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Resumo

A heterogeneidade dos dados biomédicos e o crescimento exponencial
da informação dentro desse domínio tem levado à utilização de onto-
logias, que codificam o conhecimento de forma computacionalmente
tratável. O desenvolvimento de uma ontologia decorre, em geral, com
base nos requisitos da equipa que a desenvolve, podendo levar à cria-
ção de ontologias diferentes e potencialmente incompatíveis por várias
equipas de investigação. Isto implica que as várias ontologias existen-
tes para codificar conhecimento biomédico possam, entre elas, sofrer
de heterogeneidade: mesmo quando o domínio por elas codificado é
idêntico, os conceitos podem ser representados de formas diferentes,
com diferente especificidade e/ou granularidade. Para minimizar estas
diferenças e criar representações mais standard e aceites pela comu-
nidade, foram desenvolvidos algoritmos (matchers) que encontrassem
pontes de conhecimento (mappings) entre as ontologias de forma a
alinharem-nas.

O tipo de algoritmos mais utilizados no Alinhamento de Ontologias
(AO) são os que utilizam a informação léxica (isto é, os nomes, sinó-
nimos e descrições dos conceitos) para calcular as semelhanças entre
os conceitos a serem mapeados. Uma abordagem complementar a es-
ses algoritmos é a utilização de Background Knowledge (BK) como
forma de aumentar o número de sinónimos usados e assim aumentar a
cobertura do alinhamento produzido. Uma alternativa aos algoritmos
léxicos são os algoritmos estruturais que partem do pressuposto que
as ontologias foram desenvolvidas com pontos de vista semelhantes –
realidade pouco comum.

Surge então o tema desta dissertação onde toma-se partido da Seme-
lhança Semântica (SS) para o desenvolvimento de novos algoritmos



de AO. É de salientar que até ao momento a utilização de SS no Ali-
nhamento de Ontologias é cingida à verificação de mappings e não à
sua procura.

Esta dissertação apresenta o desenvolvimento, implementação e ava-
liação de dois algoritmos que utilizam SS, ambos usados como forma
de estender alinhamentos produzidos previamente, um para encontrar
mappings de equivalências e o outro de subsunção (onde um conceito
de uma ontologia é mapeado como sendo descendente do conceito pro-
veniente de outra ontologia). Os algoritmos propostos foram imple-
mentados no AML que é um sistema topo de gama em Alinhamento de
Ontologias. O algoritmo de equivalência demonstrou uma melhoria de
até 0.2% em termos de F-measure em comparação com o alinhamento
âncora utilizado; e um aumento de até 11.3% quando comparado a
outro sistema topo de gama (LogMapLt) que não utiliza BK. É impor-
tante referir que, dentro do espaço de procura do algoritmo o Recall
variou entre 66.7% e 100%. Já o algoritmo de subsunção apresentou
precisão entre 75.9% e 95% (avaliado manualmente).

Palavras Chave: Alinhamento de Ontologias, semelhança semân-
tica, algoritmo de equivalência, algoritmo de subsunção



Abstract

The heterogeneity of biomedical data and the exponential growth of
the information within this domain has led to the usage of ontolo-
gies, which encode knowledge in a computationally tractable way.
Usually, the ontology’s development is based on the requirements of
the research team, which means that ontologies of the same domain
can be different and potentially incompatible among several research
teams. This fact implies that the various existing ontologies encoding
biomedical knowledge can, among them, suffer from heterogeneity:
even when the encoded domain is identical, the concepts may be rep-
resented in different ways, with different specificity and/or granularity.
To minimize these differences and to create representations that are
more standard and accepted by the community, algorithms (known as
matchers) were developed to search for bridges of knowledge (known
as mappings) between the ontologies, in order to align them.

The most commonly used type of matchers in Ontology Matching
(OM) are the ones taking advantage of the lexical information (names,
synonyms and textual description of the concepts) to calculate the
similarities between the concepts to be mapped. A complementary
approach to those algorithms is the usage of Background Knowledge
(BK) as a way to increase the number of synonyms used, and further
increase of the coverage of the produced alignment. An alternative
to lexical algorithms are the structural ones which assume that the
ontologies were developed with similar points of view - an unusual
reality.

The theme of this dissertation is to take advantage of Semantic Simi-
larity (SS) for the development of new OM algorithms. It is important
to emphasize that the use of SS in Ontology Alignment has, until now,
been limited to the verification of mappings and not to its search.



This dissertation presents the development, implementation, and eval-
uation of two algorithms that use SS. Both algorithms were used to
extend previously produced alignments, one to search for equivalence
and the other for subsumption mappings (where a concept of an ontol-
ogy is mapped as descendant from a concept from another ontology).
The proposed algorithms were implemented in AML, which is a top
performing system in Ontology Matching.

The equivalence algorithm showed an improvement in F-measure up
to 0.2% when compared to the anchor alignment; and an increase of
up to 11.3% when compared to another high-end system (LogMapLt)
which lacks the usage of BK. It is important to note that, within the
search space of the algorithm, the Recall ranged from 66.7% to 100%.
On the other hand, the subsumption algorithm presented an accuracy
between 75.9% and 95% (manually evaluated).

Keywords: ontology matching, semantic similarity, equivalence al-
gorithms, subsumption algorithms



Resumo Alargado

Nas últimas décadas o domínio biomédico tem tido uma explosão de
informação com o registo de vários estudos e técnicas, e.g. sequencia-
ção de DNA. Essa informação muitas vezes é publicada em linguagem
natural dificultando o tratamento computacional; outras vezes é ar-
mazenada em bases de dados que, mesmo dentro do mesmo domínio,
podem ser desenvolvidas de forma distinta complicando a partilha de
informação, e posterior extração de conhecimento. As ontologias têm
sido muito utilizadas neste domínio não só pela capacidade de lidar
com a heterogeneidade dos dados, mas por facilitar a interoperabili-
dade entre máquinas, entre humanos, e entre máquinas e humanos.

As ontologias são conjuntos de conceitos ligados entre si por relações
de forma a descreverem um domínio. Entre outras características,
os conceitos podem ser associados a descrições, propriedades e sinó-
nimos. Ao nível das relações estabelecidas, as mais comuns são as
de subsunção (em inglês is_a), relações que representam uma hie-
rarquia simples onde o descendente herda todas as características do
seu ancestral e torna-se mais específico ao ter propriedades próprias.
No entanto, devido à tendência para criar novas ontologias por parte
de equipas de investigação, observa-se o aumento da heterogeneidade
entre as próprias ontologias, pois investigadores com problemas dife-
rentes e diferentes pontos de vista podem gerar ontologias com repre-
sentações da realidade diferentes. Neste contexto, existem três tipos
de heterogeneidade: a heterogeneidade de domínio que ocorre quando
uma ontologia descreve um domínio ou subdomínio distinto de uma
segunda ontologia; no caso de duas ontologias descreverem o mesmo
domínio ou domínios semelhantes pode existir uma heterogeneidade a
nível do detalhe utilizado por cada uma delas; ou então uma heteroge-
neidade ao nível da interpretação utilizada durante o desenvolvimento.



Para lidar com esta heterogeneidade existem algoritmos (matchers)
que procuram alinhar as ontologias, isto é, encontrar conceitos de
duas ontologias distintas que são equivalentes ou estão relacionados
de outra forma (mappings). Um conjunto de mappings é denominado
de Alinhamento. Um mapping é constituído por um conceito de uma
ontologia, outro conceito de uma segunda ontologia, a relação entre
eles e um valor de semelhança. Os mappings mais comuns são os de
equivalência; outro tipo de mappings são os de subsunção onde um
conceito é mapeado como sendo descendente do outro.

Dentro dos algoritmos de alinhamento, o tipo mais comum é aquele
em que o valor de semelhança é calculado através da informação lé-
xica dos conceitos. Muitas vezes são desenvolvidos algoritmos rápidos
que produzam um alinhamento âncora que possa ser estendido por
algoritmos mais complexos, por exemplo algoritmos estruturais, que
usam a informação estrutural das ontologias para estender um alinha-
mento âncora. Os algoritmos estruturais partem do pressuposto de
que as ontologias têm uma interpretação semelhante, o que nem sem-
pre é verdade. Assim, o âmbito desta dissertação é a implementação
de algoritmos de alinhamento de ontologias baseados em Semelhança
Semântica (SS) como alternativa aos algoritmos estruturais. Dentro
da literatura a SS é apenas utilizada como uma forma de validar os
mappings encontrados por outros algoritmos.

A Semelhança Semântica devolve um valor numérico que reflete a se-
melhança entre dois conceitos dentro de uma ontologia, valor que é
obtido tendo em conta a estrutura da ontologia e o significado dos
conceitos comparados. A cada conceito é atribuído um valor de con-
teúdo de informação (IC - do inglês Information Content) que é usado
posteriormente no cálculo da distância semântica entre os conceitos
através de medidas de SS.

De forma a estender um alinhamento âncora foram desenvolvidos dois
novos algoritmos utilizando SS, um deles com o objetivo de encontrar



mappings de equivalência e outro mappings de subsunção. Os map-
pings existentes nesta âncora são utilizados como ponto de partida
para encontrar mappings candidatos na sua vizinhança.

O algoritmo de equivalência necessita de um segundo alinhamento de
input com um threshold inferior ao do alinhamento âncora. Os map-
pings do alinhamento com threshold inferior presentes na vizinhança
de um mappings candidato irão ser utilizados juntamente com a SS
dos conceitos dentro de cada ontologia para computar uma contribui-
ção semântica. O valor de semelhança final do par candidato terá
em conta as contribuições semânticas da sua vizinhança. O algo-
ritmo criado para encontrar equivalências depende de vários parâme-
tros que podem ser agrupados em três dimensões: parâmetros que
definem como é que o algoritmo explora a estrutura das ontologias
a serem alinhadas, parâmetros que definem como calcular seme-
lhança semântica, e parâmetros que definem como pesar os valores
de semelhança semântica de forma a incrementar a pontuação de um
mapping candidato. O algoritmo foi avaliado ao nível destas três di-
mensões utilizando uma versão simplificada do alinhamento gerado
pelo AgreementMakerLight (AML). É importante referir que os algo-
ritmos de alinhamento criados são independentes do sistema em que
estão incluídos, no entanto a sua implementação foi feita no AML,
um sistema de Alinhamento de Ontologias topo de gama para On-
tologias Biomédicas e também porque ser um sistema modular onde
facilmente se implementam novos matchers.

Após serem feitos testes preliminares com o alinhamento simplificado
do AML com todas as combinações possíveis dos parâmetros de cada
dimensão, o alinhamento produzido pelo AML completo foi utilizado
como âncora. Para o AML completo não foram registados aumentos
significativos na performance do algoritmo de alinhamento. Contudo,
ao utilizar o alinhamento simplificado como input, foi possível aumen-
tar valores de F-measure em 0.2%. Estes resultados demonstram que
o alinhamento de input poderá ter influência no espaço de procura. O



Recall dentro do espaço de procura do algoritmo variou entre 66.7% e
100%, o que indica que de facto o novo algoritmo de alinhamento foi
capaz de encontrar uma quantidade substancial de novos mappings
dentro do raio de procura sem diminuir de forma significativa a pre-
cisão. Dado o facto de que o algoritmo apresenta valores de Recall
elevados dentro do espaço de procura, foi feita uma comparação com
outros sistemas de Alinhamento de Ontologias (LogMapLt e LogMa-
pLt). Ao comparar os resultados gerados com o alinhamento simpli-
ficado com os resultados do LogMapLt foi observado um aumento de
F-measure de 11.3%.

Relativamente ao algoritmo de subsunção, este também depende de
mappings candidatos. Neste algoritmo os mappings candidatos tam-
bém incluem os irmãos dos mappings âncora. Os irmãos podem ser
considerados descendentes ou ancestrais do outro conceito envolvido
no mapping. Cada um dos mappings candidatos tem o seu nome e
sinónimos normalizados e um novo valor de semelhança é computado
com base nesta normalização. Para a avaliação dos novos mappings
foi feita uma avaliação manual de 332 novos mappings finais escolhi-
dos aleatoriamente, recorrendo aos sinónimos e definições disponíveis
nas próprias ontologias, a dois dicionários médicos e a artigos cien-
tíficos. A avaliação categorizou os novos mappings em: subsunção
correcta, subsunção com direção contrária à esperada, equivalência e
incorrecto. A precisão destes mappings assume apenas como corretos
os que foram considerados como "subsunção correta", sendo que os
valores variaram entre 75.9% e 95%.

Outras contribuições prestadas durante a duração desta dissertação
foram a apresentação de um poster “Integrating semantic distances
in ontology matching algorithms for biomedical ontologies” no Biome-
dical Open Days ; a participação no Ontology Alignment Evaluation
Initiative na tarefa de Disease and Phenotype pela equipa do AML; e
coautoria de um artigo publicado no Journal of Biomedical Semantics,
no âmbito de uma pesquisa relativamente à capacidade dos sistemas



de Alinhamentos de Ontologias de lidarem com os problemas inerentes
às ontologias Biomédicas (Faria et al., 2018).

Os resultados obtidos não rejeitam a hipótese de que a Semelhança
Semântica possa ser utilizada para estender alinhamentos existentes.
Em suma, a utilização de Semelhança Semântica para a extensão de
alinhamentos âncora com uma alta precisão pode ser uma opção válida
para o Alinhamento de Ontologias de domínios onde: i) o Background
Knowledge está indisponível ou é difícil de ser explorado; ii) ou em
situações do mundo real em que os altos níveis de otimização obtidos
pelos sistemas atuais de Alinhamento de Ontologias não sejam viáveis
(por exemplo, os atuais sistemas não foram desenvolvidos tendo em
vista o domínio das ontologias financeiras). Esta dissertação poderá
ser continuada ao nível de implementação dos algoritmos em outros
sistemas de Alinhamento de Ontologias; e ao nível de testes com pares
de ontologias provenientes de domínios sem BK ou em situações reais
onde os altos níveis de otimização, por parte dos sistemas existentes,
não sejam possíveis.
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Chapter 1

Introduction

For the past decades, research in the biomedical field has been generating a sig-
nificantly large amount of data through several biological studies and techniques,
such as DNA sequencing, genome annotation, image analysis, chromosome topol-
ogy, protein localization, or clinical data. Biomedical data is often recorded in
natural languages. For instance, scientific publications and clinical annotations
resulting from a continuously growth of the available data and databases for re-
searchers. However, the extraction of knowledge from the data remains a big
challenge. The usage of databases alone does not entirely solve the problem con-
cerning the organization of information, and different biomedical databases may
not be interoperable.

In order to satisfy the previous needs, the biomedical field has been using
ontologies, which describe concepts related to a domain of knowledge, their prop-
erties, and the relationships between them. When biomedical data in different
databases is described under a common model provided by an ontology, it be-
comes interoperable. Thus ontologies help solve the issues of heterogeneity in
biomedical databases.

Ontology development and usage has gained acceptance in this particular
field not only for its ability to correlate concepts (e.g., one concept descends from
another, resembling the idea of taxonomy), but also given its resemblance to a dic-
tionary (i.e., an ontology contains annotations and properties such as synonyms).
These characteristics make ontologies quite useful in cases where we are dealing
with the intrinsic ambiguity of this field, but also with the exponential growth of

1



1. INTRODUCTION

information, allowing the creation of ontologies for several smaller domains (e.g.,

anatomy or chemistry), and even for sub-domains or sub-disciplines (e.g., human

or mouse anatomy).

Both the size and specificity of a domain can be transposed to an ontology.

Two ontologies can be specially developed to suit domains that can be as distinct

as anatomy and ecology or, as similar as mouse anatomy and human anatomy.

Ontologies with distinct domains complement each other in a macroscopic level

and can encode, for example the whole biomedical domain, whereas different on-

tologies with similar or even equal domains can encode, for the same concept, dif-

ferent perspectives or relationships. In fact, ontologies covering the same domain

have been independently developed by different groups, creating heterogeneity at

the ontology level. For example, in the Mouse Adult Gross Anatomy Ontology the

term "Female germ cell" is described as part of the "Female reproductive system"

having "Oocyte" as both synonym and related synonym (Hayamizu et al., 2005);

whereas in the Foundation Model of Anatomy, the term "Oocyte" is described as

"Germ cell of the female sex" (Rosse & Mejino, 2003).

Ontology matching has been used to solve these heterogeneity problems by

finding bridges of knowledge between two concepts from two different ontologies

- mappings. A mapping links two equivalent concepts (equivalence mapping)

or concepts hierarchically related (subsumption mappings), whereas the concept

from one ontology is mapped as more generic (ancestors) than the concepts from

the other ontology which are more specific (descendants). By matching similar

concepts, ontology matching algorithms allow machines to more easily integrate

their knowledge by leveraging the existing synonyms (i.e., concepts that share

properties and annotations), and compare ancestors and/or descendants. Those

aspects allow possible gaps to be filled in, or even information complementation.

The idea of linking those entities (i.e., connecting the ontologies) helps to

further increase interoperability between different data sources, as well as enhance

the existing knowledge.

2



1.1 Motivation and Objectives

1.1 Motivation and Objectives

The biomedical domain is vast and ambiguous, which makes it a challenge for

ontology matching. Most of the existing ontology matching systems rely on a

lexical approaches, i.e., they explore the ontology vocabulary to find mappings.

Since biomedical ontologies are typically very large, some ontology matching

systems use fast lexical algorithms to produce a set of mappings (alignment) that

serve as an anchor (anchor alignment) to be extended by using more complex

algorithms. This extension is based on the ontology’s structure and defined by

the path distance between ontology classes. However, distance in an ontology

graph is a poor approximation of semantic distance, since it is common that links

in different areas of the ontology or at different depths convey different semantic

distances.

The main goal of this dissertation is to create novel algorithms that explore

semantic similarity as an extension technique for ontology matching. Semantic

similarity metrics that give a numeric score to the closeness in meaning between

two concepts in the same ontology. Exploring this notion, lexically derived map-

pings can be used as starting points to derive new mappings based on semantic

similarity. The underlying hypothesis is that, using semantic similarity to an

established mapping to increase a candidate mapping score, is a valid approach

for alignment extension.

This approach will be investigated in two areas: (i) the development of al-

gorithms for equivalence mappings; and (ii) the development of algorithms for

subsumption mappings. Most of the state of the art algorithms search uniquely

for equivalence mappings. By creating algorithms for subsumption, the interoper-

ability of ontologies is further increased, particularly in the cases where ontologies

possesses different levels of granularity of modeling details. This is particularly

important for cases where an ontology for a specific domain (with high granular

knowledge of a specific part of that domain) is being mapped to a more general

purpose ontology.
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1. INTRODUCTION

1.2 Contributions

The specific contributions of this dissertation can be enumerated as follows:

1. Creation of one algorithm of ontology matching that relies on semantic
similarity measures to create equivalence mappings.

2. Creation of another algorithm of ontology matching that also relies on se-
mantic similarity measures but this time to create subsumption mappings.

3. Manual evaluation of subsumption mappings in the context of this disser-
tation.

4. Poster in the Biomedical Open Days titled "Integrating semantic distances
in ontology matching algorithms for biomedical ontologies".

5. Participation in OAEI 2017 in the Disease and Phenotype track as part of
the AML team (?).

6. A survey of state of the art ontology matching systems regarding their
ability to address the specific challenges in biomedical ontology matching
was conducted. Submission under revision of an invited article for the
Journal of Biomedical Semantics (Faria et al., 2018).

1.3 Overview

This first Chapter, Introduction, serves as a presentation of this dissertation
including its motivation. In Chapter 2, Concepts and Related Work the concepts
needed for this dissertation are presented and explained as well as the relevant
work done in this field to this date. Methods is the third Chapter, where the
proposed algorithms are presented; their Evaluation Methodology is presented
in Chapter 4. The Results and Discussion are stated in Chapter 5, and the
Conclusion is in Chapter 6.
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Chapter 2

Concepts and Related Work

This chapter introduces the basic concepts required to understand the presented
work, namely ontologies, ontology matching, and semantic similarity. It also
describes relevant work in ontology matching literature.

2.1 Ontology

The term Ontology was re-purposed by Gruber in early 1990’s, for the context
of computer science, to mean “an explicit specification of a conceptualization”
(Gruber, 1995). Gruber (2008) has updated this definition, for the same context
in 2008, by defining an ontology as a set of primitives (explained further in this
chapter) modeling a domain of knowledge.

While information has been exponentially increasing, new information is cre-
ated, and obsolete and/or incorrect information is upgraded. Humans’ ability to
follow this increase in terms of knowledge has been insufficient. As a response to
the problem identified in the introduction, knowledge bases have been used not
only for data but also knowledge storage - such as ontologies. The application
of ontologies on various fields has been a major aid. For example, ontologies can
be very helpful for researchers to process data by being a sharing mechanism not
only between humans, but also as a bridge that connects humans and machines.

Usually, an ontology defines a vocabulary used by a particular domain. In
other words, ontologies enable the organization of concepts that can be used to
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2. CONCEPTS AND RELATED WORK

describe domains while allowing computer reasoning, which is the result of logic
rules known as axioms, and which generate new knowledge.

Regarding the referred primitives, those are typically classes, attributes, and
relationships. Ontologies often structure their concepts and the relationships
between them as a Directed Acyclic Graph (DAG), meaning entities are nodes and
relationships are edges, as illustrated in Figure 2.1. There are many different types
of entities. Main entities are classes, or terms, representing a set of individuals
from that domain. Instances correspond to objects, particular individuals of a
domain. Relations represent the existing links between concepts. Data-types
specify value types (e.g., data-type String), and finally data values are values
stated in agreement with the data-type (e.g., the data-type of the "label" property
is String, and a possible value for this property is "Cell").

In Figure 2.2, both arm and leg are specifications of limb, being synonyms to
upper and lower limbs respectively. An is_a relationship specifies that a descen-
dant will inherit all the properties from its ancestors plus its own specifications.
The part_of relationship implies that the descendant may only exist as a part of
the ancestor but the ancestor might exist regardless of the descendant.

Figure 2.1: Schema of ontologies basic
component organization

Figure 2.2: Example of a possible
small fragment from a biomedical
ontology

One of the main reasons for the development of ontologies is their ability to
function in multiple roles (Euzenat et al., 2007):

• Share a common understanding of the knowledge about a domain among
people or software agents.
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• Reuse of domain knowledge, where this knowledge can be shared. For
example, concepts that are described in a generic ontology could be used
as a starting point for a more specific one. A second example can be the
case where one ontology expands into a different domain borrowing concepts
from a second one (more focused and complete in the latter specific domain).

• Make domain assumptions explicit, meaning there are no hidden assump-
tions. Even concepts that are generic and/or shared are explicit in order to
avoid ambiguity. For example, the concept “Cell” is very common in this
domain but has different descriptions depending on the approach, i.e., this
concept might represent the basic unity of all organisms or an anatomical
structure depending on the point of view of the ontology.

• Separation of domain knowledge from the operational knowledge. Domain
knowledge derives from the domain which can be described into different
ontologies, while operational knowledge is independent of the domain. For
example, an algorithm that was developed for a certain domain handles
domain knowledge, while the algorithm itself is operational knowledge.

• Analysis of domain knowledge since an ontology represents a domain (or its
part). Therefore the content analysis can be representative of that domain
(or its part).

Different types of ontologies can be distinguished by their level of formality.
The smallest level of formality is a simple list of concepts while higher levels can
be achieved by adding relationships between concepts. This incrementation of
complexity can result from the usage of synonyms/antonyms or more complex
relationships, such as meronyms (relationship between the whole and a specific
part, i.e., the relationship stated with the part_of ).

There are two notions that have not been yet presented but need clarification
for an accurate understatement: leaves and depth. In the context of ontologies, a
leaf is a concept that has no descendants. The depth of a concept is the distance
between that concept and the root. Thus the Maximum Depth is the depth of
the whole ontology.
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2.1.1 Biomedical Ontologies

The biomedical field has been taking advantage of ontologies for the past decades.
Creation and development of Biomedical Ontologies can aid in many intrinsic
problems of this field (e.g., ambiguity of natural language). When biomedical
information is stored in an ontology it allows consensus through a group of syn-
onyms instead of an unique word. Decision support in health care not only
presents the challenges stated but also represents a good example of the appli-
cation of ontologies to this area. It is important to emphasize that the previous
has been the reason behind the existence of Biomedical Ontologies.

There are many successful biomedical ontologies, such as Human Phenotype
Ontology (HP) (Köhler et al., 2013) or Gene Ontology (GO) (Ashburner et al.,
2000), which are able to handle not only the vast amount of knowledge that
result from this field, but also the heterogeneity that is a result of the biological
and clinical data. The development of tools and techniques to explore ontologies
that belong to the biomedical domain must consider the specific characteristics
of these ontologies (Faria et al., 2018):

• Large Size: biomedical ontologies allocate thousands of classes represent-
ing a computational challenge.

• Complex Vocabulary: besides the natural text ambiguity this particular
domain encodes several names for the same class, and for the same main
label there can even be different kinds of synonyms (e.g., narrow or broad
synonyms).

• Rich Axioms: semantics has been one of the subjects taken into consider-
ation within this topic, since axioms can vary from the simplest is_a (e.g.,
an eukaryotic cell is_a cell) to part_of (e.g., the nucleous is part_of the
eukaryotic cell), to more complex ones. For example, a possible more com-
plex axiom could be "a person has a child", and since a child is_a person
and a person is either boy or a girl, the machine is be able to assess that
that person has either, at least, one boy or one girl.

8



2.2 Semantic Similarity

Biomedical Ontologies in general have common features such as: stable and
unique codes for biomedical concepts, preferred labels, synonyms, external sources
of information, various textual descriptions and cross-links, and frequent updates
by domain experts. This vast domain has the ability to address an array of prob-
lems similar in size, such as the search and query of heterogeneous data, data
exchange among applications, information integration, natural language process-
ing, representation of knowledge, computer reasoning with data, and information
retrieval (Rubin et al., 2007). The usage of biomedical ontologies as tools for
data integration and annotation can provide a common and needed vocabulary.
The latter can improve description, communication of results, and the creation
of bioinformatic tools for analysis of microarray data, network modeling, and so
on.

Bioportal is the largest repository of Biomedical Ontologies with over 500
ontologies. It is important to mention this Open Source tool since it will be
referred through this paper but detailed information falls over the scope of this
dissertation. Therefore, for more information on Bioportal see Whetzel et al.
(2011).

2.2 Semantic Similarity

From a syntactical point of view the words arm and leg are not similar, but when
presented as in Figure 2.2 a machine is able to read their Ancestors as siblings,
and understand both are siblings. When associating concepts to a domain, e.g.,
anatomy, terms are linked by relations, making their relationships readable by a
machine.

Semantic similarity is the computation of the similarity between entities based
on their meaning, as described in an ontology. As stated, comparing entities
can be facilitated by objective representations and measurable properties while
the difficulty is increased by functional aspects which have no direct comparison
(Pesquita et al., 2009). The latter stimulates ontologies annotation for further
comparison, as well as various types of matchers. Comparing terms using se-
mantic similarity can be divided in two main categories of measures, that are
distinguished by the type of data-structure used: edge and node based measures.

9



2. CONCEPTS AND RELATED WORK

Edge-based Approaches consist mainly in counting the edges between terms.
The most trivial approach returns the distance between the two terms; when
in the presence of more than one path the distance is presented either by the
shortest or the average route. Even though this type of approach is intuitive
and easily converted into a measure, their foundation lies on equal distribution
of terms through the ontology. Equality in distribution implies that nodes and
edges have an uniform structure, as well as each level of an ontology sharing the
same granularity. Those are both uncommon scenarios in biological ontologies
(Alexander, 2006). Despite of the effort to deal with those issues, the current
strategies only attenuate instead of solving them (e.g., by normalizing the edges
based on their hierarchical depth maintains equal values for edges at the same
hierarchical level).

Node-based Approaches were created by changing the focus to nodes instead
of edges. Resnik (1995) proposed to take into account the corpus involved. A
frequent notion in this branch is the information content (IC) which is a numeric
value representing the specificity of the information that is enclosed inside an
entity. The closer a term is to the ontology root, the more generic it is, and
less specific information it carries, leading to a lower IC. Since the idea is to
compute the semantic similarity between two terms, the IC by itself is not enough
considering it is generated for one entity. There are various ways not only to
compute ICs but also to calculate semantic similarity.

The three approaches to compute IC used in this dissertation were:

• ICSeco(c) (Seco et al., 2004) refers to the complement of the division between
the direct and indirect descendants from c (including c) - Nd(c), and the
total number of concepts in the ontology - N (equation 2.1).

ICSeco(c) = 1− log(Nd(c))

log(N)
(2.1)

• ICZhou(c) (Meng et al., 2012) takes a parameter k as the contribution of
each estimator. The first one is the ICSeco(c), and the second the division
between c’s depth and the ontology’s (equation 2.2). K was defined by the
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external library used to compute the semantic similarity.

ICZhou(c) = k∗(ICSeco(c))+(1−k) log(max(depth(c))

log(depthmax)
, in this work k = 0.5

(2.2)

• ICSanchez(c) (Sánchez et al., 2011) considers the percentage of leaves(c)

(number of leaves in the descendants of c) in the descendants and the con-
cept itself as well as the whole number of existing leaves in the ontology
(equation 2.3).

ICSanchez(c) = −log
leaves(c)

descendants+1
+ 1

maxleaves + 1
(2.3)

When using ICs to compute Semantic Similarity, the measures used rely on
a technique based on common ancestors: MICA - Most Informative Common
Ancestor, meaning the common ancestor of the two concepts being compared
with highest IC. All the measures will be presented as the computation of the
semantic similarity between the terms u and v - sim(u, v):

• Starting with the simplest measure, Resnik (1995) which is just the IC from
the first common Ancestor (equation 2.4).

simResnik(u, v) = IC(MICAu,v) (2.4)

• Lin’s measure uses theMICAu,v weighted by the IC from both terms (equa-
tion 2.5).

simLin(u, v) =
2 ∗ IC(MICAu,v)

IC(u) + IC(v)
(2.5)

• Jiang and Conrath approach is nothing more than a distance, the addition
of 1 is a normalization - equation 2.6.

simJC(u, v) =
1

IC(u) + IC(v)− 2 ∗ IC(MICAu,v) + 1
(2.6)

• Finally, GIC’s measure (Pesquita et al., 2008) where the measure is given
by the sum of each term’s IC in the intersection of u with v divided by the
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sum of their union (equation 2.7).

simGIC(u, v) =

∑
IC(t)∑
IC(w)

, t ∈ (uAnc ∩ vAnc) and w ∈ (uAnc ∪ vAnc) (2.7)

2.3 Ontology Matching

One of the obstacles that urged the development of ontologies was the heterogene-
ity of data (e.g., synonyms). By allowing a main label to be related to other labels
through relations (e.g., synonyms) ontologies minimize the ambiguity resulting
from natural language. A new problem arises from this solution: heterogeneity
of ontologies.

When dealing with ontologies there are four main types of heterogeneity that
are relevant (Euzenat et al., 2007): Syntactic heterogeneity resulting from two
ontologies expressed in different languages; Terminological heterogeneity refers to
the synonym problem meaning that two equal concepts might have different labels
in two ontologies; Conceptual heterogeneity is the modeling discrepancy, meaning
that one domain might be modeled from two points of view, covering different
sub domains, or having different levels of detail; Semiotic heterogeneity relates
to the bridge between humans and machines. While humans easily distinguish
homonyms by their context machines do not. This heterogeneity will not be
discussed any further for lack of relatedness with this work. Thus, the logical
definitions for the presented concepts are as follows (Euzenat et al., 2007):

One way to decrease the existing heterogeneity is linking different ontologies -
Ontology Matching. The aim in Ontology Matching is to create bridges of knowl-
edge. The previous can be achieved through matchers. Matchers are algorithms
that use different strategies to calculate the similarity between two entities in two
different ontologies. When this similarity is associated to those terms, a Map-
ping is created. A set of mappings above a certain value (threshold) that passes
through a selector is called an Alignment. The difference between a set of map-
pings and an Alignment lies on the selection step that will deal with cardinality
problems.

Ontology matching systems rely on different types of matchers in order to
generate alignments. Usually when computing alignments, the matchers try to
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find equivalence mappings - two entities from different ontologies that represent
the same concept. Alternatively, there are subsumption mappings, i.e., mappings
from one ontology to another one that convey the meaning of a hierarchical
relationship between the two concepts. This idea is easily pictured when dealing
with an horizontal ontology lacking structural detail but excelling on the quantity
of concepts.

It is important to emphasize that subsumption mapping means one term is
more generic that the other. The idea behind subsumption mappings is to deal
with both perspective and conceptual heterogeneities by being able to comple-
ment ontologies with, for example, missing detail levels. By finding the subsump-
tion matches within a pair of ontologies, the structure of a vertical ontology and
the width of an horizontal one can be used to better organize the existing domain
knowledge.

When creating ontologies there are some types of heterogeneity that might be
involved. When dealing with ontologies that describe one domain but different
points of view there can be some adjacent problems such as different levels of de-
tail. If the previous problem did not exist there would be no need for Subsumption
Matchers, since the integration of ontologies would automatically create the same
output as the Subsumption Matchers. There is a large diversity of information
in the pursuit to gather knowledge. For example, there are ontologies that while
describing the same domain might consider C as A’s ancestor (C = AA) while
others recognize C as a sibling of A. Euzenat et al. (2007) classifies ontology
matching techniques into two categories:

1. Granularity/Input Interpretation, where the classification is based on the
matcher’s granularity (element or structure level) and then on how the
input’s information is interpreted:

• Element-level matching techniques compute mappings by analyzing
the concepts in isolation, i.e., ignoring their relations (Rahm & Bern-
stein, 2001).

• Structure-level techniques compute mappings by taking into account
the concept’s surrounding relations (Kang & Naughton, 2003).
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2. Kind of Input, based on the usage done by the matching techniques to the
kind of input.

• Syntactic techniques interpret the input regarding its structure follow-
ing an algorithm.

• External techniques uses auxiliary resources of a domain and com-
mon knowledge external to the algorithm. Semantic techniques take
advantage of formal semantics.

2.4 Related Work

Most of the existing matchers find equivalences by lexical or string similarity.
Their scoring relies on the similarity either of the words composing the labels or
the synonyms.

The AgreementmakerLight (AML) is a top performing system that will be
used as a base for the implementation of the methods used through this disser-
tation. In terms of matchers it has word-based string similarity matchers using
synonyms based on queries to the WordNet database. AML also implements a
variety of similarity metrics and weights to compute string similarity, requiring an
all-against-all comparison of words. Since this system will be further discussed in
section 4.1.2, at this point is important to say that there is no usage of semantic
similarity measures in AML.

LogMap is a "highly scalable ontology matching system with built-in reason-
ing and diagnosis capabilities" (Jiménez-Ruiz et al., 2011). Nowadays LogMap is
a family of systems that includes the complete LogMap, LogMapLt, and LogMap-
Bio (Jiménez-Ruiz et al., 2016). LogMap’s complete pipeline can be summarized
by a first overlapping estimation with a lexical algorithm that over estimates the
potential mappings, followed by a lexical indexation where not only the labels
but also their lexical variations are indexed. The possible mappings are then sep-
arated into two groups by an heuristic that divides them into correct mappings
or in need of expert curation. At this point there is a mapping repair and a
structural indexation. The previous step allows conflict detection using disjoint-
ness axioms. Finally LogMap allows user intervention whereas an human expert
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will approve or reject the mappings. LogMapBio is an extension of LogMap by
including the usage of Bioportal to provide mediating ontologies. LogMapLt is a
variant of LogMap that reduces the latter to only its string matching techniques.

Is important to emphasize that Cross & Hu (2011) reviewed the literature
involving the usage of semantic similarities in ontology matching. Unfortunately,
the gap in years resulted in the fact that the relevant analyzed systems do not ap-
pear in recent literature. Systems such as ASMOV (Automated Semantic Match-
ing of Ontologies with Verification), last updated in 2010 reportedly utilized se-
mantic similarity to verify the mappings found with lexical and string similarity
algorithms. For more information, see Jean-Mary et al. (2009). For the best of
my knowledge there are no current systems that use semantic similarity to com-
pute new mappings. The advantage taken of semantic similarity falls under the
verification mechanism’s scope like ASMOV.

Even though there has been a bigger investment towards equivalence map-
pings, subsumtion has always been an ongoing area of research. Competition
wise, there has been a renewed interest in this type of mappings. Usually, as
in AML, the system creates equivalence matchers and reuses them to find sub-
sumption mappings by making small changes. Nowadays the only system that
has presented subsumption matching as a priority is PhenomeNET (Garcıa et al.,
2016). PhenomeNET contains classes from multiple ontologies in order to pre-
process disjoint axioms. The main goal is to integrate specific ontologies having
species phenotypes based on Entity-Quality (EQ) definition patterns. EQ will
gather entities from one ontology and increase their quality with another. This
ontology uses entities from UBERON (cross-species ontology for anatomic struc-
tures) and quality information from PATO’s (phenotypic qualities/properties)
ontology (Mungall et al., 2012). Therefore their matchers have a specific affinity
for ontology pairs that are annotated with PATO, leaving other pairs in this do-
main short ended. Also, ontologies that do not fall into the biomedical domain
will not be matched (Jiménez-Ruiz et al., 2016).

Table 2.1 (Faria et al., 2018) describes each system according to its capabil-
ities: to handle Size of the ontologies, medium-sized (+), large (++) or very
large (+++) ontologies; use of Lexicons thereforethe possibility of synonym us-
age and the lexical tools such as WordNet (WN) or UMLS SPECIALIST Lexicon
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Table 2.1: Ontology matching systems that have participated in OAEI for the
biomedical tracks.

System Size Lexicon Relations Repair Background OAEI
Knowledge BT

AgrMaker [6] + weights part of - Bio; Man; Med A
AML [13] +++ WN; weights all Logic Bio; Auto; M/E all

Anchor-Flood [55] + WN - - Man; Exp A
Aroma [7] +++ - - - - A, LB

ASMOV [24] + WN - - Bio; Man; Exp A
AUTOMSv2 [31] ++ WN; weights - - Man; Exp LB-
BLOOMS [42] + WN part of - Bio; Man; Med A

COMMAND [36] + - - Logic - A
CroMatcher [19] + WN - - Man; Exp A
DKP-AOM [11] + WN - - Man; Exp A, LB-
DSSim [38] + WN - - Man; Exp A

FCA-Map [64] ++ UMLS - Logic Man; Exp all-
GMap [33] + external - Logic Man; Exp A

GOMMA [29] +++ - - - Bio; Auto; Med A, LB
kosimap [48] + - - - - A
LogMap [26] +++ WN; UMLS - Logic Bio; Auto; M/E all
LP HOM [34] + - - - A
Lyam++ [59] ++ BabelNet - - Man; Exp all-
MapPSO [4] + - - - - A
OACAS [63] + - - - - A

PhenomeNET [15] ++ (AML) part of - Bio; Man; Med DP
SAMBO [32] + WN part of - Bio; Man; Exp A
ServOMap [8] +++ WN - Logic Man; Exp A, LB
TaxoMap [20] + - - - - A
TOAST [58] + - - - - A

WikiMatch [23] ++ Wikipedia - - Man; Exp A, LB-
YAM++ [39] +++ WN - Rules Man; Exp A, LB

Relations lists the types of relations they contemplate in addition to subclass relations; Repair
details whether they perform alignment repair based on logic or rules; Background Knowledge
describes whether they use biomedical ontologies as background knowledge (Bio), whether the
process of background knowledge selection is manual (Man) or automatic (Auto), and whether
background knowledge is used as a mediator (Med) or for lexical expansion (Exp); OAEI BT
lists the Biomedical Tracks in which the system successfully competed in out of Anatomy (A),
Large Biomedical Ontologies (LB), and Disease & Phenotype (DP), with - indicating that the
system did not complete the largest LB tasks.

(UMLS); set of Relations contemplated by the system besides subclass; type of
Repair performed as part pf the alignments logic rule; Background Knowledge
and if background knowledge’s selection is manual (Man) or automatic (Auto),
plus if it is used as a mediator (Med) or for lexical expansion (Exp);OAEI Bio
Tracks where the system had completed Anatomy (A), Large Biomedical Ontolo-
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gies (LB), Disease & Phenotype (DP) and ’-’ indicates that the system did not
complete the largest LB tasks.

From this overview it becomes clear that only two systems participated in
all tracks. Both systems, AML and LogMap, explore Background Knowledge
(external information) specific to the biomedical domain.
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Chapter 3

Methods

Two kinds of matchers were developed to investigate the application of different
semantic similarity approaches in the context of ontology matching: equivalence
matchers and subsumption matchers. It is important to emphasize that the
matchers created find new mappings by extending an input alignment, which
means that they require an anchor alignment where the mappings will function
as anchors for the search of new mappings.

Upon matching two ontologies (O1 and O2) a matcher will find bridges of
knowledge between them. Those bridges, called mappings, are composed of a
term A from O1, a term B from O2, a relationship r between A and B, and a
score that reflects the confidence assigned to the pair. When a matcher focuses
on finding mappings that represent the same real-world concept they are called
Equivalence Matchers. The notion behind Equivalence Matchers developed in
this work is based on taking that score bellow the alignment threshold but above
a second defined threshold and evaluating their semantic similarity to an accepted
mapping. The usage of Semantic Similarity to find subsumption mappings also
relies on a neighborhood search for new mappings.

3.1 Equivalence Matchers

Each matcher in this category needs as input, two alignments and parameters
from three Dimensions, as well as a final threshold. A threshold is just a value that
the candidate mapping needs to surpass to become a mapping. One alignment
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will be the anchor for the extension of the alignment while the second will have a
lower threshold (AlignmentLT ) that will be used as a source of initial similarities
for an incrementation by semantic similarity computation. This is not a true
alignment since a selection procedure is not applied to it.

The anchor alignment will be composed of anchors, each anchor will be the
starting point to a search for new mappings on its neighborhood. While a can-
didate mapping will not be in the anchor alignment but in AlignmentLT , this
type of mapping will also present a score of semantic similarity. Only if the
combination of the previous scores surpasses the threshold of the matcher is a
mappings considered a true mapping and even then it will only be a part of the
final alignment if it passes the selector step.

Given that the proposed method is parameterizable in several ways, the pa-
rameters were grouped in 3 distinct dimensions, based on their relation with the
algorithm:

• Structure - takes into account the direction of the semantic expansion
as well as the distance that is used. The direction can be Ancestors (A),
Descendants (D), or both. When dealing with both, the direction chosen is
the one that contains the Maximum (M) score.

• Semantic Similarity - takes into account the IC measure and the Seman-
tic Similarity Measure. The matching algorithm can take as input any IC
measure and any semantic similarity measure that function over ontologies.

• Weighting Mechanism - is the way the semantic similarity is weighted
and combined with the original score (SSC and FSS), which are defined
in the next section (equations 3.1 to 3.5).

3.1.1 General Algorithm

The following pipeline describes the general algorithm used to find new equiva-
lence mappings based on previous anchor alignments. The diagrams in Figures
3.1 and 3.2 illustrate this general pipeline.

Upon receiving the two alignments as input the algorithm will use the anchor
alignment to search for candidate mappings. This search is parametrized by the
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Structure dimension components: radius r1 and radius r2, as well as direction
(Ancestors, Descendants, and Maximum). The algorithm will search for those
mappings within a specific radius r1 - Find neighborhood. Within that radius
the algorithm might chose only to consider the anchor’s ancestors, descendants,
or both according to an input parameter. All the possible mappings between
source and target neighbors inside that radius are called candidate mappings.

A second radius (r2) is used to search each the candidate’s neighborhood with
the same direction as before (either Ancestors, Descendants, or both). This sec-
ond search will consider the pairs that are contemplated in the AlignmentLT (with
lower threshold) - similarity pairs. This consideration means that only pairs
that have alignment scores higher that the lower threshold will be considered.

Figure 3.1: Pipeline for the General Algorithm used for the Equivalence Matchers

Each similarity pair will contribute to the new score with a semantic similarity
contribution (SSc). The semantic similarity contribution takes into account the
Semantic dimension parameters: IC metric and semantic similarity metric. The
SSc is a combination of the semantic similarity (between the two terms from the
source and the two terms from the target) with the score from the AlignmentLT .
As shown in Figure 3.2 the SSc will be the combination of the semantic similarity
from the source (between sD2 and s) with the semantic similarity from the target
(between tD1 and t) and the score from the previous alignment - ISimL (Initial
Similarity from AlignmentLT ).
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(a) The dashed arrows show all candidate map-
pings from s and t anchor. The shadowed pair
will be used in 3.2(b)

(b) Similarity pairs generated from sd2
and td1.

Figure 3.2: General steps for the Equivalence Matchers with r1 and r2 equal to 2
as a schematic example.

The computation of the final score (FSS) for each candidate mapping (s-t) will

take into account the average values of SSc as well as the score for the mapping

from the ISimL from s-t. FSS will be the incrementation of a score (ISimL) that

might not be enough to pass the threshold initially with the surrounding scores

weighting the semantic similarity. Therefore the candidate mappings that are

approved (mappings) are the ones with enough semantic similarity to increase

the lower score towards the matcher’s threshold value.

As part of the methodology, there are two different ways to calculate the

Semantic Similarity contribution (SScA or SScB respectively in equations 3.1
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3.1 Equivalence Matchers

and 3.2).

SScA =
ISimL

2
∗ SSsource+ ISimL

2
∗ SStarget

=
ISimL

2
∗ (SSsource+ SStarget)

(3.1)

SScB = ISimL ∗ Tconorm(SSsource, SStarget) (3.2)

Both take into account the semantic similarity from the source and the target
as well as the score between the similarity pairs from the AlignmentLT . After
averaging the SSc the final score will be either Tconormed (equation 3.3)

Tconorm(a, b) = a+ b− a ∗ b (3.3)

with the score ISimL between the candidate mapping (FSSA equation 3.4) or
averaged (FSSB equation 3.4).

FinalSSA = Tconorm(WSS, ISimL) (3.4)

FinalSSB =
WSS + ISimL

2
(3.5)

The general algorithm here described can be parametrized along the three
aforementioned Dimensions: structure - the radii for semantic expansion, and
the direction of this expansion; Semantic Similarity - the various ways to com-
pute IC and semantic similarity; and Weighting Mechanism - the alternatives
for computing SSc and FSS. In the structure Dimension the radii r1 and r2 to
ensure that the anchor mapping is inside the neighborhood search. The following
contains the algorithms’ description:

• For every anchor mapping:

– Define its neighborhood as the set of descendants and ancestors’ classes
for each class involved in the mapping at a distance equal or inferior
to r1.

– Each possible pairing between one descendant/ancestor from the source

23



3. METHODS

ontology and one descendant/ancestor from the target ontology is clas-
sified as a candidate mapping.

– For every candidate mapping:

∗ Define its neighborhood as the set of descendants and ancestors’
classes for each class involved in the mapping at a distance equal
or inferior to r2.

∗ Each mapping found in that neighborhood and also found in the
alignment with lower threshold is defined as a similarity pair.

∗ For each similarity pair:

· Retrieve the mapping’s score from the alignment with lower
threshold

· Compute the semantic similarity inside each ontology between
the concept from the similarity pair and the concept from the
candidate mapping.

· Compute the Semantic Similarity contribution (SSc) as a com-
bination of the similarity mapping’s score and both the seman-
tic similarity (from each ontology), using the equations 3.1 or
3.2.

∗ Average the SScs found in the candidate mapping’s neighborhood.

∗ Compute with the equations 3.4 or 3.5, the Final Semantic Simi-
larity score (FSS), using the average SSc and the candidate map-
ping’s score.

∗ If the FSS is equal or superior to the matcher’s threshold the
candidate mapping becomes part of the preliminary alignment.

3.2 Subsumption Matchers

The subsumption matchers developed in this work also need a pre-existing align-
ment as input to provide mappings to be used as anchors. Those equivalence
anchors will allow the new algorithms to search on their neighborhood for sub-
sumption mappings and relate them accordingly. In this section there are two
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main algorithms that differ in complexity: basic semantic subsumption matcher
and extended semantic subsumption matcher.

3.2.1 Basic Semantic Subsumption Matcher

This approach (BSSM ) generates subsumption mappings based on simple rea-
soning. If S is equivalent to T, then all S’s ancestors are marked as T’s ancestors,
and all T’s ancestors are marked as S’s ancestors (likewise for descendants). All
new mappings thus obtained are assigned a score equal to the one between S and
T. This pipeline takes an equivalence alignment as input with a threshold t1. For
each mappings (S, T ) from that anchor, the methods illustrated in Figure 3.3
follow these operations:

• Finds all direct neighbors (ancestors and descendants) of S and T .

• Maps each SAncestor (with the same score from the anchor) as T ’s Ancestor.
Plus each TAncestor is mapped as S’s Ancestor with the score of the pair
(S/T ).

• Maps S (with the same score from the anchor) as ancestor of TDescendant.
Plus each T is mapped as ancestor of SDescendant with the score of the pair
(S/T ).

Figure 3.3: Representation of Simple Semantic Subsumption mappings. The
mappings represented have the same confidence as the anchor mapping.

The output of this algorithm is equivalent to running a reasoner over the
integrated ontologies. However, since integration is not always achievable or
desirable, a basic matcher was implemented (Pesquita et al., 2013a).
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3.2.2 Extended Semantic Subsumption Matcher

The extended matcher (ESSM ) considers the case illustrated in Figure 3.4 where

it is possible to verify that the structural organization of the domain can dif-

fer between ontologies, where a sibling of S can be considered an ancestor or

descendant of T due to different modeling views. A challenge then arises, the

identification of the mapping’s direction: should a sibling be mapped as an an-

cestor or descendant? Moreover, this matcher also computes new scores for the

mappings, based on the similarity of the concept’s labels. The algorithm runs

the following steps:

1. Get the anchor mappings from the input alignment (S, T).

2. Find the direct neighborhood for both S and T plus their correspondent

set of siblings. Creating a set of candidate pairs :

• Sancestor as T ’s ancestor and vice-versa.

• Sdescendant as T ’s descendant and vice-versa.

• Ssibling as either T ’s ancestor or descendant and vice-versa.

3. For each candidate pair, (Si, T) and (S, Tj), generate new scores:

• get main label and set of synonyms - label;

• normalize each label;

• compute string similarity between each label of each pair;

• calculate the new score between (Si, T) and (S, Tj) as the maximum

score between their labels;

• if the mapping involves a sibling, identify the direction of mapping;

• if the score > threshold, the candidate pair is added to the alignment

becoming a mapping.
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3.2 Subsumption Matchers

Figure 3.4: Diagram of candidate mappings identified by ESSM

Three alternatives for calculating label similarity were included in ESSM :

• subsWord (Wor) - a bag-of-words similarity method that uses all available
labels (main plus synonyms). It uses a simple Jaccard distance (intersecting
words over all words).

• subsStemmer (Stem) - same structure and principles of subsWord but
the labels suffer a specific lemmatization using a Stemmer. The Snowball
Stemmer is used to reduce each word to its morphological root, allowing
metabolic and metabolism to be regarded as equivalent labels. For example
allowing the mapping between disorder of amino acid and other organic acid
metabolism and amino acid metabolic disorder.

• subsString (Str) - a string similarity method that removes stop words
and non-alphanumeric characters (‘and’, ‘by’, ‘has’, ‘is’, ‘non’, ‘or’, ‘of’,
‘to’, ‘(’, ‘-’, ‘_’, ‘)’, ‘as’, ‘with’, ‘type’, ‘on’, ‘in’, ‘at’, ‘part’, and ‘,’). This
enables the detection of subsumption mappings such as artery and part of
artery or even hypersensitivity reaction and hypersensitivity reaction type
IV. In theory any string similarity metric could be used but the chosen
implementation (see Chapter 4) uses ISub (Stoilos et al., 2005)

Since string similarity is used to find equivalences, the words removed are the
ones that would not interfere with the concept’s exact meaning. When searching
for subsumptions there is a need for a hierarchical search. Therefore the range of
words to remove can be expanded to words that would interfere with an equiva-
lence match but not with a subsumption match. For example part of in artery
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and part of artery which would not be an equivalence but should be encountered
for subsumption.

The example artery and part of artery can also be used for the choice of
direction of the subsumption relation when dealing with siblings. As explained
before, without the involvement of siblings the direction decision is very straight-
forward: A’s ancestors will be matched as a ancestors of B; A’s descendants will
be mapped as descendants of B; and vice-versa. When siblings are added to
potential mappings, the assumption of hierarchical relationships is not straight-
forward anymore: A’s siblings might be B’s parents or children. This problem
arises when dealing with ontologies that have different points of view because
they consider different levels of detail for the same domain.

Upon finding the best similarity, the most specific entity will be the longest
one. This means for the pair of labels with the best similarity, the entity con-
sidered the ancestor is the one with less words and/or smaller length. This
assumption is supported by the fact that many biomedical ontologies use regular
lexical structures in their labels that can be explored (Quesada-Martínez et al.,
2013).
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Chapter 4

Evaluation Methodology

This section describes the methodology followed to implement and evaluate the
matching algorithms presented in Chapter 3. The first part will cover the Data
Resources employed, followed by the actual evaluation pipelines for both equiva-
lence and subsumption, in that order.

4.1 Data Resources

The Ontology Alignment Evaluation Initiative (OAEI) is an international initia-
tive that evaluates ontology matching systems (Achichi et al., 2016). The main
goal of OAEI is the evaluation of ontology matching systems, including compar-
ing their results with reference alignments produced for this effect. Additionally,
OAEI assesses strengths and weaknesses of the systems and promotes commu-
nication among algorithm developers, thereby contributing to the improvement
of the current ontology alignment panorama. OAEI was created in 2004 as an
yearly international event organized to perform these evaluations. This initia-
tive provides ontologies, or fragments thereof, to be matched, as well as reference
alignments that might contain curated mappings. All data resources used in this
dissertation came from OAEI 2016.

In order to test the Equivalence Matchers, four ontologies were used:

• Foundation Model of Anatomy ontology (FMA) focuses on the representa-
tion of the phenotypic structure of the human body - anatomy (Rosse &
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Mejino Jr, 2008);

• National Cancer Institute Thesaurus (NCI ) implements reference terminol-
ogy for the National Cancer Institute by covering a vast domain of vocab-
ulary, from clinical care, public information, and administrative activities,
to translational and basic research (Golbeck et al., 2011);

• Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT )
is a comprehensive and precise clinical health terminology developed to
accommodate the diverse needs and expectations of the worldwide medical
profession (Donnelly, 2006);

• Adult Mouse Anatomy (MA), which is an anatomical ontology for adult
mouse terms (Hayamizu et al., 2005).

Those ontologies are used either as a whole or as parts which were made
available by OAEI. The available whole ontologies are NCI and FMA, there are
also smaller fragments for both ontologies plus a small and a large fragments
from SNOMED. The smallest fragments are the Mouse and Human which are
fragments that only consider the anatomy portions of MA and NCI respectively.

The evaluation of the Subsumption Matchers ’ was made through the usage of:

• Human Phenotype Ontology (HP), which is a description of phenotypic ab-
normalities, by providing a standardized vocabulary of the ones encountered
in human diseases (Köhler et al., 2013);

• Mammalian Phenotype Ontology (MP) is the representation of the charac-
teristics of mammalian organisms manifested through either lifespan and/or
development - observable morphological, physiological, and behavioral (Smith
& Eppig, 2012);

• Human Disease Ontology DOID is a comprehensive controlled vocabulary
for human diseases (Schriml et al., 2012);

• Orphanet and Rare Diseases Ontology ORDO, an ontology dedicated to
rare diseases available in multiple languages (Vasant et al., 2014).
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The evaluation of the matching for those ontologies is done through com-
parison with reference alignments that were also available in OAEI. The refer-
ence alignment for the Mouse-Human pair is the most curated alignment. The
anatomy track which is the matching of Mouse to Human (MH) has been done
since 2005 and the reference alignment has been made public in 2008. FMA, NCI,
and SNOMED are matched for every combination of their small fragments, and
combination of the large fragments. Those reference alignments are generated
from the Unified Medical Language System (UMLS) Metathesaurus. UMLS is
the most comprehensive effort for integrating independently-developed medical
thesauri (Jimenez-Ruiz et al., 2010).

With regard to the subsumption track, the reference alignments available
for HP-MP (HM) and DOID-ORDO (DO) are the set of extracted mappings
automatically generated by BioPortal. These reference alignments are not of high
quality since they are automatically generated without any manually curation.
Even OAEI prefers to use silver standards (mapping found by at least two/three
systems) instead of those reference alignments in their evaluation (Achichi et al.,
2016).

OAEI includes different tracks to evaluate different aspects of ontology match-
ing. The availability the Mouse-Human reference alignment has made it possible
for all the systems to find better solutions for this particular ontology match-
ing problem. This pair is particularly different from all the others for its size,
specificity, and the curated reference alignment.

As stated, the ontologies used can be fragments of the actual ontology. In
Table 4.1 the ontologies used for testing the equivalence matcher are presented.
When creating a fragment of an ontology to be matched to another there is a
need to find sections from both ontologies that overlap. This need is important
to guarantee that there are mappings to be found. The lack of this procedure
can lead to the absence of mappings.

Table 4.1 presents the general aspects of the ontologies used in the Equivalence
Matchers. The pair Mouse-Human has a different profile than the others. Besides
being the smallest pair, MH also is the more vertical one. Human has a Maximum
Depth of 11 and Mouse of 6, for their size the depth should be smaller when
compared to the other pairs.
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Table 4.1: Characteristics of the ontologies with for the equivalence matchers
Number of Classes

Ontology from OAEI Total With a
Single Child

With >25
Children

nº of
Roots

Maximum
Depth

Human 3304 209 28 8 11
Mouse 2743 8 0 3 6

FMA small overlapping NCI 3696 895 13 4 18
FMA small overlapping SNOMED 10157 1139 70 4 18

FMA whole ontology 78988 118 243 4 20
NCI small overlapping FMA 6488 856 28 16 12

NCI small overlapping SNOMED 23958 2290 115 19 14
NCI whole ontology 66724 4744 372 19 14

SNOMED small overlapping FMA 13412 2404 34 10 25
SNOMED small overlapping NCI 51128 11873 375 17 23
SNOMED extended overlapping

FMA and NCI 122464 22892 917 19 26

4.1.1 AgreementMakerLight - AML

The algorithms developed for both types of matching were implemented as an
extension of AML (Faria et al., 2013a), but their theoretical foundations are
independent from this platform, since they could be implemented within other
extensible ontology matching systems as well or independently. AML was chosen
because it is a top performing system in the area of Ontology Matching in biomed-
ical ontologies and easily extensible. The Semantic Similarity Library (SML) was
employed to support semantic similarity calculations. This chapter also presents
the steps taken to integrate the algorithms with AML and SML.

AML focuses on computational efficiency handling very large ontologies. After
loading the ontologies, it uses a variety of matchers and filters depending on the
characteristics of the ontologies loaded, e.g. size (Faria et al., 2013a). This system
follows the pipeline illustrated on Figure 4.1 .

AML uses the OWL API not only to load the ontologies but also to parse
them into its data structures. In particular it contains a data structure called
the Lexicon that stores lexical information, and the RelationshipMap that stores
structural information. As presented on Figure 4.1, there are many matchers
implemented in AML. For the sake of readability only the matchers relevant to
this dissertation will be presented:
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4.1 Data Resources

Figure 4.1: Integration of developed Matchers into AML’s pipeline*

* There are four parts to this pipeline. The three parts from AML: ontology loading -
input or background knowledge (BK) ontologies are parsed and loaded into AML’s
data structures; ontology matching - matchers generate candidate mappings latter

combined into a preliminary alignment; and filtering - problem-causing mappings (e.g.
cardinality) are excluded from the previous alignment to produce a final alignment.

While the fourth part is the implementation of the new matchers: this implementation
occurs after the first two steps and the selector part of the third step; after running

these matchers there is the filtering step is done in fullness. In green are the matchers
created plus the extra steps included for the evaluation.

• LexicalMatcher - searches for literal full-name matches between the Lex-
icons from both ontologies;

• WordMatcher - finds matches by computing overlapping words and scores
the matchers by amount of overlap;

• StringMatcher -explores string similarity by computing the similarity be-
tween the Lexicon entries (of the pair to match).

Filtering is responsible for dealing with cardinality problems by using one of
three selectors (strict, permissive, or hybrid). The selector receives an alignment
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as input and filters it based on a threshold, removing every mapping with a
score under the threshold. The difference lies on how the selector handles the
cardinality conflicts, upon finding two conflicting mappings from a concept A to
both B and C, with different or equal scores:

• Strict - keeps only the mapping with the higher confidence score, in case
of the same score, the selector keeps only one, chosen randomly;

• Permissive - keeps all the mappings that have the highest confidence score;

• Hybrid - between the selector’s threshold and 0.75 behaves as the permis-
sive selector, and allows conflicting mappings over 0.75 by keeping every
match.

4.1.2 Semantic Similarity Implementation

The Semantic Measures Library (SML) is an open source Java library devoted to
the computation of semantic measures (Harispe et al., 2015). SML can be used to
compute semantic similarity, semantic relatedness, or semantic distance, between
others. The implementation of SML depends on its own ontology loading since
just like AML it uses special data structures:

• URIFactory is the main data structure that will store all the concepts in a
URI form.

• SM_Engine is a data structure with the method to compute the semantic
similarity between two terms with the measure and IC intended.

The parsing is made through an external parser which does not allow large
ontologies. That problem lead to the necessity to implement algorithms that
would compute the semantic similarity. The implementation of the algorithms
for the computation of semantic similarity (mySSM) for larger ontologies was
done using AML and its own data structures. mySSM implementation does not
require a second loading and parsing of the ontologies reducing the time needed
for the semantic similarity computation.
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4.2 Equivalence Matcher’s Evaluation Pipeline

The choice of AML was made not only by the ease and availability of this soft-

ware but also for the fact that this is and has been a top performing participant

in OAEI for the past four years. AML has evolved with new algorithms and

strategies every year, becoming a powerful solution for ontology matching. Par-

ticularly in biomedical ontologies matching, AML explores external ontologies

and resources as background knowledge, increasing its performance considerably.

However, these external resources are not always available or simple to use. Thus

our evaluation approach takes as baseline a simpler, generic matcher, applicable

in any biomedical ontology matching scenario and focused on lexical similarity.

This is not a poor-performing approach and in fact outperforms several OAEI

participants.

Tables 4.2 and 4.3 summarize the way the results are structured. The ontology

pairs are divided by size: MH is small; FNs and FSs are medium; SNs is large;

while FNw, FSw, and SNw are very large. The size nomenclature is not always

coherent in literature therefore the one used is from AML’s size evaluation. To

establish the best strategies the Baseline was used on the small and medium sized

pairs: Mouse-Human, FMA-NCI small fragments, and FMA-SNOMED small

fragments. This pipeline consists in only LM extended with SM, and finally a

Selector. The strategies were then grouped into the previous dimensions. Each

parameter in each dimension is evaluated by grouping the results obtained with

all strategies that use that parameter, selecting only the strategies with highest F-

measure (the top 20) and averaging the performance measures. These averages are

then compared to their correspondent baseline alignment (LM + SM + Selector).

Those comparisons would lead to the selection of the best strategies that would be

evaluated with AML’s complete pipeline for the same pairs plus NCI-SNOMED

small fragments (NSs), FMA-NCI large fragments (FNw), FMA-SNOMED large

fragments (FSw), and NCI-SNOMED large fragments (NSw).
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Table 4.2: Ontology pairs presented in each table designed for each dimension. *

Ontology PairsPipeline Evaluation type MH FNs FSs SNs FNw FSw SNw Tables

Average top
20 F-measures** + + + - - - - 4.3Baseline
Top strategies + + + - - - - 5.4

Complete Top strategies + + + + + + + 5.5
* The pipeline used was the Baseline (LM + SM + Selector). MH: Mouse-Human, FN:

FMA-NIC, FS: FMA-SNOMED, SN: SNOMED-NCI; s: small section of the ontology pair, w:
whole or large section of the pair.

** The average of the strategies that hold the best 20 F-measure results for each one of the
previously presented Dimensions.

Table 4.3: All the strategies and their respective results tables.
Structure Semantic

Similarity
Weighting
MechanismPipeline Direction Distance IC Measure SSc FSS threshold

Baseline
Ancestors

Descendants
Maximum

1
3
5

Seco
Zhou

Sanchez

Resnik
J. Conrath

Lin
simGic

SScA
SScB

FSSA

FSSB

0.6
0.7
0.8

Table* 5.1 5.2 5.3
* Each table show the average of the best 20 F-measure results filtered by Dimension.

4.3 Subsumption Matcher’s Evaluation Pipeline

The evaluation for the Subsumption Matchers was based on the sets of reference
alignments for the pairs aligned; plus an extra manual evaluation. Only the HP-
MP and DOID-ORDO were evaluated since those pairs were the ones used for the
subsumption track in OAEI. These matchers use three dimensions: the semantic
similarity, the string similarity and the selection used. Each strategy pipeline has:
(i) the unmodified result of running AML’s main algorithm as anchor, with (ii)
one of the four (BSSM and the three similarity options for ESSM) subsumption
matchers described before (using a threshold tMatcher), and (iii) one of the three
selectors described earlier (using a threshold tSelector and an additional threshold
tHybrid for the Hybrid selector). Both tMatcher and tSelector take the values
0.6, 0.7, or 0.8 while the tHybrid will take the values 0.7, 0.75, or 0.8.

The manual evaluations were performed by: first checking on BioPortal (Whet-
zel et al., 2011) for their synonyms and annotations contained in the ontologies in

36



4.3 Subsumption Matcher’s Evaluation Pipeline

question, further consulting one or two medical dictionaries1,2, and finally search
for scientific papers that would somehow contextualize the previous information
(Wheeler et al., 2007). If after all the previous steps there was still doubt the
pairs were marked as not subsumption.

In terms of manual evaluation, 30 random mappings were selected from the
resulting alignment for each strategy - in an attempt to create a similar evaluation
to OAEI. Each pair was given an assessment regarding the direction of the sub-
sumption. After the elimination of duplicates, the final lists contained 151 pairs
(DOID and ORDO) and 181 pairs (HP and MP). The new assessment takes into
account the direction of the relationships. A pair could be positive for subsump-
tion (is_a or part_of relationships), or negative (cases of equivalence, incorrect,
or Different Subsumption). The Different Subsumption evaluation means that the
matcher selected a subsumption mapping but incorrectly chose the direction of
the subsumption. To compare the behavior of the different strategies, the assess-
ment would fall back to the precision of subsumption mappings:

subsumption
subsumption+ equivalence+ incorrect+Different Subsumption

(4.1)

1http://medical-dictionary.thefreedictionary.com
2http://www.online-medical-dictionary.org
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Chapter 5

Results and Discussion

The results and their discussion are organized as follows: first regarding the

Equivalence Matchers, followed by the results and discussion from Subsumption

Matchers.

5.1 Equivalence Matchers

Each Dimension (Structure, Semantic Similarity, and Weighting Combination)

was evaluated independently. For each Dimension, the top 20 F-measure were

averaged to allow a general overview of the impact of each Dimension parameters

in performance of the algorithm. An overall evaluation of the combination of

the best parameterizations of each Dimension was also performed. In this overall

evaluation, the results using Baseline pipeline as input alignments are presented

for the small and medium pairs (MH, FNs, and FSs) and the AML full pipeline

are used as anchor for all the ontology pairs.

This last part enables the comparison of the strategies as well as the impact of

the anchor alignment. Before the Equivalence results are presented it is important

to highlight that given AML’s optimized performance and the fact that the Base-

line itself outperforms several OAEI participants, seemingly small improvements

can be considered relevant.
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5.1.1 Structure

The parameters grouped in the Structure dimension are direction of the semantic
expansion and the radius of the expansion. Table 5.1 describes the Structure
dimension results using the Baseline as input alignments. For the medium size
pairs (FNs and FSs), the Ancestors with radius 3 is present the best results for
F-measure, followed by radius 5. For the MH the radius 3 is still in the top
but now the best direction is Maximum, followed by Descendants with radius 3
as well. For FNs and MH all the strategies show an improvement in terms of
F-measure regarding the baseline. On the other hand, FSs only presents better
scores when dealing with Ancestors.

Theoretically, the best performance should be the Maximum which means
that the correct scores are the ones with higher scores. The fact that FSs and
FNs shows higher scores for Ancestors means that wrongly identified mappings
from Descendants (that are in conflict) will have higher scores than Ancestors.
Plus, those fragments are specifically for anatomy, meaning that not only the
string similarity for correct mappings will be more accurate but the computation
of semantic similarity as well.
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Table 5.1: Average Precision, Recall, and F-measure from SML for the best 20
aggregated by Structure, which includes direction and distance*.

Structure Average best 20 (%)Ontology
Pairs Direction Radius Precision Recall F-Measure

Baseline 96.686 84.736 90.317
A 1 96.669 84.783 90.336
A 3 96.611 84.896 90.375
A 5 96.662 84.840 90.366
D 1 96.687 84.744 90.322
D 3 96.683 84.765 90.333
D 5 96.683 84.765 90.333
M 1 96.687 84.744 90.322
M 3 96.684 84.787 90.345

FNs

M 5 96.684 84.777 90.340

Baseline 94.393 67.325 78.594
A 1 94.213 67.463 78.624
A 3 93.624 67.907 78.717
A 5 93.871 67.727 78.683
D 1 94.393 67.325 78.594
D 3 94.393 67.325 78.594
D 5 93.819 67.485 78.501
M 1 92.762 67.797 78.334
M 3 93.037 67.883 78.491

FSs

M 5 89.994 68.322 77.667

Baseline 97.906 77.111 86.273
A 1 97.863 77.399 86.436
A 3 97.659 77.562 86.457
A 5 97.669 77.451 86.392
D 1 97.514 77.684 86.476
D 3 97.461 77.847 86.555
D 5 97.461 77.847 86.555
M 1 97.655 77.611 86.485
M 3 97.487 77.878 86.585

MH

M 5 97.459 77.829 86.544

* FNs: FMA-NCI small fragment, FSs: FMA-SNOMED small fragment, MH: Mouse-Human;
A: Ancestor, D: Descendant, M: Maximum.
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5.1.2 Semantic Similarity

Table 5.2 show the results from the Dimension of Semantic Similarity. For the
medium size pairs, Zhou (Z) combined with Resnik(R) produced the best average
results, while for MH that happens for Seco (S) with Resnik.

The decision of best measure is consensual, Resnik is the measure that holds
the best scores regardless of the ontology pair. By looking at the results of
the medium pairs, the measure used has more impact than the IC approach,
the difference between Zhou/Resnik and Seco/Resnik are 0.003% for FNs and
0.004% for FSs, while for MH the difference is 0.144% between the same strategies.
This information points to a decision towards the Seco/Resnik strategy, plus this
strategy shows an improvement towards the baseline of 0.044% for FNs, 0.056%
for FSs and 0.296% for MH.
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Table 5.2: Average results for the best 20 strategies aggregated by Semantic
Similarity.*

Semantic Similarity Average best 20 (%)Ontology
Pair IC SSMea Precision Recall F-Measure

Baseline 96.686 84.736 90.317
S JC 96.687 84.757 90.330
S L 96.650 84.787 90.330
S R 96.635 84.847 90.358
S sG 96.669 84.792 90.342
Sa JC 96.664 84.777 90.331
Sa L 96.684 84.773 90.337
Sa R 91.453 84.767 87.970
Sa sG 96.671 84.783 90.337
Z JC 96.681 84.769 90.334
Z L 96.683 84.769 90.335
Z R 96.660 84.834 90.361

FNs

Z sG 96.673 84.779 90.336

Baseline 94.393 67.325 78.594
S JC 94.011 67.530 78.598
S L 94.041 67.510 78.595
S R 94.241 67.481 78.646
S sG 94.214 67.466 78.627
Sa JC 94.066 67.521 78.611
Sa L 93.454 67.682 78.502
Sa R 90.923 67.451 77.407
Sa sG 94.170 67.511 78.642
Z JC 93.437 67.719 78.520
Z L 93.589 67.695 78.559
Z R 94.231 67.493 78.650

FSs

Z sG 94.142 67.506 78.628

Baseline 97.906 77.111 86.273
S JC 97.602 77.590 86.451
S L 97.669 77.621 86.498
S R 97.610 77.774 86.569
S sG 97.501 77.795 86.539
Sa JC 97.430 77.857 86.548
Sa L 97.692 77.555 86.466
Sa R 89.948 78.243 83.661
Sa sG 97.426 77.777 86.498
Z JC 97.677 77.493 86.422
Z L 97.703 77.517 86.447
Z R 97.648 77.517 86.425

MH

Z sG 97.541 77.691 86.490
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* FNs: FMA-NCI small fragment, FSs: FMA-SNOMED small fragment, MH: Mouse-Human;
IC: Information Content, S: Seco, Sa: Sanchez, Z: Zhou; SSMea: Semantic Similarity

Measure, S: Seco, Z: Zhou, Sa: Sanchez; JC: Jiang Conrath.

5.1.3 Weighting Mechanism

Table 5.3 shows the last Dimension evaluated. Again, in MH the best parameters
are different than in the other ontology pairs. For the medium pairs, FSSB

show the best results for F-measure when paired with SScA (90.392% for FNs
and 78.737% for FSs) and second best when paired with SScB (90.364% for
FNs and 78.693% for FSs). It is important to note that regardless of the pair, the
approaches that involve FSSB always score better than the F-measure’s baseline.

Table 5.3: Average Precision, Recall, and F-measure for the best 20 aggregated
by Weighting Mechanism*.

Weighting Mechanism Average best 20 (%)Ontology Pair SSc FSS Precision Recall F-Measure
Baseline 96,686 84,736 90,317

A A 96,164 84,890 90,176
A B 96,679 84,873 90,392
B A 93,252 84,863 88,858

FNs

B B 96,635 84,857 90,364
Baseline 94,393 67,325 78,594

A A 90,484 68,205 77,775
A B 93,901 67,791 78,737
B A 87,273 68,047 76,410

FSs

B B 93,808 67,776 78,693
Baseline 97,906 77,111 86,273

A A 97,074 78,236 86,641
A B 97,669 77,798 86,608
B A 96,692 77,729 86,178

MH

B B 97,698 77,764 86,598
* FNs: FMA-NCI small fragment, FSs: FMA-SNOMED small fragment, MH: Mouse-Human.

There is one last parameter that has not been yet accounted for, the threshold
used for the matchers. This parameter is not a part of the algorithm and ontology
matching systems typically set this as a manual input. To elucidate if a given
threshold was more appropriate, the percentage of each tested threshold (0.6,
0.7, and 0.8) in the top 20 approaches was calculated. Figure 5.1 shows that, in
the top 20 F-measure results there is a major presence of the threshold 0.7 in
comparison to the other thresholds and regardless of the ontology pair.
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5.1 Equivalence Matchers

Figure 5.1: Percentage of thresholds in the top 20 of the best F-measure results
filtered by ontology pair

5.1.4 Overall Results

Until now all the results presented were through averages of a selected top of

strategies rather than specific strategies. The next two tables present the strate-

gies that combine the best parameters found by the Dimension results analysis.

Table 5.4 presents the best strategies using the Baseline alignment and Table 5.5

presents the best strategies using AML’s complete pipeline.

Table 5.4: Results from the top strategies with the Baseline pipeline medium and
small pairs of ontologies*.

OP Structure SS Weighting Mechanism P R F
Baseline 96.686 84.736 90.317

Ancestors/3 Seco/Resnik SScA/FSSB/0.7 96.688 84.773 90.339FNs
Ancestors/3 Seco/Resnik SScB/FSSB/0.7 96.694 84.922 90.426

Baseline 94.393 67.325 78.594
Ancestors/3 Seco/Resnik SScA/FSSB/0.7 94.373 67.358 78.609FSs
Ancestors/3 Seco/Resnik SScB/FSSB/0.7 93.836 67.956 78.826

Baseline 97.906 77.111 86.273
Ancestors/3 Seco/Resnik SScA/FSSB/0.7 97.906 77.111 86.273MH
Ancestors/3 Seco/Resnik SScB/FSSB/0.7 97.908 77.177 86.315

* OP: Ontology Pair, FNs: FMA-NCI small fragment, FSs: FMA-SNOMED small fragment,
MH: Mouse-Human; SS: Semantic Similarity, tresh: threshold, P: Precision, R: Recall, F:

F-measure.
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It is important to note that in the Dimension analysis the medium pairs
always lead to the same parameters, which can not be said for MH. The latter
has shown some discrepancies when compared to the medium pairs which was
expected since its size and granularity differ from the medium pairs. Moreover,
MH is the longest running biomedical track in OAEI and has a fully manual and
high quality reference alignment. This information is important to account for
the fact that AML has evolved through the years in order to perfect its matching
techniques. This pair represents a very specific sub-domain (anatomy) where
most of the labels for correct mappings should be mapped through Lexical and
String similarity. Plus the availability of a curated reference alignment that has
been public for years has helped AML’s ability to find mappings through those
techniques.

Table 5.5: Results from the top strategies with the complete pipeline for all the
ontology pairs*

OP Structure Semantic
Similarity Weighting Mechanism Precision Recall F-Measure

Baseline 95,842 90,953 93,333FNs A/3 Seco/Resnik SScA/FSSB/0.7 95,842 90,953 93,333
Baseline 92,283 76,203 83,476FSs A/3 Seco/Resnik SScA/FSSB/0.7 92,264 76,203 83,468
Baseline 95,044 93,602 94,317MH A/3 Seco/Resnik SScA/FSSB/0.7 95,044 93,602 94,317
Baseline 91,378 73,649 81,561SNs A/3 Seco/Resnik SScA/FSSB/0.7 91,359 73,655 81,557
Baseline 80,531 88,086 84,139FNw A/3 Seco/Resnik SScA/FSSB/0.7 80,476 88,086 84,109
Baseline 68,519 71,009 69,742FSw A/3 Seco/Resnik SScA/FSSB/0.7 66,025 71,142 68,488
Baseline 86,161 68,698 76,445SNw A/3 Seco/Resnik SScA/FSSB/0.7 86,074 68,704 76,415

* OP: Ontology Pair, FNs: FMA-NCI small fragment, FSs: FMA-SNOMED small fragment,
MH: Mouse-Human; SNs: SNOMED-NCI small fragment; FNw: FMA-NCI large fragment,

FSw: FMA-SNOMED large fragment, SNw: SNOMED-NCI large fragment.

Recapitulating, the best strategies from the previous results are Ancestors
combined with radius 3 for Structure, Seco with Resnik, for Semantic Similarity,
and SScA/FSSB for Weighting Mechanism, with the 0.7 threshold. Considering
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the fact that for Weighting Mechanism there is a smaller difference in results
when comparing the different approaches, table 5.4 shows the results with these
parameters as well.

When looking at the results with the Baseline anchor, all the strategies show
better results than the baseline (except MH with SScA). The improvement ranges
from 0.042% (MH), to 0.109% (FN) and 0.232% (FS). All the best results come
from the Weighting Mechanism of SScB/FSSB.

Since a combination of the best independently analyzed parameters may not
correspond to the best overall strategy, the best eight overall strategies for each
small/medium ontology pairs using the Baseline were also applied with AML’s
full pipeline. Figure 5.2 presents the difference between the best strategy’s F-
measure and their correspondent baselines for each ontology pair. Each ontology
pair has two values corresponding to the same strategy either with the Baseline
or the complete AML pipeline.

Figure 5.2: Comparison of the best strategies using the baseline and AML’s full
pipeline*

* Strategies used: MH - Maximum, radius 1, Seco/Jiang Conrath, SScA/FSSB, and
threshold of 0.6; FN, FS and SN’s - Ancestors, radius 3, Seco/Resnik, SScB/FSSA,
and threshold of 0.7; FNw, FSw and SNw - Ancestors, radius 3, Seco/Jiang Conrath,

SScA/FSSA, and threshold of 0.8.

For the small and medium pairs there is a major improvement of F-measure
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when dealing with the Baseline as the anchor alignment. Although, when the
complete AML pipeline is used MH show a major decrease of 0.33% of F-measure
and there are no new mappings for FN. For FS there is a slight improvement of
0.07% in F-measure.

As for the larger pairs, there is a clear decrease in F-measure when dealing
with the Baseline (except FNw) but a small increase when the complete pipeline
is used. This is a clear indication of the impact of the quality of the input
alignments. The Baseline alignment, by virtue of being based on lexical similarity
has lower recall and is prone to identify incorrect mappings that have similar
labels. When these erroneous mappings are used as anchors the strategy suffers.

To elucidate the performance of the proposed approach regarding the limita-
tion of the search space, meaning the radius around the anchors, the recall re-
stricted to these areas was calculated. Figure 5.3 shows that the strategies found
at least 66.7% of the mappings in the reference alignment within the search space.
The results are quite satisfying for this dissertation scope since when recall is 0%
it means that in that search space there were actually no correct mappings to
be found. This figure is illustrative of the importance on the anchor alignment
that will define the search dimension and the efficacy of the strategies that score
between 66.7% and 100%.

Is important to understand the AML suffered many changes from 2016 to
2017’s OAEI edition and the version used in this work was a beta version of
the one submitted in 2017 but different from 2016. For the sake of reasoning,
every time AML was used as input for SSM that same version was used including
when AML was presented as baseline in this section. The disparities in F-measure
results (Figure 5.4) between AML’s participation in 2016, 2017, and the ones used
as baseline through this chapter are due to the previous reason. Both AML and
LogMap are top performing systems with high F-measure results meaning that
the increase of 0.1% would be a relevant improvement in one of those systems.
Decreases in F-measure are not uncommon since the implementation of strategies
that benefit one pair or the system’s running capability can lead to the loss in
F-measure for another pair (e.g., AML increased FSs’s F-measure by 7.3% by
loosing 0.1% in FNs).
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Figure 5.3: Recall in the search space. This Recall is the percentage of mappings
found by the strategies (from Figure 5.2) in comparison to the ones in that scope
that could actually be found (existing in reference) *

* The 0% Recall values coincide with scopes whereas the number of mappings in the
reference was 0.

To propose an overall comparison of the proposed approach and the state of
the art, the obtained results were compared to the OAEI 2016 and 2017 edition
results for AML, LogMap, and LogMapLt. LogMap and LogMapLt are systems
with similar complexity as AML and Baseline, respectively. Figure 5.4 has two
goals. First, to show the difference in improvement during one year, and secondly
to present comparable pipelines to consolidate the results presented. In terms of
evolution, the only big difference is from LogMapLt for MH where F-measure
increases 10%. As stated before, the MH pair is special for its size and reference
alignment availability, plus this increase in 2017 implied a loss of 3.4% for the
LogMap system.

Second, Figure 5.4 aims to compare the results from this dissertation with
LogMap. Recapitulating, the Baseline input alignment does not include any
Background Knowledge which was a breakthrough for the ontology matching
systems by incrementing the lexical information available. Just like Baseline’s
pipeline, LogMapLt also lacks BK thus the similarity in terms of complexity in-
troduced before. Even though the implementation of Semantic Similarity Match-
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Figure 5.4: Comparison of F-measures (%) results from AML, LogMap, and
LogMapLt in OAEI from 2016 and 2017 as well as the results from SSM* using
either Baseline or AML as input.
* The strategies used were the same as in Figure 5.2. The results shown are from the

small and medium sized pairs.
** SSM: Semantic Similarity Matcher; MH: Mouse-Human, FN: FMA-NCI, FS:

FMA-SNOMED; s: small fragments.

ers does not directly improve AML’s complete pipeline results, these generalist
strategies have shown to be valuable for the Baseline. When comparing the re-
sults from AML with SSM with results with LogMap there is improvement in
the F-measure of all ontology pairs. On another hand, Baseline with SSM always
score better than LogMapLt and LogMap in 2016 for the FSs Pair. The fact that
the Baseline + SSM more than doubles the score from LogMapLt for FSs pair is
a very good indicator of the applicability and generality of these matchers.

5.2 Subsumption Matchers

For the subsumption matchers, the evaluation focused on comparing the matcher
strategy (BSSM, Wor, Stem, and Str), and their combination with different se-
lection approaches. Both the matcher and the selector have thresholds that will
be parameters for the tests, and the case of other threshold is added, that will
substitute the fixed 0.75 threshold.

Each strategy is identified by the type of matcher plus the threshold used for
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that matcher (e.g., Sem0.6), and the selector plus threshold (e.g., Per0.6). In the
case of the Hybrid selector, it will be just like the others with the addition of
_threshold for the Hybrid threshold (e.g., Hyb0.6_0.75).

Table 5.6 shows the number of New Mappings found in comparison to the
AML baseline for each strategy, the coverage is the percentage of the ontology
that is mapped (either as equivalence or subsumption). This table shows that
the average coverage of ORDO is consistently smaller than the coverage of DOID

Table 5.6: New mappings and coverage for each strategy for DOID-ORDO and
HP-MP tasks.

New
Mappings Coverage (%) New

Mappings Coverage (%)Strategy
DO DOID ORDO HM HP MP

AML (baseline) - 20.2 15.3 - 14.2 14.2
BSSM0.6 Per0.6 4465 33.4 39.3 5226 38.0 32.5

Hyb0.6_0.75 73 20.7 15.6 208 14.8 15.2Wor0.6 Per0.6 73 20.7 15.6 208 14.8 15.2
Hyb0.6_0.75 98 20.9 15.6 393 15.5 16.3Stem0.6 Per0.6 98 20.9 15.6 393 15.5 16.3
Hyb0.6_0.75 409 23.4 16.6 929 18.8 17.7Str0.6 Hyb0.6_0.7 434 23.5 16.6 1002 18.9 17.9

* BSSM: Basic Semantic Subsumption Matcher, Wor: SubsWord, Stem: SubsStemmer, Str:
SubsString; Per: Permissive Selector, Hyb: Hybrid Selector; DO: DOID-ORDO, HM: HP-MP;

Table 5.7 shows the results discriminated by type of subsumption. 30 random
new mappings were selected from the alignments produced by each strategy to
be manually evaluated. After eliminating duplicates they were evaluated and
the results in Table 5.7 show the precision of those new mappings. In DO, the
extended semantic subsumption matching strategies all outperformed the basic
semantic approach by 7 to 20% increase in precision. In HM, the Str approaches
achieved a lower precision than the BSSM approach, and the other approaches
only improved precision by arround 0.5%. The lower precision of BSSM ’s ap-
proach in DO is due to the lower quality of the input alignment generated for the
DO pair. The proposed strategies effectively handle this issue filtering out many
erroneous mappings. BSSM finds 10 to 20 times more new mappings than other
matchers. This was expected since the BSSM strategy only adds new mappings
without computing any new score to filter out some of the candidates.
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Table 5.7: Number of new mappings found by the strategies. their distribution
according to the type of relationship and the precision of those new mappings *

OP Strategy NM is_a part_of eq DSD neg P(%) NME
Stem0.6Hyb0.6_0.75 98 57 0 1 1 2 95.0 61

Stem0.6Per0.6 98 57 0 1 1 2 95.0 61
Wor0.6Hyb0.6_0.75 73 47 0 1 1 2 94.0 51

Wor0.6Per0.6 73 47 0 1 1 2 94.0 51
Str0.6Hyb0.6_0.7 434 59 0 1 3 10 84.3 73
Str0.6Hyb0.6_0.75 409 53 0 1 3 10 82.8 67

DO

BSSM0.6Per0.6 4465 85 0 0 2 27 75.9 114
Wor0.6Hyb0.6_0.75 208 60 4 2 0 5 90.1 71

Wor0.6Per0.6 208 60 4 2 0 5 90.1 71
Stem0.6Hyb0.6_0.75 393 77 4 3 1 6 90.0 91

Stem0.6Per0.6 393 77 4 3 1 6 90.0 91
BSSM0.6Per0.6 5226 118 8 1 0 14 89.4 141
Str0.6Hyb0.6_0.7 1002 76 9 3 1 10 86.7 99

HM

Str0.6Hyb0.6_0.75 929 67 8 3 1 9 86.2 88
* OP: Ontology Pair, DO: DOID-ORDO, HM: HP-MP; BSSM: Basic Semantic Subsumption
Matcher, Wor: SubsWord, Stem: SubsStemmer, Str: SubsString; Per: Permissive Selector,

Hyb: Hybrid Selector; DO: DOID-ORDO, HM: HP-MP; NP: New Mappings, eq:
equivalences, DSD: Different Subsumption Direction, neg: negative; P: Precision, NME:

number of mappings evaluated.

OAEI has a reference alignment but the major evaluation is through silver
standards that assume a mapping correct if found by two or more systems. The
other evaluation is to randomly select 30 of the unique mappings and manu-
ally evaluate them. Therefore this manual evaluation has complemented existing
standards by showing that the precision of the new mappings can variate between
75.9% and 95.00%.
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Chapter 6

Conclusion

This dissertation focused in the use of semantic similarity as part of ontology
alignment algorithms in the biomedical domain. The underlying hypothesis was
that semantic similarity could function as an extension technique to find novel
mappings based on an anchor alignment. Two major contribution were achieved:
(i) the development of a general algorithm for equivalence matching, which is pa-
rameterizable to conform to different types of ontologies; and (ii) the development
of an algorithm for subsumption matching.

Given the fact that the equivalence matcher extension algorithm is parameter-
izable, its evaluation was done by grouping the parameters in three dimensions:
structure, semantic similarity and weighting mechanism.

Since the evaluation was done by using distinct ontology pairs, it was pos-
sible to conclude that there is no single parameterization that produces a more
accurate alignment than the others; therefore, I grouped the parameters into the
three dimensions mentioned above and reported the average of the performance
statistics of the top 20 best results for each possible parameter value in these
dimensions. This allowed me to study whether a given parameter value is robust,
i.e. whether there is one combination of parameters that repeatedly performs
better than the others.

The main result of this evaluation strategy was that the best parameter com-
bination depends on the characteristics of the ontologies being matched. In par-
ticular, the size and granularity of the ontologies have a strong impact on the
best parameterization of the matching algorithm.
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When compared to the baseline (a simple matcher using lexical information),
the results show that there is an average increase of 0.2% in the F-measure. Notice
that this results from the average of the top 20 strategies, which means that the
correct parameterization can lead to a larger increase in this statistic.

When compared to the results obtained with the full AML pipeline, no signif-
icant improvements were achieved. This happens because the AML algorithm is
already fine-tuned to work with the biomedical ontologies of OAEI. AML is a top
performing ontology matching system meaning that even the smallest improve-
ments are difficult to obtain. The comparison of the new algorithms to another
top performing system (LogMap family) shows that even when using an input
alignment that lacks Background Knowledge, the proposed approach (Baseline)
extended by the algorithm can surpass LogMap (which uses Background Knowl-
edge) by 11.3% on the F-measure results.

The equivalence matcher algorithm can only search the area that the input
alignments provide. The recall of the found correct mappings in comparison to
the possible ones in the radius defined are between 66.7% and 100%. Therefore
the algorithm is able to finding correct mappings in the neighborhood it searches.

The subsumption matcher was evaluated through a manual evaluation that
showed that between 75.9% and 95% of the new mappings found were correctly
labeled. In particular, the combination of the semantic approach with lexical sim-
ilarities that explore the implicit semantics of biomedical ontology terms proved
to be successful.

The main conclusion of this work is that semantic similarity can contribute
to ontology matching in the extension of existing alignments. The proposed al-
gorithm for equivalence mappings is highly parameterizable and while it is not a
single but a combination of parameters that works in all ontology pairs, this work
hints at some possible good parameter selection for medium and small ontology
pairs, namely Ancestors with radius 3, Seco with Resnik, and SScA/FSSB. The
subsumption matcher, although it was not possible to validated with a full ref-
erence, alignment manual evaluation results show that it is effective in finding
actual hierarchical relationships between concepts from two ontologies.

The more interesting result of this dissertation is that using semantic similar-
ity to extend high precision anchor alignments can be a valid option for ontology
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matching in domains where Background Knowledge is unavailable or difficult
to explore. Possible avenues for future research could include a more in depth
evaluation of the comparison between semantic similarity based matching and
Background Knowledge matching, and an evaluation taking as input anchor align-
ments generated by other systems. In fact, the lexical similarity used by AML,
although simple in its genesis, takes into consideration different weights for differ-
ent kinds of labels (e.g., main label, synonym, narrow synonym) (Pesquita et al.,
2013b).This alone has been shown to have a decisive impact in the biomedical on-
tology matching field (Faria et al., 2018). It would then be interesting to explore
whether semantic similarity based matching could achieve good performance us-
ing non-weighted lexical similarity and thus function as a more generic approach
in this sense.
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