
Chapter 4
Anticancer Peptides: Prospective
Innovation in Cancer Therapy

Diana Gaspar and Miguel A.R.B. Castanho

Abstract Current cancer treatments require improvements in selectivity and effi-
cacy. Surgery, radiation, and chemotherapy approaches result in patient’s suffering
over time due to the development of severe side-effects that simultaneously con-
dition adherence to therapy. Biologically active peptides, in particular antimicrobial
peptides (AMPs), are versatile molecules in terms of biological activities. The
cytotoxic activities of several AMPs turn this group of molecules into an amazing
pool of new templates for anticancer drug development. However, several unmet
challenges limit application of peptides in cancer therapy. The mechanism(s) of
action of the peptides need better description and understanding, and innovative
targets have to be discovered and explored, facilitating drug design and develop-
ment. In this chapter, we explore the natural occurring AMPs as potential new
anticancer peptides (ACPs) for cancer prevention and treatment. Their modes of
action, selectivity to tumor compared to normal cells, preferential targets, and
applications, but also their weaknesses, are described and discussed.

4.1 Introduction

Even though sharing similar characteristics such as replicative immortality, ability
to evade immunosurveillance, and ability to invade surrounding and distant tissues
and organs (Wu et al. 2014), tumor cells are still a challenging target in oncology.
The development of resistance mechanisms and specific contributions of each
tumor microenvironment (TME) contribute for the many difficulties in selectively
targeting diseased rather than normal cells. These limitations in oncology treatment
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are the main reason why cancer diseases remain a leading cause of death
worldwide.

The term cancer refers to a group of diseases characterized by an uncontrolled
growth and by the spread of abnormal cells (Sah et al. 2015). The carcinogenesis
process, triggered either by external factors such as radiation or chemicals, but also
by internal factors such as mutations and hormones (Tanaka 1997), encompasses
many changes on the cells’ biochemistry (Tanaka 2009). Advances in oncotherapy
need to address the particular biochemical signatures of each tumor. Identifying
these signatures and exploiting their vulnerabilities will lead to the development of
selective anticancer drugs than can prolong patients’ lifetime and delay or prevent
tumor metastases.

Conventional therapies including chemotherapy fail in selecting effectively
which cells are to be targeted. While delivering a cytotoxic compound to the tumor,
either a DNA-alkylating agent or a hormone agonist/antagonist, several constraints
determine the fate of both malignant and normal cells. These include the effective
localization of the chemotherapeutic drug, but also drug’s biodistribution and
selectivity determinants (Chen et al. 2014). These therapeutic options have been
successful in converting some fatal cancers into chronic diseases that allow patients
to survive for many years. However, the secondary effects that eventually arise in
this process result in patients’ suffering and slow clinical status deterioration with
stages of myelosuppression, thrombocytopenia, mucositis, and alopecia (Riedl et al.
2011) before culminating in death.

In this scenario, peptide-based drugs raise renewed hope (Wu et al. 2014). The
development of peptide sequences designed to interact with specific molecular
markers, receptors or other tumor cell components, has been of value for applica-
tion in cancer diagnosis, prognosis, and treatment. In this chapter we will review the
use of peptides on cancer treatment, with focuses in their natural sources and
specificity of their mechanism(s) of action.

4.2 Peptide-Based Strategies for Cancer
Treatment—Anticancer Peptides

Peptide-based therapies have many benefits for cancer chemotherapy or supportive
care, such as low cytotoxicity, strong specificity, tumor-penetrating ability, small
size, and ease of modification (Barras and Widmann 2011; Wu et al. 2014). In fact,
peptides have small to intermediate sizes, up to just a few hundreds of amino acids
residues, amenable pharmacokinetic profiles, high uptake into tissues, and rapid
clearance from blood (Wu et al. 2014). Thus, peptides recognizing and binding to
specific membrane proteins or receptors on tumor cells’ membranes are potential
alternative drugs to overcome the limitations of low tissue penetration and low
cellular uptake when using monoclonal antibodies (mAbs), for instance (Wu et al.
2014). Furthermore, peptide’s production is of lower complexity when compared to
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other protein-based therapies and thus, cost-effective (Fosgerau and Hoffmann
2015).

Antimicrobial peptides (AMPs) are a class of natural occurring peptides with
several important targets and activities, from antimicrobial, antiviral, and antifungal
(Reddy et al. 2004; Torcato et al. 2013a, b; Mello et al. 2011) to the modulation of
the immune response (Silva et al. 2012). As part of immune defense (Iwasaki et al.
2009), AMPs are found in eukaryotic organisms of many different species (Reddy
et al. 2004) and their rapid and non-specific interactions with the membrane lipids
of the microbial targets results in the pathogen death with very low chance of
resistance development (Arouri et al. 2009; Fernebro 2011). This interaction is
enhanced by the high proportion of cationic and hydrophobic amino acid residues
present in the structure of the peptides (Seo et al. 2012). AMPs are electrostatically
attracted to the anionic membrane of the microbe and subsequently insert and
disrupt the lipid structures, leading to its permeation (Huang et al. 2014). The
changes that the cell machinery should endure for producing a resistant biological
membrane, capable of neutralizing the action of AMPs is significant biological
effort that has been rarely met until today (Chen et al. 2014).

In addition to their antimicrobial properties, some natural and synthetic AMPs
also have antitumor activities with varying degrees of selectivity towards cancer
cells (Hoskin and Ramamoorthy 2008). In fact, some of these newly found anti-
cancer peptides (ACPs) have been successful in decreasing the burden of tumors in
many animal models (Bhutia and Maiti 2008; Papo and Shai 2005).

The use of ACPs in oncology has been researched either to treat the tumor
directly or to prevent formation of metastases; in this way, they are potential
alternatives or adjuvant to the current therapies. Peptides can be used as drugs,
hormones, or immunization agents (vaccines) (Sah et al. 2015). The biological
effects include inhibition of tumor vasculature growth (angiogenesis), alterations in
protein–protein interaction, changes in gene expression, and apoptosis, among
others (Rosca et al. 2011; Walensky et al. 2004; Zheng et al. 2011).

The main weaknesses of ACPs are poor stability with susceptibility to prote-
olytic degradation and insufficient membrane permeability (Craik et al. 2013).
There are strategies to overcome these limitations and their consequences (Wu et al.
2014), including amino acid substitution (Kohno et al. 2011), fusion of peptides
(Yang et al. 2008), and peptide conjugation with chemotherapeutic drugs (Zhao
et al. 2012).

4.3 Mechanisms of Action, Cellular Targets
and Selectivity of Anticancer Peptides

There is intensive debate on ACPs’ modes of action. Reviews available in the
literature provide detailed description of the many different mechanisms underlying
cancer cell toxicity (Gaspar et al. 2013; Harris et al. 2013; Hoskin and
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Ramamoorthy 2008; Papo and Shai 2005; Mulder et al. 2013). Studies on structure–
activity relationship have shown that some ACPs share with AMPs the ability to
disrupt cell membranes, causing poration or micellization, and additionally induc-
ing necrosis and/or apoptosis (Bhutia and Maiti 2008; Papo and Shai 2005).
Additionally, numerous studies suggest that AMPs and ACPs share similar
mechanisms of membrane interaction (Al-Benna et al. 2011; Harris et al. 2013;
Riedl et al. 2011). This assumption is supported by the structural requirements that
attract AMPs and ACPs to their respective microbial and human cell targets. Other
membranolytic effects include mitochondrial swelling with cytochrome c release
(Mai et al. 2001). However, non-membranolytic mechanisms are expected to be
found for other ACPs (Harris et al. 2013; Sharma 1992) and it is frequent to
discover that one ACP can have more than one cellular target and thus follow more
than one mode of action. The modes of action not involving direct targeting of the
cell membrane, such as interference with nucleic acid synthesis, hormonal recep-
tors, or angiogenesis, have been hypothesized to be part of mediated immunity
(Gaspar et al. 2013; Kuriyama et al. 2013).

Short linear ACPs fold into amphipathic conformations upon membrane inter-
action (Chen et al. 2014; Schweizer 2009), depending on hydrophobicity, amphi-
pathicity, net charge, secondary structure, and oligomerization at the membrane
level (Harris et al. 2013; Hoskin and Ramamoorthy 2008). Uncovering the details
of the molecular mechanisms underlying each ACP mode of action is a technically
challenging but rewarding task because the information gathered from these studies
can be successfully applied in the development of innovative approaches in cancer
treatment (Medina and Schneider 2015). There are ACPs with high specificity and
selectivity for their targets. These include matrix metalloproteinases (MMP) such as
MMP-2 and MMP-9 (Koivunen et al. 1999), the c-Src signaling pathway involved
in tumor angiogenesis (Yi et al. 2009), cyclooxygenase-2 (Vesely et al. 2006), the
heat shock protein 90 (Hsp90) and S100P, a marker for differentiating tumor and
normal cells (Sah et al. 2015).

The details of the mechanisms of membrane-targeting ACPs are also not fully
elucidated. The cellular membrane in tumors is biochemically modified when
compared to normal cells (Huang et al. 2014; Schweizer 2009) because cancer cells
have an higher content of anionic lipids in the outer surface of cytoplasmic
membrane due to the increased fraction of negatively-charged phospholipids such
as phosphatidylserine (PS) (Hoskin and Ramamoorthy 2008; Riedl et al. 2011). The
loss of membrane asymmetry in the lipid distribution between the inner and outer
leaflet of the plasma membrane during cell transformation into a malignant phe-
notype appears to be the cause for the exposure of PS on the surface of cells, which
contributes to the selectivity of ACPs for solid and non-solid tumors (Gaspar et al.
2013). Other anionic components are also present on cancer cells’ membrane such
as O-glycosylated mucins, heparin sulfate and sialylated gangliosides (Gaspar et al.
2013). Cholesterol content on tumor cells’ membrane also modulates cellular
fluidity and condition ACPs activity (Schweizer 2009). The higher transmembrane
potential and the higher surface area of tumor cells, which promotes contact with an
increased number or peptide molecules, further contribute to the preferred action of
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ACPs on tumor cells (Chan et al. 1998; Chaudhary and Munshi 1995; Huang et al.
2014). Peptides such as MPI-1 from the venom wasp Polybia paulista (Wang et al.
2009a), NK-2 derived from the protein NK-lysin found in porcines’ NK- an T-cells
(Schroder-Borm et al. 2005) and the synthetic peptide SVS-1 (Gaspar et al. 2012;
Sinthuvanich et al. 2012) are a few examples of natural and synthetic peptides that
base their preference for solid and hematological tumor cells based on the mem-
brane surface net charge. However, detailed studies using biophysical and imaging
techniques have shown that even though net charge has an important role in
determining membrane interaction, AMPs and ACPs tend to behave differently in
lipid environment (Freire et al. 2015; Gaspar et al. 2012, 2015). SVS-1 and HNP-1
ACPs are examples of this difference (Fig. 4.1). SVS-1 was designed to adopt a β-
sheet structure after contact with the negatively-charged cancer cell membrane and
is preferentially cytotoxic against lung, epidermal, and breast carcinomas when
compared to HUVEC and red blood cells (Gaspar et al. 2012; Sinthuvanich et al.
2012). The mode of action described for SVS-1 is a lytic mechanism involving
cell-surface induced folding into a β-hairpin structure capable of forming pores in
the cell membrane (Sinthuvanich et al. 2012) (Fig. 4.1). The trigger for the peptide

Fig. 4.1 Cell death induced by SVS-1 and HNP-1 peptides. SVS-1 engages electrostatically the
cancer cell membrane (1) and folds into a β-hairpin structure capable of forming pores (solid
arrow) with leakage of the cellular contents (dashed arrow) as shown by TEM (2a, 2d) and SEM
(2c, 2e, 2b, 2f) images. Scale bar: 10 μm for SEM, 2 μm for TEM. HNP-1 (3) interacts with the
negatively-charged cell membrane of the tumor cell (4), translocates into the cell-inducing DNA
fragmentation (6) and fragilizing the cell’s cytoskeleton structure (6) resulting in the collapse of the
cell as shown in the 3D projection of the AFM height image (7). For both SVS-1 and HNP-1, cell
death precedes membrane neutralization, in contrast to typical AMP action (Alves et al. 2010,
Torcato et al. 2013b). Adapted from references Sinthuvanich et al. (2012) and Gaspar et al. (2015)
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folding is the membrane net negative charge but full membrane neutralization is not
mandatory for cell death (Gaspar et al. 2012). It was recently found that SVS-1 is
able to translocate across the cell membrane into the cytoplasm and into the nucleus
when present in concentrations below the minimal inhibitory concentration (MIC50)
necessary for lytic action (Medina and Schneider 2015). The combination of SVS-1
with paclitaxel improves SVS-1 aqueous solubility and the peptide is capable of
delivering and releasing paclitaxel into cancer cells and tumors in vivo without any
adjuvant (Medina and Schneider 2015).

On the contrary, studies with AMPs such as BP100 show a neutralization of the
bacterial membrane that can be correlated with the minimal inhibitory concentration
(MIC) values found to inhibit the growth of Escherichia coli bacteria (Alves et al.
2010). Therefore, one should be cautious when translating conclusions on AMPs
structure-activity studies to ACPs because not all AMPs behave as ACPs.

4.4 Targeting Cancer Cells Using Natural Peptides

More than 7000 natural peptides have been identified until today (Fosgerau and
Hoffmann 2015) and AMPs can be found virtually in all living organisms, from
plants and insects to animals (Salas et al. 2015). Table 4.1 lists selected examples of
these AMPs with anticancer activity.

Natural products derived from plants have contributed greatly to chemotherapy
development. Examples of this are the drugs paclitaxel, vincristine, and vinblastine
(Wu et al. 2014). Plants are also great producers of small cysteine-rich AMPs and
some of them present cytotoxic activities. Cytotoxic classes are mainly represented
by thionins, defensins and cyclotides (Guzman-Rodriguez et al. 2015).

Table 4.1 Selected naturally occurring antimicrobial peptides (AMPs) with anticancer activity

Peptide Source Activity Reference

Pyrularia Plant Changes in Ca2+ influx Evans et al. (1989)

NaD1 Plant Binding to plasma membrane PIP2 Poon et al. (2014)

RA-V Plant Mitochondria-mediated apoptosis with
PDK1-AKT blocking; Inhibition of cell
adhesion and migration through regulation
of adhesion molecules, receptors and
MMPs expression

Fang et al. (2013);
Leung et al. (2015)

Lunasin Plant HAT inhibition and cell cycle progression
repression

Galvez et al. 2001);
Hernandez-Ledesma
et al. 2009)

Gomesin Insect Ca2+ accumulation, loss of mitochondrial
potential, pore formation

Rodrigues et al. (2008);
Paredes-Gamero et al.
(20120

Mastoparan Insect Oxidative stress, mitochondrial
depolarization and apoptosis

de Azevedo (2015)

HNP-1 Human DNA breakdown and cell collapse Gaspar et al. (2015)
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Thionins are small cysteine-rich peptides with diversified activities, in addition
to being antimicrobial. They help seed maturation and germination and have roles
in signal transduction (Stec 2006), and some of them, such as pyrularia, Thi2.1, and
β-purothionin have cytotoxic activity against cervical, lung, and breast cancers
(Evans et al. 1989; Hughes et al. 2000; Loeza-Angeles et al. 2008). In some cases,
anticancer effects are based on changes on Ca2+ influx that depolarize the cellular
membrane (Evans et al. 1989), but for others remain unknown (Loeza-Angeles
et al. 2008).

Plant defensins represent a diversified group in terms of their amino acid
sequence but some of the amino acid positions are highly conserved
(Guzman-Rodriguez et al. 2015). They present powerful antifungal activity (Mello
et al. 2011) and their mode of action is related to membrane destabilization or
insertion followed by pore formation and leakage of essential biomolecules
(Lacerda et al. 2014). Sesquin was the first plant defensin known to be active
against breast cancer and leukemia cells (Wong and Ng 2005b). Other plant
defensins, such as lunatusin (Wong and Ng 2005a) and phaseococcin (Ngai and Ng
2005) are also active on breast cancer and leukemia; however, their mode of action
and selectivity are still poorly described. Several reports on plant defensins show
that this group of peptides might have alternative targets to conventional drugs.
This is the case of NaD1 that can act by direct binding to the plasma membrane
phospholipid phosphatidylinositol 4,5-biphosphate (PIP2) (Poon et al. 2014).

Cyclotides is another group of Cys-rich peptides derived from plants with
cytotoxic activity. These macrocyclic peptides have around 30 amino acid residues
in their sequence and a wide range of biological activities (Craik 2012). Their tight
cyclic structure is of particular relevance because it confers chemical and biological
stability, conferring high pharmaceutical value to the peptides (Guzman-Rodriguez
et al. 2015). They are characterized by a cystine knot with an embedded ring
formed by two disulfide bonds and connecting backbone segments threaded by one
more disulfide bond (Guzman-Rodriguez et al. 2015). Expressed in large quantities
by plants of Rubiaceae and Violaceae families, cyclotides are described mainly as
host protectors (Craik 2012). However, their activities go much further than bio-
cidal protection and include anti-HIV and anticancer effects (Craik 2012). The
mechanism of action described for cyclotides is also very interesting from a ther-
apeutical point of view. For kalatas B1–B9 peptides, the presence of phos-
phatidylethanolamine (PE) headgroups on the cellular membrane favors peptide
binding (Henriques et al. 2012), which is advantageous in the drug design process
for increasing peptide’s selectivity towards specific cancer cells that express higher
contents of this PE phospholipid, for instance. Other described cyclotides include
cycloviolacin O2 and Viba 15 and 17 with activities against lymphoma, melanoma,
and also cervical and gastric cancers (He et al. 2011; Svangard et al. 2007).

More recently, the cyclopeptide deoxybouvardin, RA-V, derived from Rubia
yunnanensis has been characterized with antitumor and anti-angiogenesis activity
(Fang et al. 2013; Leung et al. 2015). This peptide shows anticancer activity against
human and murine breast cancer cells through mitochondria-mediated apoptosis by
blocking PDK1 and AKT interaction and consequently apoptosis resistance
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(Fang et al. 2013). RA-V peptide is also capable of inhibiting breast cancer cell
adhesion and migration through the interference on cofilin signaling and chemokine
receptors. This peptide reduces the expression of several adhesion molecules and
MMPs (Leung et al. 2015).

Lunasin is another example of natural ACP isolated from plants
(Hernandez-Ledesma et al. 2009). This 43-amino acid peptide is found in soy,
wheat, barley, and other seeds (Hernandez-Ledesma et al. 2009) and is a chemo-
preventive agent against oncogenes and chemical carcinogens (Ortiz-Martinez et al.
2014). With an adequate bioavailability following oral administration, lunasin was
shown to prevent skin cancer in a mouse model induced by chemical carcinogens
(Galvez et al. 2001; Hsieh et al. 2004). An epigenetic mechanism of action pro-
posed for this peptide is the selective killing of newly transformed cancer cells by
acting as a histone acetyltransferase (HAT) inhibitor and repressing cell cycle
progression (Hernandez-Ledesma et al. 2009).

Insects are also a good natural source of AMPs with anticancer activity.
Gomesin is a β-hairpin peptide isolated from the hemolymph of Acanthoscurria
gomesiana, a Brazilian spider (Rodrigues et al. 2008). This peptide has the ability to
form pores and is active as a topical agent against melanoma, breast, and colon
carcinomas neuroblastomas and pheochromocytomas (Rodrigues et al. 2008).
Gomesin induces membrane permeabilization through a Ca2+ dependent pathway
which involves particular intracellular events: perturbation of the endoplasmic
reticulum, accumulation of Ca2+ in organelles, of mitochondrial potential and
oxidative stress (Paredes-Gamero et al. 2012). Mastoparan is a 14-amino acid α-
helical cell penetrating peptide from the venom of Vespula lewisii wasp that has
nocive effects on cell membranes (Saar et al. 2005). Mastoparan shows antitumor
activity against human erythroleukemia cells and melanoma (Yamada et al. 2005).
In the latter, tumor cell death occurs through an induce of programmed cell death by
oxidative stress, which causes mitochondrial depolarization (de Azevedo et al.
2015). Apoptosis induced by mastoparan stems from the activation of caspases -9, -
12, and -3, cleavage of PARP, up-regulation of pro-apoptotic proteins Bax and Bim
and down-regulation of the anti-apoptotic Bcl-XL proteins (de Azevedo et al.
2015).

In animals, AMPs with anticancer activity can be found in the immune, diges-
tive, and central nervous systems (CNS) and also in the heart, bones, muscle, and
skin (Wu et al. 2014). Many AMPs from the animal kingdom have been extensively
studied, such as LfcinB. This 25-amino acid residues peptide is isolated from cows’
milk and causes cell death through at least two mechanisms. LfcinB is active
against leukemia cells and diverse solid tumors (Mader et al. 2005) and is capable
of binding to glycosaminoglycans (GAGs) present on the membrane surface
(Jenssen et al. 2004), inducing apoptosis by mitochondrial pathway, and also lysis
of the cellular membrane (Eliassen et al. 2006; Furlong et al. 2008).

One of the most studied groups of peptides derived from humans is the defensins
group. These are disulfide-rich peptides, similar to defensin plants, and comprise
29-35 amino acids with three disulfide bonds (Conibear and Craik 2014). Defensins
are organized in three classes, α-, β-, and Ɵ-defensins (Conibear and Craik 2014).

102 D. Gaspar and M.A.R.B. Castanho



The class of α-defensins includes the human neutrophil peptides 1–4 and the human
defensins HD5 and HD6, produced in the Paneth cells of the intestine (Ouellette
and Bevins 2001). The human neutrophil peptides, HNPs, possess antitumoral
effects trough diversified mechanisms (Wang et al. 2009b). HNP-1 to 3 have been
appointed has potential tumor biomarkers (Albrethsen et al. 2005, 2006; Droin et al.
2009). The HNP-1 has been intensively studied for anticancer properties. Produced
and stored in the azurophilic granules of human neutrophils, this peptide is released
when an inactivation of bacteria and yeast is necessary (Ganz and Lehrer 1998).
However, many studies report the importance of this AMP in oncology. The
expression of HNP-1 in models of tumors such as breast and colon stimulates an
immune response from the host against the tumor (Wang et al. 2009c). In addition,
it has been found up-regulated in cancers such as colorectal (Mohri et al. 2009) and
other tumors (Albrethsen et al. 2006; Holterman et al. 2006) and to be linked to
tumor necrosis when expressed intratumorally (Bateman et al. 1992; Muller et al.
2002). HNP-1 mode of action is believed to involve damage to the cell membrane
but also the induction of DNA strand break (Gera and Lichtenstein 1991). A recent
study revealed that HNP-1 attacks solid tumors, human prostate cancer in this
particular case, after translocating into the cell, following DNA and cytoskeleton
damage and final cell collapse (Gaspar et al. 2015) (Fig. 4.1). Cell death occurs
without full neutralization of the cancer cell membrane and although HNP-1
interacts with prostate and leukemia cells, differences on the membrane composi-
tion of each tumor cells dictate the peptide’s preference (Gaspar et al. 2015).

4.5 Final Remarks

Today, hundreds of novel peptide sequences are part of the clinical and preclinical
testing of pharmaceutical companies. As peptide-based therapies are on the spot-
light, a great number of studies report on the role of AMPs on cancer treatment.
With a very particular mode of action involving non-specific interactions, peptides
can be expected to meet the selectivity, efficacy, and safety requisites for successful
drugs with diminutive resistance barriers. However, drug development optimization
is still needed, which requires that the mechanism(s) of action and molecular and
cellular targets, as well as potential off-target effects, are researched and described
with molecular level detail and correlated to human physiology. The future of
peptide applications in oncology and oncotherapeutics depends on how successful
basic research will be in this endeavor.
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