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Resumo

A presente tese baseia-se na abordagem proposta por Chung e Shih [13], o static hedge port-
folio (SHP), para avaliação e cobertura de opções de estilo americano para os modelos de
Black-Scholes [4] e constant elasticity of variance (CEV) de Cox [15]. O principal objetivo
desta tese é estender o static hedge portfolio para avaliação de opções de estilo americano
quando o ativo subjacente segue o modelo jump-diffusion proposto por Merton [32]. Con-
forme demonstrado por Chung e Shih [13], o preço de opções de estilo americano pelo método
SHP é apurado tendo por base um portfólio de opções de estilo europeu com múltiplos preços
de exercicio e maturidades. Este static hedge portfolio é assim formulado pela aplicação das
condições value-matching e smooth-pasting na fronteira de exercicio antecipado. A precisão e
a eficiência do modelo proposto são testadas através do método Fourier Space Time-stepping
(método FST) de Jackson et. al [26], que permite avaliar opções standard de estilo ameri-
cano sob processos exponenciais de Lévy. Os resultados indicam que a adição de salto nos
processos estocásticos dos ativos introduz limitações ao método em estudo, diminuindo a sua
precisão e, consequentemente, excluindo-o do conjunto de ferramentas que permitem avaliar
opções de estilo americano. Este artigo sugere ainda alguns tópicos para pesquisas futuras,
que podem potencialmente resolver os problemas de precisão identificados.

Palavras-chave: opções de estilo americano; avaliação de opções; Static hedging Portfolio;
Merton jump-diffusion model.



Abstract

This thesis uses the static hedge portfolio (SHP) approach proposed by Chung and Shih
[13] to price and hedge American-style options under the Black-Scholes [4] model and the
constant elasticity of variance (CEV) model of Cox [15]. The main goal of this thesis is to
extend the static hedge portfolio approach to price American-style options when the under-
lying asset follows the jump-diffusion model proposed by Merton [32]. As demonstrated by
Chung and Shih [13], the SHP to price American-style options is achieved through a portfolio
of European-style options with multiple strikes and maturities and formulated by applying
the value-matching and smooth-pasting conditions on the early exercise boundary. The ac-
curacy and efficiency of the proposed pricing model are compared with the Fourier Space
Time-stepping method (FST-method) of Jackson et. al [26], which allows pricing American-
style standard options under exponential Lévy processes. The results indicate that the jump
addition introduces limitations to the model under study, decreasing its accuracy and con-
sequently excluding it from the set of tools that can be used to evaluate American-style
options. This paper also suggests some topics for future research, which can potentially solve
the accuracy issues identified.

Keywords: American-style options; Option Pricing; Static hedging Portfolio; Merton jump-
diffusion model.



Contents

List of Figures iv

List of Tables v

1. Introduction 1

2. Main Assumptions 6

3. Merton Jump-diffusion Model 11
3.1. Drifted Brownian Motion with a Compound Poisson Process . . . . . . . . . 11
3.2. Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3. Pricing Solution for European-style Options . . . . . . . . . . . . . . . . . . . 15
3.4. Delta Hedge of European-style Options . . . . . . . . . . . . . . . . . . . . . 18

4. Valuation of American-style Options under Static Hedge Portfolio 20
4.1. Standard American-style Options . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2. Static Hedge Portfolio Approach . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3. Hedge Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5. Numerical Results 27

6. Conclusions 37

A. Appendix 39
A.1. Appendix I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2. Appendix II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.3. Appendix III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii



List of Figures

3.1. Simulation of a path example of the Merton jump-diffusion model . . . . . . 14
3.2. Call option prices with Merton model: Value vs Spot - varying parameter λ . 17
3.3. Put option prices with Merton model: Value vs Spot - varying parameters λ . 18

4.1. Valuation form of n-point SHP at its early exercise boundary . . . . . . . . . 23

5.1. Boundaries of American-style put option using the FST-Method versus the
SHP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2. The convergence of the SHP prices of American-style put to the benchmark
price. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3. American-style put option price varying λ within a range from 0 to 0.8 . . . . 35
5.4. American-style call option price varying the λ within a range from 0 to 0.8 . 35

iv



List of Tables

5.1. Prices of American-style put options under the Merton jump-diffusion model 28
5.2. Prices of American-style call options under the Merton jump-diffusion model

with q = 0% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3. Prices of American-style call options under the Merton jump-diffusion model 32
5.4. Prices of American-style call/put options under the Merton jump-diffusion model 33

A.1. Prices of American-style call options under the Merton jump-diffusion model 42
A.2. Prices of American-style put options under the Merton jump-diffusion model 43

v



1. Introduction

1973 is marked by two major events in the history of options: the first listed options were
traded in the Chicago Board Options Exchange (CBOE); and a valuation model to price
European-style options was developed by Merton [31] and Black-Scholes [4] which deeply
changed the options’ market and how this instrument is used.

Prior to this model, the assessment and measurement of risks was unclear to those who traded
options. However, the approach developed by Fisher Black, Myron Scholes and Robert Mer-
ton is limited to the assessment of European-style options, which differ from American-style
options on the time at which options can be exercised. While European-style options give
the right to exercise the option at the maturity date T , American-style options can be ex-
ercised at any time up to T . Therefore, one of the greatest difficulties in the valuation of
American-style options is to find the date when the option holder will have the greatest ben-
efit in exercising the contingent claim. For this reason, the determination of this ideal time
has become an important, as well as difficult, problem in finance research field. Considering
that the American-style options are an heavily traded derivative, due to its frequent use in
speculation and hedging, they require a fair value recognized by the market, similarly to the
one established for European-style options. These factors have been leading to intense study
over the last decades, with the objective to develop more robust and efficient models.

In the same article that describes an important study on European-style options valuation
models, Merton [31] makes a relevant statement, when it comes to call options: if the un-
derlying asset does not pay dividends, there is no benefit on exercising an American-style
call option before its maturity. This assumption allows pricing American-style call contracts
as European-style options. Development of papers focused on the case of discrete dividends,
for which analytical solutions can be derived, was the next step; Roll [35] and Geske [21] are
good examples of these studies, as well as Whaley [41], who proved that if the underlying
asset pays discrete dividends over time, it is possible to define an analytical formula for eval-
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uating American-style call options, because the optimal time to exercise the option occurs
immediately before dividends payment.

Nevertheless, the mathematical difficulty of finding an analytical formula to price American-
style options on dividend-paying asset remains. There are no closed-form solution formulas
for pricing American-style options, which is related to the fact that the option price, as well as
the early exercise boundary, must be determined simultaneously, as described by Mckean [30]
regarding the free boundary problem. This significant financial issue led experts to develop
creative solutions for completing the valuation of American-style options, such as numerical
solution methods or analytical approximations. All new solutions aim to accurately and ef-
ficiently determine the price of complex financial products with early exercise features.

Many of these methods have been successful and are able to evaluate American-style options
efficiently. Some of the most commonly used methods are based on Brennan and Schwartz
[6], who introduced the finite difference method, and on Cox et al. [16], who developed the
binomial method for the valuation of American-style options. Both approaches use a discrete
time and a discrete stock price process to approximate the underlying continuous process.
These methods may take considerable amount of time to simulate, due to their time-recursive
nature, which can generate significant errors in options with long maturities. Besides being
an excellent pedagogical tool, these discrete-time models also play an important role in real
world practice for valuing most contingent claims, which explains the extensive research of
Broadie and Detemple [7], Figlewski and Gao [19], Heston and Zhou [24], Chung and Shih
[12]. Monte Carlo simulation is another numerical tool widely used to calculate options prices,
whose details can be studied on Glasserman [20]. Recent advanced numerical methods also
include the quadrature integral methods of Sullivan [37].

On its turn, Geske and Johnson [22] worked, via Richardson extrapolation, to approximate
American-style options prices to an infinite serie of exercisable Bermudan-style options. This
approach was well accepted among finance experts such as Bunch and Johnson [8] or Chung
and Shackleton [11], who continued to improve the method in order to resolve the lack of
uniformity in convergence. Another approach is Carr’s [10], who also using Richardson ex-
trapolation, developed a fast and accurate randomization methodology. Despite the efforts,
the models implemented are still not as robust as expected, because the use of Richard ex-
trapolation does not allow error determination.

2



In another way, Kim [28], Jacka [27] and Carr et al. [9] looked for a differentiated solution
based on the integral representation. However, approaches presented are based on Black-
Scholes model, differing only in the early exercise boundary chosen.

An additional chapter of the American-style option price literature, which will also be studied
in this document, is the Static Hedge Portfolio (SHP). This approach was initially developed
by Bowie and Carr [5], Derman et al.[17] and Carr et al. [10] for hedging European-style
exotic options; its main idea is to create a static portfolio of standard European-style op-
tions whose values ensure the matching of the option pay-off at expiration along with the
boundary. This matching can be formulated through two different ways: a range of standard
European-style options with maturities from time 0 to time T to match the boundary before
the exotic option maturity, with the strike equaling the boundary before maturity; or a range
of standard European-style options of all strikes, with the maturity date T matching that of
the exotic option.

In comparison to dynamic hedge, static hedging is less sensible to model’s risks, such as
volatility misspecification, as documented by Tompkins [40] and Thomsen [39]. Due to dis-
crete trading, dynamic hedging may also have substantial hedging errors, as described by
Primbs and Yamada [34]. Furthermore, when the transaction costs are high, static hedging
is significantly cheaper than dynamic hedging.

Based on the static hedge portfolio, Chung and Shih [13] adapted this approach to the pricing
of American-style options. In addition to proposing a pricing model for options, the hedge
problem is automatically solved, while the static hedge portfolio is found. Moreover, because
of the possibility of early exercise in the case of the American-style options, this methodology
takes advantage of both approaches by using standard European-style options with multiple
strikes and multiple maturities. The free boundary problem presented by static hedge port-
folio of American-style options, requires that early exercise boundary to be determined at the
same time of hedging. Besides that, Chung and Shih [13] also demonstrated that the static
hedge portfolio is efficiently applicable to other stochastic processes beyond the Black-Scholes
model [4], proving that their static hedge portfolio approach also works adequately for the
constant elasticity of variance (CEV) model.

As mentioned above, the Black-Sholes model is a reference in the theoretical evaluation of
options. However, the normal distribution used by geometric Brownian motion to replicate
the dynamics of financial assets, does not fit well with empirical data. As a rule, the empirical
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distribution of asset returns exhibits asymmetric features, fat tails and skewness, as tested by
Jarque and Bera [3]. The geometric Brownian motion with drift is not an accurate model for
asset pricing. While asset price processes have jumps or spikes, geometric Brownian motion
is a diffusion process. This leads to the fact that, under the geometric Brownian motion,
the variations of greatest amplitude, commonly defined as jumps in literature, are not likely
to happen, i.e., the outliers occur far too infrequently in the Black-Scholes model. Yet, it is
crucial for the estimation of the market values of contingent claims to take these events into
account. Besides, the geometric Brownian motion, used in the Black-Scholes model, assumes
a constant volatility, but the market prices present an implied volatility smile, which is non-
constant.

Using the CEV model is another step in the attempt to bring the theoretical models closer
to the market prices. This local volatility model tries to incorporate the fact that in equity
markets volatility increases when prices decrease, due to investors’ risk aversion.

Nevertheless, a set of characteristics of the financial markets are still not considered, such
as jumps or spikes, as previously mentioned. One possible solution for this issue is to in-
troduce Lévy processes, namely processes with jumps, which are more realistic because they
are based in fat-tailed distributions. In this context, the jump-diffusion models appear as an
essential tool to provide an adequate description of stock price fluctuations. Jump processes
started to be used as a financial tool to determine stock prices by Merton [32], who made
and extension of the Black-Scholes model to create a new method that includes the negative
skewness and extra kurtosis of the log stock return density. By using the jump component,
Merton [32] aimed to capture several market events, which would make the model more accu-
rate to forecast markets behaviour. The jump component introduced a more realistic market
model; thus capturing normal market returns and rare events, i.e., abnormally large returns.
For this reason, jump-diffusion models are widely studied, as well as used in the real market
options assessments.

Therefore, in order to generalize the static hedge portfolio to other models that better express
the market trends, the present thesis will propose a new extension to this approach under
the jump-diffusion model developed by Merton [32]. The main objective is to develop and
test a simple and efficient method to realistically evaluate the American-style options price.
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In order to achieve this ambitious goal, it is important to start with the detailed investiga-
tion of some of the most important concepts of stochastic processes as well as its analysis,
which can be found on Chapter 2. Chapter 3 is dedicated to Merton jump-diffusion model, its
deltas and how it can be applied to price European-style options. Chapter 4 is focused on the
extension of the static hedge portfolio approach to the valuation of American-style options,
under the Merton jump-diffusion model. Numerical results of the model developed within
the thesis and its potential applications, as well as limitations, are presented in Chapter 5.
Finally, conclusions reached and final remarks will be discussed on Chapter 6.
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2. Main Assumptions

In this section, mild assumptions are introduced in order to better understand the static
hedge portfolio for pricing American-style options, under the Merton jump-diffusion model.

A stochastic process is a mathematical model also known as a random process for the occur-
rence, at each moment after an initial time, of a random phenomenon. This type of processes
are widely used to construct models in which the evolution of the system may have non-
deterministic behavior. In finance, these processes are extremely important since they allow
modeling of a complete set of stock price path, which due to their random behavior are not
deterministic. Formally a stochastic process can be defined as,

Definition 2.1. A stochastic process is a collection of random variables (St)t∈R+ where the
randomness is captured by the introduction of a measurable space (Ω,F) which take values
in a second measurable space (Ω′,F ′). The state space (Ω′,F ′) will be the d-dimensional
Euclidean space equipped with the sigma-field of Borel sets. The index t ∈ [0,+∞) of the
random variables S is interpreted as the time.

A filtration (Ft)t≥0 in a measurable space (Ω,F) is a collection of sub-σ-algebra of F that
corresponds to all information generated by the evolution of the spot price of the underlying
stock S in the time-interval [0, t]. In practice, Ft can be interpreted as the information known
at time t, which increases with time. The measurable concept is important for the study of
stochastic processes and jump processes, and it can be defined by,

Definition 2.2. (Ω,F ,P) is a probability space, where Ω is the set of all possible events, the
σ-algebra F is a collections of subsets of Ω and P represent the "physical probability measure"
associated to each measurable event.

In a stochastic process, the time parameter t may be either discrete or continuous. Sums
of independent and identically distributed random variables, provide the simplest examples
of stochastic processes in discrete time. On the other hand, in case of continuous processes,
which are the object of study of the present thesis, Lévy processes provide key examples of
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stochastic processes. As per Lévy, a process is essentially characterized by being a sequence of
uncorrelated random variables, in other words, the evolution to the next step is not influenced
by the past. In addition, the increments that take the process from one point to another,
within the ordered set, follow the same distribution. This theory can be mathematically
defined as follows,

Definition 2.3. A stochastic process (Lt)t≥0 on a probability space (Ω,F ,P) is called a Lévy
process if it respects the following properties:
1. L0 = 0 almost surely (a.s.);
2. Independent increments: for every increasing sequence of times 0 ≤ s < t < s′ < t′, the
random variables Lt − Ls and Lt′ − Ls′ are independent;
3. Stationary increments: for every increasing sequence of times 0 ≤ s < t the law of Lt−Ls
only depends on the increments t− s;
4. Stochastic continuity: ∀ε ≥ 0, limt→0 P(|Ls+t − Ls| ≥ ε) = 0;
5. The sample paths are right continuous with left limits (a.s).

The geometric Brownian motion, the Poisson processes and also its extension to a compound
Poisson process are fundamental examples of Lévy processes.

The Poisson process is a stochastic process with discontinuous trajectories and frequently
used as a building block for jump processes. The jump processes are sequences of random
variables that create purely discontinuous paths; its definition is given as follows,

Definition 2.4. Let Tn =
∑n
i=1 τi and {τi}i≥1 be a sequence of independent exponential

random variables. The process,
Nt =

∑
n≥1

1t≥Tn , (2.1)

is a Poison process. Therefore, a Poisson process is a counting process of a sequence of
random variables with jump size 1, where the probability of occurrence of N jumps in the
time period [0, t] is,

P[N(t) = n] = (λt)n

n! e−λt,∀n ∈ N, (2.2)

where λ is called the intensity and n is the number of events in the time period [0, t] and with
independent and stationary increments.

A compound Poisson process is similar to a Poisson process, but distinguishing itself by
random size jumps. In this process, the waiting times between jumps are exponential and
the jump sizes possess a random distribution. It also models the occurrence of unpredictable
events, where the expectation is known and can be mathematically defined as,

7



Definition 2.5. A compound Poisson process with intensity λ > 0 is a stochastic process Xt

defined as,

Xt =
Nt∑
i=1

Yi, (2.3)

where jumps sizes Yi are independent and identically distributed (i.i.d) and (Nt) is a Poisson
process with intensity λ, independent from (Yi)i≥1.

Another important stochastic process is the exponential Lévy analogous to the geometric
Brownian motion used to model the stock price process. In the Black-Scholes model, the
evolution of an asset price is described by the exponential of a Brownian motion with drift
and mathematically defined as St = S0e

Bt , where Bt = µt+σWt is a Brownian motion with
drift, which is the solution of the stochastic differential equation

dSt
St

= µdt+ σdWt. (2.4)

Replacing Bt by a Lévy process, it is possible to obtain the class of exponential Lévy models,
defined as,

Definition 2.6. Suppose a probability space (Ω,F ,P) and a filtration, where Ft is the filtra-
tion generated by the Lévy process (Lt)t≥0. A geometric Lévy precess is given by

St = S0e
Lt , (2.5)

where Lt is a Lévy process.

The geometric Brownian motion is a common case of a diffusion process, which assumes no
jump occurs. When we add the jump component we create what is defined as a jump-diffusion
process,

Definition 2.7. Let (Lt)t≥0 be a Lévy process with jump measure Jt. Thus, a jump-diffusion
is a process of the form,

Lt = L0 +
∫ t

0
µsds+

∫ t

0
σsdWs + Jt := LCt + Jt, (2.6)

where LCt is the continuous component of Lt and (Jt)t≥0 is a pure jump process. (Ws)s≥0 is
a Brownian motion.

The probability density function of a Lévy process is generally not known in closed form,
thus it is essential to be aware of its characteristic function. The characteristic function of
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the probability density can be expressed by elementary terms, for most of the Lévy processes
discussed in the literature.
The Lévy-Khintchine representation, described below, is an essential theorem that allows
studying distributional properties of the majority of Lévy processes, through the description
of its characteristic functions.

Theorem 2.1. Let (Lt)t≥0 be a Lévy process on R, associated with a triplet (µ, σ2, ν), where
µ ∈ R, σ ∈ R+

0 and ν is a measure concentrated on R\{0} that satisfies
∫
R(
{

1 ∧ x2})ν(dx) <
∞ then its characteristic function has the form,

φLt =
∫
R
eizLtν(dx) = etΨ(z),∀ ∈ R, (2.7)

with,

Ψ(z) = iµz − σ2

2 z2 +
∫
R
(eizx − 1− izxI|x|≤1)ν(dx),∀z ∈ R. (2.8)

Proof. See Cont and Tankov [14], page 95

Thus, assuming that every Lévy process has a characteristic function of the form of equation
(2.7), they can be parametrized using the Lévy triplet (µ, σ2, ν). The parameter µ is the drift,
the σ2 is the Gaussian variance, since it is associated with the Brownian part of the Lévy
process, and ν(dx) is the so called Lévy measure or jump measure. A pure jump process,
which has no diffusion component, can be defined by the triplet form (µ, 0, ν). On the other
hand, a pure diffusion process, with no jump, can be defined by the form (µ, σ2, 0).

The Lévy measure ν(dx), which represents a discontinue component, is present whenever
jumps are above normal, creating an irregular path that can be described using the integral
of the Lévy density, λ =

∫ +∞
−∞ ν(dx). These discontinue components can be either finite or

infinite: the process will have finite activity, if the integral is also finite. Otherwise, infinite
activity will be defined by a process with infinite jumps within a determined time period and
the integral must be infinite.
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Therefore, the Lévy process activity can be defined as follows,

Theorem 2.2. Let Lt be a Lévy process with triplet (µ, σ2, ν).
(1) The Lévy process has finite activity if ν(R) < ∞, i.e. if all paths of Lt have a finite
number of jumps on every compact interval.
(2) The Léy process has infinite activity if ν(R) =∞, i.e. if all paths of Lt have an infinite
number of jumps on every compact interval.

For the particular case of a compound Poisson process, the Lévy measure is given by
ν(dx) = λf(x)dx, where λ is the intensity and f(x) is the jump size density. Given a fi-
nite activity Lévy process, only a finite number of jumps in any finite time interval take
place and its Lévy measure is finite,

∫ +∞
−∞ ν(dx) = λ <∞.

As an attempt to capture jumps occurrence, a new term is added to the traditionally used
Itô lemma, which only accepts Brownian motion type components. Since we are analysing
processes with jump components, this characteristic must be considered at the extension of
Itô lemma. In the revised form, t− represents the value assumed by the function, immediately
before a jump occurrence.

Theorem 2.3. Let (Lt)t≥0 be a Lévy process for the type Lt = L0 +
∫ t

0 µsds +
∫ t

0 σsdWs +∑Nt
i=1 ∆Xi the Itô formula is:

df(Lt, t) = ∂f(Lt, t)
∂t

dt+ bt
∂f(Lt, t)

∂x
dt+ σ2

t

2
∂2f(Lt, t)

∂x2

+σt
∂f(Lt, t)

∂x
dWt + [f(Xt− + ∆Xt)− f(Xt−)],

(2.9)

where
∑Nt
i=1 ∆Xi represents the jump component.

Proof. See Cont and Tankov [14], page 279.

It is worth to note that the lemma presented above can only be used for finite activity
processes. Processes with infinite activities, will require a different analysis.
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3. Merton Jump-diffusion Model

As previously discussed, empirically, stock returns tend to have fat tails that are inconsistent
with the assumptions of the geometric Brownian motion, used by the Black-Scholes model.
The idea of a jump diffusion process was developed to try to solve this problem. By adding a
jump component to the diffusion part, the model aims for capturing normal market returns
and rare events, i.e., abnormally large returns. Thus, in jump-diffusion models the diffu-
sion component is supposed to represent the normal fluctuations in the risky asset’s price
caused by "temporary imbalance between supply and demand, changes in capitalization rates,
changes in the economic outlook, or other new information that causes marginal changes in
the stock’s value", as defined by Merton [32]. This component is modeled by a geometric
Brownian motion with drift. In which concerns the non-marginal variations in price, it is
expected, by its own nature, that the important information arrives only at discrete time
points, so it can be modeled by a jump process.

Before presenting a detailed revision of Merton jump-diffusion model it is essential to bet-
ter know the continuous diffusion processes with addition of discontinuous jump processes.
Thus, this will be main focus of this section.

3.1. Drifted Brownian Motion with a Compound Poisson
Process

Consider an exponential Lévy model, with drifted Brownian motion plus a compound Poisson
process,

Lt =
(
µ− σ2

2

)
t+ σWt +

Nt∑
i=0

Yi, (3.1)

where
∑Nt
i=0 Yi is a compound Poisson process and hence Nt is a Poisson counting process
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with Yi, i ∈ {0, ..., Nt}, representing the corresponding jump amplitude. The process (Wt)t≥0

represents a Brownian motion with mean equal to zero and standard deviation
√
t.

In this way, a compound Poisson jump process is added to the Black-Scholes model, yielding
a jump-diffusion model.
As described in the previous chapter, a compound Poisson jump process embraces random
aspects with two different origins. The Poisson process Nt with intensity λ (defined by the
average of jumps within a predefined unit of time) will cause random jumps in the asset
price - this process is also known by random timing. The other origin of randomness in the
compound Poisson jump process is the random jump size.
The probability of a certain number of jumps occurring in time interval dt, using a Poison
process Nt with intensity λ, can be written as follows,

P(dNt = 1) = P {asset price jumps once in dt} ∼= λdt,

P(dNt) ≥ 1) = P {asset price jumps more than once in dt} ∼= 0,

P(dNt = 0) = P {asset price does not jump in dt} ∼= 1− λdt,

where the parameter λ ∈ R+ stands for the jump intensity, independent of time t.

Suppose that in an infinitesimal time frame dt the asset price St jumps to ySt. Consequently,
the relative price jump size, i.e. the percentage change in the asset price caused by the jump,
is given by,

dSt
St

= ytSt − St
St

= yt − 1. (3.2)

The addition of the jump component to the Brownian motion with drift, leads to the existence
of more than one equivalent martingale measure, which turns the jump diffusion models into
an incomplete model. In terms of hedging, the above definition points to the fact that it is
not possible to develop an hedging portfolio with zero risk. Thus, in order to allow a risk
neutral valuation, it is required that the numéraire of the economy is taken to be the money-
market account, i.e. the asset grows at the risk free rate. This change will be enough to
evaluate the asset through an equivalent martingale measure Q ∼ P. In this context, Merton
[32] introduced a change in the drift of the Brownian motion process, at the same time all
the other components remained as before. Additionally, he proved that the Lévy triplet of
jump-diffusion processes in a risk-neutral measure Q is equal to (r − q − λζ, σ, λP ), where
P (x) = f(x)dx. Further details will be presented in the next section.
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3.2. Model Setup
The Merton jump-diffusion model assumes that the underlying price process (St) follows the
stochastic differential equation, under the risk-neutral measure Q,

dSt
St

= (r − q − λζ)dt+ σdWQ
t + (yt − 1)dNt, (3.3)

with St > 0, where µ is the instantaneous expected return and σ is the volatility associated
with the Brownian motion. Thus, combining a standard Brownian motion, with drift and a
compound Poisson process, with intensity λ, Merton [32] obtained a simple jump-diffusion
model. It is assumed that St, Nt and yt are mutually independent.

Merton [32] also considered that the absolute jump size, yt, is a non-negative random variable
with jumps log-normally distributed, i.e. ln(yt) ∼ i.i.d. N (µJ , σJ), where N (µJ , σJ) denotes
a Gaussian distribution with mean µJ and variance σ2

J . As a result,

(yt) ∼ i.i.d.Lognormal(eµJ+ 1
2σ

2
J , e2µJ+σ2

J (eσ
2
J − 1)).

In this way, the expected price variation caused by the jump is given by E[yt−1] = eµJ+ 1
2σ

2
J−

1 ≡ ζ, with a probability density function of the jump size in St described as,

f(dx) := 1
σJ
√

2π
exp

[
− (dx− µJ)2

2σ2
J

]
,∀x ∈ R. (3.4)

Thus, the Merton jump-diffusion model tries to capture excess kurtosis and the (negative)
skewness of the log return density which is not considered in the Black-Scholes model.

As explained above, Merton [32] introduced an adjustment in the drift, using the term −λζ,
which compensates the jump process, making the asset to grow at the risk-free rate, expressed
by (r − q)dt. Consequently, the discounted price of the asset becomes a martingale:

E
[
dSt
St

∣∣∣∣Ft] = EQ[(r − q − λζ)dt|Ft] + EQ[σdWt|Ft] + EQ[(yt − 1)dNt|Ft] (3.5)

= (r − q − λζ)dt+ 0 + λζdt = (r − q)dt.
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Figure 3.1. illustrates a simulation of a jump diffusion path of the Merton model. Values
of the vertical axis correspond to the price of the asset. In the horizontal axis, the time to
maturity is represented in years. The parameters used were: S = 5, r = 5%, σ = 30%,
q = 0%, τ = 1, λ = 0.1, µJ = −0.92, σJ = 0.425.

Figure 3.1.: Simulation of a path example of the Merton jump-diffusion model

It is now possible to identify the Lévy triplet (µ, σ2, ν(dx)) of the Merton jump-diffusion
process, where µ = r − q − λζ and ν(dx) = λp(dx), with p(dx) as defined in equation (3.4).
Thus, based on Theorem 2.1, the Q-measure characteristic exponential of this Lévy process
is

Ψ(z) =
(
r − q − σ2

2 − λ
(
eµJ+

σ2
J
2 − 1

))
z + σ2

2 z2 + λ

(
eµJz+

σ2
J
2 z2
− 1
)
,∀z ∈ R. (3.6)

Based on the Lévy density, we can conclude that this is a finite activity process, given,∫ +∞

−∞
v(dx) = λ.

Supposing that in an infinitesimal interval of time no jumps occur, described by dNt = 0, in
this case, the jump-diffusion process would be a Brownian motion with drift process:

dSt
St

= (µ− λζ)dt+ σdWt. (3.7)
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Theorem 3.1. To solve the stochastic differential equation (3.3) the Itô formula for jump-
diffusion processes (2.9) should be used, yielding the following solution:

St = S0 exp [(µ− σ2

2 − λζ)t+ σdWQ
t +

Nt∑
i=1

Yi].

Proof. See Appendix I

Thus, Merton in [32] assumes that a financial asset, whose price is a stochastic process, can
be defined by an exponential Lévy process St = S0e

Lt , where Lt is of the form,

Lt =
(
µ− σ2

2 − λζ
)
t+ σdWQ

t +
Nt∑
i=1

Yi, (3.8)

meaning that its log-return is modeled as a Lévy process, resulting in,

ln
(
St
S0

)
= Lt.

3.3. Pricing Solution for European-style Options
Let v(ST ) be the value of an European-style option. In the particular case of a European-style
put option, the payoff at its maturity is p(ST ) = (K−ST )+. In opposition, a European-style
call option will be defined by c(ST ) = (ST −K)+.

Then the present value of the European-style option, both for put options or call options, is
the discounted value of its expectation under the risk neutral measure:

vt(St) = e−r(T−t)EQ[v(ST )|Ft], (3.9)

where EQ(X|Ft) is the expected value of a random variable X, conditional on the σ-algebra
Ft and computed under the equivalent martingale measure Q ∼ P.
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Therefore, as proved in Matsuda [29], Merton’s pricing formula is:

vMt (St) =
∑
n≥0

e−λτ (λτ)n

n! vBS(Sn ≡ StenµJ+
nσ2
J

2 −λ(eµJ+
σ2
J
2 −1)τ ,

√
σ2 + nσ2

J

τ
, r−q, τ). (3.10)

Alternatively,

vMt (St) = erτ
∑
n≥0

e−λτ (λτ)n

n! EQ[v(Ste{r−q−λ(eµJ+
σ2
J
2 −1)}τ+

nµJ+
nσ2
J

2
τ −

σ2
J
2 +σ2WQτ )]

=
∑
n≥0

e−λ̃τ (λ̃τ)n

n! vBS [St, σn, rn, τ ], (3.11)

where,

σn =
√
σ2 + n

σ2
J

2 ,

λ̃ = λ(1 + ζ) = λ(eµJ+
σ2
J
2 ),

rn = r − λ(eµJ+
σ2
J
2 − 1) +

nµJ + nσJ
2

τ
.

When handling the above form, under the Black-Scholes model and in the specific case of a
European-style put option, pBSt is defined as

pBS = Ke−r(T−t)N (−d2)− Ste−q(T−t)N (−d1). (3.12)

On the contrary, if the form is used to deal with European-style call options, cBSt ,is repre-
sented by

cBS = Ste
−q(T−t)N (d1)−Ke−r(T−t)N (d2), (3.13)

where N represents the cumulative distribution function of the standard normal law and d1

and d2 are respectively equal to

d1 = ln(St/K) + (r − q + σ2/2)(T − t)
σ
√
T − t

,

d2 = d1 − σ
√
T − t.
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Therefore, the price of a European-style option, under Merton jump-diffusion model, will be
defined as a weighted average of standard Black-Scholes prices, conditioned by the number
of jumps.

Through the application of equation (3.13), it is possible to obtain the results illustrated in
Figures 3.2. and 3.3., which represent European-style options prices, for a strike equal to 100,
at each spot price, within a range from 80 to 120. Figures 3.2. and 3.3. show the value of a
call and put option, respectively, as a function of the spot, with a variation of the parameters
of Merton jump-diffusion model, but maintaining all other parameters fixed.

The parameters used were: r = 5%, σ = 20%, q = 0%, τ = 0.25. The jumps were
parametrized as: λ ∈ {0.1, 0.25, 0.5, 0.75}, µJ = −0.92, σJ = 0.425.

Figure 3.2.: Call option prices with Merton model: Value vs Spot - varying parameter λ
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Figure 3.3.: Put option prices with Merton model: Value vs Spot - varying parameters λ

When comparing options values determined using the Merton model versus the ones obtained
under the Black-Scholes model, it is possible to notice that they become larger as the arrival
of jumps increases. The same situation takes place when the variance of the jump distribu-
tion increases. This behavior is expected since more jumps and greater variance, represent
more uncertainty in the final payoff and leads to additional potential earnings or loses.

3.4. Delta Hedge of European-style Options
Delta calculation, sometimes also referred to as a Greek, is crucial to formulate a static hedge
portfolio for valuing American-style options. This Greek is an important parameter in the
pricing and hedging of options, in such an extension that, the construction of a riskless port-
folio, is often referred to as delta hedging. Each Greek letter measures a different aspect of
the options’ risks and corresponds to a parameter that is able to influence the options’ value,
such as the underlying price, or the interest rate, the volatility, or even the time to maturity.
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Considering these characteristics, delta ∆ is an essential tool in risk management. The delta
∆ of an option is defined as a measure of change in the option price, resulting from a change
in the price of the underlying. This measure of sensitivity is given by,

∆ = ∂H

∂S
. (3.14)

Any of the Greeks of Merton’s jump-diffusion model can be determined by simply replacing
the call or put option formula by any of the Black-Scholes Greek formula. This conclusion
can be reached because the jump-diffusion is achieved by a weighted average of standard
Black-Scholes prices, conditioned by the number of jumps; and the jump components is not
dependent from Delta and corresponding derivatives.

Therefore, the delta of an option under the Merton jump-diffusion model can be defined by,

∆M
t (St) =

∑
n≥0

e−λ̃τ (λ̃τ)n

n! ∆BS [St, σn, rn, τ ], (3.15)

where the delta of a call, ∆cBS

t (St), and put option, ∆pBS

t (St), under the Black-Scholes model,
is respectively,

∆cBS

t (St) = e−q(T−t)Φ(d1),

∆pBS

t (St) = −e−q(T−t)Φ(−d1).
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4. Valuation of American-style Options
under Static Hedge Portfolio

In this section, we discuss the extension of the static hedge portfolio approach of Chung and
Shih [13] to the Merton jump-diffusion model.

We suppose that trading occurs continuously on the time-interval T := [t0, T ], it is possible
for short-sales to take place and the financial market is frictionless and completely liquid.
Uncertainty is represented by a probability space (Ω,F ,Q), where the martingale Q is the
risk neutral measure associated to the money market account numéraire.

4.1. Standard American-style Options
As stated before, an American-style option on the underlying asset price S, with strike
price K and expiration date T , allows the holder to exercise, at any time t during its life,
obtaining the payoff (φK − φSτ )+; symbolically written as max(0,K − Sτ ) for American-
style put options (if φ = 1) and written as max(0, Sτ −K) for American-style call options
(if φ = −1). Hence, the time-t0(≤ T ) price for an American-style option will be denoted by
Vt0(S,K, T ) and is the solution to an optimal stopping problem:

Vt0(S,K, T, φ) = sup
τ∈T

EQ[e−r[(T∧τ)−t0](φK − φST∧τ )+|Ft0 ], (4.1)

where T represents all stopping times for the filtration F and taking values in [t0,∞].

Proof. See for example Karatzas [25]
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Since American-style options can be exercised at any time up to maturity, this lead us with
uncertainty regarding when the holder should exercise his right over the underlying asset. It
is the choice of the optimal time to exercise that makes the analysis of these contracts more
complex, when compared to European-style options. This problem is difficult to solve using
analytical methods, leading to the use of free boundary problems, as described by McKean in
[30].

Pham [33] demonstrated that, for each time t ∈ T , it is possible to establish the critical asset
price Et, which will match its intrinsic value, allowing to determine the optimal early exercise
time. In other words, the optimal time to exercise an American-style option, corresponds
to the first passage time the asset price achieves its critical level. The first passage time is
defined as

τe := inf{t ≥ t0 : St = Et}. (4.2)

Therefore, it can be assumed that,

Vt0(S,K, T, φ) = EQ[e−r[(T∧τe)−t0](φK − φST∧τe)+|Ft0 ], (4.3)

where τe is the first time the underlying asset price process crosses the early exercise boundary.

As Carr presented in [9] the early exercise boundary is defined as,

Definition 4.1. The exercise boundary is the time path of critical stock prices, Et, t ∈ [0, T ].
This boundary is independent of the current stock price St and is a smooth function of time
t terminating in the strike price, i.e. ET = K.

This exercise boundary, Et, t ∈ [0, T ], divides the into a continuation and stopping regions
of the American-style options.

Using the result that proofs the existence of a unique and continuous early exercise boundary,
under a single-factor and time-homogeneous diffusion model, Pham [33] extended the same
conclusion to the jump-diffusion setup. Pham [33] conclusions are limited by the positiveness
of risk-free interest rate already adjusted by the jump risk.
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Based on the early exercised boundary, associated to the definition of static hedge portfolio
(SHP), as used in the evaluation of European-style exotic options, Chung and Shih [13] were
able to present a static hedge portfolio specific for the assessment of American-style options.
This approach will be presented in detail in the present chapter and afterwards it will be
extended to the model of Merton jump-diffusion.

4.2. Static Hedge Portfolio Approach

Several financial publications contribute to the definition of the static hedge portfolio. There
are two main approaches: the one defined by Bowie and Carr [5] and Carr et al. [10] and
the theory developed by Derman et al. [17]. Thus, the definition of static hedge portfolios
of American-style options benefits from both approaches through the use of European-style
options with multiple strikes and maturities. The use of options with these characteristics
can be justified by the fact that the early exercise boundary of an American-style option is
time variant.

The unknown boundary nature of American-style options is a complex problem, which con-
trasts greatly with the static hedge of exotic options with optimal exercise boundary, where
the optimal exercise time is most frequently known ex-ante. Thus, the difficulties related
with the free boundary persist on the model of SHP of American-style options. This issue
leads the early exercise boundary to be determined simultaneously with hedging, through
the use of two well-known conditions: value-matching and smooth-pasting conditions.

If the American-style option is not exercised before the maturity date, its terminal condition
will be exactly the same as in the corresponding European-style option. Therefore, as pro-
posed by Chung and Shih [13], the static hedge portfolio defined in this thesis will start with
one unit of the European-style option, with strike K and maturity date at time T . Thus,
the maturity date will be the starting point to evaluate the American-style option and it will
allow working backwards until the valuation date, such as it is done with the binomial option
pricing models for American-style contracts.

Assuming this static hedge portfolio also matches the American-style option boundary condi-
tions before achieving maturity, we divide the time to expiry date of the option contract into
n evenly-spaced time-steps, i.e. t0 = 0, t1, ..., tn−1 = T−∆t, where θt = (T−t0)/n. To match
the unknown early exercise boundary Ei at each time, ti := t0 + iθt (with i = n− 1, ..., 1, 0),
it is required to add wi units of a standard European-style option with strike equal to Ei
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and maturity at time ti+1, solving Ei and wi through the value-matching and smooth-pasting
conditions.

Figure 4.1, expresses an example of the early exercise boundary determination, using the
static hedge portfolio approach.

Figure 4.1.: Valuation form of n-point SHP at its early exercise boundary

Therefore, to extend the SHP approach proposed by Chung and Shih [13] to the pricing of
American-style options under the Merton jump-diffusion model, we consider that the un-
derlying price satisfies the jump-diffusion process presented in equation (3.3). Hence, the
price for a European-style option, under the Merton jump-diffusion model will be denoted
by vM = (S,K, J, φ, τ) and its delta by ∆vM (S,X, J, φ, τ), where φ = 1 for American-style
put options and φ = −1 for American-style call options.

Thus, at time tn−1, to match the stock price and the critical price En−1 through the value-
matching and smooth-pasting conditions, we must have:

φK − φEn−1 = vM (En−1,K, J, φ, T − tn−1) + wn−1v
M (En−1, En−1, J, φ, T − tn−1) (4.4)

and

− φ = ∆vM (En−1,K, J, φ, T − tn−1) + wn−1∆vM (En−1, En−1, J, φ, T − tn−1). (4.5)
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As a widespread strategy, the unknowns Ei and wi existent at every time unit can be deter-
mined by simultaneously solving the following recurrence conditions:

φK − φEn−i = vMt (En−i,K, J, φ, T − tn−i) +
i∑

j=1
wn−jv

M0
tn−i(En−i, En−j , J, φ, tn−j+1 − tn−i)

(4.6)
and

−φ = ∆vMt (En−i,K, J, φ, T −tn−i)+
i∑

j=1
wn−j∆

v
M0
tn−i (En−i, En−j , J, φ, tn−j+1−tn−i), (4.7)

for i = 1, 2, ..., n.

After solving all the unknowns wi and Ei (with i = n− 1, ..., 1, 0), the value of the n-points
static hedge portfolio price of an American-style option, under the Merton jump-diffusion
model, V shp, at time-t0 is given by,

V shpt0 (St0 ,K, J, φ, T ) := vM (St0 ,K, J, φ, T − t0) + wn−1v
M (St0 , En−1, J, φ, T − t0)

+wn−2v
M (St0 , En−2, J, φ, tn−1 − t0) + ...+ w0v

M (St0 , E0, J, φ, t1 − t0),
(4.8)

and it can also be expressed by,

V shpt0 (St0 ,K, J, φ, T ) := vM (St0 ,K, J, φ, T − t0) (4.9)

+
n∑
j=1

wn−jv
M (St0 , En−j , J, φ, tn−j+1 − t0).

4.3. Hedge Ratios

As mentioned earlier, knowing the delta calculation is crucial to formulate a static hedge
portfolio for valuing American-style options. In the models used by Chung and Shih [13],
namely Black-Scholes or CEV, the market can be classified as complete. In a complete
market, as observed by Glasserman [20], any option can be perfectly replicated through a
trading strategy, i.e. the price of the target option is equivalent to the price of the exact
hedge, and the martingale measure associated with a numéraire is unique. All risks can be
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perfectly hedged through a delta-hedging strategy, which consists in a continuous update of
the amount of the asset equal to ∆(t) = ∂H

∂S (S, t), at all times.

Thus, assuming that the hedge portfolio also contains an amount B(0) at time 0 , invested
at the risk-free rate in b bonds and that trading in the underlying asset may be performed
in infinitesimally small time increments until maturity T , the portfolio’s value is

Π(S, t) = ∆(t)S(t) + b(t)B(t)−H(S, t), (4.10)

which is zero, indicating that the option is perfectly hedged.
On the contrary, in an incomplete market, such as in jumps models, it is not possible to
determine a perfect replication of an option through other instruments. Jumps occurrence
in asset prices makes it almost impossible to hedge the effect of discontinuous movements.
Therefore, in Merton’s jump-diffusion model the delta-hedging is not optimal and has a sig-
nificant probability of failing, due to the presence of jumps in the prices.

Delta hedging will not be the optimal solution to hedge options in a world with jumps, un-
less the jumps are diversifiable. Merton [31] defends that in the case jumps only affect a
restricted number of assets at the same period of time, it is possible to create a balanced
portfolio, which decreases jump risks. In the case jumps affect the market globally, they
cannot be considered diversifiable and, in this circumstance, the delta hedging will not be
successful. While there is not a perfect method for replicating a portfolio exposed to random
jumps amplitudes, it is possible to use a reasonable method, as proven by Bates [2].

Since it is not possible to determine up front the jump size, it is also not possible to com-
pletely hedge the risk associated with the jump. Thus, in the context of incomplete markets,
hedging becomes an approximation issue; instead of replicating options, it looks for minimiz-
ing the error of residual hedge. Empirical studies proved that strategies only using the delta
hedging, conduct to high levels of residual risk, which can be mitigated through the addition
of liquid options to the hedging portfolio.

Thus, considering that for each jump there is a finite number of possible amplitudes, de-
fined by NJ , a target option can easily be hedged by using NJ different options, in addition
to the underlying and the bonds. On its turn, if there are an infinite number of possible
jumps amplitudes, the optimal replication will involve an equally infinite number of hedging
instruments, similarly to options at a continuum or strikes. By using hedging strategies, it
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is possible to ensure that the hedging technic in use will embrace all the space of possible
target option values, for a movement in the underlying S.

In order to better describe these concepts, it will be assumed that the period of time in study
is defined by [t0, t0 + dt]. During this period there will be one jump amplitude Y and the
following will be linearly independent functions of S: the price of the target option, the price
of the hedging instrument with the value I, a constant payoff and underlying.

At a determined time t, the asset price will be S and the portfolio value is Π(S, t), which can
defined as,

Π(S, t) = ∆(t)S(t) + b(t)B(t) + φ(t)I(t)−H(S, t). (4.11)

Therefore, accordingly to Bates [2] conclusions, for each additional possible jump amplitude,
a new hedging instrument should be added to the model. This will prevent the impact of the
occurrence of jumps with different amplitudes, while at the same time the delta hedging will
neutralize the risk introduced by the Brownian motion.

Tankov [38] also showed how to compute optimal hedging strategies, when jumps are present,
by demonstrating that in Merton’s model, the best alternative is to minimize the risk of the
hedging activities, recurring to a finite number of short-dated hedging options. Thus, Tankov
[38] determined that "the optimal quadratic hedging strategy is a weighted sum of two terms:
the sensitivity of option price to infinitesimal stock movements, and the average sensitivity
to finitely-sized jumps."
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5. Numerical Results

This section, contains the outputs of the implementation of numerical simulations done with
the objective of extending the Static Hedge Portfolio approach for American-style options,
under the Merton jump-diffusion model described in Chapter 4. The accuracy and efficiency
of the solution developed will also be critically analysed.

In order to test the accuracy, the pricing solutions of the static hedge portfolio approach were
compared with reference values, calculated using the Fourier Space Time-stepping method
(FST-method) of Jackson, Jaimungal and Surkov [26], which allows the pricing American-
style standard options under exponential Lévy processes. This method uses a backward
induction approach and takes the Partial Integro-Differential Equation (PIDE) satisfied by
the option price. With this approach, the PIDE can be converted into a much simpler sys-
tem of ordinary differential equations, eliminating the need to administrate more complex
non-local term of PIDE equations.

On the other hand, efficiency is determined by CPU time (in seconds) consumed to value the
full set of contracts under analysis. It is worth to notice that all numeric results presented
in this thesis were obtained employing Matlab (R2013a) programs running on an Intel Core
i5-3337U, 1.80 GHz processor with 6.00 GB of RAM.

The baseline parameters are adopted from Chung and Shih [13]: K = 100, r = 5%, q = 0%,
σ = 30% and τ = 1. These parameters have a changing variable S equal to either 80, 90,
100, 110 or 120. Afterwards, keeping all other parameters unchanged, single variations are
introduced, first with r, then q, after σ and finally the parameter τ .

For the parametrization of the compound Poisson jump process, the values of He et al.
[23] were adopted. As described by He et al. [23] these values were obtained by calibra-
tion techniques applied to the market options prices for a stock index; the obtained values
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can, therefore, be considered realistic. Andersen and Andreasen [1] also employed similar
parameter values. The jumps were parametrized as

λ = 0.1, µJ = −0.92, σJ = 0.425.

Table 5.1. displays the accuracy and efficiency of the static hedge portfolio approach for
valuing standard American-style put options under the Merton jump-diffusion model for dif-
ferent parameters.

American-style option
Parameters Spot European-style Benchmark SHP 12 SHP 24 SHP 52

80 20.833 22.257 22.555 22.541 22.527
r = 5% | q = 0% 90 15.503 16.363 16.670 16.683 16.666

σ = 30% 100 11.575 12.130 12.458 12.440 12.424
t = 1 110 8.783 9.170 9.472 9.454 9.439

120 6.839 7.130 7.401 7.384 7.369
80 19.475 21.633 22.035 22.015 21.999

r = 7% | q = 0% 90 14.400 15.665 16.160 16.135 16.115
σ = 30% 100 10.712 11.508 12.006 11.979 11.958
t = 1 110 8.124 8.669 9.132 9.106 9.085

120 6.338 6.745 7.161 7.137 7.117
80 21.323 22.528 22.785 22.772 22.761

r = 5% | q = 1% 90 15.920 16.656 16.939 16.924 16.911
σ = 30% 100 11.910 12.391 12.664 12.648 12.635
t = 1 110 9.042 9.382 9.631 9.615 9.603

120 7.036 7.294 7.515 7.501 7.489
80 17.947 20.166 20.451 20.434 20.419

r = 5% | q = 0% 90 12.067 13.055 13.641 13.609 13.579
σ = 20% 100 8.264 8.766 9.397 9.360 9.326
t = 1 110 6.035 6.349 6.944 6.906 6.873

120 4.778 5.018 5.555 5.519 5.489
80 19.701 20.644 20.751 20.745 20.746

r = 5% | q = 0% 90 13.057 13.514 13.657 13.647 13.648
σ = 30% 100 8.398 8.629 8.770 8.758 8.759
t = 0.5 110 5.455 5.583 5.713 5.702 5.703

120 3.732 3.815 3.933 3.922 3.922
CPU (time) 350.14 22.218 36.895 72.908

Table 5.1.: Prices of American-style put options under the Merton jump-diffusion model

The third column of Table 5.1. presents the prices of European-style put options that
were determined based on the equation (3.12). Table 5.1. also displays the analysis of
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American-style options, presenting its prices determined using 2 alternative methods: FST-
method, which corresponds to the Benchmark, and the SHP model, which is the approach
under study. Benchmark values on column 4 were computed using 15000-time intervals and
10000 space steps. The last three column reveal the American-style put option prices ob-
tained by the Static Hedge Portfolio approach under the Merton jump-diffusion model, with
n ∈ {12, 24, 52}.

As it can be observed in Table 5.1, the model under study is quite efficient when compared
to the benchmark used. Similar conclusions were previously demonstrated in SHP under
Black-Scholes model and CEV model. However, the prices of American-style put options
calculated through the SHP approach under Merton jump-diffusion do not match the ones
calculated with the Benchmark model; the deviation identified reveals an accuracy noncom-
pliance. In the example under study, the SHP portfolio value is overrated when compared to
the benchmark.

The analysis of the boundary determined by each model, also reveals the lack of accuracy of
the model under study, as it is illustrated in Figure 5.1.

Figure 5.1.: Boundaries of American-style put option using the FST-Method versus the SHP
approach
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In Figure 5.1. the baseline parameters used are: S = 100, K = 100, r = 5%, q = 0%,
σ = 30% and τ = 1, with the jumps parametrized as: λ = 0.1, µJ = −0.92 and σJ = 0.425.

When comparing the two boundaries it is easily understood that there is a gap between them,
where the SHP model boundary assumes inferior values, leading to a superior premium of
the early exercise and consequently higher prices, which is in line with the data available on
Table 5.1.

By analysing the accuracy of the model, it was also concluded that option prices obtained
through the SHP approach are very similar to the final ones, even if using the SHP pricing
procedure with only 12 evenly-spaced time points n. Thus, the results obtained with a
superior n do not significantly diverge from results obtained for 12 evenly-spaced time points,
as it can be verified in Figure 5.2., which displays price’s accuracy with n increments.

Figure 5.2.: The convergence of the SHP prices of American-style put to the benchmark
price.

In Figure 5.2. the baseline parameters are defined by: S = 100, K = 100, r = 5%, q = 0%,
σ = 30% and τ = 1, with the jumps parametrized as: λ = 0.1, µJ = −0.92 and σJ = 0.425.

Therefore, it is proven that the problem remains unsolved, independently from the n used. For
this reason, the use of the SHP approach under the Merton jump-diffusion to price American-
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style call options was also analysed in order to confirm if the problems are also present or not.

It is important to highlight the following Merton conclusion: if the underlying asset does not
pay dividends, there is no benefit in exercising an American-style call before its maturity.
This assumption allows assessing American-style call contracts as European-style call option,
as shown in Table 5.2, where the prices of both contracts are equal.

American-style option
Parameters Spot European-style Benchmark SHP 12 SHP 24 SHP 52

80 5.711 5.711 5.711 5.711 5.711
r = 5% | q = 0% 90 10.380 10.380 10.380 10.380 10.380

σ = 30% 100 16.452 16.452 16.452 16.452 16.452
t = 1 110 23.661 23.661 23.661 23.661 23.661

120 31.717 31.717 31.717 31.717 31.717

Table 5.2.: Prices of American-style call options under the Merton jump-diffusion model with
q = 0%

Based on the conclusions presented by Merton, the only parameter adjusted to analyse
American-style calls was the dividend yield (q value increased from 0% to 7%), so that
there might be a benefit in exercising an American-style option before maturity.

Thus, the baseline parameters presented in Table 5.1 will be used, except for the divi-
dend yield. The parameters are: K = 100, r = 5%, q = 7%, σ = 30%, τ = 1 and
S ∈ {80, 90, 100, 110, 120}.
The jumps were parametrized as

λ = 0.1, µJ = −0.92, σJ = 0.425.

Afterwards, keeping all other parameters unchanged, single variations were introduced, first
with r, then q, after σ and finally the parameter τ , similarly to the setup done in the previous
analysis for the put options.

As observed in Table 5.1., the SHP approach under the Merton jump-diffusion model does
not match the prices calculated with the Benchmark model for the put case. However, on
Table 5.3. that displays the results for the American-style call options, the model under
study is highly precise and it reveals accuracy compliance when valuing American-style call
options. Furthermore, the speed-accuracy demonstrates that the numerical efficiency of the
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SHP method against the FST method is notorious.

American-style option
Parameters Spot European-style Benchmark SHP 12 SHP 24 SHP 52

80 3.826 3.839 3.839 3.839 3.839
r = 5% | q = 7% 90 7.359 7.398 7.399 7.398 7.398

σ = 30% 100 12.205 12.302 12.303 12.303 12.302
t = 1 110 18.204 18.410 18.411 18.410 18.410

120 25.125 25.514 25.516 25.515 25.514
80 4.060 4.065 4.065 4.065 4.065

r = 7% | q = 7% 90 7.745 7.762 7,762 7.762 7.762
σ = 30% 100 12.760 12.805 12.805 12.805 12.805
t = 1 110 18.928 19.029 19.030 19.030 19.029

120 26.010 26.212 26.213 26.213 26.212
80 4.019 4.027 4.027 4.027 4.027

r = 5% | q = 6% 90 7.668 7.692 7.694 7.692 7.692
σ = 30% 100 12.633 12.696 12.697 12.696 12.696
t = 1 110 18.739 18.880 18.881 18.880 18.880

120 25.751 26.025 26.027 26.026 26.025
80 1.488 1.489 1.489 1.489 1.489

r = 5% | q = 7% 90 4.175 4.181 4.181 4.181 4.181
σ = 20% 100 8.743 8.768 8.768 8.768 8.768
t = 1 110 15.009 15.092 15.093 15.093 15.093

120 22.504 22.728 22.729 22.729 22.729
80 1.579 1.580 1.580 1.580 1.580

r = 5% | q = 7% 90 4.274 4.277 4.277 4.277 4.277
σ = 30% 100 8.815 8.829 8.829 8.829 8.829
t = 0.5 110 15.082 15.125 15.125 15.125 15.125

120 22.669 22.779 22.780 22.779 22.779
CPU (time) 350.14 22.218 36.895 72.908

Table 5.3.: Prices of American-style call options under the Merton jump-diffusion model

In order to reinforce the previous conclusions, new tests were performed for the baseline pa-
rameters: K = 100, r = 5%, σ = 30%, τ = 1 and S ∈ {80, 90, 100, 110, 120} and with jump
parametrized by: λ = 0.1, σJ = 0.425 and varying µJ ∈ {−0, 5,−0, 25, 0, 0.25, 0, 5}.
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On Table 5.4. it is possible to find call’s prices and put’s prices, using the parameters
previously established. The parameter will assume different values depending on the type of
option under analysis; in the case of put options q = 0%, however for call options q = 7%.
The difference can be understood by restoring to the data presented in Table 5.2

American-style option
Parameters Spot Benchmark-Call Benchmark-Put SHP 52-Call SHP 52-Put

80 6.029 23.176 5.928 23.177
90 9.232 16.916 10.394 16.917

µJ = 0.5 100 13.558 12.025 16.041 12.026
110 19.007 8.352 22.626 8.352
120 25.542 5.689 29.918 5.689
80 4,552 22.231 4.335 22.237
90 7,750 15.866 8.080 15.874

µJ = 0.25 100 12,186 11.043 13.116 11.046
110 17,850 7.526 19.284 7.530
120 24,632 5.046 26.374 5.048
80 3.772 21.823 3.741 21.853
90 6.988 15.419 7.032 15.450

µJ = 0 100 11.520 10.663 11.719 10.689
110 17.321 7.256 17.480 7.276
120 24.250 4.889 24.354 4.904
80 3.501 21.750 3.514 21.824
90 6.771 15.405 6.770 15.485

µJ = - 0.25 100 11.390 10.748 11.385 10.819
110 17.282 7.443 17.273 7.501
120 24.284 5.156 24.274 5.202
80 3.533 21.874 3.533 22.011
90 6.894 15.671 6.894 15.823

µJ = - 0.5 100 11.609 11.155 11.608 11.294
110 17.577 7.964 17.576 8.084
120 24.617 5.757 24.617 5.857

Table 5.4.: Prices of American-style call/put options under the Merton jump-diffusion model

Table 5.4 also reveals that the jump parameterization has an impact on the results taken
from the study approach, and additionally the proximity of the µj to zero makes the prices
of both calls and puts inaccurate.
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Additionally, taking into account the put-call relationship for American-style options, it is
possible to calculate the price of a put option through a suitable change in the arguments
used to determine the price of a call option and vice versa. Additional details on put-call
duality relationship can be found in Appendix II.

Schroder [36] suggests that is possible to change the roles of the argument pairs (St,K) and
(r, q) and calculate a new λ e µJ , as described in Appendix II. The changes proposed above
are only possible because the arguments used are interchanged in the two markets. The
results from pricing American-style options using the put-call relationship are presented in
Appendix III.

Overall the results allow us to conclude that the SHP approach has a positive outcome when
used to determine put options with an underlying with jumps parametrized using µJ > 0
and call options with an underlying represented by a jump with µJ < 0 can also be priced
using the model developed, as presented on Table 5.3. and reinforced in Table 5.4. On the
other hand, the symmetric case leads to the poor results.

Considering that the Merton jump-diffusion represents the underlying price through the ad-
dition of one compound Poisson jump process to the Black-Scholes model, thus the model
problem seems to be related with jump addition. This leads to the conclusion that the prob-
lem of the SHP approach under the Merton jump-diffusion is associated to the fact that it
cannot accurately foreseen the occurrence of jumps with different amplitudes.

The fact that when the underlying of the put (resp., call) option has jumps with positive
(negative) µJ allows the SHP approach to price American-style put (call) options, reinforces
the theory above because the existence of jumps symmetric to the boundary will have no im-
pact in the anticipated exercise of the option. Additionally, as discussed on Chapter 4, jumps
occurrence in asset prices of the Merton jump-diffusion model turns the delta-hedging into a
non-optimal method to determine a perfect replication. Thus, the pricing of the American-
style options by the SHP procedure through the delta-hedging sensitivity may also be the
root cause for the limitations already discovered.

Therefore, in order to validate this conclusion, it was decided to analyse the impact of a
jump amplitude increase, λ, in the interval between the SHP approach and benchmark. The
previous baseline parameters were use: S = 100, K = 100, r = 5, σ = 30, q = 0, τ = 1. The
jumps were parametrized as: µJ = −0.92, σJ = 0.425 and varying λ.
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Figure 5.3.: American-style put option price varying λ within a range from 0 to 0.8

Figure 5.4.: American-style call option price varying the λ within a range from 0 to 0.8

Figure 5.3. represents the impact of underlying’s jump amplitude increase in an American-
style put option. Figure 5.4 represents the same analysis, but to an American-style call
option. It is possible to conclude that, as previously identified, the introduction of jumps in
the underlying asset pricing processes creates divergences from the benchmark model, but
only in the situations discussed above. Additionally, it is demonstrated that for every sit-
uation where the model presents low accuracy, lambda increases will result in the increase
of the deviation between the Benchmark and the model under study. In other scenarios the
model under study is always accurate.
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Thus, the Static Hedge Portfolio approach under the Merton jump-diffusion option pricing
model does not correctly account for the potential over shooting of the asset price over the
early exercise boundary. It was verified that the SHP approach retrieves accurate results
for put options (resp. call options) with an underlying asset parametrized with a positive
(negative) average size of the jumps. On the other hand, when the put options (resp. call)
with an underlying asset parametrized with a negative (positive) average size of the jumps
the model retrieves no accurate results. Critical analyse of this conclusions and final remarks
are presented with more detail in the next section.
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6. Conclusions

A realistic model that can be widely used to evaluate American-style options, must be both
accurate and efficient, in order to respond to market demands. Therefore, the quality of
the method under study (SHP) was tested againts the Fourier Space Time-stepping method
(FST-method) of Jackson et al. [26], which allows the pricing American-style standard op-
tions under exponential Lévy processes. After an extensive numerical study and critical
analysis, it is now clear that the jump addition introduces limitations to the static hedge
portfolio, reducing model’s accuracy and consequently preventing it from becoming another
tool to evaluate American-style options.

The static hedge portfolio approach under the Merton jump-diffusion option pricing model
does not correctly account for the potential over shooting of the asset price over the early
exercise boundary. By evaluating a call and a put through the same parameters, this evidence
becomes even clearer: in the case of underlying assets with jumps leading to price decreases
(average of the jumps size is negative), the SHP approach retrieves no accurate results for
puts, but it works in the case of calls; on the other hand, if jumps lead to an increase of asset
prices (average of the jumps size is positive), the model under study presents a positive out-
come when used to determine puts, but the same does not verify for calls. These conclusions
are reinforced by using the put-call duality relationship for American-style options, where
the price of a put option was calculated through a suitable change in the arguments used to
determine the price of a call option and vice-versa.

Despite the limitations already identified, the method under study assumes special relevance
due to its efficiency and its realistic approach to the dynamics of market models. Jumps oc-
currence in underlying asset prices makes the delta-hedging a non-optimal measure to hedge
the effect of discontinuous movements. For this reason, the use of delta-hedging as a measure
of sensitivity in the boundary calculation can create some limitations. The pointed restric-
tions are the base to understand that the SHP method is not able to accurately account for
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the possible over shooting of the asset price over the early exercise boundary. Thus, in or-
der to become an accurate method, some adjustments may have to be made in future research.

One possible solution requiring deep study and testing could be the use of a sensitivity mea-
sure that includes the two dynamic components of the asset: the sensitivity of option price to
infinitesimal continuous stock movements; and the average sensitivity to finitely-sized jumps.
This would allow developing a three-dimensional early exercise boundary, instead of the two-
dimensional presented by Chung and Shih [13]. The use of three-dimensional boundaries goes
far and beyond the standard European-style options with a different strike for each maturity,
to hedge the continuous movements. The three-dimensional boundary would also require
the use of a finite number of strikes for each maturity, which represents a finite number of
possible jump amplitudes and thus captures the finitely-sized jumps.

The resolution of this difficulty on the extension of the static hedge portfolio to the Merton
jump diffusion model can be the key to allow a generalization of the proposed approach
to incomplete markets model. Thus, future research on this approach has the potential to
establish a new method for pricing and hedging American-style options in a much more
efficient way.
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A. Appendix

A.1. Appendix I
Given the Itô formula presented in Theorem 2.3 for the jump-diffusion process Lt = L0 +∫ t

0 µsds +
∫ t

0 σsdWs +
∑Nt
i=1 ∆Xi,

df(Lt, t) = ∂f(Lt, t)
∂t

dt+ bt
∂f(Lt, t)

∂x
dt+ σ2

t

2
∂2f(Lt, t)

∂x2

+σt
∂f(Lt, t)

∂x
dWt + [f(Xt− + ∆Xt)− f(Xt−)],

to solve the stochastic differential equation,

dSt = (µ− λκ)Stdt+ σStdWt + (yt − 1)StdNt.

Then,

d lnSt = ∂ lnSt
∂t

dt+ (µ− λζ)St
∂ lnSt
∂t

dt+ σ2S2
t

2
∂2 lnSt
∂St

dt+ σSt
∂ lnSt
∂St

dWt + [ln ytSt − lnSt]

d lnSt = (µ− λζ)St
1
St

+ σ2S2
t

2

(
− 1
S2
t

)
dt+ σSt

1
St
dWt + [ln yt + lnSt − lnSt]

d lnSt = (µ− λζ)dt− σ2

2 dt+ σStdWt + ln yt

lnSt = lnS0 + (µ− σ2

2 − λζ)t+ σtWt +
Nt∑
i=1

ln yt

St = exp

[
lnS0 + (µ− σ2

2 λζ)t+ σtWt +
Nt∑
i=1

ln yt

]
,
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allowing us to reach the following solution for the stochastic differential equation,

St = S0exp

[
(µ− σ2

2 λζ)t+ σtWt +
Nt∑
i=1

ln yt

]
.

A.2. Appendix II
The put-call relationship for American-style options allows the price of a put option to be
calculated through a suitable modification of the technical features used to determine the
price of a call option and vice versa. Based on the change of numéraire technique, Schroder
[36] demonstrated the applications of the put-call duality relations for jump-diffusion models.
As in the Merton jump-diffusion model, the asset price follows a compound Poisson process
with jump intensity, λ under the risk-neutral measure Q, where between jumps the stocks
price satisfies,

dSt

S−t
= (r − q − λ(eµJ+

σ2
J
2 − 1)dt+ σdWt. (A.1)

The change of probability measure is defined by the following Radon-Nikodým derivative will
be used:

∂Q
∂Q

∣∣∣∣Ft =
eq(t−t0)St

St0
Bt
Bt0

= St
St0

e−(r−q)(t−t0). (A.2)

The jump process intensity, µJλ under Q can be obtained using the martingale property of
S under Q:

Q(τ1 > t|Ft) = EQ(1τ1>tSt/St0 |Ft) = e(1−µ)λtQ(τ1 > t). (A.3)

Then, the jump intensity under Q is equal to the product of the intensity under Q and the
expected jump size is λ = λeµj+

1
2σ

2
J and where the distribution functions under Q and Q

satisfy

Ψ(dy) = Ψ(dy)e(−µJ−σJ
2

2 )y, (A.4)

where the Ψ(dy) is the distribution functions under Q and Ψ(dy) is still normally distributed
under Q with variance σ2

J , but with mean µJ + σJ
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Thus, the dynamics of St ≡ KSt0/St is then,

dSt

S−t
= (q − r − λ(e−µJ−

σ2
J
2 − 1)dt+ σdWt. (A.5)

A.3. Appendix III
Using the put-call relationship for American-style options, it is possible to calculate the price
of a put option through a suitable change in the arguments used to determine the price of a
call option and vice versa.

Thus, as presented in Chapter 5, Tables A.1. and A.2. display the accuracy and efficiency
of the static hedge portfolio approach for valuing standard American-style options under the
Merton jump-diffusion model for different parameters.

Table A.1. shows the baseline parameters to pricing the American-style call options: S = 100,
r = 0%, q = 5%, σ = 30%, τ = 1 and K ∈ {80, 90, 100, 110, 120}. These parameters were
computed through put-call duality and based on the parameters of the put options of the
Table 5.1. The jumps were parametrized as,

λ = 0.043619, µJ = 0.739375, σJ = 0.425.

Afterwards, keeping all other parameters unchanged, single variations are introduced, first
with r, then q, after σ and finally the parameter τ .

Table A.1 displays the accuracy and efficiency of the static hedge portfolio approach for valu-
ing standard American-style call options under the Merton jump-diffusion model for different
parameters.
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American-style option
Parameters Strike European-style Benchmark SHP 12 SHP 24 SHP 52

80 20.833 22.257 22.555 22.541 22.527
r = 0% | q = 5% 90 15.503 16.363 16.670 16.683 16.666

σ = 30% 100 11.575 12.130 12.458 12.440 12.424
t = 1 110 8.783 9.168 9.472 9.454 9.439

120 6.839 7.130 7.401 7.384 7.369
80 19.475 21.633 22.035 22.015 21.999

r = 0% | q = 7% 90 14.400 15.665 16.160 16.135 16.115
σ = 30% 100 10.712 11.508 12.006 11.979 11.958
t = 1 110 8.123 8.669 9.132 9.106 9.085

120 6.338 6.745 7.161 7.137 7.117
80 21.323 22.528 22.785 22.772 22.761

r = 1% | q = 5% 90 15.920 16.656 16.939 16.924 16.911
σ = 30% 100 11.910 12.391 12.664 12.648 12.635
t = 1 110 9.042 9.382 9.631 9.615 9.603

120 7.035 7.294 7.515 7.501 7.489
80 17.947 20.166 20.451 20.434 20.419

r = 0% | q = 5% 90 12.067 13.055 13.641 13.609 13.579
σ = 20% 100 8.264 8.766 9.397 9.360 9.326
t = 1 110 6.035 6.348 6.944 6.906 6.873

120 4.778 5.018 5.555 5.519 5.489
80 19.701 20.644 20.751 20.745 20.746

r = 0% | q = 5% 90 13.057 13.514 13.657 13.647 13.648
σ = 30% 100 8.398 8.629 8.770 8.758 8.759
t = 0.5 110 5.455 5.582 5.713 5.702 5.703

120 3.732 3.815 3.933 3.922 3.922
CPU (time) 350.14 22.218 36.895 72.908

Table A.1.: Prices of American-style call options under the Merton jump-diffusion model

Table A.2. shows the baseline parameters to pricing the American-style put options: S = 100,
r = 7%, q = 5%, σ = 30%, τ = 1 and K ∈ {80, 90, 100, 110, 120}. These parameters were
computed through put-call duality and based on the parameters of the call options of the
Table 5.3. The jumps were parametrized as,

λ = 0.043619, µJ = 0.739375, σJ = 0.425.

Afterwards, keeping all other parameters unchanged, single variations are introduced, first
with r, then q, after σ and finally the parameter τ .
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On Table A.2. it is possible to find put’s prices, using the parameters previously established.

American-style option
Parameters Strike European-style Benchmark SHP 12 SHP 24 SHP 52

80 3.826 3.839 3.839 3.839 3.839
r = 7% | q = 5% 90 7.359 7.398 7.399 7.398 7.398

σ = 30% 100 12.215 12.302 12.303 12.303 12.302
t = 1 110 18.204 18.410 18.411 18.410 18.410

120 25.125 25.514 25.516 25.515 25.514
80 4.060 4.065 4.065 4.065 4.065

r = 7% | q = 7% 90 7.745 7.762 7,762 7.762 7.762
σ = 30% 100 12.760 12.805 12.805 12.805 12.805
t = 1 110 18.928 19.029 19.030 19.030 19.029

120 26.010 26.212 26.213 26.213 26.212
80 4.019 4.027 4.027 4.027 4.027

r = 6% | q = 5% 90 7.668 7.692 7.693 7.693 7.692
σ = 30% 100 12.633 12.696 12.697 12.696 12.696
t = 1 110 18.739 18.880 18.881 18.880 18.880

120 25.751 26.025 26.027 26.026 26.025
80 1.488 1.489 1.489 1.489 1.489

r = 7% | q = 5% 90 4.175 4.181 4.181 4.181 4.181
σ = 20% 100 8.743 8.768 8.768 8.768 8.768
t = 1 110 15.009 15.092 15.093 15.093 15.093

120 22.504 22.728 22.729 22.729 22.729
80 1.579 1.580 1.580 1.580 1.580

r = 7% | q = 5% 90 4.274 4.277 4.277 4.277 4.277
σ = 30% 100 8.815 8.829 8.829 8.828 8.828
t = 0.5 110 15.082 15.125 15.125 15.125 15.125

120 22.669 22.779 22.780 22.779 22.779
CPU (time) 350.14 22.218 36.895 72.908

Table A.2.: Prices of American-style put options under the Merton jump-diffusion model

These data reinforce the conclusions drawn in Chapter 5: the static hedge portfolio presents
limitations on the pricing for American-style options under Merton jump-diffusion model.
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