes endothelial-mesenchymal transition (EMT)**,
which is linked to metastasis*’. Moreover, metastatic cells are
chemoresistant*!, Recently, the transcriptomic analysis of 20
different types of cancers (8161 cancer and normal samples) has
shown that the downregulation of mitochondrial genes was
associated with the worst clinical outcome and correlates with the
expression of genes promoting metastasis across many cancer
types45.

Overall, our results suggest that mitochondrial content is a
good biomarker for the prediction of apoptotic susceptibility.
Despite the overwhelming amount of studies, in some cancer
types such as colorectal tumours, no optimal biomarkers have
been described?®. To remedy this situation, some authors have
proposed the combined use of the whole apoptotic profile of a
tumour, rather than the expression of single markers, to improve
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Fig. 7 Colon cancer cells show variability in apoptotic proteins and
mitochondria. a Colon cancer section stained with Aconitase 2, Bid and
DAPI. This image illustrates the variability in expression of Bid and
Aconitase 2. Scale bar: 50 pm. b Coefficient of variation (CV) of several
proteins involved in the apoptosis pathway. ¢ Mitochondrial contribution to
variability of the apoptotic proteins. Data are representative of four
independent biopsies. Statistical quantities were obtained from ensembles
of 500-1000 cells for each protein antibody

the prognosis and treatment of cancer patients*®. The observed
changes in the expression of pro-apoptotic genes with mito-
chondrial levels in colon cancer samples raise the possibility to
implement the amount of mitochondria as a unique biomarker,
representing the final outcome of the whole apoptotic pathway.
The validation of this surmise will require an extensive analysis of
different cancer samples and chemotherapeutic drugs, together
with their clinical response.

Methods

Cell lines and materials. HeLa (ATCC CCL-2) cells were grown in Dulbecco’s
Modified Eagle Medium (DMEM, Gibco)-GlutaMAX-I supplemented with 10%
foetal bovine serum (FBS, Hyclone) and penicillin—streptomycin (Sigma) in a 37 °C
humidified incubator with ~5% CO,. Mitochondrial mass for in vivo experiments
was measured as the integrated signal of MitoTracker Green FM (MG, Molecular
Probes) incorporated by individual cells. In fixed cells, mitochondrial mass was
measured using MitoTracker Red CMXRos (CMXRos, Molecular Probes). The
apoptotic signal was triggered by human recombinant TRAIL (Millipore) at the
indicated dosses.
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TRAIL apoptosis assay in Hela cells. HeLa cells were seeded in 24-well plates
(Nunc) and incubated with increasing doses from 2 to 250 ng ml™! of TRAIL for
24 h. After the treatment, both the dead-suspended cells and the live-adherent cells
were collected. Then, the cells were washed twice with PBS and stained with
Annexin V-FITC/PI (Propidium Iodide). Apoptotic analysis was performed using a
FACSCalibur flow cytometer.

Live cell microscopy. HeLa cells were seeded in 24-well plates (Falcon) 1 day
before the experiments. Prior to addition of apoptotic inducers, the cells were
stained for 40 min with MG and washed twice with DMEM; 15-30 min prior to the
start of the movie, the cells were added to the culture medium: TRAIL, at the
appropriate dilution, or 63 ngml™! of DRB, or 2.5 pgml™ of CHX or a combi-
nation of 2.5 ug ml™! of CHX plus TNF at 20 ng ml~!. HeLa-treated cells were
imaged at 15-min intervals for 24 h in a 37 °C humidified chamber in ~5% CO,.
The cells were imaged at 20x magnification (0.4 NA HCX PL FL) on a Leica
DMi6000b microscope (Leica MicroSystem) equipped with a Hamamatsu Orca-R2
digital CCD Camera and the images were acquired using the LAS AF 2.7 software
(Leica MicroSystem). Time to death was monitored by morphological changes
associated with apoptosis. The images were analysed using Fiji 2.0.0-rc-43 soft-
ware?’, The mitochondrial level was calculated from the first fluorescence image,
and the cell fate by morphological changes associated with apoptosis, at the end of
the experiment.

Effect of ROS in TRAIL induced apoptosis. Hela cells were seeded in 24-well
plates 1 day before the experiment. Initially, the cells were stained for 40 min with
MG and washed twice with DMEM. Secondly, the cells were treated for 2 h with
Diamide (20, 50 and 100 uM) or N-acetyl cysteine (NAC) (0.5, 1 and 2 mM). Third,
TRAIL was added to the culture medium at a concentration of 32 ng ml~!. Finally,
the live-cell microscopy experiments were performed imaging at 15 min intervals
for 24 h in a 37 °C humidified chamber in ~5% CO,.

Mitochondrial ROS and cellular antioxidant defence measure. To analyse the
mitochondrial ROS production according to the levels of mitochondria, HeLa cells
growing on coverslips were stained with MitoSOX (Molecular Probes) for 1h and
with MG for the last 20 min of the MitoSOX incubation. The coverslips were
washed twice with PBS and then the cells were fixed. The coverslips were mounted
in Vectashield.

The cellular antioxidant defence was studied by measuring the reduced thiol
group with ThiolTracker (Molecular Probes). To this end, HeLa cells growing on
coverslips were stained for 20 min with CMXRos. Then, the cells were washed
twice with PBS and fixed. The fixed cells were stained for 15 min with
ThiolTracker, washed twice with PBS and mounted in Vectashield.

Immunostaining using wide confocal cytometry. HeLa cells growing on cover-
slips were fixed and proteins indirectly immunolabelled using the corresponding
primary antibodies. Secondary antibodies were Alexa Fluor 488, 546 or 647 donkey
anti-mouse, goat or rabbit IgG (H+L) (Invitrogen). The coverslips or slides were
mounted in Vectashield (Vector Laboratories). The images of the labelled cells were
collected in a Leica TCS Sp5 multispectral confocal system (Leica MicroSystem),
with a 20x 0.7 HCX PL APO CS, with the pinhole completely opened in order to
collect the maximum amount of light emitted by the specimen. Hundreds of cells
in different fields of the slide were collected. These images were exported to and
analysed with MetaMorph 7.8.0.0 software (Molecular Devices).

For colon cancer immuno-histochemistry, tumour biopsies were formalin fixed
and paraffin embedded. Tissue sections (5 pm) were treated with EnVision FLEX
Target retrieval solution low pH (DAKO) (95 °C, 2 min) in order to unmask the
antigens. The immunolabelling was performed in the same way as that for the
cultured cells.

The protein antibodies were used at dilution 1:1000 and were purchased from
Abcam: Flip (ab167409), XIAP (ab137392), Aconitase 2 (ab110321 and ab99467),
Bar (ab106547) and DR5 (ab8416); Santa Cruz Biotechnology: Bak (sc832) and Bax
(sc493); Cell Signaling Technology: Smac/Diablo (15,108); Cusabio Biotech: Bcl-10
(CSB-PA002608ESR2HU); and from Sigma Prestige Antibodies: Casp8
(HPA005688), Casp9 (HPA001473), Bcl-2 (B3170) and Mcl-1 (HPA008455).

RNAseq and data processing. Hela cells were stained with MG for 40 min in
DMEM. After the staining, the cells were washed twice with PBS, trypsinized and
resuspended in PBS with 5mM EDTA. Then, the cells were sorted on a
fluorescence-activated cell sorter MoFLo XDP (Beckman Coulter) into two
populations of 10 cells with high and low mitochondrial content with a difference
in mitochondrial mass of around 5-fold. Following the DNase treatment, total
RNA from sorted cells was extracted using RNeasy Mini Kit (QIAGEN) according
to the manufacturer's guidelines. The quality of the extracted RNA was measured
by RNA Integrity Number (RIN) value from Bioanalyzer (being in all cases higher
than 8), and finally, 3 pg of purified RNA was sent to RNA-sequencing at the
SNP&SEQ sequencing facility (Science for Life laboratory (SciLifeLab), Uppsala
sequencing node). Total RNA was depleted from rRNA prior to library con-
struction. One lane per sample was used in a 60-bp paired-end run on an Illumina
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HiSeq 2500 sequencer. For each sample, over 50 million pair-end reads were
sequenced.

In order to quantify the total amount of mRNA per individual cell of each
population, sorted HeLa cells were seeded into cover-slide. To quantify mRNA
carrying poly(A), we performed an RNA-FISH detection experiment using poly-T-
Alexa-488 following the protocol described in Brown and Buckle*®. Briefly, HeLa
cells growing on coverslips were fixed for 10 min with PFA 4% (Electron
Microscopy Science) and permeabilized with 0.5% TRITON X-100 (Sigma) for 6
min at 4 °C. Then, the cells were washed twice in SSC 2x. The cells were labelled
with 100 ng of poly-T in 12 pl of RNA HM solution (25% formamide, 200 ng/pl
yeast tRNA, 5x Denhardt Solution, 1 mM EDTA, 2x SSC) over night at 37°C in a
humidity chamber. Finally, the coverslips were washed three times with 2x SSC at
37°C, labelled with DAPI and mounted in Vectashield.

Sequenced reads were aligned to the Homo sapiens genome (version GRCh38
from Ensembl) using TopHat 2.1.14° linked to Bowtie 2.2.8°" with default sensitive
settin%s. From sequenced reads, the transcripts were assembled using Cufflinks
2.2.1°1 using the Ensembl GRCh38.84 annotation as reference. Transcript/gene
abundances were estimated using Cufflink’s standard unit of measurement
(fragments per kilobase per million reads, FPKM) and then transformed into
transcripts per million (TPM)>2. TPM values were corrected in the ‘low’ sample by
a factor 0.34 to account for the different per-cell RNA content in the low’ and
‘high’ conditions, as quantified by poly(A) RNA-FISH. Additional information for
each gene was obtained from the Ensembl BioMart database and included in the
data set.

We then discarded the genes whose expression level was below the detection
threshold in both ‘low’ and ‘high’ conditions. This threshold was estimated as
follows?: all genes with one zero and one non-zero expression value in any
condition were selected. All non-zero values of this set of genes were listed, and the
detection threshold calculated as the median of their distribution, which was 0.01
TPM. Expression levels below this cutoff value in the filtered data set were replaced
by the cutoff.

Human colorectal samples. Human colorectal tumour biopsies from de-identified
patients were obtained with signed patient-informed consent and approval from
the Human Ethics Review Committee of the Torrevieja and Vinalopé Hospitals.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its supplementary information files or
from the corresponding author upon reasonable request. RNAseq data have been
deposited in the NCBI database under accession code BioProject ID:
PRJNA416451. Simulation codes are written in Matlab (Mathworks 2015a) and are
available as Supplementary software files.
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