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Resumo 

 

 A Doença de Alzheimer (DA) é uma doença associada à idade e é uma das doenças 

neurodegenerativas com maior prevalência mundial. Esta doença causa a destruição progressiva de 

funções cognitivas e memória, levando à eventual morte do indivíduo. Um dos principais achados 

patológicos, para esta doença, são as placas extracelulares constituídas por beta amiloide (Aβ) que são 

encontradas frequentemente no cérbero de pacientes com DA. Enquanto que os mecanismos 

envolvidos na progressão desta doença permanecem desconhecidos, algumas hipóteses foram 

propostas envolvendo estas placas amiloides. Uma dessas hipótese é conhecida como a hipótese 

cascata de amiloide, e esta propõe que, através de uma cascata de eventos, a acumulação das placas de 

Aβ eventualmente resulta em disfunção neuronal e eventual morte celular. Microglia, os macrófagos 

residentes no cérbero, foram encontrados perto destas placas e já foi provado que eles têm capacidade 

de fagocitar estas placas. 

 Neste trabalho foi feita uma análise de RNA-seq em dados humanos, com o objectivo de 

comparar os perfis genéticos e de miRNA de um grupo de controle, de macrófagos polarizados para os 

fenótipos M1 e M2a e de macrófagos estimulados com Aβ. Adicionalmente, também se pretendia 

descobrir novas vias ou genes expressos em macrófagos presentes num ambiente com Aβ. Para tal, 

uma análise de expressão diferencial foi feita, tanto para os dados relativos ao mRNA como para os 

dados relativos ao miRNA. Uma análise do enriquecimento funcional foi feita para ajudar na 

compreensão dos genes diferencialmente expressos no mRNA. Por fim, uma série de testes de 

correlação foram feitos de modo a perceber o quão influente é a expressão de miRNA sobre o seu 

mRNA alvo. 

 Através da utilização de marcadores de expressão de mRNA e miRNA, foi possível verificar a 

polarização dos macrófagos para M1 e M2a. Além disso, foram descobertos alguns miRNA com alta 

expressão nos estados de polarização, que poderiam ajudar no estudo destes estados de polarização. 

Relativamente ao teste de correlação, os resultados estavam enviesados para correlações positivas 

devido a um miRNA em particular. Uma hipótese foi criada para tentar explicar esse resultado, mas 

nenhuma conclusão sólida foi alcançada neste projecto. 

 

Palavras Chave: Envelhecimento; Doença de Alzheimer; beta amiloide; Polarização de macrófagos; 

RNA-seq 
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Abstract 

 

 Alzheimer’s Disease (AD) is an age-related disease and it is one of the most prevalent 

neurodegenerative diseases in the world. This disease causes a progressive destruction of cognitive 

functions and memory, leading to the eventual death of the individual. One of the main pathological 

findings, for this disease, are the extracellular plaques of amyloid-beta (Aβ) often found in the brain of 

AD patients. Whilst the mechanisms involved in the progression of AD remain unknown, some 

hypotheses have been proposed surrounding the amyloid plaques. One such hypothesis is the Amyloid 

cascade hypothesis, and it purposes that, through a cascade of events, the accumulation of Aβ plaques 

leads to neuronal dysfunction and eventual cell death. Microglias, brain macrophages, have been 

found around such plaques, and it has been proven that they can phagocyte said plaques. 

 In this present work, an analysis of human RNA-seq data was done, aiming to compare the 

genetic and miRNA profiles of a control group, macrophages polarized towards the M1 and M2a 

phenotype, and of macrophages stimulated with Aβ. Additionally, another aim was to discover of 

novel pathways or genes expressed in macrophages in an Aβ environment. To do so, a differential 

expression analysis was done for both the mRNA and miRNA data. Functional enrichment analysis 

was done to sort the differential expressed genes for the mRNA. Lastly, a series of correlation tests 

were done in order to access the amount of influence done by the expression of miRNA to their 

mRNA targets. 

 It was possible to attest for the polarization of the macrophages into M1 and M2a, through the 

usage of mRNA and miRNA markers. Furthermore, some over-expressed miRNAs were discovered 

for the polarized states that could provide insight in to the study of this polarization states. For the 

correlation test, the results were skewed towards a positive correlation due to a single miRNA. While a 

hypothesis was constructed as to why it may have happened, no solid conclusion was achieved in this 

project thus far. 

 

Keywords: Ageing; Alzheimer’s disease; amyloid-beta; macrophage polarization; RNA-seq 
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Resumo Alargado 

 

 O envelhecimento e as doenças associadas ao envelhecimento têm sido uma grande fonte de 

estudos, devido aos seus papeis nas taxas de mortalidade na população humana. Estas doenças 

associadas ao envelhecimento podem ser cancro, doenças cardiovasculares, doenças 

neurodegenerativas, entre outras. 

 Neste trabalho, o foco principal foi o estudo da Doença de Alzheimer (DA), uma das 

principais doenças neurodegenerativas. Esta doença é caracterizada pela progressiva destruição de 

funções cognitivas e da memória, eventualmente resultando na morte do indivíduo. Actualmente, 

existem dois achados patológicos principais encontrados com frequência no cérebro de pacientes com 

DA. Um deles trata-se das placas senis, constituídas por agregados extracelulares de péptidos de 

amiloide beta (Aβ), e foi sobre estas placas que este estudo se realizou. Já foi demonstrado, em outros 

estudos, que existe uma acumulação de macrófagos residentes do cérbero, microglia, perto destas 

placas, despontando uma reacção inflamatória que inclui a tentativa de fagocitar estas placas e os seus 

resíduos, por parte destas células do sistema imunitários. No entanto, existem resultados conflituosos 

sobre o grau de digestão que as células microglia conseguem fazer deste péptido. Alguns estudos 

apontam para uma digestão apenas parcial de Aβ, enquanto que outros mostram uma digestão total. 

Em relação a macrófagos resultantes de células em circulação, estes parecem ter a capacidade de 

degradar Aβ fibrilar. 

 Macrófagos são importantes constituintes do sistema imunitário, responsáveis por fagocitar 

agentes patogénicos, produção de citocinas e quimiocinas, apresentação de antigénio, entre muitas 

outras funções. Estas células podem-se adaptar ao ambiente em que estão através da sua polarização. 

Sucintamente, a polarização pode ser realizada em dois grupos distintos, M1 ou M2. Os macrófagos 

com polarização em M1 são pro-inflamatórios, produzindo citocinas, quimiocinas e moléculas 

efectoras, recrutando outras células, entre outras funções. Células com polarização em M2 são anti-

inflamatórias, tendo um grande papel na resolução da inflamação, na reparação de tecido, na remoção 

de parasitas, entre outras.  

 Para este estudo, pretendia-se descobrir qual o efeito que o péptido Aβ tem nos macrófagos 

que o fagocitam, e como esse efeito se compara aos estados de polarização presentes nos macrófagos 

(M1/M2). Para tal, foi feita uma análise de RNA-seq sobre amostras já previamente preparadas e 

sequenciadas. Estas amostras foram preparadas através da remoção de monócitos, células percursoras 

de macrófagos, de indivíduos saudáveis. De seguida, estas foram divididas de modo a obter-se quatro 

grupos. No grupo de controlo estão presentes macrófagos que não receberam qualquer tipo de 

estímulo, no grupo M1 as células foram estimuladas pela combinação de LPS e INF-γ para obterem 

polarização M1, no grupo M2 as células foram estimuladas com IL-4 de modo a obterem a polarização 

M2a e, finalmente, o grupo Ab onde os macrófagos foram estimulados pela presença de Aβ. De 

seguida, foi retirado o mRNA e miRNA destas amostras, efectuando-se um passo de sequenciamento. 

O presente trabalho começou com um passo de alinhamento, onde se alinhou as reads obtidas a um 

genoma de referência. Depois foi realizado um passo de contagem, onde cada alinhamento é contado, 

construindo-se uma tabela que inclui o nome do gene e o número de reads que alinharam para este 

gene. Em todos estes passos, foi feita uma análise de qualidade, com o fim de se detectar algum erro 

no mapeamento e contagem. Finalmente, a análise estatística para a expressão diferencial (ED) foi 

feita. Adicionalmente, como se pretendia entender o efeito que os miRNAs têm nos respectivos genes 

alvos, realizaram-se testes de correlação entre os miRNAs detectados como expressos 
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diferencialmente e os seus genes alvos. No caso particular do mRNA, foi feita uma análise de 

enriquecimento funcional, de modo a obter informações biológicas relevantes, a partir das listas de 

genes resultante de análise de ED. 

 Em relação aos resultados obtidos para o mRNA, através da análise de qualidade feita nos 

passos de mapeamento e contagem, foi possível verificar que as bibliotecas preparadas antes de 

sequenciamento estavam contaminadas, notando-se a presença de diversas reads mapeadas para 

regiões intrónicas e não-genómicas. Assim, muitas reads acabaram por ser descartadas antes da 

análise de ED. Aquando da análise de ED, foram obtidas listas de genes considerados diferencialmente 

expressos quando se compararam todas as condições entre si. Enquanto que, as comparações com as 

amostras de controle resultaram em muitos genes com expressão diferencial para os grupos M1 e M2, 

o mesmo não pode ser dito para a comparação com o grupo Ab. Os perfis genéticos entre o grupo de 

controle e o grupo Ab foram demasiado semelhantes, proporcionando apenas um gene com expressão 

elevada nos macrófagos activados com Aβ, SOD2. Conseguiu-se, no entanto, comprovar a polarização 

bem-sucedida dos macrófagos a M1 ou M2 através da identificação de genes presentes nestes estados 

de polarização na literatura. Adicionalmente, os genes ACOD1, ANKRD22, SNX10 e RP11-44K6.2 

para a polarização em M1 e o gene CTNNAL1 para a polarização em M2 foram detectados com altos 

níveis de expressão. 

 A análise de enriquecimento funcional mostrou, para os macrófagos polarizados para M1, que 

a expressão de certos receptores e de gene associados ao processamento e apresentação de antigénio 

foi aumentada. Adicionalmente, houve o aumento de genes que participam na via de sinalização NOD, 

responsável pelo reconhecimento de estruturas bacterianas e produção de citocinas. Quando foi 

considerado o grupo M2, esta análise demonstrou o aumento de expressão de genes associados a 

receptores e imunidade adaptativa. Adicionalmente, foram detectados diversos genes com expressão 

alta para células M2 associados a DNA housekeeping e controlo de expressão de mRNA, 

possivelmente devido as mudanças epigenéticas causadas pelo processo de polarização, e outros 

associados a interacção viral, onde esta polarização parece ter um papel mais importante que as células 

polarizadas para M1. Para os macrófagos estimulados com Aβ, estes aparentam ter uma maior 

quantidade de genes associados ao metabolismo do colesterol, quando comparados com os macrófagos 

com polarização M1, e genes associados a glicoproteínas e péptido sinais, quando comparado com os 

macrófagos com polarização M2. 

 Em relação aos resultados para o miRNA, o passo de contagem também mostrou alguns 

problemas. Neste caso, os problemas causados foram devido à natureza do miRNA. Estes pequenos 

RNA têm como função o controlo de expressão de certos genes e, para isso, a sequência de miRNA é 

semelhante a esse alvo. Assim, no passo de mapeamento, houve o mapeamento deste miRNA a 

diversos genes ao mesmo tempo, e o programa usado na contagem não consegue lidar com esses 

alinhamentos múltiplos. Em termos da análise de ED, foi obtida uma lista de miRNAs 

diferencialmente expressos tanto para o grupo M1 como para o grupo M2. Para o grupo Ab, não foram 

obtidos nenhuns miRNAs diferencialmente expressos, quando comparado com o grupo Controlo. 

Verificou-se a presença de vários miRNA, já anteriormente detectados em outros trabalhos para estes 

tipos de polarização, M1 ou M2. Adicionalmente, outros miRNAs foram detectados para estas 

polarizações, fazendo deles objectos de estudo interessantes no estudo destes estados de polarização de 

macrófagos. 

 Um script foi criado, com o objectivo de realizar testes de correlação entra a expressão de 

miRNA diferencialmente expressos e seus respectivos mRNA alvos. Os resultados mostraram o 

enviesamento dos resultados do teste para correlações positivas, sendo a origem deste enviesamento 
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um miRNA em particular.  Uma vez que os valores de expressão deste miRNA eram máximos para os 

grupos Ab e Controle e mínimos para os grupos M1 e M2, foi criada a hipótese que a difusão fosse 

resultado da polarização dos macrófagos e não do efeito do miRNA em específico. Esta hipótese foi 

testada olhando para as vias em que os genes alvos com correlação positiva participam. No entanto, 

não foi possível provar completamente esta teoria e nenhuma conclusão sólida, no que respeita a este 

enviesamento, foi alcançada neste trabalho. 

 Em conclusão, o presente projecto permitiu a identificação do gene SOD2, que poderá ter um 

papel central na resposta imunitária a Aβ. Adicionalmente, não só foi possível verificar a polarização 

bem-sucedida das células em M1 e M2, como também a identificação de genes que não são 

usualmente associados a estes estados de polarização nestas condições. Foram também identificados 

alguns miRNAs novos nestas condições de polarização, que poderão ser interessantes alvos de estudo. 
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Chapter 1: Introduction 
 

1.1 Immune systems 

 The immune system is a crucial part of the human body. It allows us to be protected against 

foreign bodies known as pathogens that threaten our normal bodily functions. As a whole, the immune 

system can be divided into two sub systems: the innate immune system and the adaptive immune 

system.  

 Innate responses are non-specific but are the faster of the two systems. It includes body 

barriers (like mucus layers over epithelia), neutrophils, monocytes, macrophages, cytokines (regulate 

function of other cells), chemokines (help recruit other cells of the immune system) among others. On 

the other hand, adaptive responses are more precise in action and include T lymphocytes and B 

lymphocytes. The antigen receptors on these cells are able to identify foreign bodies activating the 

activity of both B and T cells. The adaptive response also has the capability of retaining the “memory” 

of a previous attack, making the response in later infections faster. 

 While it may sound that both these systems are opposites, their cooperation is essential for the 

protection of the human body. The innate immune system acts the first line of defence (due to its fast 

action time) and activates the cell of the adaptive immune system, allowing for a more specific and 

effective response [1,2]. 

 

1.1.1 Macrophages 

 Macrophages were first identified by Ilya Metchnikoff, who observed the phagocytic activity 

of these cells and highlighted its importance in immunity, a fact that would earn him a Nobel Prize in 

1908 [3]. These cells are important components of our immune system, aiding in the defence against 

foreign microorganisms. However, it’s often forgotten that these cells also have a role in homeostasis, 

wound repair and embryonic development [4]. 

 In the presence of an inflammation, macrophages have multiple responses: production of 

cytokines and chemokines, phagocytic clearance of the pathogens [5], and the presentation of antigens 

in order to activate the T-cells, following said phagocytic clearance [4], to name a few. 

 Macrophages that reside in specific tissues have major differences, especially when it comes 

to their function and phenotype. For example, the microglial cells that reside in the brain are very 

different when compared to Kupffer cells that reside in the liver [6]. In regards to tissue macrophages, 

these cells can have two origins: the majority are prenatal and are independent from hematopoietic 

input, whilst the minority of them result from the infiltration of monocytes into tissue. This is usually 

because of an infection, where these monocytes are often recruited by tissue macrophages, and they 

subsequently differentiate into macrophages. This however is not always the case, seeing as different 

tissue handle their quantity of embryonic and monocyte-derived differentially. Examples of this are 

the intestines and the skin, which have a great deal of non-embryonic macrophages; and the microglia, 

which have a large quantity of embryonic cells. In some cases, monocyte-derived macrophages are 

able to replace the previous tissue macrophages [7,8].  
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1.1.2 Macrophage polarization 

 When certain environmental cues are present, macrophages can differentiate and undergo 

phenotypic change to better respond to said cues. This process is known as macrophage polarization, 

and the most common designation for these cells is M1, classically activated, and M2, alternatively 

activated. This is mirroring the polarization of T helper cells into type 1 and type 2 [9]. However, this 

definition is not fundamentally true, considering that there are macrophages with similar gene 

expression to M2 macrophages but not entirely alike. These macrophages are known as M2-like 

macrophages. M2a are the ones corresponding to the original definition and original stimuli used, 

M2b, M2c etc. are the M2-like macrophages. M2-like macrophages and their polarizing cues are 

different than that used to obtain M2 macrophages [10]. Yet, the usage of the M1/M2 paradigm should 

be done with some caution. With the existence of M2-like phenotypes, there is a possibility of a 

spectrum of polarizations, with M1 and M2 being the terminals of said spectrum [11], and so the 

categorization of only M1 or M2 ,or known M2-like phenotypes, might not be entirely correct. 

Additionally, it should be noted that this polarization, or differentiation as many authors call it, is not 

permanent and can be reversed. An example of this is the possible reprogramming of M1 macrophages 

to M2a macrophages [12]. 

 

Table 1.1: Macrophage polarization expression patterns. Genes often found expressed in M1 and M2 macrophages. FR – 

folate receptor; GR – galactose receptor; MR – mannose receptor; SR – scavenging receptor; RNI – reactive nitrogen 

intermediate; ROI – Reactive oxygen intermediate.[9,10,13–16] 

 Cytokines Chemokines Receptors Others 

M1 

TNF-α, IL-1β, 

IL-6, IL-12α, 

IL-12β, IL-15, 

IL-18, IL-23α, 

type I IFN 

CXCL1, CXCL2, 

CXCL3, CXCL5, 

CXCL8, CXCL9, 

CXCL10, CXCL11, 

CXCL16, CCL2, CCL3, 

CCL4, CCL5, CCL8, 

CCL11, CCL15, CCL20, 

CX3CL1 

CD40, CD80, 

CD86, IL1R1, 

TLR2, TLR4, 

CCR7 

MHC I/II, STAT1, 

IRF1, IRF5, IDO1, 

KYNU, GBP1, ROI, 

RNI 

M2 

(M2a) 

TGFβ, IL-10, 

IL-1Ra 

CCL1, CCL2, CCL4, 

CCL13, CCL17, CCL18, 

CCL22, CCL24 

CD23, CD163, 

CD206, CD200R1, 

CD301, IL1R2, 

IL17RB, STAB1, 

MARCO, 

ADORA3, 

TGFBR2, LYVE1, 

SR, GR, FR, MR 

MHC II, Ym1, Fizz1, 

ARG1, IRF4, SOCS1, 

GATA3, FN1, 

TGFB1, MMP1, 

MMP12, TG, F13A1, 

TGM2, ALOX15, 

MSF 

 

 

Table 1.1 provides an example of some genes expressed in M1 and M2 cells. The 

aforementioned genes are heterogeneously expressed both within and between M1 and M2 

populations, thus the term "marker" was not used when referencing them. The existence of these 
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problematic “markers” has been noticed before [13], and it is mainly due to the fact that macrophage 

polarization is a spectrum depending on stimuli. This may cause M1 cells to have different gene 

expression due to the fact that different stimuli were used, or that a M1 cell activated with a specific 

stimulus may share some “markers” with M2 cells while the rest of the family does not. Additionally, 

some of these genes are murine-only (like Ym1 and Fizz1) with no human orthologs [9] or may be 

differentially expressed when comparing two different species [13]. 

Upon the start of an infection caused by intracellular pathogens, the initial line of defence 

includes the M1 macrophages. This type of polarization is pro-inflammatory, meaning that it will work 

to heighten the inflammatory response. The presence of IFN-γ by itself, or in conjugation with certain 

products of this pathogens (LPS) or pro-inflammatory cytokines (TNF), can cause this type of 

activation.  This results in cells that produce large amounts of pro-inflammatory cytokines (IL-1β, IL-

6, IL-12, IL-18, IL-23 and TNF for example), and chemokines (CXCL1, CXCL2, CXCL3, CXCL5, 

CXCL9, CXCL10, to name a few) that aid in the recruitment of other immune cells. This includes the 

recruitment and polarization of Th1 cells, and effecter molecules such as reactive nitrogen and oxygen 

intermediates, that have strong microbicidal and tumoricidal activity. Additionally, these cells also 

have a much bigger expression of MHC II, which shows the important role of antigen presentation that 

falls upon these macrophages as well [9–11,14,17]. 

 After the infection is under control, macrophages will start to attain an M2 type of 

polarization. This anti-inflammatory polarization has a role in the resolution of inflammation (immune 

regulation), tissue remodelling and repair, angiogenesis, tumour progression, in parasite clearance and 

apoptotic cell internalization. The original M2 polarization, now classified as M2a, was discovered as 

a response to the cytokine IL-4. This polarization type has up-regulation of scavenging (CD163), 

mannose (CD206) and galactose receptors, and the arginine metabolism produces ornithine and 

polyamines. These cells have a different chemokine profile, producing CCL17, CCL22, and CCL24, 

which are involved in the recruitment of Th2 cells. Phagocytic activity is increased when compared 

with M1 cells [9–11,14,17–19]. 

 

1.2 Ageing 

 The one process of human biology, that is the most observed and yet not completely 

understood is ageing. We all experience it, being it by observing others or by experiencing it 

ourselves. This process is characterized by a functional decline, reduced homeostasis and eventual 

death that happens with age [20,21]. There are many theories that attempt to pinpoint the reason why 

this phenomenon happens. One theory is genomic instability, where external factors challenge DNA 

stability, which in return causes DNA damage. Another theory is telomere shortening, where 

progressive loss of telomeres after each cellular replication prevents further replication. Finally, a 

theory that includes cellular senescence, where cells enter permanent cell cycle arrest, also exists. 

[20,22].  

It is hypothesised that one of the major contributors to ageing and age-related diseases is cell 

senescence. Senescent cells tend to accumulate in aged-tissue [20,23,24]. As previously mentioned, 

this phenomenon is characterized by stable arrest of the cell cycle and this cells are phenotypically 

different than normal cells [20,23–25]. Replicative senescence (RS) was first documented by Leonard 

Hayflick and Paul Moorhead, and they observed that human cells in vitro could only divide a finite 

amount of times, resulting in the Hayflick limit [26]. Telomere shortening is considered by many to be 

the main cause for RS. The ends of the chromosome are called telomeres and they protect the cells' 
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DNA during replication. However, due to the nature of DNA replication and the fact that most cells do 

not possess telomerase, the enzyme that elongates telomeres, telomeres erode with each cell division. 

When a critical minimal length is achieved, it provokes a DNA damage response, which will 

eventually lead to senescence. However, there are other stimuli than can induce senescence in cells. 

DNA damage due to ROS for example, could induce senescence before even the critical shortening of 

the telomeres [20,23,24,27]. 

 Whilst senescence is thought to be one of the major players in ageing, it should not be 

forgotten that its main role is a different one. Not a malignant role that would cause the death of an 

individual, but rather one that would benefit the individual. Senescence exists to stop the propagation 

of cells that are damaged and to signal the immune system to eliminate said cells. If said cells were 

allowed to live, there would be an accumulation of mutations, which would eventually lead to the 

formation of cancerous cells. The signalling by senescence cells towards the immune system is 

accomplished due to the fact that senescence cells are capable of producing pro-inflammatory 

molecules. In aged individuals, this system may be faulty, thus resulting in the accumulation of 

senescence cells [20,25,28]. 

 Aging can affect many human systems, including the immune system. Many changes occur in 

the immune system as human beings age. In general, the adaptive response seems to be more affected, 

but both the adaptive and innate responses suffer the effects of ageing [29,30]. Macrophages in older 

individuals, for example, produce lower amounts of cytokines and have an altered expression of MHC 

II, which in turn may contribute for a poorer T cell response. Additionally, in mice, the expression of 

MHC molecules is lower, the phagocytoses process is impaired and the production of ROS is also 

lower [29,31]. Other changes can include, the smaller number of T and B cells, especially those that 

are naïve, the increase of myeloid and NK cells, a decrease in antibody production, among others 

[29,32]. 

 One consequence of ageing in immune systems is known as inflamm-aging. This term refers 

to the low levels of chronic inflammation that affects aged individuals. This phenomenon is 

characterized by the increased levels of circulating cytokines, chemokines and pro-inflammatory 

markers, and it can be associated with many age-related diseases including diabetes, osteoporosis, 

atherosclerosis, cardiovascular and neurodegenerative diseases. The cytokines IL-6, IL-1beta and 

TNF-α seem to have a major role in inflamm-aging [29,31,32]. The reason why there is such an 

accumulation of cytokines and chemokines is not fully understood. However, one hypothesis could be 

associated with the accumulation of senescent cells that happens with age. More importantly, the 

acquisition of a senescence-associated secretory phenotype (SASP), which would account for an 

increased secretion of pro-inflammatory cytokines and chemokines [31]. 

 

1.2.1 Ageing related diseases and Alzheimer’s disease 

 Ageing itself is not the major cause of death, but rather a risk factor for age-related diseases, 

the true cause of death in human populations. Diseases like cancer, cardiovascular diseases, metabolic 

syndrome, atherosclerosis and neurodegenerative diseases are taking a more prominent role as the 

leading cause of death in industrialized countries [23,24]. As a risk factor, it is possible that targeting 

ageing can possibly lead to a lower mortality rate by these aforementioned diseases. 

One of the most important neurodegenerative diseases is Alzheimer’s disease (AD). This 

disease is characterized by a progressive destruction of cognitive functions and memory. The two 
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classical, and main, pathological findings for AD are senile plaques (SP), that are extracellular 

aggregates composed of β-amyloid (Aβ) peptides, and neurofibrillary tangles (NFTs) in the cortex, 

that are intracellular aggregates composed of Tau protein [21,33,34]. 

Whilst the mechanisms involved in the progression of this disease remain unknown, several 

hypothesises have been proposed, one of which is the Amyloid cascade hypothesis. This hypothesis 

states that the accumulation of the previously mentioned Aβ plaques, through a cascade of events, lead 

to the neuronal dysfunction and cell death, making it the main cause behind AD. This Aβ plaques are 

composed of Aβ peptides and, in turn, these peptides are obtained through the enzymatic cleavage of 

Amyloid precursor protein (APP) [35–38]. These peptides can have different aggregation states, like 

monomers, dimers, oligomers, and fibrils. The most common formation of these peptides is soluble 

oligomers and fibrils. The majority of these aggregates are associated with neurodegeneration [18,37–

39]. It should be noted that Aβ is produced normally and that, under normal circumstances, there is 

equilibrium between the production and elimination of this peptide. The disturbance of the clearing 

process leads to the formation of plaques that will also lead to AD [33,37]. 

 Genetics can also play a role in AD. Familial AD (FAD) is a specific form of early-onset AD. 

This specific type of AD occurs in a minority of cases and is associated with the mutation of APP and 

the presenilins 1 and 2 (PSEN1 and PSEN2) genes. Both of these mutations lead to an increase in the 

production of Aβ. On the other hand, sporadic AD (SAD), which is another name for late-onset AD, is 

the most common form of this disease found. For SAD, the biggest genetic risk is the APOE gene, 

which is involved in cholesterol metabolism, immune signalling and synaptic plasticity. Specifically, 

the allele ε4 for this gene seems to be the bigger risk factor when comparing it with the other alleles 

(ε2 and ε3) [34,36,39]. Alternatively, hypotheses that include cellular senescence have also been made 

to explain this disease [18,24,34,39,40]. 

 

1.2.2 Macrophages in the context of AD 

 Microglia, as it was mentioned before, are the brain’s resident macrophages and have a major 

role in inflammatory response associated with neurological diseases [41]. Besides the expected role in 

inflammation and immune responses, these cells also participate in the maintenance of neuronal tissue, 

especially when it comes to synapses [18,41]. 

Under normal circumstances, microglias are found in a resting state, which is often 

characterized by their small cell body, scanning the environment for possible changes. Upon the 

detection of changes in the central nervous system (CNS), these cells are able to take an ameboid 

shape, allowing them free movement through neural tissue. Upon arrival to the injury site, these cells 

are activated, which means that they are able to phagocytose pathogens, present antigens and produce 

pro-inflammatory molecules [33,42,43]. Additionally, these cells seem to be able to attain a 

polarization state, similar to the previously described M1/M2 paradigm, with an added deactivated 

state. A mixture of all this polarization states has been observed in AD [18,41]. 

An accumulation of microglia cells around Aβ plaques has been seen in AD. These cells are 

able to bind themselves to Aβ soluble oligomers or fibrils, through cell-surface and Toll-like receptors, 

starting an inflammatory reaction and leading to the production of pro-inflammatory cytokines and 

chemokines. After the binding of this receptors, microglial cells can phagocyte the Aβ and degrade it 

and the degradation of fibrils or soluble Aβ is possibly done by different mechanisms [18,33,39,41]. 

However, the effectiveness of said degradation, after internalization, has presented some mixed 
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results, with some groups finding microglia cells to be able to fully digest these molecules and others 

finding poor degradation of Aβ [41,44]. Under normal circumstances, after inflammation and 

pathogen clearing, there would be a cessation of inflammation and normality would be restored. That 

is not the case for AD, since there are several mechanisms in play that prevent that, like a positive-

feedback loop between inflammation and the processing of the Aβ precursor (APP). As such, there is 

severe inflammation which, in turn, impairs the function of the microglial cells, diminishing the 

amount of Aβ that is cleared from the system [18,33]. 

Microglia and their role in AD tends to be considered a “double-edged sword”. On one side, 

and as previously mentioned, these cells have an important role in neural and immune defence. On the 

other hand, and as it is seen in many neurodegenerative diseases, the excessive presence of these 

activated cells can cause or aggravate neuron damage [41–43]. 

 In terms of non-tissue specific macrophages, these seem to be able degrade fibrillar Aβ [44]. 

 

1.3 RNA-seq 

 A fundamental component of cells is DNA, and its capacity to encode all the properties and 

functions of a single cell. With it, cells can access that information and adapt to their environment. 

This information, which is encoded in genes, can be transcribed into RNA molecules, to be later 

translated into proteins, via mRNA, or to be used to control the expression of other genes, via miRNA. 

As such, the set of RNAs expressed when certain conditions are present or at a certain time, can tell us 

a lot about the current status of a cell and provide insight in to diseases and the mechanisms in which 

they operate. This is called differential gene expression, and can be used to compare between different 

conditions (Control vs Condition or ConditionA vs ConditionB etc.) or between different tissues, 

based on what needs to be achieved [45]. 

Currently, the most popular method for studying gene expression is RNA-seq. This technique 

replaced microarrays, and the advantages of using RNA-seq over microarrays are: RNA-seq can still 

be performed even when there is no mapped genome, whilst microarray depends on that knowledge 

for probe design; it can be used to characterize exon junctions and to detect non-coding RNA; high 

levels of reproducibility, higher resolution and a much lower limit of detection [45–47]. 
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Figure 1.1: Example of an RNA-seq experiment. While many of the steps remain similar to the ones in this figure, it is 

possible to adapt these steps, in order to answer the biological question required. 

 

Typically, this technique (Figure 1) starts with the extraction of the population of RNA to 

study, which is then converted into a cDNA library of fragments. Each fragment can have an adaptor 

attached to one of its’ ends or to both, and they are later sequenced in a high-throughput machine, for 

example an Illumina machine. If the fragment only has an adaptor on one end, the sequencing is called 

single-end; on the other hand, if both ends have an adaptor, it is called a paired-end. Reads can be 30-

400bp depending on the machine used [47,48]. 

Afterwards, the data obtained must be analysed. Normally, the pipeline (Figure 1.1) starts by 

mapping the reads, where the raw reads, obtained from the sequencing, are mapped against a reference 

genome for example. Following that there is usually a counting step, in which the reads are counted, 

based on the gene that they mapped to. Finally, the analysis of the Differential expression (DE) is 

made, where a conjugation of statistical methods is used, in order to determine which genes have a 

significant different expression between two compared conditions. However, this is but a general 

overview, depending on the objective of the analysis or the organism studied, several steps may be 

added or changed from it [49]. 

 One problem present in the analysis of this data is the fact that there are many methods and 

tools that can be applicable for this kind of analysis, but no standard protocol on how to do so. This 

happens mainly because the determination of tools performance is hindered, due to the lack of gold-

standard measures and the frequent update of these tools [45,46]. 

 

1.4 Motivation 

 As previously mentioned before, Alzheimer’s disease is one of the most important 

neurodegenerative diseases, especially in older populations. As such, it is important to understand its 

players and mechanisms. A lot of components, in the relationship between macrophages and Aβ 
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remain unknown, and their discovery could possibly answer a lot of questions relating to inflammation 

in the AD brain. 

 

1.5 Objectives 

 Whilst there are many studies done involving macrophage polarization [12,50,51], the 

comparison between macrophage polarization and macrophages stimulated with Aβ does not have as 

much of a focus. As such, this project was developed with following objectives in mind: 

Objective 1: Comparison of the mRNA and miRNA profiles between the control group and the 

polarized macrophages (M1/M2), or the macrophages exposed to Aβ; 

Objective 2: Comparison of the mRNA and miRNA profiles between the polarized macrophages (M1 

vs M2); 

Objective 3: Comparison of the mRNA and miRNA profiles between the polarized macrophages 

(M1/M2) and the cells exposed to Aβ; 

Objective 4: Identification of key molecular players in the innate immune response against Aβ. 

 

1.6 Contributions 

With the motivation and objectives mentioned before in mind, the following contributions are 

available in this work: 

Contribution 1: Comparison of gene and miRNA expression between the control group and the 

polarized macrophages (M1/M2) or the macrophages exposed to Aβ; 

Contribution 2: Comparison of gene and miRNA expression between the polarized macrophages (M1 

vs M2); 

Contribution 3: Comparison of gene and miRNA expression between the polarized macrophages 

(M1/M2) and the cells exposed to Aβ; 

Contribution 4: Functional expression analysis of the differential expressed genes for all the 

previously mentioned comparisons; 

Contribution 5: Evaluation of the influence of miRNA over their respective gene targets, miRNA-

Target correlation analysis. 

 

1.7 Overview 

 This work is divided into five chapters. The first chapter corresponds to the Introduction, were 

some key concepts are explained in order to better understand this project. The second chapter 

corresponds to the methodology, where a description of the data, databases and tools used can be 

found, in addition to a description of the methods used to achieve the desired objectives. Chapter three 

as the presentation of all results found in this work, while chapter four discusses said results based on 
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what has been previously done by other groups. Finally, the fifth chapter presents the final conclusion 

of this project and provides some future studies that can also be done. 
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Chapter 2: Methodology 
 

2.1 Data and Databases 

 This section explains how the original data used for the sequencing was obtained and gives an 

introduction to other data or databases used in this work. 

 

2.1.1 Experimental data 

To achieve the objectives proposed, monocytes were extracted from nine age-matched healthy 

individuals. These cells were differentiated into macrophages and later on, were divided in four 

groups, based on the stimuli that they received. Cells stimulated with LPS and INF-γ achieved a M1 

activation profile and are, from this moment on, referred to as the M1 group. Cells stimulated with IL-

4 were able achieve the M2 activation profile, from now on were referred to as the M2 group. Cells 

exposed to Aβ fibrils and oligomers, were referred to in this work as the Ab group. Cells that received 

no stimuli were considered the control group. 

After the establishment of these groups, mRNA and miRNA were extracted from the cells of 

each group in all individual and three pools of three individuals were created for each condition, 

resulting in three biological replicates for each condition (Table 2.1). 

These samples were prepared by the PhD student Ana Viegas. This work concerns only the 

computational analysis of the data obtained from those samples. 

 

Table 2.1: Pool creation representation. 

Pools Patients Condition 

Pool 1 E + J + RC 

Control 

Aβ 

IL-4 

LPS + INF-γ 

Pool 2 I + H + GI 

Control 

Aβ 

IL-4 

LPS + INF-γ 

Pool 3 Is + C + R 

Control 

Aβ 

IL-4 

LPS + INF-γ 
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2.1.2 Ensembl Genome 

 One important step in RNA-Seq is the mapping step, followed by a counting step. Two files 

are needed for this. The first is a genome file, which has the complete sequenced genome of an 

organism. The second is an annotation file, that properly identifies regions of the genome, be it a 

region associated with a gene, splicing region, among others. For this work, both the genome file and 

the annotation file were obtained from Ensembl. 

 Ensembl [52] started off as a joint project between the EMBL European Bioinformatics 

Institute and the Wellcome Trust Sanger Institute and it aims to provide a centralized resource of 

genome information. To that end, it provides its users with genome assemblies for several organisms, 

for example human and model organisms such as mouse and fruitfly; as well as their respective 

genome annotations. This annotation is automated using a pipeline of Perl scripts whose output is later 

stored in databases. Ensembl gets updated frequently adding new organisms and updating genes, in 

order to provide its users with high quality information. The release of Ensembl used in this work was 

86. Ensembl is available at http://www.ensembl.org/index.html. 

 

2.1.3 miRBase 

 For the analysis of the miRNA data, an annotation file containing only miRNA would be ideal 

since, due to the nature and function of miRNAs, that is, to modulate the expression of certain genes, 

by ways of degradation and the repression of translation of mRNA [53], their reads could map to other 

genes, providing an identification problem later on in the differential expression analysis. 

 With the growing research on miRNA, there was a need to compile their sequences into a 

shared platform. Currently managed by researchers at the University of Manchester, miRBase [54–56] 

not only provides the sequence for miRNAs of several species (that can be user submitted), but also an 

annotation file compatible with the Ensembl genome files. The version 21 of this database was used in 

this work. This platform is available at http://www.mirbase.org/. 

 

2.1.4 miRTarBase 

 In order to better understand the effect that the miRNAs have on their respective target a 

correlation analysis was performed for this project. As such, there was a need for a database that has 

validated miRNA-Target interactions. This was done to investigate, for example, if the lowering of 

expression on an mRNA is due to a specific miRNA that targets it or due to something else entirely. 

 For this investigation, the miRTarBase [57] database was used. This database’s data is 

collected by the manual surveying of articles that studied the functionality of miRNAs. This collected 

data does also have to be validated experimentally by a variety of methods. Two different 

classification methods for the type of evidence in each pair are used by miRTarBase. Strong evidence 

is classified as experimental methods that show, more strongly than others, an association between 

miRNA and the respective target that is being studied. “Strong evidence” includes methods like 

Reporter assay, Western blot and qPCR and “Less strong evidence” includes methods like Microarray, 

NGS, psILAC, HITS-CLIP among others. This classification was created and is used by the 

miRTarBase. The release of miRTarBase used in this work was 6.0. This database is available at 

http://mirtarbase.mbc.nctu.edu.tw/. 
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2.2 Tools 

 This section describes and explains some of the inner-workings of the tools used in this 

project. There is no mention of the tools used in the data sequencing part of the protocol, since that 

part of the experiment was made by a third-party. 

 

2.2.1 FastQC 

 FastQC [58] provides a simple way of doing quality control checks on raw or filtered high 

throughput sequence data. Its output provides an HTML report with summary graphs and tables that 

help in the assessment of data quality. The 0.11.5 version of this tool was used in this project. FastQC 

is available at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 

 

2.2.2 MultiQC 

 MultiQC [59] is a tool that compiles the output report files of multiple programs into a single 

unified report, and provides a graphical visualization of the statistics of each program, making it easy 

to evaluate the behaviour of the data at each step. For this work, MultiQC was used to observe 

graphically the statistics associated with the STAR mapping step and the HTSeq-count counting step. 

For this work, the version of MultiQC used was 1.0. This tool is available at http://multiqc.info/. 

 

2.2.3 STAR 

 An important part of any RNA-Seq analysis is the mapping step. A STAR [60] workflow 

normally consists of two steps: an indexing step, where both the genome file and the annotation of the 

genome file are taken into account to generate indexes that will be used in the following step. Indexes 

will contain information about genes and splice junction for example, arranged in a way that it is easy 

and fast to be accessible by the search mechanisms of this program. Next is a mapping step, which 

maps each FASTQ file (each sample) to the genome and outputs a SAM/BAM file. The file contains 

information about the positioning and the scoring of the mapping. This aligner has been shown to be 

extremely accurate and fast, when compared with other tools [61]. The version of this aligner used in 

this work was 2.5.2b. This widely used program is available at https://github.com/alexdobin/STAR. 

 

2.2.4 SAMtools 

 The aforementioned SAM files are files that store large nucleotide sequence alignments. 

SAMtools [62] provide a variety of programs that allow the interaction with the data stored in those 

files. This tool was used for sorting the alignments via the -n option so they could be used as input for 

HTSeq-count and to index the associated BAM file to allow the visualization of the data through the 

Integrative Genomics Viewer [63,64]. The 1.3.1 version of SAMtools was used in the present work. 

These batches of tools are available at http://www.htslib.org/. 
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2.2.5 HTSeq-count 

 Counting the aligned reads is another important step in the analysis of RNA-seq data. One of 

the most commonly used programs for this, with a great amount of compatibly with other programs 

for the rest of the downstream analysis, is HTSeq-count [65]. In this project, most of the default 

definitions were used for both the analysis of mRNA and miRNA, except for the -t and -I option for 

the miRNA, that were changed to a more appropriate option, when the annotation file from miRBase 

was used. When compared with other counting tools like featureCounts, HTSeq-count is much slower 

and can sometimes wield a lesser gene count [66], mainly since it is more conservative. However, 

HTSeq is the most widely used tool, with 1599 articles cited compared to featureCounts’ 481, and it is 

highly compatible with a lot of differential expression tools, like DESeq and DESeq2. The 0.6.1 

version of this software was used in this project. The HTSeq documentation, which includes HTSeq-

count is available at https://htseq.readthedocs.io/en/release_0.9.1/index.html. 

 

2.2.6 R and R packages 

 R [67] is a language and environment mainly created for to aid statistical computing and 

graphical construction. This free software is available at https://www.r-project.org/. Due to some 

technical problems, the R versions for the Differential expression analysis of the mRNA (version 

3.2.4) and miRNA (version 3.3.3) data were different (as seen in sections 2.3.1.4 and 2.3.2.4). This 

however is insignificant for the comparison of the data since the different versions yield the exact 

same results. 

For this work, one of the main packages used for the study of the Differential Expression was 

DESeq2 [68]. The steps performed by this program are: estimation of size factors, estimation of 

dispersion, negative binomial generalized linear model (GLM) fitting, and hypothesis testing for 

differential expression using the Wald test. The Negative Binomial distribution is used in this package 

due to its superior performance when compared with Poisson-based methods [45,68]. Additionally, 

two extra steps are made automatically: independent filtering and the adjustment of the obtained p-

value. Unlike in other packages, DESeq2 uses independent filtering to remove weakly expressed 

genes, which will not present any differential expression, due to the fact that the low read count in 

combination with sample noise will hide any biological effect that these genes may have. These genes 

will influence the multiple testing procedures and, as such need to be removed. The filtering criterion 

is the average expression strength of each gene, across all samples, and it omits all the genes detected 

with mean normalized counts below the filtering threshold. This, by default, maximizes the number of 

gene found at a certain FDR specified by the user [68,69]. For the creation of the adjusted p-value for 

each gene, the Benjamini-Hochberg (BH) adjustment is done, and the value is calculated as an answer 

to the following question: “if one would consider all genes as significant when their adjusted p-value 

is less than or equal to this gene’s adjusted p-value threshold, what would be the fraction of false 

positives (also know as false discovery rate, FDR) among them?” For experiments with less than 12 

replicates, both edgeR (exact) and DESeq2 are recommended [70]. On top of that, DESeq2 was 

chosen for this project also due to its’ higher accessibility, when compared with edgeR. The version of 

this package used in this work was 1.10.1. 

In case of the presence of batch effects, the package sva [71] was used to try to diminuish said 

effects in the data. Batch effects introduce a degree of variability to samples that is not related to a 
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biological variable in study and this effect becomes rather problematic when the variation induced by 

batch effects overpowers that induced due to a biological variable, putting in question the veracity of 

any conclusion derived from that data [72]. This package tries to account for these effects, by first 

identifying the part of the data that is affected by the batch effects and later estimating values for said 

effects to be added to the design formula. The design formula informs DESeq2 on how to treat the 

samples, based on their grouping [71]. The version 3.18.0 of the sva package was used in this project. 

For the creation of heatmaps shown in this work, the pheatmap package was used. For this 

work, the version of this package used was 1.0.8. 

The biomart package grants acess to a great amount of databases that are compatible with the 

BioMart software suite, allowing the retrievel of large amounts of data. This package was used in the 

present work in order to get the gene names corresponding to the ensembl IDs that were outputed in 

the counting step (later mentioned in section 2.3.1.3). In the present work, the version of this package 

used was 2.26.1. 

For the correlation teste (see section 2.3.3) a specific built-in function of R was used, called 

cor.test(). This function was used to determine the correlation coefficient, through the Pearson method, 

and the respective probability value (p-value). The test statistic (t) is based on the correlation 

coefficient (r) and follows a t distribuition with n-2 degrees of freedom (n represents the number of 

element in each vector analysed). The formula for this test statistic is as follows: 

(2.1)        𝑡 =
𝑟 ∗ √𝑛 − 2

√1 − 𝑟2
 

 The value obtained as a result is then used in the determination of the p-value. 

 

2.2.7 DAVID 

 High-throughput experiments provide substantial amounts of data as a result of its analysis, 

and a lot of methods and tools have been created to extract the biological meaning behind those 

results. One such tool is the Database for Annotation, Visualization and Integrated Discovery 

(DAVID) [73,74], a functional enrichment tool, that possesses several analytical modules. For the 

functional enrichment analysis, DAVID uses a plethora of resources, including ontologies (GO terms), 

protein domains, pathway (KEGG and BioCarta), among others [73]. This tool can be used from its 

website: https://david.ncifcrf.gov/home.jsp. 

  

2.3 Methods 

 Here are described all the steps taken in this work, for both the analysis of the data associated 

with the extracted mRNA and miRNA. The data sequencing step is referred here, even though it was 

not done by the author of this thesis, as a way to help understand the steps taken to obtain the 

sequenced data that was later used for this analysis. All the R code used for the differential analysis is 

available at https://github.com/InesALopes/RNA-seq-analysis . 
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2.3.1 Analysis of the mRNA 

 This section describes the methods used for the analysis of the mRNA data (Figure 2.1). 

 

Figure 2.1: Flowchart for the analysis of the mRNA data. 

 

2.3.1.1 Data sequencing 

 The samples were sequenced at the Centre for Genomic Research in the University of 

Liverpool (available at https://www.liverpool.ac.uk/genomic-research/). The machine used was 

Illumina HiSeq and the sequencing was done as paired-end (maximum read length of 125 bp) with no 

technical replicates and three biological replicates for each condition. After obtaining the raw reads, a 

trimming step was performed, to exclude the adaptors from the sequence, using Cutadapt (version 

1.2.1) [75] and the -O 3 option. For quality trimming, Sickle (version 1.200) [76] was used. Read with 

a score less than 20 and shorter than 10 bp after trimming were removed. Both the reads in a pair were 

discarded when either both or only one of them survived the trimming.  

 

2.3.1.2 Quality Control 

 FastQC (version 0.11.5) [58] was used to do the quality control of the samples. MultiQC 

(version 1.0) [59] was also used to visualize the quality of the mapping and counting steps. 

 

2.3.1.3 Mapping and Counting 

 The human genome for the mapping was obtained from Ensembl (release 86) [52]. To perform 

the mapping of the data, STAR (version 2.5.2b) [60] was used following the instructions of the 

RNAseq for dummies guide (available at http://www.genefriends.org/RNAseqForDummies/). 

SAMtools (version 1.3.1) [62] was used to order the samples, and the counting was done using 

HTSeq-count (version 0.6.1) [65]. 
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2.3.1.4 Differential Expression Analysis 

 For the DE analysis, the DESeq2 (version 1.10.1) package [68] for R (version 3.2.4) [67] was 

used. Unwanted variation or non-recorded batch effects were examined and removed with the sva 

(version 3.18.0) [71] package. The heatmap were produced with the pheatmap package (version 1.0.8) 

and the PCA plots with a function provided by the DESeq2. The adjusted p-value (FDR) for which the 

significant genes were selected was equal to 0.05. The selection of genes that were considered down-

regulated was done at log2 Fold Change inferior or equal to -1 and for up-regulated was done at log2 

Fold Change superior or equal to 1. 

 

2.3.1.5 Enrichment analysis 

 DAVID [73,74] was used for the enrichment analysis. The clustering mode was used and from 

each cluster the term with highest count was selected. In case of a tie, the term with the lowest FDR 

(maximum FDR accepted was 0.2) was chosen from each cluster. Only the top 5 clusters have been 

reported as long as their enrichment score was bigger or equal to 2. The Benjamini method was used 

to control FDR, therefore all mentioned FDR are calculated by this method. The genes that belong to 

the background were selected if they had some expression (5 mapped counts) in, at least, one of the 

samples. 

 

2.3.2 Analysis of the miRNA 

 This section describes the methods used for the analysis of the miRNA data (Figure 2.2). 

 

Figure 2.2: Flowchart for the analysis of the miRNA data. 
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2.3.2.1 Data sequencing 

 The samples were sequenced at the Centre for Genomic Research in the University of 

Liverpool (available at https://www.liverpool.ac.uk/genomic-research/). The following description 

matches the steps that they followed to obtain the trimmed sequencing data. The machine that was 

used was Illumina HiSeq and the data for each sample was single-end (with the maximum read length 

at 50 bp) with two technical replicates (per sample) and three biological replicates (per condition). 

After obtaining the raw reads, a trimming step was performed, to exclude the adaptors from the 

sequence, using Cutadapt (version 1.2.1) [75] and the -O 3 option. Finally, a quality trimming step was 

done to prevent the inclusion in our data of low quality reads (reads with scores less than 20 and reads 

shorter that 10 bp were removed). For this the program Sickle (version 1.200) [76] was used. 

 

2.3.2.2 Quality Control 

 FastQC (version 0.11.5) [58] was used to do the quality control of the samples. A Linux 

command (awk) was used for the selection of reads based on their size. MultiQC (version 1.0) [59] 

was also used to visualize the quality of the mapping and counting steps. 

 

2.3.2.3 Mapping and Counting 

 The human genome for this step was obtained from Ensembl (release 86) [52]. The genome 

annotation file was obtained from a public miRNA database called miRBase (version 21) [54–56]. The 

mapping of the data was done using STAR (version 2.5.2b) [60] following some recommended 

parameters (available at https://groups.google.com/d/msg/rna-star/RBWvAGFooMU/yi9tlK-eVVsJ), 

given by the author (Alexander Dobin) of this tool, the following being: splicing was turned off by not 

including the annotation file in the indexation step, outFilterMismatchLmax has value 0.05, 

outFilterMatchNmin has value 16, outFilterScoreMinOverLread has value 0, 

outFilterMatchNminOverLread has value 0 and alignIntronMax has value 1. SAMtools (version 1.3.1) 

[62] was used to order the mapped sequences and HTSeq-count (version 0.6.1) [65] to do the counting 

step, only taking into account the mature sequences of miRNA rather than their precursor sequences. 

 

2.3.2.4 Differential Expression Analysis 

 For the DE analysis, the DESeq2 package (version 1.10.1) [68] for R (version 3.3.3) [67] was 

used. The sva package (version 3.18.0) [71] assisted in the removal of unwanted variations or possible, 

non-detected, batch effects. The production of the heatmap was done with pheatmap package (version 

1.0.8) and, in case of the PCA plots, the function for it in the DESeq2 package was used. The adjusted 

p-value (FDR) for which the significant miRNAs were selected was equal to 0.05, the selection of 

miRNA that were considered down-regulated was for genes miRNA log2 Fold Change was inferior or 

equal to -1 and for up-regulated was for miRNA whose log2 Fold Change was superior or equal to 1. 
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2.3.3 Correlation analysis 

 To check for a correlation between the level of expression of miRNA and the level of 

expression of their respective targets, a custom R script was built. In it, the following packages were 

used: biomart (version 2.26.1), readxl (version 1.0.0), plyr (version 1.8.4) and DESeq2 (version 

1.10.1). 

First, the number of reads was extracted for miRNA that were considered differentially 

expressed. The normalization of these values was done with the help of the normalization function 

integrated in the DESeq2 package. The same was done to all the mRNA data. Using the confirmed 

miRNA:Target pairs from the miRTarBase (release 6.0) [57], it was possible to assign the expression 

values for each pair and, with that, calculate the correlation value and p-value (using the cor.test 

function) for the miRNA:Target pairs. A visual representation of this process is given by the Figure 

2.3. 

 

 

 

Figure 2.3: Flowchart for the correlation analysis. 
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Chapter 3: Results 
 

3.1 Analysis of the mRNA data 

 The main focus of this work was to twofold. Firstly, to understand the changes in 

macrophages when they are exposed to Aβ. Secondly, to understand said changes when they are 

compared with the different macrophage polarization states. Additionally, and beyond the initially 

proposed objectives, the comparison of the expression profiles of both polarization stages was done as 

well.  

 To do so, samples were obtained from healthy age-matched individuals and stimulated with 

Aβ (the Ab group), LPS and INF-γ (the M1 group) and IL-4 (the M2 group). Cells that did not receive 

any stimuli were considered controls. These groups had had their mRNA and miRNA sequenced and 

analysed. The following results pertain to the analysis of the mRNA data. 

 

3.1.1 Quality Control 

 As previously noted, several steps of quality control were done in order to ensure that the 

sequenced data had good quality, that the analysis was well done and, in case of something going 

amiss, to figure out the best way to proceed in the analysis of the data. 

The first quality control step was done on the reads provided by the sequencing facility. 

Overall, the reads provided had good quality. Only one issue was found, in sample 9 (Control), 

characterized by an overrepresented sequence (around 0.18% of the total of reads). However, since it 

is present in low percentages, this issue was ignored. The read lengths were also not consistent (as 

seen in Figure 3.1), but that was probably due to the fact that a quality trimming was done on the data. 

 

Figure 3.1: Plot of the distribution of the sequence length. This plot refers to the first read of the first sample. Sequence 

length (bp) is plotted against the number of sequences that possess that sequence length. Plot generated by FastQC [58]. 
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The second quality control step was done after the mapping and counting step, with the help of 

the MultiQC software [59]. In terms of mapping, on average, 90.42% of the reads were successfully 

mapped (Figure 3.2), resulting in an average of 13583683 reads mapped per sample.  

 

 

Figure 3.2: Percentage distribution across all samples for the mRNA STAR mapping. Each bar corresponds to one of the 

samples (names ranging from Human1 to Human12) and each colour matches the STAR output statistics. Plot generated by 

MultiQC [59]. 

 

However, when the same analysis is done to the results of the counting step, less positive 

results are seen. There is a big percentage of reads (on average, 85.54% of reads mapped) that were 

classified as “No Feature” in this step (Figure 3.3). When a counting program is used, like HTSeq-

Count, there is usually an option to specify the type of feature that are meant to be considered (by 

default this option is exon, but one could change it for intron if they so wished), and when a specific 

read is not mapping to a location of that feature, that read is considered in the “No Feature” group. On 

average, 1792094 reads were successfully assigned, which is not an ideal number for an analysis like 

this.  
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Figure 3.3: Percentage distribution across all samples for the mRNA HTSeq-Count counting step. Each bar corresponds 

to one of the samples (names ranging from Human1 to Human12) and each colour matches the HTSeq-Count output 

statistics. Plot generated by MultiQC [59]. 

 

To try to understand the existence of this problem, the Integrative Genomics Viewer (IGV) 

[63,64] was used. This program allows for the visualization of alignments, and it was used on the 

BAM file produced after the mapping step of the first sample. SeqMonk [77] was also used to help 

better visualize this over the course of several genes (Figure 3.6). Has it can be seen in Figures 3.4, 3.5 

and 3.6, there was a great amount of background reads for non-exonic regions. The most likely 

explanation for this is that there was DNA contamination in the samples.  
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Figure 3.4: First example of possible mapped reads associated with contamination. Each coloured strip corresponds to a 

read and the different colours are to help distinguishing between pairs (Each read in a pair has a different colour). The 

lower tab shows the gene distribution in the genome (the fuller line represents the exon and the arrowed line is the intronic 

region). Image obtained with IGV [63,64]. 

 

 

 

Figure 3.5: Second example of possible mapped reads associated with contamination. Each coloured strip corresponds to a 

read and the different colours are to help distinguishing between pairs (Each read in a pair has a different colour). The 

lower tab shows the gene distribution in the genome (the fuller line represents the exon and the arrowed line is the intronic 

region). Image obtained with IGV [63,64]. 
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Figure 3.6: Third example of possible mapped reads associated with contamination. Each coloured strip corresponds to a 

read and the different colours are to help distinguishing between pairs (Each read in a pair has a different colour). The top 

tab shows the gene distribution in the genome. Image obtained with SeqMonk [77]. 

 

 

3.1.2 Differential expression analysis 

 One of the objectives of this project was to compare the genetic profiles of macrophages 

stimulated with different conditions. One of the first steps in a differential expression analysis is the 

creation of a PCA plot. These plots allow the user to visualize sample-to-sample distances, giving a 

general idea of the similarity between samples. What samples are similar to each other and which are 

different? This is important because it helps in the evaluation of the data, especially in the detection of 

possible batch effects. 

The first PCA plot created is coloured by condition (M1, M2, Ab and Control) and shows that, 

when comparing all of the conditions studied, they do somewhat cluster together, but there is still a 

very high variation between samples of the same group (Figure 3.7). However, even with this 

variation, it is possible to see that there is a great difference between the M1 samples and all the 

others. We can also see that there is not a lot of variation between the control and Ab (Aβ) conditions, 

so one could expect a small number of genes differentially expressed between these two groups. 
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Figure 3.7: PCA plot for the different conditions (mRNA data). Each dot represents one of the samples. Key: CON – 

Control, Ab – cells treated with Aβ, M1 – cells treated to achieve the M1 polarization state, M2 – cells treated to achieve the 

M2 polarization state. Plot generated in R [67] with the DESeq2 [68] package. 

 

When the colouring of the PCA plot is changed to show the variation among the pools (Figure 

3.8), that are constituted of the individuals whose samples were used for this work, it is possible to 

observe a somewhat clustering dependent of pools, with some outliers for all pools (which correspond 

to the M1 samples). 

Optimally, it is expected from a PCA graph to have each condition clustered together in 

different places and each pool would be equally distributed between those. However, the fact that 

different conditions cluster somewhat together is not a major reason for concern. It only means that 

there is not a great difference in the genetic profiles between some of the conditions, this is especially 

prevalent when comparing the Ab group with the control group. However, and as stated before, 

normally a graph like this would show a greater clustering of samples with the same treatment, which 

does not occur in the data analysed. This could be due to two possible reasons: a great difference 

between pools of individuals, even when the treatment of each condition is applied or another 

unknown source of variation could be present in the data. The previously mentioned sva [71] package 

is capable of handling both of those cases and, as such, it was used to try to account for this sources of 

variation in the data and to dissipate their effects throughout the rest of the analysis. 
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Figure 3.8: PCA plot for the different pools of individuals (mRNA data). Each dot represents one of the samples. Plot 

generated in R [67] with the DESeq2 [68] package. 

 

In a comparison of genetic profiles like this one, the packages used for this have a very 

specific way of representing that comparison. The user can select contrasts (A vs B, CON vs M1, etc.) 

to specify the comparison that they are looking for, and the output will give a list of genes “up-

regulated” and “down-regulated”. Genes that appear as up-regulated mean that their expression is 

higher in the first condition of the comparison. For example, in CON vs M1, genes up-regulated would 

be the ones with a higher expression in the Control group when this is compared with the M1 group. 

On the other hand, genes that are classified as down-regulated have a higher expression in the second 

condition of the comparison. For example, in CON vs M1, genes down-regulated would be the ones 

with a higher expression in the M1 group when compared with the CON group. 

After accounting for the possible batch effects, the rest of the DESeq2 pipeline was ran, 

outputting a list of genes differentially expressed for each comparison of the conditions (Table 3.1). 

The comparison with the biggest number of differential genes was the M1 vs M2 comparison, as 

expected due to the great distance between them seen in the PCA plot (Figure 3.7). On the other hand, 

the comparison between the Control and the Ab group yielded the lowest number of differential genes; 

with only one gene with high expression in the Ab conditions. 

 

Table 3.1: Genes up-regulated and down-regulated in the different comparisons tested. 

 

 

 

 

 

 
Number of genes 

up-regulated 

Number of genes 

down-regulated 

Control vs M1 237 436 

Control vs M2 88 164 

Control vs Aβ 0 1 

M1 vs M2 563 573 

M1 vs Aβ 308 226 

M2 vs Aβ 153 148 
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A heatmap was also produced, to help visualize the difference between the genetic profiles in 

the different conditions (Figure 3.9). Like in Table 3.1, it is possible to observe that the M1 samples 

are the most different when compared with all other conditions. 

 

 

Figure 3.9: Heatmap of relative rlog-transformed values across samples (mRNA). Treatment and pool identification are 

shown with coloured bars at the top of the heatmap. The values of expression here presented correspond to the amount by 

which each gene deviates in each sample, from that gene’s average across all samples. Plot generated in R [67] using the 

pheatmap package. 

 

As mentioned before, the comparison between the Control group and the group of 

macrophages stimulated with Aβ only had one gene differentially expressed. This could possibly mean 

that the gene expression profile between these two conditions is too similar. To test this, a Venn 

diagram (Figure 3.10) was built, comparing the genes enriched in the Control and Ab groups when 

they are both compared to M1 or M2. 

 

 

Figure 3.10: Venn diagrams for the different genes expressed when comparing different conditions against Control and 

Ab. Arrow up (↑) represents the genes with great expression in the M1 or M2 conditions. Arrow down (↓) represents genes 

with a lesser expression in the M1 or M2 conditions (so a greater expression in either the control or Aβ conditions). 
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As seen in Figure 3.10, while there are a lot of genes similar between the Control and Ab 

groups (in the context of the comparisons explained above), there are still a large group that are not 

shared between these two. However, this difference is just not significant enough to be detected when 

these two groups are compared. It can also be seen in the PCA plot, this allows us to conclude that, 

while they share a similar genetic profile, the similarity is not 100%. 

The genes that had a bigger expression for the M1 condition were IDO1, RP11-44k6.2, 

ACOD1, SNX10, ANKRD22, CXCL9 and CCR7, for the M2 condition they were ALOX15, FCER2, 

TGM2, F13A1, CTNNAL1, MRC1 and CLEC10A and for the macrophages stimulated with Aβ they 

were SOD2, FUCA1, FCN1, CD9, APOE, JAML, ADAMDEC1, ADAM28, PID1, RBMS1P1 (Table 

3.2 and Table 3.3).  
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Table 3.2: Genes up-regulated is all comparisons. The genes are ordered by Log2 Fold change. A gene was considered up-

regulated if the Log2 Fold change value was equal or bigger than 1. 

Ensembl ID Gene symbol Gene name 
Log2 Fold 

change 
FDR 

Control vs M1 

ENSG00000179163 FUCA1 fucosidase, alpha-L- 1, tissue 2.946591409 1.50E-26 

ENSG00000085265 FCN1 ficolin 1 2.912948058 2.22E-41 

ENSG00000010278 CD9 CD9 molecule 2.894277105 8.03E-23 

ENSG00000160593 JAML junction adhesion molecule like 2.558564814 5.41E-29 

ENSG00000244682 FCGR2C 
Fc fragment of IgG receptor IIc 

(gene/pseudogene) 
2.516087535 7.79E-25 

Control vs M2 

ENSG00000153823 PID1 
phosphotyrosine interaction 

domain containing 1 
2.339103132 4.91E-15 

ENSG00000042980 ADAM28 
ADAM metallopeptidase domain 

28 
2.197107203 8.00E-37 

ENSG00000112303 VNN2 vanin 2 2.00163365 3.03E-12 

ENSG00000166527 CLEC4D 
C-type lectin domain family 4 

member D 
1.912522128 2.31E-11 

ENSG00000153208 MERTK 
MER proto-oncogene, tyrosine 

kinase 
1.88033909 1.31E-14 

M1 vs M2 

ENSG00000131203 IDO1 indoleamine 2,3-dioxygenase 1 5.555731558 1.20E-48 

ENSG00000253838 RP11-44K6.2 Known sense intronic 4.892022974 2.45E-33 

ENSG00000102794 ACOD1 aconitate decarboxylase 1 4.174092941 2.11E-41 

ENSG00000086300 SNX10 sorting nexin 10 4.066583176 3.26E-65 

ENSG00000152766 ANKRD22 ankyrin repeat domain 22 3.904260736 1.99E-39 

M1 vs Aβ 

ENSG00000253838 RP11-44K6.2 Known sense intronic 4.328718146 3.97E-27 

ENSG00000131203 IDO1 indoleamine 2,3-dioxygenase 1 4.199295252 1.68E-28 

ENSG00000152766 ANKRD22 ankyrin repeat domain 22 3.778570628 7.64E-36 

ENSG00000138755 CXCL9 C-X-C motif chemokine ligand 9 3.728045725 3.00E-15 

ENSG00000102794 ACOD1 aconitate decarboxylase 1 3.685220254 5.77E-34 

M2 vs Aβ 

ENSG00000161905 ALOX15 arachidonate 15-lipoxygenase 4.832113287 2.39E-57 

ENSG00000104921 FCER2 Fc fragment of IgE receptor II 4.632259988 1.14E-46 

ENSG00000198959 TGM2 transglutaminase 2 4.604702767 7.09E-82 

ENSG00000124491 F13A1 coagulation factor XIII A chain 4.530684650 3.65E-78 

ENSG00000119326 CTNNAL1 catenin alpha like 1 4.379555413 1.47E-74 
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Table 3.3: Genes down-regulated in all comparisons. The genes are ordered by Log2 Fold change. A gene was considered 

down-regulated if the Log2 Fold change value was equal or smaller than -1. 

Ensembl ID Gene symbol Gene name 
Log2 Fold 

change 
FDR 

Control vs M1 

ENSG00000131203 IDO1 indoleamine 2,3-dioxygenase 1 -5.471323144 9.67E-45 

ENSG00000253838 RP11-44K6.2 Known sense intronic -4.549378138 3.71E-29 

ENSG00000102794 ACOD1 aconitate decarboxylase 1 -4.217541399 2.13E-39 

ENSG00000126353 CCR7 C-C motif chemokine receptor 7 -3.921260488 1.93E-27 

ENSG00000152766 ANKRD22 ankyrin repeat domain 22 -3.893712369 4.48E-36 

Control vs M2 

ENSG00000161905 ALOX15 arachidonate 15-lipoxygenase -4.734390296 3.95E-57 

ENSG00000198959 TGM2 transglutaminase 2 -4.118587938 3.23E-72 

ENSG00000119326 CTNNAL1 catenin alpha like 1 -3.939063746 5.95E-68 

ENSG00000124491 F13A1 coagulation factor XIII A chain -3.912919004 2.10E-63 

ENSG00000104921 FCER2 Fc fragment of IgE receptor II -3.725438299 2.16E-36 

Control vs Aβ 

ENSG00000112096 SOD2 
superoxide dismutase 2, 

mitochondrial 
-1.033955307 0.014046843 

M1 vs M2 

ENSG00000124491 F13A1 coagulation factor XIII A chain -5.155662297 2.82E-89 

ENSG00000260314 MRC1 mannose receptor, C type 1 -5.025939591 2.74E-101 

ENSG00000161905 ALOX15 arachidonate 15-lipoxygenase -4.812643403 1.33E-58 

ENSG00000104921 FCER2 Fc fragment of IgE receptor II -4.519275764 1.11E-45 

ENSG00000132514 CLEC10A 
C-type lectin domain family 10 

member A 
-4.356718267 1.70E-38 

M1 vs Aβ 

ENSG00000179163 FUCA1 fucosidase, alpha-L- 1, tissue -3.582691646 3.13E-42 

ENSG00000085265 FCN1 ficolin 1 -3.050057878 1.13E-48 

ENSG00000010278 CD9 CD9 molecule -2.913355760 8.73E-25 

ENSG00000130203 APOE apolipoprotein E -2.762910780 4.01E-11 

ENSG00000160593 JAML junction adhesion molecule like -2.428973637 5.12E-28 

M2 vs Aβ 

ENSG00000134028 ADAMDEC1 ADAM like decysin 1 -2.423522870 1.71E-28 

ENSG00000112096 SOD2 
superoxide dismutase 2, 

mitochondrial 
-2.337175287 6.69E-29 

ENSG00000042980 ADAM28 
ADAM metallopeptidase 

domain 28 
-2.311064358 3.77E-41 

ENSG00000153823 PID1 
phosphotyrosine interaction 

domain containing 1 
-2.272832379 2.31E-14 

ENSG00000225422 RBMS1P1 

RNA binding motif single 

stranded interacting protein 1 

pseudogene 1 

-2.132746399 1.88E-07 
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3.1.3 Functional enrichment analysis 

 In order to analyse the great amount of gene information obtained from the Differential 

expression analysis, a functional enrichment analysis was done for all comparison, excluding CON vs 

Ab, since that one only yielded one gene. To do so, DAVID was used in the clustering mode. This 

mode clusters terms that are similar in function, allowing for the analysis of groups of annotations, 

rather than individual ones. 

For the M1 group of genes, one of the most relevant term was immunity, which was expected 

due to the nature of the cells analysed. Other terms included were: signal peptide, immune response, 

glycoprotein, lipopolysaccharide-mediated signalling pathway, membrane, host-virus interactions, 

inflammatory response, immunoglobulin-like fold, cellular response to interleukin-1, NOD-like 

receptor signalling pathway, positive regulation of interleukin-1 beta secretion, and antigen processing 

and presentation. In terms of the M2 group of genes, the terms found were: membrane, 

immunoglobulin-like fold, MHC classes I/II-like antigen recognition protein, adaptive immunity, 

immunity, host-virus interactions, poly(A) RNA binding, methylation, nuclear nucleosome, and host 

cell receptor for virus entry. Finally, for the Ab group, the terms outputted by DAVID were: 

immunity, glycoprotein, protein heterodimerization activity, lectin, cholesterol metabolic process, 

signal peptide, response to lipopolysaccharide, and chemotaxis. 

The most relevant member of a cluster (chosen based on the rules set on section 2.3.1.5) for all 

comparisons is shown in tables 3.4 and 3.5. 
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Table 3.4: Functional enrichment results for the up-regulated genes for each comparison. The top five clusters were 

selected (ordered by enrichment score), and only one term for each cluster was included. The term must have the highest 

count and its FDR value must not be bigger than 0.2. 

Comparison Term Count 
Benjamini 

(FDR) 

Enrichment 

Score 

CON vs M1 

Immunity 26 2.00E-08 7.46 

Signal-anchor 14 5.70E-02 3.29 

receptor-mediated endocytosis 13 1.20E-04 3.24 

Membrane 102 1.40E-01 3.04 

domain:DAPIN 4 1.70E-01 2.08 

CON vs M2 

Glycoprotein 42 6.80E-07 7.09 

extracellular space 17 2.30E-03 6.42 

Immunity 12 4.60E-05 5.63 

Chemotaxis 6 8.80E-04 3.94 

Lysosome 6 5.40E-02 2.35 

M1 vs M2 

Immunity 51 1.90E-18 12.62 

signal peptide 115 3.80E-04 7.83 

immune response 45 3.20E-16 7.82 

Glycoprotein 144 1.40E-04 7.2 

lipopolysaccharide-mediated 

signalling pathway 
11 1.10E-06 5.52 

M1 vs Ab 

Membrane 142 1.00E-05 4.1 

Host-virus interaction 17 3.30E-03 2.52 

Inflammatory response 12 2.30E-04 2.4 

Immunoglobulin-like fold 22 9.00E-02 2.14 

cellular response to interleukin-1 6 1.50E-01 2.05 

M2 vs Ab 

Membrane 90 1.30E-06 6.62 

Immunoglobulin-like fold 23 3.70E-06 3.98 

MHC classes I/II-like antigen 

recognition protein 
8 3.50E-06 3.25 

Adaptive immunity 7 6.90E-03 2.03 
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Table 3.5: Functional enrichment results for the down-regulated genes for each comparison. The top five clusters were 

selected (ordered by enrichment score), and only one term for each cluster was included. The term must have the highest the 

highest count and its FDR value must not be bigger than 0.2. 

Comparison Term Count 
Benjamini 

(FDR) 

Enrichment 

Score 

CON vs M1 

Membrane 188 2.60E-05 3.95 

immune response 37 2.30E-12 3.9 

NOD-like receptor signalling 

pathway 
10 1.30E-03 3.52 

positive regulation of interleukin-1 

beta secretion 
7 1.50E-03 3.38 

Antigen processing and presentation 7 1.00E-01 2.93 

CON vs M2 

Membrane 95 5.70E-06 5.63 

Immunity 17 3.50E-05 4.31 

Host-virus interaction 12 8.20E-03 2.85 

Adaptive immunity 7 9.20E-03 2 

M1 vs M2 

poly(A) RNA binding 57 2.50E-02 11.41 

Methylation 50 8.00E-04 8.92 

Immunity 39 2.70E-08 6.11 

nuclear nucleosome 13 6.30E-09 4.37 

Host cell receptor for virus entry 10 1.50E-03 3.38 

M1 vs Ab 

Immunity 20 6.10E-05 5.17 

Glycoprotein 81 5.30E-05 3.3 

protein heterodimerization activity 16 4.40E-02 3.3 

Lectin 9 1.00E-02 2.69 

cholesterol metabolic process 7 4.00E-02 2.33 

M2 vs Ab 

Glycoprotein 56 2.20E-04 5.93 

signal peptide 47 2.60E-04 5.07 

Immunity 14 6.60E-04 4.44 

response to lipopolysaccharide 11 2.80E-04 3.04 

Chemotaxis 6 1.60E-02 2.81 

 

 

 

3.2 Analysis of the miRNA data 

 The following results pertain to the analysis of the miRNA data. 

 

3.2.1 Quality Control 

 Like for the analysis of the mRNA data, a study in the quality control of both the samples and 

the pipeline steps was done. 

Again, the first step in quality control was done on the raw reads obtained from the sequence 

facility. Like the reads of mRNA, these reads were also of good quality. The read length graph (as 
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exemplified by Figure 3.11A for the P1_1 sample) for the unfiltered samples shows a great variety of 

peaks at different lengths. A lot of these reads were probably small nuclear RNAs (snRNA) or 

degraded mRNA and, as such, read length was selected to be between 18 and 26 [49]. To achieve this, 

a custom awk command was used on the Linux terminal. After the read length filtering, the number of 

peaks diminished a lot, seeing as now most samples possess 3 peaks (Figure 3.11B). 

 

 

Figure 3.11: Plot of the distribution of the sequence length before and after the read filtering. Sequence length (bp) plotted 

against the number of sequences that possess that sequence length. The sample used to build this plot was P1_1 (Sample 1, 

technical replicate 1). Plot generated by FastQC [58]. A – Before length selections; B – After length selections. 

 

 There were a lot more sequences overrepresented, when compared with the mRNA analysis. 

This could be due to the nature of the samples, particularly the fact that this analysis is for miRNA and 

some miRNA are simply over expressed. For the raw reads, the most highly expressed sequences were 

miRNA, snRNA, or mRNA among others. After filtering the reads, the top overrepresented sequences 

seem to only be miRNA. 

In terms of the mapping step, there is no consensus on what percentage of alignment of the 

reads should be seen. All the samples had 50% to 60% of their reads uniquely mapped (Figure 3.12). 

Sample 7, however, had a much lower number of reads when compared with all the other samples 

(around 600000). This had already been noted by the sequencing facility, so it might be attributed to 

the preparation of the samples. On average, 2110541 reads were uniquely mapped for each sample. 

 

A B 
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Figure 3.12: Percentage distribution across all samples for the miRNA STAR mapping. Each bar corresponds to one of the 

samples (names ranging from P1_1 to P12_2) and each colour matches the STAR output statistics. Plot generated by 

MultiQC [59]. 

 

 There was a great number of mapped reads that showed as alignment not unique (80%-87%) 

in HTSeq-count (Figure 3.13). This could be explained by the fact that miRNA can align with multiple 

places in the genome and most counting software’s are not equipped to deal with this disparity. Actual 

reads assigned varied between 9% and 18%, leading an average of 1617686 reads per sample that can 

be used for the rest of the analysis. This number of reads is not ideal. It should be noted that there is a 

discrepancy between the percentage of assigned reads and the actual number of assigned reads, when 

these are compared with the number of uniquely mapped reads obtained in STAR. This happened due 

to the fact that STAR counts each multi-mapped read once, while HTSeq-Count counts them as many 

times as they are mapped, in other words, HTSeq treats the value “alignment not unique” as an 

alignment count rather than a read count. The values of “Assigned”, “Ambiguous” and “No Feature” 

are considered read counts and their added values correspond approximately to the number of uniquely 

mapped reads given by STAR. Taking this into account, a more accurate average of the percentage of 

assigned reads would be around 77% per sample. 
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Figure 3.13: Percentage distribution across all samples for the miRNA HTSeq-Count counting step. Each bar corresponds 

to one of the samples (names ranging from P1_1 to P12_2) and each colour matches the HTSeq-Count output statistics. Plot 

generated by MultiQC [59]. 

 

3.2.2 Differential expression analysis 

 Similarly to what was done for the analysis of the mRNA data, a differential expression 

analysis was also done to the miRNA reads, following the mapping and counting steps. 

Starting with the construction of the PCA plot, it is possible to see that each condition seems 

to somewhat cluster together and, like in the mRNA data, there is a great variation between samples of 

each group (Figure 3.14). In a similar fashion to what was observed for the mRNA data, the Control 

and Ab samples seem to cluster together, whilst M1 has the biggest variation from all the other 

samples, seeing as it clusters in its own side of the graph. Through the observation of the distances 

between samples mapped by this graph, there is a great likelihood that the comparison between the Ab 

and Control groups will not yield a significant amount of differential expressed miRNAs and that any 

comparison made against the M1 group will entail in a great number of differential expressed 

miRNAs. 
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Figure 3.14: PCA plot for the different conditions (miRNA data). Each dot represents one of the samples. Key: CON – 

Control, Ab – cells treated with Aβ, M1 – cells treated to achieve the M1 polarization state, M2 – cells treated to achieve the 

M2 polarization state. Plot generated in R [67] with the DESeq2 [68] package. 

 

 Changing the colours of the PCA plot to be dependent on the pool of individuals (Figure 3.15), 

it is possible to see that the similarities between the mRNA and miRNA data do not end there. Just like 

before, each pool of individuals tends to cluster together. Again, there seems to be a somewhat greater 

variability between individuals (or due to other unknown conditions) than variability induced by the 

treatment. As such, the sva package [71] was used again to account for that. 

 

Figure 3.15: PCA plot for the different pools of individuals (miRNA data). Each dot represents one of the samples. Plot 

generated in R [67] with the DESeq2 [68] package. 
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 In terms of the differential expressed miRNA obtained from this analysis (Table 3.6), the 

comparison between the M1 and M2 groups yielded the biggest amount of miRNA, while the 

comparison between the Control and Ab groups had none, returning poorer results than the mRNA 

analysis. 

 

Table 3.6: miRNA up-regulated and down-regulated in the different comparisons tested. 

 

 

 

 

 

 

 

 A heatmap was also constructed (Figure 3.16), and it is possible to see that, for both the M1 

and M2 groups, the samples cluster together, creating condition-specific clusters. Additionally, due to 

the similarity between the Control and Ab groups, they somewhat cluster by pools rather than 

condition. 

 

 

Figure 3.16: Heatmap of relative rlog-transformed values across samples (miRNA). Treatment and pool identification are 

shown with coloured bars at the top of the heatmap. The values of expression here presented correspond to the amount by 

which each gene deviates in each sample, from that gene’s average across all samples. Plot generated in R [67] using the 

pheatmap package. 

 

 Number of miRNA 

up-regulated 

Number of miRNA 

down-regulated 

Control vs M1 6 18 

Control vs M2 1 6 

Control vs Aβ 0 0 

M1 vs M2 23 11 

M1 vs Aβ 14 7 

M2 vs Aβ 5 3 
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For the M1 group, the miRNAs up-regulated for this condition were: hsa-miR-155-5p, -146a-

5p, -147b, -29b-1-5p, -449c-5p, -155-3p, -27a-5p and -4521. For M2, they were: hsa-miR-193b-3p, -

511-5p, -365a-5p, -193b-5p, -1249-3p, 132-3p and -511-3p. For the macrophages stimulated with Aβ 

(and only when comparing this group with the M1 and M2 groups), they were: hsa-miR-181b-5p, -

139-3p, -139-5p, -1296-5p, -30c-1-3p, -146a-5p, -34a-5p and -147b. All of this can be seen in Table 

3.7. 

 

Table 3.7: miRNA up-regulated and down-regulated in all comparisons. The miRNAs were ordered by Log2 Fold change. A 

miRNA was considered up-regulated if the Log2 Fold change value was equal or bigger than 1 and down-regulated if the 

Log2 Fold change value was equal or smaller than -1. 

 

 

Up-regulated Down-regulated 

miRBase ID Log2 Fold change FDR miRBase ID Log2 Fold change FDR 

Control vs M1 Control vs M1 

hsa-miR-181b-5p 1.629769665 2.70E-10 hsa-miR-155-5p -4.066773084 2.45E-71 

hsa-miR-139-5p 1.468294398 5.63E-05 hsa-miR-29b-1-5p -1.938073642 5.22E-07 

hsa-miR-139-3p 1.459452018 0.005482 hsa-miR-449a -1.93708571 1.22E-05 

hsa-miR-1296-5p 1.192301092 0.012025 hsa-miR-146a-5p -1.891727137 6.78E-10 

hsa-miR-1249-3p 1.140984413 0.001978 hsa-miR-4521 -1.788082598 4.80E-18 

Control vs M2 Control vs M2 

hsa-miR-34a-5p 1.297099033 0.000228 hsa-miR-193b-3p -3.059871191 2.23E-14 

M1 vs M2 hsa-miR-511-5p -2.45466273 6.61E-10 

hsa-miR-155-5p 4.180201927 5.26E-64 hsa-miR-365a-5p -1.817508105 0.000830503 

hsa-miR-146a-5p 2.75441328 6.07E-19 hsa-miR-193b-5p -1.498430645 0.014157368 

hsa-miR-147b 2.306068728 1.07E-11 hsa-miR-132-3p -1.130910242 2.72E-05 

hsa-miR-29b-1-5p 2.218501363 2.39E-08 M1 vs M2 

hsa-miR-449c-5p 2.076994461 5.14E-06 hsa-miR-511-5p -3.315567904 1.67E-18 

M1 vs Ab hsa-miR-193b-3p -3.010147137 6.02E-15 

hsa-miR-155-5p 3.223816935 1.40E-44 hsa-miR-511-3p -1.951053277 0.000108616 

hsa-miR-29b-1-5p 1.894398319 9.28E-07 hsa-miR-365a-5p -1.82477785 0.000108616 

hsa-miR-449c-5p 1.872718584 3.43E-05 hsa-miR-193b-5p -1.502226198 0.001423178 

hsa-miR-155-3p 1.784102728 0.000799 M1 vs Ab 

hsa-miR-27a-5p 1.458239627 2.28E-07 hsa-miR-181b-5p -1.870304816 1.82E-13 

M2 vs Ab hsa-miR-139-3p -1.544910453 0.0031307 

hsa-miR-193b-3p 3.330747534 7.36E-17 hsa-miR-139-5p -1.544451836 2.09E-05 

hsa-miR-511-5p 2.650828705 1.36E-11 hsa-miR-1296-5p -1.404584343 0.002581245 

hsa-miR-365a-5p 1.83107499 0.000645 hsa-miR-30c-1-3p -1.109161231 0.024410352 

hsa-miR-193b-5p 1.421936112 0.022828 M2 vs Ab 

hsa-miR-1249-3p 1.092993088 0.031129 hsa-miR-146a-5p -1.687812812 2.34E-06 

   hsa-miR-34a-5p -1.459717931 1.16E-05 

   hsa-miR-147b -1.206874985 0.018740345 
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In terms of only the M1 and M2 results, there were a total of 24 and 12 miRNAs with greater 

expression in these groups, respectively (Table 3.8). 

 

Table 3.8: miRNA up-regulated for the M1 and M2 samples, across all comparisons. 

M1 M2 

hsa-miR-155-5p hsa-miR-193b-3p 

hsa-miR-29b-1-5p hsa-miR-511-5p 

hsa-miR-449a hsa-miR-365a-5p 

hsa-miR-146a-5p hsa-miR-193b-5p 

hsa-miR-4521 hsa-miR-132-3p 

hsa-miR-147b hsa-miR-132-5p 

hsa-miR-146a-3p hsa-miR-511-3p 

hsa-miR-449c-5p hsa-miR-1296-5p 

hsa-miR-155-3p hsa-miR-1249-3p 

hsa-miR-365b-5p hsa-miR-3613-5p 

hsa-miR-29a-3p hsa-miR-342-5p 

hsa-miR-4645-3p hsa-miR-139-5p 

hsa-miR-125a-3p 

hsa-miR-27a-3p 

hsa-miR-27a-5p 

hsa-miR-130b-3p 

hsa-miR-130a-3p 

hsa-miR-187-3p 

hsa-miR-29a-5p 

hsa-miR-181d-5p 

hsa-miR-125a-5p 

hsa-miR-1277-3p 

hsa-miR-22-5p 

hsa-miR-200a-3p 

 

 

3.3 Correlation analysis 

 In order to understand better the relationship between the miRNA levels of expression and 

target mRNA level of expression, a correlation analysis was done. As described in section 2.3.3, the 

database miRTarBase was used. This database compounds the miRNA:Target relationships that have 

been proven in other works. As such, there was no use of predicted targets. This database also 

distinguishes between what is called “Strong evidence” and “Less strong evidence” as was explained 

in section 2.3.3. When all of the evidence is taken into account, there is a noticeable skewering of the 

amount of positive correlations caused by one miRNA in particular, miR-34a-5p (Table 3.9). 

However, when only the “strong evidence” is selected there is a much smaller skewing of the data 

(Table 3.10). 
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Table 3.9: Results for the correlation using all targets. If the value of the correlation coefficient was equal or bigger than 0, 

the correlation was considered to be positive. If the value of the correlation coefficient was smaller than 0, then the 

correlation was considered negative. All correlations considered had p-value lesser than 0.05. 

 

 

miRNA 
Positive 

Correlations 

Negative 

Correlations 

Total 

Correlations 

Percentage of 

Positive 

correlations 

Percentage of 

Negative 

correlations 

hsa-miR-1249-3p 0 1 1 0 100 

hsa-miR-125a-3p 10 1 11 90.91 9.09 

hsa-miR-125a-5p 12 0 12 100 0 

hsa-miR-1296-5p 1 1 2 50 50 

hsa-miR-130a-3p 5 1 6 83.33 16.67 

hsa-miR-130b-3p 10 13 23 43.48 56.52 

hsa-miR-132-3p 3 0 3 100 0 

hsa-miR-139-3p 13 2 15 86.67 13.33 

hsa-miR-146a-3p 4 18 22 18.18 81.82 

hsa-miR-146a-5p 8 5 13 61.54 38.46 

hsa-miR-147b 1 0 1 100 0 

hsa-miR-155-3p 1 0 1 100 0 

hsa-miR-155-5p 28 7 35 80 20 

hsa-miR-181b-5p 3 1 4 75 25 

hsa-miR-181d-5p 11 7 18 61.11 38.89 

hsa-miR-193b-3p 15 3 18 83.33 16.67 

hsa-miR-193b-5p 3 0 3 100 0 

hsa-miR-200a-3p 3 1 4 75 25 

hsa-miR-22-5p 5 0 5 100 0 

hsa-miR-27a-3p 12 2 14 85.71 14.29 

hsa-miR-27a-5p 3 1 4 75 25 

hsa-miR-29a-3p 6 3 9 66.67 33.33 

hsa-miR-29a-5p 2 0 2 100 0 

hsa-miR-29b-1-5p 1 0 1 100 0 

hsa-miR-30c-1-3p 5 3 8 62.5 37.5 

hsa-miR-342-5p 1 1 2 50 50 

hsa-miR-34a-5p 193 10 203 95.07 4.93 

hsa-miR-3613-5p 1 1 2 50 50 

hsa-miR-365a-5p 2 1 3 66.67 33.33 

hsa-miR-365b-5p 6 1 7 85.71 14.29 

hsa-miR-449a 3 2 5 60 40 

hsa-miR-449c-5p 2 0 2 100 0 

hsa-miR-4521 1 0 1 100 0 

hsa-miR-505-3p 0 5 5 0 100 

hsa-miR-511-3p 2 0 2 100 0 

hsa-miR-511-5p 0 1 1 0 100 

Total 376 92 468 80.34 19.66 
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Table 3.10: Results for the correlation test using only targets with “strong evidence”. If the value of the correlation 

coefficient was equal or bigger than 0, the correlation was considered to be positive. If the value of the correlation coefficient 

was smaller than 0, then the correlation was considered negative. All correlations considered had p-value lesser than 0.05. 

See section 2.3.3 for the definition of types of evidence. 

miRNA 
Positive 

Correlations 

Negative 

Correlations 

Total 

Correlations 

Percentage of 

Positive 

Correlations 

Percentage of 

Negative 

Correlations 

hsa-miR-125a-5p 1 0 1 100 0 

hsa-miR-130b-3p 0 1 1 0 100 

hsa-miR-146a-5p 5 1 6 83.33 16.67 

hsa-miR-155-5p 6 3 9 66.67 33.33 

hsa-miR-181d-5p 1 0 1 100 0 

hsa-miR-200a-3p 1 1 2 50 50 

hsa-miR-27a-3p 3 0 3 100 0 

hsa-miR-29a-3p 5 1 6 83.33 16.67 

hsa-miR-34a-5p 17 6 23 73.91 26.09 

hsa-miR-449a 3 0 3 100 0 

Total 42 13 55 76.36 23.64 
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Chapter 4: Discussion 
 

4.1 mRNA data analysis 

 As mentioned before, there was a DNA contamination in the samples. This could happen 

when the digestion of the DNA, by the DNAse, is ineffective, for example. Other works don’t often 

mention the rate of non-exonic mapping, either because the contamination is detected in the library 

preparation step or because it is simply not detected at all. DNA contamination tends to not raise any 

flags in standard analysis pipelines and they don’t affect the rate of mapping considerably, making it 

hard to detect. On a work done for human samples, the rate of non-exonic mapping was found to be 

around 9% [78], and on another done in mice, the rate detected was 7% [79]. This rate can be slightly 

bigger, depending on how well annotated the genome is for that organism. Contamination of samples 

by DNA can also bolster the non-exonic mapping rate, which is what most likely happened in this 

case. 

 One of the main objectives of this work was to compare the expression profiles between the 

conditions proposed: macrophages induced into an M1 or M2 polarization state or stimulated with Aβ. 

In addition to that, a control sample was also designed. The differential expression analysis allows for 

that gene profile comparison and its results can be analysed through other tools (like functional 

enrichment tools), to help answer a biological question. 

In terms of the top 5 genes, across all comparisons (Tables 3.2 and 3.3), with greater 

expression in the M1 group of samples, three (IDO1, CCR7 and CXCL9) of them are identified as 

markers for this polarization type (Table 1.1). The gene IDO1 codes for an enzyme that catalyses 

tryptophan and has a possible role in depression and other diseases of the brain, like Huntington’s 

disease [80]. Its activity is increased in neuroinflammation upon the release of cytokines [81], and that 

might be why this gene is over-expressed for this condition, since the M1 polarization produces a lot 

of cytokines (Tables 1.1). Another gene often found expressed in these cells is CCR7, coding to a 

chemokine receptor whose expression has been shown to be associated with the number of activated T 

cells in circulation [82]. This gene is a characteristic marker of pro-inflammatory macrophages [83]. 

CXCL9 codes to a chemokine that is often expressed in M1 polarized macrophages and it has a role in 

the recruitment and polarization of Th1 cells [14]. 

However, other non-marker genes were identified with high expression for this polarization 

state. The ACOD1 gene (Immune-responsive gene 1, IRG1) codes for an enzyme that produces 

itaconic acid, used in immune defence. This gene is expressed in macrophages especially under pro-

inflammatory conditions. i.e. presence of LPS [84]. When up-regulated, this gene can act as a negative 

regulator for TLR by increasing the expression of TNFAIP3 or A20 using ROS [85]. For the 

ANKRD22 gene, a study has shown that, in T cell-mediated rejection (TCMR) conditions, this gene 

has a great expression in macrophages that were treated with IFN-γ [86]. Since IFN-γ was one of the 

inducers used in this work to polarize macrophages into the M1 phenotype, it is possible that the 

expression of this gene is in response to IFN-γ, independent of the TCMR conditions. SNX10 is a type 

of sorting nexin that has vacuolizing activity [87]. This type of activity is crucial in macrophages due 

to many of its functions being dependent on it, such as phagocytosis, digestion of pathogens, among 

others. In case of SNX10 Knock Out, the polarization process in macrophages will tend more towards 

M2. As such, SNX10 is important for the phagocytosis done in M1 cells (clearing of pathogens and 

antigen presenting) but not that relevant for the one done by M2 cells (clearance of apoptotic cells, 
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debris, tissue repair and remodelling) and, as such, can control the polarization of macrophages to M2 

[88]. RP11-44K6.2 (as of the most recent Ensembl update, known as AC007991.2) is an intronic 

sequence that is within the intronic region of the gene IDO1. As previously discussed, there was a 

great number of reads mapping to introns and, as such it is possible that the differential expression of 

this gene is a consequence of reads mapping to that region. 

For the M2 polarized macrophages, six genes (ALOX15, FCER also known as CD23, TGM2, 

F13A1, the mannose receptor MRC1 and CLEC10A) were identified as markers for this polarization, 

from the group of genes in Tables 3.2 and 3.3. ALOX15 is a lipoxygenase, an enzyme that is 

responsible for the synthesis of biological active lipids [89]. This gene has been found to be up-

regulated in M2 polarized cells that can do efferocytosis; non-inflammatory removal of apoptotic cells 

in adipose tissue  [90,91]. It also appears to be modulated by the activation of macrophages with IL-4 

[92], which would account for its greater expression in M2a cells, that are induced using IL-4. One of 

the contributors to an allergic reaction is immunoglobulin E. FCER2 (or CD23) codes for a low 

affinity receptor for this kind of immunoglobulin that may inhibit the production of IgE through a 

negative feedback mechanism, and one of its forms can be found in monocytes. Its expression at the 

cell surface can be induced through various mechanisms including cytokines (IL-4 and IL-13) [93], 

which may be the reason for its high levels of expression in the M2a cells. The gene TGM2 codes for 

an enzyme that belongs to the transglutaminase family. This family is one responsible for the catalytic 

function that makes post-translational modification of proteins [94]. This enzyme participates in the 

clearance of apoptotic cells, a function in which the M2 cells are also involved [19]. Interestingly 

enough, M1 cells also had great levels of expression for this enzyme when compared with the Control 

and Ab groups, but not when compared to M2 cells. So, perhaps, the definition of this gene as a 

marker should be accompanied with a warning that it only applies for comparisons against other 

polarization states, and that both M1 and M2 cells express this gene to a greater extent than un-

stimulated cells. F13A1 codes to a protein called Coagulation factor XIII A chain, that is able to 

crosslink with fibrin and play a role in inflammation [95]. The mannose receptor coded by MRC1 

(CD206) has a role in the regulation of phagocytosis [96] and its levels of expression are high in M2 

polarized cells due to the activation with IL-4 [92]. CLEC10 (also known as CD301) is a galactose-

type C-type lectin that acts as a receptor and its expression is increased in the presence of IL-4 [97]. 

The only gene not identified as marker of M2 polarization, obtained from Tables 3.2 and 3.3, 

was CTNNAL1 (α-catenin). This catenin belongs to the Rho family, which is often involved in cell 

mobility and cell shape remodelling [98]. This gene could be up-regulated in the M2 cells, since, as 

mentioned before, these cells have more phagocytic activity [14] which would require the remodelling 

of the cell shape, a function that α-catenin takes part of. 

The results for the samples stimulated with Aβ leave a lot to be desired. Almost all of the 

genes up-regulated in the Tables 3.2 and 3.3 were also present as up-regulated in Control comparisons. 

The only exception was the sole gene SOD2, which resulted from the comparison between the Control 

and Ab groups. The elimination of ROS (catalysing it into hydrogen peroxide and oxygen) from the 

system can be done through the SOD (superoxidase dismutase) family, making the members of this 

family antioxidant agents [99,100], and with one of its members being the mitochondrial SOD2 [101]. 

Oxidative stress markers have been detected in brains affected with AD (post-mortem) [102] and the 

reduction of SOD2 in animal models has been found to increase the levels of Aβ [103]. A link between 

the expression of Aβ and the high levels of oxidative stress exists, where Aβ induces the generation of 

ROS through several different reactions and SOD2 has been shown to increase the resistance of cells 

towards this induced oxidative stress [104]. The fact that this is the only gene that has a higher level of 

expression in the Ab group of cells when compared with the Control group is to be expected, since the 



 

44 
 

cells of the Ab group had Aβ in their environment and, as stated before, SOD2 tends to be the “go to” 

enzyme when it comes to the attainment of a resistance by cells to the oxidative stress caused by this 

oligomer. It has been shown that macrophages are capable of digesting Aβ fully [44], so one would 

expect a bigger percentage of Differential expressed genes related to this process of degradation. 

Curiously enough, M1 cells had a bigger expression of this gene when compared with all other 

conditions, including Aβ induced macrophages. This could be due to the fact that this cells produce 

ROI [14] and, as such, would require some sort of protection for themselves. An interesting thing 

should be noted, about the Ab group. The gene profile for this group was more similar to the M2 

polarization, than for the M1 polarization, when comparing them through the PCA plot (Figure 3.6), 

and their number of genes differentially expressed (Table 3.1). This might indicate that these 

macrophages, in an Aβ environment, have more of a similarity with an anti-inflammatory profile than 

to a pro-inflammatory profile.  

Due to the significant volume of data from the differential expression analysis, a functional 

enrichment analysis was done to try to determine the main functions different between each condition 

(Tables 3.4 and 3.5). 

For the M1 cells, when compared with the Control group, there is the presence of the 

membrane cluster in both up and down-regulated groups. Usually this group is associated with 

receptors located in the membrane and it is possible to see that there is a greater expression of only 

some receptors, while others get less expressed. A few genes related to the DAPIN domain have also 

been detected as down-regulated in M1. Members of this domain include some interferon-induced 

proteins and others may play a role in apoptosis or the activation of MHC class II [105], so there 

seems to be a lack of expression of a small quantity of these genes in the M1 cells. As mentioned 

before, M1 cells are responsible for the production of pro-inflammatory cytokines and, as such, it is 

normal for some of the genes with greater expression in these cells to be related with the NOD-like 

signalling pathway. This pathway is responsible for the recognition of bacterial structures leading to 

the production of pro-inflammatory cytokines, by the processing of Interleukin-1 beta (IL-1β) and 

others into their mature form [106,107]. Finally, there is also the increased expression of some genes 

related to antigen processing and presentation, a function that is more efficient in this cells [14]. 

When the comparison is made with the M2 cells, there seems to be a significant up-regulation 

of genes associated with signalling. There is also the greater expression of gene associated with 

response to lipopolysaccharides, which is reasonable since the M1 cells were activated with LPS. 

For the comparison between M1 and Aβ cells, the M1 cells seem to express more genes 

related with the interaction of viruses. There are some studies showing that viruses like HIV can 

promote the M1 polarization [108,109] and this cells have antiviral activity [110]. M1 cells have a 

higher expression of proteins with immunoglobulin-like fold, probably due to the high number of 

receptors and MHC class II antigens expressed in these cells. Cells from the Ab group also had some 

over-expressed genes associated with lectins. Lectins are glycan-binding receptors that have a role in 

some immune functions, for example, some C-type lectins participate in cell adhesion and pathogen 

recognition, initiating intracellular signalling processes that can result in the production of 

inflammatory cytokines and a phagocytic response [111]. It is possible, that these genes have a lower 

expression in the M1 due to the lack of usefulness of these specific lectins to the M1 cells, while other 

lectins retain normal expression levels. Finally, for this comparison, there seems to be a lower 

expression of genes associated with the metabolism of cholesterol, which might indicate that the M1 

cells, when compared with the cells treated with Aβ, have a much smaller capacity for this process; or 

that the cells that processed Aβ have a much greater expression of genes related to this function. The 
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APOE gene is over-expressed in the Aβ treated cells when compared with M1, and this gene is related 

to the transport of cholesterol [112]. It is possible that a high level of cholesterol might cause a higher 

level of accumulation of the Aβ plaques [112] and, as such, the cells treated with Aβ started to adapt to 

process the cholesterol as an attempt to decrease the formation of the Aβ plaques. 

In terms of the M2 cells, when the comparison is done against the Control condition, there is a 

low expression of a small number of genes related with chemotaxis and that are a part of the lysosome. 

Chemotaxis is done by the M2 cells as this cells recruit others through the presence of chemokines and 

M2 cells, due to their high phagocytic activity, will need good lysosomal activity [14]. The genes that 

have a lower expression in these M2 polarized macrophages might not be specialized or related to the 

specific functions that M2 polarized cells can do. They promote the chemotaxis of some cells that are 

of no interest to M2 cells for example. On the other hand, there are a high number of genes widely 

expressed in these cells with function in the membrane (most likely receptors, which these cells 

possess in great quantities) and a smaller number of genes related to adaptive immunity and host-virus 

interaction. Regarding the latter, it has been shown, that in the presence of a virus, there will be a 

bigger polarization towards M2 cells rather than M1 cells [113,114], so this cells may play a much 

bigger role in the immune response to virus than the M1 polarized cells, especially when it comes to 

fixing the damage done in tissue by this virus. These proteins may also hint to a bigger susceptibility 

towards the infection of this M2 cells by virus.  

There seems to be a big expression of genes associated with DNA housekeeping and mRNA 

expression control in the M2 cells (when compared with M1). The reason for this can be the fact that, 

under polarizing conditions, certain epigenetic changes are done within the cell. 

 When comparing the M2 cells with the Aβ stimulated cells, there is, like in the M1 cells, a 

bigger expression of a lot of receptors (Membrane and Immunoglobulin-like fold). There is also some 

expression of MHC class II proteins that, as noted in the Table 1.1, is also present in this type of 

polarization. The Aβ treated cells seem to have a bigger expression of glycoproteins and signal 

peptides than the M2 cells. The signal peptide term probably means that there are a lot of proteins that 

assign this signal and are involved in the transportation of the proteins towards the secretory pathway, 

meaning that there might be a bigger amount of production of proteins in these cells when compared 

to the M2 cells. 

 

4.2 miRNA data analysis 

 In order to compare the miRNA expression profiles between all of the conditions, a 

differential expression analysis was done. 

As shown before (Table 3.6), there were no miRNA detected when comparing the Control and 

Ab conditions. However, the number of miRNA up-regulated in Control or Ab is different when this 

two are compared with the M1 or M2 polarized cells. Like stated beforehand, for the mRNA data, 

these two conditions are slightly different, but the difference is not significant enough to show up 

when comparing them directly. 

Three miRNAs (hsa-miR-505-3p, hsa-miR-146a-5p and hsa-miR-147b) were uniquely up-

regulated for the Ab conditions. These miRNAs were identified by comparing the results for gene up-

regulated in CON or Ab when compared with M1 and M2 conditions. Of these three, only hsa-miR-

505-3p was not present in other comparisons, meaning that it’s less likely that its up-regulation is due 
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to a low expression in the M1 or M2 samples. This miRNA has been identified in several studied 

related to cancer [115–117], but nothing that would show an association of this miRNA with 

Alzheimer’s disease. Unfortunately, as stated before, while this miRNA has a different expression for 

the Ab group, this difference is not significant enough to show up in the statistical testing against the 

Control group and, as such, no tangible conclusions can be made from focusing on this miRNA. 

Due to the poor results found for the Ab group, the rest of this analysis was focused in the 

polarization states M1/M2. Table 3.8 represents all of the up-regulated genes for the M1 and M2 

groups. 

Of the 24 up-regulated miRNAs for the M1 condition across all comparisons, 9 (miR-155-5p, 

-146a-5p, -147b, -146a-3p, -155-3p, -125a-3p, -130a-3p, -187-3p, -181d-5p and -125a-5p) have been 

identified as present in this cells in previous studies [51,118–123]. Others were not directly associated 

with the polarization into M1 but with other factors: miR-29b and miR-22 may have elevated 

expression due to their role in the differentiation of monocytes into macrophages [119,124]; miR-29a 

has been found to be enriched in hematopoietic cells [125]; miR-200a-3p expression can be high 

following the activation of the TLR1 signalling pathway [126]. For macrophages treated with LPS, the 

expression of miR-27a as often been found to be lower in this cells [127,128], but the opposite was 

seen in the data that was analysed for this work. It was up-regulated in the M1 cells and the reason for 

this is yet to be determined. In mice on a high-fat diet, miR-130b has been shown to increase the 

polarization of macrophages towards M1, dampening M2 polarization [129] but, under LPS 

conditions, the expression of this miRNA is decreased [130], which is the opposite of what happened 

in this case. 

For the M2 condition, of the 12 miRNAs with high levels of expression across all 

comparisons, 4 (miR-193b-3p, -193b-5p, -511-3p and -511-5p) have been associated, in other studies, 

with this polarization state [118,119]. Other miRNAs have been detected without association with the 

M2 polarization state. Ones includes miR-132, that was found to have increased expression in M2b 

macrophages activated using IgG-coated wells and LPS [119]. The opposite of which happens in the 

data analysed for this work, seeing as miR-132-3p and -132-5p have high expression for the M2a 

polarized macrophages activated with IL-4; miR-342-5p has a role in the regulation of the polarization 

into the M1 state [131]. 

It should be noted that, these discrepancies between miRNAs detected in each polarization 

states and the defined markers or experimental observations can possibly be caused by a lot of factors. 

Different species, conditions, differences in what was used to cause polarization, among other reasons. 

There is also the fact that miRNAs form a complicated web of interactions and, as such, whilst some 

experiments may have the expression of a particular miRNA, others may have a much lower 

expression and as a result of, for example, a negative feedback loop that had time to take effect due to 

the difference in timing of the acquisition of the samples. 

 Either way, the miRNAs with the highest expression are the ones previously associated as 

markers. Taking the comparison M1vsM2 as an example, the most expressed gene for M1 is miR-155-

5p (4.18 log2 Fold Change) and for M2 are miR-511-5p (-3.32 log2 Fold Change) and 193b-3p (-3.01 

log2 Fold Change). As such, this could be taken as proof of a successful polarization of the cells, 

making the miRNAs that have not been studied thoroughly (like miR-449a, -4521, -449c-5p, etc.), 

interesting subjects in the study of polarization and immune systems. Especially if later their over-

expression can be validated by techniques such as RT-qPCR. 
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4.3 Correlation test analysis 

 A correlation analysis was done to evaluate the effect of miRNA expression over their target 

mRNA expression. However, this analysis was plagued with the skewing of the number of positive 

correlations by miR-34a-5p (Tables 3.9 and 3.10). One would normally expect the prevalence of 

negative correlations, due to the nature of miRNA. 

In terms of the abundance of positive correlations in the miR-34a-5p miRNA, it’s possible to 

assess that its maximum values are associated with the Control and Ab conditions, and its minimum 

values are associated with the M1 and M2 condition (data not shown). So, this miRNA has a smaller 

expression in the polarization states, when compared with the other conditions. 

For a gene to have a positive correlation, it means that it will follow the same trend. The gene 

will also have a bigger expression in the CON and Ab conditions, and a smaller expression in the M1 

and M2 conditions. As seen, there are a great number of gene targets with positive correlation for 

miR-34a-5p. When taking into account the difference between polarization states and non-polarization 

states, it was hypothesised that this could be due to the fact that, the effect of the polarization on the 

genes will be greater than the effect of the regulation by the miRNA. If that was the case, then 

majority of positive correlations could be associated with a massive amount of target genes identified 

that take a role in macrophage polarization. 

To test this hypothesis, all of the genes associated with positive correlations for this miRNA 

were ran through Reactome [132,133] to check for any common pathways, shared by the majority of 

these genes. If a common pathway was involved in the polarization of the macrophages, then the 

hypothesis would be proven to be correct. 

When analysing the data in which all the evidence were used, the one with the bigger skewing, 

there was no common pathway shared by the majority of the genes. However, even when the top 

pathways have such a lower number of genes associated with them than expected, the conjugation of 

some of them may be a by-product of macrophage polarization. The top pathways for this case are 

associated with cellular senescence, the wnt pathway, reactions involving histones, chromatin 

organization, and DNA methylation. The chromatin organization and the methylation of DNA could 

be caused by the polarization, due to the epigenetic changes that happens in these macrophages and 

the wnt pathway has been proven to be active in M2 macrophages [134]. Whilst this does not prove 

the proposed hypothesis, especially because it does not justify the low expression in M1/M2 that the 

genes involved in this pathway must have, it does seem to show the slight trend of the difference 

between the Con/Ab and polarized conditions. 

In regards of the data with “Strong evidence”, there are 8 of the 17 genes with positive 

correlations, which participate in the NOTCH pathway. This specific pathway has been found to be 

inhibited in M2 macrophages and, when active, induces and increases the number of M1 macrophages 

[135,136]. It’s possible that, while this difference in activation exists, M1 macrophages can possibly 

have lower levels of expression for genes associated with this pathway, when compared with its 

Con/Ab counterparts, yet still be active. 

In conclusion, the purposed hypothesis was not proven to be correct. However, there are 

certain interesting trends in the genes that are positively correlated with miR-34a-5p. There is also the 

possibility of other unknown factors being in play. As stated before, miRNA form complex networks 

of interaction, to the point that often, when a majority of negative correlations is expected, the result 

ends up being evenly distributed between positive and negative. There is also the possibility that a lot 



 

48 
 

of targets for this miRNA may be regulated by other miRNA, thus influencing its expression, and 

creating a similar trend of expression between miR-34a-5p and its targets. Regardless, the skewing is 

due to only this particular miRNA, which is quite unusual. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

49 
 

Chapter 5: Conclusion 
 

The main conclusion of this work is that, the polarization of the macrophages into M1 and M2 

was successful as shown by the detection of gene and miRNA markers. Additionally, some new 

miRNAs were identified for these conditions and they could be some interesting targets for study of 

inflammation and therapeutics. 

Unfortunately, the same could not be said for the macrophage samples stimulated with Aβ. 

These samples were too similar to the Control group for any relevant and new information to be found. 

Whilst for the mRNA, there was one gene outputted, the lack of miRNAs differentially expressed was 

not ideal for this line of study. It is possible that this lack of results may be a consequence of the strong 

variability caused either by human error in sample preparation, or by some other unknown factor. The 

sva package improved the results greatly, but it was still insufficient. 

In regards to the correlation test, the biggest surprise was the skewing towards positive 

correlation due to one single miRNA, rather than the majority of positive correlations. Some other 

works have shown some strong and abundant positive correlations, contrary to what it is usually 

expected, but they are not usually caused by a single miRNA. It just goes to show, if everything done 

in this work was correct, that at the end of the day, these miRNAs are much more complex than what 

is now known in the literature. 

 

 Future Work 

The present work was a good foundation to try to identify and compare the gene profiles of 

macrophages stimulated with Aβ against polarized macrophages/Control samples. However, as 

previously mentioned, the work was plagued with the fact that the Ab group and the Control group 

were too similar. As such, the experiment should be repeated, with especial caution towards batch 

effects and contamination in the preparation of the libraries. 

 In addition to that, and to expand on this study, analyses like RT-qPCR could be done in both 

the miRNA and mRNA data, to verify the values of expression. 
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