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Resumo

As florestas de sobreiro (Quercus suber L.) são recursos únicos e em-
blemáticos em Portugal, com elevado impacto económico, ecológico
e social. A disponibilidade recente da sequência do genoma de so-
breiro forneceu um importante contributo para revitalizar a pesquisa
em temas como desenvolvimento de cortiça e melhoramento da planta,
assim como promover a competitividade da indústria da cortiça. No
entanto, é ainda necessário adicionar mais detalhe à anotação estrutu-
ral do genoma, nomeadamente ao nível dos transcritos, incluindo pre-
visão de eventos de splicing alternativo. O splicing alternativo (AS) é
um processo usado durante a expressão génica que origina diferentes
variantes de transcritos (isoformas) e produtos proteicos a partir um
único gene. No presente estudo, procedemos à análise de dezasseis
bibliotecas de RNA-seq, preparadas a partir de quatro tecidos de so-
breiro (folhas, felema, entrecasco e xilema), de modo a prever novas
formas de AS para genes já previstos e melhorar a anotação estrutural
do genoma.

Um protocolo bioinformático foi definido para testar o desempenho
do software HISAT2 e STAR para mapeamento de reads de RNA-
seq no genoma de referência, e do software Cufflinks e StringTie para
(re)construção de transcritos. O alinhamento de reads no genoma
efetuado com STAR resultou em taxas de mapeamento (de 84,22%
a 86,86%) superiores aos resultados atingidos com HISAT2 (73,88%
a 76,55%). Assim, os resultados de mapeamento com STAR foram
utilizados para a (re)construção de transcritos. O uso do StringTie
para este processo foi globalmente mais conservador do que com Cuf-
flinks, gerando menos transcritos novos, mas com melhor cobertura
de reads por pares de base. Para melhorar a precisão da anotação e
reduzir falsos positivos, foi realizado um passo adicional de otimização



com StringTie. Desta otimização resultou uma anotação que prevê a
ocorrência de 7 958 novos transcritos (8% dos transcritos totais), dos
quais 5 453 são novas isoformas para genes previstos na anotação de
referência. Esta nova anotação foi utilizada como referência para esti-
mar a abundância dos transcritos em cada um dos tecidos estudados
e efetuar a análise de expressão diferencial. Cerca de 16% de todos
os genes expressos nos quatro tecidos e que contêm intrões apresen-
taram splicing alternativo, e os principais eventos de splicing foram
alternative acceptor site e intron retention. Grupos de transcritos
com expressão diferencial entre os quatro tecidos foram identifica-
dos e a análise de enriquecimento funcional confirmou os principais
processos biológicos esperados para cada tecido: os transcritos mais
expressos nas folhas e no xilema estavam relacionados com a foto-
ssíntese e com transporte, respetivamente; transcritos mais expressos
na periderme (felema e entrecasco) mostraram um enriquecimento em
categorias funcionais relacionadas com a síntese de suberina e outros
componentes de parede celular presentes nas células de cortiça. Estes
grupos específicos mostraram também um enriquecimento em tran-
scritos envolvidos na resposta ao stresse (biótico ou abiótico). Nos
tecidos que compõem a periderme, este enriquecimento foi observado
principalmente no entrecasco, enquanto que no felema foi detetado um
enriquecimento em transcritos envolvidos no metabolismo secundário.

A presente tese permitiu a definição de um protocolo padrão que
poderá ser usado para estudar o splicing alternativo no sobreiro e
para uma análise mais aprofundada na nova versão do genoma, que
estará disponível em breve.

Palavras Chave: Quercus suber, anotação do genoma, transcrição,
isoformas, diferenciação da periderme



Abstract

Cork oak (Quercus suber L.) forests are unique and emblematic re-
sources for Portugal, with high economical, ecological and social sig-
nificance. The recent availability of the cork oak genome sequence
provided an important contribution to reinvigorate research in funda-
mental topics such as cork development and plant improvement, and
to promote the competitiveness of cork industry. Yet, further analy-
sis is required to add detail to genome structure annotation, namely
at the transcript level, also taking into account alternative splicing.
Alternative splicing (AS) is a process used during gene expression to
yield different transcript variants and protein products derived from
a single gene. In the present study, we analyzed sixteen RNA-seq li-
braries prepared from four cork oak tissues (leaf, xylem, phellem and
inner bark), in order to predict new AS forms for the already predicted
genes and improve genome structural annotation.

A bioinformatics pipeline was defined in order to test the perfor-
mance of HISAT2 and STAR for read mapping against the reference
genome, and Cufflinks and StringTie for transcript assembly. STAR
yielded higher mapping efficiencies (84.22% to 86.86%) for the cork
oak datasets, as compared to HISAT2 (73.88% to 76.55%), and the
corresponding mapping data was selected for transcript assembly. The
use of StringTie for this step was globally more conservative than Cuf-
flinks, generating less novel transcripts, but with better support by
read per base coverage. A further optimization step was performed
using StringTie in order to improve annotation precision. The final
transcript annotation was selected from this optimization step, pre-
dicting 7,958 novel transcripts (8% of total transcripts in the new
annotation), 5,453 of which were novel isoforms for genes in reference
annotation. This new annotation was used as reference to estimate



transcript abundance in each tissue and differential expression anal-
ysis. Approximately 16% of all intron-containing genes expressed in
the four tissues were alternatively spliced and the main event found
in the four cork oak tissues was alternative acceptor site, followed by
intron retention. Transcript clusters showing differential expression
among the four tissues were identified and functional enrichment anal-
ysis confirmed the main biological processes expected for each tissue:
transcripts highly expressed in leaves and xylem were mostly related
to photosynthesis and transport, respectively; transcripts highly ex-
pressed in peridermis (phellem and inner bark) showed an enrichment
in functional categories related to the synthesis of suberin and other
component of cork cell walls. These tissue-specific clusters also showed
an enrichment in transcripts involved in the response to stress (biotic
or abiotic). Yet, in peridermis, this enrichment was mostly observed
in inner bark samples, while phellem samples showed an enrichment
in transcripts related to secondary metabolism.

This thesis allowed the definition of a standard workflow that can be
used to study alternative splicing in cork oak and used for further
analysis on the new improved genome version that will be available
soon.

Keywords: Quercus suber, genome annotation, transcription, iso-
forms, peridermis differentiation



Resumo Alargado

As florestas de sobreiro (Quercus suber L.) são recursos únicos e em-
blemáticos em Portugal, com elevado impacto económico, ecológico
e social. A disponibilidade recente da sequência do genoma de so-
breiro forneceu um importante contributo para revitalizar a pesquisa
em temas como desenvolvimento de cortiça e melhoramento da planta,
assim como promover a competitividade da indústria da cortiça. No
entanto, é ainda necessário adicionar mais detalhe à anotação estru-
tural do genoma, nomeadamente ao nível dos transcritos, incluindo
a previsão de eventos de splicing alternativo. O splicing alternativo
(AS) é um processo usado durante a expressão génica, que resulta
da remoção alternativa de exões ou inclusão de intrões nas regiões
codificantes do RNA mensageiro, originando diferentes variantes de
transcritos (isoformas) a partir um único gene. Um procedimento co-
mum para reconstruir transcritos tendo por base dados de RNA-seq
envolve o alinhamento de reads sequenciadas no genoma de referên-
cia (quando disponível para o organismo em estudo) e (re)construção
de transcritos com base no agrupamento de reads sobrepostas num
determinado locus. Esta abordagem permite não só identificar novas
isoformas de genes previamente anotados, como também identificar
novos genes ainda não anotados. Seguidamente é possível estimar
a abundância dos transcritos e determinar a ocorrência de AS nos
vários conjuntos de dados. No presente estudo, procedemos à análise
de dezasseis bibliotecas de RNA-seq, preparadas a partir de quatro
tecidos de sobreiro (folhas, felema, entrecasco e xilema), de modo a
prever novas formas AS para genes já previstos e melhorar a anotação
estrutural do genoma.

Um protocolo bioinformático foi definido para comparar o desem-
penho de diferentes algoritmos nos dois passos mais críticos da análise



de RNA-seq: mapeamento de reads no genoma de referência, usando
HISAT2 e STAR; e construção do transcriptoma, com Cufflinks e
StringTie. O alinhamento de reads no genoma efectuado com STAR
resultou em taxas de mapeamento (de 84,22 % a 86,86 %) superiores
aos resultados atingidos com HISAT2 (73,88 % a 76,55 %). Tendo em
conta estes resultados, os alinhamentos efectuados com STAR foram
utilizados para a (re)construção de transcritos. O uso do StringTie
para este passo foi globalmente mais conservador do que com Cuf-
flinks, gerando menos transcritos novos, mas com melhor cobertura
de reads por pares de base. Para melhorar a precisão da anotação e
reduzir falsos positivos, foi realizado um passo adicional de otimização
usando StringTie, utilizando parâmetros mais restringentes relaciona-
dos com a cobertura mínima de fragmentos considerados e de conexões
entre dois exões adjacentes (splice junctions). Desta otimização resul-
tou uma anotação que prevê a ocorrência de 7 958 novos transcritos
(8% dos transcritos totais), dos quais 5 453 são novas isoformas para
genes previstos na anotação de referência. A percentagem de genes
com mais de uma isoforma rondou os 10%, havendo um aumento de
cerca de 5% relativamente à anotação de referência. Como a versão do
genoma do sobreiro utilizado é ainda preliminar (não existindo mod-
elos de genes completamente anotados para determinar a precisão e
sensibilidade da nova anotação) a escolha desta nova anotação mais
conservadora constituiu uma estratégia para reduzir o número tran-
scritos incorretamente construídos.

A nova anotação estrutural foi utilizada como referência para estimar
a abundância dos transcritos em cada um dos tecidos estudados e
efetuar a análise de expressão diferencial. Um total de 25 149 genes
(29 296 transcritos) foram considerados expressos nos quatro tecidos
analisados, 21 032 dos quais apresentaram uma estrutura de transcrito
com mais do que um exão. Destes genes, apenas 3 279 (15.60%) ap-
resentaram splicing alternativo, contendo mais do que uma isoforma
anotada. Os principais eventos de splicing foram alternative acceptor



site e intron retention. A análise de expressão diferencial identifi-
cou um total de 22 449 transcritos diferencialmente expressos entre
os quatro tecidos. Estes transcritos foram agrupados de acordo com
o seu padrão de expressão, pelo método k -means, e foram seleciona-
dos cinco grupos de transcritos expressos maioritariamente num único
tecido. Foi também selecionado um grupo cuja expressão era maior-
itariamente encontrada na periderme (camada composta por felema
e entrecasco). Estes grupos foram submetidos a uma análise de en-
riquecimento de termos GO (Gene Ontology) de modo a averiguar as
classes funcionais com maior representação em cada grupo. A análise
de enriquecimento funcional confirmou os principais processos biológi-
cos esperados para cada tecido. Os dois grupos de transcritos mais
expressos nas folhas incluíam um total de 990 transcritos, apresen-
tando um enriquecimento significativo de termos associados a fotossín-
tese e estruturas cloroplastidiais. O grupo que continha transcritos
maioritariamente expressos no xilema incluía 488 transcritos, apresen-
tando um enriquecimento em termos relacionados com transporte de
metabolitos e iões. O grupo de transcritos mais expressos na perid-
erme (692 transcritos) mostrou um enriquecimento em categorias fun-
cionais relacionadas com a síntese de suberina e outros componentes
de parede celular presentes nas células do felema (que originarão a cor-
tiça). Uma vez que o entrecasco não apresenta suberificação das pare-
des celulares, este resultado sugere um eventual envolvimento deste
tecido na produção de componentes de parede de células de felema.
Um grupo de 340 transcritos apresentou expressão maioritariamente
no felema e um enriquecimento em classes funcionais relacionadas com
a síntese de taninos, que preenchem o conteúdo celular destas células
durante os primeiros anos de desenvolvimento. O grupo de transcritos
expressos maioritariamente no entrecasco (786 transcritos) apresentou
um enriquecimento em termos associados com a resposta ao stresse
(biótico ou abiótico). Embora termos relacionados com stress tenham
sido também encontrados nos grupos específicos de folha e xilema,



nos tecidos que compõem a periderme este enriquecimento foi prin-
cipalmente observado no entrecasco, sugerindo que este tecido está
também envolvido na protecção da planta.

A presente tese seguiu uma abordagem conservadora para (re)construção
do transcritoma com base em RNA-seq, de modo a reduzir erros na
anotação, o que poderá também ter eliminado transcritos bem an-
otados, mas com baixa cobertura. No entanto o protocolo definido
nesta tese poderá ser futuramente usado para uma análise mais de-
talhada sobre o splicing alternativo no sobreiro, usando a nova versão
do genoma, que estará disponível em breve.
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Chapter 1

Introduction

1.1 Motivation

Alternative splicing is a process used in gene expression to yield different tran-
script variants (or isoforms) derived from a single gene. It occurs during the
maturation of the messenger RNA and it is based based on the differential use
of splice sites, leading to different combinations of exons (coding regions). This
process imposes an extra layer of complexity for transcript annotation of newly
sequenced genomes. This is the case of cork oak (Quercus suber), a forest species
with high economic and social significance, whose genome has been recently as-
sembled (Ramos et al., Submitted). Although a preliminary structural annota-
tion based on gene models has already predicted gene boundaries and transcript
variants, this needs to be validated on real datasets, using RNA-seq.

Transcript assembly using RNA-seq data is of high complexity since tran-
scripts may be composed of many exons, and these may be shared between two
or more isoforms. Many algorithms have been developed to predict transcript
structures based on RNA-seq, dealing with read mapping to a reference genome,
prediction of splicing sites and assembly of transcripts. The selection of the most
suitable software for each analysis step mostly depends on the sequencing tech-
nology used and the availability of a fully annotated reference genome. Yet, other
factors such as short error prone reads (present in RNA-seq datasets), alignment
artifacts, low levels of gene expression or even lack of annotation detail for a

1



1. INTRODUCTION

given genome (as expected in the present cork oak assembly) may greatly impact
the performance of these softwares. Therefore, we aimed to develop a workflow
for transcriptome assembly and alternative splicing prediction based on RNA-seq
in cork oak, by comparing the performance of two state-of-the-art softwares de-
veloped for read mapping and transcript assembly, respectively, and generate a
more detailed genome annotation. After selection of the softwares with the best
performance, we aimed to validate the new annotation and assess the extent of
alternative splicing found in the datasets, also obtaining a set of high confidence
transcripts (i.e. validated by RNA-seq).

1.2 Alternative splicing prediction based on
RNA-seq

One of the key steps to improve the structural annotation of a genome is to look
into transcribed sequences [messenger RNA (mRNA) or long non-coding RNA
(lncRNA)], defining its intron and exon boundaries and uncover different variants
that can occur due to alternative splicing. Precursor mRNAs commonly undergo
a maturation step in which intronic regions are removed, based on nucleotide
signatures defining its boundaries (splice sites) and adjacent exons are joined.
Alternative splicing (AS) of precursor mRNA is a molecular phenomenon found
in eukaryotic species that may generate different mature mRNAs (isoforms) based
on the differential use of splice sites (Nilsen & Graveley, 2010). AS may lead to
the translation of different proteins, regulating proteome diversity and/or protein
function, or simply regulate transcript abundance by generating non-functional
isoforms that are degraded through nonsense-mediated mRNA decay (Hug et al.,
2016). The most common AS events include (by order of mean frequency in
plants): intron retention, when an intron is not spliced and integrates the mature
mRNA; alternative acceptor (3’) or donor site (5’), when an alternative splice site
located within an exon is used, leading to the removal of the intron and part of the
exon; exon skipping, when an exon is also spliced together with adjacent introns
(Figure 1.1). Other types of splicing, which include mutually exclusive exons
or introns, intraexonic deletions, or alternative acceptor and donor sites are also

2



1.2 Alternative splicing prediction based on RNA-seq

frequently reported, but usually occurring at a lower frequency [e.g. Dubrovina

et al. (2013); Huang et al. (2015); Marquez et al. (2012); Xie et al. (2015); Xu

et al. (2014); Zhang et al. (2017)].

Figure 1.1: Schematic representation of the most common AS events found in
eukaryotic species: (a) exon skipping; (b) intron retention; (c) alternative donnor
site; (d) alternative acceptor site. Gray rectangles represent exons; white rectangles
and black lines represent introns; dotted lines represent splicing.

High throughput RNA-Sequencing (RNA-Seq) has become a standard tech-

nique to assess transcriptomic changes occurring in living organisms when com-

paring tissues or cell types, or in response to a given factor. Although third

generation sequencing techniques, such as PacBio (Single Molecule Real-Time)

or nanopore sequencing, generate long-reads and may sequence entire transcripts,

the most widely used approach is still short-read sequencing, such as Illumina,

due to its high accuracy and lower cost (Heather & Chain, 2016). A common

workflow for RNA-seq studies start with read filtering based on quality, followed

by read mapping against a reference genome (if available for the target organism)

and assembly of the reads in order to build the transcripts (Figure 1.2). After

this, estimation of gene/transcript abundance can be performed and differential

expression can be assessed by comparing different datasets. Many algorithms

have been designed to analyze RNA-seq data allowing transcriptome assembly

with or without a reference annotation. Choosing the most suitable software for

each analysis step mostly depends on the sequencing technology used and the

availability of a fully annotated reference genome.

3



1. INTRODUCTION

Figure 1.2: Overview of the main stages of RNA-seq analysis. Adapted from
(Florea & Salzberg, 2013).

1.2.1 Read mapping to a reference genome

The mapping (or alignment) of large sets of reads to a reference genome is a
central step in RNA-seq analysis. Programs designed to map short reads to a
reference genome face the challenging task of aligning spliced reads and correctly
determining exon-intron junctions, taking into account the variable size gaps
generated by introns. Therefore, specific software need to be designed to properly
handle intron-sized gaps, where common software (such as BWA and Bowtie)
designed for DNA alignment tend to fail (Baruzzo et al., 2016). In addition, a
viable aligner also needs to handle paired-end, run fast/efficiently and have the
ability to align reads across unannotated splice junctions (Baruzzo et al., 2016;
Engström et al., 2013). Most splice-aware aligners are based on prediction of
splice junctions using a reference genome and annotation, while only a few others
are available for transcriptome assembly without a reference [e.g. TransABySS
(Robertson et al., 2010) and Trinity (Haas et al., 2013)]. The aligners that require
a reference genome can be divided according to two main strategies for read
alignment, the exon-first approach and the seed-extend approach (Alamancos
et al., 2014; Reddy et al., 2013). In the exon-first approach, unspliced reads are
aligned first in order to find candidate exonic regions represented as read-clusters,
and remaining reads are then mapped using specific algorithms to find connections
between clusters. This strategy is followed, for example, by MapSplice (Wang

4



1.2 Alternative splicing prediction based on RNA-seq

et al., 2010), SpliceMap (Au et al., 2010), Tophat2 (Kim et al., 2013). The
seed-extend approach first uses part of the read (seed) to align to the reference
and select candidate alignment sites; this seed is then extended using specific
search algorithms and candidate slice-sites are located. This approach is the base
of GSNAP (Wu & Nacu, 2010) and STAR (Dobin et al., 2013), for example.
Exon-first approach is generally faster, but strongly dependent on the coverage
of unspliced read clusters to assign spliced reads, while seed-extend approach
is less dependent on unspliced reads but may require more computer memory
(Alamancos et al., 2014). Regardless of the strategy used, these aligners also
require a genome indexing stage for the use of improved searching algorithms
based on hash tables or suffix arrays.

The performance of most of these aligners are frequently compared, by de-
velopers themselves upon the release of a new software or update, or through
benchmarking analyses by independent authors (e.g. Baruzzo et al. (2016); Dobin
et al. (2013); Engström et al. (2013); Kim et al. (2013, 2015). TopHat became a
widely used tool (Baruzzo et al., 2016) due to its improved performance at the
time and inclusion in the well recognized Tuxedo pipeline for RNA-seq analyses
(Trapnell et al., 2012). However, one major disadvantage of this software was
the increased runtime (Baruzzo et al., 2016; Dobin et al., 2013; Kim et al., 2015).
More recently, the same authors released HISAT, a faster aligner with reduced
memory consumption, due to an hierarchical indexing algorithm that is based on
the Burrows-Wheeler transform and the FM index (Kim et al., 2015). HISAT
algorithm employs a global FM index to represent the entire genome and numer-
ous local and overlapping FM indexes that represent small parts of the genome.
In addition, HISAT uses a mixed exon-first strategy, using Bowtie to handle low-
level operations, with seed-extend approach to find genomic locations. Candidate
locations for part of each read are first localized using the global index and the
best matches are selected based on internal parameters. Reads are then extended
until a mismatch is found, and at this stage the local FM index is retrieved and a
local search is performed (Kim et al., 2015). Besides the fast performance, HISAT
accuracy is comparable to that of TopHat (Baruzzo et al., 2016; Kim et al., 2015).

Before the development of HISAT, STAR stood out among the available algo-
rithms for its high mapping speed, accuracy and the first to efficiently deal with
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longer read lengths (from third generation sequencing) (Dobin et al., 2013). After

its release, STAR rapidly became the second most used open source software for

RNA-seq analysis based on genome alignment, following TopHat (Baruzzo et al.,

2016). In a first stage, STAR applies a sequential search for a maximum map-

pable length of a seed, implemented as a speed-efficient suffix array search (MMP,

maximum mappable prefix), starting from the first base. The MMP refers to the

longest substring that matches exactly one or more substrings in the genome.

The algorithm finds the MMP for the seed and if a splice junction is present, the

first seed will be mapped to the donor splice site and a new search is repeated

for the unmapped portion, until an acceptor splice site is found. This sequential

application of MMP search is one of the key elements that makes the STAR ex-

tremely fast. In the second stage, STAR starts building the alignments for the

entire read sequence by stitching together all the aligned seeds, first by clustering

a set of proximal anchor seeds in limited genomic window, and then by stitching

pairs of seeds, taking into account gap and mismatch penalties (Dobin et al.,

2013).

Both, HISAT and STAR recommend the use of gene annotations to identify

and correctly map spliced alignments across known splice junctions. New candi-

date splice junctions are further identified based on mapping evidence and can

be used in a two-pass mode to allow the detection of more spliced reads mapped

to novel junctions. The two-pass mode is available for STAR, requiring a second

run, while HISAT makes use of splice sites found during previous alignments when

aligning further reads, using the same run (Dobin et al., 2013; Kim et al., 2015).

The performance of both aligners is comparable regarding mapping yields, accu-

racy and splice junction call (Baruzzo et al., 2016; Kim et al., 2015). However,

STAR showed to perform better than HISAT with complex datasets (simulated)

containing increased rates of polymorphisms (Baruzzo et al., 2016). One main

disadvantage of STAR is the large memory requirements due to the use of the

suffix-array method. HISAT uses the Burrows-Wheeler transform, improving its

processing speed and requiring a lower amount of random access memory (Kim

et al., 2015).
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1.2.2 Transcript assembly and expression estimation

One of the main goals of RNA-Seq is to accurately identify the full-length struc-
ture of the transcripts that are expressed in a given dataset, and estimate their
relative abundances. This can be performed by using as input the data generated
from read mapping to a reference, and assigning clusters of reads to transcrip-
tionally active regions. However, this task is of high complexity even when a
reference genome is available, since transcripts may be composed of many introns
and occur in different splice forms. In addition, transcript assembly can be af-
fected by precursor factors, such as short error prone reads, alignment artifacts
or bias introduced by the library construction process, which may introduce more
"noise".

Methods for estimating transcript expression and AS prediction based on a
reference genome can be divided in two types: event-based models and isoform
resolution models (Alamancos et al., 2014; Liu et al., 2014). The event-based
approach is not an assembly approach per se, but mostly an expression estima-
tion technique, based on counting the number of reads falling on a given locus
(normalized for transcript length and the total number of mapped reads). Event-
based models estimate differential splicing by counting reads located at exon level
and test two possible splicing outcomes, inclusion and/or exclusion of an exon.
However, these models are highly based on genome annotation and are not suit-
able for predicting novel splice forms, particularly when the reference annotation
provided is incomplete (Liu et al., 2014). Isoform resolution models mostly deal
with estimating transcritpt expression based on isoform reconstruction, also pre-
dicting new isoforms. Most algorithms for transcript assembly based on a genome
perform a clustering of overlapping reads for each locus and then build graphs
that represent all isoform possibilities. This process is highly affected by sequence
coverage due to the difficulty of unambiguously assembling multiple isoforms, par-
ticularly when considering isoforms with highly variable coverage. Since many
theoretical splice variants can arise during graph construction, an analytical step
is then applied to select the subset of transcripts most likely to be represented
in the RNA-seq library (Liu et al., 2014; Pertea et al., 2015). Two representative
programs used for transcript assembly and selection are Cufflinks, a widely used
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tool that is part of the Tuxedo package (Trapnell et al., 2012), and StringTie,
a recently developed software (Pertea et al., 2015) that showed improved per-
formance and high accuracy in recent benchmark analysis (Hayer et al., 2015;
Williams et al., 2017).

Cufflinks predicts transcript structures using an overlap graph, with the nodes
being the sequenced reads and edges representing the overlap between two reads
that have also compatible alignments (similar splice patterns). This overlap graph
is structured as a directed acyclic graph and each path represents a putative tran-
script. These graphs are then parsed using a parsimony-based algorithm, selecting
the minimum number of transcripts that will explain all reads mapped the graph
(Florea & Salzberg, 2013; Trapnell et al., 2010), without taking into account tran-
script abundance. Estimation of transcript abundance can be further performed
by assigning to each read a probability of belonging to any of the isoforms (a
value that depends on the current abundance estimation of isoforms) and itera-
tively assigning reads to isoforms according to this probability to determine the
maximum-likelihood expression levels for all isoforms (Florea & Salzberg, 2013;
Trapnell et al., 2010).

StringTie uses splice graphs to represent all possible isoforms for a locus un-
der different paths, in which nodes represent exons or exons portions and edges
represent introns connecting two exons. Exons and intron structure in the graphs
are based on gene clusters grouped from read mappings. The selection step
greatly differs from the approach followed by Cufflinks, since StringTie dynam-
ically creates a separate flow network for each splice graph to estimate isoform
abundance using a maximum flow algorithm (Pertea et al., 2015). After building
a splice graph, the algorithm iteratively searches for the heaviest path (an path-
compatible isoform structure with the highest per-base read coverage throughout
all nodes) and creates a flow network to estimate abundance. This is performed
using a maximum flow algorithm that determines the maximum number of reads
that can be associated with the selected isoforms. Afterwards, StringTie removes
the reads that contributed to this estimation and updates the per-base coverage
of the splice graph. Thus, StringTie uses coverage to constrain the algorithm,
working as an optimization technique, which may improve the accuracy of the
assembly (Pertea et al., 2015, 2016).
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Pertea et al. (2015) observed that both Cufflinks and StringTie could lead
to excessive gene predictions when analyzing real and fully annotated human
datasets, if new predictions were considered false positives. In that study, StringTie
showed the best sensitivity in transcript assembly and abundance estimation,
while Cufflinks was the next best assembler for real datasets, among the four
that were tested (Pertea et al., 2015). Another benchmarked analysis of seven
genome-guided assembler algorithms, highlighted the strength of both Cufflinks
and StringTie in isoform prediction, inclusively when genome annotation was not
provided (Hayer et al., 2015). In the presence of a more detailed annotation,
Cufflinks predictions tended to have better precision, whereas StringTie showed
better recall. Regarding isoform abundance estimation, Cufflinks showed higher
correlation to true transcript FPKM values, although StringTie predicted a higher
number of trully expressed genes (number of isoforms with true expression pre-
dicted by the algorithm as being expressed). The good performance showed by
both algorithms makes them top candidates for genome-guided transcript assem-
bly, particularly when none or incomplete annotations are available as it is the
case of undergoing genome sequencing projects.

1.3 Cork oak genomics

Cork oak (Quercus suber L.) forests are unique and emblematic resources, with
high economical, ecological and social significance. In the Iberian Peninsula,
most cork oak woodlands ("montados") are savannah-type complex ecosystems
maintained by human management (Bugalho et al., 2011). Cork oak occupies
23% of the total Portuguese forest area and Portugal is the world leader in cork
production (49,6%) and exportation (more than 60% of the world exported cork
volume, APCOR 2013).

Cork is a senescent tissue, with unique physical properties and wide range
of commercial applications, that protects the tree from adverse environmental
conditions. Cork (or phellem) development starts with the formation of phellogen,
a specialized lateral cambium that produces a phellem layer to the ouside of
the trunk and phelloderm to the inside. Phellem differentiation will involve cell
expansion, extensive deposition of suberin and waxes in the cell walls and an
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irreversible program of senescence ending in cell death (Graça & Pereira, 2004).
Contrastingly, phelloderm is composed of living and non-suberized cells that will
accumulate bellow the phellogen, close to mature phloem cells used as storage
tissue. Hereafter, the layer corresponding to phelloderm and mature phloem will
be referred to as inner bark, while the layer composed of phellem and phelloderm
will be referred to as peridermis (Pereira, 2007).

The few studies that have been made to understand cork development in Q.
suber mostly focused the comparison between xylem and phellem tissues (Ricardo
et al., 2011; Soler et al., 2007). These studies have found different genes or proteins
over-represented in cork cells, with predicted involvement in suberin biosynthesis,
response to stress, as well as meristem identity (Ricardo et al., 2011; Soler et al.,
2007). More recently, Rains et al. (2017) compared the transcriptomes of outer
bark and inner bark from poplar (Populus tremula x P. alba hybrid) and identified
similar regulators and effector genes involved in suberin biosynthesis as previously
identified in cork Soler et al. (2007), suggesting a conservation of this pathway
in woody species. However, one exclusive feature found in cork oak is the ability
to develop new cork layers after each harvest. This occurs by the regeneration
of a new phellogen within inner bark, highlighting the importance of this layer
in cork production (Pereira, 2007). Still, the metabolic pathways found in cork
oak’s inner bark remain unknown.

Given the unique ability to regenerate cork layers after harvest, cork produc-
tion is exploited as a sustainable system through many production cycles (Oliveira
& Costa, 2012). Cork producers/industry are currently focusing on improving
agronomical practices to intensify the traditional savannah-type cork producing
ecosystem and reduce at least the time for first cork harvest. To efficiently sup-
port decisions on intensifying strategies that could promote the competitiveness
of cork industry, or even develop breeding programs, it is crucial to uncover new
data on fundamental questions about cork oak biology.

Recently, a window of opportunity to develop fundamental and applied knowl-
edge in this species was opened along with the Cork Oak Genome Sequencing
initiative (GENOSUBER) (Ramos et al., Submitted). A draft genome assem-
bly with an estimated genome size of 953.3 Mb was already obtained using a
combination of paired-end and mate-pair libraries sequenced using the Illumina
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technology. The draft genome is organized in 23,347 scaffolds, with the major-
ity of the assembly being represented in a considerable smaller number of larger
scaffolds (longer than 10,000 bp). Structural annotation of the genome predicted
79,752 genes with complete open reading frames, and 83,814 transcripts, already
indicating alternative splicing events in some genes (Ramos et al., Submitted).

1.4 Objectives

The work described in the present thesis aimed to characterize the extent of
alternative splicing events in cork oak and improve genome structural annotation
using a RNA-seq dataset generated for four different cork oak tissues: leaves,
phellem, inner bark and xylem. The workflow designed for this purpose included
the comparison of two different algorithms for read mapping (STAR and HISAT2)
and transcriptome assembly (Cufflinks and StringTie).

This work also aimed to shed a light into the metabolic pathways found in
phellem and inner bark, through the identification of genes expressed predomi-
nantly in these tissues.
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Chapter 2

Methods

2.1 Library construction and transcriptome
sequencing

Developing phellem, inner bark and xylem were collected from adult branches
(Figure 2.1) from the same cork oak genotype used for genome sequencing (HL8).
To increase transcriptome diversity, fully expanded leaves from the same branch
were also collected. RNA was extracted from each tissue and cDNA libraries
were prepared and sequenced using paired-end protocol and 100 bp read length
on Illumina HiSeq-4000 platform (performed at the Beijing Genomics Institute,
China). Four technical replicates were sequenced for each tissue.

2.2 Read processing and mapping on the
reference genome

Raw reads were filtered to remove adaptor sequences and reads containing un-
determined nucleotides (N’s) and further processed to trim/remove low quality
reads (minimum quality >= 20, minimum length > 80% of total read length)
using Sickle (Joshi, NA and Fass, JN, 2011).

Read mapping on the reference genome was performed using two spliced align-
ment software, HISAT2 v2.0.5 (Kim et al., 2015) and STAR v2.5.0 (Dobin et al.,
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Figure 2.1: Cork oak tissues sampled for RNA extraction. Samples from develop-
ing phellem (a), inner bark (b) and xylem (c) were collected from adult branches
(left panel). Leaves (d) from the same branches were also sampled (right panel).

2013), in order to compare their performance (Figure 2.2). The reference genome
annotation was used in both approaches to guide the alignment and provide co-
ordinates of splice junctions from annotated transcripts. A genome index for
HISAT2 was created using hisat2-build command and options "-ss" and "-e",
which take as input two files containing splice junction and exon coordinates, re-
spectively. These files were previously obtained using hisat2_extract_splice_sites.py
and hisat2_extract_exons.py scripts (available in the HISAT2 package) and the
reference genome annotation file. HISAT2 was then run for all processed paired
libraries using default parameters (with -asOUT option to generate a list of novel
splice junctions) and final mapping statistics were recorded from standard out-
put. The genome index for STAR was built using "–runMode genomeGenerate"
and "–sjdbGTFfile" options from STAR command, the latter taking as input the
reference annotation file. Mapping was further performed for each read paired
library independently using the option "–runMode alignReads", in two rounds
(multi-sample two-pass mapping). The first round of mappings was used to
obtain a standard output file for each paired library, containing a set of vali-
dated splice junctions (SJ.out.tab). The second round of mappings was further
performed using the additional option "–sjdbFileChrStartEnd /path/to/sj1.tab
/path/to/sj2.tab ..." which takes a list of SJ.out.tab files for a given set of sam-
ples. This two-pass mapping method was only made for STAR alignments since
a similar option in HISAT2 is already provided as default.
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2.2 Read processing and mapping on the reference genome

Figure 2.2: Bioinformatics pipeline used for prediction of alternative splicing
events in cork oak. After a pre-processing stage where high quality reads were filtered,
mapping was performed using HISAT2 and STAR. The BAM output files from one of
the aligners was selected to transcript re-construction. This step was performed with
Cufflinks and StringTie and generated two GTF genome annotation files that were
compared to reference annotation using gffcompare. StringTie -eB and Tablemaker
were used to generate transcript coverage estimations based on the BAM files and using
the new annotation files as reference. The annotation generating the best estimation of
transcript diversity was used for gene expression analysis using Ballgown.
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Final mapping statistics from both mapping tools were collected from stan-
dard output. Final alignment files (bam format) were filtered for high quality
mappings in proper pair using samtools (Li et al., 2009).

2.3 Transcript assembly

Preliminary transcript assembly, based on read mapping on cork oak genome,
was performed using Cufflinks v2.2.1 (Trapnell et al., 2010) and StringTie v1.3.3
(Pertea et al., 2015), in order to assess their performance using default param-
eters and the option to include the reference genome annotation (Figure 2.2).
Transcripts were assembled for each sample individually, using the correspond-
ing mapping file as input, and then all assemblies were merged along with the
reference annotation using cuffmerge or stringtie –merge modes. Each final GTF
(General Transfer Format) file obtained with Cufflinks and StringTie was com-
pared to original genome annotation using gffcompare utility (https://github.
com/gpertea/gffcompare) to classify transcripts as they relate to reference tran-
scripts and collapse contained transfrags (intron-redundant) using -C option. To
further evaluate the coverage of the assembled transcripts, each new annota-
tion file was used as reference to analyze read alignment files and generate cov-
erage data, using Tablemaker (for Cufflinks annotation, https://github.com/
leekgroup/tablemaker) and StringTie with "-e" and "-B" options (for StringTie
annotation). Afterwards, histograms for transcript coverage were obtained using
a custom built R script (https://github.com/pedro-mb/RNA-seq-scRipts).

Based on previous analysis, StringTie was selected for transcript assembly, and
further assembly options were tested in order to improve transcript annotations.
Thus, StringTie was repeated adjusting minimum read coverage for predicted
transcripts [-c 2.5 (default) and 5], minimum anchor length on each side of a
junction [-a 10 (default) and 15] and junction coverage [-j 1 (default), 2 and
10]. The –merge step was further performed for each independent StringTie
optimization round and in this step the parameter setting a minimum input
transcript per million (TPM) to include in the merge [-T 1 (default), 4 and 10]
was also tested. All the tested combinations are indicated in Table 2.1. Final GTF
files were compared to original genome annotation using gffcompare to collapse
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2.4 Identification of splicing events

contained transfrags (intron-redundant) using -C option. Several parameters were
used to evaluate all optimization runs, including total number of new isoforms
and exons, new predicted genes and number isoforms per gene. The new genome
annotation file providing the best prediction of the transcriptome was selected
and used as reference to generate transcript coverage data among libraries, using
StringTie with "-e" and "-B" options.

Table 2.1: Combination of parameters used in StringTie runs to optimize the
transcript assembly during individual library assemblies and merge steps. The
tested parameters (Param.) included: minimum read coverage for predicted transcripts
(-c), minimum anchor length (-a), junction coverage (-j) and minimum input transcript
expression in TPM to include in merge (-T). The default conditions are indicated as
"strt.def".

Step Param. strt.def strt.cafj strt.cafj10
strt.cafj10

-T4
strt.cafj10

-T10

Assembly
-c 2.5 5 5 5 5
-a 10 15 15 15 15
-j 1 2 10 10 10

Merge -T 1 1 1 4 10

2.4 Identification of splicing events

To assess the alternative splicing transcriptional landscape among tissues, tran-
scripts with mean FPKM values in the four replicates above 1 were selected in
order to generate four transcriptome sub-sets, representing the transcript universe
expressed in each tissue. The structural annotation for each sub-set was obtained
by parsing the new genome annotation file and used as input in ASTALAVISTA
v4.0 (Foissac & Sammeth, 2007).

2.5 Differential expression analysis

Expression analysis was performed based on the transcript coverage obtained in
Section 2.3 after StringTie optimization. Differential expression was performed
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using Ballgown (Frazee et al., 2015; Fu et al., 2017) package for R environment and
based on FPKM abundance estimates. Differentially expressed transcripts were
identified using multigroup comparisons (q-value < 0.01). To identify transcript
clusters with similar expression profiles within the 4 tissues, a k -means clustering
analysis was performed using Jensen-Shannon distance calculated based on the
mean FPKM values determined for each tissue [number of clusters (k) = 16].
This analysis was performed using functions from CummeRbund package for R
(Goff et al., 2013).

2.6 Functional annotation

Nucleotide sequences for each transcript were retrieved from cork oak draft genome
using gffread (https://github.com/gpertea/gffread) based on the selected
new genome annotation. Open reading frames (ORFs) were predicted using
TransDecoder v3.0.1 (https://github.com/TransDecoder/TransDecoder/) us-
ing the default criteria for ORF retention, enriched with homology searches on
Swiss-Prot database (April 2017) using BlastP [BLAST+ v2.6.0, Camacho et al.
(2009)] and on Pfam database (March 2017) for protein domains using hmm-
scan (HMMER 3.1, http://hmmer.org/). For functional annotation of cork oak
proteome, the corresponding peptide sequences were used as query for BlastP
homology search against the Arabidopsis thaliana protein database (TAIR10),
with a cutoff e-value of 1 × 10−3 (Camacho et al., 2009). Gene ontology (GO)
enrichment analysis was performed using the Arabidopsis homologs of the cork
oak differentially expressed transcripts identified in Section 2.5, using BiNGO
plug-in (Maere et al., 2005) for Cytoscape v3.2.1 (Cline et al., 2007).
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Chapter 3

Results and Discussion

3.1 Study design

The reference draft genome annotation obtained for cork oak predicted the occur-
rence of alternative splicing (AS) in multiple genes, although in a limited extent
(Ramos et al., Submitted). In the present study, we analyzed sixteen RNA-seq
libraries prepared from four cork oak tissues, in order to predict new AS forms
for the already predicted genes and improve genome structural annotation.

In the workflow designed for this study, we compared the performance of dif-
ferent software in two of the most critical stages in transcript assembly: STAR
and HISAT2 for read mapping against the reference genome; StringTie and Cuf-
flinks for transcriptome reconstruction (Figure 2.2). After that, an optimization
step was performed using the selected transcriptome assembler and a new genome
structure annotation was obtained. This new annotation was used as reference to
estimate transcript abundance in each tissue and differential expression analysis
was further performed using Ballgown comparing the datasets obtained for each
tissue.

3.2 Mapping analysis: STAR vs HISAT2

An average of 622.86 million high quality reads per tissue (78.87 million reads per
library) were obtained after pre-processing, which accounted for approximately
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93.5% of total raw reads. Globally, mapping analysis using STAR yielded a
higher percentage of uniquely mapped reads in proper pair, ranging from 60.49
to 73.45 million mapped read pairs for leaf and xylem, respectively (Table 3.1).
Read alignment using HISAT2 generated 53.11 to 64.77 million uniquely mapped
reads in proper pair, on average for phellem and xylem libraries, respectively.
Consequently, mapping rates were higher using STAR, ranging from 84.22% to
86.86% of total high quality reads (Figure 3.1), compared to HISAT2 (73.88%
to 76.55%). The results obtained with STAR are relative to the two-pass mode,
which is default in HISAT2. This two-pass mode is performed with a first run to
report a list of splice junctions validated by reads with long anchors, followed by
the second run, which takes this information to align reads with short anchors.
In the present study, the percentage of uniquely mapped reads in proper pair was
relatively higher in the first STAR run (85.23% to 87.90%, data not shown). The
decrease observed after two-pass was caused by a slight increase in multimapped
reads, which can be explained by the increase in reference annotation detail with
the novel splice junctions, and deduced increase in mapping accuracy.

Table 3.1: Mean number of read pairs per tissue (n=4) mapped on the cork oak
genome in unique and multiple positions, using HISAT2 and STAR. Total number
of unmapped pairs is also represented.

Aligner Tissue Uniquely mapped Multimapped Unmapped
Leaf 60,487,184.00 7,441,070.50 2,231,786.00
Phellem 70,677,430.75 8,942,502.00 4,304,146.75
Inner bark 62,457,384.75 7,904,287.00 2,428,973.50

STAR

Xylem 73,451,037.25 8,665,381.25 2,438,255.00
Leaf 53,106,302.25 11,711,617.50 5,342,120.75
Phellem 62,006,482.50 14,030,328.50 7,887,268.50
Inner bark 54,657,527.00 12,418,154.75 5,714,963.50

HISAT2

Xylem 64,771,539.75 13,849,563.75 5,933,570.00

STAR and HISAT2 are two of the most recent splice aligners developed to
align reads to a reference genome, sharing the advantage of being faster then other
aligners available (Baruzzo et al., 2016; Kim et al., 2015). Kim et al. (2015), the
developers of HISAT2, demonstrated that STAR showed higher memory usage
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Figure 3.1: Percentage of reads mapped in proper pair on the cork oak genome in
unique (green) and multiple (light orange) positions, using HISAT2 and STAR.
Percentage of unmapped pairs is also represented (dark orange). Each column
represents the sum of read pairs obtained for the technical replicates in each tissue.

(28 Gb) and run-time (50.6 min) compared to HISAT2 (4.7 Gb and 26.7 min,

respectively), when analysing the same data set. The alignment accuracy of

both aligners for 100-bp simulated reads were highly similar, particularly when

comparing the two-pass modes (96.7% and 97.6% correctly and uniquely mapped

reads with STAR and HISAT2, respectively). However, recent benchmarking

analysis of multiple splice-aware aligners on simulated datasets highlighted STAR,

but not HISAT2, for its accuracy in detecting splice events, being amongst the

alignment software with best performance using default parameters (Baruzzo

et al., 2016). All the programs analyzed showed significantly low accuracy for

detecting non-canonical junctions as compared to canonical junctions although

HISAT2, STAR and two others perform best in this cases. Moreover, HISAT2

showed increased accuracy for aligning spliced reads with shortest anchors and

without annotation (Baruzzo et al., 2016). In addition, a pipeline including STAR

as read aligner showed the best balance of precision and recall in analyzing real

RNA-seq datasets derived human clinical samples (Williams et al., 2017). In the
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present study, there was no previous knowledge on the true alignment location
of reads, and alignment precision could not be evaluated. Still based previous
benchmarking analyses and on the observed mapping efficiencies, we decided
to continue the work with the alignments obtained with STAR since these can
provide a broader view in transcriptome diversity.

3.3 Transcriptome reconstruction: StringTie vs
Cufflinks

In order to predict new AS forms in cork oak, transcriptome assembly was per-
formed first to test Cufflinks and StringTie. Both programs were run using default
parameters and each run generated one GTF file per RNA-seq library, contain-
ing the corresponding transcript annotation predictions. These annotation files
were then merged with the reference annotation, using the correspondent merge
options, to generate a unified set of non-random transcripts (or isoforms) found
across all samples. The performance of StringTie and Cufflinks was evaluated
by assessing the total amount of new isoforms and new genes predicted and the
corresponding coverage.

Globally, Cufflinks predicted a total of 120,988 novel transcripts, which cor-
responds to approximately 64.00% of total transcripts annotated on the GTF file
(189 285). StringTie was more conservative in predicting new transcripts since
from the final annotated transcripts (121,088) only 35.22% (42,652) were new iso-
forms or new candidate loci (Table 3.2). Consequently, the number of predicted
new genes was also higher for Cufflinks assembly than for StringTie. The major
contribution for new transcript predictions is from novel isoforms for genes al-
ready predicted in the reference annotation. These account for 77% (93,247) and
70% (30,116) of novel transcripts predicted by Cufflinks and StringTie, respec-
tively. The remaining transcript classes follow the global trend observed, being
more abundant in Cufflinks assembly, except for transcripts overlapping reference
introns and other classes, not discriminated on the table. This group includes sin-
gle exon transfrags overlapping a reference exon and at least 10 bp of a reference
intron and transfrags predicted within 2K bases of a reference transcript, with
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no splice junction evidence between them. The higher number of cases found
for StringTie may reflect a higher sensitivity to detect these cases, however, they
only account for close to 3% of total novel transcripts.

The new transcript annotations were further evaluated by generating coverage
data based on read mappings on reference genome. The distribution of coverage
was assessed for the most abundant transcript classes in both annotations: tran-
script classes with a complete match with reference transcripts (confirmed by
Cufflinks and StringTie), novel isoforms from reference genes, and unkown tran-
scripts (intergenic transcripts, new candidate genes) (Figure 3.2 and Figure A.1,
Appendix A). The high number of transcripts predicted in both annotations re-
sulted in more than 50% of transcripts with coverage lower than 500 reads per
base pair. This was more evident for Cufflinks annotation, where this percentage
percentage rised to 75% (Figure 3.2). StringTie annotation allowed better sup-
port by read coverage, which is particularly evident for novel isoforms (Figure 3.2
and Figure A.1, Appendix A).

Figure 3.2: Categorization of Cufflinks and StringTie predicted transcripts by
estimated depth of read coverage (reads per base pair). Transcripts were grouped
according to gffcompare classification as: transcripts with complete match of introns-
exon coordinates with reference transcripts (=, red), novel isoforms (j, green) and un-
kown intergenic transcripts (u, blue). Vertical grey dashed lines represent a threshold
of 4,000 reads/bp used to create Figure A.1.
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Table 3.2: Total number of genes and transcripts predicted in the original reference annotation (reference) and
in the new annotations built using Cufflinks (cuff.def) and StringTie (strt.def) with default parameters. The
results obtained for further optimizations with StringTie are also indicated (strt.cafj, strt.cafj10, strt.cafj10-
T4 and strt.cafj10-T10, see Table 2.1 for specific details). Novel transcripts are new non-redundant mRNA
sequences not predicted in the reference annotation.

reference cuff.def strt.def strt.cafj strt.cafj10
strt.cafj10

-T4
strt.cafj10

-T10

Genes (total) 79,752 88,380 83,584 84,703 86,163 81,885 80,416
Transcripts (total) 83,813 189,285 121,088 117,547 112,217 96,601 89,801
Novel transcripts - 120,988 42,652 38,501 32,631 15,707 7,958

Novel isoforms - 93,247 30,116 26,100 20,522 10,417 5,453
Unkown - 17,919 7,321 7,510 8,020 3,315 1,451
Single exonic overlap - 5,845 2,990 2,194 1,195 747 441
Opposite exonic overlap - 3,574 992 1,182 1,023 448 218
Intronic overlap - 27 215 270 313 96 42
Other - 376 1,018 1,245 1,558 684 353

Novel transcripts are classified by gffcompare, according to their location based on reference annotation, and summarized in
the table as: novel isoforms (at least one splice junction is shared with a reference transcript), unknown (intergenic transcript),
single exonic overlap (transfrag overlaps with one exon from a reference transcript), opposite exonic overlap (exonic overlap with
reference on the opposite strand), intronic overlap (transfrag overlapping entirely within a reference intronic region). Other, less
abundant classes are also indicated.
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3.3 Transcriptome reconstruction: StringTie vs Cufflinks

The differences observed between Cufflinks and StringTie may arise from the
different algorithms used to assemble transcripts. As mentioned in Section 1.2.2,
Cufflinks creates overlap graphs, by connecting reads that overlap at a given
genomic region and later applies a parsimony-based algorithm to generate the
minimal number of transfrags necessary to explain all reads in the graph (Trap-
nell et al., 2010). StringTie creates splice graphs for clusters of reads grouped at
a given region to predict transfrags, and further creates a separate flow network
for each transfrag to estimate its expression level applying a maximum flow al-
gorithm (Pertea et al., 2015). Thus, StringTie workflow dynamically considers
transcript abundance during the assembly process, while Cufflinks relies on the
parsimony principle. One option provided by both assemblers allows the user to
define minimal abundance of transfrags to be reported in the final output anno-
tation (Pertea et al., 2015; Trapnell et al., 2010). StringTie "-c" option sets the
minimum read coverage (default 10), while Cufflinks "-min-frags-per-transfrag"
sets the minimum number of reads aligned to a given transfrag (default 10). This
may also influence the results obtained, as filtering solely based on the number
of reads aligned may not be a proper estimation of abundance, since it does not
account for the length of the transcript. Cufflinks was highlighted in a previous
comparison of different methods to analyze AS from RNA-seq data in plants as
more robust in detecting novel transcript isoforms, particularly in cases where
an incomplete genome annotation was available (simulated RNA-seq datasets)
(Liu et al., 2014). StringTie was not included in this study (Liu et al., 2014), but
StringTie developers reported higher, but still close precision and sensitivity com-
pared with Cufflinks in transcript prediction in simulated datasets and without
providing reference annotation (Pertea et al., 2015). In real datasets (RNA-seq
data from human tissues), the number of transcripts predicted by both assem-
blers were similar. Yet, if only genes fully annotated were considered, StringTie
showed to predict 44% more known transcripts (i.e. exactly matching known
annotation) than Cufflinks (Pertea et al., 2015). Other benchmarking analysis
validated the strength of StringTie and Cufflinks under ideal conditions (perfect
alignments and high transcript coverage), with StringTie showing better recall
and Cufflinks better precision (Hayer et al., 2015). However, these authors also
highlighted that all algorithms designed to delineate transcript forms tend to
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3. RESULTS AND DISCUSSION

make many false discoveries. Considering the quality of the inferred quantified
transcript expression, StringTie showed to provide a better estimation, with the
highest number of true positives (correctly called expressed) and lowest number of
false positives and false negatives (Hayer et al., 2015). Moreover, recent evidence
by Williams et al. (2017) showed that a pipeline including STAR as read aligner
and StringTie as assembler showed the best balance of precision and recall using
real RNA-seq datasets derived human clinical samples.

Taking into account the results obtained for cork oak datasets, and the re-
ported higher accuracy of StringTie, we decided to continue transcript prediction
with this software. However, an additional optimization step was performed in
order to improve transcript prediction.

3.4 Tuning transcript assembly with StringTie

The number of isoforms per gene is a critical aspect for a robust estimation of
isoform abundance, since isoform resolution models (applied by Cufflinks and
StringTie for this purpose) may introduce a level of uncertainty in read assign-
ments to exons, when these are shared between two or more isoforms from the
same gene (Liu et al., 2014; Pertea et al., 2015). This adds to the already ex-
pected uncertainty related to ambiguous read mappings and low levels of gene
expression in a given condition. Therefore transcriptome assembly with StringTie
was repeated using different parameters in order to improve stringency in predic-
tion of new transcripts based on coverage and transcript expression. The tested
conditions are indicated in Table 2.1.

When increased stringency was just applied during the assembly step for
each individual libraries, followed by a default merge step (strt.def, strt.cafj and
strt.cafj10), it was possible to observe a general decrease in total predicted genes
and transcripts (Table 3.2). A greater decrease was observed when minimum
junction coverage was increased to 10 (strt.cafj10). A major contribution for this
decrease was observed for novel isoforms and single exonic overlaps. Interestingly,
the remaining classes followed the opposite trend, although in a smaller extent
and not contributing significantly to the overall decrease observed in the number
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3.4 Tuning transcript assembly with StringTie

of novel transcripts. The increase observed in classes such as the intergenic tran-
scripts (unkown) or intronic overlaps could be related to the imposed increase in
the minimum coverage for junctions. An increase in splice junction coverage may
have increased fragmentation in transfrags, since the evidence for a link between
two (or more) given exons was not considered when these were not supported by
more than 2 (strt.cafj) or 10 (strt.cafj10) spliced reads. Two further –merge runs
were performed using the assemblies obtained in strt.cafj10, testing a filtering
parameter that discards assembled transfrags with estimated expression bellow 4
(-T4) or 10 (-T10) TPM. This resulted on a massive decrease in novel predicted
transcripts (from 50% in strt.cafj10-T4 to 80% in strt.cafj10-T10).

In addition to counting the total number of transcripts generated by all rounds
of optimization, further characterization of the resulting annotations files was
performed, accounting for number of exons, isoforms per gene and changes in gene
structure. The use of default options during the merge step, with no filtering for
low abundant genes (strt.def, strt.cafj and strt.cafj10), resulted in an increase in
total number of exons and maximum number of exons in a gene, as well as single
exon genes (Table A.1, Appendix A). This resulted in an wider distribution of the
number of isoforms per genes, compared with the reference annotation (Figure
3.3). The filtering of low abundant transfrags to include in the merge steps
(strt.cafj10-T4 and strt.cafj10-T10) resulted in more conserved annotations with
metrics closer to reference annotation, in what concerns structural features such
as the number of exons and isoforms per gene (Table A.1, Figure 3.3). Taking into
account all the new annotations it can be concluded that the number of genes
with more than one isoform (and more likely to be alternatively spliced) only
comprises about 10% to 20% of the all genes annotated (Figure 3.3). However,
it must be noticed that this percentage may increase if this assessment is made
for each tissue individually, since the expected number of genes actually being
expressed would be less, thus reducing the transcript universe. It is also important
to note that not all genes present in the reference genome annotation are expected
to be expressed in the tissues used in the present analysis, and no new isoforms
were determined for these cases.

The several annotations obtained in this study provide an estimation of total
transcriptome diversity for the four tissues used. Nevertheless, the application of
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3. RESULTS AND DISCUSSION

Figure 3.3: Isoforms per gene frequency determined for reference annotation (ref)
and further annotations obtained after StringTie assemblies using specific op-
tional parameters as described in Table 2.1. Vertical dashed lines indicate the
maximum number or isoforms per gene found for reference (red) and most stringent
StringTie run (strt.cafj10-T10, pink).

stringent filtering for low abundant transcripts during the merging step severely
decreased the total number of predicted transcripts/isoforms. Since this work is
dealing with real datasets in a still poorly annotated genome, it is not possible
to evaluate the precision of the assemblies. Therefore it was decided to continue
the work with the most conservative assembly generated by strt.cafj10-T10. The
novel transcripts predicted in this annotation have a wider distribution of read
coverage (Figure 3.4) than that obtained for default StringTie run (Figure 3.2).

3.5 Landscape of AS in cork oak

To further assess the occurrence of AS across the four different tissues, transcript
coverage data was obtained from strt.cafj10-T10 final annotation file. Tran-
scripts expressed in each tissue (average FPKM > 1) were identified based on
this data and the corresponding structural annotations were analyzed. A total of
18,798 genes were expressed in leaves (22,046 transcripts), 20,611 genes in phellem
(23,916 transcripts), 21,504 genes in inner bark (25,105 transcripts) and 21,190
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3.5 Landscape of AS in cork oak

Figure 3.4: Categorization of strt.cafj10-T10 annotated transcripts by estimated
depth of read coverage (reads per base pair). Transcripts were grouped accord-
ing to gffcompare classification as: transcripts with complete match of introns-exon
coordinates with reference transcripts (=, red), novel isoforms (j, green) and unkown
intergenic transcripts (u, blue).

genes in xylem (24,628 transcripts) (Table 3.3). Globally, 25,149 genes (29,296
transcripts) were expressed in at least one cork oak tissue, representing 31.27%
of all genes present in the new transcriptome annotation (80,416 genes, Table
3.2). This result may be explained by the fact that only four tissues have been
considered in the present analysis and only represent a portion of the whole cork
oak transcriptome diversity. The remaining genes considered as not expressed
were "inherited" from the original reference annotation, which contained a total
of 79,752 gene predictions (Table 3.2).

A great proportion of the genes expressed in each of four tissues contained
more than one exon, but only approximately 16% of these genes were alterna-
tively spliced (i.e. present in each sample with more than one transcript isoform)
(Table 3.3). In Poplar and Eucalyptus, analysis of AS occurring in xylem samples
showed that only 28.3% and 20.7% of intron-containing genes, respectively, were
alternatively spliced (Xu et al., 2014). These results are closely related, yet above
the estimation obtained for cork oak in the present study. However, when more
comprehensive sets of libraries are used, for example including more tissues or full
plants, AS events are detected in a higher proportion. In maize seedlings, AS was
detected in 45.5% of multi-exonic genes (Huang et al., 2015), while in Arabidopsis,
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3. RESULTS AND DISCUSSION

Table 3.3: Quantification of single- and multi-exon genes expressed in leaf,
phellem, inner bark and xylem. The extent of AS in each tissue was assessed
through the quantification of multi-transcript genes composed of more than one
exon.

Leaf Phellem Inner Bark Xylem All
Single-exon genes 3,011 3,370 3,374 3,403 4,117
Multi-exon genes 15,787 17,241 18,130 17,787 21,032

Multi-transcript genes

(%)

2,532

(16.04 %)

2,646

(15.35 %)

2,848

(15.71 %)

2,758

(15.05%)

3,279

(15.60 %)

Total 18,789 20,611 21,504 21,190 25,149

recent estimations ranged between 45% to 61% (Filichkin et al., 2010; Marquez
et al., 2012). When considering the four tissues used in the present study, the
proportion of AS events does not increase (Table 3.3). However, it should be
stressed that the transcript annotation was obtained using stringent parameters,
which may discard true, but low-abundant transcripts (false-negatives).

Intron retention (IR) has been previously proposed to be the most abundant
AS event in Arabidopsis, representing close to 40% of total events (Reddy et al.,
2013). Chamala et al. (2015) also reported similar trends in other plant species.
However, other studies have reported some variability namely in the proportion
of alternative acceptor site (AA) events relative to intron retention (Huang et al.,
2015; Xu et al., 2014; Zhang et al., 2017), suggesting some differences in the
regulation of splice site use in plants. In cork oak the most abundant event in all
tissues was AA (32-34%), followed by IR (19-21%) (Table 3.4). Exon skipping
(ES) was the third most abundant event followed by alternative donor site (AD).
Other less abundant and more complex events included double exon skipping
(ES1+2), alternate acceptor/donor sites (AA/AD) (Table 3.4), and double or
alternate intron retention (not shown). The distribution of events was similar
between all four tissues, and could represent a trend in this species, at least for
this tissues under the conditions tested.
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3.6 Differential expression analysis across the four tissues

Table 3.4: Top six of the most frequent AS events occurring in leaf, phellem,
inner bark and xylem. An illustration of the intron-exon structure of each event
is shown on the first column. The raw number of events (and percentage) is
shown for each tissue

Leaf Phellem Inner Bark Xylem
Events % Events % Events % Events %

AA 683 31.87 719 32.77 814 33.68 781 33.66
IR 448 20.91 450 20.51 457 18.91 444 19.14
ES 413 19.27 398 18.14 441 18.25 440 18.97
AD 358 16.71 357 16.27 388 16.05 370 15.95

ES1+2 40 1.87 33 1.50 47 1.94 43 1.85
AA/AD 36 1.68 39 1.78 36 1.49 35 1.51
AA: alternative acceptor (3’ splice) site; IR: intron retention; ES: exon skipping; AD: alternative
donor (5’ splice) site; ES1+2: double exon skipping; AA/AD: AA or AD.

3.6 Differential expression analysis across the
four tissues

To identify the regulatory pathways involved in tissue-specific development, and
more particularly phellem and inner bark, we performed differential expression
analysis at transcript level. The distribution of transcript abundances (estimated
as FPKM values) across samples and a hierarchical clustering analysis was per-
formed to check the consistency of all RNA-seq libraries. FPKM distribution
was homogeneous within all replicates for each tissue (Figure A.2, Appendix A)
and hierarchical clustering based on samples euclidean distance also showed great
similarity within replicates (Figure A.3, Appendix A). Two major clusters were
formed, one included leaf and xylem and the other including phellem and in-
ner bark. Principal component analysis also confirmed the consistency among
technical replicates and great variability between tissues (Figure A.4, Appendix
A).

Since the RNA-seq datasets were obtained from four different tissues, none
of them was considered a reference and differential expression was assessed using
multi-group comparison. A total of 22,449 transcripts (out of 24,874 transcripts
that passed the variance filter) were differentially expressed (q-value < 0.01). The
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3. RESULTS AND DISCUSSION

differentially expressed transcripts (DETs) were further clustered based on their
pattern of expression into 16 clusters (Figure A.5, Appendix A). Out of these, 6
clusters were selected based on their expression profile: one representing xylem-
enriched DETs (cluster 13, Figure 3.5A), two representing leaf-enriched DETs
(cluster 5 and 16, Figure 3.5B) and three representing peridermis-specific DETs
(cluster 3, 11, 15) (Figure 3.6). Due to time constraints, a complete functional
annotation of the cork oak transcriptome was not possible, so it was decided
to perform an homology search against the Arabidopsis transcriptome for an
estimation of the functional categories enriched in each cluster.

The xylem-specific cluster (13) included 488 transcripts, 429 of which showed
homology to Arabidopsis proteome. This cluster contained an enrichment of GO
terms that relate to xylem function as a conduit for water and nutrient trans-
port (Figure 3.5A). These include anion transport, transmembrane transporter
activity and extracellular region and are annotated to transcripts encoding for
sulfate, zinc, potassium and amino acid transporters. Other enriched GO terms
in xylem- specific cluster related to response to disease or pathogens (response to
virus, chitinase activity). These transcripts may contribute to the establishment
of a response to specific pathogens that target the vascular system after being
absorbed by the roots. Chitinase activity is important to hydrolyze chitin, a pri-
mary cell wall component in fungi (Yadeta & J Thomma, 2013). Cluster 5 and
16 included together 990 DETs (of which 811 had a match in the Arabidopsis
proteome) showing higher expression in leaves, as compared to the other tissues
(Figure 3.5B). A significant enrichment in photosynthesis-related terms was found
(e.g. photosynthesis, photosynthetic membrane, thylakoid, chlorophyll binding),
which included transcripts encoding structural units of Photosystems I and II
(light-harvesting complex and reaction center sub-units), which are involved in
light absorption and electron transfer and located in the thylakoid membranes
from the chloroplasts (Nelson & Ben-Shem, 2004). Leaf-specific clusters also
showed an over-representation of functional classes related to biotic and abiotic
stimulus, as well as defense response. Other enriched GO terms, such as oxygen
binding and monooxygenase activity were mostly related to a group of cytochrome
P450 encoding transcripts (CYP81, CYP82, CYP87, CYP706, CYP71, CYP715,
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3.6 Differential expression analysis across the four tissues

CYP76) involved in the metabolism (biosynthesis or catabolism) of hormones or

secondary metabolistes with a role in stress response (Bak et al., 2011).

The peridermis-specific clusters included 340 transcripts enriched in phellem

(Figure 3.6A), 786 transcripts enriched in inner bark (Figure 3.6B) and 692 tran-

scripts highly expressed in both tissues but not in leaf or xylem (Figure 3.6C).

Blastp search against the Arabidopsis proteome identified 318, 643 and 600 close

homologs, respectively for each cluster. Similarly to xylem and leaf, GO terms

Figure 3.5: Expression profile and enriched GO terms of xylem and leaf-specific
transcript clusters. Clusters of highly expressed transcripts in xylem (A), leaf (B) are
represented. For each cluster (right panel), gray lines represent transcript expression
profiles (log10 FPKM) across the leaf, phellem, innerbark and xylem datasets, and the
black line highlights the average expression for each cluster. Tables (left panel) contain
representative GO terms shown to be enriched in each cluster [Hypergeometric test,
with Benjamini and Hochberg false discovery rate correction, adjusted p-value (p-adj)
< 0.05]. GO terms accessions (Acc.) include biological process (BP), cellular component
(CC) and and molecular function (MF) ontologies.
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3. RESULTS AND DISCUSSION

related to response environmental cues were found to be enriched, but mostly in

inner bark-enriched DETs (e.g. immune response, response to biotic stimulus, de-

fense response) (Figure 3.6B). The overexpression of transcripts involved in plant

Figure 3.6: Expression profile and enriched GO terms of peridermis-specific tran-
script clusters. Clusters of highly expressed transcripts in phellem (A), inner bark
(B) and both (C) are represented. For each cluster (right panel), gray lines represent
transcript expression profiles (log10 FPKM) across the leaf, phellem, innerbark and
xylem datasets, and the black line highlights the average expression for each cluster.
Tables (left panel) contain representative GO terms shown to be enriched in each clus-
ter [Hypergeometric test, with Benjamini and Hochberg false discovery rate correction,
adjusted p-value (p-adj) < 0.05]. GO terms accessions (Acc.) include biological process
(BP), cellular component (CC) and and molecular function (MF) ontologies.
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3.6 Differential expression analysis across the four tissues

response to environmental factors is not surprising since tissue samples were col-
lected directly from a field grown tree, and may reflect to some extent endogenous
contamination by pathogens and/or exposure to drought or heat, eliciting a re-
sponse by the tree. However, this particular association with inner bark suggests
a role of this layer in tree protection. As previously mentioned (Section 1.3)
the peridermis results from the meristematic activity of the phellogen, that pro-
duces phellem to the outside and phelloderm (inner bark) to the inside (Graça &
Pereira, 2004; Pereira, 2007). Unlike phellem cells, the fate and function of inner
bark cells developed from the phellogen is largely unknown. Mature phellem cells
are dead and their highly suberized cell walls impose a mechanical barrier against
pathogens. Since inner bark is made of living cells and not suberized (Pereira,
2007), these can provide a second and more specialized layer of protection against
pathogens that may cross the phellem barrier, through pores or cracks present in
phellem.

During the first four years of development, the phellem cells are filled with
tannins and already have suberized walls, and after the fifth year they become
devoid of cellular content (Pereira, 2007). Cork physical properties (impermeabil-
ity and flexibility) are mostly derived from cell wall chemical composition, which
includes aliphatic suberin, aromatic suberin (also referred as cork lignin), waxes,
tannins and polysaccharides (Graça, 2015; Pereira, 2007). In agreement with the
cellular differentiation processes expected in cork cells, DETs with a role in the
metabolic pathways involved in the synthesis of phenylpropanoid based polymers,
such as tannins, lignin and suberin, were overrepresented in peridermis-specific
clusters. Transcripts acting in the flavonoid biosynthetic pathway, necessary for
tannins, were found exclusively in phellem-specific cluster 3 (Figure 3.6A), while
transcripts related to suberin, lignin present in cluster 11 (Figure 3.6C). The lat-
ter cluster contains transcripts predominantly expressed in phellem, but also in
inner bark at a lower level. This suggests that those pathways are also taking
place in inner bark layer facing phellogen, even though the walls of these cells
are not tipically suberized (Pereira, 2007). Other transcripts abundant in these
clusters belong to the super family of P450 cytochromes (monoxigenase activity,
oxygen binding). Some of them belong to the same families as the ones found for
leaves (CYP71, CYP81, CYP82, CYP87, CYP71, CYP76) while the remaining
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3. RESULTS AND DISCUSSION

were related to specialized functions, such as: regulation of cell growth and differ-
entiation through the brassinosteroid metabolism (CYP734 and CYP714 found
in cluster 11) (Bak et al., 2011; Vogt, 2010); suberin biosynthesis (CYP86 found
in cluster 3 and 11); and phenylpropanoid pathway (CYP84 found in cluster 3).

GO enrichment analysis confirmed the representation of general metabolic
processes and activities expected for each of the targeted tissues for RNA-seq.
Although just providing a general overview of complex pathways acting in each
tissue, it validated the new transcript annotation generated in this work. Still, a
complete analysis of the transcripts overexpressed in each tissue, combined with
a complete and more specific functional annotation, will be required highlight
other important pathways not uncovered by GO term enrichment. Nevertheless,
this analysis already shed some light into the metabolic pathways taking place
in phellem and inner bark. Interestingly, transcripts involved in the synthesis of
phellem cell wall components were enriched not only in phellem but also in inner
bark (Figure 3.6C). This may suggest either, a contribution of this tissue in the
synthesis of monomers that may be exported to the apoplast and be included in
the assembly of phellem cell walls, or a certain level of cross contamination during
sample collection, given to proximity of both tissues. Yet it should be highlighted
that genes involved in tannin biosynthesis, which is the cellular content in young
phellem cells (Graça & Pereira, 2004), were only found in the phellem-specific
cluster (Figure 3.6A).

From the 22,449 DETs identified in this study, 15,139 (67.43%) were anno-
tated as the unique isoforms for the corresponding gene entity. The remaining
7,310 DETs belong to multi-isoform loci, and 4,109 of these transcripts could be
considered alternatively spliced, i.e. more than one isoform from the same gene
was differentially expressed. This condition corresponded to 1,819 genes, which
are candidates to investigate differential splicing between different tissues. Figure
A.6 (Appendix A) shows two examples of differential splicing, detected for one
cork oak Alpha-amylase-like gene (homolog to AT1G69830 gene from Arabidop-
sis) and one cork oak Topoisomerase II-like gene (homolog to AT3G23890 gene
from Arabidopsis). The Alpha-amylase-like gene contained two isoforms that
were only detected in inner bark and xylem, while all four annotated isoforms
were expressed in leaves and phellem (Figure A.6 I). The Topoisomerase-like
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3.6 Differential expression analysis across the four tissues

gene contained three isoforms (255, 254 and 253) that were highly expressed in
inner bark and, to a lesser extent, in phellem, while a fourth isoform (252) was
more abundant in xylem (Figure A.6 II). Further studies may be performed to
evaluate the biological significance of these changes, and identify other cases of
differential splicing.

37





Chapter 4

Conclusions

This project aimed to improve the detail of the genome annotation presently
available for the draft genome sequence from cork oak, predicting new alterna-
tive splicing forms of genes expressed in four different tissues. The transcriptomes
of leaf, phellem, inner bark and xylem were sequenced by RNA-seq and a sequence
analysis workflow was defined in order to test the performance of HISAT2 and
STAR for read mapping, and Cufflinks and StringTie for transcript assembly.
STAR showed to be the aligner generating the highest mapping efficiencies for
all the tissues and was selected for further analysis. StringTie was selected to as-
semble the transcriptome, since it was globally more conservative than Cufflinks,
generating less novel transcripts, which could be better supported by coverage.
Assembly with StringTie was further optimized in order to improve annotation
precision, and a final and most conservative annotation was selected to assess
transcript expression. Since the cork oak genome version is still a draft and no
correct gene models can be used to test precision and recall, the selection of the
most conservative annotation was a strategy to decrease the number of incor-
rectly assembled transcripts, although it could have discarded low abundant but
correctly assembled transcripts.

The new transcript annotation was further used to estimate transcript ex-
pression and evaluate the extent of alternative splicing within the four tissues.
Globally, about 16% of all intron-containing genes expressed in the four tissues
were alternatively spliced. The analysis of AS events suggested that the main
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event found in the four cork oak tissues is alternative acceptor (3’ splice) site,
followed by intron retention. Differentially expressed transcripts were identified
and grouped according to their main expression in each tissue. The most en-
riched functional categories identified for each group were in agreement with the
function of each tissue. In this way, transcripts highly expressed in leaves and
xylem were mostly related to photosynthesis and transport, respectively, while
transcripts highly expressed in peridermis (phellem and inner bark) showed an
enrichment on functional categories related to the synthesis of suberin and other
component of cork cell walls. All tissue-specific clusters showed an enrichment
in transcripts involved in the response to stress (biotic or abiotic). However, this
result was more striking in the inner bark-specific cluster, suggesting that this
tissue is creating a second layer of protection in the trunk, after the physical
barrier imposed by cork.

In conclusion, this thesis allowed the definition of a standard workflow that
can be used to study alternative splicing in cork oak. Considering that this work
was performed on a draft genome, it is likely that the final annotation generated
still contains some assembly errors (e.g. due to genome fragmentation). Since a
new improved genome version will be available soon, the workflow used in the
present study will be a valuable contribution for transcript annotation.

40



Appendix A

Supplementary materials

A.1 Transcriptome reconstruction: StringTie vs
Cufflinks
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A. SUPPLEMENTARY MATERIALS

Figure A.1: Categorization of Cufflinks (a) and StringTie (b) predicted tran-
scripts by estimated depth of read coverage (reads per base pair). Transcripts were
grouped according to gffcompare classification as: transcripts with conserved introns-
exon coordinates with reference transcripts (I), novel isoforms (II) and unkown inter-
genic transcripts (III). Each panel is composed of a histogram (up) and correspondent
cumulative density plot (down) representing transcript number according to their pre-
dicted coverage, up to 4000 reads per bp.
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A.2 Tuning transcript assembly with StringTie

Table A.1: Characterization of genome annotation files, regarding number of exons and transcripts per genes,
from reference and further annotations generated after the optimization rounds with StringTie.

reference strt.def strt.cafj strt.cafj10 strt.cafj10-T4 strt.cafj10-T10

Total number of exons 285193 372013 361602 346795 315905 300490

Mean exons in a gene 4 4 4 4 4 4

Max exons in a gene 73 122 96 160 73 73

Single exon genes
(%)

25536
(32.01%)

28094
(33.61%)

29157
(34.42%)

30651
(35.57%)

27170
(33.18%)

26137
(32.50%)

Genes with 1 isoform
(%)

76254
(95.61%)

68638
(82.12%)

70347
(83.05%)

73181
(84.93%)

72528
(88.57%)

73595
(91.52%)

Mean isoforms per gene: 1.05 1.45 1.39 1.30 1.18 1.12

Max isoforms per gene: 8 43 38 48 23 15
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A. SUPPLEMENTARY MATERIALS

A.3 Differential expression analysis across the
four tissues

Figure A.2: Distribution of FPKM values determined for transcripts expressed
in the 16 samples used for differential expression analysis. The four libraries
obtained for each tissue are shown: white for inner bark, orange for leaf, blue for
phellem and pink for xylem.
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A.3 Differential expression analysis across the four tissues

Figure A.3: Hierarchical clustering and heatmap based on sample-to-sample eu-
clidean distances, computed from the FPKM values estimated for all expressed
transcripts.

Figure A.4: Principal component analysis of the samples used for transcript ex-
pression analysis, based on FPKM values estimated for expressed transcripts.
This analysis was performed using the four technical replicates obtained for each tissue,
which clustered in close proximity: red for inner bark, green for leaf, blue for phellem
and purple for xylem.
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Figure A.5: k -means clustering analysis of differentially expressed transcripts (k=16). The gray lines represent mean
expression profile (log10 FPKM) for each transcript across tissues. The black line represents the mean expression
profile observed in each cluster.
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A.3 Differential expression analysis across the four tissues

Figure A.6: Examples of differential splicing found between tissues for two cork
oak loci: (I) Alpha-amylase-like and (II) Topoisomerase II-like. Exon-intron
structure is shown for each annotated isoform (internal annotation IDs are shown
on the left side of each box) and estimated mean FPKM expression determined
for each tissue is represented by the color scale (white to red).
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