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In recent years, the number of people suffering from cancer and multi-resistant infections

has increased, such that both diseases are already seen as current and future major

causes of death. Moreover, chronic infections are one of the main causes of cancer, due

to the instability in the immune system that allows cancer cells to proliferate. Likewise,

the physical debility associated with cancer or with anticancer therapy itself often paves

the way for opportunistic infections. It is urgent to develop new therapeutic methods,

with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found

in the innate immune system of a wide range of organisms. Identified as the most

promising alternative to conventional molecules used nowadays against infections, some

of them have been shown to have dual activity, both as antimicrobial and anticancer

peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy

against both conditions, with the number of nature-driven or synthetically designed

peptides increasing year by year. With similar properties, AMPs that can also act

as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low

propensity to resistance, which started this paradigm in the pharmaceutical market.

These peptides have already been described asmolecules presenting killingmechanisms

at the membrane level, but also acting toward intracellular targets, which increases

their success compartively to one-target specific drugs. This review will approach

the desirable characteristics of small peptides that demonstrated dual activity against

microbial infections and cancer, as well as the peptides engaged in clinical trials.

Keywords: anticancer peptides (ACPs), antimicrobial peptides (AMPs), cancer, multi-resistant infections, bacteria

INTRODUCTION

At the beginning of the twenty-first century, the increased appearances of multi-resistant bacterial
pathogens have become a worldwide problem (Arias and Murray, 2009). The World Health
Organization has already emphasized the urgency in designing new antimicrobial molecules,
because conventional antibiotics are increasingly useless as therapeutics, especially against the
so-called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species), which showed a high
propensity to develop antibiotic resistance (McKenna, 2013). Another global concern is the rise in
the incidence of cancer. Recent data released revealed 12.7 million new cases and 7.6 million deaths,
just in 2008 (Ferlay et al., 2010). In Europe alone, 3.45 million new cases were diagnosed and 1.75
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million deaths occurred during 2012 (Ferlay et al., 2013).
Nowadays, cancer is the second most common cause of death
worldwide (Arnold et al., 2015), caused by an abnormal cellular
growth, in a uncontrolled manner, with the ability to invade
other tissues, leading to the formation of tumor masses, neo-
vascularization (angiogenesis), and metastasis (Thundimadathil,
2012). Lung, colorectal, prostate, and breast cancer are the
most diagnosed forms of this disease (Domalaon et al., 2016).
Considering the numbers revealed, it is urgent to find new
anticancer drugs able to control tumor growth with minimal side
effects (Dennison et al., 2007). This situation has become worse
due to DNA-alkylation, hormone agonists, and antimetabolites,
which show insufficient selectivity and unspecific targeting on
healthy cells (Smith and White, 1995; Gaspar et al., 2013),
contributing to increased resistance to anticancer drugs (Wang
K.-r. et al., 2009). Moreover, the intersection between infection
and cancer is highlighted by the number of cancer deaths
and new occurrences that are related to treatment or chronic
infections. Approximately 2 million of the new cancer patients
are due to infectious agents like bacteria and viruses (Parkin,
2006; Attiê, 2014; Vedham et al., 2014). Patients that suffer
from a chronic infection are more susceptible to cancer due
to the weakened immune system, which cannot fight both the
pathogen, and the emergence of cancer cells (Rolston, 2001). This
weakness can also occur due to cancer treatments that are too
aggressive to patient health, such as chemotherapy, radiotherapy,
and surgical resection, leaving patients susceptible to infection
agents (Fishman, 2011; Xiao et al., 2015). Also, continuous
exposure to infection leads to inflammation, contributing to the
appearance of cancer (Vedham et al., 2014).

In recent years, a promising new class of molecules has arisen,
and it has different types of advantages against both of the above
major world health concerns. Antimicrobial peptides (AMPs)
are small peptides essential for the innate immune response of
organisms of all branches, presenting activity against a wide
range of pathogens, like bacteria, fungi, and viruses (Hancock
et al., 2016). More recently, anticancer activity was also described
for some of these peptides, termed anticancer peptides (ACPs)
(Dennison et al., 2006). Properties like their short time-frame of
interaction (which decreases the probability of resistance), low
toxicity (which reduces side effects), mode of action, specificity,
good solubility, and finally, good tumor penetration, indicate
ACPs as a future chemotherapy cancer drug with high potential
(Riedl et al., 2011; Figueiredo et al., 2014; Wu et al., 2014; Gaspar
et al., 2015; Domalaon et al., 2016).

PEPTIDES WITH ANTIMICROBIAL AND
ANTICANCER ACTIVITY

Antimicrobial peptides were first identified due to their
importance in the innate immunity of a broad number of
organisms, gaining interest from the scientific community
(Jenssen et al., 2006). From the first identification until today,
hundreds of AMPs have been identified and studied, either
from natural sources or from in silico designs (Hancock et al.,
2016). These peptides are characterized by an amino acid

sequence usually from 5 to 50 residues, high hydrophobicity
and positive net charge (Melo et al., 2011; Gaspar et al.,
2012). These physicochemical properties set the basis for the
activity against pathogens (Dennison et al., 2010). Bacteria
present negatively charged membranes, promoting AMPs’ initial
electrostatic interaction. Even knowing that not all AMPs are
ACPs, the similarity in terms of action is obvious, due to
the phenotype of the membrane surface in cancer cells. In
the plasma membrane inner-leaflet of healthy cells there is
phosphatidylserine (PS), a negatively charged phospholipid. This
asymmetry between inner and outer membrane leaflets is lost
in cancer cells, leading to the presence of PS in the outer-
leaflet (Bevers et al., 1996). PS exposure, the presence of O-
glycosylated mucins, sialylated gangliosides, and heparin sulfate,
in conjugation with an increased transmembrane potential,
surface area, and membrane fluidity (Schweizer, 2009; Hilchie
et al., 2011), promote the specific activity of AMPs toward cancer
cells (ACPs), without being affected by tumors’ heterogeneity
(Kelly et al., 2016).

The physicochemical parameters determining the activity of
some AMPs toward cancer cells are still unclear, considering
that the characteristics of AMPs/ACPs are very similar. Efforts
are being made in order to understand these differences, which
would enable an improved design of ACPs (Dennison et al.,
2006). Some AMPs can also be ACPs independently of the
source of identification or synthetic route of design (Mader
and Hoskin, 2006). The number of AMPs encountered in
nature that have anticancer activity has increased in recent
years. Aurein 1.2 (GLFDIIKKIAESF), a peptide isolated
from the frog Litoria aurea, is one example of an AMP
with broad-range activity toward bacteria that showed
to be highly active toward 55 different cancer cell lines
in vitro, without any significant cytotoxic activity (Rozek
et al., 2000; Dennison et al., 2007; Giacometti et al., 2007).
Another example is the human neutrophil peptide-1 (HNP-1,
ACYCRIPACIAGERRYGTCIYQGALWAFCC), an AMP that
plays a fundamental role in the defense against pathogens
in the innate immune system. Its antimicrobial activity has
been fully explored, with a broad spectrum activity against
bacteria, but it is the possibility of using this AMP in cancer
therapies that attracted attention in recent years (Nishimura
et al., 2004; Varkey and Nagaraj, 2005). The full mechanism
of action of this peptide against cancer cells has not yet been
established, but activity was already confirmed for different
cancer cell lines, with very low cytotoxicity against healthy
cells (McKeown et al., 2006; Gaspar et al., 2015). Peptides
pleuricidin 03 (GRRKRKWLRRIGKGVKIIGGAALDHL) and
pleuricidin 07 (RWGKWFKKATHVGKHVGKAALTAYL),
AMPs isolated from Atlantic flatfishes, were showed to be highly
effective in killing different bacterial strains (Patrzykat et al.,
2003). Recently, their anticancer activity was explored and their
effectiveness against drug-resistant breast cancer cells confirmed,
without toxicity against fibroblasts or erythrocytes, either in
in vitro and in vivo models (Hilchie et al., 2011). These are
just examples of ACPs that were studied after isolation from
different natural sources, like animals, plants, and bacteria.
Natural ACPs, even having a high anticancer activity, have
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normally 30–40 amino acids in their sequence, which increases
production costs. Therefore, synthetic routes for ACP design
have gained attention. There are different possible approaches
available, such as the improvement of natural ACP sequences or
the use of in silico methods (Park et al., 1998; Lee et al., 2008).
Both strategies take into consideration the improvement of the
physicochemical properties, like amphipathicity, hydrophobicity,
and overall positive charge, with the objective of better activity
toward the target cells (Huang et al., 2011; Melo et al., 2011;
Sinthuvanich et al., 2012). Furthermore, other strategies such
as hybridizing different ACPs (Hoskin and Ramamoorthy,
2008) or changing the amino acids used for unnatural ones
(D-enantiomers or cyclic tetra-substitution of Cα are examples;
Hicks, 2016) have also been tested. The possibilities are endless,
and depend on what the focus of the improvement is for
each case. Bioinformatic algorithms integrated with machine
learning, where the design is automatic through the properties
chosen, taking into consideration AMP/ACP libraries of existing
molecules, are considered the future method for their rational
design (Tyagi et al., 2013; Lin et al., 2015).

AMPs and ACPs share most of the characteristics, like the
physicochemical properties already described. Structure plays
a central role in their activity. It is commonly accepted that
most AMPs/ACPs do not fold in a well-defined structure when
free in solution, but adopt α-helix or β-sheet structure when
electrostatic interactions with membranes occur (Hoskin and
Ramamoorthy, 2008). Differences in terms of structure were
the first method for the classification of ACPs. Examples of
some AMPs lately defined as α-ACPs are cecropin, magainin,
melittin, and buforin II, with lactoferricin B, HNP-1/3, and
gamesin being classified as β-ACPs (Papo and Shai, 2005). More
recently, it was noticed that independently of the secondary
structure that the peptide adopts, a classification considering
the mechanisms of action in the target cancer cells was more
suitable (Wu et al., 2014). AMPs were considered membrane-
active peptides regarding their primary activity, but over the
years, it was clarified that they can also target different processes
of the pathogen (namely, metabolism, and cell division) and
of the immune system (recruitment of immune cells; Hancock
et al., 2016). These aspects were also studied for ACPs, with
the identification of cell membrane lytic activity (necrosis),
mitochondrial membrane lytic activity (apoptosis), and non-
membrane activities (Figure 1; Wu et al., 2014). The first one
is the most common anticancer method of targeting, with
the electrostatic interactions promoting membrane disruption,
leading to necrosis. Polybia-MPI, a natural ACP, and the
synthetic BTM-P1 are just two examples (Segura et al., 2007;
Wang K.-r. et al., 2009). These ACPs have high selectivity
toward cancer cell membranes and develop low resistance, when
compared to conventional chemotherapeutic drugs. Activity
toward mitochondrial membrane, activating apoptosis signaling,
was also observed for some ACPs, such as lactoferricin B and
different β-ACPs (Furlong et al., 2006; Paredes-Gamero et al.,
2012). After the activity at the membrane level, ACPs can also
present other activities, either targeting essential cell proteins,
inhibiting angiogenesis, or recruiting immune cells to attack
cancer cells (Figure 1; Wu et al., 2014). HNP-1 was shown to

be an ACP that recruits and activates dendritic cells in terms
of immunomodulatory activity (Wang Y.-s. et al., 2009), but
also inhibits angiogenesis, which is essential to the growth and
development of tumors (Xu et al., 2008).

POTENTIAL CLINICAL APPROACHES
USING ACPs

Although a wide variety of drugs are commercially available,
treatments for infections, and cancer have one thing in common:
the emergence of resistance against multiple drugs (Baguley,
2010; Theuretzbacher, 2012). Another associated problem is the
lack of selectivity of the available drugs, and their consequent
undesirable side effects for the patients (Mandell et al., 2001;
Baguley, 2010). Thus, there is a need for the development
of new antineoplastic and antimicrobial therapies, with higher
selectivity, leading to fewer side effects than current ones.
It is desirable that these new compounds present different
mechanisms of action, without dependence on activity toward
a single specific molecule in the target cells, like the ones used
nowadays in therapeutics. Themain goal is resistance prevention,
overcoming the existing mechanisms that cancer and bacterial
cells use, being active and diminishing the side effects (Lincke
et al., 1990; Arias and Murray, 2009; Kakde et al., 2011).

As described earlier, several AMPs and/or ACPs have become
the focus of research by different groups, mainly due to their
ability to kill or inhibit the growth of a variety of microorganisms
and tumor cells (Wu et al., 2014; Hancock et al., 2016). There
are thousands of natural peptides and millions of synthetic
peptides obtained by rational design, with a large number
presenting antimicrobial and anticancer activity, but only a
few being tested (Gordon et al., 2005). Furthermore, from
these, unfortunately, only a small number are currently in
clinical trials (Table 1). This is mostly due to the numerous
challenges associated with the development of these peptides
as pharmaceutical drugs, such as synthesis costs, which are
higher than the synthesis of organic antibiotic small molecules.
Due to this, peptide design has focused on primary structure
shortening, accomplishing a lower production cost, and allowing
physicochemical properties to be easily changed, which is
important for the activity of AMPs/ACPs (Tørfoss et al., 2012a;
Domalaon et al., 2016).

In addition, the adverse effects presented by some peptides
(high toxicity to mammalian healthy cells and low immune
response modification) increase the number of obstacles to
applying these molecules to therapy (Hancock, 1997; Andreu
and Rivas, 1998; Xiao et al., 2015; Kao et al., 2016). This is
not surprising, since the activity of AMPs/ACPs usually depends
on membrane-peptide interaction. However, to be commercially
useful, it would be necessary to dissociate the toxicity to the
mammalian cells from antimicrobial/antitumor activity, which
can be achieved by increasing antimicrobial activity, reducing
haemolytic activity, or both (Chen et al., 2005; Uggerhøj et al.,
2015).

Another obstacle to the applicability of peptides is their
susceptibility to proteolysis. Oral administration remains
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FIGURE 1 | Different mechanisms of action of anticancer peptides.

the preferred mode for drug delivery, corresponding to
approximately 60% of the administration routes used for drugs
(Renukuntla et al., 2013). This occurs due to the advantages
that these drugs present, including low production cost and
patient compliance in the administration. Even so, peptide
drugs usually follow the traditional route of administration, like
intramuscular (i.m.) or intravenous (i.v.) injection, due to their
poor oral bioavailability, which is expressed by a low resistance to
proteases and poor penetration through the intestinal membrane
(Hamman et al., 2005). Sensitivity to proteolytic degradation
can be mitigated by using rational design to replace naturally
occurring amino acids with unnatural ones (Gordon et al., 2005;
Uggerhøj et al., 2015). An example is the synthetic design of
D-enantiomeric peptides, like DJK-5/6, which show improved
activity against bacterial infections in in vivomodels, comparable
to that of the L-enantiomeric peptides, without showing any
cytotoxic activity (de la Fuente-Núñez et al., 2015; Mansour et al.,
2016). This type of peptide were also shown to be more actively
effective against drug-resistant tuberculosis pathogens, and have
already been tested with inhalable spray-dried formulations (Lan
et al., 2014; Kwok et al., 2015). In terms of ACPs, SVS-1 was seen
to be more effective, compared to its L-isomeric peptide form
(Sinthuvanich et al., 2012). β2,2 amino acids, also unnatural ones,
can be another strategy to design AMPs/ACPs that are resistant
to proteolysis, with a high effectiveness against the target cells
and low toxicity toward healthy cells (Tørfoss et al., 2012a,b).

Together with proteolysis comes the limitation of
pharmacokinetics and pharmacodynamics, because it is
difficult to evaluate the direct action of the peptide against the
pathogen in vivo and relate to a specific mode of action (Drusano,
2004). Moreover, the time of circulation, which is essential for a
drug to be efficient, is not easy to determine (Kelly et al., 2016).
Different strategies have been proposed for this problem, like
the use of drug carriers, such as bacteriophages (Dąbrowska
et al., 2014). Using a natural bacterial phage, displaying ACPs
on their surface, increases the targeting (dynamics of action)
and allows for improved dual activity. Conjugating the peptide
with cell-penetrating peptides (CPPs) can be another interesting
strategy to improve the specificity of the targeting. Some authors
have used TAT protein from HIV virus as the CPP, conjugated
to an AMP/ACP (HPRP-A1) in order to increase the specificity
toward cancer cells (Hao et al., 2015). Coating or conjugation of
peptides with polymers, like polyethylene glycol (PEG), can also
increase circulation and improve pharmacokinetics/dynamics,
independently of the polymer used, by allowing a higher time of
circulation and improving their penetration toward the target
cancer cells (Kelly et al., 2016).

In conclusion, these modifications may promote changes in
amphipathic/hydrophobic properties, leading to the reduced
cytotoxicity of peptides toward mammalian cells, without
jeopardizing antimicrobial/anticancer efficiency, rendering
peptides more impervious to proteolysis, and thus bestowing on
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them improved therapeutic activity and pharmaceutic design
(Chen et al., 2005; Uggerhøj et al., 2015; Kang et al., 2017).

CONCLUSION AND FUTURE DIRECTIONS

In conclusion, AMPs and ACPs have been known for several
decades, but only in the last one an increasing number of
publications on thier in vivo activities has arisen. Consequently,
few peptides are used in medical practice. However, we believe
that in the upcoming years peptides will have a major impact
on the treatment of infectious diseases and cancer, two of the
world’s greatest healthcare concerns. As shown here, different
microbial infections and/or cancer-targeting peptides are in
clinical trials, with approval for clinical application expected for
the next few years (at least 10 in the next 5 years). Moreover,
that number should tend to increase due to advances in the
rational design of peptides, minimizing or eliminating cytotoxic
effects. In addition, advances in the large-scale synthesis of
peptides has made this process cheaper, thus making peptide-
based therapies likely to become more accessible to patients.
Another strategy that has gained attention is the combined use
of peptides with conventional drugs, which reduces costs per
treatment, minimizing the problem of resistance and preventing
recurrence. Thus, AMPs and ACPs have great potential, both

alone and in combination with conventional drugs, to be used
in infection and cancer therapies, mostly due to their effective
mechanisms of action on the target cells.
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