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Abstract

Internet is evolving in both its structure and usage patterns; this work addresses two
trends: i) the increasing popularity and the related generated traffic of media streaming
applications and ii) the emerging of network portions following different philosophies
from the rest of the internet and being characterized by a mesh topology, such as
Community Networks. This thesis presents a modeling for decentralized live streaming
for mesh networks based on graph theory, considering the different inter-dependent
network abstractions involved. It proposes optimization strategies based on popular
centrality metrics, such as betweenness and PageRank. Results on real-world datasets
validate the theoretical work and the derived optimizing strategies are implemented in
open-source streaming platforms.
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Chapter 1

Introduction

Media streaming is a killer application for every-day users; its traffic consitutes the
most important portion of the overall internet traffic. Video streaming has been
estimated to generate 73% of the total consumer internet traffic in 2016 and it is
expected to reach 82% of bandwidth usage by 2021 [12]. Typically, streaming is
provided through centralized, cloud-based services such as Youtube or Vimeo.

Media streaming has a plethora of applications and it can be used in several
different contexts. In this work, the scope is specifically narrowed on live streaming
on mesh networks.

Live streaming, has already mentioned, is generally orchestrated using centralized
approaches but it is characterized by:

• being of interest for a limited (short) amount of time,

• conveying content within a given maximum delay (generally in the order of
seconds).

Examples of live streaming include: IP-TV, VoIP applications, internet radios and
video conferences.

In considering the dichotomy of the centralized versus decentralized approaches,
the reasons behind the success of the centralized approaches are various, most of them
non-technical, but derived from business logic. For example, centralized solutions do
not scale well with a growing number of consumers but they perfectly suite the purpose
of control over data and user accountability. The business model behind this kind of
distribution grants enough incomes that providers need for the periodic upgrade of a
communication backbone able to cope with the scalability issue. On the other side,
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2 1 Introduction

decentralized solutions have faced several difficulties from the business model point of
view, generally lacking a clear accountable model, Internet Service Providers (ISPs)
have considered P2P systems more a threat than a resource and decentralized systems
had been hindered in optimizing their distribution. In fact, ISPs are generally reluctant
to disclose network details so efforts like ALTO [13] and P4P [14] cannot in practice
provide decentralized applications with enough information for optimization. This
scenario has recently slowly started to change both from reconsidering the distributed
system economic potentials [15, 16] and from the emerging of new type of internet
infrastructures with very different (or absent) business logic, namely mesh networks.

Mesh networks have been extensively studied and a large body of literature
reports their characteristics and performance [17–19]. Their growing success is mainly
due to two reasons:

• the continuous improvement of the 802.11 standard,

• the continuously decreasing price of powerful wireless devices.

Indeed, it is reasonably easy to establish bi-directional point-to-point and reliable
802.11ac links with a bandwidth up to 300Mbit s−1 , spanning over kilometres for
the price of less than 150$. The evolution of mesh networks helps the spreading
of new network paradigms, like CNs. Community Networks follow fully-open and
promising principles [20]; they are internet portions organized as mesh networks gen-
erally providing ISP services, but they are almost free from business logics and, as
opposed to ISPs, they are not reluctant to disclose their network topology structures
(see Section 2.1.1). Moreover, their substantial lack of backbones makes centralized
approaches less suitable for deployment while their high bandwidth symmetric links
provide the best scenario for P2P approaches. CN bottom-up organization model
enables them to potentially grow on exponential basis, hence making them an in-
creasingly important communication asset inter connecting tens of thousands of users
worldwide [21]. Industry has noticed their potential and fostered their integration with
5G cellular netwoks [22].

Distributed live streaming on mesh networks is the focus of this thesis,
targeting in particular CNs with P2P approaches. This topic presents several challenges
to be addressed; as CNs are created with a bottom-up approach, often on volunteer basis
and depending on the specific physical impairments of the geographic surrounding
area (buildings, mountains, etc.) they can hardly be planned when they scale to
hundreds or thousands of nodes. The live streaming goal of a timely and effective
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content distribution (Section 3.2.2) on CN depends hence on the cooperation of nodes
and their ability to orchestrate the unplanned available resources.

The main goals of this work are the following:

i) drawing attention on the need of reshaping killer services for the CN context,

ii) creating a partnership with CN initiatives for feedbacks and early solution
deployments,

iii) creating a mathematical and algorithmic framework for dealing with P2P stream-
ing on CNs,

iv) creating a suitable tool for distributed live streaming tailored for CNs.

Goals i-ii) are non-technical and meant to create a favorable environment for the
deployable solutions, resulting from the goals iii-iv).

Point i) is tackled by analysing real-world CNs with performance measurement for an
off-the-shelf P2P streaming platform, called PeerStreamer (described in Section 2.1.2)
and by giving insights on the different structures and needs a CN can have with respect
the rest of the internet (results are shown in Section 4.1.1).

To address point ii), this work as been supported since the early beginnings by
European projects focused on CNs, namely Open Source P2P Streaming (OSPS)1 and
netCommons2 which provided important CN insights and feedbacks and lastly allowed
the thesis outcome tool, PeerStreamer-ng, to be included among the default services
in the CN operating system cloudy3.

The proposed model for P2P systems on mesh networks (detailed in Chapter 3)
satisfies point iii), seeking to be the more generic and expressive as possible without
neglecting any distribution detail and the derived solutions (described in Chapters 6
and 7) are tested against simulations and emulations of real-world networks as well as a
plethora of synthesized realistic dataset granting a sufficient level of generalization for
assessing the solutions robustness (experiment frameworks are presented in Sections 4.2
and 4.3).

Point iv) has been addressed by implementing a platform based on the aforemen-
tioned strategies (Chapter 8).

1http://osps.disi.unitn.it/
2https://netcommons.eu/
3http://cloudy.community/



4 1.1 Guidance for the reader

1.1 Guidance for the reader

This thesis was thought to be read from the beginning to the end but readers can
readily jump to the topics of interest; in particular

• the reader interested in theoretical modelling and the algorithmic solu-
tions derived for P2P streaming on CNs can first have a look at Chapter 3 for
the nomenclature and the background recalls and then skip to Chapters 5 to 7,

• the reader interested in evaluation tools for deriving streaming strategies (testbeds,
emulators and simulators) can readily check Chapter 4,

• the reader interested in synthetic graph generations preserving global prop-
erties can skip to Chapter 9,

• the reader interested in PeerStreamer-ng, the application outcome of this
thesis for live streaming on CNs can jump to Chapter 8.



Chapter 2

State of Art

This work tackles challenges specific to P2P over CNs, which have been little covered
in literature; however, it has moved from previous works and it has been compared
against state of the art solutions.

Section 2.1 presents the technologies and strategies at the basis of this work
approach; while developing new solutions, especially focusing on overlay and distri-
bution optimization, the state of art introduced in Section 2.2 has been taken into
consideration. Section 2.3 highlights this thesis contribution to the state of the art.

2.1 Background

Mesh networks are a well-established research field and CNs are a notable example
from such context. PeerStreamer is the P2P live streaming platform used to implement
the proposed solutions.

2.1.1 Community Networks

CNs are a notable example of mesh networks and usually they are mainly made of
wireless links, and, for this reason, the terms CN and Wireless Community Network
(WCN) are used interchangeably. As CNs are growing larger and larger, they become
important communication assets and ISPs serving thousand of users by interconnecting
smaller mesh networks [21]. However, they do not match the typical ISP network
structure as they typically lack of backbones, powerful data centers and cloud systems.
Also they generally lack of a high capacity interconnection with the rest of the internet

5



6 2.1 Background

making the design of popular services (streaming included) dedicated to CN very
appealing for users. The demand for such advanced dedicated services has driven the
deployment of many solutions; for example, in Guifi1, one of the largest WCN, there
are fourteen VoIP servers, five video conference systems and nine radio broadcasting
stations [4].

WCN links are characterized by:

• high bandwidth (∼ 10Mbit s−1 ),

• symmetric bandwidth,

• low delay (few milliseconds).

Hence, generally the packet commuting time at nodes is dominant with respect to
transmission delay. Figure 2.1 gives a representation of a mesh network interconnecting
laptops and servers.

Networking. WCNs are multi-hop mesh networks so they need routing algorithms
to make traffic packets reach their destinations. A good routing algorithm for WCNs
should be: decentralized, self-organizable and self-healing [19]. Decentralized as routing

1http://guifi.net

Figure 2.1 – Mesh network representation (blue triangles) interconnecting
laptop and servers.
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decisions are made by the single nodes according to an agreed routing protocol, self-
organizable as such protocol and individual routing decisions determine the overall
network routing, irrespective of the network complexity, and self-healing as capable of
recovering from node and routing failures.

A routing algorithm performing the way just described is non-trivial as basic
routing algorithms in WCNs can lead to sever issues, e.g., large area of packet flood-
ing, node disconnections, large power consumption and unfairness of network re-
source usage [19]. Therefore, several routing protocols for the WCN context have
been proposed. Among the others, two popular protocols are Optimized Link State
Routing Protocol (OLSR) [23] and Better Approach To Mobile Adhoc Network-
ing (B.A.T.M.A.N.) [24]. These protocols work by exchanging network routing infor-
mation among the network nodes, collaborating to forward the network traffic. The
routing information exchanged is readily accessible in the network nodes and it can be
used to optimize upper-layers communication (see Chapter 6).

This thesis focuses in particular on OLSR as each node of a network running such
protocol is able to access the whole network topology.

Philosophy. WCNs philosophy is very peculiar, comprising of a view of networking
bound to node/user collaboration and mutual aid which perfectly matches the P2P
approach. Such view completely differs from the usual ISP ones and it lacks the reasons
to hinder P2P approaches mentioned in Chapter 1. In fact, WCNs are bottom-up
mesh networks built by people for people [21]. For the CN philosophy, each network
node has to be owned by its final user and all the users collaborate to maintain the
network by sharing their knowledge and expertise. While the former aspect focuses on
the single users as main operators of the network growth and maintenance, the latter
requires the constitution of a user community, meaning a relationship network letting
users helping each other to overcome their difficulties.

Another pillar of CNs is network neutrality; when entering in the network each user
must permit the other traffic through its node without any kind of filtering or shaping.
Usually these requirements are stated in documents called micro-peer agreement users
are expected to accept before joining the CNs.

Mutual-aid principle, resource sharing and network neutrality concepts make CNs
a perfect match for P2P approaches.



8 2.1 Background

2.1.2 PeerStreamer

PeerStreamer is the outcome and follow-up of the NAPAWINE project and can be
considered today the most advanced open and documented platform to build P2P
video streaming services. It is based on a non-structured, highly dynamic, mesh
overlay topology that supports the video distribution process through swarming of
elementary information units called chunks. The participating peers complete the
distribution selecting chunks and peers for the information exchange following one of
many strategies selectable in PeerStreamer when building the actual incarnation of
the streamer that one wants to experiment with.

PeerStreamer is composed of several logical blocks: an I/O module to capture
video and reproduce it; a topology management subsystem to build and manage the
overlay; a chunk and peer selection (within the overlay) to choose what chunk is to
be exchanged with what peer in the overlay. A high level description of the logical
architecture of the system has been published by Birke et al. [25], while Abeni et
al. [26] report the software architecture of the core library, which guarantees high
portability and efficiency of the system.

The chunk exchange protocol is based on a Push/Pull approach with Offer/Select
and Confirmation [27,28], which ensure that no duplicated chunks are received by any
peer and that network resources are well exploited without building long transmission
queues that would increase the chunk delivery and consequently also the playout delay.

A complete overview of P2P live streaming and the PeerStreamer related peculiar-
ities are given in Section 3.2.

2.2 Related Works

The optimization strategies derived in this work focus mainly on applying centrality
metrics concepts on two distinct P2P challenges; i) optimal overlay rewiring, and ii)
optimal content distribution on a given overlay. Both such optimization goals are
typical of P2P streaming systems but centrality metrics have been little applied in
this context.

2.2.1 Centrality metrics

Centrality metrics play a central role in both overlay and distribution optimization
but, until recently, this has been largely ignored in technical works. Centrality metrics
have been used since the 70s in sociology as a way to identify the most influential
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nodes or groups in social networks. Surprisingly, they were not applied to multi-hop
networks till recent times [29]. Among the other topics, those metrics have been
successfully applied in network monitoring and routing [30], intrusion detection and
firewalling [31,32] and topology control [33].

Centrality metrics have also been applied in Pocket Switched Networks (PSNs) [34,
35], where they are central for the optimization of information spreading by leveraging
the importance of some particular nodes. The centrality concepts have also been used
to improve caching performance [36].

Betweenness and PageRank [37] centralities, which are employed in this work, are
introduced and defined in Section 3.1.3.

2.2.2 Overlay optimization

CN networking requires a knowledge of the underlying infrastructure, routes and path
weights. Such information is hence collected and utilized by CN nodes and it comes
already available for applications willing to optimize logical rewiring. The solutions
proposed in this work take advantage from this information and from resulting centrality
metrics to optimize the P2P overlay with respect the network resource usage and
traffic bottlenecks realizing what is commonly referred to as cross-layer optimization.

Several works propose cross-layer optimization in multi-hop wireless mesh net-
works [38–40], but they require a tweaking of the wireless medium characteristics for a
better rate allocation and they do not take advantage from network layer information.
In the same direction, Guan et al [41] presented a method for jointly optimize the
wireless transmission power and some content streaming rate.

The Software Defined Network (SDN) approach has been also applied to P2P
streaming applications [42,43], orchestrating a network including super peers in close
collaboration with ISPs, hence, drifting from a pure P2P model.

The use of special peers, called super peers or helper nodes, built and running for
the purpose of helping the streaming distribution, has been used in the cloud-assisted
streaming context [44].

Kuo et al. [45] report a large list of works on optimization of decentralized systems
over multi-hop mesh networks; however they do not focus on the liveliness of a time-
constrained streaming, with the notable exception of the work by Setton et al. [46]
although it requires a deep integration with the lower levels of the network stack. The
solution proposed by Kuo et al. [45] is even more intrusive, requiring the extended
router header of IPv6 and the modification of all the network layer implementations.
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Among the techniques for overlay optimization, the approach of network coordinates
is based on node distance evaluation and several algorithms have been proposed [47–49]
to work in the heterogeneous environment of the internet. Being tailored for the internet,
those methods do not take access of the underlay information mesh networks and,
particular, WCNs offer.

A second branch of overlay optimization has focused on tailoring logical links with
respect to bandwidth [50] or delay [27] (generally Round Trip Time (RTT)) measures
but also on a mix of those [51]. Again, those solutions were tailed for the internet but
WCNs are quite different so that delays are quite lower and the links take advantage
from bandwidth symmetry, hence, each node can usefully contribute to some content
dissemination.

Marco Conti et al. propose a cross-layer overlay rewiring relaying on an extension
of the mesh network proactive routing control [52]. Their approach, however, is highly
tied to this kind of protocols and it requires the modification of their implementation.

2.2.3 Distribution optimization

The cooperation among the nodes of a network is essential for P2P live streaming.
Live streaming tolerates some packet loss but the timely delivery requirement puts a
strong focus on the packet delay distribution among the nodes [53–55].

Distribution in a P2P network happens mainly through scheduling. Distribution
scheduling is already well-investigated topic whose main references are reported in
Section 3.2.1.3. Among the others, the work by Zhang et al. [54] extends the most
used P2P distribution scheduling algorithms.

As this thesis focus on distribution optimization instead, in the following the
main related works on distribution scheduling optimization are reported. Few works
are dedicated to optimize the distribution parameters for a given P2P overlay while
a large body of work is dedicated to embedding multicast trees on a given mesh
topology (either physical or logical, P2P) and it is summarized by Mokhtarian and
Jacobsen [56] who also model and optimize the live distribution over mesh networks
by using concurrent multicast tree distribution. Optimal rate allocation for content
distribution on mesh networks has been already investigated [57, 58]; the most recent
work, by Wu and Li [59], proposes a fluid flow-based model for node multicast and it
optimizes with respect to each node distribution sending rate. Their strategy can be
implemented in a decentralized way but it introduces a lot of node overhead in terms
of both signaling traffic and computational resources.
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2.3 This work contribution

Summing up, this work presents two main contributions to the state of art:

• A new overlay optimization scheme based on betweenness centrality;

• A new distribution optimization scheme based on PageRank centrality.

The overlay optimization strategy, presented in Chapter 6, is designed to be: not
intrusive, meaning it does not require any existing layer implementation modifica-
tion; completely decentralized, without helper or super nodes, ISP independent; and
exploiting the advanced mesh network routing resources.

The distribution optimization strategy, presented in Chapter 7, focuses on tweaking
the distribution parameters, hence being applicable to a broad range of scenarios,
and being decentralized and lightweight. The Wu and Li strategy is considered as a
baseline for this context and it is more deeply presented in Section 7.4.1.





Chapter 3

Theoretical modelling

The distribution optimization goal of this thesis requires an adequate modeling of P2P
live streaming on CNs. This chapter presents a formalization of such context in terms
of graph theory. To this end, recalls on the notions from the state of art are briefly
reported (Section 3.1) and, next, the proposed formalization of a P2P distribution
system is given (Section 3.2). For a complete overview of theoretical graph foundations
see, for example, the book by Harary [60]; for network specific aspects see the book by
Newman [61]. The following description adopts the convention of upper case letters
for set and matrice symbols and lower case letters for set elements and vector symbols.
P2P peers are referred with P1, . . . , Pi. Given a generic vector v ∈ Rn, the diagonal
matrix having the elements of v on the diagonal is indicated with Iv ⊂ Rn×n.

3.1 Graph theory background

A network can be represented through a simple graph (undirected and without self
loops) G(V,E), comprising of a node set V and a set of bidirectional links E. The
maximum number of links in G are indicated with mV = |V |2−|V |

2 . There is a natural
isomorphism between graphs and matrices. Given an undirected graph G(V,E) it is
straightforward to represent it with a symmetric adjacency matrix A ∈ {0, 1}|V |×|V |

where Aij = 1 ⇐⇒ (i, j) ∈ E. The set of neighbours of node i is indicated with
Ni = {j ∈ V : (i, j) ∈ E}. Given a graph G(V,E), D : V × V → 2E is the function
mapping two vertexes i, j to the minimal ordered set of links connecting node i to
node j computed using the Dijkstra algorithm on G1.

12E is the power set of E, meaning the set of all subsets of E

13
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3.1.1 Graph properties

Being graphs a well investigated mathematical abstraction, several local and global
properties have been formalized and studied. After the definition of each crucial graph
property, the need to synthetically produce random graphs realizing the given property
rises naturally. These synthetic graph generators generally take a given target graph
family in input and produce a single random realization of it. In the following the
global properties used in the rest of this work are introduced.

Degree sequence. The vertex degree sequence can be computed as d = A~1, d ∈
N|V | where ~1 ∈ {1}|V | is the unary vector. The degree sequence had been consid-
ered a crucial graph property for a long time, however, it is easy to see that very
different graphs can have the same degree sequence. Indeed, early degree sequence
based generators (configuration model) failed to produce graphs preserving important
characteristics other than the degree sequence itself.

Average clustering. Average clustering is the measure of the tendency of graph
nodes to form clusters. It is of particular interest in the context of online social
networks [62], it measures how likely the cliques form and it is typically defined as:

c̄ = 1
|V |

∑
i∈V

2Ti
di(di − 1)

where Ti is the number of distinct triangles including node i (a triangle here indicates
an induced sub-graph of three nodes connected one-another). Average clustering is
one of the interesting graph properties modern graph generators target [63].

Modularity. Modularity is a well-known, widely used metric to measure and
identify community structures in graphs [61]. It leverages the Newman definition
of node groups as particular node subsets whose intra-group links are denser then
inter-group links. The modularity value over a set of non-overlapping groups (a.k.a.
partitions or communities) expresses the extent to which these partitions tend to be
loosely connected one another but very well connected inside. It is of particular interest
in sociology, since it is related to the notion of cohesive subgroup [64, 65]. In order to
introduce more formally the concept of graph modularity, it is convenient to define
first the modularity matrix B ∈ R|V |×|V | as:

Bij = Aij −
didj∑
i di
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Considering a given a set of node partition labels Π1, . . . ,Πm with a corresponding
partition node assignment π1, . . . , π|V | ∈ {Π1, . . . ,Πm} (such that node i belongs to
partition πi), modularity is defined as [61]:

Q = 1∑
i di

∑
i,j

Bijδ(πi, πj)

where δ(πi, πj) = 1 ⇐⇒ πi = πj and 0 otherwise.
The notion of modularity presented can be used in three ways:

1. Given a partition node assignment π1, . . . , π|V | ∈ {Π1, . . . ,Πm}, Q expresses
how well the partition fits the topology of G(V,E)

2. The computation of Q can drive the search for the partition π∗1 , . . . , π
∗
|V | ∈

{Π∗1, . . . ,Π∗m} that maximize its value, referred to as Q∗

3. The maximum modularity value Q∗ for a graph G(V,E) indicates to which extent
its topology reflects a natural partition in communities (sometimes generically
called the modularity of the graph)

3.1.2 Intersection graph

While generally graphs are defined starting from a node set V and an edge set E, they
can also be defined using sets of elements. Intersection graphs are graphs defined in this
way. Let S 6= ∅ be a set and F = {S1, . . . , Sn} a family of sets S1, . . . , Sn : Si ⊆ S ∀i.
The intersection graph Ω(F ) of F is made of a set of nodes V = {1, . . . , n} and a set
of links E = {(i, j) ⇐⇒ Si ∩ Sj 6= ∅}.

There is hence an isomorphism between graphs defined through G(V,E) and graphs
defined as intersection graphs Ω(F ). The second interpretation can be convenient in
certain cases like the one presented in Chapter 6. Figure 3.1 presents an example of
intersection graph.

3.1.3 Centrality

In the context of networks, centrality has a broad range of meanings. Initially intro-
duced in the field of sociology, generally speaking centralities rank the nodes or the
links according to a measure indicating their importance in the network. The measure
used depends on the definition of what a network node or link importance is.
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Figure 3.1 – Intersection graph with S1 = {a, b, c}, S2 = {d, e, f}, S3 =
{d, h, g}, S4 = {a, g, i}, S5 = {b, h}, S6 = {e}, S7 = {f, j}, S8 = {c, i, j}.

Betweenness. Given the multiset of edges used in the shortest paths, D =⋃n
i=1,j>iD(i, j), the link betweenness centrality of (i, j) is given by:

bij = mD(i, j)
mV

where mD : E → N is the multiset multiplicity function and it indicates how many
shortest paths insist on a specific edge; i.e., the edge betweenness is a property of the
graph edges defined, for each edge (i, j), as the fraction of the total number of shortest
paths passing on that edge. Edge betweenness relates to the identification of more
important edges in multi-hop communication; the more shortest paths insist on an
edge, the more this edge is probable to be interested during communication routing.

PageRank. Here it follows a brief description of the PageRank centrality, the
interested reader can check the work by Bryan and Leise [37] for a more comprehensive
presentation. This centrality metric was originally created for the context of graphs
where the nodes are web pages and the links are hyperlinks inter connecting those
pages, but this concept can naturally be applied to any graph G(V,E). The goal of
PageRank is to measure the importance of the nodes (web pages). The importance of
a node is defined with respect to the importance of its neighbours; if a node is linked
by important nodes it means it is also important. In the rest, the PageRank value
of node i ∈ V is indicated with xi ∈ (0, 1). Conventionally, if xi > xj than node i is
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more important (central) than node j ∀i, j ∈ V . By definition:

xi =
∑
j∈Ni

xj
dj
, ∀i ∈ V

Vector x is normalized so that
∑|V |
i=1 xi = 1. Given an adjacency matrix A of G(V,E)

the PageRank vector x can be redefined as

x = Āx,

|V |∑
i=1

xi = 1

where Ā = AI−1
d is the matrix whose columns are normalized with respect to the

corresponding node degree. If A is the adjacency matrix of a strongly connected graph
G(V,E) then Ā is irreducible and for the Perron-Frobenius theorem it has unique
eigenvector with eigenvalue 1 which is also the maximum eigenvalue [66].

3.1.4 Spectral considerations

Every real and symmetric matrixM ∈ R|V |×|V |, such as A, with eigenvectors v1, . . . , vn

and eigenvalues λ1, . . . , λ|V | (all of them necessarily real) can be decomposed as a
summation of matrices;

M =
n∑
i=1

λiviv
T
i

Without loss of generality, it is considered ‖ vi ‖= 1 ∀i.

Given M has rank |V |, a low rank approximation M̃ ∈ R|V |×|V | of M is a matrix
of the same size but with lower rank m < |V |. Among the low rank m approximation
matrices of M , the best one is the one closest to M with respect to the euclidean
distance [67]. In the case of real symmetric matrices, such as M , and considering
an ordering on the eigenvectors vi, . . . , v|V | such that |λi|> |λj | ∀i < j, such best
approximation is given by the truncated sum of its spectral decomposition [68]:

M̃ =
m∑
i=1

λiviv
T
i , m < |V |
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3.2 P2P live streaming

P2P live streaming is about a network of hosts interested in receiving a multimedia
content within a certain time deadline from another special host called the source.
To this end, the source and the hosts orchestrate a decentralized real-time content
distribution. The real-time constraint can be hard, if it requires the content to be
received within few hundreds of milliseconds (as in the case of phone calls or video
conferencing) or soft, if it just requires the content to be consumed withing few seconds
(as in the case of the television and radio broadcasting). The content is typically
divided into small chunks of data by the source in order to ease the information
spreading in the network.

The idea behind the P2P approach is that information is not directly transmitted
from the source to the nodes but instead the hosts cooperate and retransmit the content
one to the other. There is a broad literature production detailing several possible
schemes under which this distribution can happen. P2P systems are categorized
according to their communication structure, which can be:

• tree based;

• multi-tree;

• unstructured.

This work focuses on unstructured systems as they prove to be more robust, reliable
and more prone to fully exploit the available resources [69]. Section 3.2.1 presents
the thesis contribution from the theory point of view with a mathematical framework
tackling P2P distribution from a layered perspective.

3.2.1 3-layer P2P model

From the very beginning of this work, P2P distribution system has been logically
divided into three different, almost independent, layers. Conceptually, there are three
different logical topologies in a P2P distribution; the network of ISO/OSI layer three,
namely hosts and links, called the underlay; the logical network that a P2P system
builds on it during the process of neighbour selection and forming what is generally
referred to as topology or embedded network, called overlay in the rest of this document
to avoid confusion; and the distribution tree for a given data chunk, rooted at the
source and consisting of all the nodes that received it and all the edges interested in
the forwarding.
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3.2.1.1 The underlay

Together with the media content to be distributed, the underlay can be considered the
input of the distribution system. The underlay is made of layer three entities connected
to each other, such as laptops, routers, smartphone, servers, etc. It is modeled with a
simple graph Gu(Vu, Eu) where Vu is the set of all networking devices and Eu the set
of all the links interconnecting them. It is worth noticing that generally Gu(Vu, Eu)
is not known a priori but WCNs constitute an exception, being able to export their
topology (see Section 2.1.1). Figure 3.2 shows an example of underlay in the form of
mesh network.

3.2.1.2 The overlay

Given an underlay Gu(Vu, Eu) and a content to be distributed, some underlay node
users are interested in receiving this content. Each P2P user instantiates an instance
of the P2P distribution system, generally called a peer. For the sake of simplicity the
set of peers is considered as a subset of the set of underlay devices Vo ⊆ Vu. The
approximation is reasonable to the extent one is not interested in modeling more than
one running peer per underlay device, which, from a distribution point of view makes
completely sense as once information reaches a node it should be forwarded directly
to all its running peer instances.

Once a peer Pi ∈ Vo is launched and bootstrapped, it receives messages listing
random subsets of the other peers through the gossiping methods. Although gossiping
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Figure 3.2 – Example of mesh underlay network represented as a graph
Gu(Vu, Eu). Hosts are numbered with an arbitrary ordering. Copyright © 2016
IFIP.
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methods are not the focus of this work they are of main importance for a P2P system;
they are used to periodically provide a fresh random sample of peers participating to
the distribution [70,71]. That is particularly useful in the context of live streaming
which is generally subject to churn.

When each peer Pi receives the peer random sample, it can pick some peers as
its new neighbours. Generally, peers target a specific neighbour set size so that they
also drop some of their neighbour selections. The neighbour set construction and
continuous update is the core of the P2P overlay building and it is called rewiring.
Each node Pi creates its neighbour set Ni ⊆ Vo \{Pi} according to some topology policy.
Given its robustness against churn, the most successful topology policies combine the
random selection of neighbours with a fixed minimal neighbour set size. For neighbour
set sizes much larger than log2|V |, those policies are granted (with high probability)
to create connected Erdős-Rényi graphs.

Each neighbour selection involves the establishing of a logical communication link
(Pi, Pj); if Pj ∈ Ni then Pi and Pj exchange messages directly. Thus, the overlay
links can be defined as Eo = {(Pi, Pj) : Pj ∈ Ni}. In a P2P system logical links are
generally bidirectional, (Pi, Pj) ∈ Eo ⇐⇒ (Pj , Pi) ∈ Eo which implies Go(Vo, Eo) is
also a simple graph. This, together with a suitable choice of the target neighbour
set size, grants that resulting graph is strongly connected with high probability, a
property very important in an unstructured P2P network [51].

Following the definition of Eo, the bidirectionality of links and the need to avoid
graph disconnections, P2P systems do not consider refusing a logic link establishment.
That means a peer Pi selecting a subset of peers as its neighbours can end up having
a larger neighbour set Ni as it must accept incoming logical link establishments. In
the following, this topology policy is referred to as neighbourhood rule. An example of
overlay Go(Vo, Eo) is given in Figure 3.3.

3.2.1.3 The distribution

The media content is typically divided in a (possibly infinite) set of chunks c1, . . . , ck, . . .
to ease the distribution. The complete distribution of the content happens if each of
the chunks ck is propagated from the source to all the peers in Vo. Peers store the
chunks in a chunk buffer to be able to forward them. Chunk buffers typically have a
limited size determined by the level of liveliness of the distribution.

The propagation of each chunk happens through the overly Go(Vo, Eo) according
to:
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Figure 3.3 – Possible overlay graph Go(Vo, Eo) (black nodes and dashed
edges) over the underlay graph of Figure 3.2; source Ps is represented in grey.
Copyright © 2016 IFIP.

• a propagation scheme,

• chunk/peer scheduling.

The propagation is performed by each peer individually; they are expected to agree on
a propagation scheme and compute the chunk/peer scheduling. From this decentralized
point of view, the distribution can be described through the interaction of only two
peers: the one that has some chunks in its chunk buffer (the sender) and the one
seeking missing or latest chunks (the receiver). Note the two roles are not mutually
exclusive as all peers are expected to eventually have some content in their chunk
buffers and they all need newest or missing chunks, so they usually play both roles
taking turns.

Propagation schemes require decisions on destination/source peers and on chunk
identifiers which are performed through peer and chunk scheduling. Chunk and peer
scheduling can be briefly described as the process of determining a suitable couple
(ck, Pj) for a given propagation scheme.

There are two main schemes well-known in literature for propagation: push and
pull.
Push propagation scheme. A sending peer Pi schedules (ck, Pj) and send ck to Pj .
Pull propagation scheme. A receiver peer Pj schedules (ck, Pi) and it sends a
request for the chunk ck to the peer Pi which takes care of committing the transfer.
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An important element during scheduling is the knowledge about neighbour chunk
buffer status; this information improves significantly the effectiveness of chunk schemes
as it avoids scheduling non appropriate chunks for a given peer. For this reason the
chunk buffer bitmaps, containing the information of the chunks in each peer chunk
buffer, are periodically exchanged among neighbours. This information is generally
piggybacked on top of gossiping messages but care must be taken in handling that
data as its timeliness depends on gossiping internal timers and updates.

Moreover, even if peers have complete information about their neighbour chunk
buffers, the lack of synchronization may result in unsuccessful chunk sending (e.g.,
when two peers push the same chunk to the same receiver). To further improve the
propagation effectiveness, signalizing schemes are introduced in the picture. Signaling
messages can typically be offer or select messages.
Push/pull mixed propagation scheme. A sending peer Pi schedules (ck, Pj) and
it sends an offer message to Pj for ck. When Pj receives the offer it sends a select
message back to Pi indicating whether or not it requires ck. In the affirmative case, Pi
sends ck to Pj . This can be easily extended to an arbitrary number of offer/selected
chunks so that, Pi schedules a tuple (Pj , ck1 , . . . , ckρ) consisting of ρ different chunks
and Pj can select a subset of size σ ≤ ρ of them.

The scheduling of (Pj , ck1 , . . . , ckρ) is not trivial and cannot be easily done jointly
peer/chunk-wise. Hence, scheduling is generally performed in two steps, combining
two distinct functions for peer and chunk scheduling.
Peer scheduling. Peer Pi wants to transmit ck, it determines the destination peer
Pj ∈ Ni through the peer scheduling. Examples of peer scheduling include: random
peer, peer that needs ck.
Chunk scheduling. Peer Pi wants to send a chunk to peer Pj , it determines the chunk
ck to be transmitted through the chunk scheduling. Examples of chunk scheduling
include: random chunk, chunk useful for Pj .

In this work, the push/pull mixed scheme is used among the peers while the source
always pushes its chunks to its neighbours (it is straightforward no peer can have the
newly created chunks). The source Ps generates chunks with a certain periodicity;
every τs milliseconds Ps generates and sends a new chunk ck to a number m of its
neighbours Ns. The chunk is propagated in the overlay Go(Vo, Eo) as each peer Pi
sends an offer every τi milliseconds to one of its neighbours Pj ∈ Ni. The propagation
of a generic chunk ck over an overlay Go(Vo, Eo) is represented in Figure 3.4.



3.2 P2P live streaming 23

1
Ps

2
P2

34

5

P3
6 7

8

910

P4

11

12

P5

13 P6

14
P7

15

16 P1

Figure 3.4 – Distribution tree (gray arrows) for a chunk ck originated by the
source Ps.

It is worth noticing that, if ρ = 1 then for the propagation of chunk ck to happen
it is necessary (but not sufficient) that

1
|Vo|

∑
i

τi ≤ τs (3.1)

Intuitively, if the source is generating chunks at a rate faster than the average peer
propagation rate, chunks cannot be forwarded to all peers as chunk buffer length is
limited and, thus, they are eventually discarded.

To summarize, this work focuses on a offer/select push/pull scheme with timers τi
and the use of peer first scheduling, so that when a peer Pi has to decide (Pj , ck) for
sending an offer it first executes a peer scheduling selecting Pj and secondly it selects
ck according to the Latest-Useful chunk selection policy which picks the newest chunk
ck that, presumably, Pj does not have.

Chunk scheduling has been extensively investigated [54,72–75] and, under some
assumptions, the existence of an optimal scheduling [76,77] was proven. These works
reveal the efficiency and robustness of the peer (possibly weighted) random selection
strategy followed by the Latest Useful Chunk chunk scheduling strategy. This approach
has recently been analyzed and extended under the name of High-bandwdith Peer
First (HPF) [78].

Since the peer scheduling is performed randomly on a given distribution, it can be
represented with a column stochastic adjacency matrix Ã whose columns represent the
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discrete probability distribution of peer selection. Hence, peer Pj schedules peer Pi
with probability Ãij (recall column Ãj indicates the probabilities of peer Pj sending a
chunk to its neighbours). Note that, for a randomly injected chunk to be spread in
the network, Ã must be irreducible or, conversely, the graph resulting from Ã has to
be strongly connected.

Definition 3.1. Ã ∈ [0, 1]|V |×|V | is a distribution matrix if

• Ã is a column stochastic adjacency matrix,

• Ã is irreducible.

For the aforementioned neighbourhood rule (Section 3.2.1.2), it is requested that
Ãij = 0 ⇐⇒ Ãji = 0. In the trivial case (but in practice widely used) of uniform
probability, the distribution matrix becomes Ã = AI−1

d where A is the adjacency
matrix of Go(Vo, Eo) and d = A~1 is the peer degree sequence.

For the sake of ease modelling, τs is considered constant through time allowing
the definition of the offer ratio θi = τs

τi
which normalizes and expresses the amount

of offers peer Pi sends per chunk time τs. Hence, it enables restating the necessary
condition of Equation (3.1) in terms of offer ratios:∑

i

θi ≥ |Vo| (3.2)

Definition 3.2. A distribution system for an overlay Go(Vo, Eo) is a couple (Ã, θ)
such that:

• Ã is a distribution matrix for Go(Vo, Eo),

• θi ≥ 0 ∀i.

A distribution system (Ã, θ) is said minimal if ~1T θ = |Vo| and ρ = 1.

3.2.2 Performance measures

A live video streaming is characterized by a high sensitivity to reception delay. Gener-
ally, contents are considered live when delivered within few seconds. In any case, given
its lively nature, peers are not requested to store the content indefinitely. Thus, the
reception delay is ultimately impacted by the peer chunk buffer length which grossly
determines, at steady state, the oldest content chunk obtainable.

Without considering underlay link losses, hence a chunk ck cannot be downloaded
by a peer Pi and it is considered lost if:
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• it cannot be obtained from any neighbour Pj ∈ Ni,

• the ck creation timestamp passed the system deadline;

with this in mind, two metrics are defined to measure the live distribution quality:

• (average) reception delay: the time interval from a chunk creation to its reception,

• (average) reception loss: the fraction of peers that received a chunk before it
ceased to be forwarded.

However, the two metrics have not the same importance; distribution systems focus
primarily on performing the actual distribution by improving the reception loss and,
secondly, on improving the distribution quality by reducing the reception delay.





Chapter 4

Evaluation tools

This work is mainly about evaluating new approaches and communication strategies on
mesh networks. For the sake of those evaluations comparison methods are required. The
developed techniques are validate using different instruments at different abstraction
levels.

A testbed is made of a real network reassembling a real-world scenario and it
is the best choice for an on-the-field evaluation highlighting the major challenges to
be tackled. An emulator makes it possible the experimentation with real software
platforms in a controlled and designable environment, allowing corner case scenarios
and validating the strategies on a much larger input set than the one available on
testbeds. Finally, a simulator makes it possible to abstract everything but some
specific algorithms and details, creating the best scenario for fine tuning and analysis
and allowing comparisons without any interference.

In this work all of those three kind of tools are used and the actual ones are briefly
introduced in the following of this section.

4.1 Community-Lab

Community-Lab1 is a research infrastructure developed during the CONFINE project [79].
Unlike other popular testbeds like Emulab [80] or PlanetLab [81], it is meant to support
the research on WCNs and foster their growth.

1https://community-lab.net/
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Community-Lab is built starting from real WCN islands, the largest in Europe:
guifi.net2, FunkFeuer3, Athens Wireless Metropolitan Network (AWMN)4, Ninux5

and Wireless België6. These "islands" are placed in different regions, respectively,
Spain, Austria, Greece, Italy and Belgium, and they provide a variety of different
infrastructures, communication schemes and protocols being a valid representative
sample of the possible WCN setup available.

4.1.1 Experiments

Community-Lab is a network of research devices co-located in the aforementioned five
WCNs. These research devices are special WCN nodes placed and set-up with the
goal to offer researchers a controlled environment to launch experiments inside WCNs.
These devices are generally not directly interconnected in the WCNs but linked to a
real WCN node. In this way, research devices, and hence Community-Lab, provide
realistic scenarios for experimenting inside the WCNs. The experiment managing
functions are centralized and run from a specific testbed server that researchers can
freely access.

Before running any actual P2P experiment at the application layer, the WCN
properties and performance accessible through this testbed are evaluated. This step is
needed so to evaluate the bias that other kind of experiments are subject to. A subset
of research nodes are selected and their connectivity, in terms of link loss and link
delay, is evaluated. Figure 4.1 shows the ICMP loss among the research devices. Data
is averaged with respect to all the possible destinations (every other devices) and it
shows the WCN links are quite reliable but for two badly connected devices.

Such difference can be further analysed considering the ICMP packet delay. Fig-
ure 4.2 presents the heatmap representation of the ICMP average RTT and its standard
deviation among all devices. As it can be seen, devices seem to belong to different,
well-intra-connected islands, but for the last two that appear badly connected with
the all the others. In particular, research devices named from s1 to s10 belongs to a
well intra connected group, s11 and s12 to another one which is not so well connected
with the former while s13 and s14 data confirm their bad connectivity as showed in
Figure 4.1.

2http://guifi.net
3http://funkfeuer.at
4http://www.awmn.net
5http://ninux.org
6http://www.wirelessantwerpen.be/
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Figure 4.1 – ICMP traffic loss during experiments for each involved research
devices. Copyright © 2014 IEEE.

Figure 4.2 – Left plot: average RTT from each node to the others; right plot:
related RTT standard deviation. Copyright © 2014 IEEE.
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These results highlight the drawbacks of a real-word scenario, which, on the other
side, offers researchers the opportunity to analyse and get insights before service
deployments.

4.2 NePA TesT

Network Protocol and Application Testing Toolchain (NePA TesT) [5] is a development
framework based on the Mininet emulator [82], created to rapidly prototype WCN
oriented services on a broad ranges of realistic environments. NePA TesT also provides
real-world datasets and topology generators, specific for WCNs. It is released as
open-source software and it is freely available on-line7.

The great advantage of emulators with respect to testbeds is their higher reliability
and environment control, allowing the testing of corner cases as well the robustness
assessment on huge numbers of scenarios. Moreover, they still permit the testing of
ready to deploy code, as opposed to simulators.

Emulators like NEmu [83] and Naxim [84] take advantage from the QEMU [85]
layer to virtualise an entire network. However, this kind of network emulation is much
more resource hungry than kernel namespace ones, performed by Mininet, which allows
the virtualization of thousands of nodes [82].

4.2.1 Mininet

With Mininet, emulated nodes share the same kernel, filesystem, memory and processor
resources, but they have separated network environmnets. It has been created mainly
for dealing with SDN experiments but it has been extended to ease the experimentation
for WCN solutions.

4.2.2 Topology generator

The performance of communication systems are strongly affected by the network struc-
ture, i.e., by the underlying network topology they are relying upon. Characteristics
like edge density, degree sequence and node number are just the simplest example
of such determinant factors (see Section 3.1.1 for some advanced ones). Hence, it is
mandatory to perform experiments on networks reassembling the real ones as much as
possible. Moreover, most of the time, researchers want to abstract some key graph
features, testing their algorithms on a large dataset of similar scenarios to assess their

7https://ans.disi.unitn.it/redmine/projects/community-newtork-emulator
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solution robustness. To this end, they are interested in graph generators targeting
some important properties.

Graph generation is not a trivial task and NePA TesT comes with a companion
library capable of various kind of graph synthesizing including the well known Erdős-
Rényi, Barabasi and Watts-Strogatz generators and the ones derived from real CN
analysis performed by Milic and Malek [86] and Cerdá-Alabern [87].

4.2.3 WCN real data

Along with sound graph generators, NePA TesT comes with real world WCN topologies;
snapshots of Ninux and FunkFuer had been taken and deployed so that reasearchers can
test against them. It is worth noticing that NePA TesT supports input topologies in
NetJSON format, which is a standard format many routing protocol implementations
(including OLSRd and Batman-adv) export the topology with. Hence, researchers
working with such protocols can export real world topologies and use them directly in
the emulator for sandbox testing.

The link average loss rate is generally exported as meta-parameter of the topology
itself so that emulation of losses can be implemented with standard distributions.
Emulating a realistic link delay is generally more difficult. NePA TesT is shipped with
a default CN delay model derived from a measuring campaign on the qMq Sants-UPC
community network (a portion of Guifi.net)8, hence, researchers can test networks
with realistic topologies, loss and delay distributions.

4.2.4 Logging facilities

Simulating a system allows the abstraction of physical constraints as well. If the host
machine cannot cope with a real-time simulation, simulations can slow down time and
keep the simulation state sound. That does not apply to emulation in general, where
measurements occur on real resources. Hence, if an emulator, or the machine hosting
the emulation, do not have enough resources to support the intended scenario they
can act as a bottleneck and influence the results. To avoid this possibility, NePA TesT
comes with a logging module which keeps track of key indicators during the entire
duration of the emulation. Such module can log CPU load, memory and swap usage.
Researchers can analyze these logs a-posteriori and verify the emulation executed
correctly.

8http://dsg.ac.upc.edu/qmpsu/index.php
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4.2.5 Researcher interface

Each experiment is defined by its configuration file and the associated code and graph.
Researchers are expected to write the test code to be executed in the emulated network
extending the default test class. This code defines the network nodes behaviour and
it usually consists in launching the target executable. Researchers have to select a
network topology to be used; as mentioned, they can take advantage from NePA TesT
network dataset, from graph generators or provide their own (in NetJSON or edge list
formats). Finally they are required to write the experiment configuration file. This
file specifies the test code to be executed, the network graph file and other experiment
options.

Once the code, the graph and the configuration file are created, the experiment
can be started through the python executable, as exemplified in Listing 4.1.

1 python nepa_test .py -f conf/ peerstreamer .ini -t PSNRAND

Listing 4.1 – Invocation of NePA TesT using the configuration stanza
PSNRAND defined in conf/peerstreamer.ini.

Figure 4.3 presents NePA TesT architectures and highlights the researcher interface
part.

4.2.5.1 Test code

Researcher test code has to be integrated in the framework and follow some guidelines;

Topology
Generator

Configuration
File Test Code

Mininet
Wrapper

Mininet Logging
Module

launch host process

Figure 4.3 – NePA TesT architecture, the researcher interface is depicted in
green. Copyright © 2016 IEEE.
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• It has to be defined in a subclass of MininetTest,

• It has to implement the runTest function,

• It has to end the runTest function with a call to the wait function.

The wait function also takes optional parameters affecting the resource logging be-
haviour. MininetTest class also provides a set of important methods:

• getAllHosts: returns the list of all the network node objects,

• getHostSample: returns a random list of a subset of network nodes,

• bgCmd: executes a given shell command on a specified network node,

• sendSig: send a POSIX signal to a given network node,

• killAll: terminates all the precesses run by the network nodes,

• setPrefix: set the folder for storing experiment data and logs.

Researchers can also check the parameter values defined in the configuration file
or passed through command line inspecting the class attribute conf_args. A typical
experiment workflow follows the diagram showed in Figure 4.4.

inspect optional vari-
ables in conf_args setPrefix

select nodes with:
getAllHosts,

getHostSample

run a program inside
the node with bgCmd

wait for the
test duration

killAll and
exit or repeat

Figure 4.4 – Typical flow of the runTest function of a test class. Copyright
© 2016 IEEE.
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4.2.5.2 Configuration file

A NePA TesT configuration file follows the informal standard of .ini files. It comprises
key values entries and sections. Those sections define NePA TesT configuration stanzas
and relates to exactly one experiment. That means a researcher can define multiple
stanzas in the same file. Moreover, these stanzas can inherit the configuration from
other stanzas.

A configuration file example is given in Listing 4.2. To date, the following configu-
ration parameters must be specified in any case: testModule which refer to the test
code file name, testClass which specifies the test class in the test code file, duration

expressing the experiment duration in seconds and graphDefinition indicating the
network graph file name. The interested reader can find further setting details in the
on-line project documents.

1 [ PSNRAND ]
2 testModule = peerstreamer
3 testClass = PSRandomNTest
4 graphDefinition = Nets/ ninux0 .edges
5 duration = 364
6 num_peers = 30
7 neigh_size = 10
8 times = 10
9 distoptimization = 0

10 xloptimization = 0
11 chunks_per_second = 175
12 chunks_per_offer = 30
13 log_chunks = 1
14 log_signals = 0
15 log_neighbourhood = 0
16 source_chunk_multiplicity = 1
17 push_strategy = 0
18 aframe_per_chunk = 5
19 chunk_buffer_size = 200
20 link_bw = 10
21 link_mean_delay = 8.0658 ms
22 link_delay_sd = 55.7166 ms
23 link_delay_distribution = qmp_delay_m8 .0658 _s55 .7166
24 link_loss = wifi_loss
25 min_nodes_num = 10
26 max_nodes_num = 30
27 nodes_num_inc = 5

Listing 4.2 – An example configuration file; the fist line declares the
stanza name and the following first four parameters are mandatory while
the others are experiment specific (related to PeerStreamer)
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4.3 SSSim

Simple and Scalable Simulator for P2P scheduling algorithms (SSSim) [88] is a P2P
simulator designed with the goals of: flexibility, extensibility, performance (both in
terms of CPU load and memory usage) and scalability. It has been mainly developed
to test and compare different peer/chunk scheduling solutions (see Section 3.2.1.3 for
details on P2P distribution and scheduling) for one-to-many real time streaming.

As comparing different distribution systems capable of scaling up to tens or hundreds
of thousands of nodes, this work needs that kind of simulator because performance
and scalability play a major role. Since the original release of SSSim did not allow the
specification of user defined scheduling timers, it has been extended so that it is now
able to entirely simulate complex P2P distribution processes like the one by Wu and
Li [59] and the one presented in Chapter 7. All the code, is freely available on-line9.

4.3.1 Contribution

This work adds the following features to SSSim:

• Event-driven scheduling simulation: enables researchers to test scheduling algo-
rithms using fractions of chunk time (τs, see Section 3.2.1.3), hence, allowing a
broader range of strategies to be implemented;

• Definition of the simulated topology through input file (edge list format): eases
the experimentation with large graph datasets as well as with well-defined corner
cases;

• Topology preprocessing as an adjacency matrix: allows the computation of the
PageRank centrality metric for the topology nodes;

• Self-estimation of distribution convergence: simulation time is a very important
matter when trying to establish the steady state behaviour of scheduling algo-
rithms; the self-estimation of convergence feature of SSSim allows to end the
simulation when steady state reaching is detected.

• Wu-Li scheduling optimization [59];

• PageRank scheduling optimization (Chapter 7).

9https://ans.disi.unitn.it/redmine/projects/sssim





Chapter 5

WCNs and video streaming

As introduced in Chapters 1 and 2 video streaming is a popular application, a service
a modern network needs to sustain. At the same time, the P2P architecture and
philosophy seem a perfect fit for the WCN structure and services.

This chapter answers two fundamental questions that arise from such considerations:

• Can WCNs support state-of-art P2P services designed for the internet?

• Is P2P video streaming feasible on WCNs? Under which conditions?

To answer these questions PeerStreamer, the NAPAWINE project outcome, is
picked as the state-of-art P2P platform, and experiments are conducted using the
Community-Lab testbed (see Section 4.1) to collect realistic results from real-world
WCNs. A live P2P video streaming is considered successful in this context if the
average chunk delay is withing few hundreds of milliseconds and the average chunk
loss is lower than 10%.

5.1 Experiment setup

For experiments, nodes from two big WCNs, the Guifi.net and the AWMN ones,
are taken into consideration. As described in Section 3.2.2 measurements relate to
reception loss and delay and, additionally, to the number of overlay hops chunks
perform on average to reach all the peers. That metric is of particular interest in mesh
networks as link usage is costly and should be optimized.

Test networks comprise of from 24 to 28 nodes for the Guifi.net WCN and from 10
to 12 nodes for the AWMN WCN. Each experiment is composed of several runs (from
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10 to 30 depending on the scenario stability) lasting for 10 minutes, out of which the
central 5 minutes are analysed to avoid transient behaviours. During the experiment
a 300 kbit s−1 encoded version of Big Buck Bunny1 is streamed among the peers.

5.2 Parameter selection

Given the customizability of P2P systems and the research nature of PeerStreamer, the
parameter space to be explored is dimensionally non-trivial and numerically unbounded.
The following of this section lists the parameters and related ranges selected to be
analysed (also summarized in Table 5.1).

With reference to the notation introduced in Section 3.2.1, τi = τs − ε, ε ∈ [0, τs)
are set so that, on average, the offer rate is slightly larger than the chunk generation
pace.

From the topological point of view, the target neighbour set size NN = |Ni| ∀i ∈
V, NN ∈ {5, 10, 20}; from the distribution point of view sc = ρ = σ ∈ {1, 3, 5}, the
seeding multiplicity m ∈ {1, 3} and the amount fa ∈ {1, 5} of audio frame to pack
in a single chunk. The last parameter is specific of PeerStreamer and relies on the
fact that generally audio frames are quite small in size (at least compared to video
ones) so it can be convenient to group them together. On the other hand, that has
the drawback of increasing the reception delay of such data.

Table 5.1 – PeerStreamer parameter space for experimenting on WCNs

Parameter Symbol Range
Target neighbour set size NN {5, 10, 20}
Offer/select chunk multiplicity sc {1, 3, 5}
Seeding chunk multiplicity m {1, 3}
Audio frames per chunk fa {1, 5}

5.3 Smart seeding

As noted in Section 4.1.1, certain WCN links can be quite lossy and this loss can be
dangerous for a distribution system. The source chunk seeding is particularly sensitive;
if the source PS injects ck in the overlay and that is immediately lost due to a lossy
link, then no peer receives it and ck has to be recovered through the offer/select process
from the source Ps.

1https://peach.blender.org/
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To avoid this possible corner scenario to happen the source seeding probability
distribution is modified so that it is more likely the source sends chunks on reliable links.
PeerStreamer chunk exchange mechanism includes a chunk receipt acknowledgement
packet to be sent upon reception and such mechanism is used to maintain a moving
estimation on successful chunk receptions. The peer scheduling is then weighted with
such average probability.

Formally, Ps selects Pi ∈ Ns(t) for chunk seeding at time t with probability

psi (t) = wi(t)∑
j:Pj∈Ns(t)

wj(t)
(5.1)

wi(t) =
{

α+ wi(t− 1)(1− α) if ack received by Ps
wi(t− 1)(1− α) if a timeout expires

(5.2)

In the experiments α = 0.01 and a timeout of 10 s are set. In the following two
seeding strategies, the uniform (legacy) and the weighted, are indicated with Au and
Aw respectively.

5.4 Comparative results

Figure 5.1 presents the averaged performance metrics obtainable varying NN on both
networks. It is worth noticing that the overlay in the AWMN comprises of only 11
nodes so the results for NN ∈ {10, 20} are straightforwardly identical. As it can clearly
be seen, NN = 5 is absolutely not appropriate in networks like Guifi.net as the delay
and loss are quite high. This result is unexpected as, given the overlay size, NN = 5
should be enough to grant connectivity and a good degree of offer redundancy; thus,it
is probably due to poor underlay link quality. On the other hand, NN = 10 grants to
obtain a delivery success of almost 100% with a delay lower than 300ms .

Figure 5.2 shows the impact of distribution parameter variation; as expected,
increasing fa improves the receiving ratio (by reducing the total number of chunks
per second) and it slightly increases the average reception delay. This increment is
however tolerable within the context of live video streaming.

The role of sc is less obvious to analyse and a dramatic performance drop for
sc = 5, fa = 1 is reported. When fa = 5 performance for both reception delay and
loss improves linearly with sc but with fa = 1 there is an optimum at sc = 3.

Figure 5.3 reports the performance varying the seeding multiplicitym. As expected,
increasing this multiplicity improves the performance (loss is always almost 0% and it
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Figure 5.1 – Chunk level performance in the two WCNs as a function of
NN , m = 1. Copyright © 2015 Elsevier.
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Figure 5.2 – Chunk level performance in the two WCNs, varying sc and fa
with NN = 10, m = 1. Copyright © 2015 Elsevier.

is not reported for brevity) and it reduces the diameter of the distribution tree (see
Section 3.2.1.3) and, hence, the amount of hops chunks have to traverse to be fully
distributed. This should not surprise as the amount of resources spent by the source
Ps is increased.

Au and Aw performance are compared in Figure 5.4. Being Guifi.net quite a
lossy network, P2P distribution gets a noticeable improvement both in reception delay
and loss by using the strategy Aw. Conversely, being AWMN links quite reliable,
performance variation is negligible. It is interesting to note that Aw on Guifi.net
implies an increase of chunk distribution hops. The reason is that, with Aw, chunks
are seeded less uniformly in the overlay and, on average, they have to be forwarded
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Figure 5.3 – Chunk level performance in the two WCNs, w.r.t. m; NN =
10, sc = 3, fa = 5. Copyright © 2015 Elsevier.

more times to reach all the peers. This effect does not affect the key performance
metrics as better transmission conditions avoid retransmissions and delays.

Finally, the answer to the two questions placed at the beginning of this chapter
can be given: live video streaming on WCNs with a state-of-art platform is feasible as
the average chunk delay is within few hundreds of milliseconds and the average chunk
loss can be reduced below 10%.
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Figure 5.4 – Chunk level performance in the two WCNs, NN = 5, sc = 3, and
fa = 5. Copyright © 2015 Elsevier.





Chapter 6

Topology optimization

This chapter is devoted to P2P overlay optimization for mesh networks. Concepts from
Section 3.2.1.2 are integrated and extended with those from graph theory (Section 3.1)
to formally derive optimized distribution networks.

In particular, one of the most useful characteristics of WCNs and mesh networks
in general is exploited: the availability of the network topology Gu(Vu, Eu) (see
Section 2.1.1). In this chapter, the focus is on networks managed with OLSR, as they
allow nodes to export the complete topology in every node.

This can been used disruptively in P2P network optimization using cross-layer
techniques. Hence, the focus is on the overlay rewiring problem: given the underlay
Gu(Vu, Eu) and a set of peers Vo, Vo ⊆ Vu, the goal is to define the most efficient
and effective overlay Go(Vo, Eo) and a distributed, lightweight algorithm (meaning it
requires negligible resource overhead) to implement it.

It is worth highlighting how this cross-layer approach does not require any mod-
ification of the lower levels, easing the deployment on large real-world scenarios.
Furthermore, it does not introduce any level of centralization in the distribution
system like super-peers or CDN-like approaches, realizing a fully decentralized strategy.

6.1 Overlays in mesh networks

Logical overlays Go(Vo, Eo) are built on top of the network underlay Gu(Vu, Eu) and
they constrain the distribution process; i.e., the actual data chunks will traverse the
logical links Eo during the communication. Such constraining determines the stress
over the underlay network resources (comprising of link usage time and bandwidth); so
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we can identify a measure of optimality of such constraining considering the resulting
resource stress.

To clarify this point, the toy example of Figure 6.1 presents a comparison between
two overlays with respect their optimality in terms of resource stress; the nodes 1, 2
and 3 and the dotted lines represent Gu(Vu, Eu), two possible overlays with Vo = Vu

are shown with dashed lines. The under optimized overlay a) forces the data chunks to
go first from the source (node 1) to node 3 and then be retransmitted to node 2. That
implies the underlay links (1, 2), (2, 3) are used 1 and 2 times respectively. On the
other hand, the optimized overlay b) forces the chunks to go from the source to node
2 first and then to be retrasmitted to node 3, thus using the underlay links optimally
(only once each). Note these two overlays can be fairly compared as they have the
same number of edges.

Generalizing, optimization should aim at reducing the underlay link overloading.
Two optimization directions are identified:

• Logical links should map to the shortest possible underlay network path;

• Logical links should prefer underlay network path comprising of under-used
underlay links.

The first bullet is straightforward and it derives from the observation of the toy example
of Figure 6.1. The second bullet is more subtle and deals with the over-using of specific
underlay links which could have a high edge betweeness (see Section 3.1.3).

From the point of view of the overlay, we seek to:

• Minimize the load (use) on the underlay links, favoring shorter paths;

• Maximize the fairness of underlay links usage, avoiding the overloading of one
particular link.

1 2 3 a)

1 2 3 b)

Figure 6.1 – a) Example of one under optimized overlay (nodes and dashed
lines in upper plot) and, b) Example of one optimized overlay (nodes and
dashed lines in lower plot) for the same underlay (nodes and dotted lines).
Source node is represented in gray.
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The mesh networksGu(Vu, Eu) are assumed to change slowly through time, meaning
that its links and their attributes do not vary significantly. This, paired with the
overlay optimization described, implies a convergence through time of the overlay
Go(Vo, Eo) for a given Gu(Vu, Eu).

6.2 Cross-layer Overlay metrics

Considering each single underlay link l ∈ Eu, a cost w(l), w : Eu → R+ is assigned.
This approach makes it possible to optimize through total cost minimization; moreover,
it naturally fits routing protocol weighting systems that use the Expected Transmission
Count (ETX) metric [89], such as, OLSR.

With respect to the definition given in Section 3.1 of a network Dijkstra function,
DGu : Vu × Vu → 2Eu , the cross-layer Dijkstra function D†Gu : Vo × Vo → 2Eu , is the
function returning the underlay shortest path between two overlay nodes. The load Lo
imposed by an overlay Go(Vo, Eo) on a underlay Gu(Vu, Eu) can be formally restated
as:

Lo =
∑
e∈Eo

∑
l∈D†

Gu
(e)

w(l) (6.1)

Let Ho(l) be the weighted number of logical links loading l:

Ho(l) = |{e ∈ Eo : l ∈ D†Gu(e)}|·w(l) (6.2)

The link Jain’s fairness can be thus defined as

Fo =
(∑

l∈Eu Ho(l)
)2

|Eu|
∑
l∈Eu Ho(l)2 (6.3)

Note that Fo ∈
[

1
|Eu| , 1

]
but Fo is not expected to reach its maximum as there are

underlay links not supporting any overlay links.

Equations (6.1) and (6.3) express formally what it is introduced in Section 6.1 and
define the metrics used to evaluate the overlay. Unfortunately, the two criteria are
often opposing and thus they cannot be directly used to build an optimum overlay. A
combined metric balancing both those aspects is thus needed.
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6.3 Cross-layer link descriptor

In order to mathematically bind together the overlay Go(Vo, Eo) and the underlay
Gu(Vu, Eu) and to formally state the optimization problem, a cross-layer representation
of the overlay edges is used. To this end, let’s introduce an indexing faction assigning
a unique identifier to each link of a simple graph. The triangular element indexing
function trielV : V × V → [1,mV ] ∩ N is defined as:

trielV (i, j) =
{

j − 1 + (i−1)(2|V |−2−i)
2 if i < j

i− 1 + (j−1)(2|V |−2−j)
2 otherwise

(6.4)

The trielV function is bijective, hence it can be used as invertible mapping between
the space of links E and the set of integers [1,mV ] ∩ N.

trielVu is used to give an ordering to the underlay links, lr = (i, j) ∈ Eu, r =
trielVu(i, j), i, j ∈ Vu. This ordering makes it possible to represent each underlay link
lr with a vector representing the underlay link occupied among all the possible ones
in Vu × Vu; e.g.,

l̄r = (0, . . . , 0, 1, 0, . . . , 0) ∈ {0, 1}mVu

Obviously, ‖ l̄r ‖2= 1, ∀r.

Let’s now define the core of the cross-layer framework: the cross-layer link de-
scriptor; trielVo is used to give an ordering to the overlay links, ek = (i, j) ∈ Eo, k =
trielVo(i, j), i, j ∈ Vo. It is now possible to represent each overlay link ek with a vector
ēk encoding the underlay link elements involved along the shortest path between the
peers i, j ∈ Vo:

ēk =

 ∑
lr∈D†Gu (i,j)

l̄r

 ∈ NmVu , k = trielVo(i, j)

Summarizing, each element ēk binds the overlay edge ek = (i, j) ∈ Eo to the actual
underlay elements lr = (s, t) ∈ Eu involved in the shortest path. Moreover, those
vectors belong to an euclidean representational space with well defined metrics.
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Considering again the scenario in Figure 6.1 (mVu = mVo = 3), the computation
of the cross-layer edge descriptor for (1, 3) ∈ Eo is the following:

trielVu(1, 2) = 1

trielVu(2, 3) = 3

trielVo(1, 3) = 2

l̄1 = (1, 0, 0)

l̄3 = (0, 0, 1)

ē2 = (1, 0, 0) + (0, 0, 1) = (1, 0, 1)

The triel function and the optimization functions are efficiently implemented in a
python module freely available on-line1.

6.4 Cross-layer intersection graph

In this section a given overlay Go(Vo, Eo) is turned into an intersection graph (see
Section 3.1.2). This step is needed to exploit the cross-layer edge descriptor potential
and optimize the overlay as a whole.

Let’s create a family of |Vo| sets, S1, . . . , S|Vo|, (maintaining the same ordering of
the nodes) where:

Si = {ēk : ek ∈ Eo,∃j ∈ Vo, triel(i, j) = k}

Si is the set of the cross-layer edge descriptors related to the links from node i to the
nodes j ∈ Ni. Let’s call S =

⋃Vo
i=1 Si the set of all the cross-layer edge descriptors

and Ω(S1, . . . , S|Vo|), or Ω for short, the cross-layer intersection graph resulting from
Go(Vo, Eo). Figure 6.2 shows the intersection graph corresponding of the overlay of
Figure 3.3.

Let’s denote with S′i = {ēk : k = triel(i, j)∀j ∈ Vo} the complete set of edge
descriptors for node i; S′i ⊇ Si ∀i ∈ Vo.

Let’s call the underlay edge occupancy of Ω the vector Ē =
∑
ēk∈S ēkW , where

W ∈ RmVu×mVu is the cost matrix built starting from the cost function w():

Wr,q =
{

w(s, t), r = trielVu(s, t) if r = q

0 otherwise
1https://ans.disi.unitn.it/redmine/projects/overlay-theory/repository/overlay_optimization



48 6.4 Cross-layer intersection graph
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Figure 6.2 – Overlay intersection graph according to Figure 3.3. Elements ēk

are the cross-layer overlay edge descriptors between the nodes. Copyright ©
2016 IFIP.

With this in mind, Equations (6.1) and (6.3) can be restated in terms of the cross-layer
intersection graph, respectively:

LΩ = ~1T Ē (6.5)

FΩ =
(
∑mVu
k=1 Ēi)2

mVu(
∑mVu
k=1 Ē

2
i )

(6.6)

6.5 Overlay optimization

Given the underlay graph Gu(Vu, Eu) and a set of participating peers Vo, the goal is to
build the overlay Go(Vo, Eo), meaning building the sets S1, . . . , SVo , such that both LΩ

and FΩ are minimal. That is a multi-objective combinatorial optimization problem;
however our context allows the definition of a combined metric CΩ that express the
cost of the overlay:

CΩ =

∣∣∣∣∣∣
∣∣∣∣∣∣
|S|∑
k=1

ēkW

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(6.7)
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Note that Equation (6.7) takes into account both LΩ,FΩ by exploiting the L2-norm
distance interpretation in the euclidean space of NmVu×mVu . For the sake of simplicity,
but without loss of generality, the cost matrix equal to the identity matrix is used,
W = I. The overlay optimization problem can finally be stated as:

arg min
z

∣∣∣∣∣
∣∣∣∣∣
mVo∑
k=1

zkēk

∣∣∣∣∣
∣∣∣∣∣
2

(6.8)

subject to: ∑
ēk∈S′i

zk ≥ d; ∀i = 1...|Vo| (6.9)

where

zk =
{

1 if ēk ∈ S

0 otherwise

The problem variable vector z ∈ {0, 1}mVo contains the indicator variables deciding
which overlay edge ek to keep. d ∈ N is the minimum node degree and must be set
to avoid the trivial solution of z = ~0. d must be large enough to grant the graph
connectivity with high probability and it is usually set to d > log2(|Vo|). Equation (6.9)
presents a little abuse of notation for the sake of readability; the sum spans over all
ēk ∈ S′i but it is indeed a sum over k : k = triel(i, j), j ∈ Vo.

Equation (6.8) can be rephrased as: find the intersection graph Ω with minimum
degree d defined by S1, . . . , S|Vo| so that Equation (6.7) is minimized.

Back to the toy example of Figure 6.1, we have S′ = {ē1, ē2, ē3} with

ē1 = (1, 0, 0), ē2 = (1, 0, 1), ē3 = (0, 0, 1)

If we set d = 1, the optimal solution to Equation (6.8) is z = (1, 0, 1) corresponding
to selecting the edge descriptors S = {ē1, ē3} and, hence, to the overlay edge set
Eo = {(1, 2), (2, 3)}, which in turn corresponds to the optimized case of b) in Figure 6.1.

6.5.1 NP-hardness

In this section it is shown that Equation (6.8) is a zero-one quadratic programming
problem [90], similar to the quadratic knapsack one [91] and, hence, it is a NP-hard
problem. This kind of problems are in the form of

min
z
cT z + zTQz (6.10)
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subject to:
hTi z + zTΨz > gi (6.11)

where z = {0, 1}n is a vector of binary variables, c, hi ∈ Rn, Q,Ψ ∈ Rn×n are
symmetric and gi ∈ R.

Equation (6.8) can be expressed in the form of Equation (6.10) by picking Ψ as
a zero matrix, c = ~0, gi = −d, hi as a binary vector selecting the component of z
pertaining Si and Q = ÊT Ê, where Ê is the matrix whose columns are the elements
ēk, in fact:

arg min
z

∣∣∣∣∣
∣∣∣∣∣
mVo∑
k=1

zkēk

∣∣∣∣∣
∣∣∣∣∣
2

= arg min
z
zT ÊT Êz

Being NP-hard, Equation (6.8) cannot be easily computed but there are state-of-art
algorithms making it tractable up to a certain size (mVo) using the branch-and-bound
technique. However, since mVo grows quadratically with the number of peers |Vo|,
those algorithms can be used only for very small overlays.

6.5.2 Relaxations

Being the goal the decentralized optimized overlay rewiring, in this section relaxed
problems of Equation (6.8) are presented so to:

• Reduce the computational complexity;

• Make the resulting algorithm decentralized, enabling each peer Pj ∈ Vo to select
independently its neighbours Nj ⊂ Vo according to the metrics in Equations (6.1)
and (6.3) and communicate its choice.

Considering a generic peer Pj , the contribution of the edges selected by Pj is
separated from all the other edge contributions in Equation (6.8),

∣∣∣∣∣∣
∣∣∣∣∣∣
|S|∑
k=1

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= 1
2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

Vo∑
i=1,i6=j

∑
ēk∈S

′
i

zkēk +
∑
ēk∈S

′
j

zkēk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

(6.12)

The factor 1
2 is needed as each element ēk is considered twice as independently selected

by two different peers (Pi, Pj : trielVo(i, j) = k). Calling bj the vector representing the
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choices of all the peers in Vo but Pj , Equation (6.8) can be restated as:

arg min
z

∣∣∣∣∣∣
∣∣∣∣∣∣
|S|∑
k=1

zkēk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= arg min
z

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣bj +

∑
ēk∈S

′
j

zkēk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

(6.13)

To go a step further in the decentralization of this rewiring optimization, the centralizing
assumption that each peer Pj knows about other peers choices bj is dropped . That
means peer Pj has to guess as accurately as possible the value of bj to do its neighbour
choices. Hence, a reasonable approximation b̄ ' bj that node Pj can use in (6.13) is
needed.

Consider the limit case in which every host in the underlay contains a peer (|Vo| =
|Vu|) and let b∗ be the value of Ē normalized to the total number of shortest paths:

b∗ = Ē
2

|Vo|2−|Vo|

In this case, b∗ is exactly the vector corresponding to the betweenness centrality of
each link in Eu as defined in Section 3.1.3.

If |Vo|< |Vu|, b∗ is an approximation of the link centrality vector; this is a well-
known fact and a widely used technique to compute centralities in large networks
comprising a number of nodes too high to compute all the shortest paths [92]. The
convergence of b∗ to the actual betweenness vector is pretty fast in power-low graphs,
extremely frequent in communication networks and in large CNs [87]. Each peer Pj
can thus reasonably approximate bj following the shape of b∗ which, representing link
betweenness, gives a measure of the underlay link usage frequencies.

Given the constraint on the (minimum) overlay node degree d, it follows that
|Eo|' d|Vo|

2 . This leads us to compute the approximation b̄ ' bj as:

b̄ = b∗(|Vo|−1)d2 = Ē
d(|Vo|−1)
|Vo|2−|Vo|

= Ē
d

|Vo|
=
d
∑mVo
k=1 ēk
|Vo|

(6.14)

Computation of Equation (6.14) is polynomial in time and, in sparse graphs, it can
also take advantage from a vast literature on efficient betweenness computation [93].

The first, distributed relaxed version of Equation (6.8) can now be stated:

arg min
z

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣b̄+

∑
ēk∈S

′
j

zkēk

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

(6.15)
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conditioned to:
∑
ēk∈S

′
j

zk ≥ d (6.16)

Despite Equation (6.15) can now be implemented distributively, it is still a zero-one
quadratic minimization problem and, hence, NP-hard. However, its number of variables
is now linear and not quadratic anymore with |Vo| so a state-of-art solver can be used
to tackle its solution for overlays comprising of hundreds of nodes. During experiments,
the YALMIP library [94] is used for solving Equations (6.8) and (6.15).

The next relaxation aims to decrease the computational cost by considering now
each single edge descriptor ēk separately, and weighting it with the expected link
occupancy distribution by the other peers b̄.

arg min
z

∑
ēk∈S

′
j

zk
∣∣∣∣b̄+ ēk

∣∣∣∣
2 (6.17)

conditioned to:
∑
ēk∈S

′
j

zk ≥ d (6.18)

For the sake of comparison it is worth considering the extreme case where b̄ = ~0,
in this case (and with W = I) the L2-norm gives the same ordering as the L1-norm
and solving Equation (6.19) builds the peer neighbourhood with closest peers in terms
of hop counts.

arg min
z

∑
ēk∈S

′
j

zk ||ēk||2 (6.19)

conditioned to:
∑
ēk∈S

′
j

zk ≥ d (6.20)

The role of b̄ is hence to introduce a bias that peers consider when deciding which
underlay link to occupy. Table 6.1 summarizes the different optimization strategies
which are meant to be implemented in the rewiring module of the P2P systems (see
Section 3.2.1.2). PeerStreamer is extended to feature the decentralized, polynomial
ones.
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Name Symbol Objective Function
Global Optimization Go ‖

∑mVo
k=1 zkēk ‖2

Local Optimization Lo ‖ b̄+
∑
ēk∈S

′
j
zkēk ‖2

Local Equalized Ranking Er
∑
ēk∈S

′
j
zk ‖ b̄+ ēk ‖2

Local Ranking Lr
∑
ēk∈S

′
j
zk ‖ ēk ‖2

Table 6.1 – A summary of the optimization strategies with their symbols.

Name Complexity Decentralized Number of variables
Glob. Opt. NP-hard No |z|= |Vo|(|Vo|−1)/2
Loc. Opt. NP-hard Yes |z|= |Vo|−1

Loc. Eq. Rank. Polynomial Yes |z|= |Vo|−1
Loc. Rank. Polynomial Yes |z|= |Vo|−1

Table 6.2 – A summary of the optimization strategies and their complexity
attributes.

6.6 Simulation and emulation results

Table 6.1 reports a summary of the presented overlay optimization strategies along
their symbols used in the following; Table 6.2 highlights the differences among those
strategies from the complexity point of view. All strategies compared and evaluated
with two different approaches; first with an ad-hoc simulator to assess them excluding
any interfering mechanism, second emulating a real implementation of the strategies of
interest, the decentralized ones, to measure the impact of the overlay optimization on
P2P streaming performance. For the sake of comparison, the results from the random
rewiring strategy are also reported, as it is largely used on Internet P2P applications
(Section 3.2.1.2).

6.6.1 Simulations

The simulator is implemented with Python and the NetworkX library, specifically
designed to deal with graphs. This simulator takes an underlay topology Gu(Vu, Eu)
and a set of peers Vo ⊂ Vu as input, applies the different strategies and computes for
each of them the load LΩ and the fairness FΩ.

Validation of relaxations. Well known network models are taken into considera-
tions, namely Erdős-Rényi and Barabási-Albert, to assess the validity of the relaxations.
Comparing against Go implies keeping |Vo| small for the complexity reasons.
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The results for |Vo|= 20, presented in Figures 6.3 and 6.4, validate the relaxation
techniques being the resulting overlays, in terms of fairness and load, very close to the
optimum one. It is worth mentioning all the presented strategies but Lr outperform
the random one for the given metrics. This should not surprise as they take advantage
from additional information on the underlay. Lr strategy results show it grants less link
usage fairness than the random strategy; that is due to its overloading of specific links
with high edge betweeness. Results look particularly promising in the Barabási-Albert
case in Figure 6.4, which shows the decentralized polynomial strategy Er very close to
the first, NP-hard, relaxation Lo and, hence, to the global optimum Go.

Scaling. Let’s now test how strategies behave when increasing |Vo|. Experiment
varies |Vo|∈ [20, 100] but, being results very similar, only the ones for |Vo|= 100
are shown. Being of greater interest, experiments focus on Barabási-Albert random
topologies. Hardware limitations do not allow computation of the Go strategy anymore.
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Figure 6.3 – Load and fairness of Erdős-Rényi random underlays with |Vo|= 20,
varying |Vu|. Copyright © 2016 IFIP.
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Figure 6.4 – Load and fairness of Barabási-Albert random underlays with
|Vo|= 20, varying |Vu|. Fairness of Er almost perfectly overlaps with the one
of Lo. Copyright © 2016 IFIP.



6.6 Simulation and emulation results 55

Figure 6.5 confirms that Er nicely obtains the same performance as Lo which are
particularly distant from Lr especially in terms of fairness. It is interesting to note
Lr obtains lower fairness with respect to the random strategy, this is mostly due to
the fact random choices follow the underlay link distribution of b∗ while Lr, being
basically an hop-count based strategy, simply picks the shorter distances.

As previously introduced in Section 6.1, WCNs typically do not have backbones
nor high capacity links, and neglecting link usage fairness simply leads to congestions
and bottlenecks.

WCN-like topologies. Strategies are tested against realistic topologies and
verify the preservation of the nice properties highlighted for the Barabási-Albert
model. To this end Cerdá-Alabern networks are used, generated through the homonym
algorithm [87] and resulting from a generalization of several real-world CNs. The same
setup with |Vo|= 100 is used, and results shown in Figure 6.6 confirm the previous
findings; again performance of Er and Lo are very close while Lr fairness is lower than
random. Note also that Lr load is considerevoly greater than the Er one; that is due
to the neighbourhood rule (Section 3.2.1.2) which makes the overlay built with Lr
having more links.

6.6.2 Emulations

NePA TesT is used for the emulations (see Section 4.2) with two real-world WCN
topologies taken from the Ninux and FunkFueier networks (respectively the Rome island
comprising 131 nodes and the Wien island comprising of 236 nodes). The available
real network ETX information is considered to emulate link loss, while considering a
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Figure 6.5 – Load and fairness of Barabási-Albert random underlays with
|Vo|= 100, varying |Vu|. Copyright © 2016 IFIP.
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Figure 6.6 – Load and fairness of Cerdá-Alabern random underlays with
|Vo|= 100, varying |Vu|. Copyright © 2016 IFIP.

constant link bandwidth of 10Mbit s−1 and a uniform delay distribution with support
[30,1000]µs .

PeerStreamer streams the Big Buck Bunny video with a bit rate of 300 kbit s−1

among |Vo|= 30 (randomly selected) peers and target degree d = 10.
Overlay metrics. PeerStreamer outputs the rewired overlay Go(Vo, Eo) generated

during the emulation and it is possible to compute its metrics LΩ,FΩ. Without
considering the absolute values, results shown in Figure 6.7 are perfectly compatible
with the simulation outcomes for both the topologies, confirming Er being the one
with smaller load and higher fairness.
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and ninux topologies. Copyright © 2016 IFIP.



6.6 Simulation and emulation results 57

Sent data analysis. The overlay directly impacts the distribution, but to check
the real link usage in terms of load and fairness, one must consider the actual data
being sent. To this end, one can compute the distribution load as the total sum of
megabytes sent on all the links and the fairness as the Jain fairness among the links
considering the total amount of megabytes sent on each of them. Intuitively, such data
should reflect the overlay load and fairness. Figure 6.8 presents that data; as can be
seen, the load plot has the same shape as the corresponding in Figure 6.7 while the
fairness plot is slightly different. The send data analysis confirms Er strategy is the
one that most offloads the links and fairly use the network resources.

Underlay link usage. Figure 6.9 further highlights the effort distribution property
Er strategy obtains. The plot presents the actual megabytes sent per underlay link,
sorted according to the usage. It is worth noticing that: i) curves are nicely separated,
meaning the total amount of data sent using Er is smaller, ii) random strategy presents
the highest peak while the other two significantly offload the more congested links iii)
the Er strategy alter the distribution to make it look more uniform, meaning it fairly
distributes the resource usage.

6.7 Neighbourhood pruning

So far this chapter considered a blind overlay optimization, however, knowledge of the
peers and their shortest paths, this information can be used smartly. The focus is now
on overlays for applications without churn or with churn-preventing mechanism, e.g.,
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Figure 6.9 – Load measured on each link on real topologies. Copyright ©
2016 IFIP.

video conferencing. Considering again Figure 6.1, the presented scenario implies that
building an overlay with a fixed degree d = 2 means a complete waste of resources. In
fact there is no point for node 1 to send data to node 3, as it would be transmitted
through node 2 links without any benefit for the latter. A limitation on the possible
neighbourhood choices for node 1 would grant it cannot include node 3 in its neighbour
set at all.

The focus of this section is hence highlighting how, regardless of the underlay
topology, when a peer Pj selects its neighbours Nj , if there is a peer Pz lying on the
shortest path between Pj and Pi, there is no point for Pj to include Pi in its neighbour
set Nj . Each peer should prefer as neighbours those peers that are first encountered
along any shortest path route so that data packets do not "jump" suitable distribution
destinations, hence wasting resources. The enforcement of this policy can be done by
limiting the neighbour choices for each peer Pj .

From the intersection graph Ω point of view that means limiting the edge descriptors
ēk each peer Pj can select when running the decentralized strategies of Table 6.1.

Algorithm 1 present the decentralized neighbour candidate pruning algorithm to
be run before executing the strategies. S′j is again the set of all possible overlay edges
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1: Spj = ∅
2: repeat
3: i← arg mini∈S′

j
|D†Gu(i, j)|

4: Spj = Spj ∪ {ētriel(i,j)}
5: S

′

j = S
′

j \ S
p
j

6: S
′

j = S
′

j \ {ētriel(z,j) : ētriel(z,j) ∈ S
′

j , (i, s) ∈ D
†
Gu

(z, j), s ∈ Vu}
7: until S′j = ∅

Algorithm 1: Neighbour candidate pruning algorithm for peer Pj

starting from Pj and the algorithm loops over to filter out the pruned set Spj ⊆ S
′

j .
Note line 6 removes from the possible overlay edge set S′j all the edges (z, j) whose
shortest path includes passing through node i. Table 6.3 summarizes the strategies
using the pruning techniques along with their formulas.

6.8 Pruning simulation results

Using the same simulator from Section 6.6.1, all the strategies are tested using the
real-world WCN topologies of Ninux and FunkFeuer already used in Section 6.6.2

Results shown in Figures 6.10 and 6.11 are quite similar. |Vo| is varied to assess
the scaling of the P2P impact and it can be seen that, while the non pruned strategies
have a load linear with |Vo|, the pruned ones are almost constant. That is due to the
lowering of the mean degree, as shown in the Mean connectivity sub plots. Pruning
also improves Lr fairness for |Vo|→ |Vu| and offloads the most loaded underlay links
as show in the Maximum link load plots.

In conclusion, pruning improves blind choices like the hop-count based especially
when peer number gets close to the underlay node number.

Name Sym. Objective Function Complexity Decent.
Pruned Loc. Opt. Lop ‖ b̄+

∑
ēk∈Spj

zkēk ‖2 NP-hard Yes
Pruned Loc. Eq. Rank. Erp

∑
ēk∈Spj

zk ‖ b̄+ ēk ‖2 Polynomial Yes
Pruned Loc. Rank. Lrp

∑
ēk∈Spj

zk ‖ ēk ‖2 Polynomial Yes

Table 6.3 – A summary of the pruned optimization strategies and their
attributes.
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Figure 6.10 – Overlay optimization comparison on the Ninux network, varying
|Vo|∈ [30, 100]. Copyright © 2017 Elsevier.
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Figure 6.11 – Overlay optimization comparison on the FunkFeuer network,
varying |Vo|∈ [30, 100]. Copyright © 2017 Elsevier.



Chapter 7

Distribution optimization

This chapter focuses on the optimization of the P2P distribution process as described
in Section 3.2.1.3. In the following, the actual overlay Go(Vo, Eo) is abstracted in
favor of the derived distibution process (Ã,Θ). Note that Ã ∈ R|Vo|×|Vo| must be
irreducible but it can be not symmetric. The goal is to optimize the distribution
process parameters, meaning the sending probability matrix Ã and the message rate
vector Θ, with respect to the overall receiving delay and loss. Despite the original
focus on live streaming, this distribution abstraction and the results presented can be
applied on a broad range of communication scenarios related to data broadcasting in a
mesh network, like sensor networks, vechicular networks, etc. In fact, the distribution
process abstraction applies to all the systems realizing a decentralized communication
where information has to be spread network-wide.

7.1 Reception-equal process

As introduced in Section 3.2.1.3, (Ã,Θ) completely characterizes the HPF scheduling
which, in turns, realizes the distribution. In general, P2P systems assume a constant
Θ and a column-uniform Ã. Indeed this case is the simplest, as each peer Pi sends Θi

chunks per chunk time to one of its neighbour selected with uniform probability 1
|Ni| ,

with Θi = Θj , ∀Pi, Pj ∈ Vo. This configuration is referred to with the name sending
equal as all the peers send the same amount of information per chunk time. However,
that means on average different peers can receive different amount of information.
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62 7.1 Reception-equal process

Ps

P5

P1 P2

P3P4

P0

Figure 7.1 – Sample network of six nodes, source depicted in grey. Copyright
© 2017 IEEE.

The following toy example clarifies this point. Given the strongly connected network
presented in Figure 7.1 and the corresponding sending-equal distribution process:

Ã =



0 1
2 0 0 0 0

0 0 1 0 0 1
3

0 0 0 1
2 0 1

3
0 1

2 0 0 0 0
1
2 0 0 0 0 1

3
1
2 0 0 1

2 1 0


; Θ =



1
1
1
1
1
1


(7.1)

The average received amount of chunks Φ = ÃΘ can be readily computed. It is worth
noticing Equation (7.1) describes a minimal system (see Section 3.2.1.3), ~1TΘ = |Vo|.

Φ =



0.5
1.333
0.833
0.5
0.83

2


(7.2)

As the example reports in Equation (7.2) there are chances some peers receive, on
average, more information (where Φi > 1) while others starve (where Φi < 1).
Generally, this problem is overcome by linearly increasing the resources spent, so
that each peer Pi sends an amount αΘi, α ∈ (1,∞) of information per chunk time,
resulting in a reception multiple of Φ, ÃαΘ = αΦ.

A better approach to improve fairness and peer cooperation is a distribution process
(A?,Θ?), still minimal, for the same network granting a reception-equal property,
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A?Θ? = ~1. That implies a redistribution of network resource usage optimizing the
overall process.

7.2 Optimized distribution

Formally, given a distribution matrix Ã and |Vo|, the goal is to find a couple (Θ?, A?)
that satisfies:

~1 = Φ = A?Θ? (7.3)

|Θ?|= |~1|= |Vo| (7.4)
~1TA? = ~1T (7.5)

Ãij = 0 ⇐⇒ A?ij = 0 (7.6)

Equation (7.3) imposes the reception-equal constraint; Equation (7.4) keeps the
distribution system minimal and Equations (7.5) and (7.6) grant A? to be irreducible
and column-stochastic, hence a valid distribution matrix while preserving the same
structure of Ã (no edge is added or removed).

Theorem 7.1. Let Go(Vo, Eo) be a strongly connected network graph and let Ã be its
associated distribution matrix. Then it is possible to find A? and Θ? such that the
conditions given by Equations (7.3) to (7.6) hold.

Proof. Since Ã is irreducible and column stochastic, the Perron-Frobenius states that
the largest eigenvalue of Ã is 1, and it exists a corresponding eigenvector x with all
strictly positive entries that sum to 1:

Ãx = x; xT~1 = 1 (7.7)

From the diagonal matrix definition in Chapter 3 it follows that

ÃIx~1 = x (7.8)

and, since the elements of x are strictly positive:

I−1
x ÃIx~1 = I−1

x x = ~1 (7.9)
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If choosing Θ? = (~1T I−1
x ÃIx)T and A? = I?xÃIxI

−1
Θ? , then, Equation (7.3) is satisfied

by:

A?Θ? = I−1
x ÃIxI

−1
Θ?Θ? = I−1

x ÃIx~1 = I−1
x Ãx = I−1

x x = ~1

Equation (7.4) is satisfied by:

|Θ?|= Θ?T~1 = ~1T I−1
x ÃIx~1 = ~1T I−1

x Ãx = ~1T I−1
x x = ~1T~1 = |~1|

Equation (7.5) is satisfied by:

~1TA? = ~1T I−1
x ÃIxI

−1
Θ? = Θ?T I−1

Θ? = ~1T

To verify Equation (7.6) let us explicit each element of Θ? and A?:

θ?j =
|Vo|∑
k=1

akjxj
xk

; a?ij = aij
xj
xiθ?j

(7.10)

since elements of x are positive and at least one element per column in Ã is larger
than zero, then ∀j θ?j > 0. Therefore, ∀i, j a?ij ≥ 0 and a?ij = 0 ⇐⇒ aij = 0 which
satisfies Equation (7.6).

Moreover, if the system resources are linearly increased:

A?αΘ? = α~1

The benefit spreads uniformly in the network and all the nodes receive on average α
amount of information, which can guarantee streaming in a lossy environment.

7.2.1 Properties

The basic interpretation of the role of the eigenvector centrality x in the reception-equal
optimization relies on the original PageRank model (Section 3.1.3). Let’s suppose to
have a chunk ck exchanged in the overlay Go(Vo, Eo) under the assumption once a
peer Pj sends it to a peer Pi it immediately deletes it. Then, the PageRank centrality
xi of the peer Pi represents, in a given moment, the probability ck is sent to Pi from
one of its neighbours.

After the optimization of Theorem 7.1, the eigenvector centrality of A? is ~1
|Vo| so

that, the steady state probability of all the peers of receiving ck is uniform. That
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modifies the resource distribution Θ so that each peer Pi tunes its activity and cope
with the limitations of its neighbours.

Parameter interpretation. For the optimization each peer Pj has to tune Θj

by computing its neighbour need ηj =
∑|Vo|
k=1

ãkj
xk

=
∑
Pk∈Nj

ãkj
xk

which is a weighted
sum (by the given neighbour probability distribution) of the inverse of the neighbour
centralities; the smaller xk, Pk ∈ Nj , the greater ηj . In general, ηj is big if the
neighbours of Pj are not central and small the other way round.

Using this interpretation, the optimized parameters given in Theorem 7.1 can be
rewritten as:

Θ?
j = ηjxj ; A?ij = ãij

xiηj
(7.11)

Hence, the amount of information/resources a peer Pj has to invest in the distri-
bution is proportional to its centrality and to its neighbour need. The probability
Pj sends information to one of its neighbour Pi ∈ Nj is inversely proportional to
its centrality xi and weighted by the originally given probability ãij (ηj is just a
normalization factor in this case).

Being Θ?
j proportional to xj and a?ij inversely proportional to xi, one may say the

reception-equal distribution recalls a famous socialist concept: from each according to
his ability, to each according to his need [95].

Resource bound. From Theorem 7.1 it follows |Θ|= |Vo| and the distribution
is minimal but one may be interested in verifying the support of each Θj , ∀Pj ∈ Vo.
Resources are limited in practice and it is of interest to estimate a peer resource
demand as well as possibly to find a way to fine tuning it. The first issue can be
addressed with the following proposition.

Proposition 7.1. From Theorem 7.1, it follows:

θ?j ≤ |Nj |

Proof. From Equation (7.10) and Equation (7.7) it follows:

θ?j =
|Vo|∑
k=1

ãkjxj
xk

=
|Vo|∑
k=1

ãkjxj∑|Vo|
i=1 ãkixi

= (7.12)

|Vo|∑
k=1

ãkjxj

ãkjxj +
∑|Vo|
i=1;i6=j ãkixi

(7.13)
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Each term in the summation is lower or equal than 1 and it is 0 if and only if ãkj = 0.
Since ãkj = 0 ⇐⇒ zkj = 0 then ãkjxj

ãkjxj+
∑

i6=j
ãkixi

≤ zkj and it follows:

θ?j ≤
|Vo|∑
k=1

zkj = |Nj | (7.14)

Equation (7.14) states each participating peer spends a bounded amount of resources;
moreover it gives us a direct parameter to tune them. Suppose Pj has been assigned
by the optimization an amount Θ?

j of resources to be used; if Pj cannot provide them
it can simply iteratively drop one of its neighbour and re-run the optimization. The
limit case in which it has to drop all of its neighbours corresponds to the scenario
in which its participation to the P2P network is not sustainable at all. Preventing
Go(Vo, Eo) disconnection relies on rewiring policies (see Section 3.2.1.2) and it is out
of the scope of this optimization.

7.3 Decentralized optimization

Working with decentralized systems, the goal is to obtain decentralized solutions
for the algorithms. Each peer Pj ∈ Vo is requested to individually compute its
optimized parameters of Equation (7.11). To this end, Pj needs its own peer probability
distribution (the j-th column of Ã), its centrality xj , and the centralities of its
neighbours xi,∀Pi ∈ Nj .

In the P2P context knowing Pj probability distribution is straightforward and
exchanging information, like a centrality value, among neighbours is solvable using
standard gossiping protocols. However, this schemes still demands each peer Pj to
compute its own centrality xj .

To solve this problem two solutions are proposed; the first takes advantage from a
recent work on computing the PageRank centrality [96] with a decentralized approach,
hence solving directly the issue; this solution combines the proposed optimization
with their decentralized centrality computation realized through gossiping mechanisms
granted to eventually converge to actual values. The second solution is simple and
elegant to implement and to realize, even if it applies to a special case, as described in
Section 7.3.1.
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7.3.1 Symmetric, uniform case

Let’s consider a very common case in P2P distribution systems; a bidirectional, not
weighted overlay Go(Vo, Eo) which means that the peer scheduling probability function
is uniform. The resulting adjacency matrix A is hence symmetric and the distribution
matrix Ã = AI−1

d is column uniform. This is the case, for example, of the PeerStreamer
distribution and, being straightforward and simple, broadly used.

This case has a very nice property to be used in the reception-equal optimization
which relies on the following proposition.

Proposition 7.2. Let Go(Vo, Eo) be an unweighted, non directed graph with adjacency
matrix A and Ã = AI−1

d (d = A~1) its associated distribution matrix. Then I−1
x ÃIx =

ÃT .

Proof. Let zij a binary variable indicating if ãij = 0, since the graph is non directed,
zij = zji. Each element of Ã is defined by ãij = zij

|Nj | . Let N be the column made of
all the values of |Ni|, then N is an eigenvector of A , AN = N .

For the uniqueness statement of the Perron-Frobenius theorem ∃k ∈ R : N = kx

hence, the element (i, j) of I−1
x ÃIx is given by:

{
I−1
x ÃIx

}
ij

= ãij
xj
xi

= zij
|Nj |

xj
xi

= zij
kxj

xj
xi

= (7.15)

zij
kxi

= zji
kxi

= zji
|Ni|

= ãji (7.16)

Proposition 7.2 states the similarity relationship between Ã and ÃT and gives its
corresponding change of base matrix Ix (Ix is called a symmetrizer). While there
exist a large body of work on symmetrizers, this result has never been reported in the
networking literature.

The special property of this particular case of distribution process can now be
stated.

Corollary 7.1. From Theorem 7.1 and proposition 7.2, it follows that if Go(Vo, Eo)
is an unweighted, undirected graph with distribution matrix Ã = AI−1

d (d = A~1) then
Θ? = Ã~1 and Ã? = ÃT I−1

Θ? .
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Hence, peer optimized parameters can be computed as:

Θ?
j = ηjxj =

∑
Pi∈Nj

ãji; A?ij = ãij
xiηj

= ãji
Θ?
j

(7.17)

To compute Equation (7.17) a peer Pj simply needs to know ãji ∀Pi ∈ Nj which in
our case is given by knowing |Ni| ∀Pi ∈ Nj .

Summing up, the reception-equal optimization is obtainable for this special case by
simply making peers exchange their neighbour set sizes |Nj | on a neighbourhood scale,
easily implementable by piggybacking such numbers on the P2P topology gossiping
mechanism (Section 3.2.1.2).

7.4 Performance gains

The different strategies are simulated using SSSim (Section 4.3) to fairly compare
them while avoiding any interference complex real P2P systems may introduce.

7.4.1 Experiment setup

The reception-equal optimization, indicated with R-E, is compared against the uniform
peer selection HPF and against the state-of-art distribution optimization strategy by
Wu and Li [59], indicated with Wu-Li. Wu-Li strategy solves a centralized problem for
rate allocation and assigns the transmission rates to the peers keeping the distribution
minimal. It is intended to be considered as an optimization lower bound for the proposed
algorithm, however the limitation on the peer chunk buffers affects the optimality
of its results. Solving a centralized optimization problem it is also computationally
expensive and, in the experiments, it is run only for |Vo|≤ 200.

The formerly introduced resource amplification factor α ∈ (1,∞) (see Section 7.1)
is varied to compare strategies when resources available to peers change; in this context
it multiplies the amount of chunk offers peers send per chunk time (Section 3.2.1.3).
The chunk buffer length is set to 64. Loss and delay are measured as specified in
Section 3.2.2 using a synthetic random dataset composed of Erdős-Rényi and power-law
Barabási-Albert graphs. Graphs are passed as input to the simulator to be used as
overlays Go(Vo, Eo).

The results for different runs and data are reported with a 99% confidence interval.
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7.4.2 Experiment results

Figure 7.2 reports the loss rate for sparse networks, |Eo||Vo| ' 2 (lower plot) and denser
networks, |Eo||Vo| ' 5 (upper plot). Results for both Erdős-Rényi (indicated with ER)
and Barabási-Albert (indicated with PL) cases are very similar, but loss is generally
higher with sparse networks. In all the cases, the reception-equal strategy produces
a loss rate comparable to the centralized Wu-Li one and, with the sparser networks
and α ≥ 1.1, is even better. That is probably due to a buffer overloading along the
shortest path imposed by the Wu-Li technique, which ends up losing packets. The
gain obtained by the reception-equal optimization with respect to the plain HPF is
substantial with low α.

From Figure 7.2 results that α ≥ 1.5 is enough to obtain a loss rate of almost 0 for
both reception-equal and Wu-Li strategies. α = 1.5 can hence be kept while varying
the overlay size |Vo| to assess the scalability. Figure 7.3 shows loss rate variation
increasing |Vo| while keeping the graph density constant. With HPF the loss rate
grows with |Vo| while with the optimized techniques remains almost 0.

It is interesting to note what happens to the chunk delay distribution. So far
reception-equal results show a good loss rate and that it likely depends on chunk buffers
and packet dropping. It arises the question whether these chunk arrival distribute
in time. To fairly compare arrival times, experiments are run with α = 2.5 so the

 0

 0.1

 0.2

lo
ss

 r
a
te

HPF (ER)
HPF (PL)

Wu-Li (ER)
Wu-Li (PL)

R-E (ER)
R-E (PL)

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 1  1.5  2  2.5  3

lo
ss

 r
a
te

α

Figure 7.2 – Loss rate with 99% confidence interval as a function of α with
|Vo|= 50; |Eo|= 264 (top) and |Eo|= 96 (bottom). Copyright © 2017 IEEE.
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loss ratio drops to 0 for plain HPF as well. The delay data of the run reported in
Figure 7.4 indicates that HPF still has a very long distribution, meaning that less
central nodes receive the chunks very late; conversely, the reception-equal strategy
spreads the chunks in the network at faster pace, shrinking the delay distribution even
better than the Wu-Li one.

7.5 Remarks on joint optimization with rewiring

The distribution optimization presented is independent from any overlay optimization,
meaning that it can be executed either or not a rewiring process is applied. However,
the two optimization techniques may have impacts on the goal of each other. In
particular, in Chapter 6, a sending-equal behaviour is implicitly assumed as:

• Each overlay link is equally weighted (the Ãij);

• Each overlay node has fixed (target) degree (counting as Θi).
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However, it is worth noticing if rewiring succeeds in creating the target output regular
graph then applying Theorem 7.1 does not change the distribution process parameters
(Ã,Θ), as all the overlay nodes have the same PageRank centrality.

In general, all the rewiring strategies presented in Chapter 6 tend to forge regular
overlay graphs.





Chapter 8

PeerStreamer-ng

Despite PeerStreamer has successfully been used in live demos and tested in stressing
scenarios (both in terms of network size and resource utilization) it has remained a
research project, hence, suffering from the typical research code development issues
(Section 8.1). Moreover, PeerStreamer and other popular P2P platforms have been
designed for the internet. As introduced in Chapter 5, CNs are quite different from
the internet in terms of structure and resource distribution. CN structure also offer
new opportunities an application developed specifically for CNs can leverage. This is
the case of micro-clouds infrastructure, currently under development in the Guifi.net
network [97].

PeerStreamer-ng is a P2P live streaming platform using the latest state-of-art P2P
algorithms, derived from PeerStreamer, specifically designed for CNs, in particular
PeerStreamer-ng:

• Implements most of the strategies presented in Chapters 5 to 7’

• It is designed for specific CN use cases, see (Section 8.2).

PeerStreamer-ng is a fully-fledged and deployable product for CNs, realizing the
transition from academic research to end-users benefits, generally called innovation.

The development of PeerStreamer-ng is in tight contact with the CN world and
user expectations through the participation to European projects like CONFINE1

and netCommons2 which are specifically focused on CNs and include major European

1http://confine-project.eu/
2https://netcommons.eu
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CN stakeholders. That grants a continuous feedbacks from the community users and
involve them in the project, fostering a broad adoption of PeerStreamer-ng.

8.1 From PeerStreamer to PeerStreamer-ng

As introduced in Section 2.1.2, PeerStreamer is the outcome of the NAPAWINE
project and it has been used as the reference platform in a large number of scientific
publications working with P2P technologies [28,50,51,73,75]. Despite its success in the
research community it has not gained a big momentum among actual video streaming
users.

PeerStreamer was designed mainly for research purposes and, as such, it suffers
from the typical research project issues:

• Un-friendly, not reliable interface;

• Several incarnations (for different user models);

• Functionalities operated by console scripts;

• Dead code;

• Functionalities not fully-integrated with the rest of the application;

• Mixed coding styles and conventions.

Those issues arise when researchers write code to test their latest algorithm but they
do not really focus on its final deployments. Such contributions also come generally
from a large, not organized, crowd. Moreover, PeerStreamer scope is quite broad,
being a general purpose live streaming platform. Hence, no clear use case or user
model have been designed to drive its development and there exist several mutually
exclusive incarnations, meaning platforms performing the same things with different
behaviours.

PeerStreamer-ng focuses on CN user cases and its design includes selecting the
advanced P2P algorithms from PeerStreamer codebase and create a clean, robust and
reliable live video platform.

8.2 Tailoring for WCNs

PeerStreamer-ng aims at implementing the latest technologies for P2P streaming on
CNs. Its goal is to conclude the path started with initial data collection (Chapter 5),
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evolved with specific research tools (Chapter 4) and new streaming optimization strate-
gies (Chapters 6 and 7), by providing CN users a state-of-art tool for live streaming.
The contact with CN users is of paramount importance to drive the development
solving actual issues as well as to foster a broad adoption in the communities. In
particular:

• First collaboration, founded by the OSPS project, aimed to identify and solve
issues CN researchers involved in the CONFINE project were concerned about
when talking about streaming;

• I personally had few meetings with the Italian Ninux.org WCN representatives;

• During the netCommons project, new insights and integration advices were
collected again from the European CN research community.

Besides, this work started early to identify the target user scenarios in CNs [4].

8.2.1 Integration in Cloudy

Clommunity and netCommons projects both support Cloudy3. Cloudy is a GNU/Linux
OS distribution with the goal of to easing the publishing and provision of network
services in CNs. Its development started with the Clommunity European project in
2013 and it is now used in the Guifi.net network. Cloudy is supposed to be installed
on CN user home nodes and it comes with pre-installed runnable services.

PeerStreamer-ng is developed in tight contact with the Cloudy developers, so
that it has already been added as default CN service4 and it is readily deployable on
thousands of nodes.

Integrating PeerStreamer-ng with such kind of dedicated nodes eases the deployment
in practice but it requires a flexible interface which can be de-coupled from the streaming
engine. For this reason PeerStreamer-ng is designed to have a separated ReST interface,
which can be run with any web browsing device, and a core to be installed on a specific
machine.

In the Cloudy environment, services use the Serf system5 to publish and retrieve the
community services. PeerStreamer-ng comes with a streaming channel list management
which supports several different retrieving modes, including channel advertisement
through Serf. This way, channel list broadcasting among PeerStreamer-ng instances is
performed directly with the dedicated Cloudy announcement service.

3http://cloudy.community
4http://cloudy.community/services/
5https://www.serf.io/
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8.3 Design

Summing up, PeerStreamer-ng has been developed with the following goals:

• Polish PeerStreamer code and rewrite key components;

• Focus on specific user cases and one user interface;

• Support a full fledged friendly user interface;

• Being the most lightweight and portable as possible (to be ran on CN devices);

• Integration with Cloudy and Serf.

Figure 8.1 shows the architecture of PeerStreamer-ng. The source is a PeerStreamer-
ng instance providing a chunk P2P flow and publishing its channel description through
the Serf system. A user runs a web browser and communicates through HTTP

CN user device
Web browser

P2P Source

CN node PeerStreamer-ng

ReST interface
HTTP library

Router

Streamer
GRAPES

Net P2P layer

Channel
manager
File reader

Task manager

Serf clientSerf server

HTTP request

chunk flow

add Serf event

filesytem
access

RTP flow

Figure 8.1 – PeerStreamer-ng architecture. Blocks represent software compo-
nents which are run on different devices (light blue, dashed lines boxes). The
source and the Serf server are run remotely in the network.
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with PeerStreamer-ng ReST interface. Within this communication a user initiates
a Streamer instance and the chunk flow is collected by PeerStreamer-ng and served
as RTP flow back to the web browser. The user plays the RTP flow using standard
browser plugins.

8.4 Module details

This section reports a deep description of the various PeerStreamer-ng modules.

8.4.1 Task manager

In PeerStreamer-ng there are many tasks that requires scheduling and a periodic
execution. Examples include, Serf channel list refresh, HTTP server handling and
all the P2P related periodic tasks like periodic offers, chunk injection and gossiping
messages. PeerStreamer-ng is designed to be lightweight and to run on single cpu
devices so all this periodic tasks are scheduled using the task manager module. The
task manager offers a simple interface comprising of:

task_manager_new_task(), to add a new periodic task to the spool, specifying
the callback function to be called when an event occurs (timeout expiration or file
descriptor change of state), the reinit function to be called after timeout expiration
and optional metadata to be passed to those functions;

task_manager_poll(), to make sleep the current process until an event occurs or
the given timeout expires.

8.4.2 ReST Interface

The ReST interface is implemented on top of a HTTP library (mongoose6) granted to
be lightweight and highly portable. The HTTP calls are first captured by mongoose
and then managed by the router module. The router module provides developers with
an easy interface to add and handle ReST calls:

router_add_route(), which add a new routing to the spool, specifying the HTTP
method, the regular expression for matching the URL and the callback function to be
called upon match, which takes in input the mongoose formatted HTTP message and
it calls the callback function matching with the associated request;

router_handle(), which takes in input the mongoose formatted HTTP message
and it calls the callback function matching with the associated request.

6https://cesanta.com/
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The associated designed ReST interface is the following:

• GET /player.html: returns the default web application page;

• GET /channels: returns a JSON list of available channels;

• POST /channels/<stream_id>?ipaddr=<sourceip>&port=<sourceport>: cre-
ates the streaming resource <stream_id> and launches the streaming instance;
it returns a JSON describing the resource attributes with which initialize the
plugin player;

• UPDATE /channels/<stream_id>: heartbeat request, to be called frequently on
<stream_id>;

• GET /mysources.html: returns the source html page;

• POST /mysources/<channel_name>: creates a new distribution overlay;

• GET /mysources/<channel_name>: returns the channel parameters and statis-
tics web page;

• DELETE /mysources/<channel_name>: destroys the indicated distribution over-
lay.

8.4.3 Channel management and distribution

PeerStreamer-ng runs a periodic task for maintaining a fresh list of available streaming
channels. This task can retrieve the list from different channel providers, specified
through the command line. It can communicate with a local Serf instance using a
text file comprising one line per channel, each line composed by the following comma
separated fields: channel name, P2P source IP address and port, a quality string and
a Service Description Protocol (SDP) file. The SDP file reports the metadata of the
RTP flow and it is served (after modification of the source parameters) to the player
in the browser.

8.4.4 Streamer

The streamer module is the one implementing the overlay and distribution management
(Sections 3.2.1.2 and 3.2.1.3) and it has been the main target of this thesis work. Each
time a user asks for a streaming channel, a streamer instance is created and joined to
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the channel overlay. It implements the advanced strategies for P2P distribution and it
takes advantage from two supporting modules, GRAPES and the network layer.

GRAPES [26] is a P2P toolkit providing the basic P2P structures and gossiping
algorithms.

Network P2P layer is a standalone component managing advanced networking
techniques not related to streaming such as: fragmentation, loss recovery and traffic
shaping.

8.5 Showcase and impact on WCNs

During a netCommons project meeting in July 2017 there was the first showcase of
PeerStreamer-ng and its integration in the Cloudy system. Figure 8.3 is a screenshot
of Cloudy interface listing the available services on a demo network. Figure 8.2 shows
PeerStreamer-ng interface of a running video streaming instance for a demo network.
PeerStreamer-ng capabilities and details of integration are also reported in the project
deliverables [98].

Figure 8.2 – PeerStreamer-ng web interface running during a demo.
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Figure 8.3 – Cloudy interface displaying PeerStreamer-ng among the available
services.



Chapter 9

Spectral graph generation

This chapter deviates from the main topic of this thesis to focus on another important
aspect of graph research: the generation of synthetic topologies with given properties.

Generating random graphs with certain prescribed properties is an increasingly
important field [63, 99–102]. Researchers are often interested in data that can not
always be fully disclosed, like social networks for privacy reasons. Synthetic graphs
can be built starting from existing networks preserving the features of interest and
acting as proxies for the real world data. Moreover, when developing communication
algorithms, researchers want to assess the algorithm robustness and efficiency on a
broad range of input data. This is typically not possible with real data due to lack of
availability but synthetic generators can produce very large datasets of graphs sharing
some common properties.

Prior work has primarly focused on generating graphs with certain local properties,
such as degree distribution and correlation, subgraph counts, etc. [63,99,101–103] with
little attention to global properties. In this chapter the focus is on a global property
exhibited by many comunication and social networks, the community structure, which
captures the graph substructure. In fact, in these networks, nodes tend to aggregate,
forming well-connected groups while being loosely connected with the rest of the
network. This community [61] or cohesive subgroup [104] structure impacts network
robustness and content diffusion. The graph generators focused on local properties do
not necessarly preserve such structures and the resulting synthetic networks may be
poor proxies of real world graphs.

81
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9.1 Related work

A broad literature production is available on graph generation targeting local properties.
Generators use local property descriptors like graphlets [99], motifs [100] and dK-
series [101,102] to preserve those structures starting from an initial realization or a
vector of input statistics. Exponential family Random Graph Models (ERGMs) can
be used to produce graphs with the same expected values of a series of features of
interest, but, to date, they have been mainly employed for local properties. In contrast
to the proposed approach, ERGMs preserve only expected statistics and not exact
property values.

There exist only few approaches so far targeting graph modularity by design.
Trajanovski et al. [105] approach generates random graphs with a prescribed modularity
value while the Karrer and Newman stochastic block model [106] generates random
graphs preserving both the modularity value and the community structure.

The Trajanovski et al. and Karrer and Newman generators are described in the
following and used as baselines in the experiments.

The tight relation between eigenstructure and community structure has been
investigated for community detection [61,107], visualization [108] and analysis [109]
purposes; this work proposes a graph generation method based on that. The proposed
method, called Spectal Graph Forge (SGF), is the first general framework for synthetic
graph generation by means of eigenstructure inputs.

9.2 Graph spectral structures

Modularity, as defined in Section 3.1.1, is based on the modularity matrix B of a graph
and, hence, on its adjacency matrix A. A completely defines a simple graph and its
eigenstructure is intimately related to its structure. As recalled in Section 3.1.4, A can
be decomposed in a set of real eigenvalues λi and their associated eigenvectors vi; the
eigenvectors related to positive eigenvalues describe core-periphery structure [110] and
the sign of their entries indicate good graph bi-partition. Conversely, the eigenvectors
related to negative eigenvalues describe memberships in bi-partitions and the sign of
their entries indicate node connection likelihoods.

This inner relationships between eigenstructure and the community description can
be exploited to handle the manipulation of the latter in an automated fashion. Since
the leading eigenvector (the one associated to the largest eigenvalue) is associated to
the main connected component (the whole graph), it comes naturally to exclude it
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from the analysis and to consider just A − λ1v1v
T
1 . In general, v1 is parallel to the

degree vector d (they correlate) and, hence, the modularity matrix B ' A− λ1v1v
T
1

(see Section 3.1.1).
That leads to the common practice for community detection, considering the

eigenstructure of B for splitting a graph according to the leading eigenvector entry
signs. In particular, Newman showed that modularity is heuristically maximized when
bi-partitioning a graph according to the leading eigenvector entries of B [107].

While this chapter focus primarily on graph communities and modularity, the
spectral decomposition framework SGF is more general as the algorithms can be tuned
to target specific types of structures of interest while randomizing the other graph
properties. Specifically, the spectral-based graph generation is envisioned possible
starting from different graph representations other than the modularity matrix, like
the adjacency matrix or the clique co-membership matrix.

9.3 Spectral Graph Forge

The proposed approach, the SGF, works by dissecting a graph symmetric matrix
derived from its adjacency matrix in its spectral components and deriving a class of
random graphs sharing the same spectral properties, with a certain level of accuracy.

Formally, the procedure of the SGF is depicted in Figure 9.1. The input is a graph
G(V,E) represented through its adjacency matrix A and the output is a different
adjacency matrix A′ representing the output graph G′(V ′, E′) indicated with SGF(α).

The parameter α ∈ (0, 1) tunes the level of accuracy in targeting the original
spectral properties; if α ' 0 then SGF(α) is preserving only the highest level structures
while, as α approaches 1, SGF(α) preservers the finest structure details. Its role is
central in the low-rank approximation step and it is hence detailed in Section 9.3.2.

The SGF has been designed with flexibility in mind, ensuring the maximum
customizability in experimenting with different solutions. Its pipeline blocks are
independent and researchers can fine tune the components to best fit their needs. In
the following their roles are presented in details.

9.3.1 Transformation

The transformation block applies the symmetry preserving real function of choice to A.
As already mentioned such function includes identity, for working with A, modularity
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Transformation

M = A

M =A− ddT

1̃Td

low-rank
α-approximation

of M→ M̃

A

Back-
Transform.

Ã = M̃

Ã =
M̃ + ddT

1̃Td
Normalizing

A† = logistic(Ã, k)

A† = truncate(Ã)

A† = scale(Ã)

Sampling

A′ =
Bernoulli(A†)

A′

Figure 9.1 – The pipeline of the SGF framework. Given a simple graph
adjacency matrix A as input, SGF outputs a “similar” one A′ from which
the corresponding graph can be built, called SGF(α). Sub-blocks indicate
mutually exclusive options for each step. The main focus of the experiments is
on using SGF to target modularity, by setting M = B = A−

(
ddT
)
/~1d), and

the corresponding blocks are highlighted in grey. Copyright © 2018 IEEE.

transformation, for dealing with B. The transformation must produce a symmetric
real matrix M in order to be used as input to the next block.

9.3.2 Low-rank α approximation

This block applies the low-rank approximation to the transformed matrix M as
presented in Section 3.1.4 but driven by the parameter α, so that the output is

M̃ =
dα|V |e∑
i=1

λiviv
T
i , α ∈ (0, 1)

Where λ1, . . . , λ|V |, v1, . . . , v|V | are respectively the eigenvalues and the eigenvectors
of M .
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The distance between M and M̃ relates to the amount of information discarded
during the approximation phase. This distance is measured using the Euclidean norm
‖ M − M̃ ‖2, a well-known metric in the space of real matrices. It turns out such
distance is readily computable by considering the spectral radius ρ(·) interpretation of
the Euclidean norm of the difference matrix:

‖M − M̃ ‖2=‖
|V |∑

i=dα|V |e+1

λiviv
T
i ‖2= ρ

 |V |∑
i=dα|V |e+1

λiviv
T
i

 = λdα|V |e+1 (9.1)

as the ordering discussed in Section 3.1.4 over eigenvalues and eigenvectors is adopted,
such that |λi|> |λj | ∀i < j.

Equation (9.1) describes the approximation error convergence for α → 1 and it
gives a readily method to estimate the resulting adjacency matrix drift from the
original one.

9.3.3 Back-Transformation

This block takes M̃ as input and it applies to it the inverse of the transformation func-
tion applied in the block of Section 9.3.1. In the case of the modularity transformation
this produces Ã = M̃ + ddT

~1T d . Note that Ã ∈ R|V |×|V | is not an adjacency matrix as its
components are real numbers not necessarily in {0, 1}. In order to obtain the output
adjacency matrix A′ two steps are still required.

9.3.4 Normalization

This block takes Ã as input and normalizes its entries in [0, 1], producing the block
output matrixA† ∈ [0, 1]|V |×|V |. This is a necessary step in order to apply the stochastic
function of the sampling block (Section 9.3.5) and hence introduce randomness in the
graph generation process.

The normalization step is performed using a normalization function, formally a
function (·) : R→ [0, 1] to be applied element-wise to Ã; several solutions are applicable
and three different techniques are proposed:

• logistic(Ãij) = 1
1+e(0.5−Ãij)k , k ∈ [2, 10], where k is the parameter used to tune

the function inclination.

• truncate(Ãij) =


1 if Ãij > 1
0 if Ãij < 0
Ãij otherwise
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• scale(Ãij) = Ãij−mins,t Ãst
maxs,t Ãst−mins,t Ãst

which equalizes the values preserving their
proportions.

Figure 9.2 shows a comparison of the above functions in the interval [−0.5, 1.5].
Preliminary results have shown k = 6 gives the best performance for the applications
of interest and it is used in the following.

For assessing the normalization function performance the spectral radius distance
of Equation (9.1) is considered.

Figure 9.3 presents the Euclidean distances between A and A† using different
normalization techniques. Ideally, the normalization function should introduce the
smallest variation, thus granting ‖ A−A† ‖2'‖ A− Ã ‖2. The converging property
on the trend ‖ A − A† ‖2→ 0 as α → 1 is also of interest. In this and subsequent
figures, a red dashed line represents the ideal target. Data shown in Figure 9.3 elects
truncation as the best for this task.
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Figure 9.2 – Visualization of the presented normalization function in the
interval [−0.5, 1, 5]. Copyright © 2018 IEEE.
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normalization functions on Erdős-Rényi graphs (upper plot) and Barabási-
Albert graphs (lower plot). Data is reported as 99% confidence intervals on
different graphs. Copyright © 2018 IEEE.

9.3.5 Sampling

In this step a stochastic function to A† is applied to introduce randomness and to
create an adjacency matrix A′. In the current setup, the Bernoulli sampling applied
element-wise to A†.

To preserve the simple graph properties, the elements on the diagonal are set
to zero, the elements on the upper-right triangular portion are sampled while the
remaining elements are specular.

• A′i,i = 0, ∀1 ≤ i ≤ n

• A′j,i = A′i,j , ∀j > i
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A′ ∈ {0, 1}|V |×|V | is hence granted to be a random adjacency matrix of simple graph
built from the original graph spectral components.

A′ elements are readily sampled element-wise from the Bernoulli distributions with
parameters A†ij . This means the Shannon entropy of A† family of matrices is easily
computable. This measure describes how broad and skewed is the range of the possible
output matrices A′; high entropy means very different output matrices are possible
while low entropy reduces the chances of high variations. The entropy of the stochastic
variable A′ is indicated as

H(A†) = 1
S

|V |∑
i=1

|V |∑
j=i+1

−A†i,j log2[A†i,j ]− (1−A†i,j) log2[1−A†i,j ], (9.2)

which is readily computed from A†, where S = −|V |(|V |−1)
2 (log2 δ + log2(1− δ)) is the

normalization factor and δ = 2
|V |2−|V |

∑
i,j A

†
i,j is the expected graph density described

by A†.
The possibility of computing the Shannon entropy over A′ differentiates SGF(α)

from all the other synthetic graph generators presented and it gives researchers a
powerful tool for early test evaluation and theoretical a-priori estimations.

9.4 Related algorithms and test datasets

In this section the comparison algorithms introduced in Section 9.1 are presented as
well as the datasets of interest used to make the experiments with.

9.4.1 Trajanovski et al. algorithm

Trajanovski et al. [105] present an algorithm for generating random graphs with a
prescribed modularity which takes m∗, Q∗, |E| as input (see Section 3.1.1). It first
creates a graph with m∗ well intra-connected communities Π1, . . . ,Πm∗ linked one
another in a chain, thus obtaining the maximum modularity for the inputs |E|,m∗.
It then performs three different rewiring techniques so to lower the modularity and
targeting Q∗. However, since at each step the modularity variation is computed on
the initial π1, . . . , π|V | and not on the optimal partitioning π∗1 , . . . , π∗|V |, the output
graph maximum modularity as described in Section 3.1.1, can be very different from
the target one Q∗ given in input. In the following this approach is referred with the
name Trajanovski.
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9.4.2 DC-SBM

Stochastic Block Model (SBM) is a generative model for graphs preserving community
structures [111]. Given the set of nodes V it places an edge (i, j) between nodes i, j ∈ V
with a probability which is function of πi, πj ∈ {Π1, . . . ,Πm}. These probabilities
form a matrix of inter and intra community (block) probabilities. Generally SBMs can
hardly reproduce real-world graph community structure [106] as they do not consider
other form of properties often found in real networks, e.g., degree heterogeneity. The
approach proposed by Karrer and Newman [106], Degree Corrected - Stochastic Block
Model (DC-SBM) corrects this limitation yielding better performance on realistic
topologies. In the following this approach is referred with the name DC-SBM.

9.4.3 Datasets

In the evaluation, synthetic datasets, specifically designed to deal with community
structure research, and real-world dataset with relevant community properties, are used.
The last category is very broad and includes all the networks involving interpersonal
relationship information.

Synthetic. A synthetic graph generator which controls the modularity can be
sketched as following; first create the node communities, secondly connect the com-
munities and thirdly, keeping fixed the inter-community amount of edges, variate the
inter-community edges until the desired modularity value is reached. This simple idea
has been widely used since the beginning of community detection research; for example
the Girvan and Newman model [112] creates graphs with 128 nodes, communities of
the same size and almost constant node degree. Lancichinetti et. al generator [113]
extends such algorithm allowing arbitral number of nodes and distributions for node
degree and community size. Both generators are employed to create two datasets
each comprising of ten randomly generated networks, called Girvan and Lancichinetti
respectively in the remainder of this work.

Add-Health. The National Longitudinal Study of Adolescent to Adult Health
(referred to as Add-Health in the following) is a U.S. national study on adolescents
in grades 7-12. It is a very large study involving data collection spanning from 1994
to 2008 [114]. In the following, the dataset belonging to the first of the four waves is
used, pertaining student friendship relationships. This data comprises 16 networks,
each of which derived from students of a different schools, each node represents a
student and edges represent friendship relationships. For each student, it is provided
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the related data on gender, race/ethnicity, and grade which naturally correlates with
the friendship partitioning.

Facebook. Ego networks are friendship networks created by considering all the
friends of a subject and the friendship relationships among such friends (the subject
node is not included). These networks form small graphs at the foundation of large-
scale network data. In this work the Facebook ego network dataset by Mcauley and
Leskovec [115] is employed, comprising of ten different networks with node numbers
spanning from 52 to 1034.

9.5 Results

In this section the experiment results focusing on the modularity matrix B are
reported (the dark gray block selection in Figure 9.1). An evaluation of specific SGF
characteristics is given first, followed by a comparison of SGF(α) against Trajanovski
and DC-SBM algorithms both considering direct community aspects as well as ancillary
graph properties. Finally an evaluation of the potentiality of the SGF approach in
terms of randomness capabilities is reported. When evaluating graph properties the
ratio with respect to the input graph is computed; i.e., focusing on a graph property p
for which the input graph has value pi and the output graph has value po it is reported
the property ratio po

pi
.

9.5.1 Insights on SGF

Let’s first consider trivial graphs of 128 nodes and 2 or 8 communities. The maximum
modularity ratio Q∗o

Qi
i

is measured and Figure 9.4 reports the results varying α. As
expected the ratio approaches 1 as α→ 1 but the speed of convergence varies with
respect to the number of communities, the greater the number the slower the con-
vergence. Figure 9.5 shows that the convergence speed also depends on Q∗i ; for this
experiment in fact, the maximum modularity is controlled indirectly by varying the
intra-community edge probability (0 for no intra community edges, 1 for communities
as complete graphs). Again, the higher the input modularity value the better SGF(α)
targets it.

9.5.2 Comparison against baselines

Let’s now compare SGF(α) with the other approaches, still measuring the maximum
modularity ratio Q∗o

Qi
i

. All the results for all the datasets are reported in Table 9.1 while
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Figure 9.6 show them graphically for α = 0.9 for convenience. From Table 9.1 it can
be seen SGF requires α ∼ 0.7, 0.8 to obtain results comparable to DC-SBM and that
Trajanovski method results have a very high standard deviation.

As shown in Figure 9.6, α = 0.9 grants SGF(α) to obtain always (within a 99%
confidence interval) results very close to the target (ratio approx. 1) while Trajanovski
always obtains worst results with a higher variance. DC-SBM performs better than
Trajanovski but is farther than SGF(α) to the target and it has generally an higher
variance. SGF(α) performs consistently across all the datasets under test.

Figure 9.7 tracks a different but related property, the number of detected partitions.
As before it is reported the ratio between the measure on the output graph with
respect to the input one so the target value is still 1. SGF(α) correctly reproduces the
number of desired partitions for all the datasets but the Add-Health one for which it
tends to split the communities. In the Add-Health case none of the solutions targets
perfectly the number of partition with DC-SBM being the closest one.

9.5.3 Ancillary metrics

In addition to the targeted modularity property, the algorithms are tested whether they
also preserve other important feature of the input graph, namely average clustering
and degree sequence (see Section 3.1.1).
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Figure 9.6 – Mean and 99% confidence interval for the modularity ratio, by
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Strategy Dataset Mean Std Dataset Mean Std
SGF(0.1) Add-Health 0.76038 0.10479 Facebook 0.80551 0.07143
SGF(0.1) Girvan 0.74602 0.01709 Lancichinetti 0.58268 0.00799
SGF(0.2) Add-Health 0.71985 0.06740 Facebook 0.82773 0.08925
SGF(0.2) Girvan 0.70728 0.01033 Lancichinetti 0.54349 0.00576
SGF(0.3) Add-Health 0.75379 0.07496 Facebook 0.87341 0.08013
SGF(0.3) Girvan 0.70690 0.01553 Lancichinetti 0.55989 0.00530
SGF(0.4) Add-Health 0.80250 0.10278 Facebook 0.86587 0.06847
SGF(0.4) Girvan 0.73735 0.00793 Lancichinetti 0.59954 0.00445
SGF(0.5) Add-Health 0.82452 0.08711 Facebook 0.89184 0.06929
SGF(0.5) Girvan 0.77007 0.01134 Lancichinetti 0.64635 0.00339
SGF(0.6) Add-Health 0.86057 0.08472 Facebook 0.91149 0.06688
SGF(0.6) Girvan 0.83302 0.01151 Lancichinetti 0.71476 0.00564
SGF(0.7) Add-Health 0.88024 0.05368 Facebook 0.93420 0.07223
SGF(0.7) Girvan 0.88050 0.01007 Lancichinetti 0.78831 0.00714
SGF(0.8) Add-Health 0.93563 0.03820 Facebook 0.96249 0.02018
SGF(0.8) Girvan 0.92902 0.00797 Lancichinetti 0.87126 0.00553
SGF(0.9) Add-Health 1.02524 0.03708 Facebook 0.98131 0.05789
SGF(0.9) Girvan 1.02722 0.00429 Lancichinetti 1.05135 0.00338
DC-SBM Add-Health 0.88304 0.09229 Facebook 0.89041 0.11375
DC-SBM Girvan 0.88989 0.00892 Lancichinetti 0.90944 0.00462
Trajanovski Add-Health 0.71150 0.08293 Facebook 1.38715 0.45120
Trajanovski Girvan 0.97946 0.31149 Lancichinetti 0.79338 0.00097

Table 9.1 – Modularity ratio for all the strategies on all the datasets. Copyright
© 2018 IEEE.

Clustering. Average clustering is a measure of how much graph nodes tend to
form cliques (triadic closures) and it is measured locally at each node and then averaged
over all the graph. Despite SGF(α) does not explicitly target this local property it
does well across all the datasets (plot shows the ratio between the output and input
average clustering) while the other approaches tend to alter the triad structures as
shown in Figure 9.8.

Degree sequence. Figure 9.9 reports the degree sequence correlation between the
input graph and the output ones. While the eigenvectors of B are poorly connected
to the input graph degree sequence (which instead correlates with the input adjacency
matrix A) SGF(α) still performs better than the comparing algorithms. This is
particularly surprising as DC-SBM actively attempts to preserve the degree distribution.
However, it obtains results very close to the ones of SGF(α).
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9.5.4 Attribute modularity preservation

In this section one of the most interesting results of SGF are highlighted. The proposed
approach not only successfully preserves the topological modularity described byQ∗,m∗

but it also preserves other types of modularities which are based on node attributes
and not related to the topology.

Considering a partition π1, . . . , π|V | ∈ {Π1, . . . ,Πm} on ethnicity, grade or gender,
it is shown SGF(α) correctly preserves it while the other approaches have no way
to keep such structure. The Add-Health dataset comes with such node attribute
information, enabling the computation of the input ethnicity/grade/gender modularity
value Qi; after generating the graphs, that computation is repeated by labelling the
nodes according to the input counter part and the resulting modularity ratios are
reported in Figure 9.10.

As expected, Trajanovski and DC-SBM cannot reproduce these community struc-
tures while SGF(α) correctly preserves them even when they are complex and overlap-
ping as in this case. This is the first method capable of creating efficient graph proxies
with such complex community structures.
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9.5.5 On the randomness of SGF

In the previous section the performance of SGF(α) were described in terms of property
targeting and that the closer α is to 1, the better the results are. However, two natural
questions arise from such scenario:

• how concentrated (skewed) is the distribution of A′? I.e., how likely are two
subsequent generated graph to be similar?

• as α→ 1, how similar is A′ with respect to A?

Ideally, it is preferred a low level of concentration, so likely having distinct realizations
and a reasonable distance from the input graph so that to grant a certain level of
randomness.

In this work experiments, the Shannon entropy is used to measure the level of
distribution concentration. To measure the distinctness with respect to the input
graph, a pragmatic method is employed, mapping to a potential use case scenario,
the resistance to de-anonymization attacks. In fact, SGF(α) is envisioned to be used
to anonymize graphs with sensitive data while preserving other important structural
features.
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De-anonymization attacks attempt to identify nodes in a partially labelled graph
by exploiting structural similarities, meaning that, if the identification fails the two
graphs are topologically distinct. There is a broad literature production over graph de-
anonymization attacks [116] and for this work experiments Distance Vector (DV) [116]
is picked as it is proven to be robust, scalable and exploitative of the graph global
characteristics [117] targeted by SGF. In the experiments, for each run, the DV attack
is fed with 5% of output graph node identities as ground truth and the fraction of
nodes successfully identified is reported.

The upper plot of Figure 9.11 refers to one connected graph from the Add-Health
dataset. Even for low values of α the modularity ratio is close to 1 while the entropy,
being close to 0 for α → 1, climbs steadily as α decreases. Interestingly, even for
α = 0.9 the DV success ratio is only around 60%; performance improves further for
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Figure 9.11 – Mean and 99% confidence interval for graph distribution entropy
and DV de-anonymization success rates on one Add-Health graph (upper plot)
and one Facebook graph (lower plot), by α. Copyright © 2018 IEEE.



98 9.5 Results

α = 0.5 granting a modularity value of 0.82 (according to Table 9.1) and a percentage
of disclosed nodes of 20%. Given the strength of the DV attack, that means the output
graphs significantly differ from the input one. At the same time the value of entropy
grants low level of concentration for the output graphs.

The lower plot of Figure 9.11 reports similar results for a network from the Facebook
dataset. In both cases for α = 0.1 the de-anonymization attack can disclose only
10% of node identities (inclusive of the initial 5% of ground truth) while obtaining a
modularity ratio around 0.8.



Chapter 10

Conclusions and long-term vision

Live streaming is a killer application for our communication networks and the trend is
indicating its momentum is even increasing in the close future [12]. At the same time,
CNs are an emerging and promising network scenario involving more and more people
worldwide, thus spreading the adoption of mesh networks for large communication
systems.

In this work, the challenges live streaming on CNs presents are shown and several
strategies optimizing the efficiency and effectiveness of the distribution are derived.
A specific framework is proposed to work in this context so to create new research
directions and draw attention on the upcoming related challenges.

The derived streaming platform, PeerStreamer-ng, has already been integrated in
a CN service system so to be readily deployed and used by CN users. This work goals,
originally stated in Chapter 1, of:

• Rethinking killer applications for CNs;

• Modeling and deriving specific solutions in this context;

• Creating suitable streaming platform for CNs;

• Get CNs engaged in the process;

have been addressed and reached. Given the strong synergy between the CN philosophy,
preferring distributed solutions and free data access, and the P2P architecture, relying
on strong node cooperation and join effort orchestration, I envision this scenario to
become a promising field for researchers; not only focusing on streaming but also
rethinking entirely our way to communicate over networks.
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Along the way, the following platforms have been designed and proposed to the
community:

• NePA TesT, a mesh network emulator designed with WCNs in mind;

• PeerStreamer-ng, a live P2P streaming platform for mesh networks.

I see the adoption of PeerStreamer-ng as a first step in the technologically open,
freely accessible and end-user oriented world that CNs represent.

The main scientific results of this work can be summed with:

• Cross-layer topology optimization (Chapter 6);

• Reception-equal distribution optimization (Chapter 7);

• Spectal Graph Forge (SGF) (Chapter 9).

Each of them represent a novel approach to solve a broad range of similar problems
and they might also be combined to explore new solutions for issues not yet considered.

Cross-layer topology optimization can be applied in the context of virtual network
embedding [118], allowing the optimization of virtual network allocation with respect to
the actual underlay network; reception-equal optimization can be easily implemented
in a broad range of existing decentralized networks with applications in information
gathering in sensor networks, pertaining countryside pollution, weather conditions and
vehicle traffic monitoring. Given the reception-equal optimization adaptability it can
be used in contexts different from communication networks; the optimized sending
rates can be though to improve systems with concurrent flow regulation, like vehicle
traffic engineering. Roads and streets naturally map to a graph where concurrent
vehicles compete to use the available resources and infrastructure devices, such as
traffic lights represented through the graph nodes, regulate resource access. The
reception-equal results might be applied in this context by imposing the optimized
traffic light switching rates so to reduce the time vehicles spend in the roads (the
time/delay to reach the destination). As already mentioned in Chapter 9, SGF shows
interesting properties for anonymization applications and its applicability in this
context has just started. Graph anonymization is becoming more and more important
because of the growing size of the sensitive data daily produced by social network
users.

While each of the aforementioned thesis outcomes can be exploited singularly, I also
envision their combinations will be of interest in the next future. It is straightforward
from this work that cross-layer topology optimization and reception-equal distribution
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optimization can be combined for P2P live streaming applications. In the context of
social networks, the reception-equal optimization can find the optimized parameters
for spreading information (such as fake news) in the context of social networks.

Summing up, future directions rely on applying and extending the main outcomes
of these thesis in both:

• decentralized communication networks;

• social networks.
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