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Preface 

The work presented in this Thesis is derived from my Ph.D. research, made possible 

primarily by the Ph.D. fellowship ref. SFRH/BD/80483/2011, from Fundação para a Ciência 

e a Tecnologia (FCT), Ministério da Ciência, Tecnologia e Ensino Superior (MCTES), Portugal. 

This study, carried out between 2012 and 2016, was integrated in the Ph.D. program of 

Centro Académico de Medicina de Lisboa (CAML), which is shared between Instituto de 

Medicina Molecular (IMM, Lisbon, Portugal), Faculdade de Medicina da Universidade de 

Lisboa (FMUL, Lisbon, Portugal) and Hospital Santa Maria, Centro Hospitalar Lisboa Norte 

(HSM-CHLN, Lisbon, Portugal). The work took place at the Angiogenesis Lab, at Centro 

Cardiovascular da Universidade de Lisboa (CCUL), under the supervision of Prof. Susana 

Constantino (CCUL/FMUL).  

 

This thesis is constituted by five chapters, which are preceded by a summary, both in 

Portuguese and in English. Chapter I consists of a general introduction to blood vessels, 

with particular emphasis on the angiogenic process, approached from the early embryonic 

development to adulthood, in physiology and pathology, arteriogenesis and postnatal 

neovascularization. A brief overview about the cellular and molecular effects of ionizing 

radiation is also presented. Chapter II specifically indicates the main objectives of the 

research proposal that led to the work presented in this thesis. Chapter III and IV include 

the experimental work developed through the research project. Chapter III, Low-dose 

ionizing radiation induces therapeutic neovascularization in a pre-clinical model of 

hindlimb ischemia, includes already published work (presented in word format) in 

Cardiovascular Research journal. Chapter IV, Low-dose ionizing radiation promotes 

neovascularization in experimentally induced diabetic mice subjected to hindlimb 

ischemia, includes results from ongoing work that is currently being developed in our lab 

and has not yet been published. Both results chapters include an abstract, a specific 

introduction, the results obtained in the work developed, and a focused discussion, as well 

as the methods and the references. In Chapter V, conclusions are integrated and discussed, 

generating new testable hypotheses which comprise the foreseen future directions of our 

research in this field.
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Resumo 

O sistema circulatório ou cardiovascular é formado pelo coração e vasos sanguíneos e a sua 

função é levar oxigénio e nutrientes aos órgãos e tecidos do corpo. A doença 

cardiovascular, de que é exemplo a doença arterial periférica (DAP) é uma das principais 

causas de mortalidade e morbilidade na população mundial. Estima-se que mais de 25 

milhões de pessoas na Europa e nos Estados Unidos apresentem DAP, e a sua incidência 

tende a aumentar. Importantes fatores de risco para a DAP são a diabetes, tabagismo, 

hipertensão e dislipidemia. A DAP caracteriza-se por uma obstrução do lúmen arterial, 

resultando num défice de fluxo sanguíneo aos tecidos cuja principal consequência é a 

presença de sintomas característicos de isquemia. A manifestação mais frequente de DAP 

é a claudicação intermitente, que é caracterizada por desconforto muscular no membro 

inferior, produzido pelo exercício, e que alivia com o repouso. A claudicação tem um 

impacto negativo na qualidade de vida dos doentes, quer a nível profissional, quer 

interferindo com as suas atividades sociais. A isquemia crítica dos membros inferiores é a 

manifestação clínica mais grave da DAP, que descreve doentes com dor em repouso ou 

com lesões tróficas cutâneas, sejam elas úlceras ou gangrena. Aproximadamente 1% dos 

doentes com DAP apresentam o estado avançado da doença. As limitações dos 

procedimentos de revascularização, resultantes da extensão e distribuição anatómica da 

doença arterial, e do tratamento farmacológico, são bem conhecidas. Assim, a amputação 

surge como última alternativa terapêutica, apesar das taxas de morbilidade e mortalidade 

associadas. Na última década vários estudos têm vindo a ser desenvolvidos com o objetivo 

de encontrar tratamentos alternativos, incluindo a angiogénese terapêutica.  

A angiogénese terapêutica, a qual pode ser alcançada através da administração local de 

fatores de crescimento pró-angiogénicos na forma de proteína recombinante ou de células 

progenitoras endoteliais (CEPs) ou mesmo recorrendo à terapia génica, oferece uma 

possibilidade de recuperação para estes pacientes. Apesar dos estudos pré-clínicos e de 

alguns ensaios clínicos em fase I/II mostrarem-se bastante promissores, a progressão 

desses ensaios clínicos para terapias angiogénicas não têm revelado um efeito benéfico em 

doentes com isquemia crítica dos membros inferiores. Também o pouco conhecimento 

sobre os agentes angiogénicos envolvidos, nomeadamente a dose, a frequência e o método 

de administração têm contribuído para o fracasso dos ensaios clínicos.  
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No passado, o nosso grupo de investigação demonstrou que baixas doses de radiação 

ionizante (BDRI) promovem angiogénese durante o desenvolvimento embrionário e no 

processo de regeneração da barbatana caudal do peixe zebra. Assim, de acordo com os 

nossos resultados as BDRI induzem angiogénese in vivo, mas não existe prova de que 

produzam angiogénese terapêutica em doentes com doença isquémica, sendo este o 

propósito deste trabalho de doutoramento. Assim, o presente trabalho tem como objetivo: 

1) identificar os mecanismos celulares e moleculares pelos quais as BDIR poderão 

promover angiogénese terapêutica;  

2) avaliar se as BDRI promovem a vascularização pós-natal pelo aumento de CEPs 

em circulação e sua incorporação em locais de neovascularização nos tecidos 

isquémicos; 

3) demonstrar que as BDRI promovem neovascularização num modelo 

experimental de diabetes.    

Um modelo animal de isquémia foi desenvolvido usando fêmeas de ratinhos C57BL/6 e 

recorrendo a várias técnicas de biologia celular e molecular, nomeadamente RT-PCR, 

imunohistoquímica, imunofluorescência, citometria de fluxo, ELISA, microscopia de 

microdissecção a laser e diafanização. 

 

Neste estudo, após a indução de isquémia unilateral, os ratinhos C57BL/6 foram irradiados 

ou não com 0.3 Gy, durante quatro dias consecutivos.  

Os resultados demonstraram que as BDRI, aumentam significativamente a perfusão 

sanguínea no membro inferior do ratinho sujeito a isquémia, assim como a densidade 

capilar e a formação de colaterais. Foi também avaliada a vasculatura no membro inferior 

contralateral que apesar de irradiado não foi sujeito a isquémia. Neste caso particular, nem 

a densidade capilar, nem a formação de colaterais registaram alterações quando 

comparadas com animais não irradiados. Estas observações sugerem que em condições 

não patológicas as BDRI não têm efeito na vascularização.  

De forma a validar os mecanismos moleculares no nosso modelo isquémico, foram 

selecionados os melhores candidatos associados a uma resposta pró-angiogénica a partir 

de uma análise de expressão gênica por microarrays. Os nossos resultados mostraram que 

a expressão de vários genes pró-angiogénicos nomeadamente, Vegfr2, Vegfr1, Fgf2, 

Angpt2, Pdgfc, Tgfb2, Hgf e Met está induzida em células endoteliais isoladas de músculos 
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de ratinhos sujeitos a isquémia e comparadas com a expressão em células endoteliais 

isoladas dos músculos não isquémicos contralaterais. Desta forma, as BDRI sugerem 

conferir uma resposta pró-angiogénica após indução de isquémia.  

Neste trabalho foi também demonstrado que as BDRI aumentam significativamente tanto 

a concentração de VEGF, PIGF e G-CSF como de CEPs em circulação e medeiam a 

incorporação destas células nos músculos isquémicos.   

Este trabalho revela ainda que não existe diferença de morbilidade nem de mortalidade 

em ratinhos irradiados quando comparados com ratinhos não irradiados, sendo eles 

acompanhados durante 52 semanas após exposição a BDRI. 

 

Para complementar este trabalho e sendo a diabetes um importante fator de risco no 

contexto da DAP, foi observado que em resposta à indução de isquémia as BDRI, 

administradas durante quatro dias consecutivos, aumentam significativamente a perfusão 

sanguínea, a densidade capilar e a formação de colaterais num modelo experimental 

diabético. No entanto estes dados resultam de um estudo preliminar, sendo crucial o 

aumento do número de animais.  

 

Em conclusão, o presente trabalho demonstra que BDIR induzem angiogénese terapêutica 

num modelo experimental de isquémia do membro inferior. Este trabalho é relevante pois 

propõe o uso de BDIR como uma estratégia inovadora e não invasiva no tratamento da 

isquémia crítica do membro inferior. 
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Abstract 

Peripheral arterial disease (PAD) is mainly caused by an obstructive artherosclerosis, which 

results in a mismatch between oxygen supply and demand. Diabetes is an important risk 

factor for PAD and it is present in almost 50% of the patients with limb ischemia. Critical 

limb ischemia (CLI) is the end stage of PAD, being characterized by severe obstruction of 

blood flow to the affected extremity, which results in ischemic rest pain, ulcers or gangrene. 

Despite substantial evidence of their efficacy in preclinical studies, as well as some 

promising phase I/II clinical trials, larger randomized clinical trials on angiogenic therapies 

for CLI have been unsatisfactory. 

Here, we investigated the ability of low-dose ionizing radiation (LDIR) to stimulate 

therapeutic neovascularization, in murine models, in a context of hindlimb ischemia (HLI), 

conjugated or not with diabetes. 

We demonstrate that 0.3 Gy, administered for four consecutive days, significantly improves 

blood perfusion in the murine ischemic limb by stimulating angiogenesis and 

arteriogenesis, as assessed by laser Doppler flow, capillary density and collateral vessel 

formation. LDIR significantly increased the circulating levels of VEGF, PlGF and G-CSF, as 

well as the number of circulating endothelial progenitor cells (EPCs), mediating their 

incorporation into ischemic muscles. These effects were dependent upon LDIR exposition 

on the ischemic niche (thigh and shank regions). In irradiated ischemic muscles, these 

effects were independent of the recruitment of monocytes and macrophages. Also, the 

vasculature in an irradiated non-ischemic bed was not affected and after 52-week LDIR 

exposure no differences in the incidence of morbidity and mortality were seen. 

Additionally, in diabetic mice, our data suggest that 0.3 Gy applied during four consecutive 

days significantly promote blood perfusion, capillary and collateral vessel densities in 

response to HLI induction. These findings disclose an innovative and non-invasive strategy 

to induce therapeutic angiogenesis in a murine model of severe HLI, emerging as a novel 

approach in the treatment of CLI. 
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1. Blood vessels: Structure and Function  

Contrarily to primitive and smaller organisms, the complex body architecture of 

vertebrates requires an efficient circulatory system, able to distribute oxygen and nutrients 

to tissues and remove carbon dioxide and other metabolic waste products throughout the 

body. 

The circulatory system carries out two main networks: the blood-vascular and the 

lymphatic systems, both formed by endothelial cells (EC). The cardiovascular system allows 

blood to circulate and transport nutrients, oxygen, carbon dioxide and other molecules 

throughout all cells in the body1, while the lymphatic system drains extravassed fluid, the 

lymph, from the extracellular space and returns it into the venous circulation. The 

lymphatic vasculature is also essential for the immune defense, since any foreign material 

present in the lymph is filtered through the chain of lymph nodes2. Both networks are 

essential for homeostasis of a healthy organism, and their malformation or dysfunction 

contributes to many diseases1. 

Blood vessels are divided into three main groups: arteries, veins, and capillaries3. Briefly, 

blood full of oxygen and nutrients is pumped from the heart to the tissues, through the 

arteries that ramify into smaller arterioles and into capillary beds, while blood enriched in 

carbon dioxide and waste returns to the heart through venules and veins1. 

Arteries and veins are further divided according to their caliber, into large, medium and 

small blood vessels. The microvasculature composed of the smallest vessels (arterioles, 

venules and capillaries) is a very dynamic and complex system, capable of constant change, 

while the larger blood vessels are more permanent structures with reduced plasticity3. 

Capillaries, the most abundant vessels in our body, are also one of the most important 

vessels of the cardiovascular system, since their thin walls allow the exchange of oxygen 

and nutrients between blood and tissues3. Capillaries are composed of endothelial cells 

surrounded by basement membrane and a sparse layer of pericytes embedded within the 

EC basement membrane. Pericytes, due to their contractile fibers, possess a cell body with 

prominent nucleus and a small content of cytoplasm. They are functionally significant, since 

when vessels lose pericytes, they become hemorrhagic and hyper dilated, leading to 

conditions such as edema, diabetic retinopathy, and even embryonic lethality4. Capillaries 

in different tissues exhibit different cellular morphology, associated with distinct levels of 
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permeability (Figure 1): (a) continuous capillaries, characterized by an uninterrupted 

endothelium and a continuous basement membrane, that exist, for instance, in muscle, 

lung or the nervous system; (b) fenestrated capillaries, characterized by a continuous 

basement membrane with fenestrae or pores in the endothelium that allow the rapid 

passage of macromolecules and exist, for example, in the kidney, intestines or endocrine 

glands and (c) discontinuous capillaries, characterized by large openings in the 

endothelium and a discontinuous or absent basement membrane that exist, for instance, 

in the liver and spleen5.  

 

 

Figure 1 - Capillary wall morphology. (a) Continuous capillaries have no openings in their wall and 

are lined continuously with the EC body. (b) Fenestrated capillaries have small openings, called 

fenestrae that are covered by a small, non-membranous, permeable diaphragm and allow the rapid 

passage of macromolecules. The basement membrane of ECs is continuous over the fenestrae. (c) 

Discontinuous capillaries have a large lumen, many fenestrations with no diaphragm and a 

discontinuous or absent basal lamina. Adapted from reference5. 

 

In contrast, the walls of larger vessels (arteries and veins) have three specialized layers 

(Figure 2). The tunica intima consists of an endothelium, a basement membrane and an 

internal elastic layer. The tunica media is composed of a thick layer of smooth muscle cells 

(SMCs) with reticular fibers, elastin and proteoglycans and external elastic lamina, while 

the tunica adventitia consists of connective tissue with both elastic and collagenous fibers 

and external elastic lamina5,6. Arterioles and venules have an increased coverage of mural 

cells when compared to capillaries. 
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The advential layer has its own blood supply, known as vasa vasorum. SMCs and elastic 

laminae contribute to the vessel tone and mediate the control of vessel diameter and blood 

flow. Although the walls of arteries and veins are composed of these same layers, they 

present some differences as a result of the pressure and direction of the blood flow. 

Arteries are more robust, with a strong elastic vessel wall to cope with the high arterial 

blood pressure downstream of the heart. Since veins conduct blood back to the heart, 

blood flows with a lower pressure in veins and consequently their wall is thinner than the 

one of arteries. Veins have additional semi-lunar valves, which prevent the blood from 

flowing backwards5.  

 

 

Figure 2 - Morphology and wall composition of large blood vessels. Adapted from reference7.  

 

1.1. Endothelial Cell Specification 

Although arteries and veins are both formed from primitive blood vessels, different 

hemodynamic changes and physiology lead to their distinct morphology and physiology 

factors, in a process known as arteriovenous differentiation1,2,8. Hemodynamic forces such 

as blood flow rate, direction, and pressure are key factors driving the differentiation of 

vessels into arteries and veins. However, studies have demonstrated that arteries and veins 

possess distinct molecular identities from a very early stage, suggesting that genetics have 

a critical role in dictating arterial/venous fate9. Although the molecular processes 
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underlying arteriovenous differentiation are not fully understood, increasing evidence 

suggests that this process is regulated by the concerted action of different molecules.  

The first discovered specific markers that distinguish arteries from veins were two 

members of the Eph-Ephrin subclass of receptor tyrosine kinases, ephrinB2 and EphB49. 

EphrinB2 is a transmembrane ligand and is specifically expressed in endothelial precursors 

that produce arteries, whereas Ephb4, the receptor for Ephrin B2, is found preferentially in 

veins10. Mice deficient in Ephrin B2 and Ephb4 have similar defects in the remodeling of 

primary capillary vessels into a mature vascular network8.  

It is known that Notch pathway is directly involved in the differentiation of the arterial 

branch1. In mice, the receptors Notch1 and Notch2 and the ligands Jagged1, Jagged2 and 

delta‐like‐4 (DLL4) are all expressed in arterial but not in venous ECs. Notch4-/- and Notch1-

/- mice exhibit abnormal vascular development, whereas Dll4-/- mice are not viable, 

presenting severe vascular defects and showing reduced EphrinB2 expression and 

increased EphB4 expression, consistent with a failure in arterial differentiation. These data 

suggest that Notch activity is important for the promotion of arterial cell fate9,11. Upstream 

from Notch pathway are Foxc1 and Foxc2 (forkhead C1 and C2) that control arterial 

specification by regulating the expression of the Notch ligand Dll4. Mice with inactivated 

Foxc1 and Foxc2 develop arterial-venous malformations10. 

Additionally, COUP-TFII (chicken ovalbumin upstream promoter transcription factor II) is 

specifically expressed in venous endothelium. COUP-TFII mutant mice show ectopic 

expression of arterial markers such as neuropilin 1 (NRP1), Notch1 and EphrinB2 in veins. 

These studies suggest that COUP-TFII is a crucial regulator of venous cell fate by inhibiting 

the expression of NRP1 and Notch signaling8,12. 

The expansion of larger arteries and veins occurs by acquisition of additional layers of mural 

cells, extracellular matrix (ECM) and elastic laminae to provide the required viscoelastic 

properties. Homotypic and heterotypic junctions facilitate cell-to-cell communication and 

regulate vessel permeability. Vascular endothelial cadherin is an important component of 

EC-EC junctions, whereas neural cadherin facilitates EC-mural cell communication. Gap 

junctions (made of connexins) also facilitate communication between ECs and between ECs 

and perivascular cells. Tight junctions (formed by occludins, claudins and zona occludens) 

contribute to the blood tissue barrier in the brain and retinal capillaries6. 
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2. Vasculogenesis 

Vasculogenesis is a fundamental process by which new blood vessels are formed, 

characterized by the differentiation of precursor cells into endothelial cells and the de novo 

formation of a vascular network. 

 

2.1. Vasculogenesis during embryo development 

The development of the vascular system is one of the earliest events in organogenesis13. In 

vertebrates, one of the mechanisms by which the vascular development proceeds is via 

vasculogenesis, the process of de novo blood formation, characterized by the formation of 

vessels directly from angioblastic precursors14. 

In the early phase of vasculogenesis, hemangioblasts undergo their first critical steps of 

differentiation within the blood islands, being committed to differentiate into angioblasts 

and primitive haematopoietic cells. The angioblasts aggregate in the periphery and the 

hematopoietic precursors accumulate at the center of the blood islands in the yolk sac and 

embryo15,16. The angioblasts migrate to discrete locations, differentiate in situ and 

assemble into solid endothelial cords, later forming a plexus with endocardial tubes13. 

Vascular endothelial growth factor (VEGF) and their receptors, vascular endothelial growth 

factor receptor 1 and 2 (VEGFR1 and VEGFR2), are key players in embryonic vessel 

formation. Particularly, VEGFA is required for the chemotaxis and differentiation of 

endothelial precursor cells, EC proliferation and angiogenic remodeling1. Genetic studies 

show that the deficiency in one of these VEGF/VEGFR molecules is lethal in mice, due to 

failed development of the vasculature2,16. The lethality resulting from the loss of a single 

allele is indicative of a dependent regulation of embryonic vessel development by VEGFA2. 

The existence of a precursor for these cells types (haemangioblast) is suggested by defects 

in both the haematopoietic and angioblastic lineages of embryos lacking VEGFR2. 

Moreover, in the absence of the VEGFR1 mice produce angioblasts but their assembly into 

functional blood vessels is impaired17. 

 

2.2. Postnatal Vasculogenesis  

Until the late 1990s, it was generally accepted that after birth, new blood vessels were 

developed only by angiogenesis. However, new findings indicate that vasculogenesis is not 
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restricted to early embryogenesis18. Asahara et al., pioneer in the scientific field of adult 

vasculogenesis, isolated mononuclear cells from adult peripheral blood and found that 

those cells had the same characteristics as the embryonic angioblasts, contributing to the 

revascularization of the ischemic tissue19. These cells were termed “endothelial progenitor 

cells” (EPCs). Thus, a new concept, describing postnatal neovascularization as a 

combination of vasculogenesis and angiogenesis, in which EPCs play a crucial role, 

emerged18. 

 

2.2.1. EPCs phenotypic identification and characterization 

The identification of EPCs can be based on their cellular origin, isolation methods and 

surface marker expression20. Although the analysis of cell surface markers is currently the 

most used methodology21, EPCs identification is controversial, since there is no unique 

protein marker that defines them22. The analyzed markers are usually shared with cells 

from hematopoietic lineage and mature ECs23. Therefore, EPCs combine stem cell markers, 

such as CD133, c-kit and Sca-1 and endothelial markers, such as VEGFR2, CD31, VE-cadherin 

and von Willebrand factor20,24. CD34 represents a link between precursor and mature cells, 

since it is expressed in both cell types. On the other hand, CD133 allows the distinction 

between progenitor and mature cells, since it is not present on mature ECs22. 

Beyond the controversy about the phenotypic identification of EPCs, the heterogeneity of 

cultured cells has also been a concern. Many studies reported EPCs after using different 

sources of the cells or method for culture22,25-27. For instance, human CD34+ cells isolated 

from peripheral blood, umbilical cord blood or bone marrow can all differentiate into ECs. 

Moreover, studies show that when total mononuclear cells, isolated from peripheral blood, 

are cultured in vitro, two types of cell populations that appear sequentially can be 

observed26. The first population, “Early EPCs”, comes after 4-7 days of plating on 

fibronectin-coated surface with the addition of endothelial growth media, as spindle-

shaped cells. “Early EPCs” gradually loose CD45 and CD31 expression and gain low-level 

expression of VEGFR2 and VE-Cadherin. However, they lose this low-level expression of 

VEGFR2 and VE-cadherin after 3 weeks, dying after that26. These cells play a role in 

vasculogenesis by secreting large quantities of angiogenic factors, which act through 

paracrine mechanisms28. On the other hand, when blood-derived mononuclear cells are 

maintained in culture for 2-3 weeks “late EPCs” can be observed22. “Late EPCs” have a 
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higher and longer sustained expression of VEGFR2 and VE-cadherin26, much higher 

proliferation potential and are able to differentiate into ECs and promote vascular tube 

formation22. Thus, “late EPCs” enhance neovasculogenesis, by providing a sufficient 

number of ECs based on their high proliferation potency26. These two type of cells have the 

ability to absorb acetylated low-density lipoprotein and bind lectin Ulex europaeus 

agglutinin I29. Despite such differences in genetic and functional in vitro aspects, they 

equally contribute to neovasculogenesis26. 

 

2.2.2. Mobilization and Recruitment of EPCs 

Under physiological conditions, levels of EPCs in the peripheral circulation are low and 

these cells reside in the bone marrow niche in a quiescent state30. The mobilization of EPCs 

from the bone marrow into the peripheral circulation is promoted by several growth 

factors, chemokines and cytokines which are produced in response to a physiological stress 

(tissue hypoxia and trauma) (Figure 3)31. 

One of the most important factors in EPCs mobilization is VEGF. When VEGF interacts with 

its receptor, VEGFR2, it activates nitric oxide synthase (NOS) in the bone marrow, which 

produces nitric oxide (NO), a key player for matrix metalloproteinase 9 (MMP) 9 activation. 

Activated MMP-9 contributes to the transformation of membrane-bound Kit ligand to a 

soluble form (sKitL) and consequently detaches EPCs from the bone marrow niche to the 

peripheral circulation28. 

Once in circulation, homing of EPCs is activated in response to chemokine gradients that 

are formed in the tissue undergoing active remodeling. The major chemokine that 

regulates activation and homing of EPCs is the stromal cell-derived factor1 (SDF1)32,33. In 

response to an ischemic stimulus, released SDF1 interacts with its receptor (CXCR4), and 

initiates, not only the mobilization of EPCs from bone marrow, but also their adhesion to 

ischemic areas. The SDF-1/CXCR4 interaction upregulates the P-selectin glycoprotein ligand 

1 (PSGL1) expression on the surface of EPCs, which is the major ligand of P-selectin. The 

binding contributes to the adhesion of EPCs to the sites of vessel damage and enhances 

their pro-angiogenic capacity. However, in the absence of injury, the effect of SDF1 is 

abolished. After homing into the injured vessel wall, EPCs will contribute to new vessel 

formation and remodeling, but the mechanism behind the functional activity of EPCs is still 

under investigation. Besides differentiating into ECs, EPCs also produce multiple paracrine 
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factors, such as VEGF, SDF1, hepatocyte growth factor (HGF), angiopoetin1 (ANGPT1), 

insulin-like growth factor 1, monocyte chemoattractant protein1 (MCP1) and platelet-

derived growth factor (PDGF). These factors can assist different cell types in promoting 

angiogenesis and tissue regeneration, reflecting the indirect contribution of EPCs to 

neovascularization34. 

EPCs are mobilized from bone marrow into the peripheral circulation and recruited into 

sites of vessel injury to participate in blood vessel formation, in both physiological and 

pathological conditions. However, the mechanisms of mobilization and recruitment are still 

incompletely understood and require further analysis. Nevertheless, several studies 

suggest that EPCs play a critical role in postnatal neovascularization and vascular 

homeostasis30. 

 

Figure 3 - EPCs mobilize in response to hypoxia induced by trauma or vascular injury. In normal 

homeostatic conditions, EPCs reside within a stem cell niche in the bone marrow. Peripheral tissue 

hypoxia under trauma, wound healing or vascular injury conditions results in increased production 

of EPC-mobilizing chemokines and growth factors to a concentration greater than that in the bone 

marrow, causing EPC release and mobilization into the peripheral circulation. Once in circulation, 

EPCs respond to chemokine signaling in the tissues by undergoing active remodeling and homing 

to the injury site. Concomitantly, circulating progenitor cells, tissue-resident, and adipose-derived 

stem cells respond to the chemokine signaling, homing to the active tissue-remodeling site. 

Adapted from reference20.  
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3. Arteriogenesis 

Arteriogenesis, defined as the formation of mature arteries from pre-existing arterioles 

after an arterial occlusion, needs to be activated to confer proper tissue function35 (Figure 

4). 

 

Figure 4 - Arteriogenesis. Arterial occlusion induces a pressure gradient followed by a redistribution 

of perfusion, an increase in collateral flow and a subsequent outgrowth of the collateral arteriole. 

Adapted from reference36. 

 

The driving force for arteriogenesis is altered fluid shear stress (FSS), which appears within 

the collateral arteriole after a blood flow increase. However, the large pressure difference 

in the pre-existing arterioles connecting upstream with downstream branches, relative to 

the point of occlusion, also contributes to initiate a complex cascade of molecular and 

cellular events leading to increased vessel lumen and wall thickness37. The primary 

physiological response to FSS is the activation of ECs in the collateral wall. After an arterial 

occlusion, the ECs of collateral vessels appear swollen, as opposed to the completely flat 

inner surface of normal arteries38. The endothelial activation is indicated by several 

processes that condition for the attraction of circulating cells: upregulated genes that 

encode for chemoattractant or activated cytokines, including growth factors or adhesion 

molecules37. Thus, changes in the expression and conformation of adhesion molecules 

converts the collateral endothelium from a quiescent vessel layer with very low adhesion 

tendency into a highly activated one, which is now supporting attraction, adhesion and 

invasion of leukocytes37. Also, several molecules involved in cell proliferation and migration 

were found up-regulated, including MMP2, MMP9, urokinase-type plasminogen activator 

(uPA), focal adhesion kinase (FAK) and integrins (α5β1 and αvβ3)38. Moreover, after an 

arterial obstruction, the altered FSS induces at least two signaling pathways: (1) the 
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attraction, adhesion and invasion of monocytes that are required for structural remodeling 

and (2) the pathway that causes ECs and SMCs to enter the cell cycle, leading to 

proliferation. Thus, in response to altered FSS, NO and VEGF are induced and, together with 

calcium-activated ion channels, interfere with osmotic regulation of the endothelium38,39. 

This occurs along with monocyte adhesion, since the activated endothelium produces 

MCP1, leading to the recruitment of monocytes to the sites of proliferation40. After the 

initial monocyte-endothelium interaction, which is mediated by several selectins, the tight 

monocyte adhesion to the endothelium is triggered by macrophage-1 antigen (Mac1) and 

lymphocyte function-associated antigen (LFA). These integrins interact with their 

corresponding adhesion molecules (intercellular adhesion molecule 1 and 2 (ICAM1), 

(ICAM2) and vascular cell adhesion molecule 1 (VCAM1), (respectively) on the endothelial 

cell surface41. After adhesion, migration into deeper parts of the collateral wall and 

surrounding areas can be observed. During migration, monocytes should overcome 

barriers, like the internal elastic lamina and ECM. However, as monocytes are producers of 

proteases, such as MMPs and uPA, they enable the proteolytic degradation of these 

barriers and could therefore create a gap by which monocytes could invade the vascular 

wall. At the same time, these events may also generate a proliferation signal for SMC37. 

Furthermore, lymphocytes (natural killer family, CD4 and CD8 cells) also play a role in 

arteriogenesis. Studies from Stephen Epstein´s group showed that in mice with a genetic 

deficiency in the T-cell marker CD4, arteriogenesis was inhibited in the hindlimb ischemia 

model, but could be rescued by an injection of purified CD4 positive cells. Additionally, the 

lack of CD4 positive T-cells led to a reduced inflammatory response in the same model 

including a consistent reduction in the number of monocytes37. As mentioned before, 

remodeling from a small pre-existing arteriole to a large collateral artery is facilitated by a 

complex cascade of processes. The signaling cascade uses the mitogen activated protein 

kinases with activation of the RAS-ERK- and the Rho pathway41. ECs mitosis precedes that 

of SMCs by a few hours and growth factors are released from monocytes such as MMPs, u-

PA and fibroblast growth factor 2 (FGF2) during that time38. Also, degradation of 

extracellular structures leads to the release of additional matrix-bound growth factors. The 

increase in cell mitosis in SMCs occurs together with a morphological change: their 

transformation from a contractile into a proliferative/synthetic phenotype. Elastin is 

present in the elastic lamina, preventing SMCs proliferation, but its degradation products 
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stimulate SMCs proliferation41. Subsequently, SMCs migrate and rearrange accordingly to 

the increasing vessel lumen and wall thickness. The controlled destruction of the vascular 

scaffolding paves the way for the expansion and outward growth of collateral vessels. 

Moreover, apoptosis of SMCs may facilitate the renewal of the vascular wall38. Finally, 

remodeling enters in a maturation state when both elastic lamina and ECM components 

are rearranged. In this process, laminin and collagen IV are crucial since they promote the 

differentiation and inhibit the proliferation of SMCs37.   

 

4. Angiogenesis  

After the formation of a primitive vascular plexus during vasculogenesis, the growth, 

expansion and remodeling of primitive vessels into a mature vascular network (including 

arteries, veins, and capillaries) is initiated. This process, named angiogenesis, occurs by 

intussusception, in which interstitial tissue columns are inserted into the lumen of pre-

existing vessels, inducing partition of the vessel lumen, or by sprouting of new vessels from 

the ends and sides of the pre-existing ones17,42-44. 

The sprouting angiogenesis is facilitated by hypoxia, which regulates the expression of 

several genes involved in vessel formation, patterning and maturation, such as NOS, VEGF 

and ANGPT26. The existing vessels dilate and become leaky in response to NO and VEGF, 

respectively. At the same time, redistribution of intercellular adhesion molecules (platelet 

endothelial cell adhesion molecule 1(PECAM1), vascular endothelial cadherin (VE 

cadherin)) and alteration in cell membrane structure occur16. Consequently, the 

extracellular matrix ECM dissolves in response to activation of MMPs (MMP2, MMP3 and 

MMP9) and suppression of protease inhibitors. Degradation of ECM also results in the 

release of growth factors, including FGF2, VEGF and insulin-like growth factor, which 

otherwise remain stored within the matrix. As the physical barriers are dissolved, ECs can 

migrate to distant sites, through interactions between integrins (αvβ3 and α5β1) and the 

matrix proteins, and proliferate in response to VEGF and other endothelial mitogens 

(ANGPTs, FGFs and PDGF)6,16.  

The different steps of angiogenic process are explained in Figure 5. Briefly, the ECs, also 

known as “tip cells”, become selected to lead the tip in the presence of factors such as: 

VEGF receptors, NRPs and NOTCH ligands. The neighbors of the “tip cell” assume positions 
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as “stalk cells”, which divide to support sprout elongation and establish the lumen3,44,45. At 

this point, the vessel sprouting remodels into a highly organized vascular network of larger 

vessels ramifying into smaller ones160. Then, the maturation process begins, described as 

the stepwise transition from an actively growing vascular bed to a quiescent functional 

network. This process involves the suppression of endothelial proliferation and sprouting, 

and the stabilization of existing vascular tubes through the recruitment of mural cells. 

Pericytes establish direct cell-cell contact with ECs in capillaries and immature vessels, 

whereas SMCs cover large diameter vessels (arteries and veins) and are separated from ECs 

by a matrix1. During this process, the pericytes and SMCs contribute to the deposition of 

ECM. This is critical for normal vessel growth and maintenance by providing the solid 

scaffold through which new vessels may migrate and store growth factors and pro-enzymes 

involved in vessel development. Thus, the recruitment of these mural cells is crucial for the 

maturation and stability of the new vasculature44.  

The regulation of the angiogenic process involves at least four molecular pathways: (1) 

PDGF/platelet-derived growth factor receptor (PDGFR); (2) ANGPT1/Tie2; (3) Transforming 

growth factor β (TGFβ) and (4) Sphingosine 1 phosphatase receptor (S1PR) signaling. The 

PDGF/PDGFR signaling is an important regulator of this process. PDGFβ is secreted by ECs 

in response to VEGF, recruiting pericytes and SMC and allowing their proliferation and 

migration during vascular maturation6. Pdgf mutations leads to poorly covered vessels with 

excessive endothelial sprouting, microaneurysms, leakage and haemorrhaging1. 

Also, critical for vessel formation and stability are ANGPT1 and ANGPT2 and their Tie 

receptors. The Tie2 receptor is expressed in ECs and is stimulated by ANGPT1 and ANGPT2, 

expressed by mural cells and ECs, respectively1,46. ANGPT1 stabilizes nascent vessels and 

makes them leak-resistant through the communication between ECs and mural cells6. In 

agreement with this, mouse mutants for Tie2 or ANGPT1 have similar behaviors, presenting 

severe vascular defects, and are unable to recruit pericytes47. The role of ANGPT2 is 

dependent on the presence or absence of VEGF. When VEGF is present, ANGPT2 promotes 

blood vessel growth and sprouting; the absence of VEGF leads to endothelial cell death and 

vessel regression48,49. 

Additionally, TGFβ1 is also involved in the stabilization of immature vasculature. It is a 

multifunctional cytokine that promotes the maturation of vessels through the stimulation 

of SMC differentiation and ECM deposition, while inhibiting ECs proliferation and 
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migration. TGFβ1 is expressed in ECs and mural cells and can be either pro or anti-

angiogenic, depending on context and concentration 6. Loss of function of TGFβR2 in mice 

causes vessel fragility due to impaired mural cells development50. 

Also, S1PR signaling controls EC/mural cell interaction. Endothelial-derived S1P binds to G 

protein-coupled S1PRs and triggers cytoskeletal, adhesive and junctional changes, affecting 

cell migration, proliferation and survival. Disruption on S1PR1 or loss of both S1PR2 and 

S1PR3 in mice causes defective coverage of vascular SMCs50.  

In the end of the maturation process ECs acquire highly specialized characteristics to 

provide the functional needs within specific tissues and organs16. This process includes 

arterio-venous determination, formation of homotypic and heterotypic junctions and ECs 

differentiation to form organ-specific capillary structures6. 
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Figure 5 - Angiogenesis. (a) After stimulation with angiogenic factors, the quiescent vessel dilates 

and an EC tip cell is selected to ensure branch formation. Tip cell formation requires degradation of 

the basement membrane, pericyte detachment and loosening of endothelial cell junctions. 

Increased permeability permits extravasation of plasma proteins to deposit a provisional matrix 

layer, and proteases remodel the pre-existing interstitial matrix, all enabling cell migration. (b) Tip 

cells navigate in response to guidance signals and adhere to the ECM to migrate. Stalk cells behind 

the tip cell proliferate, elongate and form a lumen, and sprouts fuse to establish a perfused 

neovessel. Proliferating stalk cells attract pericytes and deposit basement membranes to become 

stabilized. (c) After fusion of neighboring branches, lumen formation allows perfusion of the 

neovessel, which resumes quiescence by the promotion of a phalanx phenotype, re-establishment 
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of junctions, deposition of basement membrane, maturation of pericytes and production of 

vascular maintenance signals. Adapted from reference45.  

 

4.1 Physiological Angiogenesis 

After birth, angiogenesis still contributes to organ growth, but once the new vessels are 

assembled, the ECs become notably resistant to exogenous factors and most blood vessels 

remain quiescent16,43. Accordingly, in adults and in physiological conditions, angiogenesis 

occurs only in specific situations, such as wound healing, regeneration of the endometrium 

during the menstrual cycle or in the placenta during pregnancy6,51. 

Quiescent ECs retain their remarkable ability to divide rapidly in response to a physiological 

stimulus, such as hypoxia, low pH or shear stress, and therefore influence the formation, 

maturation and remodeling of small and large vessels6,51. Thus, in physiological situations, 

it is reasonable to assume that molecules involved in vessel formation and maturation 

during embryonic development are also involved in the postnatal period, but their precise 

role is not yet known because most knockout mice die pre- or perinatally6. 

 

4.1.1 Angiogenic Regulators 

In multicellular organisms, the process of angiogenesis is regulated by a complex and tight 

balance between pro- and anti-angiogenic molecules43. Physiologically, the body controls 

angiogenesis through a series of “on” and “off” regulatory switches. The main “on” 

switches are known as angiogenesis growth factors and the main “off” switches are known 

as endogenous angiogenesis inhibitors. A selective list of the main stimulators and 

inhibitors that take part in the angiogenic process is shown in Table 1 and some of these 

factors will be briefly detailed below 52.  
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Table 1 - List of the main angiogenic stimulators and inhibitors. Adapted from reference52. 

Angiogenic Stimulators Angiogenic Inhibitors 

Angiogenin Angioarrestin 

Angiopoietin-1 Angiostatin 

Fibroblast growth factors Endostatin 

Granulocyte colony-stimulating factor (G-CSF) Fibronectin fragment 

Hepatocyte growth factor Heparinases 

Interleukin-8 Interferon alpha/ beta/gamma 

Placental growth factor Interferon inducible protein 

Platelet-derived endothelial cell growth factor Interleukin-12 

Platelet-derived growth factor-BB Metalloproteinase inhibitors 

Pleiotrophin Plasminogen activator inhibitor 

Progranulin Retinoids 

Transforming growth factor alpha and beta Thrombospondin-1 

Tumor necrosis factor-alpha Vasculostatin 

Vascular endothelial growth factor Vasostatin 

 

Vascular Endothelial Growth Factor 

VEGF family consist of six members: VEGFA, also called VEGF, VEGFB, VEGFC, VEGFD, PIGF 

and virus VEGF (VEGFE)53. VEGF was the first identified and the most studied of the VEGF 

family members54. VEGF is expressed in different tissues including brain, kidney, liver, 

spleen and by many different cell types55. Several in vitro studies have shown that VEGF 

stimulates microvascular EC proliferation, enhancing migration and inhibiting apoptosis. 

Additionally, VEGF induces the growth of new capillaries from preexisting vasculature. In 

vivo studies also showed that VEGF regulates vascular permeability, which is important for 

the initiation of angiogenesis56-59. VEGF causes vasodilatation by inducing endothelial nitric 

oxide synthase and thus increasing NO production60, and it also plays a crucial role in 

several angiogenic processes, namely wound healing, ovulation, maintenance of blood 

pressure, menstruation and pregnancy61. In humans, VEGF is expressed in almost every 

solid tumors as well as in some hematological malignances62. 
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Different growth factors and cytokines such as PDGF, tumor necrosis factor α (TNFα), TGFβ 

and interleukin 1β (IL1β) induce transcription of VEGF mRNA, thus VEGF may function as a 

mediator for indirect action of angiogenic factors53. VEGF levels can also be regulated by 

tissue oxygen tension, since exposure to hypoxia induces VEGF expression. In contrast, 

normoxia downregulates VEGF production and even causes regression of some newly 

formed blood vessels63. 

The expression of VEGF has been shown to be associated with significant steps in 

angiogenesis and physiological vasculogenesis. According to this, several in vivo studies 

demonstrate that, in mice, deletion of the VEGF gene leads to embryonic death, resulting 

in vascular defects and cardiovascular abnormalities64.There are currently six isoforms of 

VEGF resulting from alternative splicing of a single gene (VEGF121, VEGF145, VEGF165, 

VEGF183, VEGF189 and VEGF206). Some of these isoforms remain associated with cells or 

membranes, while others are extracellularly released. Despite this difference, all of them 

have identical biological activities65,66. 

Two high affinity binding sites for VEGF have been identified on vascular endothelium: 

VEGFR1 (Flt1) and VEGFR2 (KDR or Flk1). An additional member of this family, VEGFR3 (Flt4) 

is not a receptor for VEGF but binds VEGFC and VEGFD55. All VEGF receptors have seven 

immunoglobulin domains in their extracellular part and an intracellular tyrosine kinase 

domain65. Also, all VEGF receptors are expressed in high levels during embryogenesis, and 

in adults VEGFR1 and VEGFR2 are mainly expressed in the blood vascular system, whereas 

VEGFR3 is restricted to the lymphatic endothelium67. Knockout mice for VEGFR1 or VEGFR2 

are embryonically lethal, being the blood vessels completely absent, which suggest that 

both receptors are essential for normal development of the embryonic vasculature68,69. 

Neuropilin, another receptor for VEGF, was primarily identified as a receptor for members 

of the collapsing/semaphoring family on neuronal cells, but it is also expressed on ECs. 

Neuropilin is an isoform specific receptor that binds to VEGF165
65. 

VEGFR1 strongly interacts with VEGF, but this interaction plays a minor role in angiogenesis. 

However, interaction of VEGFR2 with VEGF is a major contributor to the mitogenic, 

chemotactic, angiogenic and increased permeability effects of VEGF70. Once VEGF binds to 

the extracellular domain of the receptor, after the dimerization and auto-phosphorylation 

of the intracellular receptor tyrosine kinases, a cascade of downstream proteins are 

activated54. 
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Due to the key role of VEGF in angiogenesis, the use of anti-VEGF drugs has been applied 

in many different fields of medicine, such as prevention of angiogenesis associated with 

tumors and induction of neovasculature in ischemic diseases3. 

 

Angiopoietins 

ANGPT family consists of four ligands: ANGPT1, 2, 3 and 4; and two tyrosine kinase 

receptors, TIE1 and TIE245. 

ANGs are paracrine growth factors that act as ligands for the TIE receptors, specifically on 

ECs, and are involved in the maintenance, growth and stabilization of the vessels71,72. The 

most important and well characterized ANGPTs that play a role in angiogenesis are ANGPT1 

and ANGPT2. Both ANGPT1 and ANGPT2 bind to TIE2 receptors, but only the binding of 

ANGPT1 results on signal transduction and regulation of blood vessel maturation55. Thus, 

the interaction between ANGPT1 and TIE2 receptor induces the remodeling and 

stabilization of blood vessels. ANGPT1 is expressed by mural and tumor cells, whereas 

ANGPT2 is released from angiogenic tip cells. In confluent endothelium, ANGPT1 induces 

the maintenance of quiescent endothelial cells through cell-cell junction. Also, ANGPT1 

stimulates mural coverage and basement membrane deposition, thereby promoting vessel 

tightness45. Studies have shown that knockout mice for ANGPT1 or TIE2 exhibit similar 

phenotypes, with prominent endocardial and myocardial defects. The primary vasculature 

of these mice develops normally, but the stabilization and remodeling of the vessels fails, 

leading to embryonic death65. On the other hand, overexpression of ANGPT1 in transgenic 

mice causes excessive hypervascularization, namely a greater number of blood vessels with 

large diameters73. Concerning ANGPT2, its role in angiogenesis is more complex. ANGPT2 

can act as a pro- or anti-angiogenic factor, dependent on co-stimulatory molecules, such as 

VEGF. At first, ANGPT2 was considered as a natural antagonist of ANGPT1, since it blocks 

ANGPT1-induced TIE2 autophosphorylation in ECs49. However, recent new studies suggest 

that in the presence of VEGF, ANGPT2 mediates an increase in the capillary diameter, 

induces migration and proliferation of ECs and stimulates sprouting of new blood vessels, 

while in its absence, ANGPT2 causes apoptosis of ECs and regression of blood vessels74. 

Despite the current difficulty to understand ANGPT2 activity, the selective inhibition of 

ANGPT2 may have clinical value. Several studies have shown ANGPT2 upregulation in some 

diseases that involve pathogenic angiogenesis including cancer, rheumatoid arthritis, 
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osteoarthritis and psoriasis75-77. Additionally, various agents that block either TIE2 or 

ANGPT2 are being evaluated in early-phase clinical trials45. Regarding TIE1 receptor, since 

no ligand has been identified, it may act as a negative regulator of TIE2, but its role remains 

undefined. 

 

Fibroblast Growth Factors 

FGFs are soluble growth factors that stimulate EC proliferation and migration, as well as 

production of collagenase and the plasminogen activator54. FGF family is known to contain 

at least 20 factors, numbered FGF1 to FGF20, and 4 different tyrosine kinase receptors 

(FGFR), numbered FGFR1 to FGFR4.  

The most studied forms are FGF1 (acid FGF) and FGF2 (basic FGF), which were among the 

first growth factors that were known to stimulate angiogenesis.  

They are both secreted by a wide range of cell types and bind to all four FGFR65. In addition, 

FGFs also bind, with high affinity, to heparin sulfate proteoglycans (HSPGs), which act as 

co-receptors. HSPGs are located on cell surface and within the ECM, modulating the effects 

of FGF both in vitro and in vivo78,79. Heparin induces oligomerization of FGF2, which might 

be important for receptor dimerization and activation. FGFR activation will then trigger an 

intracellular signal cascade leading to multiple biological responses, including ECs 

proliferation, migration, differentiation, protease production and angiogenesis55. 

FGFs stimulate angiogenesis directly by activating their receptors on ECs or indirectly by 

inducing the release of angiogenic factors from other cell types. For instance, in the heart, 

FGF-mediated signaling induces vessel growth by stimulating the release of hedgehog, 

ANGPT2 and VEGFB.  

FGF1 and FGF2 knockout mice develop and grow normally without any evident pathological 

phenotype, being their organogenesis and life span unaffected. However, mice lacking 

FGF2 show neuronal defects and exhibit delays in wound healing, suggesting that FGF2 

might regulate sprouting of new sites of tissue repair80,81. Additionally, tube formation 

stimulated by VEGF is totally abolished when neutralizing antibodies against FGF2 are 

added to the system, showing that in this particular setting, VEGF requires the presence of 

FGF2 to promote vessel assembly82. FGF signaling also contributes to the proliferation of 

tumor cells, either by an autocrine or paracrine mechanism82,83. 
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Moreover, disruption of the genes encoding FGFR1 or FGFR2 leads to embryonic death, 

which makes impossible to define the role of these receptors in the later stages of 

development and in angiogenesis84,85. 

 

Transforming Growth Factor β  

TGFβs are a family of homodimeric cytokines that include TGFβ1, 2, 3, 4 and 5. TGFβ binds 

to two different types of serine-threonine kinase receptors, known as type I (TGFβR1) and 

type II (TGFβR2). TGFβR1 and TGFβR2 are interdependent, meaning that TGFβR1 requires 

TGFβR2 to bind to TGFβ and TGFβR2 requires TGFβR1 for signaling. ECs also present 

another specific type III (co)receptor, endoglin, which is upregulated during angiogenesis. 

TGFβ helps to control many different cellular processes, including angiogenesis3. TGFβs are 

normally found in the ECM of many different cells types. In the microvasculature both EC 

and pericytes express TGFβRs and produce TGFβ, suggesting an auto- or paracrine loop for 

TGFβ86.  

An interesting property of TGFβ is that it is secreted as inactive precursors which need to 

become activated87. In vitro studies have shown their activation by heat, acidification and 

proteases88. Additionally, in vivo, activation of TGFβ by proteases could be a regulatory 

mechanism for TGFβ-mediated activity89. 

To date, both pro- and anti-angiogenic properties have been attributed to TGFβ, depending 

on the context. At low doses (<0.5 ng/ml), TGFβ helps to initiate the angiogenic switch by 

upregulating angiogenic factors and proteinases. However, at high doses, it inhibits EC 

growth, promotes basement membrane reformation and stimulates SMCs differentiation 

and recruitment71. 

Additionally, TGFβ reduces the degradation of the perivascular ECM by the induction of 

protease inhibitors and the reduction of proteases. On the other hand, TGFβ stimulates 

angiogenesis in vivo, leading to the formation of highly vascular granulation tissue two or 

three days after mice being subcutaneously injected90. 

Since TGFβ is not an EC mitogen, angiogenesis is indirectly stimulated through the 

recruitment of inflammatory cells, which in turn release pro-angiogenic cytokines65. TGFβ 

is highly chemotactic for monocytes, which under the influence of TGFβ are able to 

infiltrate a wound site and produce angiogenic factors91. However, a direct action is also 

possible through the binding of the two types of TGFβR1: ALK1 and ALK5 (activin receptor‐
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like kinase 1 and 5, respectively) and consequent activation of pro-angiogenic or 

maturation-specific genes92. 

Genetic studies in mice have shown that the loss of TGFβ leads to leaky vessels and lack of 

their structural integrity, leading to premature death93. TGFβ1 inactivation is lethal due to 

defects in the hematopoietic system and yolk sac vasculature94. 

TGFβ is also associated with pathological conditions, such as human hereditary 

hemorrhagic telangiectasia, which is characterized by vascular malformations. Genetic 

studies have shown that this disorder is caused by mutations in the genes that encode 

endoglin or ALK1 and ALK5, receptors of the TGFβ family. Studies in mice have shown that 

the loss of the TGFβRs results in arteriovenous malformations.  

 

Platelet-derived growth factor 

PDGF comprises four members: PDGF A, B, C and D, that exist at homo- or heterodimeric 

versions of PDGF. PDGF receptors (PDGFRs) are composed of two single α and β subunits 

and occur also as a homo- or heterodimers. PDGF was initially isolated from platelets, but 

fibroblasts, ECs, keratinocytes and various other cell types also express PDGF under certain 

conditions65. PDGF is an important signaling molecule with several different roles in 

angiogenesis. In ECs, PDGFRβ interacts with PDGFBB, and when the receptors are 

stimulated in vitro, the DNA synthesis increases and the angiogenic sprouting occurs3,54. 

Furthermore, PDGFB is mitogenic for SMCs and pericytes and induces the expression of 

VEGF and VEGFR2 in cardiac ECs95,96. Additionally, pericyte proliferation and migration in a 

growing blood vessel is enhanced by interaction with PDGF, although the initial recruitment 

of pericytes to growing vessels is PDGF independent97. The interaction of PDGF with its 

receptor on pericytes increases the expression of ANGPT1, which leads to a signaling 

cascade that facilitates the interaction between pericytes and ECs. This interaction is 

important to maintain the stability of newly formed capillary walls98. 

Knockout mice for the genes encoding PDGFB and PDGFRβ die prenatally from edema and 

hemorrhage caused by the absence of vascular mural cells. The large increase in the 

permeability of blood vessels found in mice deficient for PDGFB and PDGFRβ indicates that 

PDGF is essential for vessel stabilization99. Furthermore, PDGF appears to play an important 

role in pericyte recruitment in tumors. The inhibition of PGDFR reduces tumor growth by 

causing pericyte detachment, what leads to immature vessels prone to regression. 
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Paradoxically, others studies have shown that the overexpression of PDGFB in mice inhibits 

tumor growth by promoting pericyte recruitment and inducing EC growth arrest45. 

 

Hepatocyte Growth Factor 

HGF is mapped to an heavy α chain and a light β chain100. The inactive pre-pro-HGF 

becomes active after two cleavage processes in the ECM101. 

HGF is a multifunctional cytokine produced by cells of mesenchymal origin; however, HGF 

was purified for the first time from rat platelets and it was described as a potent mitogenic 

factor for mature rat hepatocytes in vitro102-105. 

Additionally, HGF binds exclusively to the product of the cMET proto-oncogene106-108. The 

MET receptor comprises a ligand-binding extracellular domain, a transmembrane region 

and a cytoplasmic domain with tyrosine kinase activity109. HGF/MET binding promotes its 

dimerization and autophosphorylation of tyrosine residues, and the downstream signaling 

pathways generate diverse cellular responses, such as proliferation, survival, motility, 

invasion and stimulation of angiogenesis110,111. In the angiogenic context, the ligand–

receptor interaction stimulates ECs to proliferate and migrate in vitro, induces blood vessel 

formation in vivo, and induces VEGF expression in human tumor cells112,113. Furthermore, 

the expression of HGF can be upregulated by several growth factors, cytokines and 

prostaglandins. 

Several studies involving disruption of HGF or MET showed that these knockouts are 

embryonically lethal, with impaired development in the liver and placenta, indicating that 

HGF signals are essential for organ development114,115. On the other hand, overexpression 

of the receptor has been implicated in different types of tumors116. Thus, the significant 

role of the HGF/MET pathway in diverse biological and physiological processes, such as 

organogenesis, morphogenesis, tissue regeneration and carcinogenesis is evident. 

Moreover, the one-to-one ligand-receptor relationship makes the HGF/MET axis an 

attractive target for drug development, either by activation or inhibition of this pathway100. 

 

Endostatin 

Endostatin is an anti-angiogenic 20-kDa internal fragment of the C-terminal of collagen 

XVIII117. Collagen XVIII is a component of basement membranes with structural properties 
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of both a collagen and a protheoglycan. Proteolytic cleavage within its C-terminal domain 

releases an endostatin fragment118. It was originally isolated from a 

hemangioendothelioma cell line for its ability to inhibit proliferation119. Endostatin 

interacts with many different cell surface proteins, including integrins and glypicans, and 

these interactions result in altered ECs adhesion and migration. In vitro studies have shown 

inhibition of ECs migration, proliferation and tube formation by endostatin3. Endostatin 

reduces ECs proliferation by arresting the EC cell cycle, through the downregulation of 

cyclin-D1 promotor transcriptional activity. Moreover, inhibition of angiogenesis via 

endostatin in vivo leads to a reduction of tumor growth, which is partially accomplished by 

the reduction of VEGF expression. Endostatin has the ability to block existing VEGF from 

interacting with its receptor VEGFR2117. Recent studies have also shown that endostatin 

disturbs the survival/death balance via activation of the pro-apoptotic pathway through 

the induction of caspase-9 activation3. 

Physiological function of collagen XVIII/endostatin has recently been uncovered through 

the identification of inactivating mutations in the human collagen XVIII/endostatin gene 

(COLI18A1) in patients with Knobloch syndrome, characterized by age-dependent 

vitreoretinal degeneration and occipital encephalocele. The essential role of collagen 

XVIII/endostatin in ocular development and in the maintenance of the visual function is 

further demonstrated in the ocular abnormities seen in mice lacking collagen 

XVIII/endostatin gene118. Furthermore, studies in mice lacking collagen XVIII and its 

proteolytically derived product endostatin show delayed regression of blood vessels in the 

vitreous along the surface of the retina vessels. These findings suggest that collagen 

XVIII/endostatin is critical for normal blood vessel formation in the eye120. 

 

Thrombospondin-1  

Thrombospondin1 (TSP1), a 142 kDa secreted glycoprotein, initially isolated from human 

platelets, was the first endogenous protein with anti-angiogenic properties to be 

identified121,122. TSP1, a member of a large family of matricellular proteins, plays an 

important role in genesis and remodelling of multiple tissues including cartilage and 

vasculature123. TSP1 is found in the extra- and pericellular matrix and regulate the 

extracellular milieu through a direct interaction with extracellular matrix proteins124. TSP1 

modulates expression of several genes involved in angiogenesis including TGFβ, VEGF and 
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its receptors, plasminogen activator, MMPs and CD36, inducing a quiescent state and a 

differentiated phenotype of vascular ECs125. TSP1 promotes the migration of SMCs but 

suppresses chemotaxis and motility of the ECs, stimulates matrix assembly through binding 

to other matrix proteins, such as fibronectin and collagen and regulates matrix digestion 

by MMPs and plasmin. Finally, TSP1 stimulates apoptosis of ECs but promotes the survival 

of SMCs123. The interaction of TSP1 with its receptor CD36 inhibits cell migration and 

induces apoptosis through down-regulation of Bcl2 and activation of caspases and the JNK-

MAP kinase pathway125. Animal studies shown that TSP1 inhibits EC migration and 

neovascularization in the rat cornea122. Also, the expression of TSP1 in various tumor cell 

lines prevents their aggressive growth and neovascularization when implanted in mice125. 

Moreover, in a context of retinal vasculature and neovascularization, studies with TSP1 

deficient mice showed an increased retinal vascular density and a reduced number of 

apoptotic nuclei during remodelling and maturation in TSP1 deficient mice when compared 

to the normal one125. 

 

Tumstatin 

Tumstatin is a 28 kDa cleaved fragment of type IV collagen, a basement membrane collagen 

found in the kidney, lung and other vascular basement membranes126. 

Tumstatin influences the sprouting and proliferation of ECs by interacting with their specific 

receptor and thus resulting in changes in the intracellular signaling and inducing anti-

angiogenic effects. Tumstatin inhibits angiogenesis by inducing apoptosis and inhibits EC 

proliferation through its binding to αvβ3 integrin124.  

Mice model studies have shown that administration of exogenous tumstatin inhibits tumor 

growth. However, tumstatin deficient mice had a much greater micro-vessel density near 

implanted murine tumors and a 300% increase in overall tumor growth3. Moreover, mice 

with a genetic deletion on tumstatin gene showed accelerated tumor growth associated 

with enhanced pathological angiogenesis, while angiogenesis associated with development 

and tissue repair were unaffected127. Animal studies determining the viability of tumstatin 

as an anti-angiogenic drug showed a reduction of over 90% in tumor size when compared 

with the controls3. 

 



CHAPTER I 

25 

4.2. Pathological Angiogenesis 

In physiological conditions, the angiogenic balance is sustained by the activity of 

stimulators (pro-angiogenic factors) and inhibitors (anti-angiogenic factors). However, the 

loss of this balance becomes a critical factor in certain pathological conditions such as 

cancer, atherosclerosis, ischemia and diabetic retinopathy51. When more angiogenic 

growth factors than angiogenesis inhibitors are produced, the balance is tipped in favor of 

blood vessel growth, implicated in diseases like cancer51,128. Tumor vessels are 

architecturally different from normal ones, having an abnormal structure and function with 

apparently chaotic organization16. Vessels vary from abnormally wide, irregular and 

tortuous serpentine-like shape to thin channels with small or compressed lumens129. Every 

layer of the tumor vessel wall is abnormal: ECs form an imperfect lining, with wide junctions 

at some locations and stacked layers of ECs at others. ECs may contain many fenestrations, 

vesicle vacuolar organelles or both. The expression of adhesion molecules is also more 

heterogeneous than in normal tissue. Because of the abnormal organization and structure 

of tumor vessels, the blood flow is chaotic and the vessels are leaky. The resulting irregular 

perfusion impairs oxygen, nutrient and drug delivery6,50. 

On the other hand, when angiogenesis inhibitors are more produced than angiogenic 

growth factors, angiogenesis does not occur, resulting in ECs dysfunction, vessel 

malformation or regression and situations like ischemia or atherosclerosis may take 

place51,128.  

Both situations lead to an uncontrolled angiogenesis process. In this work, we will give 

especial attention to critical limb ischemia (CLI).  

 

4.2.1. Critical Limb Ischemia 

CLI is the most severe manifestation of peripheral arterial disease (PAD)130. PAD can be 

anatomically defined as an obstructive arterial disease or functionally as an arterial 

narrowing, causing a mismatch between oxygen supply and demand131. Thus, PAD is a 

medical condition that involves an obstruction in arteries that provide blood flow to the 

arms or legs, due to atherosclerosis132,133. CLI patients typically present chronic ischemic 

rest pain or ischemic skin lesions, either ulcers or gangrene and this condition is estimated 

to develop in 500 to 1000 individual per million per year134,135. Almost 50% of patients with 
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CLI have diabetes, which is a metabolic disorder of multifactorial etiology. Diabetes is 

characterized by chronic hyperglycemia and changes in the metabolism of carbohydrates, 

lipids and proteins, resulting in relative to absolute impairment in insulin secretion and/or 

reduction in its biological activity136. 

Patients with CLI have high mortality rates because the atherosclerotic disease is a systemic 

disease that does not localize to an isolated vessel segment. So, CLI is a chronic and complex 

process that affects the macrovascular and microvascular systems, as well as surrounding 

tissues137. This usually results from the presence of multilevel occlusive disease or occlusion 

of critical collaterals134. Additionally, CLI leads to alterations in structure and function of 

ECs. This endothelial dysfunction leads to micro thrombosis within the capillaries and 

exacerbates edema formation in their extremity. Furthermore, endothelial trauma results 

in increased free radical production, inappropriate platelet activation, and leukocyte 

adhesion, all of which lead to micro thrombi formation137. Capillary microscopy has shown 

initial tissue edema and pericapillary hemorrhage, followed by a reduction in the number 

of perfused capillaries, resulting in ischemic areas134. Once the diagnosis is confirmed, the 

goals for treating CLI are to relieve ischemic pain, heal ischemic ulcers and prevent limb 

loss. For that, it is crucial to control the risk factors such as hypertension, diabetes, 

dyslipidemia and smoking, thereby changing the life style and prolonging the survival of the 

patient137,138. Revascularization of ischemic areas may be the solution, but important issues 

must be considered, including the presence of comorbidity and arterial anatomy. It is 

mandatory to perform a risk-benefit analysis to determine the optimal therapy. A 

significant improvement in blood flow may diminish the symptoms of rest pain, but 

pulsatile flow to the foot is generally necessary for the treatment of ischemic ulcers or 

gangrene134,137. In patients not eligible for arterial reconstruction, pharmacotherapy using 

antiplatelet agents and vasodilators are the only option138. In these cases, prostanoids are 

the only vasoactive drugs with proven efficacy. Most studies have found that parenteral 

administration of either prostaglandin E1 or Iloprost reduces pain, ulcer size, and/or the 

need for amputation. However, amputation continues to be the recommended solution to 

the disabling symptoms, despite its associated morbidity and mortality rates. Only 50% of 

patients who are not candidates for revascularization will be alive without a major 

amputation one year after the onset of CLI. Furthermore, one-third of amputated patients 

die within one year, one-third achieve partial autonomy and only one-third obtain 
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complete autonomy134. Many clinical studies are being carried on with the goal of 

increasing or stimulating angiogenesis in patients with PAD or CLI137. 

 

5. Pro‐angiogenic therapy  

Pro-angiogenic therapy is introduced as a novel strategy for the treatment of vascular 

insufficiency139. There are three major disorders for which pro-angiogenesis therapy is 

clinically indicated: chronic wound, CLI and ischemic heart disease52. 

To successfully apply it, several conditions should be met: (1) newly formed blood vessels 

must be functional and supply the ischemic region with oxygenated blood; (2) the 

functional blood vessels must remain stable; and (3) the neovascularization in ischemic 

tissue should be tightly regulated to attain maximum efficiency. Thus, the aim of pro-

angiogenic therapy is to deliver highly effective angiogenic factors to the ischemic region, 

in order to increase the perfusion and function of an organ or tissue140. 

Several approaches have been considered to increase angiogenesis, including the 

evaluation of different angiogenic growth factors, of different treatment modalities and 

routes of administration (recombinant protein versus gene transfer) and of cellular 

techniques141. 

 

5.1. Local administration of pro-angiogenic growth factors 

Angiogenic growth factors have the ability to increase collateral vessels and augment tissue 

perfusion and oxygenation, limiting ischemic lesions in a variety of animal models of 

coronary or limb ischaemia142. The beneficial effects of growth factors in animal ischemic 

models led to a great expectation of its use for the treatment of CLI130. During the past 

decade, numerous clinical trials have been encouraged in a context of therapeutic 

angiogenesis and despite claims of success in an early state, clinical trials failed to 

conclusively show a clinical benefit143,144. VEFG family are among the most powerful growth 

factors that modulate vascular biology and have received much attention regarding their 

potential therapeutic effect in CLI. Others angiogenic growth factors, like members of the 

HGF, FGF, PDGF or TGFβ are also under study131,135,137,138,144-146. Unfortunately, the results 

have been quite disappointing and numerous reasons have been pointed out to explain 

this130,145. 
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Part of this failure can be attributed to the lack of efficiency of the delivery procedure. For 

example, naked DNA is poorly taken-up, but different types of DNA vector have been 

successfully used to increase the efficiency of gene transfer. However, even the best 

methods of gene transfer still encounter significant problems to achieve effective 

transfection rates that could result in clinically significant levels of protein production141. 

Another problem can be dose-response: low doses for longer-term administration have 

shown a better prognosis with fewer side effects, when compared with higher doses147. 

Moreover, blood vessel growth is a process too complex to be stimulated effectively by the 

administration of a single angiogenic cytokine. So, combining factors that are pro-

angiogenic, such as VEGF or FGF2, with pro-maturation factors, such as ANGPT1 or PDGFBB, 

that mediate pericytes recruitment, could prevent hyperpermeability and also stabilize the 

nascent vasculature140. Additionally, potential patient-related issues, such as the existence 

of co-morbidities, the use of other medications, circulation of angiogenic inhibitors and lack 

of target receptor expression in target tissues could contribute to the ineffective response 

to angiogenic stimulation148. Alternatively, the increase of cellular recruitment with the 

induction of local production by a cocktail of growth factors has been explored. Thus, in 

vitro studies have shown that the administration of MCP1, which increases the recruitment 

of monocytes to ischemic tissue, improves collateral flow in a rabbit model of hindlimb 

ischemia141.  

 

5.2 Cell-based therapeutic strategy 

An alternative strategy to achieve angiogenesis is through cell therapy, in which 

transplanted cells can be integrated into the neovasculature of the ischemic tissue to 

increase its density and perfusion145. Moreover, transplanted cells can secrete multiple 

endogenous growth factors, meaning that these cells will induce vascular growth in a 

paracrine manner148. The potential of EPCs therapy in hindlimb ischemia disease is 

currently being extensively studied149. In the process of neovascularization, EPCs can 

differentiate into ECs. Thus, EPCs from bone marrow or peripheral blood are expanded and 

concentrated ex vivo and then re-administrated into the ischemic region. This approach 

accelerates the process of neovascularization and could be an alternative to angiogenic 

factors140,142. The transplantation of EPCs significantly improved blood flow recovery and 

capillary density in several animal models of hindlimb ischemia33. Moreover, studies from 
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Asahara at al showed in vivo mobilization and incorporation of autologous EPCs application 

into sites of tissue ischemia and neovascularization in a rabbit model of hindlimb 

ischemia139,150. Also, EPCs transplantation induces blood flow recovery in the ischemic 

hindlimbs of both diabetic mice and rats, suggesting that EPC-mediated neovascularization 

can still occur under disease conditions33. These encouraging results from preclinical 

studies have rapidly led to several clinical trials, in which bone marrow-derived 

mononuclear cells (BM-MNCs) were administrated to patients with CLI151. Moreover, 

recent evidences indicate that BM-MNCs promote collateral vessel formation in patient 

with CLI144. A variety of cell types has been studied in cell therapy, including unselected 

BM-MNC or peripheral blood-derived mononuclear cells (PB-MNCs), which comprise a 

heterogeneous mix of blood cells and nonhematopoietic stromal cells (mesenchymal stem 

cells (MSCs) and EPCs) and selected EPCs isolated and purified from BM-MNCs or PB-

MNCs145,149. 

The first report on the use of BM-MNC in limb ischemia was the Therapeutic Angiogenesis 

Using Cell Transplantation (TACT) study, in which an intramuscular injection of autologous 

BM-MNC significantly improved the leg pain scale, ulcer size and pain-free walking 

distance, for at least 2 years. Also, a 3 years’ follow-up assessment showed significantly 

lower amputation rates144,149. In the last decade, several trials have been performed, 

indicating that the use of BM-MNCs or PB-MNCs in cell therapy is a feasible, relatively safe 

and potentially effective therapeutic strategy for CLI patients144,152.  

Also, a randomized controlled trial comparing BM-MNCs and bone marrow-derived 

mesenchymal stem cells (BM-MSCs) demonstrated a significant improvement in pain-free 

walking time in both groups after 6 months. Additionally, the patients administrated with 

BM-MSC had significantly greater collateral blood vessel scores than patients administrated 

with BM-MNCs153. Others cell types, such as adipose-derived regenerative cells, are 

currently being explored. Clinical studies using these cells are now required to determine 

whether these cells provide advantages for CLI treatment145. However, more clinical trials 

are needed to clarify the still open issues, including the selection of optimal cell type, 

isolation method, cell number, route of administration and paracrine stimulation 

mechanisms151. 

Particularly for CLI, it is disappointing that after extensive preclinical investigation and two 

decades of clinical trials of angiogenic or cell therapies, none has been approved.  
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5.3 The use of ionizing radiation as a novel approach 

Ionizing radiation is a type of energy released by atoms that travels in the form of 

electromagnetic waves (gamma or X-rays) or particles (electrons, neutrons, beta or alpha 

particles). Exposure to ionizing radiation comes mainly in the form of natural background 

radiation (from the earth, cosmic rays and the radioactivity naturally contained in the 

human body), but also from human-made sources, ranging from nuclear power generation 

to medical uses of radiation for diagnosis or treatment, prominently X-rays154.  

Radiotherapy is the treatment of diseases by using ionizing radiation. It is a widely applied 

and highly effective therapeutic modality for the majority of the solid malignant neoplasms, 

being applied alone or associated with chemotherapy and/or surgery155. It is classically 

delivered in fractionated schemes of typically of 1.8 to 2.0 Gy/daily dose, repeated until a 

potentially curative tumor specific dose has accumulated. 

In addition to treatment of malignant diseases, ionizing radiation therapy can also be used 

for successful treatment of benign or non-malignant conditions, namely a variety of 

inflammatory and painful joint disease (such as heel spurs, osteoarthritis, tendonitis)156. 

Several studies demonstrate that ionizing radiation can differently modulate the 

inflammatory process. For instance, low-dose ionizing radiation (LDIR) (<1 Gy) attenuates 

a pre-existing inflammation, while doses exceeding 1 Gy may act as an initiator of the 

inflammatory process157. It was also demonstrated that ionizing radiation can attenuate 

the pathology of autoimmune diseases in animal models. In a mice model of rheumatoid 

arthritis, a suppression of IL6 and IL7 production and up-regulation of regulatory T cells was 

demonstrated after repeated irradiation with 0.5 Gy. Studies using a mice model of 

multiple sclerosis showed suppression of pro-inflammatory cytokines, reduction of CD8+ T 

cells and induction of regulatory T cells after exposure to 0.5 Gy once per week during 4 

weeks156. 

In a scenario of hindlimb ischemia, Heissig at al revealed that doses of ionizing radiation 

between 2 and 10 Gy increases vasculogenesis in ischemic tissues158. This study shows that 

increased recruitment and activation of mast cells following ionizing radiation exposure 

alters the ischemic microenviroment and promotes vascular regeneration in an ischemic 

model. Therefore, these data showed a novel strategy of neovascularization and suggest 

another therapeutic use for ionizing radiation. Moreover, Thanik at al showed that a single 

dose of 5 Gy delivered to an ischemic full-thickness cutaneous flap improves vascularity in 
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two ways: (1) through upregulation of HIF1, leading to increased angiogenic and 

vasculogenic pathways and (2) by direct upregulation of MMP9, which mobilizes EPCs from 

bone marrow into the peripheral circulation159. This study suggests that ionizing radiation 

creates a stimulus for systemic response, leading to pro-angiogenic effects.  

Furthermore, in vitro studies from our research group demonstrated that LDIR, lower than 

0.8 Gy, enhances the migration of lung microvascular endothelial cells (HMVEC-L), without 

affecting their proliferation or survival. LDIR-induced endothelium activation occurs 

through the phosphorylating VEGFR2, which is a critical player in the angiogenic process. 

Using a zebrafish model, our group also showed that LDIR accelerates vessel formation by 

inducing angiogenic sprouting in embryos and increasing vessel density in adults. This 

knowledge was extended to different mouse models, where LDIR was found to promote 

angiogenesis and accelerate tumor growth and metastasis160. 

Overall, the results of these investigations may help to support the use of ionizing radiation, 

particularly LDIR, as an option for the treatment of ischemic diseases, namely in a setting 

of CLI156. 
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Aims 

Lower limb ischemia is a major health problem. Critical limb ischemia (CLI) is the term used 

for patients with chronic ischemic rest pain, ulcers, or gangrene attributed to inadequate 

blood flow or arterial occlusive disease. Because of the absence of effective treatment in 

the advanced stages of disease, amputation is undertaken, even though it is associated 

with morbidity and mortality. Therefore, the need for alternative treatment strategies in 

CLI patients is compelling and therapeutic angiogenesis is a promising tool to treat these 

patients. Recently, our lab found that LDIR, lower or equal to 0.8 Gy, activates VEGFR2, 

induces the production of VEGF in hypoxia and promotes angiogenesis in vivo.  

The overall goal of the work presented in this thesis is to study the effects of LDIR on 

neovascularization. For that, a mouse model of hindlimb ischemia was developed using 

C57BL/6 female mice. The major objectives of this thesis are:  

1) to identify the cellular and molecular mechanisms by which LDIR is able to 

promote therapeutic angiogenesis;  

2) to evaluate if LDIR promotes postnatal vascularization by augmenting the 

systemic circulation of EPCs and/or by homing and incorporation into sites of 

neovascularization in ischemic tissues;  

3) to demonstrate that LDIR promotes neovascularization in the setting of 

experimentally induced diabetic mice.  

 

The first two aims will be addressed in Chapter III. The last aim will be addressed in Chapter 

IV. Several cellular and molecular techniques, namely RT-PCR, immunohistochemistry, 

immunofluorescence, flow cytometry, ELISA, laser capture microdissection and 

diaphonization were used along these chapters. 

 

In this thesis, we propose an innovative and non-invasive strategy to induce therapeutic 

neovascularization in a mouse model of hindlimb ischemia. LDIR may therefore have a 

clinical significant impact in the treatment of PAD.  
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Abstract  

Aims We have previously shown that low-dose ionizing radiation (LDIR) induces 

angiogenesis but there is no evidence that it induces neovascularization in the setting of 

peripheral arterial disease. Here, we investigated the use of LDIR as an innovative and non-

invasive strategy to stimulate therapeutic neovascularization using a model of 

experimentally induced hindlimb ischemia (HLI). 

Methods and results After surgical induction of unilateral HLI, both hindlimbs of female 

C57BL/6 mice were sham-irradiated or irradiated with four daily fractions of 0.3 Gy, in 

consecutive days and allowed to recovered. We demonstrate that LDIR, significantly 

improved blood perfusion in the murine ischemic limb by stimulating neovascularization, 

as assessed by laser Doppler flow, capillary density and collateral vessel formation. LDIR 

significantly increased the circulating levels of VEGF, PlGF and G-CSF, as well as the number 

of circulating endothelial progenitor cells (EPCs) mediating their incorporation to ischemic 

muscles. These effects were dependent upon LDIR exposition on the ischemic niche (thigh 

and shank regions). In irradiated ischemic muscles, these effects were independent of the 

recruitment of monocytes and macrophages. Importantly, LDIR induced a durable and 

simultaneous up-regulation of a repertoire of pro-angiogenic factors and their receptors in 

endothelial cells (ECs), as evident in ECs isolated from the irradiated gastrocnemius muscles 

by laser capture microdissection. This specific mechanism was mediated via vascular 

endothelial growth factor (VEGF) receptor signaling, since VEGF receptor inhibition 

abrogated the LDIR-mediated gene up-regulation and impeded the increase in capillary 

density. Finally, the vasculature in an irradiated non-ischemic bed was not affected and 

after 52-wk of LDIR exposure no differences in the incidence of morbidity and mortality 

were seen.  

Conclusions These findings disclose an innovative, non-invasive strategy to induce 

therapeutic neovascularization in a mouse model of hindlimb ischemia, emerging as a novel 

approach in the treatment of critical limb ischemia patients.   
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Introduction 

Critical limb ischemia (CLI) is the end stage of peripheral arterial disease, and severe 

obstruction of blood flow to the affected extremity results in ischemic rest pain, ulcers or 

gangrene. Surgical revascularization remains the cornerstone of therapy for limb salvage 

but ~30% of CLI patients require amputation in the first year, procedure associated with 

high morbidity and mortality. Therapeutic angiogenesis became a promising treatment for 

limb preservation through the revascularization of ischemic tissues by local administration 

of pro-angiogenic growth factors 1-3. Several clinical trials showed that therapeutic 

angiogenesis could be extended to CLI patients 4. However, the initial enthusiasm was 

tempered by the less successful more recent, randomized and placebo-controlled studies 

with larger numbers of patients 4. Several factors could contribute to this: (i) formation of 

a functional vascular network requires the concurrent use of multiple angiogenic factors, 

and not a monotherapy-based approach; (ii) instability of currently used factors to achieve 

long-term benefits; and (iii) dysfunction of endothelial cells (ECs) that may not respond 5, 6. 

To solve this, cell-based therapeutic strategies were developed. Although clinical trials 

showed that autologous bone marrow-derived mononuclear cells, including endothelial 

progenitor cells (EPCs), increased collateral vessel formation and had clinical benefits 4, 

there are still major challenges that include determination of optimal cell phenotype, 

preparation protocols, dosing, route and frequency of administration. Moreover, 

endothelial dysfunction is associated with a scarce viable and functional EPC population 7.   

We previously showed that low-dose ionizing radiation (LDIR) (< 0.8 Gy) induces a pro-

angiogenic phenotype in ECs in vitro, and promote angiogenesis in vivo during regeneration 

8. Herein we aimed at testing an innovative non-invasive strategy, using LDIR to induce 

therapeutic neovascularization in CLI. Using a model of experimentally induced hindlimb 

ischemia (HLI), we show that LDIR improves limb reperfusion by enhancing collateral 

formation through EPC recruitment to sites of arteriogenesis. The effects of LDIR depend 

on exposure of the ischemic niche, but not on the local recruitment of myeloid cells. 

Moreover, LDIR induces capillary density in the gastrocnemius muscle by simultaneous 

activation of a repertoire of pro-angiogenic factors in a mechanism dependent of the 

vascular endothelial growth factor (VEGF) receptor signaling. No effects on resting 

vasculature were observed, disclosing the possibility of using LDIR as a non-invasive and 

effective therapeutic tool in lower limb vascular insufficiency. 



CHAPTER III 

55 

Methods 

Expanded method descriptions are available in Supplementary material online.  

Study Approval 

All animal procedures were performed according to Directive 2010/63/EU. The procedures 

were approved by the institutional Animal Welfare Body, licensed by DGAV, the Portuguese 

competent authority for animal protection (license number 023861/2013). 

In vitro experiments 

Lung human microvascular endothelial cells (HMEC-L) were purchased from Lonza and 

cultured according to manufacturer’s instructions. Cells were used at passages 4-6. 

Affymetrix GeneChip HuGene 1.0 ST Arrays were used. 

In vivo experiments 

Twenty–two-week-old female C57BL/6 mice, purchased from Charles River Laboratories, 

Spain, were used in all experiments. Nine-week-old female C57Bl/6-Tg(CAG-EGFP)10sb/J 

mice were used as a donor in bone marrow transplantation model (Instituto Gulbenkian de 

Ciência). Unilateral HLI was induced by surgery. Ionizing radiation was delivered using a 

linear accelerator operating at a dose rate of 500 MU/min. In most experiments the dose 

of 0.3 Gy was administered for four consecutive days, starting 12 hours after ischemia 

induction. Blood flow was assessed by laser Doppler perfusion imaging. Capillary and 

collateral densities were assessed after immunohistochemistry and diaphonization, 

respectively. Capillaries were microdissected using a Zeiss PALM MicroBeam Laser 

Microdissection System. The immune cell infiltrate and EPCs were assessed by FACS. In 

plasma, cytokines were assessed by ELISA. RNA extraction, cDNA synthesis and qRT-PCR 

was performed using the primers described in the supplementary material online. After 52 

weeks post-HLI, body weights were recorded, urine, blood and different organs collected 

and analyzed.   

Statistics 

Experimental results are shown as the mean ± SEM. Data were analyzed with SPSS 20.0 

software for windows. Statistical test employed are detailed described in figure legends. 

For GeneChip data analysis, probe sets showing differential expression were determined 

using one-way Analysis of Variance (ANOVA).  
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Results  

LDIR increases perfusion recovery and capillary and collateral densities 

We used a previously established mouse model of HLI 9 to assess the effect of LDIR in the 

restoration of blood flow to ischemic muscle. After surgical induction of unilateral HLI, both 

hindlimbs were sham-irradiated or irradiated with four daily fractions of 0.3 Gy, in 

consecutive days (as illustrated in Figure 1A) and perfusion was measured overtime. As 

shown in Figure 1B and quantified in Figure 1C, a dramatic reduction in blood flow was 

observed in the ischemic limb immediately after surgery, in comparison to the contralateral 

limb, and as expected, a gradual improvement in perfusion was seen overtime. Strikingly, 

a significant improvement in blood flow recovery was seen in the LDIR group, at days 15 

and 45 post-HLI, comparing with sham-irradiated mice. This demonstrates a benefit of LDIR 

in the setting of HLI.  

Lower numbers of fractions (1 x 0.3 Gy; 2 x 0.3 Gy or 3 x 0.3 Gy) or lower dose per fraction 

(4 x 0.1 Gy) were also evaluated but failed to show an effect (Supplementary material 

online, Figure S1A and B). We also evaluated the effect of the same fraction over 7 days (7 

x 0.3 Gy), but no benefit was seen comparing within the 4-day (Supplementary material 

online, Figure S1C). 

Subsequently, we quantified capillary density and collateral vessel development in 

hindlimb muscles, since blood flow recovery depends on both angiogenesis and 

arteriogenesis. Consistently, HLI increases capillary density per se, assessed through 

quantification of CD31-positive capillaries on histological sections of gastrocnemius muscle. 

Importantly, this effect is further amplified after LDIR exposure and a significant increase 

in capillary density is observed in irradiated ischemic muscle versus the sham-irradiated 

ischemic ones at days 15 and 45 post-HLI (Figure 1D and 1E). Of note, while the capillary 

density did not significantly increase between days 15 and 45 in the sham-irradiated 

ischemic muscles, a significant increase is observed for the irradiated ones.  

The collateral vessel density (CVD) was evaluated, at days 15 and 90 post-HLI. Mice were 

diaphonized and an equivalent ROI, corresponding to 20% of the limb area, was selected 

for CVD quantification (Figure 1F). A greater increase in CVD was observed for the ischemic 

limbs of LDIR mice, versus the sham-irradiated ones (Figure 1G). Noteworthy, no difference 

in these parameters was seen in non-ischemic muscle, LDIR and sham-irradiated, showing 

that irradiation per se does not have an effect on resting vasculature.  
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Figure 1. LDIR increases perfusion recovery, capillary and collateral densities. 

After surgical induction of unilateral HLI, both hindlimbs of C57BL/6 mice were sham-irradiated or 

irradiated with four daily fractions of 0.3 Gy, in consecutive days and allowed to recover. (A) A 

schematic illustration of our experimental design. After unilateral HLI (represented by a thick 

brown line), the flow to the ischemic limb is dramatically decreased (in blue). Both hindlimbs are 

irradiated (in orange) or sham-irradiated. (B) Representative laser Doppler flow images pre-HLI, and 

at days 0 (d0) and 15 (d15) post-HLI induction. (C) Quantitative evaluation of blood flow expressed 

as a ratio of ISC to NISC limb demonstrated significantly enhanced limb blood perfusion in irradiated 
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mice vs sham-irradiated ones both at days 15 (d15) and 45 (d45) post-HLI. Between-group changes 

were assessed by two-way repeated measurements ANOVA followed by Bonferroni post-hoc test 

(n=12 mice per group). Means ± SEM are shown. (D) Representative sections from sham-irradiated 

and irradiated ischemic gastrocnemius muscles at day 45 post-HLI. Capillaries and myocytes were 

identified by CD31 immunohistochemistry and haematoxylin, respectively. Scale bar, 150µm. (E) 

Quantitative analysis revealed increased capillary density (capillaries/myocyte) in irradiated 

ischemic gastrocnemius muscles compared to sham-irradiated ischemic ones at days 15 and 45 

post-HLI. Mixed ANOVA followed by Bonferroni post-hoc test was conducted with a within-subject 

factor of ISC and between-subject factors of day and irradiation (n=6 mice per group). (F) Illustrative 

images of selected regions of interest (ROI) for sham-irradiated and irradiated mice. ISC and NISC 

limbs at day 90 post-HLI are shown. Scale bar, 300µm. (G) Data are represented as the percentage 

of collateral vessel density (CVD) increase of the ISC limb relatively to the NISC one. At days 15 and 

90 post-HLI, irradiated mice presented significantly higher CVD increase (%) versus sham-irradiated 

mice. Two-way ANOVA was conducted followed by Bonferroni post-hoc test with a between-

subject factors of day and irradiation (n=6 mice per group). (E, G) Individual data and means ± SEM 

(in red) are shown. *P < 0.05; *** P < 0.001; ns, non-significant. HLI, hindlimb ischemia; ISC, 

ischemic; NISC, non-ischemic; Pre-HLI, before hindlimb ischemia. 

 

LDIR modulates the expression of endothelial genes involved in an angiogenic response 

in vitro 

Previously, using human lung microvascular ECs (HMVEC-L) we showed that 0.3 Gy leads to 

rapid phosphorylation of the VEGF receptor 2 (VEGFR2) 8, a key signal transduction 

mediator.in the angiogenic process. Consequently, signaling pathways such as PI3K/AKT 

and ERK/MAPK are activated and gene expression modulated. To assess the effect of LDIR 

on the EC gene expression profile, HMVEC-L were exposed to a single dose of 0.3 Gy, RNA 

was extracted at 4 hours post-LDIR and a global gene expression analysis was performed; 

sham-irradiated HMVEC-L were used as control. Principal component analysis (PCA) 

revealed a separation of all HMVEC-L based on the irradiation status (Figure 2A). Two 

thousand three hundred and seventy-four genes were differentially expressed in LDIR vs 

control HMVEC-L, at a cutoff corresponding to a P value<0.03 (Figure 2B).  

Particular attention was paid to growth factors and receptors associated with angiogenesis, 

VEGF receptor 1 (VEGFR1) and VEGFR2, angiopoietin-2 (ANGPT2), transforming growth 

factor beta (TGF-β), platelet derived growth factor (PDGF) and fibroblast growth factor-2 
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(FGF-2), and their expression was validated by quantitative RT-PCR. Hepatocyte growth 

factor (HGF) and its receptor, MET, were also validated, as the use of HGF has been 

proposed in the setting of therapeutic angiogenesis, and clinical trials with HGF gene 

therapy are ongoing 4. HMVEC-L were irradiated with a single dose of 0.3 Gy and screened 

at 4, 8 and 12 hours post-LDIR. Gene expression increased at 4 hours post-LDIR, compared 

with sham-irradiated HMVEC-L, with exception of Tgfb2 whose increase was significant at 

8 hours post-LDIR. Expression levels of all genes returned to baseline at 12 hours post-LDIR 

(Figure 2C). We tried to modulate gene expression by increasing total dose (or number of 

fractions), using daily 0.3 Gy.fractions during 2, 3 and 4 consecutive days; and cells were 

screened at 4, 8 and 12 hours after the last irradiation. Regardless of total dose, gene 

expression pattern and magnitude were similar to that observed after the single irradiation 

dose experiment (Figure 2D-F).  
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Figure 2. LDIR modulates the expression of endothelial genes involved in an angiogenic 

response. 

Four RNA samples of irradiated (0.3 Gy) or sham-irradiated HMVEC-L were processed for 

hybridization to Affymetrix Human Gene 1.0 ST arrays. (A) Three-dimensional PCA plot. The red and 

blue points represent control (sham-irradiated) and irradiated samples, respectively, indicating a 

separation of samples based on the ionizing radiation stimulus. (B) Heatmap for the 2374 genes 

differentially expressed in LDIR vs control (one-way analysis of variance (ANOVA test) P < 0.03)). 

Columns and rows and represent biological replicates and individual genes, respectively. Red and 

green indicate genes up- or down-regulated compared to control cells (sham-irradiated), 

respectively. (C-F) HMVEC-L sham-irradiated or irradiated with 0.3 Gy (C) once; (D) twice, (E) three 
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or (F) four consecutive days.  (C-F) Data (means ± SEM) represent the fold change in gene expression 

relative to the internal calibrator (sham-irradiated) in triplicate measurements and are 

representative of four independent experiments. Data demonstrated a significant increase in the 

relative expression of Vegfr2, Vegfr1, Fgf2, Angpt2, Pdgfc, Hgf and Met, at 4 hours, and of Tgfb2 at 

8 hours post-irradiation, when compared to sham-irradiated cells (dashed line). Values assumed 

normal distribution, equal variance and independent two-tailed t-test was used; *P < 0.05; ** P < 

0.002. C, sham-irradiated; IR, irradiated.  

 

LDIR induces the expression of pro-angiogenic genes in ECs isolated from irradiated 

ischemic gastrocnemius muscles 

LDIR modulates the expression of angiogenic genes in a resting endothelial in vitro 

monoculture, not exposed to injury. Next, we evaluated the gene expression levels in ECs 

isolated from gastrocnemius muscle of mice subjected to HLI and exposed to LDIR in daily 

fractions of 0.3 Gy for 4 days or sham-irradiated. Forty-five days post-LDIR, mice were killed 

and gastrocnemius muscle sections stained for CD31 and visualized using a laser capture 

microdissection microscope (LCM). CD31-positive cells from ischemic and non-ischemic 

gastrocnemius muscles were dissected and isolated. First, we validated that these CD31-

positive cells consisted primarily of ECs and not myeloid cells nor perivascular cells. We 

assessed the gene expression of surface and transcription markers Pecam1 encoding CD31, 

Erg and Etv2 that are specific for ECs; Itgam encoding CD11b and Spi1 encoding PU-1 for 

myeloid cells and Des encoding Desmin, Pdgfrb and Acta2 encoding smooth muscle alpha-

actin for perivascular cells. The CD31+ cells isolated by LCM expressed high levels of 

endothelial-specific transcripts but negligible amounts (more than 10000 times less) of 

myeloid or perivascular-specific transcripts (Supplementary material online, Figure S2). 

Next, the same ECs were assessed by quantitative RT-PCR for the expression of Vegfr2, 

Vegfr1, Fgf2, Angpt2, Pdgfc, Tgfb2, Hgf and Met. Transcripts for all these genes were clearly 

up-regulated in ECs isolated from muscle of the ischemic limb, comparing with the 

contralateral limb, exclusively in mice exposed to LDIR (Figure 3A). Sham-irradiated mice 

show the opposite, down-regulating the expression of the angiogenic genes repertoire in 

endothelium from the ischemic limb, comparing with the contralateral limb. Then, we 

questioned whether the increase of the capillary density conferred by LDIR and observed 

in the ischemic gastrocnemius muscle could be correlated with the increase of the 
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expression levels of these pro-angiogenic genes. To address this, we used the adductor 

muscle that does not present an increase of the capillary density at day 45 post-HLI neither 

in response to ischemia per se, nor after LDIR exposure (Supplementary material online, 

Figure S3A). Thus, the adductor muscle provides a control subjected to HLI and irradiation 

without increase in the capillary density. We isolated the ECs from the adductor muscles 

and the levels of Vegfr2, Vegfr1, Fgf2, Angpt2, Pdgfc, Tgfb2, Hgf and Met mRNA were 

measured. We confirmed that the transcripts are down-regulated in the irradiated ischemic 

limb when compared with the contralateral one (Supplementary material online, Figure 

S3B). We have previously demonstrated that VEGFR tyrosine kinase inhibition impairs the 

LDIR-induced pro-angiogenic response 8. To assess the functional and clinical relevance of 

VEGF signaling induced by LDIR in the setting of HLI, VEGFR tyrosine kinase inhibition was 

achieved through oral gavage of PTK/ZK (100 mg/kg), after HLI and 2 hours before each 

LDIR exposure. VEGFR inhibition abrogated the LDIR-mediated gene up-regulation of pro-

angiogenic factors and receptors (Figure 3B). Moreover, the capillary density induced by 

LDIR, but not by HLI, was denied by treatment with PTK/ZK (Figure 3C). Conversely, the 

collateral density induced after LDIR exposure was not affected PTK/ZK (Figure 3D).  

Thus, 0.3 Gy administered during four consecutive days might act through VEGFR-signaling 

for angiogenesis, but not arteriogenesis in the ischemic gastrocnemius limb.  
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Figure 3. LDIR upregulates the expression of angiogenic genes in ECs isolated from 

irradiated ischemic gastrocnemius muscles.  

After surgical induction of unilateral HLI, both hindlimbs of C57BL/6 mice were sham-irradiated or 

irradiated with four daily fractions of 0.3 Gy, in consecutive days and allowed to recover. (A and B) 

At day 45 post-HLI, the expression of pro-angiogenic factors and their receptors was evaluated by 

qRT‐PCR exclusively on ECs. Gastrocnemius muscle sections were stained for CD31. Individual 

endothelial CD31+ cells were visualized, dissected and isolated using a laser capture 

microdissection microscope. (A) Each bar represents the relative gene expression in one animal. 
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White and gray bars represent sham-irradiated and irradiated mice, respectively. Values were 

normalized to 18S to obtain relative expression levels. Results expressed as log2 fold changes 

between ISC and NISC samples demonstrated relative abundance of the transcripts in irradiated 

mice; in contrast, a down-regulation is observed in sham-irradiated mice. (B-D) Two hours before 

each irradiation, ischemic mice were pretreated with PTK/ZK (100mg/Kg). (B) Light grey bars 

represent irradiated mice pretreated with PTK/ZK. A down-regulation in relative gene expression is 

found in irradiated mice treated with PTK/ZK. (C) Quantitative analysis, at day 45 post-HLI, revealed 

no difference in capillary density (capillaries/myocyte) between ISC irradiated vs ISC sham-

irradiated gastrocnemius muscles, both treated with PTK/ZK. As expected a significant increase is 

observed between ISC irradiated and PTK/ZK treated vs ISC irradiated and treated with the control 

vehicle. Mixed ANOVA followed by Bonferroni post-hoc test was conducted with a within-subject 

factor of ISC and between-subject factors of irradiation and PTK/ZK treatment. (D) Data are 

represented as the percentage of collateral vessel density (CVD) increase of the ISC limb relatively 

to the NISC one. At day 45 post-HLI, no difference was observed in CVD between irradiated mice 

treated with PTK/ZK vs irradiated mice treated with the control vehicle. Independent two-tailed t-

test was used. (C and D) Individual data and means ± SEM (in red) are shown from n=6 mice per 

group; *** P < 0.001; ns, non-significant. ISC, ischemic; NISC, non-ischemic. 

 

LDIR does not mobilize myeloid cells to the ischemic tissue 

Given that, in response to ischemia, the myeloid cells play an important role in the 

collateral formation 10 we questioned whether LDIR controlled the migration of myeloid 

cells in the ischemic tissue. Note that this process was already found for higher doses of 

ionizing radiation 11 (daily therapeutic doses ex: 2.0 Gy). Thus, after unilateral HLI, both 

hindlimbs were sham-irradiated or irradiated with four daily fractions of 0.3 Gy or 2.0 Gy 

as additional control. The myeloid infiltration was assessed day 4 post-HLI in ischemic and 

non-ischemic adductor muscles by flow cytometry (Figure 4A). As expected, the number of 

CD45+ cells increased significantly in response to HLI. Strikingly, exposure with 0.3 Gy or 

2.0 Gy inhibited the CD45+ cell accumulation (Figure 4B). Then we went on to assess which 

myeloid cells were modulated in the ischemic muscles. Monocyte and macrophage 

numbers increased significantly after HLI in sham-irradiated ischemic muscles. A similar 

response was observed in ischemic muscles upon 2.0 Gy exposure. In stark contrast, low 

0.3 Gy irradiation dose inhibited this monocyte and macrophage accumulation. This shows 

that different doses of ionizing radiation differently modulate myeloid cell infiltration in 
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response to ischemia (Figure 4C and D). Moreover, while neutrophil numbers increased 

substantially in response to HLI, both 0.3 Gy and 2 Gy irradiation dosages impaired this 

accumulation (Figure 4E). We also assessed whether at later time point myeloid cells could 

account for the increase in collateral density in response to LDIR. Fifteen days post-HLI the 

numbers of CD45+ cells, monocytes, macrophages and neutrophils were similar in the 

ischemic muscles in 0.3 Gy; 2 Gy or sham-irradiated groups (Supplementary material 

online, Figure S4).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Profiles of leukocytes mobilized to ischemic muscles upon LDIR 

After surgical induction of unilateral HLI, both hindlimbs of C57BL/6 mice were sham-irradiated or 

irradiated with four daily fractions of 0.3 Gy or 2.0 Gy in consecutive days. At day 4 post-HLI, analysis 

of CD45+ immune cells that infiltrate ischemic adductor muscles was assessed. (A) Representative 

analysis of hematopoietic CD45+ cells present in ischemic muscle as assessed by flow cytometry. 

Analysis of the accumulation of myeloid CD11b+ cells, and in particular macrophages 

(CD45+CD11b+F4/80+ cells), monocytes (CD45+CD11b+LY6C+F4/80int cells), and neutrophils 

(CD45+CD11b+Ly6Cint). The graphs show numbers of (B) total CD45+ cells; (C) monocytes; (D) 

macrophages and (E) neutrophils, isolated from ISC and NISC adductor muscles and represent the 

data derived from two independent experiments. Mixed ANOVA followed by Bonferroni post-hoc 
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test was conducted with a within-subject factor of ISC and between-subject factor of irradiation. 

Individual data and means ± SEM are shown (in red) from n=8 mice per group; *P < 0.05; ns, non-

significant. ISC, ischemic; NISC, non-ischemic. 

 

LDIR enhances collateral formation through EPC recruitment in a process that is 

dependent of the ischemic niche irradiation  

We next assessed the effect of LDIR on EPC mobilization from the bone marrow into the 

circulation. Total blood was collected at days 4, 5, 6 and 7 post-HLI and EPCs were identified 

by flow cytometry as mononuclear cells being VEGFR2+/ Sca-1+/ CD117+ cells. Consistent 

with the literature 12, significant increase of the percentage of EPCs occurred at day 6 in 

sham-irradiated mice in response to HLI (Figure 5A). Surprisingly, the percentage of 

circulating EPCs significantly increased already at day 4 post-HLI in irradiated mice, and to 

a level noticeably higher than in sham-irradiated mice at day 6 (Figure 5A). This suggests 

LDIR synergized with ischemia to increase EPCs in peripheral blood, a process that is not 

inhibited after PTK/ZK treatment (Supplementary material online, Figure S5A). 

In addition, we confirmed that LDIR increases the circulating EPCs percentage in a process 

dependent of ischemia induction (Supplementary material online, Figure S6). 

As EPC mobilization involves a complex network of migratory factors 2, 13, 14, we assessed 

whether LDIR modulates cytokine or chemokine concentrations synergistically with 

ischemia that could generate gradients that guided EPCs to areas of ischemia or/and locally 

induce arteriogenesis. We previously showed that in vitro and under hypoxia-mimicking 

conditions LDIR enhances VEGF expression in ECs 8. 

Using a similar approach, we found that in the presence of cobalt chloride (CoCl2), which 

mimics hypoxic conditions, ECs significantly increased Pgf mRNA (encoding placental 

growth factor (PlGF)) expression, in a way that synergized with exposure to 0.3 Gy 

(Supplementary material online, Figure S7). However, hypoxia and irradiation do not 

always synergize to regulate expression of migration factors. While Cxcl12 mRNA (encoding 

stroma-derived factor-1α (SDF-1α)) expression was increased by hypoxia but not by LDIR, 

conversely, Csf3 mRNA (encoding granulocyte-colony stimulating factor (G-CSF)) 

expression was induced by LDIR but not by hypoxia (Supplementary material online, Figure 

S7). These findings were confirmed in vivo by ELISA. VEGF, PlGF and G-CSF concentrations 

in the plasma were significantly increased in the plasma of irradiated mice at day 4 post-



CHAPTER III 

67 

HLI when compared with sham-irradiated ones (Figure 5B). In contrast and consistent with 

our in vitro data, the levels of SDF-1α are not modulated by LDIR at least at day 4 post-HLI. 

Moreover, the levels of VEGF, PlGF and G-CSF were not changed in irradiated mice treated 

with PTK/ZK after HLI induction (Supplementary material online, Figure S5B).  

To confirm that this process is dependent of the effect of LDIR on the ischemic/hypoxic 

niche, we irradiated mice outside the ischemic niche. Since technically, it is not possible to 

irradiate only the non-ischemic hindlimb assuring that the contralateral ischemic one was 

not exposed to LDIR, we irradiated the upper (above hip) part of the mouse body 

(Supplementary material online, Figure S8A). Upper body LDIR exposition was not sufficient 

to increase the proportion of circulating EPC (Supplementary material online, Figure S8B). 

Consistently, the VEGF, PlGF, G-CSF and SDF-1α levels did not increase upon LDIR exposure 

(Supplementary material online, Figure S8C). Importantly, the increase by LDIR of collateral 

density is not achieved (Supplementary material online, Figure S8D). This strongly suggests 

that the exposure of the ischemic niche to LDIR is critical for the increase of cytokines, 

mobilization of EPCs and collateral formation. 

Next, we aimed to show that LDIR-induced circulating EPCs are functionally relevant for 

enhancement of their recruitment and incorporation into ischemic tissues. A bone marrow 

transplantation using C57Bl/6-Tg(CAG-EGFP)10sb/J donor was performed in C57Bl/6 mice 

and 8 weeks after, HLI was induced. Mice were sham-irradiated or irradiated with 0.3 Gy 

during four consecutive days and at day 15 post-HLI the adductor muscles were collected. 

Our results show that at day 15 post-HLI EPCs are recruited in the large vessels as identified 

by double-fluorescent labeling (green and red), in response to HLI (Figure 5C). To confirm 

the wide-field data, confocal images of the same ten-micron-thick section were acquired 

to show that green and red fluorescent signals belong to the same cells (Supplementary 

material online, Figure S9). Importantly, a quantitative evaluation of the histological 

sections revealed a significantly increased number of GFP+/CD31+ cells per area into 

irradiated ischemic thigh muscles when compared with the sham-irradiated ones (Figure 

5D).  
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Figure 5. Post-HLI induction, LDIR increases the number of circulating EPCs, the levels of 

VEGF, PlFG and G-CSF and mediate EPC recruitment in ischemia. 

After surgical induction of unilateral HLI, both hindlimbs of C57BL/6 mice were sham-irradiated or 

irradiated with four daily fractions of 0.3 Gy, in consecutive days. (A) Quantitative analysis of EPCs 

in peripheral blood demonstrated a significant increase of the percentage of EPCs in irradiated 

mice, at day 4 post-HLI and in sham-irradiated mice, at day 6 post-HLI when compared to the 

percentage before HLI induction (d0 pre-HLI). Interestingly, the increase conferred by LDIR at day 4 

in response to HLI is significantly higher to the one found at day 6 post-HLI in sham-irradiated mice. 

Two-way ANOVA was conducted followed by Bonferroni post-hoc test with a between-subject 

factors of day and irradiation; n=6 mice per group. Means ± SEM are shown. (B) The concentrations 

of VEGF, PlGF, G-CSF, and SDF-1α were measured in the plasma, at day 4 post-HLI. LDIR significantly 

increases the VEGF, PlGF and G-CSF concentrations after HLI induction vs sham-irradiation (n=10 

mice per group; values assumed normal distribution and equal or unequal (G-CSF) variance and 

independent two-tailed t-test was used). (C and D) Eight weeks after bone marrow transplantation, 
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HLI was performed in C57BL/6 mice. Mice were sham-irradiated or irradiated with 0.3 Gy during 

four consecutive days and at day 15 post-HLI the adductor muscles were collected. (C) At left, two 

representative images of incorporated EPCs identified by double-fluorescent labeling (green/red) 

in collateral vessels. Transplanted GFP:β-actin cells were identified by green fluorescence; 

vasculature by red fluorescence (CD31 staining) and nucleus by blue fluorescence (DAPI). Scale bar, 

25 µm. At right, single and merged channels after digital zoomed of the boxed areas are shown. (D) 

Quantitative analysis revealed a significant increase of EPCs incorporation (identified as 

GFP+/CD31+ cells) into irradiated ischemic muscles compared to sham-irradiated ischemic ones (n 

= 6 mice per group; values assumed normal distribution, unequal variance and independent two-

tailed t-test was used).  (B, D) Individual data and means ± SEM (in red) are shown; ** P < 0.01; *** 

P < 0.001; ns, non-significant.   ISC, ischemic; Pre-HLI, before hindlimb ischemia. 

 

LDIR exposure is not associated with increased morbidity or mortality  

To check for a possible effect of LDIR in the health status of the animals, a 52-week study 

was performed in a group of sham-irradiated and LDIR mice (n=140), throughout which 

mice were assessed for clinical signs of disease. There was no increased incidence of 

morbidity or mortality in the LDIR mice, compared with sham-irradiated, and there was no 

difference in body weight gain (at weeks 24, 36, 48 and 52 post-HLI). Fifty-two weeks post-

HLI mice were killed and no significant difference was observed in organ weight, serum 

biochemistry (n=24), urinalysis or hematological parameters (Table 1); and the histological 

analysis revealed no neoplastic lesions or major changes in the liver, lung, spleen, thymus 

or bone marrow of these mice (n=6) (Supplementary material online, Figure S10). 
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Table 1. Clinical, hematological, biochemical and histopathological data from sham-

irradiated and LDIR mice  

 

End Point                      0.0 Gy         4 x 0.3 Gy 

BW gain, % (n=140; mean ± SD) 14.2 ± 3.5 21.4 ± 5.3 

Mortality (n=140) 

Blood cell counts (n=24) 

2*/140 

WNRA 

1†/140 

WNR 

Clinical chemistry (n=24) WNR WNR 

Coagulation tests (n=24) WNR WNR 

Urinalysis (n=24) WNR WNR 

Bone Marrow cytology: abnormalities (n=6) 

Histopathological Analysis (liver; kidney; lung; bone marrow; 

spleen; thymus) (n=6) 

0/6 

0/6 

0/6 

0/6 

* found dead, from unknown cause. 

†sacrificed due to abscess formation after surgical procedure (HLI). 

A WNR, within normal range.   
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Discussion  

Therapeutic neovascularization aims to stimulate new blood vessel growth. Current 

strategies using proteins, genes or stem cells have demonstrated efficacy in animal models 

however, clinical translation remains challenging. We show that LDIR synergized with HLI 

and significantly enhance blood perfusion, capillary density in gastrocnemius muscle and 

collateral vessel development, tilting the angiogenic balance towards an even more pro-

angiogenic phenotype, and suggesting that LDIR may favor the functional recovery of 

ischemic tissues. In contrast, resting vasculature, not subjected to ischemia, are unaffected 

by LDIR since capillary density and CVD are similar in non-ischemic muscles exposed or not 

to LDIR. This is in agreement with our previous work, where inter-ray capillary density 

remained unchanged after LDIR of non-amputated zebrafish caudal fin 8. Our data also 

show that the maximal efficacy in perfusion recovery, capillary and collateral densities 

involves the administration of 1.2 Gy in four daily fractions of 0.3 Gy per fraction. A global 

gene expression analysis revealed that 2374 genes were modulated by LDIR and from 

those, 1344, many of which with a role in angiogenesis, were upregulated in LDIR versus 

control HMVEC-L. As soon as 4 hours after exposure to 0.3 Gy the expression of the majority 

of the pro-angiogenic molecules were increased, and returned to baseline12 hours post-

LDIR. This acute short-term effect of LDIR on ECs is independent from dose fractionation 

since cells exposed to 0.3 Gy administered 2, 3 or 4 consecutive days presented similar gene 

expression pattern and magnitude. The evaluation of expression of angiogenic genes in ECs 

isolated from gastrocnemius muscle of mice subjected to HLI revealed that LDIR modulates 

the expression of angiogenic genes in the endothelium and, thus, suggested a link for the 

long-term advantage in blood perfusion, capillary density and collaterals in HLI. LDIR 

induced a sustained and prolonged pro-angiogenic response in ECs, still evident 45 days 

after irradiation. Because this contrasts with the transient in vitro response, one may 

hypothesize either that endothelium itself could be differently modulated by LDIR in a 

hypoxic microenvironment created by ischemia; some cells (ex: adipocytes) could 

contribute to perpetuate the effect(s) of irradiation in ways that in vitro cultures cannot 

mimic. 

There is evidence that ionizing radiation can affect a variety of inflammatory processes and 

the composition of responding immune cells 15. However, this highly depends on the dose, 

for low doses (e.g. ≤ 1Gy) promote anti-inflammatory responses 16, while high doses (e.g. ≥ 
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2Gy) exert pro-inflammatory effects 17. Therapeutic applicability was further demonstrated 

on inflammatory disease as symptomatic improvement of rheumatoid arthritis was 

observed when mice were irradiated with 0.5 Gy in five fractions within 1 week 18. The 

hematopoietic infiltrate was monitored from inflamed and ischemic tissues to assess a 

potential role of immune cells upon LDIR. Ischemia per se induced about 20-foldsincrease 

in the immune CD45+ cell infiltrate recruited to the injured muscle at day 4 post-HLI. 

Exposure with 4x 0.3 Gy significantly inhibited the CD45+ cell accumulation with particular 

effects on monocytes, macrophages and neutrophils. In contrast, with 4x 2.0 Gy the total 

CD45+ accumulation in ischemic muscle was still reduced, and although numbers of 

monocytes and macrophages were restored, neutrophils were not. This is consistent with 

the fact that high irradiation doses have opposing effects on certain myeloid subsets, for 

they activate macrophages 19 while they are reported to induce rapid, but transient, 

neutropenia 20. Importantly, effect of irradiation was short-lasted. Fifteen days post-HLI the 

profiles of myeloid cells that infiltrated non-irradiated and irradiated ischemic muscles 

were similar. Altogether these data pointed for a mechanism of LDIR-induced 

arteriogenesis independent of local myeloid cell recruitment. 

In the setting of HLI we showed that LDIR boosts the induction of a sustained VEGFR-

mediated pro-angiogenic program in ECs from ischemic gastrocnemius muscle. These 

results corroborate our previous findings 8 and suggest a new mechanism: LDIR under HLI 

induces capillary density. Consistently, the capillary density induced by LDIR, but not by HLI, 

was abrogated by treatment with PTK/ZK. Conversely, the enhancement promoted in 

collateral density by LDIR was not affected by PTK/ZK, suggesting that this process is 

regulated by a mechanism independent of the VEGF receptor signaling.  

Consistent with our previous results showing that in hypoxic mimicking conditions, LDIR 

increases the expression of VEGF in ECs 8, here we found that the expression of Pgf and 

Csf3 is also increased in ECs. Importantly, these results were confirmed in vivo as VEGF, 

PlGF and G-CSF concentrations significantly increase in the plasma at day 4, upon LDIR 

exposure.  Of note, beside VEGF, the upregulation of other cytokines (such as PlGF and G-

CSF), might explain why circulating EPCs are insensitive to PTK/ZK inhibition. It is plausible 

that the effects of VEGF, PlGF and G-CSF are redundant on EPCs, and may explain why 

PTK/ZK does not affect the enhancement promoted in collateral density by LDIR. These 

cytokines were reported as being involved in the guidance of EPC to ischemic tissue 2, 13, 14. 
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In line with this, we observed EPC mobilization and recruitment to the ischemic tissue upon 

LDIR.  In the absence of ischemia, LDIR per se does not induce that effect and notably the 

irradiation of the ischemic tissue is critical for the mobilization of EPCs and collateral 

formation. Of note, in our transplantation model, all hematopoietic cells are GFP+ 

(including circulating and extravasated/tissue leucocytes, erythrocytes and platelets), but 

EPC, forming the inner lining of blood vessels, exhibit both green (GFP+) and red (CD31+). 

Thus, our results suggest that LDIR increases these growth factor concentrations 

synergistically with HLI and given the fact that this happens only if the ischemic tissue is 

irradiated, we hypothesize that a hypoxic niche is critical for this process. Although we 

cannot exclude that other cells could modulate the levels of these cytokines upon LDIR, our 

results strongly suggest the involvement of ECs.  

We propose a model of enhanced and sustained angiogenesis induction by in situ LDIR 

administration as a promising therapeutic approach for ischemic diseases (Figure 6).  

 

Figure 6. Proposed model of LDIR effect after HLI. 

After unilateral HLI (represented by a thick brown line), the flow to the ischemic limb is dramatically 

decreased (in blue) and vascular function is compromised as represented by a reduction in the dial. 

After LDIR exposure of both hindlimbs (in orange), we propose a synergistic effect occurs with the 

ischemic insult, tilting the dial towards an improvement of the vascular function by stimulating 

neovascularization.  Then, ECs in an hypoxic microenvironment secrete VEGF, PlGF and G-CSF 

leading to the recruitment of EPCs and consequently to collateral density increase. Simultaneously, 

the up-regulation of several pro-angiogenic target genes namely Vegfr (Vegfr-2 and -1), Fgf2, 

Angpt2, Pdgfc, Tgfb2, Hgf and Met in ECs induces capillary density. The vascular function of 
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nonischemic hindlimbs was not affected by LDIR exposure as represented by the dial in an 

equilibrium status before, during and after ischemia recovery. (© Diogo Guerra. 2016). 

 

LDIR applied as one daily irradiation of 0.3 Gy, administered for four consecutive days, 

synergistically act with the ischemic insult, exacerbating the local pro-angiogenic response. 

Our results suggest that this is achieved through (i) increased capillary density accompanied 

by an up-regulation of several pro-angiogenic target genes in ECs localized in gastrocnemius 

muscles, a process that is dependent of VEGF signaling and (ii) the mobilization and 

recruitment of EPCs by increasing the concentrations of VEGF, PlGF and G-CSF that may 

explain the collateral density increase in the ischemic limb leading to blood perfusion 

improvement.  

One important concern when addressing ionizing radiation is its toxic effect. According to 

the linear no-threshold (LNT) hypothesis, the dose-response is linear and no threshold 

exists where damage begins to show. Recent advances in radiobiology challenge the 

validity of the LNT suggesting that it overestimates radiation risks 21. We performed a 52-

week and LDIR had no significant impact in the morbidity and mortality of the mice, 

although the possibility of LDIR long-term toxicity cannot be ruled out. Importantly, the 

LDIR proposed herein is usually absorbed by healthy tissues during radiotherapy, in areas 

where no adverse effects were found during the follow-up of the patient for several years.  

The angiogenic potential of ionizing radiation has already been shown 22. We and others 

have shown that LDIR favors angiogenesis by promoting EC proliferation and migration, 

accelerating wound healing 8, 22. However, there is no consensus about the doses described 

as pro-angiogenic, as different radiation schemes are used. Herein, ionizing radiation was 

delivered through a linear accelerator producing photon beams, currently used in the 

clinical practice. The use of conventional radiotherapy dose (2-10 Gy, administered once, 

Caesium-137 source) has been shown to induce neovascularization in HLI through VEGF 

release from mast cells and MMP-9-mediated progenitor cell mobilization; however 

potential adverse effects were seen 11 and so, to the best of our knowledge, to date the 

use of those high doses has not been proposed for therapeutic neovascularization. 

Our data supports the use of LDIR in enhancing ischemia-induced neovascularization in 

vivo, which is achieved through the increase of cytokines, mobilization and recruitment of 

EPC to the ischemic tissue and simultaneous activation of a repertoire of pro-angiogenic 



CHAPTER III 

75 

factors and resulting in enhanced recovery of blood flow. LDIR may therefore have a clinical 

significant impact in the treatment of peripheral arterial disease that represents a growing 

health problem worldwide, with high economic burden and limited therapeutic options. 

We currently have an ongoing exploratory clinical trial to determine the clinical and 

molecular effects in “non-option” CLI patients. The success of this clinical trial will lead to 

the development of new trials to propose a novel and effective therapeutic tool with 

worldwide impact to peripheral arterial disease.  
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Supplementary Material 

 

Supplementary Methods 

Cell Culture 

Lung human microvascular endothelial cells (HMEC-L) were purchased from Lonza and 

cultured according to manufacturer’s instructions. While different batches of primary cells 

were used over the course of the work, cells from the same batch were used in individual 

experiments (e.g. control vs. an experimental condition). Cells were used at passages 4 to 

6. 

 

Mice and Reagents 

Twenty–two-week-old C57BL/6 female mice, purchased from Charles River Laboratories, 

Spain, were used in all HLI experiments; and nine-week-old C57Bl/6-Tg(CAG-EGFP)10sb/J 

female mice (Instituto Gulbenkian de Ciência) were used as a donor mice in for bone 

marrow transplantation. Briefly, for the HLI procedure and in vivo imaging, animals were 

anesthetized with ketamine-medetomidine (75mg/Kg BW and 1 mg/Kg BW, respectively) 

and the anaesthesia was reverted with atipamezole (5mg/kg BW). Postoperatively, 

analgesia was administered (buprenorphine 100μl/15-30g BW q8-12 hours) and the 

animals were closely monitored. Mice were euthanized by cervical dislocation. 

PTK787/ZK222584 (PTK/ZK) (100 mg/Kg) was kindly provided by Novartis Pharma AG, 

Basel, Switzerland. PTK/ZK, polyethylene glycol-300 was used as vehicle (Sigma) and 

administered by oral gavage. The animals were randomly assigned to each experimental 

group. 

 

HLI Model 

A surgical procedure was performed to induce unilateral HLI in the mice. Briefly, an incision 

in the skin overlying the thigh of the right hindlimb of each mouse was made and the distal 

external iliac artery and the femoral artery and veins were ligated and excised. The vein 

was ligated both to increase the severity of the ischemia as well as to increase the technical 

reproducibility of the model, as isolation of the femoral artery alone often results in tearing 

of the vein resulting in hemorrhage.  
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Irradiation 

The radiotherapy plan was devised on a dedicated 3D treatment planning system (XiO, 

Elekta) using an isocentric dose distribution of two opposite fields (0°, 180°) at 6 MV photon 

energy, normalized to a reference point. Ionizing radiation was delivered, at room 

temperature, using a linear accelerator that produces x-rays photon beam (Synergy S, 

Elekta) operating at a dose rate of 500 MU/min. 

Mice were transferred to an acrylic phantom in order to achieve the adequate thickness to 

improve homogeneity during the radiation therapy. A computed tomography scan 

(Somatom Sensation, Siemens) was performed and a volumetric acquisition was carried 

out; acquired images were reconstructed with axial slices width of 2 mm, and cross 

sectional data was transferred to the image processing system work station for contouring 

the planning target volume. 

A 0.6 cm3 PTW farmer ionizing chamber, connected to UNIDOS electrometer, was used to 

validate the IR doses calculated by the treatment planning system (TPS), according to the 

IAEA TRS-398 protocol. We obtained, in average, differences lower than 2% between the 

experimental and the XiO TPS dose values. The irradiation field included mice entire legs 

(pelvic girdle down to the feet) or the upper (above hip) part of the mouse body with a 

dose of 0.3 Gy administered for 4 consecutive days, starting 12 hours after ischemia 

induction. Control mice were sham-irradiated (0.0 Gy) following the same procedure for 

the irradiated experimental groups. The irradiation procedure was performed in a non-

blinded manner. During this protocol the mice were anesthetized. 

 

Laser Doppler perfusion imaging 

The laser Doppler perfusion imager (MoorLDI-V6.0, Moor Instruments Ltd, Axminster, UK) 

was used to assess limb perfusion. Hair was removed one day before laser Doppler analysis 

using an electrical shaver followed by depilatory cream. Blood flow was measured both in 

the ischemic and non-ischemic legs, before HLI induction (Pre-HLI), immediately post-HLI 

(Post-HLI), and at days 7, 15 and 45 post-HLI (d7 Post-HLI, d15 Post -HLI and d45 Post -HLI, 

respectively). According to the analysis performed immediately post-HLI, mice are 

randomized assuring an equal reduction of blood flow in the different experimental groups. 

Color-coded images of tissue perfusion were recorded and poor or no perfusion was 

displayed as darkblue, and the highest perfusion level was displayed as red. Mean flux 
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values were calculated using the Moor LDI V5.3 image processing software. To account for 

variables such as temperature and ambient light, blood perfusion is expressed as the ratio 

of ischemic to non-ischemic limb. The mice were placed on a 37°C heating pad to reduce 

heat loss during measurements.   

 

Immunohistochemistry and Capillary density analysis 

Mice were sacrificed at days 15 and 45 post-HLI. The gastrocnemius or adductor muscles 

of both legs were harvested, placed in transverse orientation on a small cork disc with the 

help of 10% tragacanth, snap frozen in liquid nitrogen cooled isopentane and stored at -

80ºC until sectioned. Seven-micrometer sections were labeled with CD31 monoclonal 

antibody (Pharmingen). After fixation in acetone, for 10 minutes, hydrogen peroxidase 

(0.3% diluted in methanol) was added, for 30 minutes, at room temperature, followed by 

2 washes in PBS, for 10 minutes. Blocking solution (5% rabbit serum in PBS) was applied, 

for 30 minutes, at room temperature, and then slides were incubated, for 1 hour, at room 

temperature, with rat monoclonal antibody against mouse CD31 at 1:500, diluted in PBS-

1% BSA. After 3 washes in PBS, for 30 minutes, a secondary biotinylated rabbit anti-rat IgG 

antibody was added at 1:200 in PBS-1% BSA plus 5% rabbit serum, for 30 minutes, at room 

temperature. Washes were performed as before and labeled avidin-conjugated peroxidase 

complex (Vectastain ABC kit; Vector Laboratories) was used for color development 

according to the manufacturer’s recommendations, for 30 minutes, at room temperature. 

After rinsing in PBS (3 times, for 5 minutes), DAB peroxidase substrate kit (Vector 

Laboratories) was added, for 5 minutes to localize the immune complexes. The sections 

were counterstained with Hematoxylin (Bio-Optica), for 10 seconds, and mounted with 

Entelan (Merck). Omission of the primary antibody was run in parallel as a negative control.  

Analysis of tissue samples was conducted using Leica DM2500 upright brightfield 

microscope (Leica Microsystems). Capillary densities, i.e. number of capillaries per number 

of muscle fibers, were measured in 2 different sections of 4 distinct anatomic areas of each 

specimen using the ImageJ software. 
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Contrast Agent Perfusion and Diaphonization 

Fifteen, forty-five and ninety days post-HLI induction, when mice were well stabilized from 

the ischemic injury, they were deeply anesthetized and the torso and limbs were shaved. 

A medial thoracotomy was performed to expose the heart and a needle (26 Gauge), 

attached to an automatic injector, was introduced in the left ventricle. An incision was 

performed in the right atrium to allow venous drainage. Mice were primarily perfused with 

heparinized serum (3000 IU/L) until the blood was completely removed from circulation. A 

vasodilatation mixture of adenosine (3.7 µmol/L) and papaverine (11.8 µmol/L) was 

subsequently administered, right before the contrast agent, for 2 minutes. The contrast 

used was a mixture of barium sulfate (50%) and gelatin (5%). This solution was kept warm 

until the injection time to avoid thickening. Contrast agent was perfused manually until the 

feet blanched. Right after the injection the mice were transferred to a cold chamber, so 

that the contrast agent became solidified. All the solutions were injected with a perfusion 

rate of 0.01 cm3/s. Then, the skin of each mouse was removed from the lower body and 

diaphonization was performed by using a modified version of Spalteholz technique. Briefly, 

the mice were fixated, decalcified, whitened, washed, dehydrated by freeze substitution 

and placed into a vacuum pump with Spalteholz solution (benzyl benzoate and methyl 

salicylate) until transparency was acquired. Diaphonization allows the visualization of 

effective lumen diameter, vessel angulation and emergence position.  

 

Collateral vessels quantification 

Mice were kept in Spalteholz solution during image acquisition, in order to achieve a 

homogenous density between the tissues and the media, with minimal absorption or 

reflection of light. Mice entire limbs were photographed in a magnifier with a light source. 

After acquisition, images were aligned and stitched together using Adobe Photoshop CS6 

and entire limb photographs were obtained. Collateral vessels were manually segmented 

by highlighting them using Adobe Photoshop CS6. We considered collateral vessels 

according to Longland’s definition, a defined stem, mid-zone and re-entrant. According to 

this definition, collateral vessels with a diameter between 20 and 300 µm were included in 

our quantification excluding femoral, saphenous and popliteal arteries and all venous 

structures. Since arteriogenesis occurs primarily around the occluded blood vessel 

segment, the region of interest (ROI) in every mouse was in the same anatomic region in 
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the adductor, surrounding and bellow the surgical occlusion. Collateral vessel density (CVD) 

was quantified in equivalent ROIs corresponding to 20% of the total limb area. The CVD 

was calculated as the ratio between the vascular area and the ROI areas. All density 

measurements were performed using ImageJ software. To exclude variations in the 

anatomy, perfusion or diaphonization procedures, the CVD value of the non-ischemic limb 

for each mouse was assumed to correspond to 100%. According to this assumption, the 

CVD percentage in the ischemic limb was calculated relatively to the non-ischemic one. The 

percentage of CVD increase was determined as the difference between the CVD percentage 

among the ischemic and non-ischemic limbs.  

 

Laser capture microdissection of capillaries 

Mice were sacrificed at day 45 post-HLI. Twelve-micrometer sections of the gastrocnemius 

or adductor muscles were labeled with CD31 monoclonal antibody (Pharmingen). The 

sections were stored at –80°C until microdissection. The immunohistochemistry protocol 

described above was modified to improve RNA preservation1 by using high salt buffer, 2 

mol/L NaCl in PBS (at 4ºC) in all incubation and washing steps. After 

immunohistochemistry, sections were dehydrated in ice cold 90% ethanol followed by 

100% ethanol and allowed to dry. Ten thousand capillaries were microdissected using a 

Zeiss PALM MicroBeam Laser Microdissection System (Carl Zeiss Microscopy, Germany) 

equipped with a pulsed solid-state 355 nm laser. Dissected capillaries were catapulted into 

a microfuge tube adhesive-cap. 

 

Isolation of immune cell infiltrate from muscle and FACS analysis 

Adductor muscles were excised after perfusing the mice with 30ml PBS. Muscles were cut 

in small pieces and digested for 30 minutes with collagenase I (1.5 mg/ml, Worthington) 

and DNase I (10 µg/ml, Sigma) diluted in DMEM. The digested product was filtered through 

a 70 µm mesh cell-strainers (Becton Dickinson) using a plunger to disrupt undigested tissue 

and washed with RPMI supplemented with serum. To isolate the leukocyte fraction, the 

cells were resuspended in 40% Percoll, overlayed on 80% Percoll and spun for 25 minutes 

at 2400 rpm without brake. The interphase containing leukocytes was recovered, washed 

and erythrocytes were osmotically lysed in red blood cell lysis buffer (BioLegend). For cell 

surface staining, single-cell suspensions were incubated, in presence 5% normal mouse 
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serum, for 30 minutes with saturating concentrations of combination of the following 

monoclonal antibodies that were purchased from BD Biosciences, eBiosciences or 

Biolegend: FITC anti-CD3 (145-2C11), PE anti-CD69 (H1-2F3), PerCP-Cy5.5 anti-Ly6G (1A8), 

PE-Cy7 anti-F4/80 (BM8), APC anti-CD11b (M1/70), APC-Cy7 anti-CD19 (1D3), brilliant 

violet 510 anti-CD45 (30-F11), brilliant violet 605 anti-Ly6C (HK1.4), brilliant violet 711 anti-

4 (N418). Zombie violet dye (BioLegend) was then added to the final suspension for 10 

minutes, at 4oC in order to stain and exclude dead cells. Cells were then immediately 

analyzed by flow cytometry on LSR Fortessa (BD Biosciences). All graphical output was 

performed using FlowJo 10 (Tree Star, Costa Mesa, CA). 

 

Endothelial progenitor cells and FACS analysis 

Terminal peripheral blood collection was performed transcardially, to an EDTA-coated 

tube, and erythrocytes were osmotically lysed in red blood cell lysis buffer (BioLegend). 

Then, cells were incubated, in presence of PBS - 5% BSA, for 30 minutes with saturating 

concentrations of combination of the following monoclonal antibodies purchased from 

Invitrogen, eBioscience or BD Pharmingen: TOPRO 3, biotin anti-Ter119, PE-Cy7 anti-

CD117, FITC anti-Sca-1, PE anti-VERGFR2. For Ter119, a secondary eFluor 450 streptavidin 

was used. Cells were then immediately washed with PBS and analyzed by flow cytometry 

on LSR Fortessa (BD Bioscience). All graphical output was performed using FlowJo 10 (Tree 

Star, Costa Mesa, CA). 

Endothelial progenitor cells (EPCs) were quantified within the monocytic cell population, 

by a dual expression of VEGFR2 and Sca-1 in the CD117 gate. 

 

Circulating Cytokine Quantification 

Peripheral blood was obtained by cardiac puncture at day 4 post-HLI induction. Blood was 

centrifuged 30 minutes and plasma separated from the cellular fraction and stored at -

20ºC. In plasma, vascular endothelial growth factor (VEGF), granulocyte-colony stimulating 

factor (G-CSF), placenta growth factor (PlGF) and stroma-derived factor-1α (SDF-1α) were 

measured via ELISA (R&D Systems) according to manufacturer’s instructions. 
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Bone Marrow Transplantation Model and Immunofluorescence 

Bone marrow cells were obtained by flushing the tibia and femur of eight-week-old 

C57BL/6 female mice C57Bl/6-Tg(CAG-EGFP)10sb/J (donor mice). Mononuclear cells were 

isolated by density centrifugation and filtered in a 70 µm cell strainer (BD). 

The transplantation was done in ten-week-old C57BL/6 female mice (recipient mice), 

lethally irradiated with 900 rads (Gammacell 3000Elan). After irradiation, the recipient 

mice received unfractionated bone marrow cells (5x106) from the donor mice by tail vein 

injection. Eight weeks after, HLI was induced and mice were sacrificed at day 15 post-HLI. 

The adductor muscles of both hindlimbs were harvested, placed in transverse orientation 

on a small cork disc with the help of 10% tragacanth, snap frozen in liquid nitrogen cooled 

isopentane and stored at -80ºC until sectioned. Ten-micrometer sections were labeled with 

CD31 monoclonal antibody (Pharmingen) and purified rabbit anti-GFP (Torrey Pines 

BioLabs Inc). After fixation in acetone, for 10 minutes, 0.5%Triton x-100 was added, for 10 

minutes, at room temperature followed by 2 washes in PBS, for 10 minutes. Blocking 

solution (10% goat (DakoCytomation) plus 10% donkey (Sigma-Aldrich) serum in PBS-1% 

BSA) was applied, for 30 minutes, at room temperature, and the slides were then incubated 

for 1 hour, at room temperature, with a rat monoclonal antibody against mouse CD31 and 

rabbit anti-GFP in PBS-1% BSA. After 3 washes in PBS-0.1%Tween, for 15 minutes, 

secondary antibodies goat anti-rat Alexa fluor 594 (Invitrogen) and goat anti-donkey Alexa 

fluor 488 (Invitrogen) were added in PBS-1% BSA, for 1hour, at room temperature. Washes 

were performed as before. Sections were incubated with Dapi (Sigma-Aldrich), for 10 

minutes, washed in PBS, for 5 minutes, mounted with vectashield mounting medium 

(Vector Laboratories) and seal with nail polish. Omission of the primary antibodies was run 

in parallel as a negative control. Analysis of tissue samples was conducted using a 

Motorized Widefield Fluorescence Microscope (Zeiss Axiovert 200M) with a 20x/0.8 

objective or confocal microscope (Zeiss LSM 880) with a 63x/1.4 oil immersion objective, 

with the pinhole set to 1 Airy unit (optical slice thickness = 0.7 micron). The number of EPC, 

defined as GFP+ CD31+, was measured on an area of 4.30 mm2 into 5 different sections of 

the adductor muscle for each specimen. All measurements were performed using ImageJ 

software. 
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RNA extraction, cDNA synthesis and pre-amplification 

Total RNA from the microdissected capillaries or HMEC-L was isolated using an RNeasy 

Micro or Mini Kit (QIAGEN) including DNase treatment, respectively. For synthesis and 

preamplification of cDNA RT2 PreAMP cDNA Synthesis kit (QIAGEN) was used with two 

rounds of pre-amplification using the following murine primers:  

 

Vegfr1_F (5’-TTGAGGAGCTTTCACCGAACTCCA-3’)  

Vegfr1_R (5’-TATCTTCATGGAGGCCTTGGGCTT-3’)  

Vegfr2_F  (5’-AGGCCCATTGAGTCCAACTACACA-3’)  

Vegfr2_R  (5’-AGACCATGTGGCTCTGTTTCTCCA-3’)  

Fgf2_F  (5’-ACTCCAGTTGGTATGTGGCACTGA-3’) 

Fgf2_R  (5’-AACAGTATGGCCTTCTGTCCAGGT-3’)  

Tgfb2_F  (5’-GCTTTGGATGCGGCCTATTGCTTT-3’)  

Tgfb2_R  (5’-CTCCAGCACAGAAGTTGGCATTGT-3’)  

Ang2_F  (5’-ATCCAACACCGAGAAGATGGCAGT-3’) 

Ang2_R (5’-AACTCATTGCCCAGCCAGTACTCT-3’)  

Pdgf-c_F  (5’-ATGCCACAAGTCACAGAAACCACG-3’) 

Pdgf-c_R  (5’-AAGGCAGTCACAGCATTGTTGAGC-3’)  

Hgf_F  (5’-GCATTCAAGGCCAAGGAGAAGGTT-3’)  

Hgf_R   (5’-TCATGCTTGTGAGGGTACTGCGAA-3’)   

C-met_F  (5’-ACGTTGAAATGCACAGTTGGTCCC-3’) 

C-met_R (5’-TTGCGTCGTCTCTCGACTGTTTGA-3’)  

Pecam_F (5’-CCCATCACTTACCACCTTTATG-3’) 

Pecam_R (5’-TGTCTCGGTGGGCTTAT-3’) 

Etv2_F  (5’-CACCGATCACACCAATGAA-3’) 

Etv2_R  (5’-GTACGTCTTCGTGAGGTAAAG-3’) 

Erg1_F  (5’-CCAAACTGGAGGAGATGATG-3’) 

Erg 1_R (5’-GTGCTGCTGCTGCTATTA-3’) 

Spi1_F  (5’-GCGCTGGCACCTTTTTGTAT-3’) 

Spi1_R  (5’-CAATAATTTTACTTGTCTTTAGTGGTTA-3’) 

Itgam_F (5’-TCTACTACCCATCTGGCTTATC-3’) 

Itgam_R (5’-TGGACTCAGCAGGCTTTA-3’) 
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Des_F  (5’-GCCACCTACCGGAAGCTACT-3’) 

Des_R  (5’-GCAGAGAAGGTCTGGATAGGAA-3’) 

Pdgfr_F (5’-GTGGTGAACTTCCAATGGACG-3’) 

Pdgfr_R (5’-GTCTGTCACTGGCTCCACCAG-3’) 

Acta2_F (5’-CCAGCACCATGAAGATCAAG-3’) 

Acta2_R (5’-TGGAAGGTAGACAGCGAAGC -3’) 

18s_F  (5’-GCCCTATCAACTTTCGATGGTAGT-3’) 

18s_R  (5’-CCGGAATCGAACCCTGATT-3’) 

 

Real-time PCR was performed according to the manufacturer’s protocol using Power 

SYBR Green (Applied Biosystems) and an Applied Biosystems 7500 Fast Real-Time PCR for 

the same targets described above. Human primer sequences are as follows:  

 

Vegfr1_F (5’-CCCTCGCCGGAAGTTGTAT-3’)  

Vegfr1_R (5’-GTCAAATAGCGAGCAGATTTCTCA-3’)  

Vegfr2_F  (5’-ATTCCTCCCCCGCATCA-3’)  

Vegfr2_R  (5’-GCTCGTTGGCGCACTCTT-3’)  

Fgf2_F  (5’-GCAGTGGCTCATGCCTATATT-3’) 

Fgf2_R  (5’-GGTTTCACCAGGTTGGTCTT-3’)  

Tgfb2_F  (5’-GCTTTGGATGCGGCCTATTGCTTT-3’)  

Tgfb2_R  (5’-CTCCAGCACAGAAGTTGGCATTGT-3’)  

Ang2_F  (5’-AGGACACACCACGAATGGCATCTA-3’) 

Ang2_R (5’-TGAATAATTGTCCACCCGCCTCCT-3’)  

Pdgf-c_F  (5’-AGGTCTTCAATCGTGGAAAGAA-3’) 

Pdgf-c_R  (5’-CAGAACCCAGCTAGTGGAATAC-3’)  

Hgf_F   (5’-GGTAAAGGACGCAGCTACAA-3’)  

Hgf_R   (5’-AGCTGTGTTCGTGTGGTATC-3’)   

C-met_F  (5’-CTGGTTCCTGGGCACCGAAAGATAAA-3’) 

C-met_R (5’-CCATTGCTCCTCTGCACCAAGGTAAA-3’)  

Pgf_F  (5’-CATGCAGCTCCTAAAGATCC-3’) 

Pgf_R  (5’-CTTTCCGGCTTCATCTTCTC-3’) 

Cxcl12_F (5’-TCTCAACACTCCAAACTGTG-3’) 



CHAPTER III 

89 

Cxcl12_R (5’-TCTCCAGGTACTCCTGAATC-3’) 

Csf3_ F  (5’-GATGGAAGAACTGGGAATGG-3’) 

Csf3_R  (5’-AAGCTCTGCAGATGGGA-3’) 

18s_F  (5’-GCCCTATCAACTTTCGATGGTAGT-3’) 

18s_R  (5’-CCGGAATCGAACCCTGATT-3’) 

 

The housekeeping gene used to normalize was 18S. The RT-PCR program consisted of an 

initial denaturation step, at 95ºC, for 10 minutes followed by 50 cycles, at 95ºC, for 15 

seconds and, at 60ºC, for 1 minute. The relative quantification was performed according to 

the comparative method (2-Ct; Applied Biosystems User Bulletin no. 2P/N 4303859), with 

non-ischemic muscle as internal calibrator. The formula used is 2-Ct =2-[Ct (sample) - Ct 

(calibrator)], where Ct (sample) =Ct (sample) –Ct (reference gene). For the internal calibrator, 

Ct=0 and 20=1. For the remaining samples, the value of 2-Ct indicates the fold change 

in gene expression relative to the calibrator. Ct value for each sample is the average of 

triplicates. 

 

Clinical Pathology and Histological Analyses 

Fifty-two weeks post-HLI, body weight was recorded and mice were sacrificed with 

anesthetic overdose. Blood was collected by cardiac puncture and assessed for complete 

blood cell count, serum biochemistry (urea, creatinine, alanine aminotransferase, 

aspartate amino transferase, alkaline phosphatase, phosphorus and albumin) and 

coagulation tests (prothrombin time, activated partial thromboplastin time, thrombin time 

and fibrinogen assay). Urine was collected by urinary bladder puncture for urinalyses.  

Necropsy was performed and several organs and tissues were collected for routine 

cytological and histopathology analysis: bone marrow smears were performed from 

flushed bone marrow (femur), and lung, liver, kidney, thymus, spleen, lymph nodes and 

long bone (femur) were collected, formalin-fixed and paraffin embedded. Hematoxylin and 

eosin-stained 3 μm sections were analyzed by a pathologist blinded to experimental 

groups.  
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RNA Isolation, Target Synthesis and Hybridization to Affymetrix GeneChips 

Total RNA was extracted using the RNeasy Micro Kit (QIAGEN) including DNase treatment. 

Concentration and purity was determined by spectrophotometry and integrity was 

confirmed using an Agilent 2100 Bioanalyzer with a RNA 6000 Nano Assay (Agilent 

Technologies, Palo Alto, CA).  

RNA was processed for use on Affymetrix (Santa Clara, CA, USA) GeneChip HuGene 1.0 ST 

Arrays, according to the manufacturer’s Whole Transcript Sense Target Labeling Assay. 

Briefly, 100 ng of total RNA containing spiked in Poly-A RNA controls (GeneChip Expression 

GeneChip Eukaryotic Poly-A RNA Control Kit; Affymetrix) was used in a reverse 

transcription reaction (GeneChip WT cDNA Synthesis Kit; Affymetrix) to generate first-

strand cDNA. After second-strand synthesis, double-stranded cDNA was used in an in vitro 

transcription (IVT) reaction to generate cRNA (GeneChip WT cDNA Amplification Kit; 

Affymetrix). 15 µg of this cRNA was used for a second cycle of first-strand cDNA synthesis 

(GeneChip WT cDNA Synthesis Kit; Affymetrix). 5.5 µg of single stranded cDNA was 

fragmented and end-labeled (GeneChip WT Terminal Labeling Kit; Affymetrix). Size 

distribution of the fragmented and end-labeled cDNA, respectively, was assessed using an 

Agilent 2100 Bioanalyzer with a RNA 6000 Nano Assay. 5 µg of end-labeled, fragmented 

cDNA was used in a 100 µl hybridization cocktail containing added hybridization controls. 

80 µl of mixture was hybridized on arrays for 17 hours, at 45ºC. Standard post hybridization 

wash and double-stain protocols (FS450_0007; GeneChip HWS kit, Affymetrix) were used 

on an Affymetrix GeneChip Fluidics Station 450. Arrays were scanned on an Affymetrix 

GeneChip scanner 3000 7G.  

 

GeneChip Data Analysis 

Scanned arrays were analyzed first with Affymetrix Expression Console software for quality 

control. Subsequent analysis was carried out using Partek Genomics Suite 6.4. Here the 8 

arrays were normalized and modeled using Robust Multichip Averaging RMA. Probe sets 

showing differential expression were determined using 1-way Analysis of Variance 

(ANOVA) with a p-value cut-off of 0.03. Expression values of these 2374 well-annotated 

genes were imported into Chipster 3.7.2. Arrays and genes were clustered using Pearson 

correlation as a distance measure and average linkage for constructing a dendrogram, 

subsequently visualized as a heatmap. Microarray data are available in the Gene Expression 
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Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE73341. Reviewer access: 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=afybsswgdfmlrsp&acc=GSE7334

1). 
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Supplementary figures 

 

Supplementary Figure 1: Perfusion recovery after exposure to different doses of IR.  

After surgical induction of unilateral HLI, both hindlimbs of C57BL/6 mice were sham-irradiated or 

irradiated with (A) 0.3 Gy, once, twice or three consecutive days (B) 0.1 Gy for four consecutive 

days (C) 0.3 Gy for seven days. Quantitative evaluation of blood flow expressed as a ratio of ISC to 

NISC limb was assessed before (Pre-HLI) and at days 0, 7, 15 and 45 post-HLI induction. At days 15 

and 45 post-HLI, blood perfusion is significantly induced in mice exposed to 0.3 Gy during seven 

days. Between-group changes were assessed by two-away repeated measurements ANOVA 

followed by Bonferroni post-hoc test (n=6 mice per group). Means ± SEM are shown. *** P < 0.001. 

ISC, ischemic; NISC, non-ischemic; Pre-HLI, before hindlimb ischemia. 

0.0 Gy 

4x 0.1 Gy 
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Supplementary Figure 2: The CD31+ cells isolated from laser capture microdissection 

microscope express consisted primarily of ECs and no myeloid nor perivascular cells 

After surgical induction of unilateral HLI, both hindlimbs of C57BL/6 mice were sham-irradiated or 

irradiated with four daily fractions of 0.3 Gy, in consecutive days and allowed to recover. At day 45 

post-HLI, gastrocnemius muscles were harvested sectioned, and stained for CD31. Individual 

endothelial CD31+ cells were and visualized, dissected and isolated using a laser capture 

microdissection microscope. To ensure that only ECs were isolated, the expression of markers 

specific for endothelium, myeloid or perivascular cells was assessed at the gene levels by qRT‐PCR 

exclusively on ECs. The cell markers Pecam1 encoding CD31, Erg and Etv2 that are specific for ECs; 

Itgam encoding CD11b and Spi1 encoding PU-1 for myeloid cells; and Des encoding Desmin, Pdgfrb 

and Acta2 encoding smooth muscle alpha-actin for perivascular cells were assessed. The relative 

mRNA levels were determined by real time qRT-PCR relative to the level of 18S RNA expression. 

Each symbol represents data obtained from isolated individual ECs pooled from one mouse and 

means ± SEM (in red) are shown from n=6 mice per group; ns, non-significant. ISC, ischemic; NISC, 

non-ischemic.  
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Supplementary Figure 3: Capillary density is not increased in the adductor muscles 

neither in response to ischemia nor upon LDIR and ECs do not present an up-regulation 

of pro-angiogenic genes.  

After surgical induction of unilateral HLI, both hindlimbs of C57BL/6 mice were sham-irradiated or 

irradiated with four daily fractions of 0.3 Gy, in consecutive days and allowed to recover. (A) At day 

45 post-HLI, quantitative analysis does not show an increase in capillary density 

(capillaries/myocyte) in irradiated ischemic adductor muscles compared to sham-irradiated 

ischemic ones. Furthermore, capillary density is not increased in adductor muscles in response to 

ischemia per se. Mixed ANOVA followed by Bonferroni post-hoc test was conducted with a within-

subject factor of ISC and between-subject factor of irradiation. Individual data and means ± SEM (in 

red) are shown from n=6 mice per group; ns, non-significant. (B) At day 45 post-HLI, the expression 

of pro-angiogenic factors and their receptors was evaluated by qRT‐PCR exclusively on ECs isolated 

from the adductor muscles. Each bar represents the relative gene expression in one animal. White 

and gray bars represent sham-irradiated and irradiated mice, respectively. Values were normalized 

to 18S to obtain relative expression levels. Results expressed as log2 fold changes between ISC and 

NISC samples demonstrated a down-regulation of the transcripts in both experimental groups. ISC, 

ischemic; NISC, non-ischemic. 
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Supplementary Figure 4: Profiles of leukocytes mobilized to ischemic muscles upon LDIR. 

After surgical induction of unilateral HLI, both hindlimbs of C57BL/6 mice were sham-irradiated or 

irradiated with four daily fractions of 0.3 Gy or 2.0 Gy in consecutive days. At day 15 post-HLI, 

analysis of CD45+ immune cells that infiltrate ischemic adductor muscles was assessed. (A) 

Representative analysis of hematopoietic CD45+ cells present in ischemic muscle as assessed by 

flow cytometry. Analysis of the accumulation of myeloid CD11b+ cells, and in particular 

macrophages (CD45+CD11b+F4/80+ cells), monocytes (CD45+CD11b+LY6C+F4/80int cells), and 

neutrophils (CD45+CD11b+Ly6Cint). The graphs show numbers of (B) total CD45+ cells; (C) 

monocytes; (D) macrophages and (E) neutrophils, isolated from ISC and NISC adductor muscles. 

Mixed ANOVA followed by Bonferroni post-hoc test was conducted with a within-subject factor of 

ISC and between-subject factor of irradiation. Individual data and means ± SEM (in red) are shown 

from n=4 mice per group; ns, non-significant. ISC, ischemic; NISC, non-ischemic. 
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Supplementary Figure 5: PTK/ZK treatment does not change the effect of LDIR in 

increasing the number of circulating EPCs or the levels of VEGF, PlGF and GCSF in plasma 

after HLI induction. 

After surgical induction of unilateral HLI both hindlimbs of C57BL/6 mice were sham-irradiated or 

irradiated with four daily fractions of 0.3 Gy, in consecutive days and allowed to recover. Two hours 

before each irradiation, ischemic mice were pretreated with PTK/ZK (100mg/Kg) or with the control 

vehicle. (A) Quantitative analysis of EPCs in peripheral blood demonstrated no differences at day 4 

in irradiated mice pretreated with PTK/ZK vs irradiated mice pretreated with the control vehicle. As 

expected a significant increase of EPC at day 4 post-HLI is observed in both experimental groups 

when compared to day 0 pre-HLI or when compared to sham-irradiated mice at day 4. Two-way 

ANOVA was conducted followed by Bonferroni post-hoc test with a between-subject factors of day, 

irradiation and PTK/ZK treatment (n=6 mice per group). Means ± SEM are shown. (B) The 

concentrations of VEGF, PlGF and G-CSF were measured in the plasma, at day 4 post-HLI. The levels 

of VEGF, PlGF and G-CSF are not changed in irradiated mice pretreated with PTK/ZK treatment vs 

irradiated mice pretreated with the control vehicle. Two-way ANOVA was conducted followed by 
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Bonferroni post-hoc test with a between-subject factors of irradiation and PTK/ZK pre-treatment. 

Individual data and means ± SEM are shown (in red) from n=10 or 6 mice per group; ns, non-

significant. ISC, ischemic; NISC, non-ischemic; Pre-HLI, before hindlimb ischemia. 

 

Supplementary Figure 6: In the absence of HLI, LDIR per se do not increase the number of 

circulating EPC. 

Both hindlimbs of C57BL/6 mice were sham-irradiated or irradiated with four daily fractions of 0.3 

Gy, in consecutive days. (A) A schematic illustration of our experimental design. Both hindlimbs 

are irradiated (in orange) or sham-irradiated. (B) Quantitative analysis of EPCs in peripheral blood 

demonstrated no differences at day 4 in irradiated mice and at day 6 in sham-irradiated mice when 

each group is compared to the percentage at day 0, before irradiation. Two-way ANOVA was 

conducted followed by Bonferroni post-hoc test with a between-subject factors of day and 

irradiation. Means ± SEM are shown from n=6 mice per group; ns, non-significant. 
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Supplementary Figure 7: LDIR enhance hypoxia-induced Pgf and Csf3 expression. 

Cells were cultured with or without CoCl2 (150 µM) in normoxia to mimic hypoxic conditions and 

immediately exposed to 0.3 Gy. Eight hours post-irradiation, Pgf and Cxcl12 mRNA was quantified 

by qRT-PCR and 16 hours after Csf3. LDIR significantly increase Pgf and Csf3 mRNA expression. Two-

way ANOVA was conducted followed by Bonferroni post-hoc test with a between-subject factors of 

irradiation and CoCl2 treatment. Individual data represent the fold change in gene expression 

relative to the internal calibrator (−CoCl2) in three independent experiments. Individual data and 

means ± SEM are shown (in red); ***P < 0.001; ns, non-significant. 
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Supplementary Figure 8: The exposure of the ischemic niche to LDIR is critical for the 

increase of cytokines, mobilization of EPCs and collateral formation. 

After surgical induction of unilateral HLI, C57BL/6 mice were irradiated but not in the ischemic niche 

with four daily fractions of 0.3 Gy, in consecutive days. As a control C57BL/6 mice were sham-

irradiated. (A) A schematic illustration of our experimental design. After unilateral HLI 

(represented by a thick brown line), the flow to the ischemic limb is dramatically decreased (in 

blue). Mice are irradiated (in orange) or sham-irradiated but both hindlimbs are not exposed to 

LDIR. (B) Quantitative analysis of EPCs in peripheral blood demonstrated no differences at day 4 in 

irradiated mice and in sham-irradiated mice when compared to the percentage at day d0 pre-HLI.  

Two-way ANOVA was conducted followed by Bonferroni post-hoc test with a between-subject 

factors of day and irradiation (n=6 mice per group). Means ± SEM are shown. (C) The concentrations 

of VEGF, PlGF, G-CSF, and SDF-1α were measured in the plasma, at day 4 post-HLI. The VEGF, PlGF, 

G-CSF and SDF-1α concentrations are not changed by LDIR after HLI induction (n = 10 mice per 

group; for VEGF, PlGF, G-CSF values assumed normal distribution and equal variance and 

independent two-tailed t-test was used; for SDF-1 values not assumed normal distribution, Mann-

Whitney test was used). (D) Data are represented as the percentage of collateral vessel density 

(CVD) increase of the ISC limb relatively to the NISC one. At day 45 post-HLI, no difference in CVD 

upon LDIR was observed. (n=6 mice per group; values assumed normal distribution, equal variance 

and independent two-tailed t-test was used). (C, D) Individual data and means ± SEM (in red) are 

shown; ns, non-significant. Pre-HLI, before hindlimb ischemia; ISC, ischemic; NISC, non-ischemic. 
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Supplementary Figure S9. Confocal and widefield images of the same ten-micron-thick 

section show that green and red fluorescent signals belong to the same cells.  

(A) corresponds to a widefield image acquired with a 20x/0.8 objective on a Zeiss Axiovert 200M 

microscope, with the same acquisition settings that were used for the images in Figure 5C. (B) 

corresponds to the same section imaged on a Zeiss LSM 880 confocal microscope with a 63x/1.4 oil 

immersion objective, with the pinhole set to 1 Airy unit (optical slice thickness = 0.7 micron). Notice 

that even when imaging a single plane, cells show both green and red signals.  
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Supplementary Figure S10. Representative microphotographs of selected organs and 

tissues from sham-irradiated mice and mice irradiated with LDIR. 

No significant changes were observed for liver (A), lung (B) and kidney (C); and no signs of 

immunotoxicity, altered cell distribution/density or neoplasia were seen in lympho-hematopoietic 

organs, namely thymus (D), spleen (E) and bone marrow (F). Hematoxylin and eosin stain; original 

objective magnification 5x (upper panels) and 40x (lower panels).  
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Low-dose ionizing radiation promotes neovascularization in 

experimentally induced diabetic mice subjected to hindlimb 
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Abstract 

Lower limb ischemia is a major health problem. Due to the absence of effective treatment 

in the advanced stages of the disease, limb amputation is required. Recently, we 

demonstrated that low-dose ionizing radiation (LDIR) induces therapeutic 

neovascularization in a pre-clinical model of hindlimb ischemia (HLI). Accordingly to our 

previous data, LDIR induces angiogenesis and arteriogenesis and consequently improves 

blood perfusion in a mice model of HLI. Since almost 50% of the patients with limb ischemia 

are diabetic, in this work we assessed whether LDIR induces neovascularization in response 

to HLI in diabetic mice. Our results suggest that LDIR promotes blood perfusion and 

increases both capillary and collateral densities in diabetic ischemic mice. However, further 

studies are needed to propose the use of LDIR as an innovative pro-angiogenic strategy in 

the treatment of critical limb ischemia in diabetic patients. 

 

Keywords 
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Introduction 

Peripheral arterial disease (PAD) is characterized by lower limb arterial obstruction due to 

atherosclerosis. From a pathophysiologic perspective, PAD can be classified as functional 

or critical. While the functional ischemia occurs when blood flow becomes insufficient 

during exercise but is normal at rest, the critical one occurs when blood flow is insufficient, 

even at rest, and is typically characterized by the presence of trophic lesions in the feet or 

pain while resting. The prevalence of PAD is increasingly recognized as a health burden 

worldwide. Diabetes, smoking, dyslipidaemia and hypertension are important risk factors 

for PAD. Decreasing these risk factors may improve the prognosis1,2. The severity of the 

symptoms is dependent on the extent of the obstructive process and collateral circulation2. 

It is known that after being diagnosed with PAD, 25% of the patients will have a worsening 

ischemic condition with 5 to 10% progressing to critical limb ischemia (CLI). CLI patients 

have chronic ischemic rest pain, ulcers or gangrene. It is the end-stage of PAD and occurs 

when blood flow and distal perfusion pressure are insufficient to satisfy the nutritive needs 

of the limb at rest. CLI is associated with endothelial dysfunction, white blood cell activation 

and inflammation2-4. The primary goals of the treatment of CLI are to relieve ischemic pain, 

heal ulcers, prevent limb loss, improve patient function and quality of life and prolong 

overall survival. However, approximately 20%–30% of patients with CLI can not be treated 

with conventional techniques and still require amputation5. Currently, amputation 

continues to be the recommended solution to the disabling symptoms, even when 

associated with morbidity and mortality2,3.  

 

Almost 50% of the patients with limb ischemia have diabetes and this factor increases 

approximately 3- to 5-fold the risk of PAD6. Furthermore, the duration of diabetes and use 

of insulin are associated with increased risk. PAD is more aggressive in patients with 

diabetes than in non-diabetic ones. This finding is probably due to diabetes-associated 

sensory neuropathy, microangiopathy, and infection, as well as a specific pattern of PAD 

affecting more-distal arteries with fewer possibilities for revascularization. The need for a 

major amputation is 5 to 10 times higher in patients with diabetes than in individuals 

without diabetes2. In patients with CLI, progression to gangrene occurs in 40% of diabetics 

when compared to 9% of non-diabetic patients7. Further, limb salvage rates in diabetic 
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patients with CLI have been reported to be lower than in non-diabetic ones, being diabetes 

an independent risk factor for postoperative amputation and complications in CLI2.  

Diabetes is a metabolic disorder of multifactorial etiology characterized by chronic 

hyperglycemia and changes in the metabolism of carbohydrates, lipids and proteins, 

resulting in absolute or relative impairment of insulin secretion and/ or reduction of its 

biological activity8. This disease is associated with a marked impairment in collateral 

formation. However, angiogenesis is markedly increased in several vascular beds in this 

disease, particularly in retina. This pathological angiogenesis is linked to an excess of 

growth factors production, such as VEGF. Diabetes is also correlated with peripheral 

neuropathy and decreased resistance to infection, which leads to an increased risk of foot 

ulcers and infections2,8. We previously showed that LDIR (lower or equal to 0.8 Gy) induces 

a pro-angiogenic phenotype in ECs in vitro, and promote angiogenesis in vivo during 

regeneration9. Moreover, we recently found that 0.3 Gy, administered during 4 

consecutive days, induces angiogenesis and collateral development and thereby improves 

blood perfusion in experimentally induced hindlimb ischemia (HLI)10. In the present work, 

we aim to demonstrate that LDIR also promotes neovascularization in diabetic mice after 

HLI induction. The obtained results may have the potential to propose an innovative 

strategy using LDIR for pro-angiogenic therapy, which could provide a significant 

contribution to the management of CLI disease. 
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Methods 

Study Approval 

All animal experiments were performed according to EU regulations and approved by the 

Animal Ethics Committee of Instituto de Medicina Molecular (iMM) and by the Direção 

Geral de Alimentação e Veterinária (DGAV; license number 023861/2013). The animal 

facility of iMM complies with the Portuguese law for the use of laboratory animals 

(Decreto-Lei 113/2013); and follows the European Directive 2010/63/EU and the FELASA 

(Federation of European Laboratory Animal Science Associations) guidelines and 

recommendations concerning laboratory animal welfare. 

 

Mice and Reagents 

Eleven-week-old C57BL/6 female mice, purchased from Charles River Laboratories, Spain, 

were used in all HLI experiments. Mice were group-housed in filter-top cages under 

controlled conditions (22±2°C; 12h light/12h dark cycle) and with ad libitum access to water 

and chow.  

Briefly, for the HLI procedure and in vivo imaging, animals were anesthetized by 

intraperitoneal (i.p.) injection with a mixture of ketamine (75 mg/Kg BW; Imalgene1000, 

Merial, France) and medetomidine (1 mg/Kg BW; Domitor, OrionPharma, Espoo, 

Finland). The anaesthesia was reverted with atipamezole (5mg/kg BW, i.p.; Antisedan, 

OrionPharma). Postoperatively, analgesia was administered for pain relief purposes 

(buprenorphine 100 μl/15-30 g BW q8-12 h; Bupaq, RichterPharma AG,Wels, Austria ) 

and the animals were closely monitored until the end of the experiments. Mice were 

euthanized by cervical dislocation. 

 

Diabetes Induction  

Streptozotocin (STZ) (50 mg/Kg) (Sigma) was administrated daily by i.p. injection during 5 

consecutive days and glucose levels were measured 7 days after. Mice with glucose levels 

above 300 mg/dL were considered diabetic. In some experiments (collateral and capillary 

density at 30 days post-HLI), glucose levels were controlled with administration of 1U of 

Insulin Glargine (Lantus Solostar 5064571)11,12. 
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HLI Model 

A surgical procedure was performed to induce unilateral HLI in the mice. Briefly, an incision 

in the skin overlying the thigh of the right hindlimb of each mouse was made and the distal 

external iliac artery and the femoral artery and veins were ligated and excised. The vein 

was ligated both to increase the severity of the ischemia as well as to increase the technical 

reproducibility of the model, since isolation of the femoral artery alone often results in 

tearing of the vein and consequent hemorrhage.  Animals were kept on a 37°C heating pad 

during surgery and recovery period. 

 

Irradiation 

The radiotherapy plan was devised on a dedicated 3D treatment planning system (XiO, 

Elekta) using an isocentric dose distribution of two opposite fields (0°, 180°) at 6 MV photon 

energy, normalized to a reference point. Ionizing radiation was delivered, at room 

temperature, using a linear accelerator that produces X-rays photon beam (Synergy S, 

Elekta) operating at a dose rate of 500 MU/min. 

Anesthetized mice were transferred to an acrylic phantom in order to achieve the adequate 

thickness to improve homogeneity during the radiation therapy. A computed tomography 

scan (Somatom Sensation, Siemens) was performed and a volumetric acquisition was 

carried out. Acquired images were reconstructed with axial slices of 2 mm width, and cross 

sectional data was transferred to the image processing system work station for contouring 

the planning target volume. 

A 0.6 cm3 PTW farmer ionizing chamber, connected to UNIDOS electrometer, was used to 

validate the IR doses calculated by the treatment planning system (TPS), according to the 

IAEA TRS-398 protocol. We obtained, in average, differences lower than 2% between the 

experimental and the XiO TPS dose values. The irradiation field included mice entire legs 

(pelvic girdle down to the feet) or the upper (above hip) part of the mouse body with a 

single-daily dose of 0.3 Gy administered for four consecutive days, starting 12 hours after 

ischemia induction.  Control mice were sham-irradiated (0.0 Gy) following the same 

procedure as for the irradiated experimental groups. The irradiation procedure was 

performed in a non-blinded manner. During this protocol the mice were anesthetized. 
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Laser-Doppler Perfusion Imaging 

The laser-Doppler perfusion imager (MoorLDI-V6, Moor Instruments Ltd, Axminster, UK) 

was used to assess limb perfusion. Hair was removed one day before laser Doppler analysis 

using an electrical shaver followed by depilatory cream. Blood flow was measured both in 

the ischemic and non-ischemic legs, before HLI induction (pre-HLI), immediately post-HLI 

(post-HLI), and at days 7, 15 and 21 post-HLI (d7 Post-HLI, d15 Post-HLI and d21 Post-HLI, 

respectively). According to the analysis performed immediately post-HLI, mice were 

randomized assuring an equal reduction of blood flow in the different experimental groups. 

Color-coded images of tissue perfusion were recorded: poor or no perfusion was displayed 

as darkblue, and the highest perfusion level was displayed as red. Mean flux values were 

calculated using the Moor LDI V5.3 image processing software. To account for variables, 

such as temperature and ambient light, blood perfusion was expressed as the ratio of 

ischemic to non-ischemic limb. The mice were kept on a 37°C heating pad to reduce heat 

loss during measurements.   

 

Immunohistochemistry (IHC) and Capillary Density Analysis 

Mice were sacrificed at day 30 post-HLI. The gastrocnemius muscle of both legs were 

harvested, placed in transverse orientation on a small cork disc with the help of 10% 

tragacanth (Sigma, Steinheim, Germany), snap frozen in liquid nitrogen cooled isopentane 

and stored at -80°C until sectioned. Seven-micrometer thick sections were cut on a cryostat 

(Leica CM 3050S, Nussloch, Germany), mounted on glass slides (Menzel-Glaser Super frost® 

Plus; Thermo Scientific, Braunschweig, USA) and then processed to IHC to stain ECs with 

anti-CD31 antibody (Pharmingen). After fixation in acetone, for 10 minutes, hydrogen 

peroxidase (0.3% diluted in methanol) was added, for 30 minutes, followed by 2 washes in 

PBS, for 10 minutes. Blocking solution (5% rabbit serum in PBS) was applied, for 30 minutes, 

and then slides were incubated, for 1 hour, with rat monoclonal antibody against mouse 

CD31 at 1:500, diluted in PBS-1% BSA. After 3 washes in PBS, for 30 minutes, a secondary 

biotinylated rabbit anti-rat IgG antibody (Vectastain ABC kit; Vector Laboratories, Inc, 

Burlingame, CA) was added at 1:200 in PBS-1% BSA plus 5% rabbit serum, for 30 minutes. 

Washes were performed as before and labeled the avidin-conjugated peroxidase complex 

(Vector Laboratories, Inc) was used for color development, according to the manufacturer’s 
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recommendations. After PBS washing (3 times of 5 minutes each), DAB peroxidase 

substrate kit (Vector Laboratories, Inc) was added, for 5 minutes, to localize the immune 

complexes. The sections were counterstained with Harri's Hematoxylin solution (Bio-

Optica, Milan, Italy), for 10 seconds, to visualize nuclei and then mounted with Entellan 

(Merck Millipore). Omission of the primary antibody was run in parallel as negative control. 

All procedure was performed at room temperature. Tissue samples were observed with a 

Leica DM2500 upright brightfield microscope (Leica Microsystems,) using a 10X objective 

and images acquired with a digital camera Leica DFC420 (Software Leica FireCam version 

3.4.1;). Capillary densities, i.e. number of capillaries per number of muscle fibers, were 

measured in 2 sections with 200 µm apart. In each section, 4 distinct anatomical areas were 

measured using the ImageJ1.48 software.   

 

Contrast Agent Perfusion and Diaphonization 

Thirty days post-HLI induction, when mice were well stabilized from the ischemic injury, 

they were deeply anesthetized and the torso and limbs were shaved. A medial thoracotomy 

was performed to expose the heart, after which a needle (26 Gauge), attached to an 

automatic injector, was introduced in the left ventricle. An incision was performed in the 

right atrium to allow venous drainage. Mice were primarily perfused with heparinized 

serum (Braun) (3000 IU/L) until the blood was completely removed from circulation. A 

vasodilatation mixture of adenosine (3.7 µmol/L) and papaverine (11.8 µmol/L) was 

subsequently administered, for 2 minutes, just before the contrast agent, which consisted 

of a mixture of barium sulfate (50%) and gelatin (5%). This solution was kept warm until 

the injection time to avoid thickening. Contrast agent was perfused manually until the feet 

blanched. Immediately after the injection, mice were transferred to a cold chamber to 

allow the solidification of the contrast agent. All the solutions were injected with a 

perfusion rate of 0.01 cm3/s. Then, the skin of each mouse was removed from the lower 

body and diaphonization was performed by using a modified version of Spalteholz 

technique. Briefly, mice were fixated, decalcified, whitened, washed, dehydrated by freeze 

substitution and placed into a vacuum pump with Spalteholz solution (benzyl benzoate and 

methyl salicylate), until transparency was acquired. Diaphonization allows the visualization 

of effective lumen diameter, vessel angulation and emergence position.  
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Collateral vessels quantification 

In order to achieve a homogenous density between the tissues and the media, with minimal 

absorption or reflection of light, mice were kept in Spalteholz solution during image 

acquisition. Mice entire limbs were photographed in a magnifier with a light source. After 

acquisition, images were aligned and stitched together using Adobe Photoshop CS6 and 

entire limb photographs were obtained. Collateral vessels were manually segmented by 

highlighting, using Adobe Photoshop CS6. According to Longland’s definition, collateral 

vessels were considered a defined stem-, mid- and re-entrant zone. According to this 

definition, collateral vessels with a diameter between 20 and 300 µm were included in our 

quantification, excluding femoral, saphenous and popliteal arteries and all venous 

structures. Since arteriogenesis primarily occurs around the occluded blood vessel 

segment, the region of interest (ROI) in every mouse was in the same anatomic region as 

in the adductor, surrounding and bellow the surgical occlusion. Collateral vessel density 

(CVD) was quantified in equivalent ROIs corresponding to 20% of the total limb area. The 

CVD was calculated as the ratio between the vascular and the ROI areas. All density 

measurements were performed using ImageJ® software. To exclude variations in the 

anatomy, perfusion or diaphonization procedures, the CVD value of the non-ischemic limb 

for each mouse was assumed to correspond to 100%. According to this assumption, the 

CVD percentage in the ischemic limb was calculated relatively to the non-ischemic one. The 

percentage of CVD increase was determined as the difference between the CVD percentage 

among the ischemic and non-ischemic limbs.  

 

Statistics 

Experimental results are shown as the mean ± SEM. Data were analyzed with SPSS 20.0 

software for Windows. Statistical test employed are detailed described in figure legends. 

The different analyses were performed in a blinded manner. 
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Results 

LDIR increase perfusion recovery and capillary and collateral densities in 

diabetic mice 

Diabetes were induced with STZ in order to evaluated the effect of LDIR in the restoration 

of blood flow in a diabetic model. Our preliminary experiments using a diabetic model 

showed that animals presented high glucose levels (600 mg/dL), lost body weight and most 

of them also presented signs of cachexia. No differences between ischemic and non-

ischemic muscles were observed, even for the sham-irradiated group, which suggests that 

capillary density is not increased in response to ischemia in diabetic mice. In order to 

stabilize the glucose levels during the experiments and minimize side effects, insulin 

Gargine was administrated whenever mice presented glucose levels higher than 300 

mg/dL. 

Blood flow was analyzed before and after STZ administration to evaluate whether this 

compound per se modulates blood perfusion. Our results shown that STZ does not affect 

blood flow in mice, since values were similar in both experimental groups (Figure 1A). Then, 

by using a model of HLI, diabetic mice were irradiated or not (sham-irradiated) with daily 

fractions of 0.3 Gy, for four consecutive days and perfusion was measured overtime. As 

shown in Figure 1B and quantified in Figure 1C, a dramatic reduction in blood flow was 

observed in the ischemic limb immediately after surgery, in comparison with the 

contralateral limb, and as expected, a gradual improvement in perfusion was observed 

overtime. Interestingly, the blood flow recovery significantly increased in irradiated 

diabetic mice when compared to sham-irradiated ones at 7, 15 and 21 days post-HLI. These 

results demonstrate a benefit of LDIR in diabetic mice with HLI induction. Subsequently, we 

quantified capillary density and collateral vessel development in hindlimb muscles, since 

blood flow recovery depends on both angiogenesis and arteriogenesis. In order to quantify 

the capillary density, diabetic mice were sacrificed at day 30 post-HLI and gastrocnemius 

muscles were collected. Our results showed that capillary density in irradiated ischemic 

muscles was increased when compared to sham-irradiated ones. Also as expected, sham-

irradiated ischemic muscles showed an increase in capillary density when compared to 

their contralateral non-ischemic muscles (Figure 1D). The CVD was evaluated, at day 30 

post-HLI. Mice were diaphonized and an equivalent ROI, corresponding to 20% of the limb 
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area, was selected for CVD quantification. A greater increase in CVD was observed for the 

ischemic limbs of mice exposed to LDIR, versus the sham-irradiated ones (Figure 1E). 

Noteworthy, no difference in these parameters was seen in non-ischemic muscle, either 

exposed to LDIR or sham-irradiated, showing that irradiation per se does not have an effect 

on resting vasculature.  

 

Figure 1. LDIR increases perfusion recovery, capillary and collateral densities in diabetic 

mice.  

After diabetic and surgical induction of unilateral HLI, both hindlimbs of C57BL/6 mice were sham-

irradiated or irradiated with daily fractions of 0.3 Gy, for four consecutive days, and allowed to 

recover. (A) Representative laser Doppler flow images pre- and post- STZ induction (B) 
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Representative laser Doppler flow images pre-HLI, and at days 0 (d0), 7 (d7), 15 (d15) and 21 (d21) 

post-HLI induction. (C) Quantitative evaluation of blood flow expressed as a ratio of ISC to NISC limb 

demonstrated significantly enhanced limb blood perfusion in irradiated mice vs sham-irradiated 

ones both at days 7 (d7), 15 (d15) and 21 (d21) post-HLI. Changes between groups were assessed 

by two-way repeated measurements ANOVA followed by Bonferroni post-hoc test (n=5 mice per 

group). Means ± SEM are shown. (D) Quantitative analysis revealed increased capillary density 

(capillaries/myocyte) in irradiated ischemic gastrocnemius muscles compared with sham-irradiated 

ischemic ones at day 30 post-HLI. Mixed ANOVA followed by Bonferroni post-hoc test was 

conducted with a within-subject factor of ISC and the irradiation factor between-subject (n=3 mice 

per group).  (E) Data are represented as the percentage of collateral vessel density (CVD) increase 

of the ISC limb relatively to the NISC one. At day 30 post-HLI, irradiated mice presented significantly 

higher CVD increase (%) versus sham-irradiated mice. Unpaired two-tailed t-test was performed. 

Values are represented as means ± SEM (n=3 mice per group). *P < 0.05; ** P < 0.01; HLI, hindlimb 

ischemia; ISC, ischemic; NISC, non-ischemic; Pre-HLI, before hindlimb ischemia; Pre-STZ, before STZ 

administration; post-STZ, after STZ administration. 
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Discussion 

CLI represents the most severe clinical manifestation of PAD. This disease involves a severe 

disturbance of both macro and microcirculation. Patients with diabetes have 3 to 5 times 

increased risk of suffering from PAD. The lack of available medical therapy for patients with 

CLI implies that many patients may face amputation as the sole therapeutic option2. 

Amputation is associated with high morbidity and mortality. Therefore, novel therapies are 

required to treat these patients. Therapeutic angiogenesis aims to induce, augment and 

control the host angiogenic response in order to re-vascularize the ischemic tissues.  

Experimental studies are encouraging, while the randomized controlled clinical trials have 

produced less consistent results13.  

We have previously found that LDIR induces angiogenesis. It promotes EC proliferation and 

migration, accelerating wound healing and thereby inducing angiogenesis in vitro and in 

vivo9. Moreover, recently published results show that LDIR promotes therapeutic 

neovascularization in an experimental model of HLI10. In the present work, we aimed to 

validate these results in a diabetic mice model of HLI. Thus, after surgical induction of 

unilateral ischemia, both mouse hindlimbs were irradiated with daily fractions of 0.3 Gy, 

administered during four consecutive days, and a significant increase of blood perfusion 

and capillary and collateral densities was observed.  

However, it is important to refer that the glucose levels were not stable after inducing 

diabetes by STZ administration. Accordingly, we found that in long term evaluations, it is 

crucial to administrate insulin after diabetes induction in order to prevent glucose levels 

higher than 300 mg/dL and consequently minimize the side effects. Our results also suggest 

that the angiogenic response to HLI is affected by the glucose levels, since mice presenting 

high glucose levels (600 mg/dL) and consequently signs of cachexia, did not show an 

increase in capillary density in response to ischemia. Moreover, independently of insulin 

administration in the course of the experiment, an evaluation of diabetic mice during 4 or 

more weeks is very difficult to achieve due to the high mortality rate observed in this 

experimental model, either with or without the LDIR stimuli or ischemia induction and/or 

recovery. On the other side, the sacrifice of the animals could not be performed before 30 

days post-HLI, since the muscles must be recovered and the putative presence of 

adipocytes that characterize the regenerative phase impedes the measurement of the 

capillary density. Similarly, the assessment of arteriogenesis should only be performed 
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after regeneration, when collateral density is already developed and stabilized. To 

overcome the main limitations of the designed model further studies using a larger number 

of animals are required.  

Overall, we believe that this work has the potential to propose a new strategy for 

angiogenic therapy using LDIR, providing a significant contribution to CLI disease 

treatment, particularly in diabetic patients.  
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Concluding Remarks and Future Perspectives  

The circulatory system is a network of specialized blood vessels that carry oxygen and 

nutrients to the organs and tissues of the body1. Diseases of the vascular system, including 

peripheral, cardiac and cerebrovascular diseases, pose a major health burden2. More than 

25 million people have PAD in Europe and The United Stated and its incidence has been 

increasing3. Particularly, PAD is characterized by the narrowing of blood vessels, which 

leads to impaired blood supply to the organs4. PAD may first exist without symptoms, but 

with further progression it may lead to intermittent claudication and advanced disease is 

characterized by pain at rest and ulceration or gangrene of ischemic tissues5. 

Approximately 1% of patients with PAD presents this advanced state of disease resulting in 

CLI with serious prognosis3. Thus, CLI is considered the “end stage” of PAD6. Furthermore, 

in case of CLI, options for vascular interventions, such as stenting or bypass surgery, 

become limited and amputation of ischemic toes, foot or limbs remains the only option in 

50% of patients with CLI within 1 year, because of insufficient response to treatments5. 

Consequently, the development of alternative therapeutic strategies for these high-risk 

patients is strongly needed.  

The concept of “therapeutic angiogenesis”, which can be induced by the delivery of specific 

proteins, genes or cells to ischemic tissue, offers the possibility of blood flow recovery in 

ischemic limbs. Despite substantial evidence of its efficacy in preclinical studies, as well as 

some promising phase I/II human trials, larger randomized clinical trials of angiogenic 

therapies for CLI have been negative. Moreover, there is insufficient knowledge about 

angiogenic agents, namely regarding dose, frequency of administration and method of 

delivery in patients with CLI7. 

 

Therefore, the present PhD thesis aimed to contribute with new insights into therapeutic 

angiogenesis/neovascularization using LDIR as novel strategy for HLI (Chapter III) as well as 

for diabetes associated with HLI (Chapter IV), using mouse models.  

 

In our first data (Chapter III), we show that LDIR synergized with HLI significantly enhances 

blood perfusion, capillary density in gastrocnemius muscle and collateral vessel 

development. Furthermore, we observe that in vasculature not subjected to ischemic 

injury, capillary and collateral densities in irradiated mice are similar to those found in the 
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sham-irradiated ones, suggesting that in non-pathological conditions LDIR per se does not 

have an effect in vascularization. These data are in agreement with our previous results 

where the inter-ray capillary density was not changed by LDIR after irradiation of an intact 

zebrafish caudal fin8. However, when caudal fin was amputated at mid-fin level, we 

demonstrated that LDIR significantly increases the inter-ray capillary density. According to 

our finding, we may hypothesize that LDIR shifts the angiogenic balance towards activation, 

being this effect dependent of the state of the balance. If in equilibrium, LDIR alone does 

not tip the balance towards angiogenesis. However, if the balance is deregulated by 

ischemia, a daily dose of 0.3 Gy, administered for 4 consecutive days, tilts the balance in 

favor of angiogenesis in a HLI mice model.  

In order to understand which genes were significantly modulated by LDIR, a gene 

expression array was carried out and candidates associated with a pro‐angiogenic response 

were analyzed. Our molecular results showed that the expression of several pro-angiogenic 

genes including, Vegfr2, Vegfr1, Fgf2, Angpt2, Pdgfc, Tgfb2, Hgf and Met were clearly up-

regulated in ECs isolated from mice muscle subjected to HLI, when comparing with the 

contralateral limb exclusively exposed to LDIR. The ability of LDIR to increase the expression 

of the pro-angiogenic genes repertoire in endothelium from the ischemic limb suggests a 

pro-angiogenic response. LDIR modulates the gene expression of molecular mediators 

involved in the angiogenic response. It is described that the activation of VEGFR2 leads to 

a rapid activation of different cellular proteins and consequently to de novo mRNA and 

protein expression of mediators involved in the angiogenic response8. Although some of 

these pro-angiogenic genes are frequently used in clinical trials, only one or two are often 

reported, while here we achieved a “cocktail” of angiogenic factors, which may be a 

therapeutic advantage. 

 

The angiogenic potential of ionizing radiation has already been shown for doses equal to 

or above 2 Gy9,10.  A study from Heissing lab demonstrated an increase in vascular 

regeneration using doses of ionizing radiation between 2-10 Gy through recruitment and 

activation of mast cells9. Moreover, Thanik at al showed that a single dose of 5 Gy delivered 

to an ischemic full-thickness cutaneous flap improves vascularity. This study suggests that 

ionizing radiation creates a stimulus for systemic response leading to pro-angiogenic 

effects10. In addition, we have shown that a lower ionizing radiation dose (0.8 Gy) also 
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improves angiogenesis by promoting EC proliferation and migration, accelerating wound 

healing8. These doses, lower than the conventional ones used in radiotherapy, have been 

particularly used in the treatment of benign diseases, due to the anti-inflammatory 

properties of ionizing radiation11. Doses of 0.5 Gy/fraction are especially efficient at the 

beginning of the inflammatory process, characterized by vasodilatation, edema and 

leukocyte infiltration. Data from inflamed and ischemic tissues show that ischemia per se 

increases the immune CD45+ cell infiltrate. However, in our results exposure to 0.3 Gy 

during four consecutive days significantly inhibited the CD45+ cell accumulation, with 

particular effect on monocytes, macrophages and neutrophils. On the other hand, with 

doses of 2.0 Gy during four consecutive days the total CD45+ accumulation in ischemic 

muscle was still reduced; although numbers of monocytes and macrophages were restored 

but neutrophils were not. These results corroborate previous studies that describe ionizing 

radiation with both pro- and anti-inflammatory properties12. Moreover, these properties 

depend on the dose of ionizing radiation, since LDIR (<1 Gy) reveals anti-inflammatory 

properties while doses higher than 2 Gy exert pro-inflammatory effects13.  

 

Besides the use of ionizing radiation as a potential angiogenic therapy, other strategies 

have emerged. Several years ago, a step forward was taken in the understanding of the 

mechanisms of neovascularization. In 1997, Asahara et al identified a class of bone marrow-

derived circulating EPCs that contribute to vasculogenesis in ischemic tissue. After that, the 

term “therapeutic neovascularization” was no longer restricted to angiogenesis, but 

included postnatal vasculogenesis as well.  EPCs are primitive bone marrow cells with the 

capacity to proliferate, migrate and differentiate into ECs. During the last two decades, 

several studies have demonstrated the capability of EPCs to reduce ischemic damage 

effects14,15. Based on the literature, we also know that EPCs enhance collateral formation16. 

EPC recruitment to sites of arteriogenesis is regulated either by interactions between SDF-

1 and its receptor or by several factors secreted by EPCs, both contributing to collateral 

formation17,18.  Studies from Shintani et al show that cells derived from BMNCs contributed 

to collateral formation, detected by angiography in a rabbit model of HLI 19. 

Our work validates previous studies reporting that EPCs are present in the systemic 

circulation and are augmented in response to ischemic damage20,21. Our results also show 

that LDIR, synergistically with HLI, enhances the response of EPCs. It is known that the 
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mobilization of EPCs involves a complex cytokine system. In this way, our results confirm 

that, in response to HLI induction, the concentration of VEGF, PIGF and G-CSF is significantly 

increased in the plasma upon LDIR exposure. This cytokine gradient contributes to the 

mobilization and incorporation of EPCs into ischemic tissues after LDIR exposure and may 

explain the increase in collateral density observed in our work. However, in the absence of 

ischemia, LDIR per se does not induce that effect, suggesting that the pre-existence of an 

ischemic tissue/damage is critical for the mobilization of EPCs upon irradiation. The use of 

EPCs has also been successfully tested in other ischemic diseases. Jackson et al 

demonstrated the incorporation of labeled EPCs in regions of myocardial infarction and22 

Grant et al also demonstrated that the recruitment of EPCs to sites of ischemic injury plays 

a significant role in neovascularization using a mouse model of retinopathy23. 

Moreover, the use of EPCs-based therapies in patients affected by PAD and/or CLI emerged 

as a new approach for the treatment of ischemic conditions. In this context, results of 

several clinical studies have rapidly demonstrated the beneficial effect of autologous BM-

MNC transplantation to patients affected by ischemic diseases14,24.  

 

Nevertheless, for the success of pro-angiogenic therapy, it is essential that long-term safety 

data becomes available. Thus, experimental therapies must be administered with safety 

monitoring. Some aspects related with the impact of angiogenesis on physiological or 

pathological processes and the specific adverse effects associated with each therapy should 

be considered25. In this way, we assessed the potential toxicological effects of LDIR, and no 

significant impact on the morbidity and mortality of the mice was observed after a 52-week 

follow-up study. 

 

To complement the research work developed in Chapter III, we evaluated the potential of 

LDIR in promoting neovascularization after HLI in diabetic mice.  

The discordance between the promising preclinical studies and the disappointing clinical 

trials in angiogenic therapies may be due to problems with the animal model. The mice 

model used in these studies does not totally resemble the human pathology, since patients 

with PAD frequently have additional diseases/risk factors (such as cardiovascular 

conditions, diabetes, hypertension, tobacco). Thus, the addition of at least one of these 

factors to the animal model of HLI will have a great impact in the study of PAD, better 
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mimicking this disease. Diabetes, which is a very common disease in patients with PAD, is 

known to impair angiogenesis. Accordingly, our work shows that LDIR synergized with HLI 

significantly enhance blood perfusion, capillary density in gastrocnemius muscle and 

collateral vessel development in diabetic mice. However, regarding the use of a diabetic 

model, STZ administration for diabetes induction and associated problems together with 

animal welfare will lead us, in the future, to look for a better animal model of diabetes, 

namely transgenic mice. Also, we believe it is crucial to further validate our experimental 

work by increasing the number of animals per group. 

 

In summary, this research work proposes a model of enhanced and sustained angiogenesis 

induction by in situ LDIR administration as a promising therapeutic approach for ischemic 

diseases. LDIR applied as one daily dose of 0.3 Gy, administered for four consecutive days, 

acts synergistically with the ischemic injury, exacerbating the local pro-angiogenic 

response. Our results suggest that this is achieved through (i) increased capillary density 

accompanied by an up-regulation of several pro-angiogenic target genes in ECs localized in 

the gastrocnemius muscles, a process that is dependent on VEGF signaling and (ii) the 

mobilization and recruitment of EPCs by increasing the concentrations of VEGF, PIGF and 

G-CSF, that may explain the collateral density increase in the ischemic limb leading to blood 

perfusion improvement. We also found that, in response to HLI induction, 0.3 Gy applied 

during four consecutive days significantly promote blood perfusion, capillary and collateral 

vessel densities in diabetic mice. Therefore, our data suggest that LDIR may have clinical 

use in the treatment of CLI, particularly in the case of diabetic patients. Additionally, we 

have an ongoing exploratory clinical trial to determine the clinical and molecular effects of 

LDIR in “non-option” CLI patients. The success of this clinical trial will lead to the 

development of new trials to propose a novel and effective therapeutic tool with 

worldwide impact to PAD.    

 

Overall, the present PhD work improves the knowledge on the biological effects of LDIR, in 

a context of HLI and diabetes, and proposes an innovative and non-invasive strategy for 

pro-angiogenic therapy using LDIR. This could provide a significant contribution to the 

management of CLI disease, which will be further corroborated by the ongoing clinical trial. 
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