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Any robot should be provided with a proper representation of its environment in order to perform
navigation and other tasks. In addition to metrical approaches, topological mapping generates graph rep-
resentations in which nodes and edges correspond to locations and transitions. In this article, we present
LexToMap, a topological mapping procedure that relies on image annotations. These annotations, repre-
sented in this work by lexical labels, are obtained from pre-trained deep learning models, namely CNNs,
and are used to estimate image similarities. Moreover, the lexical labels contribute to the descriptive
capabilities of the topological maps. The proposal has been evaluated using the KTH-IDOL 2 dataset,
which consists of image sequences acquired within an indoor environment under three different lighting
conditions. The generality of the procedure as well as the descriptive capabilities of the generated maps
validate the proposal.
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1. Introduction

Building an appropriate representation of the environment in which an autonomous robot operates
is still a widely addressed problem in the robotics research community. This problem is usually
known as map building or mapping since maps are considered the most common and appropriate
environment representation [1]. A map is useful for robot localization, navigation [2] and path-
planning tasks [3], but also for a better understanding of the robot’s surroundings [4]. That is, a map
may not be limited to metric (e.g. specific poses of objects/obstacles) and topological information
(e.g. paths from one place to others), but it can also integrate semantic information (e.g. symbolic
representations of objects, expected behaviors for specific locations, or even situated dialogues, to
name a few) corresponding to the objects, agents, and places represented on it. Three different type
of maps are graphically presented in Fig. 1, where can be observed the bridge between metric and
semantic representations.

Topological mapping consists in generating a graph-based representation of the environment,
where nodes represent locations and arcs transitions between adjacent locations [5]. When using
images as input data the topological map construction process requires several image-to-image or
image-to-nodes (set of images) comparisons in order to incrementally build the topological map.

This problem has been widely studied in robotics, and most of the state-of-the-art approaches

∗Corresponding author. Email: miguel.cazorla@ua.es

Usuario
Texto escrito a máquina
This is a previous version of the article published in Advanced Robotics. 2017, 31(5): 268-281. doi:10.1080/01691864.2016.1261045

http://dx.doi.org/10.1080/01691864.2016.1261045


November 10, 2016 Advanced Robotics LexToMap

Figure 1.: Metric (top-left), metric-semantic (top-right), and topological exemplar maps (bottom)

rely on the use of computer vision techniques to estimate the similarity between robot perceptions,
which are usually in the form of images [6, 7]. This standard approach, however, presents an
important drawback: the poor interpretability of the generated maps. Furthermore, two images
can be visually different while representing a similar location, due to changes in the viewpoint or
structural modifications.

To cope with these two drawbacks, in this article we propose the use of image annotations as
input for topological map generation instead of usual visual features extracted from the image. By
image annotations we refer to the set of tags or lexical labels used to characterize an input image.
While the annotation process has been traditionally an expensive or even unapproachable task, the
recent availability of deep learning models allows for efficient real-time annotations of any input
image. These models are trained using huge datasets, such as ImageNET [8, 9] or Places [10], where
images are annotated using a large and heterogeneous set of lexical labels.

The advantages of using lexical labels to describe/represent an image (in our case obtained from
deep learning classification models) are twofold:

• First, the similarity between images can be computed without the use of any computer vi-
sion technique. That avoids selecting the optimal set of image features to be extracted (e.g.
SIFT [11], SURF [12], HoG [13], ...), to make use of dimensionality reduction techniques, as
well as carrying out further parameter tuning processes, which typically rely on proposals
that are too specific and environment dependent.
• Second, the locations or nodes of the generated topological map can be described by means

of the lexical labels associated to their contained images.

This novel map representation allows automatic objective-driven navigation, since a robot can
understand a sentence such as “bring me a cup of coffee” without the need of making any explicit
reference to the location where coffee cups are expected to be (typically in the kitchen) or where
the beneficiary of the the action is currently located.

The main contribution of this work is the generalist framework for generating descriptive topo-
logical maps. The proposal has been evaluated on the KTH-IDOL 2 dataset, which consists of
sequences of images acquired under three different lighting conditions: sunny, cloudy, and night.
Moreover, the descriptive capabilities of the maps have also been shown and discussed for future
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applications. The rest of the paper is organized as follows. In Section 2 we review some related
works and state-of-the-art solutions to the topological mapping problem. The process for extract-
ing annotations and computing the similarity between images based on lexical labels is presented
in Section 3. Section 4 describes the procedure for generating topological maps from lexical labels.
Experimental results and the descriptive capabilities of the LexToMap proposal are presented in
Section 5. Finally, the main conclusions of this work as well as some future research directions are
outlined in Section 6.

2. Related Work

The similarity between images has been widely used for several robotic tasks such as object recog-
nition [14], navigation [15] and semantic localization [16]. Regarding topological mapping, large
image collections [5] are the traditional main source of information. This fact increases the com-
putational time when applying image matching approaches, and this encourages the search for
alternative approaches, capable of coping with large sequences of images. The visual similarity
between images has traditionally been computed from invariant local features [6, 17], and global
image descriptors [18, 19], mainly generated by following bag-of-words approaches [20]. From these
image representations, the spatial distribution of the map has been modeled using graph represen-
tations [21], as well as hierarchical proposals [22]. More concretely, [21] provides a way to detect
loop clousure, but the proposed system needs to learn the visual features in the environment. Our
method differs from the former in twofold: first, we do not need to learn the environment and,
second, our aim is not only to detect loop clousure but also to build the map at the same time,
which is not achieved by [21].

OpenRatSlam [23] and ORBSlam [24] are well-known current SLAM solutions, which rely on
the use of matching and bag-of-words approaches respectively, but their requirements (visual im-
ages should be provided in conjunction with the camera rotational and translational velocity) and
limitations (poor descriptive capabilities of the generated maps) encourage the search for novel
approaches related to topological mapping.

The emergence of deep learning in the robotic community has opened up new research oppor-
tunities in the last few years. In addition to model generation for solving open problems [25, 26],
the release of pre-trained models allows for a direct application of the deep learning systems gen-
erated [27]. This is possible thanks to the existence of modular deep learning frameworks such as
Caffe [28]. The direct application of pre-trained models avoids the computational requirements for
learning them: long learning/training time even using GPU processing, and massive data storage
for training data. From the existing deep learning models, we should point out those generated from
images categorized with generalist and heterogeneous lexical labels [10, 29]. The use of these models
lets any computer vision system annotate input images with a set of lexical labels describing their
content, as it has been recently shown in [27, 30, 31].

3. Lexical-based Image Descriptors

In contrast to most of the topological mapping proposals, we describe or represent images by
means of a set of predefined lexical labels. The rationale behind this representation is to describe
the content of the image by means of a set of semantic concepts that can be automatically attributed
to this image. For example if we describe an image saying that the appearance in it of concepts
such as fridge, table, chair, cabinet, cup, and pan, is much more likely than other different concepts
in the predefined set, then we can say that that image represents a kitchen with a high degree of
confidence. The use of lexical labels may result into a loss of resolution suitable for increasing the
perceptual aliasing problem [32]. Besides fine grain representations, by means of large sets of labels
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in our proposal, the perceptual aliasing problem is reduced by taking into account the temporal
continuity of the sequence. This is expected to associate different locations to different nodes, even
when both are translated into similar descriptors.

To implement the lexical annotation process we make use of existing deep learning annotation
tools. Deep learning techniques, and more specifically Convolutional Neural Networks (CNN [33]),
allow the generation of discriminant models while discovering the proper image features in a totally
unsupervised way, once the network architecture has been defined. This is possible nowadays thanks
to the availability of huge image datasets annotated with large and miscellaneous set of lexical labels,
which efficiently permits the training of these discriminative classification models. In this work, we
focus on the application of existing CNN models. The definition and building of these CNN models
is beyond the scope of this paper, so we refer the reader to [34] for a more detailed view of deep
learning in general and, to [28] for a better understanding of these CNN models.

Once every image is represented by a set of lexical labels, we need to define a similarity measure
between two image descriptors or between an image descriptor and a node descriptor. A node on
the topological map is composed of a set of images representing that node/location.

The complete process of annotating images using CNNs and the similarity computation details
are described below.

3.1. Image annotation using CNN

Let L = {l1, . . . , l|L|} be the set of |L| predefined lexical labels, I an image, and N a node of
the topological map formed of |N | images. The direct application of the existing CNN models on
an input image I generates a descriptor dCNN (I) = ([pI(l1), . . . , pI(l|L|)]), where pI(li) denotes
the probability of describing the image I using the i-th label in L. This obtains a representation
similar to the Bag of Visual Words (BoVW [35, 36]) approach, which generates a descriptor vector
dBoW (I) = [nI(w1), . . . , nI(wk)] of k visual words, where n(wi) denotes the number of occurrences
of word wi in image I. Despite the fact that spatial relation between words is completely removed,
we decide not follow any of the proposed techniques, like the spatial pyramid [37], to solve this
drawback. In addition to avoid the higher processing requirements this technique requires, our
selection relies in the assumption that the presence of lexical labels is much more important than
their position to describe any input image.

We use a similar notation to represent the descriptor of a node N of the topological map, which is
composed of a set of |N | images (N = {I1, . . . I|N |}). The descriptor of N is defined as the vector of
the average label probability of its |N | images, and the corresponding vector of standard deviations.
More formally:

dCNN (N) = ([p̄N (l1), . . . , p̄N (l|L|)], [σN (l1), . . . , σN (l|L|)]) (1)

where:

p̄N (li) =
1

|N |

|N |∑
j=1

pj(li) (2)

and

σ2N (li) =
1

|N |

|N |∑
j=1

(pj(li)− p̄j(li))2 (3)

This average computation is actually the aggregation of all image descriptors that form the node.
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In Fig. 2 a visual interpretation of this aggregation process is shown.

Figure 2.: An example of the aggregation process of n different images to define the descriptor of a
node/location of only nine lexical labels

While the i-th average values encode the probability of describing the location using the lexical
label i (e.g. the probability of describing the location as “table” is 75%), the standard deviation
indicates whether this label is representative of the location. That is, large deviations denote lexical
labels whose likelihood is not constant in the images from the same location. Therefore, we propose
to integrate this information into the descriptor definition of the node in order to reduce the
importance of lexical labels with large standard deviations, which are eventually considered not
representative of the node/location.

In order to train a CNN model, we need to provide both the architecture of the network and the
database to be used as training set. The architecture refers to internal details such as the number
of convolutional or fully connected layers, or the spatial operations used in the pooling stages. On
the other hand, the training set determines the number of lexical labels used to describe the input
image. In this proposal, we take advantage of Caffe [28], a fast, modular and well documented deep
learning framework that is widely used by researchers. We opted for this framework because of the
large community of contributors providing pre-trained models that are ready to be used in any
deployment of the framework.

3.2. Image/Node Descriptor Similarity Computation

On the one hand, the similarity between two images, Ia and Ib, whose representation has been
obtained from a CNN model, can be estimated using histogram intersection techniques [38]. In
this case, we need to compare two descriptors, d(Ia) and d(Ib), encoding the set of likelihoods
describing images Ia and Ib using the set of pre-defined lexical labels. We can adopt well-known
similarity measures such as p-norm based distances (i.e. Manhattan or Euclidean distance), the
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Bhattacharyya or the χ2 distance, among others, to compare them.
On the other hand, the similarity between an image I and a node N is defined in this proposal

as a weighted similarity using the standard deviation of the labels (σN (li)) within the node. This
is done to explicitly reduce the importance of labels presenting large variance in the node, which
are considered non-representative ones, as well as to increase the relevance of those labels with low
variance.

Based on the weighted euclidean distance formulation, the distance between a node/location N
and an image I is computed according to:

D(N, I) =
1∑|L|

i=1(wi)

|L|∑
i=1

(wi · (p̄N (li)− pI(li))
2) (4)

where wi has been defined to be inversely proportional to the standard deviation and normalized
in the range [0, 1].

4. LexToMap: Lexical-based Topological Mapping

From the image descriptors obtained from CNNs, and using the distance functions described above
to estimate the distance between an image and a location, we define the lexical-based topological
mapping using the pseudo-code in Algorithm 1.

In this process, we can find the starting situation where a new node (representing a location)
is created from the first image. From there, we firstly try to add the images to the current node
in order to take advantage of the temporal continuity of the sequence. If this is not possible, due
to a big difference between the image and the current node (using threshold T1), we search in the
node list for the most similar node. If this node exists, and it is similar enough to the image (using
threshold T2), we mark it as the current one, we add the image to it, and create a transition (edge)
from the former node to the current one, if it does not already exist. Otherwise, we create a new
node on the map, which is established as the current one, and then the transition from the past
node to the new one is created.

Each node or location consists of a set of image descriptors encoded as vectors representing lexical
label probabilities. For evaluation and visualization purposes, we can also identify a node by its
<x, y> position in the environment by taking advantage of the ground truth. The coordinates of a
node are represented by the average values of x and y computed from the position coordinates of
all the images included in the node.

The topological maps generated with our proposal would be trajectory dependent, as the first
image acquired with the robot plays a very important role in the process. The temporal continuity is
also exploited to reduce the perceptual aliasing problem. Nevertheless, this dependency also allows
the mapping procedure to generate maps in an online fashion. This avoids waiting for further
acquisitions for making decisions about nodes and transition generation, which is undesired for any
robotic system. Moreover, the online generation of topological maps permits the robot to return to
intermediate previous locations. This situation is commonly faced due to battery problems, when
the robot should come back as soon as possible to the charging area. Rescue robots may also cope
with similar scenarios, where the riskiness of a discovered area encourage the robot to return to
previous safe locations.
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Algorithm 1 LexToMap: Lexical-based Topological Mapping
1: NodeList = ∅
2: CurrentNode = None
3: for each image Ij acquired from the robot do
4: if length(NodeList) == 0 then
5: Create a new Node Nnew from Ij
6: Add Nnew to NodeList
7: CurrentNode = Nnew

8: else
9: if D(CurrentNode, Ij) < T1 then

10: CurrentNode = CurrentNode
⋃
Ij

11: else
12: Nsim = None
13: Mindist =∞
14: for each node Nz in NodeList do
15: dz = D(Nz, Ij)
16: if dz < Mindist && Nz 6= CurrentNode then
17: Nsim = Nz

18: end if
19: end for
20: if Nsim 6= None && D(Nsim, Ij) < T2 then
21: Create a transition from CurrentNode to Nsim

22: CurrentNode = Nsim

23: CurrentNode = CurrentNode
⋃
Ij

24: else
25: Create a new Node Nnew from Ij
26: Add Nnew to NodeList
27: Create a transition from CurrentNode to Nnew

28: CurrentNode = Nnew

29: end if
30: end if
31: end if
32: end for

5. Experimental Results

The LexToMap topological map generation approach was evaluated under the three different light-
ing conditions proposed in the KTH-IDOL2 dataset. We followed the procedure explained in Al-
gorithm 1, which starts from the descriptor generation procedure. This steps relies on the use of
a CNN using a pre-trained model, and we evaluated seven different alternatives. The procedure
depends on two different thresholds, T1 and T2, which determine the generation of new nodes and
the transitions between them. All these steps are detailed in the following subsections.

5.1. Dataset

We opted for the KTH-IDOL 2 dataset [39] for the evaluation of our proposal. Image Database
for rObot Localization (IDOL) is an indoor dataset that provides sequences of perspective images
acquired under three different lighting conditions: sunny, cloudy and night. These sequences were
generated using two different robot platforms, namely Minnie (PeopleBot) and Dumbo (PowerBot),
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controlled by a human operator. The ground truth in the dataset includes the following information
by image: the semantic category of the room where the image was acquired, the timestamp, and the
pose of the robot (<x, y, θ>) during the acquisition. There are 5 different room categories: corridor
(CR), kitchen (KT), one-person office (1-PO), two-persons office (2-PO), and printer area (PA).
The dataset includes four different sequences for each combination of robot and lighting conditions.
From all these sequences, we selected the twelve ones acquired with Minnie, whose camera position
(around one meter above the floor) is more similar to most of the current mobile robot platforms.

Lighting Cond. Cloudy Night Sunny

Sequences 1,2,3,4 1,2,3,4 1,2,3,4
#Images CR 1632 1704 1582
#Images 1-PO 458 522 468
#Images 2-PO 518 633 518
#Images KT 656 611 556
#Images PA 488 534 482

#Images 3752 4004 3606

Figure 3.: KTH-IDOL 2 information: Image distribution (left) and environment (right).

The number of images in the dataset by lighting conditions and semantic category, as well as
the map used for the acquisition, are shown in Fig 3. The image distribution is clearly unbalanced
as most of the images belong to the Corridor category. Sequences 3-4 were acquired six months
later than the acquisition of sequences 1-2, which introduces small environment variations due to
human activity. Fig. 4 presents 15 exemplar images from the dataset. From these examples, it can
be observed how the visual representations are affected by the lighting conditions. Moreover, Fig. 5
illustrates the effect of human activity over the same locations of the environment.

5.2. Model Selection

From the whole set of available trained models, we selected the 7 different candidates that are
summarized in Table 1. These models differ in the architecture of the CNN used, the dataset
used for training them, and the set of predefined lexical labels used by the model. We opted for
these models because they were all trained over datasets that consist of images annotated with a
large set of generalist lexical labels. In this experimentation, we are interested in the categorization
capabilities of the lexical labels generated through the CNN models. Therefore, we firstly propose
an unsupervised learning procedure using the dataset sequences as input. This was carried out by
using a k-means clustering algorithm considering different values of k in the range [1, 50]. Each
cluster represents a location (topological node) computed using only image similarity information.
That is, the temporal continuity of the sequence is not taken into account. Then, we evaluate the
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Figure 4.: Exemplar images from the KTH-IDOL 2 dataset acquired under three lighting conditions
(rows) within five different room categories (columns).

Lighting conditions: Sunny Lighting conditions: Night
Sequence 1 Sequence 3 Sequence 2 Sequence 4

Lighting conditions: Cloudy

Sequence 1 Sequence 3 Sequence 1 Sequence 4

Figure 5.: Images illustrating changes produced by human activity on the environment.

average spatial intra-cluster variance by using the dataset ground truth <x, y> location of the input
images. Fig. 6 graphically presents the evolution of the intra-cluster variance when using different
values of k in the k-means clustering algorithm. This figure introduces a bias–variance trade-off
where larger k values result in less generalist but more accurate clusters.

Table 2 shows a subset of the results obtained using four representative values of k. In this table,
each column presents the average spatial intra-cluster variance of the whole combination of lighting
conditions and sequences for a specific value of k. Lower intra-cluster variances are desirable as
they denote a more precise representation of the data. Indeed, low variances are obtained with
clusters that consist of images acquired from nearby environment positions. From the complete set
of results, we computed the average ranking for all values of k in the range [1,50]. That resulted in
50 different test scenarios where each model was ranked between the first and the seventh position,
depending on its intra-cluster variance.
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Table 1.: Details of the seven CNN models evaluated in the proposal

Model
Name

CNN
Architecture

CLa FCLb Training
Datasets

#Labels

ImageNet-AlexNet AlexNet [29] 5 3 ImageNet2012 [8, 9] 1000
ImageNet-CaffeNet AlexNet 5 3 ImageNet2012 1000
ImageNet-GoogLeNet GoogLeNet [40] 11 3 ImageNet2012 1000
ImageNet-VGG VGG CNN-s [41] 5 3 ImageNet2012 1000
Hybrid-AlexNet AlexNet 5 3 Hybrid MIT [10] 1183
Places-AlexNet AlexNet 5 3 Places205 MIT [10] 205
Places-GoogLeNet GoogLeNet 11 3 Places205 MIT 205

a Convolution Layers
b Fully Connected Layers
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Figure 6.: Intra-cluster spatial evolution using different values of k for the 7 CNN models studied

Table 2.: Intra-cluster variance (·10−2) for 7 CNN models and four representative k values. Lowest
values per column are in bold.

CNN Model k=7 k=15 k=30 k=50
HybridAlexNet 5.49 3.99 2.50 1.85
ImageNetAlexNet 7.53 4.19 3.04 2.42
ImageNetCaffeNet 6.24 5.34 3.23 2.43
ImageNetGoogLeNet 7.35 6.02 3.97 2.90
ImageNetVGG 5.69 4.44 3.17 2.39
PlacesAlexNet 6.64 4.37 2.90 1.99
PlacesGoogLeNet 6.91 4.59 2.85 1.97

The ranking comparison summary is presented in Fig. 7, where it can be observed how Hybrid-
AlexNet clearly outperforms the rest of the evaluated models. Therefore, we selected this model as
optimal (among those used in this study) for topological mapping, and it was used for the rest of
the experimentation. The proper behavior of the Hybrid dataset comes from the fact that it has
been generated from a combination of both Places and ImageNET datasets, once the overlapping
scene categories were removed [10]. The ranking comparison also pointed out the appropriateness
of using the Places dataset in contrast to ImageNET, which is explained due to the nature of the
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annotations, more suitable for discriminating between indoor locations. With regard to the network
architecture, those with lower number of convolution layers presented the best behaviors.

method rank win tie loss
HybridAlexNet 1.40 - - -
PlacesAlexNet 3.00 46 0 4
PlacesGoogLeNet 3.50 48 0 2
ImageNetVGG 4.04 46 0 4
ImageNetAlexNet 4.28 45 0 5
ImageNetCaffeNet 4.88 45 0 5
ImageNetGoogLeNet 6.90 50 0 0 1.40
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Figure 7.: Ranking comparison of 7 CNN models. Win, tie and loss results (left) and average ranking
visualization (right)

5.3. Topological Map Generation

Once the CNN model has been chosen, we should establish the values for the two thresholds used
in the topological mapping: T1 and T2. These threshold values can be selected to generate different
types of maps based on the end requirements of the topological maps. For example, we can prevent
the algorithm from generating a large set of nodes/locations by selecting large T1 values. And,
large T2 values facilitate the generation of connections between existing nodes. This increases the
average number of connections by node. The automatic selection of these two thresholds would
require the availability of a quantitative metric to evaluate the goodness of any topological map.
Unfortunately, we could not find any proven metric in the literature and its generation is not trivial.
In order to establish a trade-off between specificity and generality, we empirically selected 15 · 10−2

and 15 · 10−3 for T1 and T2 thresholds, respectively. Using the Hybrid-AlexNet CNN model, we
generated a set of twelve topological maps for a more detailed evaluation and discussion from all
the dataset sequences. All these maps were generated using the same internal parameters (CNN
model and thresholds).

The maps generated are shown in Fig. 8 for three lighting conditions. It can be observed how
valuable topological maps can be generated thanks to the use of the LexToMap proposal without the
need for any other additional or complementary visual information. Although lighting variations
within indoor environments are not so challenging as for outdoor ones, we opted for an indoor
dataset incorporating some lighting changes (see Fig. 4). The maps generated are not drastically
affected by these changes thanks to the use of the lexical labels to compute the similarities between
images, which are proposed instead of standard visual features.

In Fig. 9, we can observe two different types of transitions, which correspond to the generation
of the map from sequence 3 acquired with cloudy lighting conditions. Concretely, we illustrate the
timestamp when the robot backs to the corridor after visiting the one-person office. During previous
tours along the corridor, the algorithm created different nodes and transitions between them. Before
leaving the one-person office, the mapping algorithm has Node 10 as current node. When the robot
acquires an image different from previous ones (Fig. 9 bottom right), Node 4 is discovered as an
aggregation of images similar to the last robot perception. This is translated into a new transition
between nodes 10 and 4. After a certain number of acquisitions, a new transition is requested due
to the contrast between the new image (Fig. 9 top left) and the current node. However, no similar
past nodes are detected, and then a new node (Node 11) is generated and established as current
node.
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Figure 8.: Topological maps generated for three different lighting conditions: cloudy (top), night
(middle) and sunny (bottom)
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Figure 9.: Transition generation during a LexToMap mapping procedure.

Figure 10.: Transition to an already visited location not detected.

Despite the promising results obtained with the LexToMap technique, there are some failure
cases as the one illustrated in Fig. 10. It corresponds to the generation of the topological map from
Sequence 1 Cloudy, and presents a node generation (Node 19) that should not have been performed,
as there was a previous node (Node 13) created from images acquired in the same location. This
failure may come from the threshold selection, which compromises a trade-off between specificity
and generality, and aims to generate valid maps for all the sequences in the dataset. Another point
to be taken into account is the difference of the corridor with respect to the rest of room categories.
Namely, the corridor imaged in the dataset is unobstructed without the presence of objects. This
avoids detecting some loop closures due to the lack of discriminating objects, as that shown in
Fig. 10.

The characteristics of the corridor also help us discover a proper behavior of the proposal: its
adaptability to cope with heterogeneous rooms. Concretely, we can observe how largest transitions
in the topological maps appear in the corridor area. This involves a lower density of nodes in this
room category. This is desirable because the rest of rooms, especially the offices and the kitchen,
are more suitable for incorporating relevant sub regions due to the presence of specific objects, like
fridges or computers.
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Figure 11.: Location description by means of the cloud of representative lexical labels.

5.4. Description Capabilities

The topological maps generated with our proposal present a clear advantage when compared with
those generated with state-of-the-art approaches, namely their descriptive capabilities. This comes
to the fact that, each topological node is generated from a set of lexical labels that can be used
to describe its content. Fig. 11 shows an example of a topological map generated from sequence 1
under cloudy conditions (Fig. 8 top left). In this figure, we highlight a location (which belongs to the
one-person office room category in the dataset), along with some of the images this location consists
of, and the lexical labels word-cloud. This cloud is computed from the set of most-representative
lexical labels, where font sizes denote the likelihood of the label in this location.

In addition to the descriptive capabilities, the lexical labels are amazingly useful for goal-driven
navigation tasks. That is, the labels associated to a topological location refer to the content of
the scenes, and therefore can determine the type of actions the robot would perform. In order to
illustrate this capability, we remarked the locations on the same topological map including three
different labels in their top-five most representative (higher likelihood) ones: desktop computer,
refrigerator and banister.

Desktop Computer Refrigerator Banister

Figure 12.: Locations representative of the lexical labels “desktop computer”, “refrigerator” and
“banister”.

This is shown in Fig. 12, and it can be observed how all the locations selected with the label
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“desktop computer” belong either to a one-person or two-person office, which are the semantic
categories (in comparison with kitchen, corridor or printer area) more likely to contain a desktop
computer. A similar scenario was obtained with labels “refrigerator” and “banister”, which select
locations that belong to kitchen and corridor categories respectively.

In addition, we are also interested in knowing how a lexical label is distributed over a topological
map. For a better understanding we illustrated two examples in Fig. 13 using the lexical labels “slid-
ing door” and “photocopier”. In this figure, we use a heat color coding to represent the probability
of describing each location using the provided lexical labels.

Figure 13.: Topological maps where color codes represent the probability of describing each location
with the lexical labels “sliding door” (left) and “photocopier” (right).

6. Conclusions and future work

We have presented a novel approach for lexical-based topological mapping in this article. The
proposal relies on the annotation capabilities of the available CNN pre-trained models, and takes
advantage of them to compute the similarity between input images. This strategy presents two
main benefits. Firstly, the similarity between map locations is computed from a lexical point of
view and not only from visual feature similitude. This point increases the robustness of the method
to challenging environments with small lighting variations or changes in the viewpoint. Secondly,
the integration of annotations with lexical labels in the map generation procedure increases the
representational capabilities of the maps, as locations can be described using a set of lexical labels.
Moreover, these labels could be extremely useful for future navigation purposes. Based on the results
obtained under different lighting conditions, we can conclude that valuable topological maps can
be obtained by following a standard approach without the need for selecting and tuning computer

15



November 10, 2016 Advanced Robotics LexToMap

vision (for feature extraction) or machine learning (for matching and classification) algorithms.
We have presented a qualitative evaluation of our method. We know that a quantitative metric

must be provided for a better evaluation. However, for the best of our knowledge, there is a lack of
such quantitative metric and we plan to develop it in future work.

As future work, we plain to integrate state-of-the-art strategies for loop-closure detection. We also
have in mind the comparison of the maps generated from different proposals, including traditional
approaches using visual features. To this end, as well as to automatically select the optimal values
for the thresholds included in the algorithm, we are additionally working on the proposal of a metric
suitable for evaluating the goodness of any topological map.
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