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Summary 
 

The development of efficient chemical processes, from an economic and 

environmental point of view, is one of the main objectives of the Chemical 

Engineering. To achieve this goal, in the last years, advanced tools are being used for 

design, simulation, optimization, and synthesis of chemical processes, which allow 

us to obtain more efficient processes and with the least possible environmental 

impact. 

Reducing energy consumption is one of the most important aspects to consider 

when designing efficient processes. The global energy consumption of the industrial 

sector represents approximately 22.2 % of the total energy consumption. Within this 

sector, the chemical industry accounts for around 27 %.1 Therefore, the global energy 

consumption of the chemical industry is approximately 6 % of all the energy consumed 

in the world. 

Bearing in mind that the energy consumed is mainly generated by combustion 

of fossil fuels, any improvement in the design of chemical processes could reduce the 

energy consumption, reducing also the environmental impact. 

The work collected in this Doctoral Thesis has been carried out in the research 

group COnCEPT2 of the University of Alicante during the years 2014 and 2017. 

The main objective of this Thesis is based on the development of simulation and 

optimization tools in order to improve process energy efficiency, which reduces the 

environmental impact. Specifically, this Doctoral Thesis is composed of two main 

studies, which are the concrete objectives to achieve: 

* Study and evaluation of surrogate models to improve the simulation-based 

optimization of chemical processes. 

* Development of new models for the simultaneous optimization and heat 

integration of chemical processes. 

The first objective is based on the study and evaluation of surrogate models to 

replace complex models implemented in process simulators. The simulation-based 

optimization has some disadvantages. On the one hand, each unit operation is 

considered as a “black box” inside the simulators, therefore, algebraic equations that 

define the models are not available. Consequently, its derivatives must be calculated 
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by numerical differentiation what is very expensive to compute. Even in the case in 

where the CPU time is not excessive, most of the black box models introduce 

numerical noise, thus avoiding to estimate accurate derivatives. Additionally, the lack 

of convergence of a simulation during the optimization makes the whole procedure 

fail. For this study, the first part of this Thesis is composed of three papers; two of 

them have been published in international journals of high-impact factor and the 

third has been sent and is under review in another of these journals. 

In the first work, different configurations of distillation columns have been 

studied. The basic idea to solve these problems is to replace distillation columns or 

complex arrangements by surrogate models generated from rigorous models. 

Surrogate models are computationally efficient3 and they ensure an acceptable 

degree of accuracy.4 During the development of this Thesis, Kriging algorithm5 was 

selected to build the surrogate models, thanks to its ability to obtain accurate 

surrogate models from relatively small sampling data. The results from this work 

show that it is possible to obtain accurate surrogate models (with errors below 5 %) 

with up to seven degrees of freedom. This study has been collected in the Publication 1: 

“Rigorous Design of Distillation Columns Using Surrogate Models Based on Kriging 

Interpolation”. 

The main objective of the second work is the multiobjective optimization of the 

sour water stripping plant of a refinery, considering simultaneously the economics, 

heat integration and environmental impact. The idea of this paper arises from the 

satisfactory results of the first work, with the purpose of implementing the use of 

surrogate models in the optimization of large-scale processes. The strategy followed 

consists of replacing by surrogate models based on Kriging interpolation only those 

units or modules that could produce numerical problems, like distillation columns. 

Units that do not introduce numerical noise, such as heat exchangers, pumps, mixers, 

and splitters, are maintained in the simulator. Moreover, the equations related to heat 

integration and life cycle assessment are defined as explicit equations. The results 

show that it is possible to perform the multiobjective optimization of large-scale 

processes using surrogate models. In addition, the multiobjective optimization allows 

large energy savings (around 39 % in heating and 25 % in cooling) regarding the 

economically optimized plant, without taking into account neither the heat 

integration nor the environmental impact. At the same time, multiobjective 

optimization allows us to reduce the environmental impact around 49.5 % regarding 

the non-optimized plant. This study can be found in the Publication 2: “Large Scale 

Optimization of a Sour Water Stripping Plant Using Surrogate Models”. 
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The main objective of the third work is the optimization of a Vinyl Chloride 

Monomer (VCM) process superstructure using surrogate models. The idea of this 

paper arises from the satisfactory results of the second work, with the purpose of 

implementing the use of surrogate models in the optimization of superstructures (i.e., 

to extend the study to Mixed-Integer Nonlinear Programming (MINLP) problems). In 

this case, surrogate models based on Kriging interpolation are used to replace 

distillation columns and reactors, because these units could produce numerical 

problems during the optimization. All the possible alternatives to produce VCM are 

proposed through the superstructure. Heat integration was also studied after the 

optimization, which allow us to know the energy savings. In this work, financial risk 

is also studied in order to know the risk of not obtaining the expected profit. The 

results show that heat integration allows energy savings, with the consequent 

reduction of the environmental impact. Furthermore, the financial risk study reflects 

that the risk of not achieving the expected profit is very low (around 5 %). Therefore, 

the results are remarkably satisfactory. The results of this research are under review 

in an international high-impact journal, under the title: “Hybrid Simulation-Equation 

Based Synthesis of Chemical Processes”. (Publication 3) 

The second part of this Thesis is composed of two new papers, which have been 

published in international high-impact journals. In this case, a new alternative 

strategy is developed for the simultaneous optimization and heat integration of 

chemical processes. Most of the methods developed in the field of heat integration 

assume that input and output process stream temperatures are fixed and known a 

priori. In other words, heat integration is carried out only after fixed all the process 

operation conditions. However, it is known that the simultaneous optimization of the 

process conditions and the heat integration might produce significant savings in the 

total cost of the process.6 Several works have been published following the idea 

developed by Duran and Grossmann.7-9 Nevertheless, in this work, we develop a new 

strategy for the simultaneous process optimization and heat integration through the 

modification of the Pinch Location Method. 

The first work consists of the modification of the ‘max’ operators that Duran and 

Grossmann used to deal with the problem. We use a disjunction to deal directly with 

the ‘max’ operators, instead of explicitly dealing with the positions of the different 

streams in relation to the pinch (as occurs in the model proposed by Grossmann et 

al.7). The advantage of this model is that we use an additional variable to reformulate 

the problem, which reduces the number of binary variables and the number of 

equations. The results obtained with the proposed disjunctive formulation show that 
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our model is very competitive from the point of view of CPU time, compared to the 

disjunctive model proposed by Grossmann et al.7 and Navarro-Amorós et al.8 

Furthermore, the proposed model improves the relaxation gap. The results of this 

study have been compiled in the Publication 4: “A Novel Disjunctive Model for the 

Simultaneous Optimization and Heat Integration”. 

The second work considers that during the simultaneous optimization and heat 

integration of chemical processes there might exist streams that are not classified a 

priori, that is, that they cannot initially be classified as hot or cold streams. 

Additionally, an extension of the model is presented to allow the area estimation 

assuming vertical heat transfer, where all the ‘kink’ points on the hot and cold 

balanced composite curves are determined and an implicit ordering is used to 

determine adjacent points in the balanced composite curves for the area estimation. 

The proposed new formulation has proved to be robust and numerically efficient in 

large-scale problems. Furthermore, the total number of variables and equations is 

lower than that of the alternative formulations,8,10 which makes the proposed 

disjunctive model very competitive. The results of this research are collected in the 

Publication 5: “Disjunctive Model for the Simultaneous Optimization and Heat 

Integration with Unclassified Streams and Area Estimation”. 

 Finally, in order to aspire to the International PhD Mention, a three-month 

research stay was conducted. The stay took place in the School of Chemical 

Engineering and Analytical Science (The University of Manchester),11 one of the most 

outstanding universities in this field of study. During the stay, I acquired the 

knowledge for the correct development of a life cycle inventory. The inventory was 

based on data available in the literature. Also, I learned to build a Life Cycle 

Assessment (LCA) model using GaBi software,12 a commercial software widely used 

in the academia and industry. As a case study, the inventory of a membrane system 

for the oxy-combustion process for CO2 capture was applied. 
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Resumen 
 

El desarrollo de procesos químicos eficientes, tanto desde un punto de vista 

económico como desde un punto de vista ambiental, es uno de los objetivos 

principales de la Ingeniería Química. Para conseguir este propósito, durante los 

últimos años, se están empleando herramientas avanzadas para el diseño, 

simulación, optimización y síntesis de procesos químicos, las cuales permiten 

obtener procesos más eficientes y con el menor impacto ambiental posible. 

Uno de los aspectos más importantes a tener en cuenta para diseñar procesos 

más eficientes es la disminución del consumo energético. El consumo energético del 

sector industrial a nivel global representa aproximadamente el 22.2 % del consumo 

energético total, y dentro de este sector, la industria química representa alrededor del 

27 %.1 Por lo tanto, el consumo energético de la industria química a nivel global 

constituye aproximadamente el 6 % de toda la energía consumida en el mundo. 

Además, teniendo en cuenta que la mayor parte de la energía consumida es 

generada principalmente a partir de combustibles fósiles, cualquier mejora de los 

procesos químicos que reduzca el consumo energético supondrá una reducción del 

impacto ambiental. 

El trabajo recopilado en esta Tesis Doctoral se ha llevado a cabo dentro del grupo 

de investigación COnCEPT,2 perteneciente al Instituto Universitario de Ingeniería de 

los Procesos Químicos de la Universidad de Alicante, durante los años 2014 y 2017. 

El objetivo principal de la presente Tesis Doctoral se centra en el desarrollo de 

herramientas y modelos de simulación y optimización de procesos químicos con el 

fin de mejorar la eficiencia energética de éstos, lo que conlleva a la disminución del 

impacto ambiental de los procesos. Más concretamente, esta Tesis Doctoral se 

compone de dos estudios principales, que son los objetivos específicos que se 

pretenden conseguir: 

* Estudio y evaluación de los modelos surrogados para la mejora en la 

optimización basada en simuladores de procesos químicos. 

* Desarrollo de nuevos modelos para la optimización de procesos químicos y 

la integración de energía simultánea. 
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El primero de los objetivos principales de la presente Tesis se basa en el estudio 

y la evaluación de los modelos surrogados para sustituir modelos complejos 

implementados en simuladores de procesos. La optimización basada en simuladores 

presenta varios inconvenientes. Por un lado, las operaciones unitarias son tratadas 

como “cajas negras” dentro de los simuladores, por lo que las ecuaciones algebraicas 

que definen los modelos son desconocidas. Por ello, sus derivadas deben ser 

estimadas por diferenciación, necesitando unos tiempos de CPU elevados. Además, 

algunos de estos modelos introducen ruido numérico, por lo que sus derivadas no 

pueden ser calculadas con precisión. Asimismo, en algunos puntos el modelo 

simulado podría tener problemas de convergencia, lo que hace que todo el 

procedimiento de optimización falle. Para este estudio, la primera parte de la Tesis se 

compone de tres trabajos, dos de los cuales han dado lugar a dos publicaciones en 

revistas de alto impacto internacional y el tercero ha sido enviado y se encuentra bajo 

revisión en otra de estas revistas científicas. 

En el primero de los trabajos realizados se estudian diferentes configuraciones 

de columnas de destilación. La idea básica para solventar los problemas que plantea 

la optimización basada en simuladores es la de sustituir las columnas de destilación, 

o disposiciones complejas de columnas, por modelos surrogados generados a partir 

de modelos rigurosos, los cuales son computacionalmente eficientes3 y aseguran un 

grado de precisión aceptable.4 Durante el desarrollo de esta Tesis, el algoritmo de 

Kriging5 fue el seleccionado para construir los modelos surrogados, gracias a su 

capacidad de obtener modelos surrogados precisos a partir de conjuntos de datos 

reducidos. Los resultados obtenidos a partir de este trabajo muestran que es posible 

obtener modelos surrogados precisos (con errores medios por debajo del 5 %) con 

hasta siete grados de libertad. La investigación llevada a cabo para este estudio se 

recoge en la Publicación 1: “Rigorous Design of Distillation Columns Using Surrogate 

Models Based on Kriging Interpolation”. 

El segundo de los trabajos tiene como objetivo principal la optimización 

multiobjetivo de la planta de tratamiento de aguas de una refinería de petróleo, 

teniendo en cuenta simultáneamente el coste de operación del proceso, la integración 

de energía y el impacto ambiental de la planta. La idea de este trabajo surge a partir 

de los resultados satisfactorios obtenidos del primer trabajo, con la intención de 

implementar el uso de los modelos surrogados en la optimización basada en 

simuladores de procesos a gran escala. La estrategia seguida consiste en sustituir, por 

modelos surrogados basados en interpolación Kriging, solamente aquellas unidades 

de la planta que puedan introducir problemas numéricos durante la optimización, 
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como son las columnas de separación. Aquellas unidades que no introducen ruido 

numérico, como intercambiadores de calor, bombas, mezcladores y separadores, se 

mantienen en el simulador. Además, todas las ecuaciones relacionadas con la 

integración de energía, así como con el análisis de ciclo de vida, son definidas en 

forma de ecuaciones explícitas. Los resultados obtenidos muestran que la 

optimización multiobjetivo de procesos a gran escala usando modelos surrogados es 

posible. Ésta permite grandes ahorros energéticos (en torno al 39 % en calentamiento 

y al 25 % en enfriamiento) respecto a la planta optimizada económicamente y sin 

tener en cuenta la integración de energía ni el impacto ambiental. Al mismo tiempo, 

la optimización multiobjetivo permite reducir los impactos ambientales alrededor del 

49.5 % con respecto a la planta sin optimizar. Los resultados obtenidos en este estudio 

constituyen la Publicación 2: “Large Scale Optimization of a Sour Water Stripping 

Plant Using Surrogate Models”. 

El objetivo principal del tercer trabajo consiste en la optimización de una 

superestructura para obtener el mejor proceso para la fabricación del monómero de 

cloruro de vinilo. La idea de este trabajo surge a partir de los resultados satisfactorios 

obtenidos del segundo trabajo, con la intención de implementar los modelos 

surrogados en la optimización de superestructuras (es decir, con la intención de 

ampliar el estudio a problemas de programación no lineal con variables binarias 

(MINLP)). En este caso, los modelos surrogados basados en interpolación Kriging son 

utilizados para sustituir tanto columnas de destilación como reactores químicos, 

debido a que estas unidades podrían introducir problemas numéricos en la 

optimización. A través del desarrollo de la superestructura se plantean todas las 

alternativas de interés para la producción del cloruro de vinilo. Una vez optimizada 

la planta, se genera la red de integración de energía, lo que nos permite conocer el 

ahorro energético que se puede conseguir. En este trabajo también se estudia el riesgo 

financiero de la instalación, para conocer el riesgo de no conseguir el beneficio 

esperado. Los resultados obtenidos muestran que los modelos surrogados también 

pueden ser empleados para resolver problemas a gran escala de optimización basada 

en simuladores. Por otra parte, la integración de energía permite obtener importantes 

ahorros energéticos, con la consiguiente reducción del impacto ambiental. Así 

mismo, el estudio del riesgo financiero refleja que el riesgo de no obtener el beneficio 

esperado es muy bajo (aproximadamente del 5 %). Por lo tanto, los resultados 

obtenidos son muy satisfactorios. Los resultados obtenidos en este estudio se 

encuentran en revisión en una revista de alto impacto internacional, bajo el título: 

“Hybrid Simulation-Equation Based Synthesis of Chemical Processes”. (Publicación 3) 
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La segunda parte de esta Tesis está compuesta por dos nuevos trabajos, que 

también han sido publicados en revistas científicas de alto impacto internacional. En 

este caso, aparece la idea de desarrollar una estrategia alternativa para la 

optimización de procesos y la integración de energía simultánea, para redes de 

intercambiadores de calor. La gran mayoría de los métodos desarrollados en el campo 

de la integración energética asumen que las temperaturas de entrada y salida de una 

red de intercambiadores de calor son fijas y conocidas a priori. En otras palabras, la 

integración de calor se lleva a cabo solo después de haber fijado todas las condiciones 

de operación del proceso. Sin embargo, es sabido que la optimización de las 

condiciones del proceso y la integración energética simultanea pueden producir 

importantes ahorros en el coste total del proceso.6 Varios han sido los trabajos 

publicados siguiendo la idea desarrollada por Duran y Grossmann.7-9 No obstante, en 

esta parte se pretende desarrollar una nueva estrategia para la optimización y la 

integración de energía simultánea a partir de una modificación del método de 

localización del Pinch. 

En el primero de éstos trabajos se plantea modificar los operadores ‘max’ con 

los que Duran y Grossmann tratan el problema, aplicando una disyunción 

directamente sobre el operador, en lugar de trabajar con la posición de las corrientes 

con respecto al Pinch (como se hace en el modelo propuesto por Grossmann et al.7). 

La ventaja que presenta este modelo es que se utiliza una variable suplementaria para 

reformular el sistema, lo que reduce el número de variables binarias y el número de 

ecuaciones. Los resultados obtenidos con la formulación disyuntiva propuesta 

muestran que nuestro modelo resulta muy competitivo, desde el punto de vista del 

tiempo de resolución, frente a los modelos de Grossmann et al.7 y Navarro-Amorós et 

al.8 Además, el modelo propuesto mejora la solución del problema relajado. Los 

resultados de este estudio se recogen en la Publicación 4: “A Novel Disjunctive Model 

for the Simultaneous Optimization and Heat Integration”. 

El segundo de los trabajos parte de la idea de considerar que durante la 

optimización de procesos e integración energética simultánea pueden existir 

corrientes que no estén clasificadas a priori, es decir, que en un primer momento no 

se puedan clasificar como corrientes frías o calientes. Asimismo, se presenta una 

extensión del modelo que permite la estimación del área de intercambio asumiendo 

que la transferencia de calor es vertical, donde se determinan todos los puntos de 

curvatura de las curvas balanceadas compuestas y, además, se realiza el 

ordenamiento para determinar los puntos adyacentes en las curvas compuestas y 

poder así estimar el área de intercambio. La nueva formulación ha demostrado ser 
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robusta y numéricamente eficiente en problemas a gran escala. Al mismo tiempo, el 

número total de variables y ecuaciones del modelo es menor que el de las 

reformulaciones alternativas,8-10 lo que provoca que el modelo propuesto sea muy 

competitivo. Los resultados derivados de esta investigación se encuentran recogidos 

en la Publicación 5: “Disjunctive Model for the Simultaneous Optimization and Heat 

Integration with Unclassified Streams and Area Estimation”. 

Finalmente, para poder optar a la Mención de Doctora Internacional, se realizó 

una estancia de investigación de tres meses en la Escuela de Ingeniería Química y 

Ciencias Analíticas11 de la Universidad de Manchester (Reino Unido), con el fin de 

mejorar los conocimientos en el área del análisis de ciclo de vida y estudio del impacto 

ambiental, en una de las universidades más destacadas dentro de este campo de 

estudio. Durante la estancia se adquirieron los conocimientos necesarios para 

construir un inventario de ciclo de vida basado en datos disponibles de distintas 

referencias bibliográficas. También se aprendió a construir los modelos para la 

Evaluación del Ciclo de Vida usando el software GaBi,12 un software comercial 

ampliamente utilizado en el mundo académico y en la industria. Como caso de 

estudio, se realizó el inventario de un sistema de membranas aplicado al proceso de 

oxi-combustión para la captura de CO2.  
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Chapter 1. 
Thesis Structure and Objectives 

 

The work developed in this Doctoral Thesis has been carried out in the research 

group COnCEPT belonging to the Institute of Chemical Processes Engineering of the 

University of Alicante, between the years 2014 and 2017, under the National Sub-

Program for Training, Grants for predoctoral contracts for doctoral training (BES-2013-

064791), associated with projects CTQ2012-37039-C02-02 “Metodologías para el diseño 

avanzado de procesos químicos sostenibles: optimización, intensificación; eficiencia 

energética y sostenibilidad”  and CTQ2016-77968-C3-2-P (AEI/FEDER, UE) “Desarrollo 

de herramientas sistemáticas para el modelado y optimización de procesos más 

sostenibles con integración de aspectos económicos, ambientales y sociales ”, by the 

Spanish Ministry of Economy, Industry, and Competitiveness. 

The main purpose of Chapter 1 is to define the objectives and the structure 

followed in the development of this Thesis. 

 

1.1. Thesis Objectives 

The main objective of this Thesis is based on the development of simulation and 

optimization tools in order to improve the energy efficiency of chemical processes, 

which reduces the environmental impact. Specifically, this Doctoral Thesis is 

composed of two main studies, which are the concrete objectives to be achieved: 

* Study and evaluation of surrogate models to improve the simulation-based 

optimization of chemical processes. 

* Development of new models for the simultaneous optimization and heat 

integration of chemical processes. 
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1.2. Thesis Structure 

In terms of its structure, this Thesis is clearly divided into five chapters. The 

present Chapter 1 defines the main objectives and the structure of the Thesis. 

The next chapter begins with an introduction, which presents an overview of 

the most important methods and tools used during the development of this Thesis. 

First, a general introduction to global energy problems and how to solve them 

introduces Chapter 2. A brief overview of the use of process simulators can be found 

below. Also, a short introduction to the different types of mathematical programming 

problems to be solved is presented. Additionally, a concise summary of surrogate 

models can be found. This introductory chapter also includes sections related to the 

most important aspects of heat integration and environmental impact assessment. 

Finally, Chapter 2 ends with the references used in this introductory chapter. 

The results of the different studies are presented in Chapter 3, where the 

different papers that are part of this Thesis are shown. Four of these papers are 

published in international high-impact journals, and one more paper is awaiting 

publication (under review). 

Below is presented Chapter 4, which summarizes the most relevant conclusions 

derived from the research. 

Finally, the most important scientific contributions carried out during the 

research period are found in Chapter 5. 

 

1.2.1. Publications Included in this Thesis 

This Doctoral Thesis is presented as a compendium of publications. The 

following papers are part of the present Thesis: 

* Publication 1: Quirante N, Javaloyes J, Caballero JA. Rigorous Design of 

Distillation Columns Using Surrogate Models Based on Kriging Interpolation. 

AIChE Journal 2015; 61(7):2169-2187. 

http://onlinelibrary.wiley.com/doi/10.1002/aic.14798/full 

* Publication 2: Quirante N, Caballero JA. Large Scale Optimization of a Sour 

Water Stripping Plant Using Surrogate Models. Computers & Chemical 

Engineering 2016; 92:143-162. 

http://doi.org/10.1016/j.compchemeng.2016.04.039 
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* Publication 3: Quirante N, Javaloyes J, Caballero JA. Hybrid Simulation-Equation 

Based Synthesis of Chemical Processes. Sent to: Chemical Engineering 

Research & Design [Under review]. 

* Publication 4: Quirante N, Caballero JA, Grossmann IE. A Novel Disjunctive 

Model for the Simultaneous Optimization and Heat Integration. Computers & 

Chemical Engineering 2017; 96:149-168. 

http://doi.org/10.1016/j.compchemeng.2016.10.002 

* Publication 5: Quirante N, Grossmann IE, Caballero JA. Disjunctive Model for 

the Simultaneous Optimization and Heat Integration with Unclassified 

Streams and Area Estimation. Computers & Chemical Engineering 2018; 

108:217-231. 

https://doi.org/10.1016/j.compchemeng.2017.09.013 
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Chapter 2. 
Introduction 

 

During the development of this Thesis, different methods and tools have been 

used in order to achieve the objectives defined in Chapter 1. 

The main goal of this chapter is to describe the basic concepts on which the 

different studies are based and to explain some aspects related to its implementation 

in this work. 

 

2.1. Global Energy Demand 

Reducing energy consumption is one of the most important aspects to take into 

account when designing efficient processes. The global energy consumption of the 

industrial sector represents approximately 22.2 % of the total energy consumption. 

Within this sector, the chemical industry accounts for around 27 %.1 Therefore, the 

global energy consumption of the chemical industry is approximately 6 % of all the 

energy consumed in the world. Figure 2.1 illustrates the energy consumption by 

sector. 

 

Figure 2.1. Energy consumption by sector (May 2016).1 
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Analyzing the chemical industry energy consumption, most of the chemical 

processes are involved in purifying components. Consequently, a large part of the 

energy consumed in many industrial sectors can be attributed to separation 

processes. Distillation is the most common separation process in the chemical 

industry. It has an extensive product history and is still reported as "the method of 

choice for many separations, and the method against which other options must be 

compared".2,3 It is estimated that in the United States there are 40,000 distillation 

columns in operation, which handle more than 90 % of separations and purifications.4 

In conclusion, it is estimated that distillation columns account for about 3 % of 

the total US energy consumption and recent reports show that this number has not 

been undergoing fundamental changes to date.4-6 This fact together with the fact that 

the energy consumed is mainly generated by combustion of fossil fuels make that 

any improvement in the design of chemical processes could reduce the energy 

consumption, with the consequent reduction of the environmental impact.7 

 

2.2. Process Simulators  

The simulation, design, and optimization of chemical processes, which include 

several processing units interconnected by process streams, are part of the main 

activities of process engineering. The correct development of these tasks requires 

multiple subtasks, such as material and energy balances, equipment sizing, and 

calculation of the capital and operating costs, among others. 

Historically, the performance of these tasks has been a complicated work due to 

the complexity of the models developed for the representation of chemical processes. 

Fortunately, computer development has made possible to study these processes. 

Nowadays, a large number of computer programs are able to carry out these tasks, 

especially, the software dedicated to the simulation of chemical processes. 

Process simulation can be defined as the employment of computer software 

resources to develop mathematical models for the construction of an accurate and 

representative model of a chemical process in order to analyze, study, and 

understand its behavior during steady state plant operations and to evaluate other 

possible working conditions.8 All these studies are possible because process 

simulators include an accurate description of physical properties of pure components 

and complex mixtures, rigorous models for unit operations, and numerical 
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techniques for solving large systems of algebraic and differential equations. 

Furthermore, through a process simulator, it is possible to obtain an extensive 

computer image of a running process, which is a valuable tool to understand the 

operation of a complex chemical plant and can serve to continuously improve the 

process or to develop new ones. 

Within the process engineering, depending on the final objective, different types 

of problems can be solved with the aid of a process simulator. Even though the main 

objective of process simulators is the simulation, efforts have been made to include 

design, optimization, and synthesis capabilities (see Figure 2.2). This is also one of the 

objectives of this Thesis. 

* Simulation problem: where the variables associated with the input streams 

for each unit of the process and the parameters of all the units should be 

specified. In other words, the simulator calculates the output streams 

according to the inputs and the parameters of that unit (the degrees of 

freedom are equal to zero). 

* Design problem: where some of the design variables are unknown (e.g., the 

reactor volume, number of trays of a distillation column, the heat exchanger 

area, etc.). To solve this problem, we should add as many constraints to the 

output streams as degrees of freedom has the problem. 

* Optimization problem: where the process efficiency is evaluated according to 

the input streams and the design variables in order to minimize its behavior 

based on economic, environmental, or social criteria. This type of problems 

can present equations of equality and inequality and the number of 

equations can be equal or greater than the number of variables. 

* Synthesis problem: where an open structure with different operation and 

equipment alternatives for each of the system tasks is considered. Through 

this type of problems, we can determine the optimal configuration that 

minimizes or maximizes some key aspects of the problem, such as its 

economy or its environmental impact. The equations change according to the 

selected equipment, which makes solving synthesis problems a hard task. 

Process simulators simplify the work of process engineers, allowing us to solve 

a wide variety of design, simulation, optimization, and synthesis problems.  

 

 



 

26 | Rigorous Design of Chemical Processes: Surrogate Models and Sustainable Integration 

 

    

   

Figure 2.2. Process engineering problems: (a) Simulation. (b) Design. (c) Optimization. 

(d) Synthesis. 

 

The use of process simulators can offer several advantages: 

* Ease and simplicity in the complete study of all material and energy process 

streams. 

* Investigate the formation and separation of byproducts and impurities.  

* Evaluate the plant behavior when input streams or product demand change. 

* Analyze how to reduce the environmental impact. 

* Enhance process safety and control. 

* Optimize the economic performance of the plant. 

 

2.2.1. Architecture of Process Simulators 

The architecture of a process simulator is determined by the strategy of 

computation. Depending on how the process is described (modular or nonmodular) 

and depending on the method used to solve the resulting equations (sequential or 

simultaneous), process simulators can be classified into three types: 

* Sequential-Modular simulators. 

* Simultaneous-Nonmodular or Equation-Oriented simulators. 

* Simultaneous-Modular simulators. 
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2.2.1.1. Sequential-Modular Simulators 

The Sequential-Modular architecture is based on the concept of modularity, 

which extends the chemical engineering concept of unit operation to a “unit 

calculation” of the computer code (i.e., subroutine) responsible for the calculations of 

a single process unit.9 The equations for each process unit (material and energy 

balances, equilibrium equations…) are grouped together in a subroutine or module. 

Consequently, each module calculates the output streams from the given input 

streams and parameters for that particular process unit, regardless of the source of 

input information or where the output information goes. In this way, the output 

streams become the input streams for the following unit and so on. This method is 

similar in principle to the traditional method of calculating unit operations by hand. 

This calculation strategy is used by the most of the steady state simulators, as 

Aspen Plus, Aspen HYSYS, CHEMCAD, ProSim, Design II or SuperPro. 

 

2.2.1.2. Equation-Oriented Simulators 

In the Equation-Oriented approach, the complete model of the plant (flowsheet) 

is expressed in the form of one large dispersed system of nonlinear algebraic 

equations that is simultaneously solved for all the unknowns. This methodology is 

more flexible than the Sequential-Modular architecture. However, it requires more 

programming effort and is computationally expensive. 

This strategy is followed by simulators like gPROMS, Abaqus, Ascend, VMGSim, 

Aspen Custom Modeler and Aspen Plus in EO mode. 

 

2.2.1.3. Simultaneous-Modular Simulators 

In the Simultaneous-Modular approach, the solution strategy is a combination 

of the Sequential-Modular and the Equation-Oriented methods. These flowsheeting 

programs use the traditional modular structure, but also solve a system of 

simultaneous equations that includes all the stream variables. The main difference 

here is the ease with which a system of equations can be solved compared to the 

Equation-Oriented method, in that the system of equations and the solution are 

simplified. Specifically, for each unit, an additional module is written, which 

approximately relates each output value by a linear combination of all input values.  
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Accordingly, rigorous models are used at the process unit level, which are solved 

sequentially, while linear models are used at flowsheet level and are solved globally. 

 

2.2.2. Sequential-Modular Approach 

The simulation of a steady state operation of a chemical plant can be 

represented by a system of nonlinear algebraic equations: 

  0f x   (2.1) 

where f is a vector of functions and x is a vector of variables describing the input and 

output streams of a particular unit operation as well as the design parameters of that 

unit (e.g., reactor volume, reflux ratio for distillation columns, area of heat exchangers…). 

The vector of functions f is derived from the conservation equations for mass, 

energy and momentum, physical and chemical equilibrium among species and 

phases, and additional constitutive equations that describe the rates of chemical 

transformation or transport of mass and energy. The system of equations described 

in Eq.(2.1) has a strong nonlinear character, particularly due to the relationship 

among physical properties and state variables. It is worth noting that estimation of 

physical properties can consume up to 90 % of the computation time.10  

The system of equations generated during the simulation of a chemical plant 

may include thousands of equations and variables. The task of solving this problem 

can be especially difficult if a single model that includes the entire plant is considered. 

The strategy adopted by a Sequential-Modular process simulator is to write the 

balance equations for each unit separately. Therefore, Eq.(2.1) is rewritten as follows: 

  0            1, 2, ..., i uf x i n   (2.2) 

where fi is a subset of vector f with the functions associated with unit i, and nu is the 

number of units in the plant. 

Taking into account that the variables associated with the streams entering the 

plant and design variables for the units always have to be defined and that the 

information flow in the mathematical model is the same as in the flowsheet (the 

process simulator Aspen HYSYS is a remarkable exception where a bi-directional flow 

of information is possible), Eq.(2.2) can be rewritten as is shown in Eq.(2.3). 

             1, 2, ...,  out in
i i ux g x i n   (2.3) 



 

CHAPTER 2. Introduction | 29 

 

where 
in
ix  and 

out
ix  are subsets of the variables associated with the input and the 

output streams of unit i, respectively, and nu is the number of unit operations in the 

flowsheet. 

In this approach, the output stream for a given unit i becomes the input stream 

for a downstream unit and the calculation proceeds as before until all the units have 

been visited. Consequently, it is possible to compute an entire flowsheet without 

recycling streams by using sequentially Eq.(2.3). However, a process with recycle 

streams must be decomposed into one or several calculation sequences, and then an 

iterative strategy has to be adopted. The solution approach for flowsheets containing 

recycle streams is more complex and includes a topological analysis to determine the 

computational sequence and the corresponding tear streams. This strategy also 

requires iterative calculations for all units in the recycle loop, as the calculated value 

for the recycle stream may differ from the initial estimation. 

 

2.2.2.1. Advantages of the Sequential-Modular Approach 

The Sequential-Modular approach exhibits clear advantages for process 

flowsheeting over the Equation-Oriented approach, which explains why actually it is 

the dominant method of steady state simulation. Table 2.1 shows a list of advantages 

and disadvantages of sequential-modular process simulators. 

TABLE 2.1. Advantages and disadvantages of the sequential-modular approach. 

Advantages  Disadvantages 

* Robustness and reliability. 

* The flowsheet architecture is easily 
understood, since it closely follows the 
process flow diagram. 

* The unit blocks can be easily added to 
the flowsheet (or removed from the 
flowsheet). 

* The models of the different units can 
be prepared and tested separately 
leading to a library of unit modules. 

* Specific solution methods are developed 
for each process unit. 

* Easy control of convergence, both at 
the unit and flowsheet level. 

 * The simulators are well suited for 
process simulation, but not for dynamic 
simulation, optimization or design. 

* Present difficulties with flowsheets 
involving a large number of recycles. 

* Rigid direction of computation (usually, 
outputs from inputs). 
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2.2.3. Structure of a Process Simulator 

The internal structure of a sequential-modular process simulator is divided into 

three clearly differentiated sections: 

1. The central logic or general logic of the simulator. 

2. The module responsible for physicochemical estimations. 

3. The unit module library, i.e., each of the equipment modules.  

The interconnections between the basic components of a typical simulation 

package are shown in Figure 2.3. 

 

Figure 2.3. Components of sequential-modular process simulator software. 

 

Each component shown in Figure 2.3 is described below: 

* Flowsheet builder (graphical user interface): provides the user an interface to 

generate the flowsheet of the plant under a graphical environment. 

* Executive program (flowsheet solver): the heart of any process simulator. It 

controls the sequence of the calculations and the overall convergence of the 

simulation. 

* Numerical routines: a collection of mathematical methods for solving systems 

of linear, nonlinear, and differential equations. 

* Component data bank: a database with the required parameters to calculate 

the physical properties needed. 

* Thermodynamic property prediction methods: a set of thermodynamic 

methods to estimate the physical and thermodynamic property data. 

* Unit module library: subroutines to perform energy and material balances 

and design calculations for the typical process engineering units. 

* Data output generator: report the results of the simulation by tables and 

graphical displays. 
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2.2.3.1. General Logic of Process Simulators 

The graphical user interface (GUI) is a key component of the process simulator. 

It should be characterized by flexibility and a user-friendly environment. The GUI 

communicates directly with the input/output data modules and the executive 

program. The input system is able to detect inconsistencies and errors in data entry 

in order to minimize the time employed in simulation tasks. In this way, inconsistent 

values within the problem context are immediately notified to the user through a 

validation system that emits error and warning messages. 

The executive program is responsible for managing the various tasks that must 

be executed in order to perform the simulation of a given flowsheet. The flowsheet of 

a chemical process usually involves a large number of unit operations (reactors, 

separation units, heat exchangers…) connected by process streams (material and 

energy streams). The approach used to solve these flowsheets depends largely on its 

complexity. The simplest case to solve by a sequential-modular simulator is an 

acyclic system (without material streams or energy recycles), since the information 

occurs in a single direction. However, most of the chemical processes have several 

recycles, particularly those plants that are highly integrated. In that case, the problem 

cannot be solved directly, and an iterative procedure must be adopted. It becomes 

necessary to ‘tear’ a stream inside the loop and to introduce a convergence block. 

Initial values must be provided for the output streams of the convergence block. Then, 

the complete flowsheet can be calculated and the inputs to the convergence block 

compared with the outputs. If the convergence criteria are met, then the calculation 

stops. In other cases, a suitable numerical method may be used to provide new 

estimates for the tear stream and the iteration then continues. 

To implement these solution methods it is necessary to take into account a 

series of preliminary considerations, such as: 

* Which unit operations must be solved simultaneously? (This is known as 

partitioning). 

* In what order should we solve the grouped unit operations? (This is known 

as precedence ordering). 

* Which streams should we tear in each group? (This is known as tearing). 

There are several algorithms to perform these tasks, and most of them were 

developed in the late 1960s and 1970s.11 
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Methods for partitioning and precedence ordering are based on path-searching 

and are closely related to graph theory. These methods can be found in the works 

developed by Sargent and Westerberg,12 Ledet and Himmelbrau,13 Kehat and 

Shacham,14 and Tarjan,15 among others.16-18 

Once the partition is complete, if we group all the units that form a partition 

(also called in graph theory as a strongly connected component) in a new theoretical 

node that group them, the resulting flowsheet must be acyclic, making it easy to 

obtain the order of precedence to solve the problem. The acyclic flowsheet can be 

formed by nodes that do not receive information from others (initial nodes), nodes 

that do not transfer information to others (terminal nodes), and the strongly 

connected component units (maximum cycles) that are obtained by means of one of 

the aforementioned algorithms. 

The next issue concerns how to proceed to solve the partitions containing more 

than a single unit by choosing a set of tear streams for each. Several algorithms 

following different tear criteria have been proposed to find the tear streams. Process 

simulators such as Aspen Plus include the algorithm developed by Upadhye and 

Grens.19 This method finds an optimal set of tear streams that yields the best 

convergence for fixed-point methods of solving the flowsheet. Other methods for 

finding the tear streams are the “Set Covering Problem” proposed by Pho and 

Lapidus20 and the method proposed by Barkley and Motard,21 among others. 

Once the process simulator knows which units form a maximum cycle, the order 

of precedence and the tear stream corresponding to each maximum cycle, an iterative 

process is performed to solve the flowsheet. Flowsheeting programs employ methods 

that limit the number of iterations required to solve the flowsheet. The main methods 

described in the literature to solve the large sets of nonlinear algebraic equations that 

arise in flowsheeting problems are fixed-point methods, like direct substitution 

method, Wegstein’s method,22 or dominant Eigenvalue; Quasi Newton methods, like 

Broyden’s method;23 and if it is possible to get accurate derivative information, the 

Newton-Raphson method. 

Finally, once the flowsheet is calculated, the process simulator must retain the 

results and display them in the appropriate places. The operating scheme of a 

sequential-modular simulator is illustrated in Figure 2.4. 
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Figure 2.4. Operating scheme of a sequential-modular process simulator. 

 

2.2.3.2. Physical Property Service Facilities 

In a process simulation, the physical property service is an essential part of the 

software package, since the quality of process design ultimately depends on how the 

laws of physics and chemistry apply to the problem. A brief summary of the different 

property data required in a simulation of a chemical process is given in Table 2.2. 

TABLE 2.2. Types of property data and their corresponding specific properties. 

Property type Specific properties 

Phase equilibrium Boiling and melting points, vapor pressure, fugacity and activity 
coefficients, solubility, BIPs. 

PVT behavior Density, molar volume, compressibility, critical properties, acentric 
factor. 

Thermal properties Heat capacity, latent heat, ionic conductivity, enthalpy, entropy. 

Transport properties Viscosity, thermal conductivity, diffusion coefficients. 

Chemical reaction 
equilibrium 

Equilibrium constants, association/dissociation constants, enthalpy 
of formation, enthalpy of combustion, heat of reaction, Gibbs free 
energy of formation, reaction rates. 

Boundary properties Surface tension. 

Molecular properties Virial coefficients, ion radius and volume, molecular weight, and 
dipole moment. 

Safety characteristics Flash point, explosion limits, toxicity, maximum working place 
concentration, lower and upper flammability limits. 

 

The physical property service has to perform a series of tasks, but the most 

useful of these is to provide the user with a large data bank of components and allow 

data entry in order to create new components. It also has to continuously supply 

estimates for a number of different physical properties while the estimation is 

running, and provide the user with property values of interest during the calculation 

and/or once the simulation is finished. 
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Phase equilibrium represents one of the most important physical properties, 

since many chemical process simulations involve distillation, stripping, evaporation 

or liquid-liquid separation. The solution of the mass and heat balances for these unit 

operations requires predicting the separation of chemical mixtures between the 

liquid and vapor phases. To predict phase equilibria, a thermodynamic property 

method must be chosen from a set of thermodynamic methods implemented in the 

software. In Table 2.3 are listed the main thermodynamic property models available 

in commercial process simulators. 

TABLE 2.3. Thermodynamic property models available in commercial simulators. 

Model category Model name Guidelines 

Equation of state (EOS) 

Ideal Ideal gas law For systems close to ideality. Light gases, similar 
hydrocarbons, petroleum pseudo-components. 

Cubic equations 
of state 

Peng-Robinson 
(PR) 

For gas processing, refinery, and petrochemical 
processes. PR obtains better liquid densities than SRK. 

 Soave-Redlich-
Kwong (SRK) 

For gas processing, refinery, and petrochemical 
processes. For polar systems, SRK makes a better 
prediction than PR. 

Virial equations 
of state 

Hayden-
O’Connell 

Predicts solvation of polar compounds and 
dimerization in the vapor phase, as occurs with 
mixtures containing carboxylic acids. 

 Lee-Kesler-
Plöcker 

Hydrocarbon systems that include the common light 
gases. It can be used in gas processing, refinery, and 
petrochemical applications. 

Steam ASME steam 
tables 

For water or steam (no parameter requirements). 

Activity coefficient models 

BIP NRTL Recommended for highly nonideal chemical systems. 
It can be used for VLE and LLE applications. 

 Wilson Recommended for highly nonideal systems, especially 
alcohol water systems. It cannot be used for LLE 
calculations. 

 van Laar Describes nonideal liquid solutions with positive 
deviations from Raoult’s law. 

 UNIQUAC For highly nonideal chemical systems, VLE and LLE 
applications. 

Group 
contribution 

UNIFAC If there are no interaction parameters. For any 
combination of polar and nonpolar compounds. 

Electrolyte 
models 

Electrolyte 
NRTL 

Aqueous electrolyte. 
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TABLE 2.3. Thermodynamic property models available in commercial simulators (continued). 

Model category Model name Guidelines 

Special models 

Vapor pressure 
models 

API Sour For correlating NH3, CO2 and H2S volatilities from 

aqueous sour water systems (from 20 ºC to 140 ºC). 

Liquid fugacity 
models 

Chao-Seader Pure component fugacity coefficients for liquids. 

 Grayson-
Streed 

Extension of the Chao-Seader model. It is not 
recommended for systems containing hydrogen. 

Specific models Amine package For systems with amines (MEA, DEA, TEA, MDEA, DGA, 
and DIPA). 

 Glycol package For the triethylene glycol (TEG)-water mixture.   

 OLI electrolyte For predicting the equilibrium properties of a chemical 
system including phase and reactions in a water 
solution. 

 

2.2.3.3. Unit Module Library 

Sequential-modular process simulators come with a large library of modules 

(unit operations). Unit models are encapsulated as procedures and can be considered 

as “black boxes” that perform a large number of subtasks and calculations. Modular 

process simulators are highly robust solving each unit operation with numerical 

methods tailored to the specific characteristics to each one of these units. These 

include from specific inside-out algorithms to “flash” a material stream, going 

through detailed methods for reactors and heat exchangers until complex methods 

for distillation. Some of the unit operations built into commercial flowsheeting 

programs are: 

* Column operations: absorber, liquid-liquid extractor, reboiled/refluxed 

absorber, distillation, 3-phase distillation. 

* Electrolyte operations: neutralizer, precipitator, crystallizer. 

* Heat transfer operations: air cooler, cooler/heater, fired heater, heat exchanger. 

* Piping operations: mixer/tee, pipe segment, valves. 

* Reactor operations: Gibbs reactor, equilibrium reactor, conversion reactor, 

plug flow reactor, continuous-stirred tank reactor. 

* Rotating operations: centrifugal compressor, centrifugal expander, pumps. 

* Solid separation operations: baghouse filter, cyclone, hydrocyclone, rotary 

vacuum filter, simple solid separator. 
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2.3. Synthesis and Process Design 

Process synthesis is the step in design where the chemical engineer chooses the 

conditions, component parts, and how to interconnect them in order to create a new 

flowsheet. 

The design and synthesis of processes originally began with the concept of “unit 

operation”. According to Little’s definition, unit operations are a variety of generic 

building blocks that can be assembled to compose processes for any of a large variety 

of applications.24 Until the late 60’s, this concept was the key in the design of 

processes. However, Rudd et al.25 proposed the concept of “process synthesis” in 1973 

and, since then, this topic has contributed to the development, design, and operation 

of chemical processes, which is currently considered as the basis for the design of 

processes.26-30 

Traditionally, process synthesis is a systematic methodology to obtain the 

optimal configuration of a process, with the aim of maximizing the economic 

performance, maximizing the energy efficiency, or minimizing the environmental 

impact. The optimal design will be obtained through the combination of all the 

different possibilities (different types of feeds, unit operations…) in order to obtain 

the desired products, taking into account the requirements established and the 

regulations applied. A simplified scheme of a synthesis problem is shown in Figure 2.5. 

 

Figure 2.5. Simplified scheme of a synthesis problem. 
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2.3.1. Methodologies in the Synthesis of Processes 

Since the 70’s, several advances have been developed in the area of chemical 

process synthesis.26,29 Methodologies for cost and energy minimization in the 

synthesis of processes can be classified into three groups: methods based on 

heuristics rules, methods based on mathematical programming, and hybrid methods 

(which combine both methods).30 

 

2.3.1.1. Methods Based on Heuristic Rules 

Heuristic methods are based on the experience accumulated over the years by 

researchers and engineers. The first systematic method based on heuristic rules was 

developed in 1971 by Siirola and Rudd.31 The objective of this method was the 

development of separation sequences for multicomponent mixtures. 

The main methodology within this field of study was developed during the 80’s. 

Hierarchical heuristic methods divide the whole design problem into a series of 

decision levels, where the most suitable configuration is established successively by 

means of heuristic rules. The methodology proposed by Douglas27,32 follows a strategy 

where decision-making is done from the top to the bottom, allowing us to obtain good 

flowsheets. However, the main disadvantage of this methodology is the ignorance of 

the interactions between the levels, due to its sequential nature, which does not 

guarantee the optimal design of a process. 

This hierarchy can be represented symbolically by the layers of the “onion 

diagram” shown in Figure 2.6. The diagram emphasizes the sequential, or 

hierarchical, nature of process design. 
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Figure 2.6. The onion diagram of process design. 
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Heuristic methods have been used in several applications, such as separation 

sequences,33,34 process flowsheets,31 waste reduction,35 metallurgical process design,36 

or HEN synthesis.37 Model levels are classified according to the type of decision taken. 

 

Level 1: Processing Mode: Batch or Continuous 

At this first level, it is decided whether the process will develop in continuous or 

discontinuous. 

Continuous processes are designed to operate 24 hours a day, 7 days a week, 

throughout the year at almost constant conditions before the plant is shut down for 

maintenance. In contrast, batch processes are designed to operate intermittently, 

with some, or all, of the process units being frequently shut down and started up. 

During the bath operating cycle, the units are filled with material, perform their 

desired function for a specific period, are shut down, drained, and cleaned before the 

cycle is repeated. 

Discontinuous processes are typical of the pharmaceutics, plastic, and food 

industry. They are selected if one of the following points is met: 

* When the product has to be in the market in a reduced space of time. 

* When the annual demand for a product is covered in a short period of time. 

* When the process is in a preliminary phase exposed to some variations and 

improvements. 

* When the product price is much higher than the manufacturing costs. 

* When the product has a short life on the market before another product 

replaces it. 

In practice, most industrial processes are continuous because they are cheaper 

with respect to the operating and capital costs, even in small-scale industrial processes. 

 

Level 2: Input-Output Structure of the Flowsheet 

At this level, feed and product streams involved in the overall process are 

studied. The input-output structure defines the overall material balance boundary of 

the flowsheet, therefore, byproducts and inerts should be considered. In addition, it 

is desired to recover more than 99 % of all valuable materials. 
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Level 3: Reactor System and Recycle Structure 

At this point, the number of reactors employed in the process and the recycled 

streams are studied. In addition, the effect of the different operation conditions on 

each of the reactors is also studied. The operating conditions include the diluent 

effect of the inerts in the feed streams and the effect of the pressure on the chemical 

equilibrium reached in each reactor. 

 

Level 4: Separation System 

Generally, the unreacted feed is recovered and recycled to the reactors in order 

to minimize the cost of the raw materials. Additionally, products and byproducts are 

separated and extracted from the process. Possible means of reducing emissions by 

using alternative separation techniques or by rearranging existing ones are evaluated. 

The interactions of the separation system with the reactor and recycle systems are 

also considered. 

This level is divided into two sublevels: recovery of liquid streams and recovery 

of vapor streams. The recovery process for vapor streams is more expensive than the 

separation for liquid streams. Liquid separation processes are commonly carried out 

in distillation columns. 

 

Level 5: Heat Exchanger Network 

At the last level, the energy systems required by the process are evaluated. The 

main tool for use at this level is “The Pinch Analysis”. It provides a powerful insight 

into process integration and is known for its use in heat exchanger network design.  

In addition, it has other powerful applications to reduce the environmental 

impact of industrial processes.38,39 For example, heat exchanger networks can reduce 

fuel firing and steam consumption, which in turn, reduces the production of 

greenhouse gases and the use of water treatment chemicals. 

After maximizing heat recovery in the heat exchanger network, those heating 

and cooling duties not serviced by heat recovery must be provided by external utilities 

(i.e., furnace heating, use of steam, steam generation, cooling water, air-conditioning 

or refrigeration). Thus, utility selection and design follows the design of the heat 

recovery system. 
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Level 6: Total Site Integration 

Maximizing heat recovery at the process level is a good step toward a better 

performance of industrial facilities. However, industrial processes are usually 

organized in larger sites and are served by a common utility system. The processes 

interact with each other via the utility system. There are significant benefits to be 

gained from considering the complete sites as integrated energy systems, evaluating 

and optimizing the energy generation, distribution, use, and recovery.40,41 Therefore, 

total site integration has been applied to several chemical industrial sites.42 

A typical chemical site (Figure 2.7) usually consists of a number of production 

and auxiliary processes. These processes require the supply of different utilities in 

order to carry out their functions. Such utilities are: 

* Process heating. Steam is usually the preferred heating medium because of 

its high specific heat content in the form of latent heat and superheat. High-

temperature processes, however, may require heating with hot oil or directly 

with flue gas in furnaces. 

* Process cooling. This is performed by using cooling water, ambient air, or 

refrigerants. 

* Power demands. These arise from the need for driving process equipment       

–such as pumps, compressors, mills, etc. and also lighting and electric 

heating (where high accuracy and responsiveness are required).– 

* Water supply and disposal. It includes mainly the supply of freshwater               

–usually treated water to satisfy the water quality requirements– as well as 

the water treatment, recycling, and disposal. 

 

The selection and design of the utilities is made more complex by the fact that 

the process will most likely operate within the context of a site comprising several 

different processes that are all connected to a common utility system. Thus, the 

design of the water and aqueous treatment system occurs at the last level.  

 

Level 7: Water System Design 

In the past, water has been assumed to be an unlimited low-cost resource. 

However, there is now increasing awareness of the danger to the environment caused 

by the overextraction of water. 
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Figure 2.7. Typical total site industry. 

 

Figure 2.8 shows a schematic of a simplified water system for a processing site. 

Raw water enters the process, it is used in various operations, it becomes 

contaminated and it is discharged to effluent. All of the effluents are mixed together 

with contaminated stormwater, and are treated centrally in a wastewater treatment 

system and discharged to the environment. 

 

Water consumption and wastewater generation can be reduced through reuse, 

regeneration reuse and regeneration recycling (Figure 2.9). 
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Figure 2.8. Typical water and effluent treatment system. 
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Figure 2.9. Water reuse and regeneration. (a) Fresh water used in all operations. (b) Water 

reuse. (c) Regeneration reuse. (d) Regeneration recycling. 

 

The capital cost of wastewater treatment operations is generally proportional to 

the total flow of water and the operating cost generally increases with decreasing 

concentration for a given mass of contaminant to be removed. Thus, if two streams 

require different treatment operations, it makes no sense to mix them and treat the 

two streams in both treatment operations. This will increase both capital and 

operating costs.  

Various primary, secondary and tertiary treatment processes are available to 

achieve the required discharge concentrations. Maximum water reuse can be 

identified from limiting water profiles. These identify the most contaminated water 

that is acceptable in an operation. A composite curve of the limiting water profiles 

can be used to target the minimum water flow rate. While this approach is adequate 

for simple problems, it has some severe limitations. A more mathematical approach 

using the optimization of a superstructure allows all of the complexities of multiple 

contaminants, constraints, enforced matches, capital and operating costs to be 

included. A review of this area can be found in Mann and Liu.43 

 

2.3.1.2. Methods Based on Mathematical Programming 

The methodology based on mathematical programming is focused on 

considering, through mathematical equations, the relations between the different 

subsystems and the process economic balance. This approach uses optimization 

techniques to select the configuration and parameters of the processing system.44-47 

Superstructures containing alternative processing units and their interconnections 

are modeled as optimization problems involving continuous and discrete (binary) 

variables. 
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The mathematical programming approach consists of three major steps. The 

first is the development of a representation of alternatives from which the optimal 

solution is selected. The second is the formulation of a mathematical program (see 

Eq.(2.4)) that generally involves discrete and continuous variables for the selection of 

the configuration and the operating levels, respectively. The third is the solution of 

the optimization model from which the optimal solution is determined. 

 
 
 

 

min ,
. .  , 0

       , 0

              0,1
mn

z f x y
s t h x y

g x y

x X y





  
 (2.4) 

where f (x,y) is the objective function, h (x,y) are the equations that describe the 

performance of the system and g (x,y) are inequalities that define the specifications 

or constraints for feasible choices. The variables x are continuous and generally 

correspond to the state or design variables, while y are the discrete variables, which 

generally are restricted to take 0-1 values to define the selection of an item or an action. 

Significant advances have taken place with this methodology, which offers the 

possibility of developing automated tools to support the exploration of alternatives 

and the optimization of chemical processes by design engineers.48 

Closely related to the selection of the superstructure is the selection of the level 

of detail of the optimization model. A common misconception about the 

mathematical programming approach is that the models are always detailed and 

require a lot of information. This, however, is not necessarily true. 

In general, mathematical programming models can be classified into three main 

classes: 

* Aggregated models: These refer to high-level representations in which the 

design or synthesis problem is greatly simplified by an aspect or objective 

that tends to dominate the problem at hand (for example, the LP 

transshipment model for predicting the minimum utility cost and the 

minimum number of units in heat exchanger networks49 and mass exchanger 

networks,50 and the set of heat integration constraints based on the pinch 

location method51,52). 

* Shortcut models: These refer to fairly detailed superstructures that involve 

cost optimization (investment and operating costs), but in which the 
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performance of the units is predicted with relatively simple nonlinear models 

in order to reduce the computational cost, and/or for exploiting the algebraic 

structure of the equations, especially for global optimization (for example, 

the synthesis models for heat exchanger networks,53,54 distillation 

sequences,55,56 and process flowsheets57,58). 

* Rigorous models: These also rely on detailed superstructures, but involve 

rigorous and complex models for predicting the performance of the units. 

The area of synthesis of distillation sequences (ideal and nonideal) is perhaps 

the one that has received the most attention for developing rigorous 

models.59-62 

 

2.3.1.3. Hybrid Methods 

The methods described above have some advantages and disadvantages if we 

compare them.63,64 However, these methods are considered to be competitive and 

complementary, because they are referred to different aspects of design. Therefore, 

the combination of the heuristic methods with the mathematical programming is the 

way followed in process synthesis. For example, Daichendt65 presented a model that 

combined mathematical programming and hierarchical decomposition to design 

large-scale chemical processes. A hybrid methodology that combined mathematical 

programming and thermodynamic aspects to design multi-column distillation 

systems was also proposed.66,67 

Several hybrid models have been developed and applied to different chemical 

processes, such as heat exchanger networks, distillation sequences, complex reactor 

networks, and water networks.68-71 

 

2.4. Mathematical Programming for the Synthesis of 
Chemical Processes 

The optimization of a chemical process is a complex procedure that can be 

described through a mathematical model. The mathematical models developed can 

include continuous and/or discrete variables, and are described by linear and/or 

nonlinear equations. Different mathematical formulations are established depending 

on the type of the equations and variables. These formulations are described below. 
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2.4.1. Linear Programming 

A linear programming problem can be defined as the problem of minimizing or 

maximizing a linear function (objective function) subject to linear constraints. The 

constraints can be equalities or inequalities.72 

Linear programming (LP) problems can be expressed by the following equation 

(Eq.(2.5)). 

min  (  max)  
. .   

       0




Tor c x
s t A x b

x
 (2.5) 

where A is a rectangular matrix (m x n ) of known coefficients, x is a column vector of 

variables to solve of dimension n, b is a column vector of known coefficients of 

dimension m, and c is a column vector of known coefficients of dimension n. The 

expression cTx is the objective function, and the constraints A x  b form the feasible 

region. 

Linear programming problems can be solved by means of two different 

techniques: the simplex method and the interior-point method. The simplex 

method72,73 solves linear programs by moving along the boundaries from one vertex 

(extreme point) to the next. The interior-point algorithm74,75 improves a feasible 

interior solution point of the linear program by steps through the interior. 

Linear programming problems vary from small to large scale. In fact, linear 

programming models can be very large in practice; some have many thousands of 

constraints and variables. They are used to solve planning, scheduling, and design 

problems. 

 

2.4.2. Nonlinear Programming 

A nonlinear programming (NLP) program is similar to an LP program, since it 

involves minimizing or maximizing an objective function subject to constraints. The 

difference is that a nonlinear program includes at least one nonlinear function, which 

could be the objective function or some or all of the constraints. Many real systems 

are inherently nonlinear, so it is important that the optimization algorithms are able 

to handle them. 
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 Nonlinear programming problems can be generally expressed by the following 

equation (Eq.(2.6)). 

 
 
 

min  (  max)   
. .  0

       0

       n

or f x
s t h x

g x

x X




 
 (2.6) 

where x is an n vector of continuous variables, f (x) refers to the objective function,     

h (x) is the set of equality equations defining the process and g (x) is a set of inequality 

constraint functions added to the problem. 

Nonlinear programming problems can be convex or nonconvex (see Figure 2.10). 

A set of points (or a region) is defined as a convex set in the n-dimensional space if, 

for all pairs of points x1 and x2 in the set, the straight line segment joining them is also 

entirely in the set.  

     

Figure 2.10. Example of (a) convex and (b) nonconvex sets. 

An important feature of this type of problems is that global optimal solutions 

can be guaranteed for the case where the problem is convex, i.e., the objective 

function is convex and the constraints form a convex set (the inequality constraints 

are nonlinear convex functions, and the equalities are linear). 

It is not possible to prove that a given algorithm will find the global optimum of 

a nonlinear programming problem unless the problem is convex. For nonconvex 

problems, however, many algorithms find at least a local optimum. Due to the 

nonconvex functions, the problem might be infeasible. Therefore, nonlinear 

programming problems are generally hard to solve. 

The two major methods for solving NLP problems are: the successive quadratic 

programming (SQP) algorithm76,77 and the reduced gradient method.78,79 However, 

growing interest in efficient optimization methods has led to the development of 

interior-point or barrier methods for large-scale nonlinear programming. In 

particular, these methods provide an attractive alternative to active set strategies in 

handling problems with large numbers of inequality constraints.80 

a b 
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In the case of the SQP algorithm, the basic idea is to solve in each iteration a 

quadratic programming subproblem of the form: 

 
   
   

1
min  

2
. .  0

       0

Tk T k

Tk k

Tk k

f x d d B d

s t h x h x d

g x g x d

 

 

 

 
(2.7) 

where xk is the current point, Bk is the estimation of the Hessian matrix of the 

Lagrangian, and d is the predicted search direction. 

An important point about the SQP algorithm is the fact that the quadratic 

programming with the exact Hessian matrix of the Lagrangian in B can be shown to 

be equivalent to applying Newton’s method to the Karush-Kuhn-Tucker conditions. 

Thus, a fast convergence can be achieved with this algorithm. 

On the other hand, in the reduced gradient method, the basic idea is to solve a 

sequence of subproblems with linearized constraints, where the subproblems are 

solved by variable elimination. Reduced gradient methods are very effective in solving 

large nonlinear optimization problems. 

In addition, multiple solvers use the interior-point method for nonlinear 

programming, such as IPOPT and KNITRO. As a barrier method, IPOPT estimates 

solutions for a sequence of barrier problems. Then decreases the barrier parameter, 

and continues the solution of the next barrier problem from the approximate solution 

of the previous one. 

Several works can be found in the literature concerning nonlinear 

programming.81-83 

 

2.4.3. Mixed-Integer Linear Programming 

A large number of optimization models described by linear equations can 

contain continuous variables and a subset of variables that are restricted to integer 

values (most commonly to 0-1). The general form of the Mixed-Integer Linear 

Programming (MILP) problems is given by Eq.(2.8). 
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 
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. .    

       

       0,1

T T

n

m

or c x d y
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x X

y


 

 


  (2.8) 

where A and B are rectangular matrices of known coefficients, x is an n vector of 

continuous variables, y corresponds to a vector of m binary variables, b is a vector of 

known coefficients of dimension m, and c and d are vectors. 

The MILP problem is very useful for modeling a number of discrete decisions 

with the binary variables y. Typical examples are: multiple choice constraints, 

implication constraints, and disjunctive constraints. 

A large number of optimization problems can be described by MILP model. 

Examples include the optimization of production operations including planning and 

scheduling, optimization of supply chains involving logistics and distribution, 

multiple period optimization,84 and process synthesis using simplified models 

without nonlinearities.85 

The standard method for solving MILP problems is the Branch and Bound (B&B) 

method.86,87 For the MILP, we begin by first solving the relaxed LP problem. The 

problem stops when is solved, that is, when integer values are obtained for the binary 

variables. On the other hand, if no integer values are obtained, the basic idea is then 

to examine, using bounds, a subset of nodes in a binary tree to locate the global 

mixed-integer solution. In the tree, the binary variables are successively restricted 

one by one to 0-1 values at each node where the corresponding LP is solved. This can 

be done efficiently by updating the successive LPs through few dual simplex iterations. 

In Figure 2.11 is illustrated the branch and bound method. 

 

 
Figure 2.11. Branch and bound method. 
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However, B&B algorithms may not be able to effectively solve large problems 

due to the exponential number of subproblems that may have to be solved, 

particularly when the LP relaxation is poor. Therefore, MILP solvers have 

implemented more sophisticated versions denoted by Branch and Cut (B&C) 

algorithms, in which valid inequalities denoted by cutting planes are added to the 

linear relaxations in order to reduce the size of the feasible space without eliminating 

any feasible integer solution (see Figure 2.12). 

 

 

 

There are seven general approaches to enhance the solution of a MILP model: 

1. Alternative formulations. The goal is to develop a smaller and/or tighter 

model based on a different problem representation, different modeling 

techniques, or the (dis)aggregation of variables. 

2. Tightening and valid inequalities. A tighter LP relaxation of a given model can 

be achieved via the addition of valid inequalities and by bounding/fixing 

variables, both of which can be performed before or during the B&B search. 

3. Extended reformulation. They provide a tighter approximation of the convex 

hull of the integer feasible points, as do valid inequalities; however, 

reformulations typically rely on introducing new variables and replacing 

some starting constraints.88 

4. Decomposition methods. The idea is to decompose the original problem into 

smaller subproblems that can be solved much faster. There are two types: 

methods that exploit the mathematical structure of the model, for example, 

Bender’s decomposition89 and Lagrangean relaxation/decomposition,90 and 

objective
cutting planes

feasible
solutions

optimum of 
LP relaxation

IP optimum

Figure 2.12. Cutting plane method. 
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methods that exploit the physical structure of the problem, for example, 

decomposition into assignment and sequencing subproblems. 

5. Algorithmic enhancements. They are typically improvements of the basic 

algorithm, including automatic generation of valid inequalities, advanced 

search strategies, preprocessing techniques using domain knowledge, and 

problem-specific heuristics.91,92 

6. Hybrid methods. The idea is to combine MILP with another solution method 

that has complementary strengths. They are typically based on a 

decomposition of the original problem into two subproblems, one solved 

using MILP methods and one solved using a method like constraint 

programming.93 

7. Parallel computing. The goal is to design methods that harness parallel 

computational resources, including enhancements that will allow the 

parallel implementation of the basic B&B algorithm.94 Decomposition 

approaches are also likely to benefit from parallelization. 

Real world problems tend to be large and complex. However, it is clear that in 

the recent years truly remarkable progress has been made in the solution of MILP 

problems.95-98 The ability to solve more complex problems has been supported by: 

a) Advances of computational resources in terms of speed and memory, leading 

to faster calculations. 

b) Developments of new and improved algorithms and preprocessing 

techniques. 

c) Modeling systems that speed up the definition of problems. 

Some of the powerful commercial solvers are CPLEX,99 Gurobi,100 and XPRESS-

MP.101 Probably the solver CPLEX is currently the most used because it has available a 

set of different solvers, tools, and interfaces for different languages and software. 

 

2.4.4. Mixed-Integer Nonlinear Programming 

Mixed-Integer Nonlinear Programming (MINLP) programs involve nonlinear 

functions, and continuous and integer variables. An MINLP problem can be generally 

expressed by Eq.(2.9). 
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where f , h, and g are assumed to be convex and differentiable functions, x is an n 

vector of continuous variables, y corresponds to a vector of m binary variables, b is a 

vector of known coefficients of dimension m, and c and d are vectors of known 

coefficients of dimension n. 

Many process systems engineering applications are modeled using MINLP: 

process synthesis,102 planning and scheduling,103 process control,104 and molecular 

computing,105 among others. MINLP programs can be solved with the branch and 

bound method. An important drawback of the branch and bound method for MINLP 

is that solving the NLP subproblems can be costly since they cannot be easily updated 

as in the case of the MILP. Therefore, in order to reduce the computational cost 

involved in solving many NLP subproblems, several techniques can be used, such as 

the Outer-Approximation method,51,106 the Generalized Benders decomposition,82,107 

the extended cutting plane algorithm or the LP/NLP based Branch and Bound. 

 

2.4.4.1. Outer-Approximation 

In the Outer-Approximation (OA) algorithm, the resolution of the problem is 

made through an iterative sequence of NLP subproblems and master MILP 

subproblems. NLP subproblems, with fixed values of the integer variables, provide the 

upper bound of the problem, while the master problems provide the lower bound. 

Algorithm convergence is achieved when both boundaries –lower and upper– differ 

by a value less than an established tolerance. 

 

2.4.4.2. Generalized Benders Decomposition 

Generalized Benders decomposition (GBD) is similar to OA method, but they 

differ in the linear master problem. In particular, the master problem of the GBD only 
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considers the discrete variables and the active inequalities. This fact makes the 

computational cost required for the resolution of the master problem is less than the 

time required when using OA. On the other hand, the lower bounds predicted in the 

relaxed problem are less than or equal to those obtained using OA. Additionally, this 

fact is responsible for the greater number of iterations required to solve the problem, 

compared to the OA method. 

 

2.4.4.3. Extended Cutting Plane 

The Extended Cutting Plane (ECP) method108-110 follows a similar concept as the 

OA, but it avoids solving NLP subproblems. In this method, at a given solution of the 

master MILP, all the constraints are linearized. A subset of the most violated 

linearized constraints is then added to the master problem. Convergence is achieved 

when the maximum violation lies within the specified tolerance. The algorithm 

provides a non-decreasing lower bound after each iteration. 

The main strength of the method is that it relies solely on the solution of MILPs, 

for which powerful algorithms are readily available. Similarly to the OA method, it 

solves the problem in one iteration if the equations are linear. There are two main 

downsides in the algorithm. The first one is that convergence can be slow.111 The 

second one is that the algorithm does not provide an upper bound (or feasible 

solution) until it converges. 

 

2.4.4.4. LP/NLP Based Branch and Bound 

The LP/NLP based branch and bound method112 is a single tree search, that can 

be considered as a hybrid algorithm between B&B and OA. The algorithm is first 

initialized in a similar manner as the OA. When an integer solution is found, an NLP 

problem is solved and all open nodes in the search tree are updated. 

This method, compared to the OA, generally reduces the number of evaluated 

nodes, but increases the number of NLPs solved. Recent work shows that the use of 

modern MILP solvers and advanced MILP tools greatly improve the performance of 

this method.113 The extension of this method to GBD and ECP is straightforward. 
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2.4.5. Generalized Disjunctive Programming 

Generalized Disjunctive Programming (GDP) is an alternative approach to the 

traditional algebraic mixed-integer programming formulation, which involves 

algebraic constraints, logic disjunctions, and logic propositions.58,114-119  

Starting from the disjunctive programming proposed by Balas,114 Raman and 

Grossmann119 developed an alternative formulation for the process synthesis, which 

not only facilitates the development of the models by making the formulation process 

intuitive, but it also maintains in the model the underlying logic structure of the 

problem that can be exploited to find the solution more efficiently. Process Design120 

and Planning and Scheduling97 are some of the areas where GDP formulations have 

shown to be successful. 

The general structure of a GDP can be represented as shown in Eq.(2.10). 
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(2.10) 

where f  is a function of the continuous variables x in the objective function, and g is 

the set of global constraints. The disjunctions k K are composed of a number of 

terms i Dk that are connected by the ‘OR’ operator. The main characteristic of the 

disjunction is that if Yik is true, then its constraints are enforced to be rik (x)  0 and    

ck = ik. Otherwise, they are ignored. 

 

2.4.5.1. Solution Methods for Solving GDPs 

Different methods have been developed in order to directly solve GDP problems. 

Solution methods for solving GDPs can be classified into two different categories: 

direct solution methods and reformulation methods. A simplified scheme of the 

different GDP solution alternatives is presented in Figure 2.13. 
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Figure 2.13. GDP solution alternatives. 

Specifically, two solution methods are commonly used, the Branch and Bound 

method,121 and the Logic-Based Outer-Approximation method.58  

The basic idea in the Branch and Bound method is to directly branch on the 

constraints corresponding to particular terms in the disjunctions, while considering 

the convex hull of the remaining disjunctions. Although the tightness of the 

relaxation at each node is comparable with the one obtained when solving the convex 

hull reformulation with an MINLP solver, the size of the problems solved are smaller 

and the numerical robustness is improved.  

For the case of Logic-Based Outer-Approximation methods, the main idea is to 

solve iteratively a master problem given by a linear GDP, which will give a lower 

bound of the solution and an NLP subproblem that will give an upper bound. 

In order to take advantage of the existing MINLP solvers, GDPs are often 

reformulated as an MINLP by using either the Big-M reformulation87 or the Convex 

hull formulation.121 In these reformulations, the disjunctive constraints are expressed 

in terms of algebraic equations and the propositional logic is expressed in terms of 

linear equations. 

The Big-M reformulation is shown in Eq.(2.11). 
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where the variable yik has a one to one correspondence with the Boolean variable Yik. 

Note that when yik = 0 and the parameter M is sufficiently large, the associated 

constraint becomes redundant; otherwise, it is enforced. Also, Ay  a is the 

reformulation of the logic constraints in the discrete space. 

The Convex hull formulation yields as follows: 
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(2.12) 

Note that the size of the problem is increased by introducing a new set of 

disaggregated variables  ik and new constraints. On the other hand, the Convex hull 

formulation is generally tighter than the Big-M reformulation when the discrete 

domain is relaxed.122,123 This behavior is illustrated in Figure 2.14. 

 

 

 

2.5. Surrogate Models 
The simulation-based optimization of chemical processes using commercial 

simulators, in many cases, is impractical. One reason is that the objective functions 

coming from computer simulations are often analytically intractable due to 

discontinuities, non-differentiabilities, and inherent numerical noise. Another 

a b 

Figure 2.14. Solution to the relaxed problem using: (a) the Convex hull formulation, and 

(b) the Big-M reformulation. 
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reason, and in many cases even more important, is the high computational time (in 

some cases, the simulation time can be as long as several hours, days, or even weeks 

per single design). Since conventional optimization algorithms require tens, 

hundreds or even thousands of objective function calls per run (depending on the 

number of design variables), the computational cost of the whole optimization 

process may not be acceptable. The feasible handling of these unmanageable 

functions can be accomplished using surrogate models. 

 

2.5.1. Introduction to Surrogate-Based Methods 

Surrogate-based optimization124,125 has been suggested as an effective approach 

to the design with time-consuming computer models. The basic concept of surrogate-

based optimization is that an iterative process involving the creation, optimization, 

and updating of a fast and analytically tractable surrogate model replaces the direct 

optimization of the computationally expensive model. The design obtained through 

the optimization of the surrogate model is verified by the evaluation of the high-

fidelity model. Because most of the operations are performed on the surrogate model, 

surrogate-based optimization reduces the computational cost of the optimization 

process compared to the optimization of the high-fidelity model directly, without 

resorting to any surrogate. 

For optimization problems, surrogate models are considered good approximation 

models of the simulation models, which are built from sampled data obtained by 

sampling the design space using appropriate design of experiments methodologies.125 

A key issue for building accurate surrogate models is based on the strategy followed 

to distribute the sample data. 

Additionally, once the surrogate model is built, the accuracy of the metamodel 

must be evaluated. 

 

2.5.2. Design of Experiments 

To build a surrogate model, design of experiments (DoE)126-128 methods are 

generally used to determine the locations of the sampling points in the design space. 

The objective of DoE is to maximize the amount of information obtained from a 

limited number of sampling points.126 
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When sampling, there is a clear tradeoff between the number of points used and 

the amount of information that can be extracted from these points. Samples are 

usually separated as much as possible in order to capture global trends in the design 

space. 

There are different DoE methods commonly used, such as Latin Hypercube 

Sampling,129,130 Orthogonal array design,125 Monte Carlo Sampling,126 or Hammersley.131 

In this thesis, the ‘maxmin’ approach has been used with the general goal of 

maximizing the minimum distance between two sampling points. 

 

2.5.2.1. Maxmin Approach 

The ‘maxmin’ approach is the technique used to distribute of a set of points in 

a domain, where the minimum distance between two points is maximized. 

The ‘maxmin’ problem is formulated as an NLP problem as follows (Eq.(2.13)): 

Consider the distribution of N points (i ) in a D-dimensional space (d ): 
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(2.13) 

To avoid maximizing the result of the ‘min’ operation that introduces non-

differentiabilities, the previous problem is reformulated by transferring the ‘min’ 

operation to the constraints and using the auxiliary variable . 
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 (2.14) 

Alternatively, it is possible to minimize the square of the distance without 

modifying the result, instead of minimizing the distance. The only modification 

proposed in Eq.(2.14) is to fix 2D points to the extremes of the interval to avoid 

extrapolations in the optimization near the ‘corners’ of the hypercube. 

The distribution of 40 sampling points using different techniques for a two-

dimensional problem is illustrated in Figure 2.15. 
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Figure 2.15. Distribution of 40 points: random distribution (left), uniform distribution 

(middle), ‘maxmin’ approach (right). 

 

2.5.3. Surrogate Modeling Techniques 

There are a large number of surrogate modeling techniques available in the 

literature. In this section, the most popular techniques are described. 

 

2.5.3.1. Polynomial Regression Models 

Polynomial regression125 is a form of linear regression in which the relationship 

between the independent variable x and the dependent variable f (x) is modeled as an 

nth degree polynomial in x. 

The simplest examples of regression models are the first- and the second-order 

polynomial models (Eq.(2.15) and Eq.(2.16), respectively). 
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2.5.3.2. Multivariate Adaptive Regression Splines 

Multivariate Adaptive Regression Splines (MARS) is an implementation of 

techniques for solving regression-type problems, with the main purpose of predicting 

the values of a continuous dependent variable from a set of independent variables.132 
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MARS is a nonparametric statistical method based on the strategy of dividing 

and conquering in which the training data sets are divided into separate piecewise 

linear segments (splines) of differing gradients (slope). 

The general MARS model equation is given in Eq.(2.17).133 
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where f (x) is predicted as a function of the predictor variables x, 0 and j are 

parameters, and hj (x) are basis functions. 

 

2.5.3.3. Radial Basis Functions 

Radial basis function approximation134,135 exploits linear combinations of n 

radially symmetric functions . 
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where i are the ith unknown weight coefficient,  ix x   are the basis functions 

that depend on the Euclidean distance between the observed point xi and the untried 

point x, and p (x) is the global trend function which is taken as a constant. 

 

2.5.3.4. Kriging 

Kriging136 is an interpolation method that takes into account the data observed 

at all sampling points. Kriging provides a statistical prediction of an unknown 

function by minimizing its mean squared error. It can be equivalent to any order of 

polynomials and, therefore, it is very suitable for a highly nonlinear function with 

multiple extremes. 

The Kriging fitting is composed of a polynomial expression and a deviation from 

that polynomial. 

      y x f x Z x  (2.19) 

where Z (x) is a stochastic Gaussian process that represents the uncertainty over the 

mean of y (x) with expected value zero. The covariance for two points xi and xj is 
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given by a scale factor  2 that can be fitted to the data and by a spatial correlation 

function R (xi, xj). The choice of the spatial correlation function will determine how the 

model fits the data. There are many choices for the spatial correlation function, but 

the most common one used in Kriging models is the exponential function given by 

Eq.(2.20).137 

      , , , ,
1 1

, exp exp
l l

dd
P P

i j l i l j l l i l j l
l l

R x x x x x x 
 

 
      

 
   (2.20) 

where  l ≥ 0 and 0 ≤ Pl ≤ 2 are adjustable parameters. 

The influence of the sampled data points on the point to be predicted becomes 

weaker as their distance increases. The value of  l indicates how fast the correlation 

goes to zero as we move in an lth coordinate direction. The parameter Pl determines 

the smoothness of the function which is usually fixed to 2 (Gaussian Kriging) in all 

the coordinates. 

An important advantage of Kriging models is that the degree of the polynomial 

f (x) does not significantly affect the fit quality because Z (x) captures the most 

significant behavior of the function.138 A constant term µ (Ordinary Kriging) is enough 

for a good prediction.139,140 

To estimate the values of the parameters  2,  l , Pl , and µ, we maximize the 

logarithm of the likelihood function of the obtained data y. 
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 (2.21) 

where y is the vector of obtained responses (n x 1), 1 is a vector of ones (n x 1) and      

n is the number of sampled points. 

Differentiating Eq.(2.21) with respect to µ and  2 and equating it to zero, the 

optimal values for µ and  2 are obtained after some algebra. 
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To interpolate a new point xnew, we have to add the point (xnew, ynew) to the data 

and compute the augmented likelihood function keeping all the parameters at the 

previously calculated values. With all the parameters constant, the log-likelihood 

function is only a function of ynew. Consequently, the predicted value for ynew will be 

the value that maximizes the augmented likelihood function. The final predictor of 

the Kriging method is given by Eq.(2.24). 

     1 1T
newy x r R y     (2.24) 

where r (n x 1) is the vector of correlations R (xnew, xi) between the sample design points 

and the point to be correlated. 

Kriging has proven to be useful in a wide variety of fields.134,140,141 The main 

reason is that Kriging metamodels combine computational efficiency with relatively 

small sampling data. Due to these characteristics, the Kriging algorithm has been 

selected to build the metamodels in the studies carried out in this Thesis. 

 

2.5.3.5. Artificial Neural Networks 

Artificial Neural Networks (ANNs) model is based on a large collection of simple 

neural units (artificial neurons), loosely analogous to the observed behavior of a 

biological brain’s axons. 

The basic structure of a neural network142 is the neuron. A neuron performs an 

affine transformation followed by a nonlinear operation (see Figure 2.16a). If the 

inputs to a neuron are denoted as x1, …, xn, the neuron output y is computed as shown 

in Eq.(2.25). 

   
1

1 exp /
f x

T


 
 (2.25) 

where  = w1 x1 + … + wn xn + , with w1, …, wn being regression coefficients.  is the 

bias value of a neuron, and T is a user-defined (slope) parameter. 

The most common neural network architecture is the multilayer feed-forward 

network (see Figure 2.16b). 
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Figure 2.16. Neural networks: (a) Neuron basic structure. (b) Two-layer feed-forward neural 

network architecture. 

 

2.5.4. Model Validation 

The last step in the construction of the surrogate model is the validation stage. 

The approach followed to validate the accuracy of the model is the “cross-

validation”.125,139 

Cross-validation is an extremely popular methodology to verify the predictive 

capabilities of a model generated from a set of samples. In the cross-validation 

approach, a point is removed and its value is re-evaluated with the rest of the points. 

This procedure is repeated with all the sampling points. 

Additionally, the model allows us to estimate the prediction error with all the 

error measures obtained in this process. 

 

2.6. Heat Integration 

In industrial processes, the need to heat or cool down fluids frequently appears. 

When a process has a certain number of process streams that should be heated or 

cooled, the idea of taking advantage of the process streams to heat other streams 

arises, attempting to minimize heat and cold utilities and, at the same time, 

minimizing capital and operating costs. The configuration of the process streams 

exchanging heat and the configuration of which equipment should exchange heat is 

known as heat exchanger network. 

Due to its importance, the synthesis of heat exchanger networks is one of the 

most studied areas of process synthesis and, consequently, it presents a greater 

degree of development. 
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In the following sections, the most important aspects of the heat integration will 

be developed. 

 

2.6.1. Fundamentals of Pinch Analysis 

The pinch analysis is a systematic technique to analyze the heat flow through 

an industrial process based on fundamental thermodynamics.143 The Second Law of 

Thermodynamics requires that the heat flows naturally from hot to cold objects. This 

key concept is embodied in the hot and cold composite curves (Figure 2.17), which 

represents the overall heat released and heat demanded of a process as a function of 

temperature. 

 

Figure 2.17. Example of composite curves. 

 

The hot composite curve represents the sum of all the heat sources (hot streams) 

within the process in terms of heat load and temperature level. Similarly, the cold 

composite curve represents the sum of all the heat sinks (cold streams) within the 

process. When these curves are placed together on a single temperature-enthalpy 

diagram (as in Figure 2.17), it is evident that heat can be recovered within the process 

wherever there is a portion of the hot composite curve above a portion of the cold 

composite curve; that is, heat can flow from a higher temperature part of the process 

to a lower temperature part. To keep the size of the heat recovery equipment 

reasonable, the temperature difference (approach) must be larger than a defined 

minimum allowable temperature approach, Tmin. 
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Most of the processes display a pinch –a region where the vertical separation of 

the curves approaches and eventually reaches the Tmin value–. The pinch divides the 

process into two different regions: 

* Above the pinch, some heat integration is possible (where the hot composite 

curve sits above the cold composite curve), but there is a net heat deficit and 

an external utility heat source (Qh) is required. 

* Below the pinch, some heat integration is possible (where the hot composite 

curve sits above the cold composite curve), but there is a net heat surplus and 

an external utility heat sink (Qc) is required. 

The distinction between the net heat source and the net heat sink regions is a 

key feature of the pinch approach, and it forms the basis for the pinch principle: “Do 

not transfer heat across the pinch”. 

Pinch analysis is commonly used to improve heat integration schemes in new 

process designs, to reduce either capital cost or energy demand, or both.144  

 

2.6.2. Heat Exchanger Networks 

The heat exchanger network synthesis problem is one of the most studied 

problems in process synthesis and the development of cost-efficient heat exchanger 

networks has proven to be a challenging task. In the synthesis process, decisions 

about the level of heat recovery, as well as the network structure, size, and type of 

heat exchangers are made. A network resulting in the most economical overall 

solution when considering both utility costs and investment costs for all units of the 

energy recovery network is targeted. During the last three decades, a large number of 

methods have been proposed for the design task. These methods are thoroughly 

presented in the reviews by Gundersen and Naess145 and Furman and Sahinidis.146 

The general objective is to find out the structure of a heat exchanger network, 

which facilitates the task of cooling a given set of hot streams and heating a given set 

of cold streams to the desired levels with a minimum of investment and operating 

costs. Basically, there are two types of approaches to solving the synthesis problem 

of heat exchangers network:  

* Sequential methods. 

* Simultaneous methods. 
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2.6.2.1. Sequential Methods 

The sequential methods attempt to reduce the computational complexity of the 

problem by decomposing the main problem into subproblems, which are then solved 

sequentially.49,147-150 The subproblems are solved with the aim of obtaining: 

a) The minimum utility cost. 

b) The minimum number of exchanger units. 

c) The minimum capital cost of the network. 

The sequential synthesis does not guarantee the optimal design of a heat 

exchanger network with the minimum total cost, but it guarantees a valid heat 

exchanger network. 

 

2.6.2.2. Simultaneous Methods 

The simultaneous methods solve the problem without any decomposition. They 

make use of superstructures consisting of a variety of structural possibilities and 

optimize them to remove redundant features. The tradeoff between capital cost (fixed 

costs of heat exchanger units and area costs) and operating cost (hot and cold utility 

costs) is considered in a single rigorous optimization framework in the simultaneous 

design approach for heat exchanger networks.53,151-154 

The main drawback of the simultaneous heat exchanger network design 

approaches is the difficulty in solving these large size models. 

 

2.7. Environmental Impact Assessment 

Environmental impact assessment is a key aspect of many large-scale planning 

applications. It is a technique used to understand the potential environmental 

impacts associated with the manufacture of a product or an activity. 

The most commonly used technique to assess environmental impacts is the Life 

Cycle Assessment (LCA). This technique takes into account environmental aspects 

and potential impacts associated with all the stages of a product’s life from cradle to 

grave (i.e., supply of raw materials for the production of a product, the manufacturing 

of intermediates, and the final product, including packaging, transportation, 

distribution, use of the product and disposal of the product after use).155  
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Figure 2.18 shows all the stages of the life cycle of a product. 

 

Figure 2.18. Life cycle of a product (from cradle to grave). 

 

Specifically, an LCA can help to evaluate the potential impacts by:  

* Compiling an inventory of relevant energy and material inputs and 

environmental releases. 

* Evaluating the potential environmental impacts associated with identified 

inputs and releases. 

* Interpreting the results to help make a more informed decision about the 

human health and environmental impacts of products, processes, and 

activities. 

The procedures of the Life Cycle Assessment are part of the ISO 14000 

environmental management standards: in ISO 14040:2006156 and ISO 14044:2006.157 

 

2.7.1. Phases of an LCA 

According to the ISO 14040 and 14044 standards, a Life Cycle Assessment is 

carried out in four phases (see Figure 2.19): 

1. Goal and scope definition. 

2. Life Cycle Inventory (LCI). 

3. Life Cycle Impact Assessment (LCIA). 

4. Interpretation. 
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Figure 2.19. Phases of a life cycle assessment. 

 

2.7.1.1. Goal and Scope Definition 

The LCA starts with an explicit statement of the goal and scope of the study. 

Following the ISO standards, the goal and scope of an LCA should be clearly defined 

and consistent with the intended application. Some technical details that can be 

considered are:  

* The functional unit, which defines what precisely is being studied and 

quantifies the service delivered by the product system, providing a reference 

to which the inputs and outputs can be related. Additionally, the functional 

unit is an important basis that enables alternative goods, or services, to be 

compared and analyzed. 

* The system boundaries. 

* Any assumptions and limitations. 

* The allocation methods used to partition the environmental load of a process 

when several products or functions share the same process. 

* The impact categories chosen. 

The scoping determines which processes will be included, which environmental 

concerns will be considered, what economic or social good is provided by the products 

or services in question, resolves any technical issues and defines the audience for the 

LCA. 
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2.7.1.2. Life Cycle Inventory (LCI) 

The inventory provides information about all environmental inputs and outputs 

from the product system involved in the Life Cycle Assessment. This involves 

modeling of the product system, data collection, and verification of data for inputs 

and outputs for all parts of the product system. Inputs include: inputs of water, raw 

materials, energy, and chemicals. Outputs include: air emissions, releases to water, 

and solid waste.  

 

2.7.1.3. Life Cycle Impact Assessment (LCIA) 

The aim of this phase is the assessment of the significance of potential 

environmental impacts based on the LCI results. The Life Cycle Impact Assessment 

(LCIA) should include the following elements: 

* Selection of impact categories, category indicators, and characterization models. 

* Classification stage, where the inventory parameters are sorted and assigned 

to specific impact categories. 

* Impact measurement, where the categorized LCI flows are characterized, 

using one of many possible LCIA methodologies, into common equivalence 

units that are then summed to provide an overall impact category total. 

 

2.7.1.4. Interpretation 

Life cycle interpretation is a systematic technique to identify, quantify, check, 

and evaluate information from the results of the LCI and/or the LCIA. The results from 

the inventory analysis and impact assessment are summarized during the 

interpretation phase.  

The result of the interpretation phase is a set of conclusions and 

recommendations for the study. This phase should include: 

* Identification of significant issues based on the results of the LCI and LCIA of 

a Life Cycle Assessment. 

* Evaluation of the study considering completeness, sensitivity, and 

consistency checks. 

* Conclusions, limitations, and recommendations. 
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2.7.2. ReCiPe Indicator 

The indicator used in this Thesis for Life Cycle Impact Assessment (LCIA) has 

been the ReCiPe 2008. 

ReCiPe 2008 comprises two sets of impact categories with associated sets of 

characterization factors.158 Eighteen impact categories are addressed at the midpoint 

level: 

* Climate change (CC). 

* Ozone depletion (OD). 

* Terrestrial acidification (TA). 

* Freshwater eutrophication (FE). 

* Marine eutrophication (ME). 

* Human toxicity (HT). 

* Photochemical oxidant formation (POF). 

* Particulate matter formation (PMF). 

* Terrestrial ecotoxicity (TET). 

* Freshwater ecotoxicity (FET). 

* Marine ecotoxicity (MET). 

* Ionizing radiation (IR). 

* Agricultural land occupation (ALO). 

* Urban land occupation (ULO). 

* Natural land transformation (NLT). 

* Water depletion (WD). 

* Mineral resource depletion (MRD). 

* Fossil fuel depletion (FD). 

At the endpoint level, most of these midpoint impact categories are converted 

and aggregated into the following three endpoint categories: 

* Damage to human health (HH). 

* Damage to ecosystem diversity (ED). 

* Damage to resource availability (RA). 

Figure 2.20 illustrates the relations between the LCI parameter, the midpoint 

indicator, and the endpoint indicator. 
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Figure 2.20. Relationship between LCI parameters (left), midpoint indicator (middle), and 

endpoint indicator (right) in ReCiPe 2008. 

 

The method follows three versions using the Tompson’s theory of cultural 

perspectives.159 According to this theory, consistent sets of subjective choices on time 

horizon, assumed manageability, etc. can be grouped around three perspectives: 

* Individualist (I): short-term perspective. 

* Hierarchist (H): balance between short and long-term perspective. 

* Egalitarian (E): very long-term perspective. 
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Different studies have been developed throughout the present Thesis in order to 

achieve all the objectives established at the beginning of the work. In this chapter, 

the results of this Thesis are presented. These results correspond to four articles 

published in different international journals of high-impact factor and one paper that 

has been submitted and is under review in another of these journals. 
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3.1. Publication 1. Rigorous Design of Distillation 
Columns Using Surrogate Models Based on Kriging 
Interpolation 

Distillation has been, and probably will continue to be, the most important 

technique in the chemical industry. In fact, almost 90 % of recovery and purification 

operations are distillation processes. The main problem of distillation is the high cost 

of this unit operation, since approximately 3 % of the energy consumed globally is 

due to distillation processes. Therefore, a reduction of energy consumption of the 

chemical processes will have a huge impact on the world energy demand and, in 

addition, this reduction will contribute to decreasing the environmental impact. 

Additionally, the rigorous design of a distillation column is an arduous problem 

in chemical process engineering, since it involves the simultaneous optimization of 

continuous decisions related to operating conditions and discrete decisions related to 

the number of trays in each column section. In the case of column sequences, the 

design includes decisions related to column connectivity. 

Consequently, there is a growing interest in the design and optimization of 

chemical processes. Mathematical models allow us to solve such problems, and the 

use of software is an essential tool for solving complex mathematical models. For this 

reason, the demand for computationally efficient process models in many 

engineering applications has been increasing in recent years.  

In general, most of the process models have a modular structure to which users 

have limited internal access and, furthermore, some of these models need a 

noteworthy CPU time and their derivatives cannot be accurately estimated due to the 

generation of numerical noise. 

On the other hand, the design of distillation columns or distillation sequences 

is a difficult problem that has been dealt with superstructure approaches. However, 

these methods have not been widely used because they lead to mixed-integer 

nonlinear programs, which are hard to solve and involve initialization procedures of 

high complexity. To solve this problem, there is a growing trend towards the 

integration of optimization models with surrogate models because they are 

computationally efficient and, at the same time, they ensure an acceptable degree of 

accuracy. 
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Surrogate models can be used at different levels: substituting the complete 

model, replacing some components, or developing a local approach to the whole 

model followed by any trust region algorithm.   

In this paper, we propose the replacement of distillation columns or complex 

sequences by surrogate models. For this study, surrogate models are based on Kriging 

interpolation and they are generated through rigorous distillation models. We focus 

on Kriging metamodels because they combine computational efficiency with 

relatively small sampling data. 

Examples of different complexity were performed in order to study and verify the 

effectiveness of the method. All examples were simulated using Aspen HYSYS v.7.3 and 

solved using state-of-the-art optimizers (CONOPT and SNOPT) available in TOMLAB-

MATLAB. The Kriging surrogate models were calibrated using MATLAB. 

In all the cases studied, the results show that it is possible to obtain accurate 

surrogate models, with errors below 5 %. It is proved that the error increases slightly 

as the number of independent variables increases. However, this strategy provides 

excellent results compared to the results obtained with the simulator. 

In conclusion, surrogate models allow us to simulate the behavior of the 

distillation columns and they allow us to perform a fast and reliable optimization of 

industrial processes. 
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Abstract 

The economic design of a distillation column or 

distillation sequences is a challenging problem that 

has been addressed by superstructure approaches. 

However, these methods have not been widely used 

because they lead to mixed-integer nonlinear 

programs that are hard to solve and require complex 

initialization procedures. In this article, we propose 

to address this challenging problem by substituting 

the distillation columns by Kriging-based surrogate 

models generated via state-of-the-art distillation 

models. We study different columns with increasing 

difficulty and show that it is possible to get accurate 

Kriging-based surrogate models. The optimization 

strategy ensures that convergence to a local 

optimum is guaranteed for numerical noise-free 

models. For distillation columns (slightly noisy 

systems), Karush-Kuhn-Tucker optimality conditions 

cannot be tested directly on the actual model, but 

still, we can guarantee a local minimum in a trust 

region of the surrogate model that contains the 

actual local minimum. 
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3.2. Publication 2. Large Scale Optimization of a 
Sour Water Stripping Plant Using Surrogate Models 

The simulation of a chemical process can incorporate a large number of linear 

and nonlinear equations. Even a small chemical process can include thousands of 

variables and equations. In some cases, it is possible to write and solve the complete 

set of equations by using an appropriate modeling system. Nevertheless, the more 

complex the model, the more difficult the convergence will be. Therefore, it is 

possible to use a modular approach to calculate the model, instead of solving all the 

equations simultaneously. 

Surrogate models have recently been proposed as an alternative to modular 

process models because they are computationally efficient and they guarantee a 

satisfactory degree of accuracy. Surrogate models combine mathematical functions, 

based on data generated from the simulation, to approximate the input-output 

relationship of the simulation. While the original simulation model could be hard to 

solve, noisy or time-consuming, the metamodel is relatively easy to solve and noise-

free. 

On the other hand, the increasing energy global demand and the strict standards 

that regulate carbon dioxide emissions in order to mitigate the greenhouse effect and 

its consequences are the main reasons for developing techniques for the efficient and 

sustainable energy use. The most effective method to reduce energy consumption, 

and thus to reduce costs, is the use of energy from process streams through thermal 

integration between cooling and heating systems. Additionally, the reduction of 

energy consumption can achieve the minimization of environmental impacts. 

In this paper, a large-scale sour water stripping plant is optimized. The objective 

of the sour water treatment is to remove sulfides and ammonia from water that 

comes from a petrochemical complex.  

For this purpose, a hybrid approach was followed in which only some parts of 

the plant (those that could introduce numerical problems in the optimization) are 

substituted by surrogate models, some units are maintained in the process simulator 

(those that do not introduce numerical noise), and the equations related to heat 

integration and Life Cycle Assessment (LCA) are defined in terms of explicit 

equations. 
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In this work, Kriging interpolation is used to build the metamodels because they 

combine relatively small sampling data with computational efficiency. In order to 

build accurate Kriging models, a good distribution of sampling points is required. The 

‘maxmin’ approach was selected to distribute the sampling data. Furthermore, an 

analysis based on feasibility and degrees of freedom considerations was performed 

in order to aggregate some equipment into a single and more robust surrogate model. 

In this work, the optimization of the operating conditions of the sour water 

stripping plant is carried out first, evaluating the environmental performance 

through an LCA. Then, the heat integration concept is introduced, simultaneously 

optimizing the operating conditions and the heat integration, and analyzing the 

environmental impact. 

The models were simulated on Aspen HYSYS v.8.4 and the Kriging surrogate 

models were calibrated using MATLAB. As NLP solver, we use CONOPT available 

through TOMLAB-MATLAB. 

The disjunctive formulation of the Pinch Location Method proposed by 

Grossmann et al. was considered in order to perform the simultaneous optimization 

and heat integration of the process. The ReCiPe indicator was used to evaluate the 

environmental impacts. 

The results show that the heat integration reduces the economic performance 

of the process and, at the same time, it reduces the environmental impact. 

In conclusion, the difficulties related to the lack of convergence of some black 

box models, the relatively large CPU time to converge or the introduction of numerical 

noise can be overcome with the use of surrogate models. Even though the 

optimization cannot guarantee the global optimum due to the nonconvex character 

of the model, the procedure has demonstrated to be robust and reliable. 
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Abstract 

In this work, we propose a new methodology 

for the large-scale optimization and process 

integration of complex chemical processes that have 

been simulated using modular chemical process 

simulators. Units with significant numerical noise or 

large CPU times are substituted by surrogate models 

based on Kriging interpolation. Using a degree of 

freedom analysis, some of those units can be 

aggregated into a single unit to reduce the 

complexity of the resulting model. As a result, we 

solve a hybrid simulation-optimization model 

formed by units in the original flowsheet, Kriging 

models, and explicit equations. 

We present a case study for the optimization of 

a sour water stripping plant in which we 

simultaneously consider economics, heat integration 

and environmental impact using the ReCiPe 

indicator, which incorporates the recent advances 

made in Life Cycle Assessment (LCA). 

The optimization strategy guarantees the 

convergence to a local optimum inside the tolerance 

of the numerical noise. 
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Highlights  

* We develop an efficient multi-objective optimization method using 

surrogate models based on Kriging interpolation. 

* We solve a hybrid simulation-optimization model formed by units of the 

flowsheet with low numerical noise, Kriging models, and explicit equations. 

* The hybrid approach (Kriging models, simulation and explicit equations) has 

proved to be robust and reliable. 
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3.3. Publication 3. Hybrid Simulation-Equation Based 
Synthesis of Chemical Processes 

An important technique for the synthesis of chemical processes consists of 

superstructure optimization-based methods. This methodology takes into account 

the complete network, which is composed of all the unit operations, their 

connections, and other constraints. The solution of the mathematical model 

identifies which of the initial units and their connections are maintained in the 

optimal structure. These methods are used because they offer a simultaneous 

optimization of the superstructure and the operating conditions. However, 

superstructure optimization-based methods are complex to solve because the 

resulting model is a large-scale nonconvex mixed-integer nonlinear problem. 

A difficult problem occurs when a sequential-modular process simulator is used 

as a black box to describe the behavior of the system; the presence of numerical noisy 

unit operations. 

In this work, this problem is addressed by combining process simulators and 

surrogate models. The superstructure includes all the alternatives of interest of the 

process that we need to optimize and is implemented at the level of the process 

simulator. Surrogate models based on Kriging interpolation replace those unit 

operations that are inherently noisy and/or need a notable CPU time to converge. The 

units that do not introduce numerical noise are maintained in the process simulator. 

Thus, the final model is composed of Kriging surrogate models, unit operations 

maintained in the process simulator, and explicit equations. 

Several Kriging models are built, with a maximum of five independent variables. 

A sensitivity analysis is carried out to determine if some units need or not to be 

merged into a single metamodel. Furthermore, an efficient distribution of the training 

points is required in order to build robust and accurate surrogate models. An a priori 

infill procedure, the ‘maxmin’ approach, has been used to achieve a good distribution. 

To illustrate the proposed approach, the optimization of the well-known vinyl 

chloride monomer (VCM) production process is performed. The VCM superstructure 

considered is divided into three sections: direct chlorination, oxychlorination, and 

pyrolysis. The main objective is to determine the best flowsheet topology to maximize 

the profit of the process. 
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The vinyl chloride monomer production process is simulated in Aspen HYSYS 

v.8.4 and the surrogate models are built in MATLAB from training data sets obtained 

from the process simulator. Additionally, the equations related to capital and 

operating costs are implemented as explicit equations. The final model, objective 

function, constraints, and surrogate models are written in a proprietary modeling 

language interfaced with TOMLAB-MATLAB, which connects MATLAB with Aspen 

HYSYS to optimize the process. 

Heat integration is the most effective technique to reduce the costs of a process, 

which is achieved through the thermal integration between heating and cooling 

systems. Therefore, in order to improve the energy efficiency of the plant, the heat 

exchanger network of the VCM process is designed. The results show that utility 

requirements are considerably decreased in the heat integrated process, which 

implies a reduction in the operating costs. 

In addition, the economic feasibility of the optimized VCM process is evaluated 

assuming uncertainty in the prices of raw material and products. The concept of 

financial risk is employed to analyze the risk of not meeting the profit target obtained 

in the optimal process. 
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A challenging problem in the synthesis and design 

of chemical processes consists of dealing with hybrid 

models involving process simulators and explicit 

constraints. Some unit operations in modular process 

simulators are slightly noisy or require large CPU times to 

converge. In this work, this problem is addressed by 

combining process simulators and surrogate models. We 

have replaced some unit operations, which cannot be 

used directly with a gradient-based optimization, by 

surrogate models based on Kriging interpolation. To 

increase the robustness of the resulting optimization 

model, we perform a degree of freedom analysis and 

aggregate (or disaggregate) parts of the model to reduce 

the number of independent variables of the Kriging 

surrogate models (KSMs). Thus, the final model is 

composed of KSMs, unit operations (maintained in the 

process simulator) and also explicit equations. 

The optimization of the well-known vinyl chloride 

monomer (VCM) production process is performed to test 

the proposed approach. The effect of the heat integration 

is also studied. In addition, the economic feasibility of the 

optimized process is calculated assuming uncertainty in 

raw material and product prices. 
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Graphical Abstract 

 

 

 

 

 

Highlights  

* A methodology for the optimization of complex chemical processes is 

developed. 

* A hybrid model is solved (simulation units, Kriging models and explicit 

equations). 

* Optimization of VCM process is performed to show the performance of our 

approach. 

* This approach has proved to be robust and reliable to solve complex 

problems. 

* Additionally, heat integration and economic feasibility are studied. 
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3.4. Publication 4. A Novel Disjunctive Model for the 
Simultaneous Optimization and Heat Integration 

Energy consumption has a high influence on the total cost of a process. 

Consequently, heat integration is a key factor in determining the optimal design of a 

chemical process. Therefore, if the energy consumption and the energy losses are 

minimized, the economic benefits of a chemical plant will increase. 

The most important technique to reduce energy consumption is through the 

implementation of heat exchanger networks. The purpose is to determine the 

minimum utility requirements of a process, and identify the maximum possible grade 

of heat recovery as a function of the minimum temperature difference within the 

heat exchanger network. 

The most important methodology to minimize the energy consumption of a 

chemical process is based on the concept of Pinch Location Method. 

The objective of this work is to present a disjunctive reformulation of the Pinch 

Location Method. This work introduces a new disjunctive formulation for the 

simultaneous optimization and heat integration of systems with variable inlet and 

outlet stream temperatures. The proposed disjunctive model also considers the 

possibility of using different utilities. The starting point is the original compact 

formulation of the Pinch Location Method where the ‘max’ operators are modeled by 

means of a disjunction. 

Several examples of different complexity were presented to illustrate the 

performance of the novel approach. Examples include: fixed and variable stream 

temperatures; variable stream temperatures by simulating the behavior of the system 

through a penalty function; simultaneous process optimization and heat integration 

of a chemical process using a hybrid simulation-optimization approach (where the 

flowsheet is solved by a commercial process simulator and the heat integration model 

is included in form of equations); and variable stream temperatures using multiple 

utilities. 

Calculations of fixed and variable stream temperature problems were performed 

in GAMS. Calculations of the simultaneous process optimization and heat integration 

problem were carried out in TOMLAB-MATLAB and the simulations were performed 

on Aspen HYSYS v.8.4. 
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The results show that the new formulation is very competitive from the point of 

view of CPU time and includes fewer binary variables and equations than the best-

known disjunctive formulation (the disjunctive version developed by Grossmann et 

al.), although the number of total variables is slightly larger. The new model has also 

shown to have equal or lower relaxation gap than the Grossmann model, thus 

reducing computational time and numerical difficulties related to nonconvex 

approximations. 

One of the main features of the novel model is that it can be ‘added’ to any model 

with almost no modifications of the existing model, and consequently, its 

implementation is simple.  
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Abstract 

This paper introduces a new disjunctive 

formulation for the simultaneous optimization and 

heat integration of systems with variable inlet and 

outlet temperatures in process streams as well as 

the possibility of selecting and using different 

utilities. The starting point is the original compact 

formulation of the Pinch Location Method, however, 

instead of approximating the ‘maximum’ operator 

with smooth, but nonconvex functions, these 

operators are modeled by means of a disjunction. 

The new formulation has shown to have equal or 

lower relaxation gap than the best alternative 

reformulation, thus reducing computational time 

and numerical problems related to nonconvex 

approximations. 

Highlights 

* An alternative disjunctive model for simultaneous optimization and heat 

integration. 

* It allows the possibility of selecting and using different utilities. 

* The novel disjunctive reformulation has a good relaxation gap. 

* Examples with different complexity illustrate the performance of the novel 

approach. 
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3.5. Publication 5. Disjunctive Model for the 
Simultaneous Optimization and Heat Integration with 
Unclassified Streams and Area Estimation 

The total cost of a chemical process can be greatly influenced by energy 

consumption. Therefore, in order to increase the economic benefits of a chemical 

plant, the minimization of the energy consumption is a key factor in determining the 

optimal design of a chemical process. The most important technique to reduce energy 

consumption is through the implementation of heat exchanger networks.  

One of the major advances in chemical process engineering was the discovery 

that it is possible to calculate the least amount of hot and cold utilities required for a 

process without knowing the heat exchanger network. This advance motivated the 

introduction of the pinch concept and the pinch design method, for the design of heat 

exchanger networks (HEN). 

The most important methodology to minimize the energy consumption of a 

chemical process is based on the concept of pinch location method. From the 1970s 

to the present, hundreds of papers related to heat integration have been published. 

A common situation that appears when the temperatures are not fixed, 

particularly regarding on the optimization of superstructures, is that a priori it is not 

possible to decide if a process stream is a hot (it requires cooling) or a cold (it requires 

heating) stream. To illustrate this behavior, consider the outlet stream from one of 

two alternative reactors (A or B) which is sent to a separation unit. Initially, as shown 

in Figure 3.5.0, we cannot determine if the stream is a hot or cold stream before 

solving the model. 

 

 

300 ºC

?

500 ºC

400 ºC

450 ºC

A

B

Figure 3.5.0. Example of an unclassified process stream. 
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The objective of this work is to present a disjunctive reformulation of the Pinch 

Location Method, based on the formulation developed in Section 3.4. This work 

introduces a disjunctive formulation for the simultaneous optimization and heat 

integration of systems with unclassified process streams, variable inlet and outlet 

stream temperatures, variable flow rates, isothermal process streams, and multiple 

utilities.  

The proposed disjunctive model also presents an extension to allow the 

estimation of the area assuming vertical heat transfer. The model takes advantage of 

the disjunctive formulation of the ‘max’ operator to explicitly determine all the ‘kink’ 

points in the hot and cold balanced composite curves. The formulation uses an 

implicit ordering to determine adjacent points in the balanced composite curves for 

area estimation. 

Four case studies were presented to illustrate the performance of the proposed 

approach. The first three examples include a large number of process streams, and 

the fourth example introduces the area estimation and illustrates the effect of the 

preprocessing on the numerical behavior of the model. The calculations of the 

problems were performed in GAMS, using BARON as a solver. 

The results show that the new disjunctive model has excellent numerical 

performance, even in large-scale models. The proposed model has the advantage of 

reducing the number of equations and binary variables, which allows the reduction 

of CPU time when solving problems. 

In addition, the model has been extended to simultaneously estimate the area 

of the heat exchanger network, and consequently its investment cost. Although the 

performance of the model depends on the characteristics of the problem –how large 

are the bounds on the temperatures and the degree of overlap between those bounds–, 

it is possible to obtain good solutions with a relatively small gap for medium size 

problems. 
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Abstract 

In this paper, we propose a disjunctive 

formulation for the simultaneous chemical process 

optimization and heat integration with unclassified 

streams –streams that cannot be classified a priori as 

hot or cold streams and whose final classification 

depends on the process operating conditions–, 

variable inlet and outlet temperatures, variable flow 

rates, isothermal process streams, and the possibility 

of using different utilities. 

The paper also presents an extension to allow 

area estimation assuming vertical heat transfer. The 

model takes advantage of the disjunctive formulation 

of the ‘max’ operator to explicitly determine all the 

‘kink’ points on the hot and cold balanced composite 

curves and uses an implicit ordering for determining 

adjacent points in the balanced composite curves for 

area estimation. 

The numerical performance of the proposed 

approach is illustrated with four case studies. Results 

show that the novel disjunctive model of the pinch 

location method has excellent numerical performance, 

even in large-scale models. 
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Highlights 

* Disjunctive formulation for simultaneous optimization and heat integration. 

* It involves unclassified process streams with variable inlet/outlet 

temperatures. 

* Extension of the model to allow area estimation assuming vertical heat 

transfer. 

* Four examples illustrate the numerical performance of the proposed approach. 

* The disjunctive formulation has excellent numerical performance. 
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Chapter 4. 
Conclusions 

 

Taking into consideration the results presented in Chapter 3, the most important 

conclusions of this Doctoral Thesis are highlighted below. 

In order to achieve the first main objective of this Thesis, surrogate models have 

been studied and evaluated to facilitate and substantially improve the simulation- 

based optimization of chemical processes. 

* The strategy developed and presented in Publication 1 discusses how to solve 

the problems associated with the resolution of optimization models based on 

simulators. The basic idea is to replace the rigorously simulated models (of 

different configurations and column sequences) by surrogate models. In order 

to build the metamodels, the Kriging algorithm was selected, since this 

algorithm allows obtaining accurate surrogate models from small data sets. 

The results obtained with the Kriging metamodels are very close to those 

obtained when performing the rigorous simulation of the systems, presenting 

average errors below 5 %. The mean error increases slightly when the number 

of independent variables becomes greater, although it is possible to obtain 

accurate surrogate models with up to seven degrees of freedom. However, in all 

cases, the strategy followed provides excellent results compared to those 

obtained with the rigorous simulation. In conclusion, this technique allows 

replacing, in a fast and accurate way, the unit operations that might produce 

numerical problems during the optimization by surrogate models generated 

from rigorous models.   

* The objective of Publication 2 consists of the multiobjective optimization of a 

sour water treatment plant from an oil refinery. The objective function was 

simultaneously to minimize the operating costs of the process, the energy 

consumption and the environmental impact of the treatment plant. The 

presented procedure is based on the implementation of surrogate models in 

order to optimize large-scale processes based on simulators. Therefore, the 

strategy followed is to replace for surrogate models all those process units that 

can generate numerical problems during the optimization, keeping in the 
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simulator the remaining units that do not introduce numerical noise. In 

addition, the equations related to heat integration and the equations related to 

life cycle assessment are defined as explicit equations. 

The results obtained show that it is possible to use surrogate models to optimize 

this type of optimization problems. At the same time, the multiobjective 

optimization allows achieving great economic and energy savings. In addition, 

as a consequence of the multiobjective optimization, the reduction of the 

environmental impact can be significant, about 49 % with respect to the plant 

without optimizing. In conclusion, this technique allows replacing the unit 

operations that might produce numerical problems during the optimization by 

surrogate models generated from rigorous models, which makes it easy to 

optimize this type of problems in an accurate way.   

* In Publication 3, the optimization of a superstructure using surrogate models is 

proposed. All units that might produce numerical problems in the optimization 

are replaced by metamodels based on Kriging interpolation, in this case, both 

distillation columns and chemical reactors. Through the superstructure, all the 

alternatives of interest are proposed to produce the desired product. Once the 

plant is optimized, the heat exchanger network is generated and the financial 

risk of the plant is studied. 

The results obtained from this study show that surrogate models can also be 

employed to solve mixed-integer nonlinear programming problems. In 

addition, heat integration achieves significant energy and economic savings, 

with the consequent reduction of the environmental impact. The use of 

surrogate models in the simulation-based optimization of chemical processes 

is, in fact, highly satisfactory. This work is currently under review. 

 

Within the second general objective of this Thesis, an alternative methodology 

has been developed for the simultaneous optimization of chemical processes and 

heat integration. 

* In Publication 4, a new model is proposed to reduce the numerical difficulties 

associated with the use of the ‘max’ function. For this, a disjunction is applied 

directly to the operator. An important feature of the presented model is that a 

supplementary variable is used to reformulate the system, which is translated 

into a reduction in the number of binary variables and the number of equations. 
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This fact makes this model very competitive compared to the other models, 

obtaining better results both in calculation time and in the degree of relaxation 

of the problem. 

The results obtained show that the model developed is very competitive 

compared to the models proposed by Grossmann et al. and Navarro-Amorós et 

al. 

* Finally, Publication 5 extends the study carried out in the previous publication, 

considering that in a system there may be process streams that are not 

classified a priori as hot or cold streams. In addition, an extension of the model 

is presented to estimate the area of the heat exchanger network (and therefore, 

to estimate the costs) assuming vertical heat transfer. 

As in the previous publication, the presented model contains a smaller number 

of variables and equations that the other alternative reformulations. This fact 

makes the developed model very competitive compared to the other models. In 

addition, the results show that the new reformulation is robust and numerically 

efficient in large-scale problems. 

 



 



Conclusiones 
 

Considerando los resultados expuestos en el Capítulo 3, a continuación se 

destacan las conclusiones más relevantes de esta Tesis Doctoral. 

Dentro del primer objetivo general de la Tesis se han estudiado y evaluado los 

modelos surrogados para facilitar y mejorar sustancialmente la optimización de los 

procesos químicos basada en simuladores. 

* La estrategia desarrollada y presentada dentro de la Publicación 1 plantea cómo 

solventar los problemas asociados a la resolución de modelos de optimización 

basados en simuladores. La idea básica consiste en sustituir los modelos 

simulados rigurosamente (de distintas configuraciones y secuencias de 

columnas) por modelos surrogados. Para construir los metamodelos se empleó 

el algoritmo de Kriging, ya que este algoritmo permite obtener modelos 

surrogados precisos a partir de conjuntos de datos reducidos.  

Los resultados obtenidos con los modelos Kriging son muy próximos a los 

obtenidos al realizar la simulación rigurosa de los sistemas, presentando 

errores medios por debajo del 5 %. El error medio se incrementa ligeramente al 

aumentar el número de variables independientes, aunque es posible obtener 

modelos surrogados precisos con hasta siete grados de libertad. Sin embargo, 

en todos los casos, la estrategia seguida proporciona excelentes resultados 

comparados con los obtenidos con la simulación rigurosa. En conclusión, esta 

técnica permite sustituir, de forma rápida y precisa, operaciones unitarias que 

podrían producir problemas numéricos durante la optimización por modelos 

surrogados generados a partir de los modelos rigurosos. 

* El objetivo de la Publicación 2 consiste en la optimización multiobjetivo de una 

planta de tratamiento de aguas provenientes de una refinería de petróleo. La 

función objetivo consistía en minimizar simultáneamente el coste de operación 

del proceso, el consumo de energía y el impacto ambiental de la planta de 

tratamiento. El procedimiento presentado se basa en la implementación de los 

modelos surrogados con el fin de optimizar procesos a gran escala basados en 

simuladores. De este modo, la estrategia seguida consiste en sustituir por 

modelos surrogados todas aquellas unidades del proceso que puedan generar 

problemas numéricos durante la optimización, manteniendo en el simulador el 
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resto de unidades que no introducen ruido numérico. Asimismo, las ecuaciones 

relacionadas con la integración energética y el análisis del ciclo de vida de la 

instalación se definen en forma de ecuaciones explicitas. 

Los resultados obtenidos muestran que es posible el uso de los modelos 

surrogados para optimizar este tipo de problemas de optimización. Al mismo 

tiempo, la optimización multiobjetivo permite conseguir grandes ahorros 

económicos y energéticos. Además, como consecuencia de la optimización 

multiobjectivo, la reducción del impacto ambiental puede llegar a ser muy 

significativa, en torno al 49 % con respecto a la planta sin optimizar. En 

conclusión, esta técnica permite sustituir las operaciones unitarias que podrían 

producir problemas numéricos durante la optimización por modelos 

surrogados generados a partir de modelos rigurosos, facilitando la optimización 

de este tipo de problemas de una manera precisa. 

* En la Publicación 3 se plantea la optimización de una superstructura usando 

modelos surrogados. Todas las unidades que podrían introducir problemas 

numéricos en la optimización se sustituyen por metamodelos basados en 

interpolación Kriging, en este caso, tanto columnas de destilación como 

reactores químicos. Mediante la superestructura se plantean todas las 

alternativas de interés para producir el producto deseado. Una vez optimizada 

la planta, se genera la red de integración de energía y se estudia el riesgo 

financiero de la planta. 

Los resultados obtenidos de este estudio muestran que los modelos surrogados 

también pueden ser empleados para resolver problemas de programación no 

lineal con variables binarias. Además, con la integración energética se 

consiguen importantes ahorros energéticos y económicos, con la consiguiente 

reducción del impacto ambiental. Definitivamente, el uso de los modelos 

surrogados para optimizar procesos basados en simuladores resulta muy 

satisfactorio. Este trabajo se encuentra actualmente en la fase de revisión. 

 

Dentro del segundo objetivo general de la Tesis, se ha desarrollado una 

metodología alternativa para la optimización de procesos químicos y la integración 

de energía simultánea. 

* En la Publicación 4 se plantea un nuevo modelo para eliminar las dificultades 

numéricas asociadas a con el uso de la función ‘max’. Para ello, se aplica una 
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disyunción directamente sobre el operador. Una característica importante del 

modelo presentado es que se utiliza una variable suplementaria para 

reformular el sistema, lo que se traduce en una reducción del número de 

variables binarias y el número de ecuaciones. Este hecho hace que este modelo 

resulte muy competitivo frente a otros modelos, consiguiendo mejores 

resultados tanto en tiempo de cálculo como en el grado de relajación del 

problema. 

Los resultados obtenidos muestran que el modelo desarrollado es muy 

competitivo en comparación a los modelos propuestos por Grossmann et al. y 

Navarro-Amorós et al. 

* Por último, en la Publicación 5 se extiende el estudio realizado en la publicación 

anterior, considerando que en un sistema pueden existir corrientes de proceso 

que no estén clasificadas como corrientes frías o calientes, a priori. Además, se 

presenta una extensión del modelo para estimar el área de intercambio (y por 

consiguiente, estimar los costes) asumiendo que la transferencia de calor es 

vertical. 

Del mismo modo que en la publicación anterior, el modelo presentado contiene 

un menor número de variables y ecuaciones que el de las reformulaciones 

alternativas. Este hecho hace que el modelo desarrollado resulte muy 

competitivo frente a los otros modelos. Además, los resultados demuestran que 

la nueva reformulación es robusta y numéricamente eficiente en problemas a 

gran escala. 
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In addition to the publications that have been used to develop this Doctoral 
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Rigorous Design of Chemical Processes:
Surrogate Models and Sustainable Integration

Natalia Quirante Arenas

The development of efficient chemical processes, from an economic and
environmental point of view, is one of the main objectives of the Chemical
Engineering. To achieve this goal, in the last years, advanced tools are being
used for design, simulation, optimization, and synthesis of chemical processes,
which allow us to obtain more efficient processes and with the least possible
environmental impact.

The main objective of this Thesis is based on the development of
simulation and optimization tools in order to improve process energy efficiency,
which reduces the environmental impact. Specifically, this Doctoral Thesis is
composed of two main studies, which are the concrete objectives to achieve:

* Study and evaluation of surrogate models to improve the simulation-based
optimization of chemical processes.

* Development of new models for the simultaneous optimization and heat
integration of chemical processes.
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