This is a previous version of the article published in The International Journal of Advanced Manufacturing Technology. 2018, 95(1-4): 1243-1253. doi:10.1007/s00170-017-1257-2

On-line simulation as a collision prevention layer in automated shoe
sole adhesive spraying

Vicente Roman-Ibafiez', Antonio Jimeno-Morenilla!”, Francisco Pujol-Lopez!, Faustino Salas-Pérez?

!Computer Technology and Computation department
University of Alicante

2Spanish Footwear Technology Institute (INESCOP), Elda, Spain
*Data of the corresponding author:

Postal address:
Campus de San Vicente del Raspeig s/n
03001 Alicante, Spain

Phone: +34 96 590 34 00 Ext. 2453
Fax: +34 96 590 96 43
email: jimeno@dtic.ua.es

Abstract

Robotization in the footwear sector is a major challenge for the industry with difficulties present due
to the inherent adaptive needs of some of the automated tasks performed by robotic arms. One of
those of particular concern is collision prevention: working with those robots in automated on-line
environments, considering they have limited awareness of the environment, may lead to dangerous
situations with the movement of the robot along the calculated paths. To overcome this problem, a
collision prevention layer based on a custom robotic software simulator is presented and justified in
this paper to be used on automated shoe sole adhesive spraying cells. The performed experiments
prove the feasibility of the proposed method in a real scenario with the speed and precision required
by the automated task.

Keywords. Simulation, Robotics, Kinematics, Footwear, Collision prevention.

1 Introduction

Since the beginning of industrial automation, the main objective has been to increase the productivity of
industrial production, reducing the time required for completion and increasing the economic profit of the
result.

The footwear industry has been working mainly with handmade tasks in the production line from the
beginnings until nowadays. There exist some reasons that explain the slow robotic adaptation of the tasks
in the footwear industry [1], even with the advances in robotics in recent years.

e The flexibility required to successfully automate tasks. Such requirement is derived from the
diversity of models, the different sizes of the same model with left and right feet, the quantity of
different parts that make up the shoe and the big number of operations (up to 140, depending on
the model) required to transform the materials into a finished product.

e Another important factor to take into account is the high precision required in some of the tasks
in order to meet the industry requirements [2].

e Some of the tasks pose additional difficulties due to materials being non-rigid which makes it
hard to grab and process them, or too slim / fragile to be treated for certain tasks such as
roughing, noting that all these processes need to be performed better and faster than a human
worker to be useful.

Usuario
Texto escrito a máquina
This is a previous version of the article published in The International Journal of Advanced Manufacturing Technology. 2018, 95(1-4): 1243-1253. doi:10.1007/s00170-017-1257-2

https://doi.org/10.1007/s00170-017-1257-2

Being a burning issue, some authors proposed methods for several footwear tasks such as the application
of adhesive in shoe sole gluing [3], roughing or grinding of the bottom surface of the shoe so that the
gluing process works adequately [4], last milling to create shoe lasts based on custom measurements [5],
polishing of the finished shoe [6] and even the final product packaging process has been robotised [7], all
of them presenting the already mentioned problems of the footwear manufacturing sector. In fact, the
above-mentioned automated tasks are rarely implemented in real factories.

For the automation in the footwear industry, robotic arms are proposed, just as other industries like the
automotive, food or metal processing do. The main reason for using them is the ability to perform
different tasks with the same machine and to adapt the same task to different models without hardware
modifications.

The robotic arms used are usually composed of heavy metal joints moving at high speed. This may harm
humans and destroy or damage expensive cell components and even the robotic arm itself when a tool is
attached to the end effector.

The effects of robot mass and velocity of several industrial robots in critical body parts are studied in [8].
This study shows that most of the analysed robots are capable of reach speeds of 2 m/s and apply forces
from 1.2 kN onwards. This fact proves the need and importance of collision prevention when dealing with
such potentially dangerous machinery to prevent damage to the cell components and processed materials.

Collisions are one of the main reasons that hinder automation in the footwear industry. When the
precision and flexibility requirements of the footwear processes are high, collision prevention becomes a
must. With the high process diversity and precision required for small components, any minor mistake
can cause damage to the final product. Being a critical issue, collision avoidance with robotic arms have
been studied by other authors [9], [10] to provide specific solutions adapted to their needs. There exist
algorithms to allow computers to detect collisions between virtual entities by software [11].

The idea of the research introduced here arises from a real footwear industrial problem of collisions in
automated robotic cells with on-line processes. The main objective of this paper is to investigate and
develop a new collision prevention layer for these on-line cells with minimal costs and hardware
modifications, using an automated cell for adhesive spraying as a test bench due to the on-line
characteristics of the process. The paper aims to bring automation closer to footwear sector, which due to
the problems above mentioned is still far from being fully automated. This is an important qualitative
enhancement for the integration of automation in footwear sector.

This article is organized as follows: Section 2 presents a short state-of-the-art in the robotic collisions
field and justifies the need for extra prevention measures for on-line automated footwear applications.
Section 3 explains the work flow of the robotic cell used in the experiments and describes the new
collision prevention layer added to it. Section 4 describes the experiments performed and their results, and
finally Section 5 presents some conclusions.

2 Collision issues in robotics for footwear

When the tool path is calculated from offline data, it is also possible to pre-calculate and test some
collision prevention measures to be applied to each future model. Some of the prevention measures that
can be considered using offline processing are listed below:

e Crop box: Ignore points outside a bounded work cube.

e Detect noise: Warn against strong joint angle acceleration.

e Test reachability: Check if all points are reachable by the robotic arm.

e Collision test: Check all reachable points for collisions in static environments.

In particular cases in which the tool path is dependent on some input data taken during the process instead
of working with offline data, it is very difficult to determine whether it can be safely performed or not,
and therefore to avoid collision issues.

The main problem with detections before path execution by the robot is the limited environment
awareness those robotic arms have, due to the lack of sensors and the fact that they are simple mechanical
tools that blindly move their joint motors to position a tool on specific world coordinates and orientations,
fed with the computed CAD path. This can be problematic in footwear factories, where the automation

process is usually not complete and only a few tasks are automated, so workers need to interact with the
cell controller and handle the input / output of materials.

There exist models that use computer vision systems to detect and avoid collisions inside the cell [12],
including some of the well-known inexpensive depth sensors [13] such as Kinect® or ASUS Xtion®.
Even if they are low-cost sensors, they add extra hardware and complexity to the cell that should be
avoided.

Another drawback of the vision system comes with the occlusions that may occur with the moving parts
of the robotic arm hiding lower parts of the cell and being unable to detect collisions in those situations.
Also, when case a collision is detected, the robot may have already spent some time executing the tool
path until the detection is made, probably making the piece that is being processed in the cell useless. For
example, if the cell is roughing a shoe or gluing a sole and the collision is detected in the middle of the
process, then the piece cannot be processed again from the beginning of the path. This problem can be
solved by previously checking all the points in the path in a simulated environment. However, computer
vision systems can be used together with other methods to add additional prevention layers where non-
simulated entities interact with the cell.

An example of a potential hazardous scenario can be found in the process of applying adhesive to shoe
soles using robotic arms. This is just an example to illustrate a real problematic scenario, but the proposed
method in this paper is intended to be a general approach and not a single problem solver. In this process
it is first required to obtain the path using a laser-scanned point cloud to be adapted to different sole sizes,
models and placing positions. Figure 1 shows the point cloud obtained from the laser scanner, while in
Figure 2 the mesh and path calculated with the CAD software from those points are shown.

Figure 1:Scanned shoe sole point cloud. Figure 2: Shoe sole mesh and path.

With every shoe sole scan being different to each other and affected by external noise such as light,
occlusions or shiny surfaces, the quality and feasibility of the calculated path can be compromised, which
may lead to uncontrolled movements of the robot joints with the associated danger. To show the problem,
notice the difference between a normal shoe sole scanned mesh and the blue line path as shown in Figure
3 and another affected by direct sunlight during the scanning process as can be seen in Figure 4.

Noise leads CAD software to an incorrect mesh and path generation, and to obtain dangerous normals.
Those normals appear in the zoomed version of the noisy scan in Figure 5 as red lines. With irregular and
almost parallel angles to the sole plane, normals may lead to uncontrolled movements and collisions with
the environment. These problems can be reduced by covering the 3D scanner with a controlled light
tunnel, but it is not possible to be certain that paths are completely free of dangerous robot poses.
Therefore, the proposed model is still needed to avoid possible collisions of the robot with other elements.

DANGEROUS |

SAFE

Figure 3: Scanned shoe sole. Figure 4: Incident light during Figure 5: Detail of incorrect

scanning process. normal.

Even if the path is fully accurate, collisions with the environment may occur, for example, when some of
the joint angles move the robotic arm to a position and orientation where the tool is reachable and free of
collisions but some of the joints do not. This happens because usually only the tool position and
orientation for each point in the path are taken into account when doing safety checks. However, some
external methods can be used to give environment awareness to the robot for collision avoidance, such as
computer vision [14].

Collisions of robotic arms with the environment can be potentially dangerous because these robots are
composed of heavy metal joints moving fast. In addition, there is no direct human control of the robotic
arm movements when in automatic mode, which is the default working mode in production environments.

In Figure 6 the resulting pose of the robotic arm for a point in the noisy path previously shown in Figure 4
can be seen, showing the possibility of a collision with the environment, in this case with the conveyor
belt. The problem comes when the arm tries to reach the desired orientation of the noisy normal, with the
aggravating circumstance that the twist between the previous normal and the current one is big. The result
is a fast acceleration and movement of the joints, making it difficult to manually stop the robot arm in
time.

Figure 6:Robotic arm position after moving to a noisy normal.

3 On-line simulation layer for collision check

The usage of simulation in general robotic applications is not new and has been addressed by other
authors [15]-[17]. However, due to the need of flexibility required by some of the footwear applications,
the use of offline robot programming is not adequate or even possible, depending on the task to be
performed.

Some of the advantages achieved by placing a simulator layer between the CAD software that generates
the paths and a physical robot, constantly checking the validity of generated trajectories, are listed below:

e Enhanced collision prevention in on-line footwear cells with robotic arms.

e Reduction in the work space needed for the cell: less physical space required because the crop-
box can be smaller due to constant collision checking of the simulator.

e Remote cell monitoring and control with low bandwidth usage [18].

In addition, there are other inherent advantages of the simulator for off-line environments that apply here
such as:

e Design of the working cell before purchasing expensive equipment.

e Reduction in the cell cost, by choosing a cheaper/smaller robot that is able to do the same task in
a specific environment.

e Reduction in the production stop time of hardware upgrades as they can be previously tested in
the simulator.

Our proposed system is composed of all the different parts of the robotic cell and the extra layer with the
simulator between the CAD software and the physical robotic arm, as can be seen in Figure 7. The model
is intended to be used for a wide range of footwear robotic tasks, where an input device, a CAD software
and a robotic arm should be present.

.‘—» CADICAM Robot Arm

Figure 7: Schematic with the layers of the method.

The input device obtains the image feed that is later converted into a point cloud composed of depth data
X,Y,Z. As an example, a laser scanner can be used to triangulate the laser position and obtain depth data
grouped into sections [19], the result of which is shown in Figure 1.

That data is then transferred to the CAD software [20] in order to be filtered and to compute a path from
the points [21], [22]. Figure 2 shows a generated mesh with path points for the previous example of a
shoe sole. The generated points are then simulated in background using the added collision prevention
layer to make sure they are accurate, reachable and safe. The CAD software and the simulator are
connected through a TCP socket connection. Finally, the simulator uploads the checked path to the FTP
server of the physical robotic arm to execute it and perform the desired task. If a collision or a non-
reachable point is detected during the simulation, the full path is not transferred to the robotic arm to
avoid collision problems. The rejected path is then stored and marked as not executed so it can be retried
later or checked visually in the simulator. While the robot is executing the path, the scanner is processing
the 3D data of the next sole to optimize the process. Is important to note that the reason not to use a real-
time approach in this model is forced by footwear tasks itself. If real-time processing is used to simulate
the path point by point instead of batching them and some problem is detected during the check, then the
processed shoe part may end up unusable. The flowchart of the proposed method is shown in Figure 8.

| 3D Sole scan [€

‘ Transfer pointcloud to CAD ‘

Generate path

b

‘ Transfer path to simulator ‘

Simulate

Simulation passed ? Mark path as rejected

4{ Transfer path to robot ‘

Figure 8: Flowchart of the proposed method.

The simulator makes use of kinematics to simulate the paths versus time omitting the forces originating
them as it is performed in dynamics. Both forward and inverse kinematics are used to perform the
simulation.

Forward kinematics allows the simulator to know the world position and orientation of each joint when
rotations are applied to them locally. The standard Denavit-Hartenberg convention [23] has been used to
describe the kinematic chain of the robotic arm in the simulator with the parameters given by the
manufacturer and shown in Table 1.

Table 1: DH Parameters for Comau SmartSix
o d a a
045 015 -w/2
0.00 0.59 0.00
0.00 0.13 -w/2
0.64707 0.00 n/2
0.00 0.00 -m/2
0.095 0.00 0.00

AN A W~ H
co oo oo

Each line of the DH table corresponds to a robot joint defined by only four parameters O, d, a and a. The
parameter O represents the joint angle while d the joint offset. The link length is defined by a and the twist angle
by a. With these parameters it is possible to obtain a homogeneous transformation matrix with equation (1). As a
result of applying translations and rotations in the specified standard DH order, the resulting matrix 7" is capable
of converting from coordinate system i/ into i.

costh —cor 5 sinfy snogsing aeost

=L = sinff, o©ogog oost, - o oosf apshl 1)
0 s o5 cag w5 d;
0 0 0 1

The successive application of those matrices shown in equation (2) allows the transformation between a pair of
arbitrary joint's coordinate systems.

&)

r:l_[rf 2)
mi

An example for a standard 6-DoF robotic arm using this transformation is defined in equation (3).

ot =, 3)

F =" = Ml e T s
To that chain, the offset of the base T containing the translation and rotation offset from the ground to the first
robot joint can be added. The same process is needed between tool offset and the end effector with T}, leaving
the forward kinematic equation (4).

Trimi = ““Tresi = Thase ISl taal 4

Furthermore, inverse kinematics [24] are used to determine the joint angles needed to reach a specific position
and orientation with a tool attached to the end effector of the simulated robotic arm based on the forward
kinematics obtained from DH. Inverse kinematics is applied for each one of the points contained in the tool path
generated by the CAD software. The input vector defined in equation (5) should contain both position p and
orientation O of the desired path point to be followed by the end effector e of the robotic arm.

g = LRT.-_F}'.-?:.-E..T.-E.;.-E.:]:' 5)

After applying inverse kinematics, the resulting solution vector © contains the angle values of each robot joint
that can be used to render the model inside the simulator. To this end, forward kinematics needs to be used,
which in the 6 DoF arm used in the experiments has the form shown in equation (6).

¢ = [91. 6z 05046505 0)

Since one of the goals of the current research is to prevent collisions of the robotic arm with the surrounding
environment, a collision detection system module has been added to the simulator.

The collision system is based on the open-source project Open Dynamics Engine (ODE) [25] and is responsible
for performing robot against environment collision checking using a hierarchical detection method [26]. Being
open-source and a readily available library, it reduces the development time and cost of the proposed model.
Experiments in the next section prove that method used in this library can run complete simulations in modest
computers within the timeframe of online processes found in the footwear sector. If reader needs are not fulfilled
with this collision detection method, it can be exchanged with one of other existing rigid methods [27]-[29].

The method in ODE first uses a fast check with AABBs (Axis-Aligned minimum Bounding Boxes) to locate
regions of the space where a collision may have occurred, avoiding expensive checks in regions where collisions
cannot exist in the current simulation step. Then, both the parts of the robot and the environment where AABBs
were triggered are surrounded by OBBs (Oriented Bounding Boxes) [30] along the centroid of the objects.
Figure 9 shows this approach, with two screws surrounded by both an ABB (blue boxes) and an OBB (green
boxes). The collision boxes get the same rigid transformations as the parent object and allow the system to
perform the collision tests between simpler shapes and therefore with less computational requirements, which is
a must when dealing with on-line simulations. If more precision is required, more subdivisions of the collision
subspaces of the hierarchy tree can be added. Figure 10 shows two OBBs colliding, the tool of the robot
coloured in red and the robot controller.

Figure 9: AABBs (blue) and OBBs (green).

Although the simulation is performed in background while the system is scanning the next sole, a GUI
has been created with 3D render capabilities. The GUI shown in Figure 11 allows the user to define and
manage the simulated environment and to perform a visual analysis of the generated paths, which is
useful to know at which point they failed or to test the system before it is physically constructed.

= i@ s s

BuE T [@EEE >
=3 Comau

Figure 11: Simulation of the shoe sole adhesive spraying cell.

4 Experiments

In order to confirm the feasibility of the described method, some experiments were performed using an existing
robotic cell for shoe sole adhesive spraying, which is shown in Figure 12. The reason to select this cell for
collision prevention experiments is that it uses on-line path generation and it contains other hardware elements
that can be reach by the robotic arm.

4.1 The sole gluing process

The cell is designed to perform the gluing process on shoe soles that it is normally realized by hand using
brushes. This process is needed in the footwear industry to join the sole to the rest of the shoe. This task is
especially important for the quality of the final product. Any problem associated with this process may lead to
premature defects, reducing the reliability and the lifespan of the shoe. Having this task automated leads to a
constant and predictable production rate and material costs, also ensuring the high precision needed in this
industry.

[
Figure 12: Automated shoe sole adhesive spraying cell. Figure 13: Shoe sole with adhesive applied.
(a) Robotic arm. (b) Laser scanner. (c) Shoe sole. (d)

Conveyor belt. (e) Adhesive spraying tool.

4.2 Equipment

The robotic arm used in the experiments is a Comau SmartSix with 6 DoF with an adhesive spraying tool
attached to the end effector and a pump to feed it. The triangulation-based laser scanner is custom made with a
CCD RGB camera and a blue line laser module. The laser has a wavelength of 405 nm, in the range of blue
colour, and a power of 20 mW. The camera has a resolution of 640 x 480 pixels with a polarized filter attached
to it in order to capture only the wavelength of the laser. Also, a conveyor belt was used with an encoder to
determine the offset position relative to the start of the movements. All these parts were connected to a control
panel box along with other needed electronic components, while both the CAD and simulator software were
contained in a computer with CPU i13-4150@3.5 GHz, 4 GB RAM and an integrated HD Graphics 4400 GPU.

The CAD/CAM software used to calculate the tool path from the point cloud obtained with the laser method is
BasicCAM. The software has a socket waiting for TCP connections in background containing the scanned point
cloud. The CAD software returns the list of points to be checked by the simulator and executed by the robotic
arm inside the cell if the simulation does not return any problem. Figure 13 shows the resulting shoe sole after
adhesive application by the spraying tool attached to the robotic arm.

4.3 Modelling scene

Finally, the cell was modelled inside the simulator and run in offline mode as shown in Figure 10. This made it
possible to check if the robotic arm model was capable of performing the desired tasks in the current distribution
of the cell elements.

Once the offline design process was finished, the collision prevention layer was tested through several
experiments to check if it was working as expected and within an acceptable time range.

4.4 First experiment: Simulation time

The first experiment performed measured the total spent simulation time for a different number of tool path
points but using the same scene objects. The simulated scene was the real shoe sole adhesive cell which
contained 19 collidable parts divided into 12 for the environment and 7 for the robotic arm and the tool. The
experiment took into account the loading time of the scene and also the simulation of all the points of the path.
The path was generated by modifying a length parameter in the CAD software that altered the quantity of points
of the path generated.

Figure 14 shows that the time spent by the model to perform the full simulation was suited to work with
footwear applications, where the number of needed points in the path is small. In the current shoe sole
application cell, the quantity of points used to describe the contour of the sole for the gluing task remained
between 50 and 100. This small quantity of points led to complete simulations in less than a quarter of second. In
addition, the graph shows that the simulator performed well with the increase of path points, having a constant
loading time near to 220 ms at the start and a linear growth of the slope with the number of points. The loading
time depends on the number of polygons loaded by the scene and is constant in this experiment because the
same scene is used.

320 2250

300 2000

280 1750
o 1500
4] —_
E m g ™
g @ 1000
£ 2 E T

200

500
180 250
160 0
50 100 150 200 250 300 350 400 450 500 10 50 90 130 170 210 250 290 330 370 410 450 490
Number of points Collision boxes

Figure 14: Graph showing the number of points vs Figure 15: Graph showing the number of collision

time. boxes vs time.

4.5 Second experiment: Collision testing

It is important to ensure that collision checking does not create a bottleneck in the simulation. To this end, an
experiment was performed to compare the time spent with a different range of collision boxes.

The dataset for the experiment was created by generating a set of simulator scene files containing an incremental
number of simple collision cubes per file. Rotation, scale and position of each object was set randomly, but in all
the scenes the same number of points in the tool-path was used. Thus, only the collision-related process was
tested.

Moreover, all the points of the path were simulated to test the worst-case scenario where the collision occurred in
the last point. Note that in real world applications the simulation can be stopped on detecting the first collision to
speed up, as a single collision is sufficient reason to avoid the task execution in the physical robotic arm to
prevent damage to the cell components.

The resulting graph can be seen in Figure 15 where the start of an exponential progression was detected.
However, an acceptable on-line performance was achieved, capable of executing the full simulation in less than
a second, with up to 300 collision boxes. In comparison, the real shoe sole gluing cell used in the other

experiments contained only 19 collidable parts, resulting in a computational cost of less than 300 ms in collision
checking for the same situation.

Previous experiments ensured that the simulator was able to simulate more complex scenes than the required
footwear tasks in on-line with reduced overhead to the entire cell process.

4.6 Third experiment: Simulation accuracy

Once the computational and time requirements had been fulfilled, it was necessary to ensure the method's
accuracy in checking collisions. To this end, two groups of 200 different paths each were created. The first one
contained a set of paths that did not generate any problem. The second set contained paths that led to collisions
or unreachable points in the scene.

The data in both datasets was obtained from real shoe sole data coming from the laser scanner. This data was
processed by the CAD software to filter it and obtain a path containing a set of points. Finally, simulator scene
files were created including each path returned by the CAD application. In order to generate the second set, some
errors were injected into the normals of the paths, so the files led to collisions in the real robotic cell. All the
tested scenarios in this experiment were performed with the same shoe sole gluing cell scene used in the first
experiment, in order to obtain meaningful data.

With both datasets prepared, the set with correct paths was tested to make sure it was not rejecting good paths.
Same process was performed using the set with incorrect paths, to ensure that no false negatives appeared. The
results of this experiment can be seen in Table 2 as a confusion matrix.

Table 2: Confusion Matrix.

Predicted
Good Bad
Tg Good 187 4
k3]
< Bad | 13 196

The resulting confusion matrix displays a strong diagonal, meaning that the simulator is performing well, with a
high ratio of true positives and negatives, as expected. The accuracy obtained is 0.9575. This value gives the
proportion of correct guesses of the simulator.

On analysing the errors made by the simulator two different problem sources are identified. The first one is False
Positives (FP), meaning good paths wrongly marked as dangerous. This is a minor problem compared to False
Negatives (FN), because it blocks the execution of a good path but does not damage the environment. FP may
occur because the area of the collision boxes used in the OBB detection method is always equal to or greater
than the original mesh, sometimes triggering the collision before it actually happens. This can be reduced by
changing the collision checking approach to another with greater accuracy such as the convex hull, taking into
account the increase in time complexity. Also, it may be a good idea to have the error margin given by FP. That
is because even if those paths could have been executed by the robot, they would have been very close to collide.

False negatives mean bad and dangerous paths passing through the simulator filter and executed in the physical
robotic arm, although they were negligibly low in the current experiment. Those errors may appear due to an
inconsistency between the real position and orientation of the physical cell parts and the simulated ones. The
precision in the measurements between the real and the simulated world have a high impact on the simulation
error output. Additionally, if a part of the cell must be moved or rotated, the simulation scene should be updated
accordingly to avoid these kinds of problems. Another source of FN could be a small number of interpolation
steps between the path points that could lead the simulator to jump over collisions during the simulation. This
can be addressed by increasing the number of points interpolated in the simulated path, without compromising
the on-line time constraint.

The results show that the simulator reduces drastically the collision problems present in these dynamic robotic
cells.

With the data of the confusion matrix, a ROC graph has been generated as shown in Figure 16. The horizontal
axis represents the False Positive Ratio (FPR) while the vertical axis shows the True Positive Ratio (TPR). The
ROC curve generated plotting TPR against FPR illustrates the performance of the simulator. Every point above
the diagonal means a performance higher than a random guess.

The resulting ROC curve is close to the perfect corner at (0,1), far away above the random guess line, with an
area under the curve of 0.9575. This proves the consistent and reliable output of the simulations performed.

09 >
08 .
07 -

056 -

05 --=2--= Random
04 -~ ROC
03 -

02 -

014 o

TPR

0 01 02 03 04 05 06 07 08 09 1
FPR

Figure 16: ROC graph.

5 Conclusion

The starting point of this research was the study of the difficulties present in the footwear industry when trying to
automate tasks with robotic cells, mainly due to the flexibility and high precision needed to perform such tasks.
In fact, there is plenty of papers about the topic, but barely few real footwear factories using them.

Then, due to the high variability and precision required in footwear automated tasks, collision issues arise
especially when dealing with on-line environments. To overcome this problem, a model featuring a simulator
layer has been designed and tested in order to reduce collision problems without compromising costs.

With this system, the paths automatically generated by the CAD software are verified to ensure their accuracy
and to avoid collisions due to uncontrolled movements of the robotic arm inside the cell against other cell
elements and the user work's area. The method has been implemented reusing the same simulator used to design
the cell as an additional collision prevention layer with no extra hardware involved and working in on-line,
without bottlenecking the automated process.

Although the current collision prevention model is not designed to control moving parts other than the robotic
arm itself, it is more than enough to manage collision prevention in the described shoe sole robotic cell, where all
the critical parts surrounding the arm are static.

Experiments showed that the method is not only feasible in terms of computational time requirements but also
exhibits a high degree of reliability.

The proposed method is easily transposable to other industries with similar problems such as the furniture and
toy industries.

Future works derived from this research will be aimed to increase the independence of the automation process
for flexible related tasks in the footwear industry. This is intended to reduce the human interaction needed for
such tasks, increasing the production and, hence, the profits.

6

(1]
(2]

(3]
(4]

(5]
(6]
(7]

(8]
(9]
[10]
[11]

[12]

[13]
[14]

[15]
[16]

[17]

(18]
[19]
[20]
[21]
(22]

(23]

[24]
[25]
(26]

[27]

(28]
[29]

[30]

References

I. Maurtua, I. Goenaga, and A. Tellaeche, “Robotic Solutions for Footwear Industry,” IEEE, pp. 2-5, 2012.
M. Davia, A. Jimeno-Morenilla, and F. Salas, “Footwear bio-modelling: An industrial approach,” CAD
Comput. Aided Des., vol. 45, no. 12, pp. 1575-1590, 2013.

C. Wu, “Research on the generation of trajectory for shoe upper spraying based on structured light,” in 2008
IEEE International Conference on Industrial Technology, 2008, pp. 1-5.

N. Pedrocchi, E. Villagrossi, C. Cenati, and L. M. Tosatti, “Design of fuzzy logic controller of industrial
robot for roughing the uppers of fashion shoes,” Int. J. Adv. Manuf. Technol., vol. 77, no. 5-8, pp. 939-953,
2015.

S. Xiong, J. Zhao, Z. Jiang, and M. Dong, “A computer-aided design system for foot-feature-based shoe last
customization,” Int. J. Adv. Manuf. Technol., vol. 46, no. 1-4, pp. 11-19, 2010.

L. Zlajpah and B. Nemec, “Robotic cell for custom finishing operations,” Int. J. Comput. Integr. Manuf., vol.
21, no. 1, pp. 33-42, 2008.

R. Morales, F. Badesa, N. Garcia-Aracil, R. Bormann, J. Fischer, and B. Graf, “Bimanual Robot
Manipulation and Packaging of Shoes in Footwear Industry,” in ROBOT2013: First Iberian Robotics
Conference, vol. 252, Advances in Intelligent Systems and Computing, 2014, pp. 315-329.

S. Haddadin, A. Albu-Schiffer, and G. Hirzinger, “Safe Physical Human-Robot Interaction: Measurements,
Analysis & New Insights,” Robot. Res., vol. 66, pp. 395-407, 2011.

P. Chotiprayanakul, D. K. Liu, D. Wang, and G. Dissanayake, “A 3-Dimensional Force Field Method for
Robot Collision Avoidance in Complex Environment,” ISARC Proc., 2007.

T. D. Tang and E. L. J. Bohez, “A new collision avoidance strategy and its integration with collision
detection for five-axis NC machining,” Int. J. Adv. Manuf. Technol., vol. 81, no. 5-8, pp. 1247-1258, 2015.
R. Weller, “A Brief Overview of Collision Detection,” in New Geometric Data Structures for Collision
Detection and Haptics, no. September, 2013, pp. 9-46.

D. M. Ebert and D. D. Henrich, “Safe human-robot-cooperation: image-based collision detection for
industrial robots,” in IEEE/RSJ International Conference on Intelligent Robots and System, 2002, vol. 2, no.
October, pp. 1826—1831.

P. Rakprayoon, M. Ruchanurucks, and A. Coundoul, “Kinect-based obstacle detection for manipulator,”
2011 IEEE/SICE Int. Symp. Syst. Integr. SII 2011, pp. 68-73, 2011.

F. Flacco, T. Kroger, A. De Luca, and O. Khatib, “A depth space approach to human-robot collision
avoidance,” in 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 338-345.

L. Zlajpah, “Simulation in robotics,” Math. Comput. Simul., vol. 79, no. 4, pp. 879-897, 2008.

F. S. Cheng, “A methodology for developing robotic workcell simulation models,” in 2000 Winter
Simulation Conference Proceedings (Cat. No.OOCH37165), 2000, vol. 2, pp. 1265-1271.

W. G. Hao, Y. Y. Leck, and L. C. Hun, “6-DOF PC-Based Robotic Arm (PC-ROBOARM) with efficient
trajectory planning and speed control,” in 2011 4th International Conference on Mechatronics: Integrated
Engineering for Industrial and Societal Development, ICOM’11 - Conference Proceedings, 2011.

L. Wang, “Collaborative Robot Monitoring and Control for Enhanced Sustainability,” Int. J. Adv. Manuf.
Technol., vol. (articule, pp. 1-3, 2013.

Z. Hu, R. Bicker, P. Taylor, and C. Marshall, “Computer vision for shoe upper profile measurement via
upper and sole conformal matching,” Opt. Lasers Eng., vol. 45, pp. 183-190, 2007.

INESCOP, “Basic CAM: CAD/CAM solution for design shoe sector.” INESCOP, 2011.

Chuanyu Wu, Leiying He, Qinchuan Li, and Xudong Hu, “Research on the generation of trajectory for shoe
upper spraying based on structured light,” in 2008 IEEE International Conference on Industrial Technology,
2008, pp. 1-5.

V. Morell-Giménez, A. Jimeno-Morenilla, and J. Garcia-Rodriguez, “Efficient tool path computation using
multi-core GPUSs,” Comput. Ind., vol. 64, no. 1, pp. 50-56, 2013.

L. Radavelli, R. Simoni, E. De Pieri, and D. Martins, “A Comparative Study of the Kinematics of Robots
Manipulators by Denavit-Hartenberg and Dual Quaternion,” Mecdnica Comput. Multi-Body ..., vol. XXXI,
pp. 13-16, 2012.

S. R. S. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least
squares methods,” Univ. California, San Diego, Typeset Manuscr. ..., vol. 132, no. 4, pp. 1-19, 2004.

R. Smith, “Open Dynamics Engine ODE. Multibody Dynamics Simulation Software.” 2004.

S. Gottschalk, M. C. Lin, D. Manocha, and C. Hill, “OBBTree: A Hierarchical Structure for Rapid
Interference Detection,” SIGGRAPH ’96 Proc. 23rd Annu. Conf. Comput. Graph. Interact. Tech., pp. 171—
180, 1996.

M. Reggiani, M. Mazzoli, and S. Caselli, “An experimental evaluation of collision detection packages for
robot motion planning,” in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on,
2002, vol. 3, pp. 2329-2334 vol.3.

C. Fares and Y. Hamam, “Collision Detection for Rigid Bodies: A State of the Art Review,” Int. Conf.
Graph., 2005.

T. D. Tang, “Algorithms for collision detection and avoidance for five-axis NC machining: A state of the art
review,” CAD Computer Aided Design, vol. 51. pp. 1-17, 2014.

M. Lin, D. Manocha, J. Cohen, and S. Gottschalk, “Collision detection: Algorithms and applications,”
Algorithms Robot. Motion Manip. (Proc. 1996 Work. Algorithmic Found. Robot., pp. 129-142, 1996.

